Diff for /imach/src/imach.c between versions 1.97 and 1.125

version 1.97, 2004/02/20 13:25:42 version 1.125, 2006/04/04 15:20:31
Line 1 Line 1
 /* $Id$  /* $Id$
   $State$    $State$
   $Log$    $Log$
   Revision 1.97  2004/02/20 13:25:42  lievre    Revision 1.125  2006/04/04 15:20:31  lievre
   Version 0.96d. Population forecasting command line is (temporarily)    Errors in calculation of health expectancies. Age was not initialized.
   suppressed.    Forecasting file added.
   
   Revision 1.96  2003/07/15 15:38:55  brouard    Revision 1.124  2006/03/22 17:13:53  lievre
   * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is    Parameters are printed with %lf instead of %f (more numbers after the comma).
   rewritten within the same printf. Workaround: many printfs.    The log-likelihood is printed in the log file
   
   Revision 1.95  2003/07/08 07:54:34  brouard    Revision 1.123  2006/03/20 10:52:43  brouard
   * imach.c (Repository):    * imach.c (Module): <title> changed, corresponds to .htm file
   (Repository): Using imachwizard code to output a more meaningful covariance    name. <head> headers where missing.
   matrix (cov(a12,c31) instead of numbers.  
     * imach.c (Module): Weights can have a decimal point as for
   Revision 1.94  2003/06/27 13:00:02  brouard    English (a comma might work with a correct LC_NUMERIC environment,
   Just cleaning    otherwise the weight is truncated).
     Modification of warning when the covariates values are not 0 or
   Revision 1.93  2003/06/25 16:33:55  brouard    1.
   (Module): On windows (cygwin) function asctime_r doesn't    Version 0.98g
   exist so I changed back to asctime which exists.  
   (Module): Version 0.96b    Revision 1.122  2006/03/20 09:45:41  brouard
     (Module): Weights can have a decimal point as for
   Revision 1.92  2003/06/25 16:30:45  brouard    English (a comma might work with a correct LC_NUMERIC environment,
   (Module): On windows (cygwin) function asctime_r doesn't    otherwise the weight is truncated).
   exist so I changed back to asctime which exists.    Modification of warning when the covariates values are not 0 or
     1.
   Revision 1.91  2003/06/25 15:30:29  brouard    Version 0.98g
   * imach.c (Repository): Duplicated warning errors corrected.  
   (Repository): Elapsed time after each iteration is now output. It    Revision 1.121  2006/03/16 17:45:01  lievre
   helps to forecast when convergence will be reached. Elapsed time    * imach.c (Module): Comments concerning covariates added
   is stamped in powell.  We created a new html file for the graphs  
   concerning matrix of covariance. It has extension -cov.htm.    * imach.c (Module): refinements in the computation of lli if
     status=-2 in order to have more reliable computation if stepm is
   Revision 1.90  2003/06/24 12:34:15  brouard    not 1 month. Version 0.98f
   (Module): Some bugs corrected for windows. Also, when  
   mle=-1 a template is output in file "or"mypar.txt with the design    Revision 1.120  2006/03/16 15:10:38  lievre
   of the covariance matrix to be input.    (Module): refinements in the computation of lli if
     status=-2 in order to have more reliable computation if stepm is
   Revision 1.89  2003/06/24 12:30:52  brouard    not 1 month. Version 0.98f
   (Module): Some bugs corrected for windows. Also, when  
   mle=-1 a template is output in file "or"mypar.txt with the design    Revision 1.119  2006/03/15 17:42:26  brouard
   of the covariance matrix to be input.    (Module): Bug if status = -2, the loglikelihood was
     computed as likelihood omitting the logarithm. Version O.98e
   Revision 1.88  2003/06/23 17:54:56  brouard  
   * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.    Revision 1.118  2006/03/14 18:20:07  brouard
     (Module): varevsij Comments added explaining the second
   Revision 1.87  2003/06/18 12:26:01  brouard    table of variances if popbased=1 .
   Version 0.96    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
     (Module): Function pstamp added
   Revision 1.86  2003/06/17 20:04:08  brouard    (Module): Version 0.98d
   (Module): Change position of html and gnuplot routines and added  
   routine fileappend.    Revision 1.117  2006/03/14 17:16:22  brouard
     (Module): varevsij Comments added explaining the second
   Revision 1.85  2003/06/17 13:12:43  brouard    table of variances if popbased=1 .
   * imach.c (Repository): Check when date of death was earlier that    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   current date of interview. It may happen when the death was just    (Module): Function pstamp added
   prior to the death. In this case, dh was negative and likelihood    (Module): Version 0.98d
   was wrong (infinity). We still send an "Error" but patch by  
   assuming that the date of death was just one stepm after the    Revision 1.116  2006/03/06 10:29:27  brouard
   interview.    (Module): Variance-covariance wrong links and
   (Repository): Because some people have very long ID (first column)    varian-covariance of ej. is needed (Saito).
   we changed int to long in num[] and we added a new lvector for  
   memory allocation. But we also truncated to 8 characters (left    Revision 1.115  2006/02/27 12:17:45  brouard
   truncation)    (Module): One freematrix added in mlikeli! 0.98c
   (Repository): No more line truncation errors.  
     Revision 1.114  2006/02/26 12:57:58  brouard
   Revision 1.84  2003/06/13 21:44:43  brouard    (Module): Some improvements in processing parameter
   * imach.c (Repository): Replace "freqsummary" at a correct    filename with strsep.
   place. It differs from routine "prevalence" which may be called  
   many times. Probs is memory consuming and must be used with    Revision 1.113  2006/02/24 14:20:24  brouard
   parcimony.    (Module): Memory leaks checks with valgrind and:
   Version 0.95a3 (should output exactly the same maximization than 0.8a2)    datafile was not closed, some imatrix were not freed and on matrix
     allocation too.
   Revision 1.83  2003/06/10 13:39:11  lievre  
   *** empty log message ***    Revision 1.112  2006/01/30 09:55:26  brouard
     (Module): Back to gnuplot.exe instead of wgnuplot.exe
   Revision 1.82  2003/06/05 15:57:20  brouard  
   Add log in  imach.c and  fullversion number is now printed.    Revision 1.111  2006/01/25 20:38:18  brouard
     (Module): Lots of cleaning and bugs added (Gompertz)
 */    (Module): Comments can be added in data file. Missing date values
 /*    can be a simple dot '.'.
    Interpolated Markov Chain  
     Revision 1.110  2006/01/25 00:51:50  brouard
   Short summary of the programme:    (Module): Lots of cleaning and bugs added (Gompertz)
     
   This program computes Healthy Life Expectancies from    Revision 1.109  2006/01/24 19:37:15  brouard
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    (Module): Comments (lines starting with a #) are allowed in data.
   first survey ("cross") where individuals from different ages are  
   interviewed on their health status or degree of disability (in the    Revision 1.108  2006/01/19 18:05:42  lievre
   case of a health survey which is our main interest) -2- at least a    Gnuplot problem appeared...
   second wave of interviews ("longitudinal") which measure each change    To be fixed
   (if any) in individual health status.  Health expectancies are  
   computed from the time spent in each health state according to a    Revision 1.107  2006/01/19 16:20:37  brouard
   model. More health states you consider, more time is necessary to reach the    Test existence of gnuplot in imach path
   Maximum Likelihood of the parameters involved in the model.  The  
   simplest model is the multinomial logistic model where pij is the    Revision 1.106  2006/01/19 13:24:36  brouard
   probability to be observed in state j at the second wave    Some cleaning and links added in html output
   conditional to be observed in state i at the first wave. Therefore  
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    Revision 1.105  2006/01/05 20:23:19  lievre
   'age' is age and 'sex' is a covariate. If you want to have a more    *** empty log message ***
   complex model than "constant and age", you should modify the program  
   where the markup *Covariates have to be included here again* invites    Revision 1.104  2005/09/30 16:11:43  lievre
   you to do it.  More covariates you add, slower the    (Module): sump fixed, loop imx fixed, and simplifications.
   convergence.    (Module): If the status is missing at the last wave but we know
     that the person is alive, then we can code his/her status as -2
   The advantage of this computer programme, compared to a simple    (instead of missing=-1 in earlier versions) and his/her
   multinomial logistic model, is clear when the delay between waves is not    contributions to the likelihood is 1 - Prob of dying from last
   identical for each individual. Also, if a individual missed an    health status (= 1-p13= p11+p12 in the easiest case of somebody in
   intermediate interview, the information is lost, but taken into    the healthy state at last known wave). Version is 0.98
   account using an interpolation or extrapolation.    
     Revision 1.103  2005/09/30 15:54:49  lievre
   hPijx is the probability to be observed in state i at age x+h    (Module): sump fixed, loop imx fixed, and simplifications.
   conditional to the observed state i at age x. The delay 'h' can be  
   split into an exact number (nh*stepm) of unobserved intermediate    Revision 1.102  2004/09/15 17:31:30  brouard
   states. This elementary transition (by month, quarter,    Add the possibility to read data file including tab characters.
   semester or year) is modelled as a multinomial logistic.  The hPx  
   matrix is simply the matrix product of nh*stepm elementary matrices    Revision 1.101  2004/09/15 10:38:38  brouard
   and the contribution of each individual to the likelihood is simply    Fix on curr_time
   hPijx.  
     Revision 1.100  2004/07/12 18:29:06  brouard
   Also this programme outputs the covariance matrix of the parameters but also    Add version for Mac OS X. Just define UNIX in Makefile
   of the life expectancies. It also computes the stable prevalence.   
       Revision 1.99  2004/06/05 08:57:40  brouard
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    *** empty log message ***
            Institut national d'études démographiques, Paris.  
   This software have been partly granted by Euro-REVES, a concerted action    Revision 1.98  2004/05/16 15:05:56  brouard
   from the European Union.    New version 0.97 . First attempt to estimate force of mortality
   It is copyrighted identically to a GNU software product, ie programme and    directly from the data i.e. without the need of knowing the health
   software can be distributed freely for non commercial use. Latest version    state at each age, but using a Gompertz model: log u =a + b*age .
   can be accessed at http://euroreves.ined.fr/imach .    This is the basic analysis of mortality and should be done before any
     other analysis, in order to test if the mortality estimated from the
   Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach    cross-longitudinal survey is different from the mortality estimated
   or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so    from other sources like vital statistic data.
     
   **********************************************************************/    The same imach parameter file can be used but the option for mle should be -3.
 /*  
   main    Agnès, who wrote this part of the code, tried to keep most of the
   read parameterfile    former routines in order to include the new code within the former code.
   read datafile  
   concatwav    The output is very simple: only an estimate of the intercept and of
   freqsummary    the slope with 95% confident intervals.
   if (mle >= 1)  
     mlikeli    Current limitations:
   print results files    A) Even if you enter covariates, i.e. with the
   if mle==1     model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
      computes hessian    B) There is no computation of Life Expectancy nor Life Table.
   read end of parameter file: agemin, agemax, bage, fage, estepm  
       begin-prev-date,...    Revision 1.97  2004/02/20 13:25:42  lievre
   open gnuplot file    Version 0.96d. Population forecasting command line is (temporarily)
   open html file    suppressed.
   stable prevalence  
    for age prevalim()    Revision 1.96  2003/07/15 15:38:55  brouard
   h Pij x    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
   variance of p varprob    rewritten within the same printf. Workaround: many printfs.
   forecasting if prevfcast==1 prevforecast call prevalence()  
   health expectancies    Revision 1.95  2003/07/08 07:54:34  brouard
   Variance-covariance of DFLE    * imach.c (Repository):
   prevalence()    (Repository): Using imachwizard code to output a more meaningful covariance
    movingaverage()    matrix (cov(a12,c31) instead of numbers.
   varevsij()   
   if popbased==1 varevsij(,popbased)    Revision 1.94  2003/06/27 13:00:02  brouard
   total life expectancies    Just cleaning
   Variance of stable prevalence  
  end    Revision 1.93  2003/06/25 16:33:55  brouard
 */    (Module): On windows (cygwin) function asctime_r doesn't
     exist so I changed back to asctime which exists.
     (Module): Version 0.96b
   
      Revision 1.92  2003/06/25 16:30:45  brouard
 #include <math.h>    (Module): On windows (cygwin) function asctime_r doesn't
 #include <stdio.h>    exist so I changed back to asctime which exists.
 #include <stdlib.h>  
 #include <unistd.h>    Revision 1.91  2003/06/25 15:30:29  brouard
     * imach.c (Repository): Duplicated warning errors corrected.
 #include <sys/time.h>    (Repository): Elapsed time after each iteration is now output. It
 #include <time.h>    helps to forecast when convergence will be reached. Elapsed time
 #include "timeval.h"    is stamped in powell.  We created a new html file for the graphs
     concerning matrix of covariance. It has extension -cov.htm.
 /* #include <libintl.h> */  
 /* #define _(String) gettext (String) */    Revision 1.90  2003/06/24 12:34:15  brouard
     (Module): Some bugs corrected for windows. Also, when
 #define MAXLINE 256    mle=-1 a template is output in file "or"mypar.txt with the design
 #define GNUPLOTPROGRAM "gnuplot"    of the covariance matrix to be input.
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/  
 #define FILENAMELENGTH 132    Revision 1.89  2003/06/24 12:30:52  brouard
 /*#define DEBUG*/    (Module): Some bugs corrected for windows. Also, when
 /*#define windows*/    mle=-1 a template is output in file "or"mypar.txt with the design
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    of the covariance matrix to be input.
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */  
     Revision 1.88  2003/06/23 17:54:56  brouard
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */  
     Revision 1.87  2003/06/18 12:26:01  brouard
 #define NINTERVMAX 8    Version 0.96
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */  
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    Revision 1.86  2003/06/17 20:04:08  brouard
 #define NCOVMAX 8 /* Maximum number of covariates */    (Module): Change position of html and gnuplot routines and added
 #define MAXN 20000    routine fileappend.
 #define YEARM 12. /* Number of months per year */  
 #define AGESUP 130    Revision 1.85  2003/06/17 13:12:43  brouard
 #define AGEBASE 40    * imach.c (Repository): Check when date of death was earlier that
 #ifdef unix    current date of interview. It may happen when the death was just
 #define DIRSEPARATOR '/'    prior to the death. In this case, dh was negative and likelihood
 #define ODIRSEPARATOR '\\'    was wrong (infinity). We still send an "Error" but patch by
 #else    assuming that the date of death was just one stepm after the
 #define DIRSEPARATOR '\\'    interview.
 #define ODIRSEPARATOR '/'    (Repository): Because some people have very long ID (first column)
 #endif    we changed int to long in num[] and we added a new lvector for
     memory allocation. But we also truncated to 8 characters (left
 /* $Id$ */    truncation)
 /* $State$ */    (Repository): No more line truncation errors.
   
 char version[]="Imach version 0.96d, February 2004, INED-EUROREVES ";    Revision 1.84  2003/06/13 21:44:43  brouard
 char fullversion[]="$Revision$ $Date$";     * imach.c (Repository): Replace "freqsummary" at a correct
 int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */    place. It differs from routine "prevalence" which may be called
 int nvar;    many times. Probs is memory consuming and must be used with
 int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;    parcimony.
 int npar=NPARMAX;    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
 int nlstate=2; /* Number of live states */  
 int ndeath=1; /* Number of dead states */    Revision 1.83  2003/06/10 13:39:11  lievre
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    *** empty log message ***
 int popbased=0;  
     Revision 1.82  2003/06/05 15:57:20  brouard
 int *wav; /* Number of waves for this individuual 0 is possible */    Add log in  imach.c and  fullversion number is now printed.
 int maxwav; /* Maxim number of waves */  
 int jmin, jmax; /* min, max spacing between 2 waves */  */
 int gipmx, gsw; /* Global variables on the number of contributions   /*
                    to the likelihood and the sum of weights (done by funcone)*/     Interpolated Markov Chain
 int mle, weightopt;  
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    Short summary of the programme:
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */   
 int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between    This program computes Healthy Life Expectancies from
            * wave mi and wave mi+1 is not an exact multiple of stepm. */    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
 double jmean; /* Mean space between 2 waves */    first survey ("cross") where individuals from different ages are
 double **oldm, **newm, **savm; /* Working pointers to matrices */    interviewed on their health status or degree of disability (in the
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    case of a health survey which is our main interest) -2- at least a
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    second wave of interviews ("longitudinal") which measure each change
 FILE *ficlog, *ficrespow;    (if any) in individual health status.  Health expectancies are
 int globpr; /* Global variable for printing or not */    computed from the time spent in each health state according to a
 double fretone; /* Only one call to likelihood */    model. More health states you consider, more time is necessary to reach the
 long ipmx; /* Number of contributions */    Maximum Likelihood of the parameters involved in the model.  The
 double sw; /* Sum of weights */    simplest model is the multinomial logistic model where pij is the
 char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */    probability to be observed in state j at the second wave
 FILE *ficresilk;    conditional to be observed in state i at the first wave. Therefore
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
 FILE *ficresprobmorprev;    'age' is age and 'sex' is a covariate. If you want to have a more
 FILE *fichtm, *fichtmcov; /* Html File */    complex model than "constant and age", you should modify the program
 FILE *ficreseij;    where the markup *Covariates have to be included here again* invites
 char filerese[FILENAMELENGTH];    you to do it.  More covariates you add, slower the
 FILE  *ficresvij;    convergence.
 char fileresv[FILENAMELENGTH];  
 FILE  *ficresvpl;    The advantage of this computer programme, compared to a simple
 char fileresvpl[FILENAMELENGTH];    multinomial logistic model, is clear when the delay between waves is not
 char title[MAXLINE];    identical for each individual. Also, if a individual missed an
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];    intermediate interview, the information is lost, but taken into
 char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];    account using an interpolation or extrapolation.  
 char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH];   
 char command[FILENAMELENGTH];    hPijx is the probability to be observed in state i at age x+h
 int  outcmd=0;    conditional to the observed state i at age x. The delay 'h' can be
     split into an exact number (nh*stepm) of unobserved intermediate
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];    states. This elementary transition (by month, quarter,
     semester or year) is modelled as a multinomial logistic.  The hPx
 char filelog[FILENAMELENGTH]; /* Log file */    matrix is simply the matrix product of nh*stepm elementary matrices
 char filerest[FILENAMELENGTH];    and the contribution of each individual to the likelihood is simply
 char fileregp[FILENAMELENGTH];    hPijx.
 char popfile[FILENAMELENGTH];  
     Also this programme outputs the covariance matrix of the parameters but also
 char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;    of the life expectancies. It also computes the period (stable) prevalence.
    
 struct timeval start_time, end_time, curr_time, last_time, forecast_time;    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
 struct timezone tzp;             Institut national d'études démographiques, Paris.
 extern int gettimeofday();    This software have been partly granted by Euro-REVES, a concerted action
 struct tm tmg, tm, tmf, *gmtime(), *localtime();    from the European Union.
 long time_value;    It is copyrighted identically to a GNU software product, ie programme and
 extern long time();    software can be distributed freely for non commercial use. Latest version
 char strcurr[80], strfor[80];    can be accessed at http://euroreves.ined.fr/imach .
   
 #define NR_END 1    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
 #define FREE_ARG char*    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
 #define FTOL 1.0e-10   
     **********************************************************************/
 #define NRANSI   /*
 #define ITMAX 200     main
     read parameterfile
 #define TOL 2.0e-4     read datafile
     concatwav
 #define CGOLD 0.3819660     freqsummary
 #define ZEPS 1.0e-10     if (mle >= 1)
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);       mlikeli
     print results files
 #define GOLD 1.618034     if mle==1
 #define GLIMIT 100.0        computes hessian
 #define TINY 1.0e-20     read end of parameter file: agemin, agemax, bage, fage, estepm
         begin-prev-date,...
 static double maxarg1,maxarg2;    open gnuplot file
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    open html file
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    period (stable) prevalence
        for age prevalim()
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    h Pij x
 #define rint(a) floor(a+0.5)    variance of p varprob
     forecasting if prevfcast==1 prevforecast call prevalence()
 static double sqrarg;    health expectancies
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    Variance-covariance of DFLE
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}     prevalence()
      movingaverage()
 int imx;     varevsij()
 int stepm;    if popbased==1 varevsij(,popbased)
 /* Stepm, step in month: minimum step interpolation*/    total life expectancies
     Variance of period (stable) prevalence
 int estepm;   end
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/  */
   
 int m,nb;  
 long *num;  
 int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;   
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;  #include <math.h>
 double **pmmij, ***probs;  #include <stdio.h>
 double dateintmean=0;  #include <stdlib.h>
   #include <string.h>
 double *weight;  #include <unistd.h>
 int **s; /* Status */  
 double *agedc, **covar, idx;  #include <limits.h>
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;  #include <sys/types.h>
   #include <sys/stat.h>
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */  #include <errno.h>
 double ftolhess; /* Tolerance for computing hessian */  extern int errno;
   
 /**************** split *************************/  /* #include <sys/time.h> */
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )  #include <time.h>
 {  #include "timeval.h"
   char  *ss;                            /* pointer */  
   int   l1, l2;                         /* length counters */  /* #include <libintl.h> */
   /* #define _(String) gettext (String) */
   l1 = strlen(path );                   /* length of path */  
   if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );  #define MAXLINE 256
   ss= strrchr( path, DIRSEPARATOR );            /* find last / */  
   if ( ss == NULL ) {                   /* no directory, so use current */  #define GNUPLOTPROGRAM "gnuplot"
     /*if(strrchr(path, ODIRSEPARATOR )==NULL)  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
       printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/  #define FILENAMELENGTH 132
     /* get current working directory */  
     /*    extern  char* getcwd ( char *buf , int len);*/  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
     if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
       return( GLOCK_ERROR_GETCWD );  
     }  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
     strcpy( name, path );               /* we've got it */  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
   } else {                              /* strip direcotry from path */  
     ss++;                               /* after this, the filename */  #define NINTERVMAX 8
     l2 = strlen( ss );                  /* length of filename */  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
     if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
     strcpy( name, ss );         /* save file name */  #define NCOVMAX 8 /* Maximum number of covariates */
     strncpy( dirc, path, l1 - l2 );     /* now the directory */  #define MAXN 20000
     dirc[l1-l2] = 0;                    /* add zero */  #define YEARM 12. /* Number of months per year */
   }  #define AGESUP 130
   l1 = strlen( dirc );                  /* length of directory */  #define AGEBASE 40
   /*#ifdef windows  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
   if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }  #ifdef UNIX
 #else  #define DIRSEPARATOR '/'
   if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }  #define CHARSEPARATOR "/"
 #endif  #define ODIRSEPARATOR '\\'
   */  #else
   ss = strrchr( name, '.' );            /* find last / */  #define DIRSEPARATOR '\\'
   ss++;  #define CHARSEPARATOR "\\"
   strcpy(ext,ss);                       /* save extension */  #define ODIRSEPARATOR '/'
   l1= strlen( name);  #endif
   l2= strlen(ss)+1;  
   strncpy( finame, name, l1-l2);  /* $Id$ */
   finame[l1-l2]= 0;  /* $State$ */
   return( 0 );                          /* we're done */  
 }  char version[]="Imach version 0.98g, March 2006, INED-EUROREVES-Institut de longevite ";
   char fullversion[]="$Revision$ $Date$";
   char strstart[80];
 /******************************************/  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
   int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
 void replace_back_to_slash(char *s, char*t)  int nvar;
 {  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
   int i;  int npar=NPARMAX;
   int lg=0;  int nlstate=2; /* Number of live states */
   i=0;  int ndeath=1; /* Number of dead states */
   lg=strlen(t);  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
   for(i=0; i<= lg; i++) {  int popbased=0;
     (s[i] = t[i]);  
     if (t[i]== '\\') s[i]='/';  int *wav; /* Number of waves for this individuual 0 is possible */
   }  int maxwav; /* Maxim number of waves */
 }  int jmin, jmax; /* min, max spacing between 2 waves */
   int ijmin, ijmax; /* Individuals having jmin and jmax */
 int nbocc(char *s, char occ)  int gipmx, gsw; /* Global variables on the number of contributions
 {                     to the likelihood and the sum of weights (done by funcone)*/
   int i,j=0;  int mle, weightopt;
   int lg=20;  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
   i=0;  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
   lg=strlen(s);  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
   for(i=0; i<= lg; i++) {             * wave mi and wave mi+1 is not an exact multiple of stepm. */
   if  (s[i] == occ ) j++;  double jmean; /* Mean space between 2 waves */
   }  double **oldm, **newm, **savm; /* Working pointers to matrices */
   return j;  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
 }  FILE *fic,*ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
   FILE *ficlog, *ficrespow;
 void cutv(char *u,char *v, char*t, char occ)  int globpr; /* Global variable for printing or not */
 {  double fretone; /* Only one call to likelihood */
   /* cuts string t into u and v where u is ended by char occ excluding it  long ipmx; /* Number of contributions */
      and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)  double sw; /* Sum of weights */
      gives u="abcedf" and v="ghi2j" */  char filerespow[FILENAMELENGTH];
   int i,lg,j,p=0;  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
   i=0;  FILE *ficresilk;
   for(j=0; j<=strlen(t)-1; j++) {  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  FILE *ficresprobmorprev;
   }  FILE *fichtm, *fichtmcov; /* Html File */
   FILE *ficreseij;
   lg=strlen(t);  char filerese[FILENAMELENGTH];
   for(j=0; j<p; j++) {  FILE *ficresstdeij;
     (u[j] = t[j]);  char fileresstde[FILENAMELENGTH];
   }  FILE *ficrescveij;
      u[p]='\0';  char filerescve[FILENAMELENGTH];
   FILE  *ficresvij;
    for(j=0; j<= lg; j++) {  char fileresv[FILENAMELENGTH];
     if (j>=(p+1))(v[j-p-1] = t[j]);  FILE  *ficresvpl;
   }  char fileresvpl[FILENAMELENGTH];
 }  char title[MAXLINE];
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
 /********************** nrerror ********************/  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
   char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH];
 void nrerror(char error_text[])  char command[FILENAMELENGTH];
 {  int  outcmd=0;
   fprintf(stderr,"ERREUR ...\n");  
   fprintf(stderr,"%s\n",error_text);  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
   exit(EXIT_FAILURE);  
 }  char filelog[FILENAMELENGTH]; /* Log file */
 /*********************** vector *******************/  char filerest[FILENAMELENGTH];
 double *vector(int nl, int nh)  char fileregp[FILENAMELENGTH];
 {  char popfile[FILENAMELENGTH];
   double *v;  
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
   if (!v) nrerror("allocation failure in vector");  
   return v-nl+NR_END;  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
 }  struct timezone tzp;
   extern int gettimeofday();
 /************************ free vector ******************/  struct tm tmg, tm, tmf, *gmtime(), *localtime();
 void free_vector(double*v, int nl, int nh)  long time_value;
 {  extern long time();
   free((FREE_ARG)(v+nl-NR_END));  char strcurr[80], strfor[80];
 }  
   char *endptr;
 /************************ivector *******************************/  long lval;
 int *ivector(long nl,long nh)  double dval;
 {  
   int *v;  #define NR_END 1
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  #define FREE_ARG char*
   if (!v) nrerror("allocation failure in ivector");  #define FTOL 1.0e-10
   return v-nl+NR_END;  
 }  #define NRANSI
   #define ITMAX 200
 /******************free ivector **************************/  
 void free_ivector(int *v, long nl, long nh)  #define TOL 2.0e-4
 {  
   free((FREE_ARG)(v+nl-NR_END));  #define CGOLD 0.3819660
 }  #define ZEPS 1.0e-10
   #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);
 /************************lvector *******************************/  
 long *lvector(long nl,long nh)  #define GOLD 1.618034
 {  #define GLIMIT 100.0
   long *v;  #define TINY 1.0e-20
   v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));  
   if (!v) nrerror("allocation failure in ivector");  static double maxarg1,maxarg2;
   return v-nl+NR_END;  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
 }  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
    
 /******************free lvector **************************/  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
 void free_lvector(long *v, long nl, long nh)  #define rint(a) floor(a+0.5)
 {  
   free((FREE_ARG)(v+nl-NR_END));  static double sqrarg;
 }  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}
 /******************* imatrix *******************************/  int agegomp= AGEGOMP;
 int **imatrix(long nrl, long nrh, long ncl, long nch)   
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */   int imx;
 {   int stepm=1;
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;   /* Stepm, step in month: minimum step interpolation*/
   int **m;   
     int estepm;
   /* allocate pointers to rows */   /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));   
   if (!m) nrerror("allocation failure 1 in matrix()");   int m,nb;
   m += NR_END;   long *num;
   m -= nrl;   int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
     double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
     double **pmmij, ***probs;
   /* allocate rows and set pointers to them */   double *ageexmed,*agecens;
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));   double dateintmean=0;
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");   
   m[nrl] += NR_END;   double *weight;
   m[nrl] -= ncl;   int **s; /* Status */
     double *agedc, **covar, idx;
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;   int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
     double *lsurv, *lpop, *tpop;
   /* return pointer to array of pointers to rows */   
   return m;   double ftol=FTOL; /* Tolerance for computing Max Likelihood */
 }   double ftolhess; /* Tolerance for computing hessian */
   
 /****************** free_imatrix *************************/  /**************** split *************************/
 void free_imatrix(m,nrl,nrh,ncl,nch)  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
       int **m;  {
       long nch,ncl,nrh,nrl;     /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
      /* free an int matrix allocated by imatrix() */        the name of the file (name), its extension only (ext) and its first part of the name (finame)
 {     */
   free((FREE_ARG) (m[nrl]+ncl-NR_END));     char  *ss;                            /* pointer */
   free((FREE_ARG) (m+nrl-NR_END));     int   l1, l2;                         /* length counters */
 }   
     l1 = strlen(path );                   /* length of path */
 /******************* matrix *******************************/    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
 double **matrix(long nrl, long nrh, long ncl, long nch)    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
 {    if ( ss == NULL ) {                   /* no directory, so determine current directory */
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;      strcpy( name, path );               /* we got the fullname name because no directory */
   double **m;      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
         printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));      /* get current working directory */
   if (!m) nrerror("allocation failure 1 in matrix()");      /*    extern  char* getcwd ( char *buf , int len);*/
   m += NR_END;      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
   m -= nrl;        return( GLOCK_ERROR_GETCWD );
       }
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));      /* got dirc from getcwd*/
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");      printf(" DIRC = %s \n",dirc);
   m[nrl] += NR_END;    } else {                              /* strip direcotry from path */
   m[nrl] -= ncl;      ss++;                               /* after this, the filename */
       l2 = strlen( ss );                  /* length of filename */
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
   return m;      strcpy( name, ss );         /* save file name */
   /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1])       strncpy( dirc, path, l1 - l2 );     /* now the directory */
    */      dirc[l1-l2] = 0;                    /* add zero */
 }      printf(" DIRC2 = %s \n",dirc);
     }
 /*************************free matrix ************************/    /* We add a separator at the end of dirc if not exists */
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)    l1 = strlen( dirc );                  /* length of directory */
 {    if( dirc[l1-1] != DIRSEPARATOR ){
   free((FREE_ARG)(m[nrl]+ncl-NR_END));      dirc[l1] =  DIRSEPARATOR;
   free((FREE_ARG)(m+nrl-NR_END));      dirc[l1+1] = 0;
 }      printf(" DIRC3 = %s \n",dirc);
     }
 /******************* ma3x *******************************/    ss = strrchr( name, '.' );            /* find last / */
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)    if (ss >0){
 {      ss++;
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;      strcpy(ext,ss);                     /* save extension */
   double ***m;      l1= strlen( name);
       l2= strlen(ss)+1;
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));      strncpy( finame, name, l1-l2);
   if (!m) nrerror("allocation failure 1 in matrix()");      finame[l1-l2]= 0;
   m += NR_END;    }
   m -= nrl;  
     return( 0 );                          /* we're done */
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  }
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  
   m[nrl] += NR_END;  
   m[nrl] -= ncl;  /******************************************/
   
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  void replace_back_to_slash(char *s, char*t)
   {
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));    int i;
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");    int lg=0;
   m[nrl][ncl] += NR_END;    i=0;
   m[nrl][ncl] -= nll;    lg=strlen(t);
   for (j=ncl+1; j<=nch; j++)     for(i=0; i<= lg; i++) {
     m[nrl][j]=m[nrl][j-1]+nlay;      (s[i] = t[i]);
         if (t[i]== '\\') s[i]='/';
   for (i=nrl+1; i<=nrh; i++) {    }
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  }
     for (j=ncl+1; j<=nch; j++)   
       m[i][j]=m[i][j-1]+nlay;  int nbocc(char *s, char occ)
   }  {
   return m;     int i,j=0;
   /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])    int lg=20;
            &(m[i][j][k]) <=> *((*(m+i) + j)+k)    i=0;
   */    lg=strlen(s);
 }    for(i=0; i<= lg; i++) {
     if  (s[i] == occ ) j++;
 /*************************free ma3x ************************/    }
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)    return j;
 {  }
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  void cutv(char *u,char *v, char*t, char occ)
   free((FREE_ARG)(m+nrl-NR_END));  {
 }    /* cuts string t into u and v where u ends before first occurence of char 'occ'
        and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
 /*************** function subdirf ***********/       gives u="abcedf" and v="ghi2j" */
 char *subdirf(char fileres[])    int i,lg,j,p=0;
 {    i=0;
   /* Caution optionfilefiname is hidden */    for(j=0; j<=strlen(t)-1; j++) {
   strcpy(tmpout,optionfilefiname);      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
   strcat(tmpout,"/"); /* Add to the right */    }
   strcat(tmpout,fileres);  
   return tmpout;    lg=strlen(t);
 }    for(j=0; j<p; j++) {
       (u[j] = t[j]);
 /*************** function subdirf2 ***********/    }
 char *subdirf2(char fileres[], char *preop)       u[p]='\0';
 {  
        for(j=0; j<= lg; j++) {
   /* Caution optionfilefiname is hidden */      if (j>=(p+1))(v[j-p-1] = t[j]);
   strcpy(tmpout,optionfilefiname);    }
   strcat(tmpout,"/");  }
   strcat(tmpout,preop);  
   strcat(tmpout,fileres);  /********************** nrerror ********************/
   return tmpout;  
 }  void nrerror(char error_text[])
   {
 /*************** function subdirf3 ***********/    fprintf(stderr,"ERREUR ...\n");
 char *subdirf3(char fileres[], char *preop, char *preop2)    fprintf(stderr,"%s\n",error_text);
 {    exit(EXIT_FAILURE);
     }
   /* Caution optionfilefiname is hidden */  /*********************** vector *******************/
   strcpy(tmpout,optionfilefiname);  double *vector(int nl, int nh)
   strcat(tmpout,"/");  {
   strcat(tmpout,preop);    double *v;
   strcat(tmpout,preop2);    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
   strcat(tmpout,fileres);    if (!v) nrerror("allocation failure in vector");
   return tmpout;    return v-nl+NR_END;
 }  }
   
 /***************** f1dim *************************/  /************************ free vector ******************/
 extern int ncom;   void free_vector(double*v, int nl, int nh)
 extern double *pcom,*xicom;  {
 extern double (*nrfunc)(double []);     free((FREE_ARG)(v+nl-NR_END));
    }
 double f1dim(double x)   
 {   /************************ivector *******************************/
   int j;   int *ivector(long nl,long nh)
   double f;  {
   double *xt;     int *v;
      v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
   xt=vector(1,ncom);     if (!v) nrerror("allocation failure in ivector");
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];     return v-nl+NR_END;
   f=(*nrfunc)(xt);   }
   free_vector(xt,1,ncom);   
   return f;   /******************free ivector **************************/
 }   void free_ivector(int *v, long nl, long nh)
   {
 /*****************brent *************************/    free((FREE_ARG)(v+nl-NR_END));
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)   }
 {   
   int iter;   /************************lvector *******************************/
   double a,b,d,etemp;  long *lvector(long nl,long nh)
   double fu,fv,fw,fx;  {
   double ftemp;    long *v;
   double p,q,r,tol1,tol2,u,v,w,x,xm;     v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
   double e=0.0;     if (!v) nrerror("allocation failure in ivector");
      return v-nl+NR_END;
   a=(ax < cx ? ax : cx);   }
   b=(ax > cx ? ax : cx);   
   x=w=v=bx;   /******************free lvector **************************/
   fw=fv=fx=(*f)(x);   void free_lvector(long *v, long nl, long nh)
   for (iter=1;iter<=ITMAX;iter++) {   {
     xm=0.5*(a+b);     free((FREE_ARG)(v+nl-NR_END));
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);   }
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  
     printf(".");fflush(stdout);  /******************* imatrix *******************************/
     fprintf(ficlog,".");fflush(ficlog);  int **imatrix(long nrl, long nrh, long ncl, long nch)
 #ifdef DEBUG       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  {
     fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */    int **m;
 #endif   
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){     /* allocate pointers to rows */
       *xmin=x;     m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));
       return fx;     if (!m) nrerror("allocation failure 1 in matrix()");
     }     m += NR_END;
     ftemp=fu;    m -= nrl;
     if (fabs(e) > tol1) {    
       r=(x-w)*(fx-fv);    
       q=(x-v)*(fx-fw);     /* allocate rows and set pointers to them */
       p=(x-v)*q-(x-w)*r;     m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));
       q=2.0*(q-r);     if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       if (q > 0.0) p = -p;     m[nrl] += NR_END;
       q=fabs(q);     m[nrl] -= ncl;
       etemp=e;    
       e=d;     for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))    
         d=CGOLD*(e=(x >= xm ? a-x : b-x));     /* return pointer to array of pointers to rows */
       else {     return m;
         d=p/q;   }
         u=x+d;   
         if (u-a < tol2 || b-u < tol2)   /****************** free_imatrix *************************/
           d=SIGN(tol1,xm-x);   void free_imatrix(m,nrl,nrh,ncl,nch)
       }         int **m;
     } else {         long nch,ncl,nrh,nrl;
       d=CGOLD*(e=(x >= xm ? a-x : b-x));        /* free an int matrix allocated by imatrix() */
     }   {
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));     free((FREE_ARG) (m[nrl]+ncl-NR_END));
     fu=(*f)(u);     free((FREE_ARG) (m+nrl-NR_END));
     if (fu <= fx) {   }
       if (u >= x) a=x; else b=x;   
       SHFT(v,w,x,u)   /******************* matrix *******************************/
         SHFT(fv,fw,fx,fu)   double **matrix(long nrl, long nrh, long ncl, long nch)
         } else {   {
           if (u < x) a=u; else b=u;     long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
           if (fu <= fw || w == x) {     double **m;
             v=w;   
             w=u;     m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
             fv=fw;     if (!m) nrerror("allocation failure 1 in matrix()");
             fw=fu;     m += NR_END;
           } else if (fu <= fv || v == x || v == w) {     m -= nrl;
             v=u;   
             fv=fu;     m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
           }     if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
         }     m[nrl] += NR_END;
   }     m[nrl] -= ncl;
   nrerror("Too many iterations in brent");   
   *xmin=x;     for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   return fx;     return m;
 }     /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1])
      */
 /****************** mnbrak ***********************/  }
   
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,   /*************************free matrix ************************/
             double (*func)(double))   void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
 {   {
   double ulim,u,r,q, dum;    free((FREE_ARG)(m[nrl]+ncl-NR_END));
   double fu;     free((FREE_ARG)(m+nrl-NR_END));
    }
   *fa=(*func)(*ax);   
   *fb=(*func)(*bx);   /******************* ma3x *******************************/
   if (*fb > *fa) {   double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
     SHFT(dum,*ax,*bx,dum)   {
       SHFT(dum,*fb,*fa,dum)     long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
       }     double ***m;
   *cx=(*bx)+GOLD*(*bx-*ax);   
   *fc=(*func)(*cx);     m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   while (*fb > *fc) {     if (!m) nrerror("allocation failure 1 in matrix()");
     r=(*bx-*ax)*(*fb-*fc);     m += NR_END;
     q=(*bx-*cx)*(*fb-*fa);     m -= nrl;
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/   
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));     m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     ulim=(*bx)+GLIMIT*(*cx-*bx);     if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     if ((*bx-u)*(u-*cx) > 0.0) {     m[nrl] += NR_END;
       fu=(*func)(u);     m[nrl] -= ncl;
     } else if ((*cx-u)*(u-ulim) > 0.0) {   
       fu=(*func)(u);     for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
       if (fu < *fc) {   
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))     m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
           SHFT(*fb,*fc,fu,(*func)(u))     if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
           }     m[nrl][ncl] += NR_END;
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {     m[nrl][ncl] -= nll;
       u=ulim;     for (j=ncl+1; j<=nch; j++)
       fu=(*func)(u);       m[nrl][j]=m[nrl][j-1]+nlay;
     } else {    
       u=(*cx)+GOLD*(*cx-*bx);     for (i=nrl+1; i<=nrh; i++) {
       fu=(*func)(u);       m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
     }       for (j=ncl+1; j<=nch; j++)
     SHFT(*ax,*bx,*cx,u)         m[i][j]=m[i][j-1]+nlay;
       SHFT(*fa,*fb,*fc,fu)     }
       }     return m;
 }     /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
              &(m[i][j][k]) <=> *((*(m+i) + j)+k)
 /*************** linmin ************************/    */
   }
 int ncom;   
 double *pcom,*xicom;  /*************************free ma3x ************************/
 double (*nrfunc)(double []);   void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
    {
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))     free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
 {     free((FREE_ARG)(m[nrl]+ncl-NR_END));
   double brent(double ax, double bx, double cx,     free((FREE_ARG)(m+nrl-NR_END));
                double (*f)(double), double tol, double *xmin);   }
   double f1dim(double x);   
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,   /*************** function subdirf ***********/
               double *fc, double (*func)(double));   char *subdirf(char fileres[])
   int j;   {
   double xx,xmin,bx,ax;     /* Caution optionfilefiname is hidden */
   double fx,fb,fa;    strcpy(tmpout,optionfilefiname);
      strcat(tmpout,"/"); /* Add to the right */
   ncom=n;     strcat(tmpout,fileres);
   pcom=vector(1,n);     return tmpout;
   xicom=vector(1,n);   }
   nrfunc=func;   
   for (j=1;j<=n;j++) {   /*************** function subdirf2 ***********/
     pcom[j]=p[j];   char *subdirf2(char fileres[], char *preop)
     xicom[j]=xi[j];   {
   }    
   ax=0.0;     /* Caution optionfilefiname is hidden */
   xx=1.0;     strcpy(tmpout,optionfilefiname);
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);     strcat(tmpout,"/");
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);     strcat(tmpout,preop);
 #ifdef DEBUG    strcat(tmpout,fileres);
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    return tmpout;
   fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  }
 #endif  
   for (j=1;j<=n;j++) {   /*************** function subdirf3 ***********/
     xi[j] *= xmin;   char *subdirf3(char fileres[], char *preop, char *preop2)
     p[j] += xi[j];   {
   }    
   free_vector(xicom,1,n);     /* Caution optionfilefiname is hidden */
   free_vector(pcom,1,n);     strcpy(tmpout,optionfilefiname);
 }     strcat(tmpout,"/");
     strcat(tmpout,preop);
 char *asc_diff_time(long time_sec, char ascdiff[])    strcat(tmpout,preop2);
 {    strcat(tmpout,fileres);
   long sec_left, days, hours, minutes;    return tmpout;
   days = (time_sec) / (60*60*24);  }
   sec_left = (time_sec) % (60*60*24);  
   hours = (sec_left) / (60*60) ;  /***************** f1dim *************************/
   sec_left = (sec_left) %(60*60);  extern int ncom;
   minutes = (sec_left) /60;  extern double *pcom,*xicom;
   sec_left = (sec_left) % (60);  extern double (*nrfunc)(double []);
   sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);     
   return ascdiff;  double f1dim(double x)
 }  {
     int j;
 /*************** powell ************************/    double f;
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,     double *xt;
             double (*func)(double []))    
 {     xt=vector(1,ncom);
   void linmin(double p[], double xi[], int n, double *fret,     for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];
               double (*func)(double []));     f=(*nrfunc)(xt);
   int i,ibig,j;     free_vector(xt,1,ncom);
   double del,t,*pt,*ptt,*xit;    return f;
   double fp,fptt;  }
   double *xits;  
   int niterf, itmp;  /*****************brent *************************/
   double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)
   pt=vector(1,n);   {
   ptt=vector(1,n);     int iter;
   xit=vector(1,n);     double a,b,d,etemp;
   xits=vector(1,n);     double fu,fv,fw,fx;
   *fret=(*func)(p);     double ftemp;
   for (j=1;j<=n;j++) pt[j]=p[j];     double p,q,r,tol1,tol2,u,v,w,x,xm;
   for (*iter=1;;++(*iter)) {     double e=0.0;
     fp=(*fret);    
     ibig=0;     a=(ax < cx ? ax : cx);
     del=0.0;     b=(ax > cx ? ax : cx);
     last_time=curr_time;    x=w=v=bx;
     (void) gettimeofday(&curr_time,&tzp);    fw=fv=fx=(*f)(x);
     printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);    for (iter=1;iter<=ITMAX;iter++) {
     fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);      xm=0.5*(a+b);
     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);      tol2=2.0*(tol1=tol*fabs(x)+ZEPS);
     for (i=1;i<=n;i++) {      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
       printf(" %d %.12f",i, p[i]);      printf(".");fflush(stdout);
       fprintf(ficlog," %d %.12lf",i, p[i]);      fprintf(ficlog,".");fflush(ficlog);
       fprintf(ficrespow," %.12lf", p[i]);  #ifdef DEBUG
     }      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
     printf("\n");      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
     fprintf(ficlog,"\n");      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
     fprintf(ficrespow,"\n");fflush(ficrespow);  #endif
     if(*iter <=3){      if (fabs(x-xm) <= (tol2-0.5*(b-a))){
       tm = *localtime(&curr_time.tv_sec);        *xmin=x;
       strcpy(strcurr,asctime(&tmf));        return fx;
 /*       asctime_r(&tm,strcurr); */      }
       forecast_time=curr_time;      ftemp=fu;
       itmp = strlen(strcurr);      if (fabs(e) > tol1) {
       if(strcurr[itmp-1]=='\n')        r=(x-w)*(fx-fv);
         strcurr[itmp-1]='\0';        q=(x-v)*(fx-fw);
       printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);        p=(x-v)*q-(x-w)*r;
       fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);        q=2.0*(q-r);
       for(niterf=10;niterf<=30;niterf+=10){        if (q > 0.0) p = -p;
         forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);        q=fabs(q);
         tmf = *localtime(&forecast_time.tv_sec);        etemp=e;
 /*      asctime_r(&tmf,strfor); */        e=d;
         strcpy(strfor,asctime(&tmf));        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))
         itmp = strlen(strfor);          d=CGOLD*(e=(x >= xm ? a-x : b-x));
         if(strfor[itmp-1]=='\n')        else {
         strfor[itmp-1]='\0';          d=p/q;
         printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s or\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);          u=x+d;
         fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s or\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);          if (u-a < tol2 || b-u < tol2)
       }            d=SIGN(tol1,xm-x);
     }        }
     for (i=1;i<=n;i++) {       } else {
       for (j=1;j<=n;j++) xit[j]=xi[j][i];         d=CGOLD*(e=(x >= xm ? a-x : b-x));
       fptt=(*fret);       }
 #ifdef DEBUG      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));
       printf("fret=%lf \n",*fret);      fu=(*f)(u);
       fprintf(ficlog,"fret=%lf \n",*fret);      if (fu <= fx) {
 #endif        if (u >= x) a=x; else b=x;
       printf("%d",i);fflush(stdout);        SHFT(v,w,x,u)
       fprintf(ficlog,"%d",i);fflush(ficlog);          SHFT(fv,fw,fx,fu)
       linmin(p,xit,n,fret,func);           } else {
       if (fabs(fptt-(*fret)) > del) {             if (u < x) a=u; else b=u;
         del=fabs(fptt-(*fret));             if (fu <= fw || w == x) {
         ibig=i;               v=w;
       }               w=u;
 #ifdef DEBUG              fv=fw;
       printf("%d %.12e",i,(*fret));              fw=fu;
       fprintf(ficlog,"%d %.12e",i,(*fret));            } else if (fu <= fv || v == x || v == w) {
       for (j=1;j<=n;j++) {              v=u;
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);              fv=fu;
         printf(" x(%d)=%.12e",j,xit[j]);            }
         fprintf(ficlog," x(%d)=%.12e",j,xit[j]);          }
       }    }
       for(j=1;j<=n;j++) {    nrerror("Too many iterations in brent");
         printf(" p=%.12e",p[j]);    *xmin=x;
         fprintf(ficlog," p=%.12e",p[j]);    return fx;
       }  }
       printf("\n");  
       fprintf(ficlog,"\n");  /****************** mnbrak ***********************/
 #endif  
     }   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {              double (*func)(double))
 #ifdef DEBUG  {
       int k[2],l;    double ulim,u,r,q, dum;
       k[0]=1;    double fu;
       k[1]=-1;   
       printf("Max: %.12e",(*func)(p));    *fa=(*func)(*ax);
       fprintf(ficlog,"Max: %.12e",(*func)(p));    *fb=(*func)(*bx);
       for (j=1;j<=n;j++) {    if (*fb > *fa) {
         printf(" %.12e",p[j]);      SHFT(dum,*ax,*bx,dum)
         fprintf(ficlog," %.12e",p[j]);        SHFT(dum,*fb,*fa,dum)
       }        }
       printf("\n");    *cx=(*bx)+GOLD*(*bx-*ax);
       fprintf(ficlog,"\n");    *fc=(*func)(*cx);
       for(l=0;l<=1;l++) {    while (*fb > *fc) {
         for (j=1;j<=n;j++) {      r=(*bx-*ax)*(*fb-*fc);
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];      q=(*bx-*cx)*(*fb-*fa);
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/
           fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));
         }      ulim=(*bx)+GLIMIT*(*cx-*bx);
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));      if ((*bx-u)*(u-*cx) > 0.0) {
         fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));        fu=(*func)(u);
       }      } else if ((*cx-u)*(u-ulim) > 0.0) {
 #endif        fu=(*func)(u);
         if (fu < *fc) {
           SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))
       free_vector(xit,1,n);             SHFT(*fb,*fc,fu,(*func)(u))
       free_vector(xits,1,n);             }
       free_vector(ptt,1,n);       } else if ((u-ulim)*(ulim-*cx) >= 0.0) {
       free_vector(pt,1,n);         u=ulim;
       return;         fu=(*func)(u);
     }       } else {
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");         u=(*cx)+GOLD*(*cx-*bx);
     for (j=1;j<=n;j++) {         fu=(*func)(u);
       ptt[j]=2.0*p[j]-pt[j];       }
       xit[j]=p[j]-pt[j];       SHFT(*ax,*bx,*cx,u)
       pt[j]=p[j];         SHFT(*fa,*fb,*fc,fu)
     }         }
     fptt=(*func)(ptt);   }
     if (fptt < fp) {   
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);   /*************** linmin ************************/
       if (t < 0.0) {   
         linmin(p,xit,n,fret,func);   int ncom;
         for (j=1;j<=n;j++) {   double *pcom,*xicom;
           xi[j][ibig]=xi[j][n];   double (*nrfunc)(double []);
           xi[j][n]=xit[j];    
         }  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))
 #ifdef DEBUG  {
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);    double brent(double ax, double bx, double cx,
         fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);                 double (*f)(double), double tol, double *xmin);
         for(j=1;j<=n;j++){    double f1dim(double x);
           printf(" %.12e",xit[j]);    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,
           fprintf(ficlog," %.12e",xit[j]);                double *fc, double (*func)(double));
         }    int j;
         printf("\n");    double xx,xmin,bx,ax;
         fprintf(ficlog,"\n");    double fx,fb,fa;
 #endif   
       }    ncom=n;
     }     pcom=vector(1,n);
   }     xicom=vector(1,n);
 }     nrfunc=func;
     for (j=1;j<=n;j++) {
 /**** Prevalence limit (stable prevalence)  ****************/      pcom[j]=p[j];
       xicom[j]=xi[j];
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)    }
 {    ax=0.0;
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit    xx=1.0;
      matrix by transitions matrix until convergence is reached */    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);
     *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);
   int i, ii,j,k;  #ifdef DEBUG
   double min, max, maxmin, maxmax,sumnew=0.;    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   double **matprod2();    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   double **out, cov[NCOVMAX], **pmij();  #endif
   double **newm;    for (j=1;j<=n;j++) {
   double agefin, delaymax=50 ; /* Max number of years to converge */      xi[j] *= xmin;
       p[j] += xi[j];
   for (ii=1;ii<=nlstate+ndeath;ii++)    }
     for (j=1;j<=nlstate+ndeath;j++){    free_vector(xicom,1,n);
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);    free_vector(pcom,1,n);
     }  }
   
    cov[1]=1.;  char *asc_diff_time(long time_sec, char ascdiff[])
    {
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */    long sec_left, days, hours, minutes;
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){    days = (time_sec) / (60*60*24);
     newm=savm;    sec_left = (time_sec) % (60*60*24);
     /* Covariates have to be included here again */    hours = (sec_left) / (60*60) ;
      cov[2]=agefin;    sec_left = (sec_left) %(60*60);
       minutes = (sec_left) /60;
       for (k=1; k<=cptcovn;k++) {    sec_left = (sec_left) % (60);
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/    return ascdiff;
       }  }
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  
       for (k=1; k<=cptcovprod;k++)  /*************** powell ************************/
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,
               double (*func)(double []))
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/  {
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/    void linmin(double p[], double xi[], int n, double *fret,
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/                double (*func)(double []));
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);    int i,ibig,j;
     double del,t,*pt,*ptt,*xit;
     savm=oldm;    double fp,fptt;
     oldm=newm;    double *xits;
     maxmax=0.;    int niterf, itmp;
     for(j=1;j<=nlstate;j++){  
       min=1.;    pt=vector(1,n);
       max=0.;    ptt=vector(1,n);
       for(i=1; i<=nlstate; i++) {    xit=vector(1,n);
         sumnew=0;    xits=vector(1,n);
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];    *fret=(*func)(p);
         prlim[i][j]= newm[i][j]/(1-sumnew);    for (j=1;j<=n;j++) pt[j]=p[j];
         max=FMAX(max,prlim[i][j]);    for (*iter=1;;++(*iter)) {
         min=FMIN(min,prlim[i][j]);      fp=(*fret);
       }      ibig=0;
       maxmin=max-min;      del=0.0;
       maxmax=FMAX(maxmax,maxmin);      last_time=curr_time;
     }      (void) gettimeofday(&curr_time,&tzp);
     if(maxmax < ftolpl){      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
       return prlim;      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec); fflush(ficlog);
     }  /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec); */
   }     for (i=1;i<=n;i++) {
 }        printf(" %d %.12f",i, p[i]);
         fprintf(ficlog," %d %.12lf",i, p[i]);
 /*************** transition probabilities ***************/         fprintf(ficrespow," %.12lf", p[i]);
       }
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )      printf("\n");
 {      fprintf(ficlog,"\n");
   double s1, s2;      fprintf(ficrespow,"\n");fflush(ficrespow);
   /*double t34;*/      if(*iter <=3){
   int i,j,j1, nc, ii, jj;        tm = *localtime(&curr_time.tv_sec);
         strcpy(strcurr,asctime(&tm));
     for(i=1; i<= nlstate; i++){  /*       asctime_r(&tm,strcurr); */
     for(j=1; j<i;j++){        forecast_time=curr_time;
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){        itmp = strlen(strcurr);
         /*s2 += param[i][j][nc]*cov[nc];*/        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];          strcurr[itmp-1]='\0';
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
       }        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
       ps[i][j]=s2;        for(niterf=10;niterf<=30;niterf+=10){
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
     }          tmf = *localtime(&forecast_time.tv_sec);
     for(j=i+1; j<=nlstate+ndeath;j++){  /*      asctime_r(&tmf,strfor); */
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){          strcpy(strfor,asctime(&tmf));
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];          itmp = strlen(strfor);
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/          if(strfor[itmp-1]=='\n')
       }          strfor[itmp-1]='\0';
       ps[i][j]=s2;          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
     }          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
   }        }
     /*ps[3][2]=1;*/      }
       for (i=1;i<=n;i++) {
   for(i=1; i<= nlstate; i++){        for (j=1;j<=n;j++) xit[j]=xi[j][i];
      s1=0;        fptt=(*fret);
     for(j=1; j<i; j++)  #ifdef DEBUG
       s1+=exp(ps[i][j]);        printf("fret=%lf \n",*fret);
     for(j=i+1; j<=nlstate+ndeath; j++)        fprintf(ficlog,"fret=%lf \n",*fret);
       s1+=exp(ps[i][j]);  #endif
     ps[i][i]=1./(s1+1.);        printf("%d",i);fflush(stdout);
     for(j=1; j<i; j++)        fprintf(ficlog,"%d",i);fflush(ficlog);
       ps[i][j]= exp(ps[i][j])*ps[i][i];        linmin(p,xit,n,fret,func);
     for(j=i+1; j<=nlstate+ndeath; j++)        if (fabs(fptt-(*fret)) > del) {
       ps[i][j]= exp(ps[i][j])*ps[i][i];          del=fabs(fptt-(*fret));
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */          ibig=i;
   } /* end i */        }
   #ifdef DEBUG
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){        printf("%d %.12e",i,(*fret));
     for(jj=1; jj<= nlstate+ndeath; jj++){        fprintf(ficlog,"%d %.12e",i,(*fret));
       ps[ii][jj]=0;        for (j=1;j<=n;j++) {
       ps[ii][ii]=1;          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
     }          printf(" x(%d)=%.12e",j,xit[j]);
   }          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
         }
         for(j=1;j<=n;j++) {
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){          printf(" p=%.12e",p[j]);
     for(jj=1; jj<= nlstate+ndeath; jj++){          fprintf(ficlog," p=%.12e",p[j]);
      printf("%lf ",ps[ii][jj]);        }
    }        printf("\n");
     printf("\n ");        fprintf(ficlog,"\n");
     }  #endif
     printf("\n ");printf("%lf ",cov[2]);*/      }
 /*      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
   for(i=1; i<= npar; i++) printf("%f ",x[i]);  #ifdef DEBUG
   goto end;*/        int k[2],l;
     return ps;        k[0]=1;
 }        k[1]=-1;
         printf("Max: %.12e",(*func)(p));
 /**************** Product of 2 matrices ******************/        fprintf(ficlog,"Max: %.12e",(*func)(p));
         for (j=1;j<=n;j++) {
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)          printf(" %.12e",p[j]);
 {          fprintf(ficlog," %.12e",p[j]);
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times        }
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */        printf("\n");
   /* in, b, out are matrice of pointers which should have been initialized         fprintf(ficlog,"\n");
      before: only the contents of out is modified. The function returns        for(l=0;l<=1;l++) {
      a pointer to pointers identical to out */          for (j=1;j<=n;j++) {
   long i, j, k;            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
   for(i=nrl; i<= nrh; i++)            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
     for(k=ncolol; k<=ncoloh; k++)            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
       for(j=ncl,out[i][k]=0.; j<=nch; j++)          }
         out[i][k] +=in[i][j]*b[j][k];          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
           fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   return out;        }
 }  #endif
   
   
 /************* Higher Matrix Product ***************/        free_vector(xit,1,n);
         free_vector(xits,1,n);
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )        free_vector(ptt,1,n);
 {        free_vector(pt,1,n);
   /* Computes the transition matrix starting at age 'age' over         return;
      'nhstepm*hstepm*stepm' months (i.e. until      }
      age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying       if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");
      nhstepm*hstepm matrices.       for (j=1;j<=n;j++) {
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step         ptt[j]=2.0*p[j]-pt[j];
      (typically every 2 years instead of every month which is too big         xit[j]=p[j]-pt[j];
      for the memory).        pt[j]=p[j];
      Model is determined by parameters x and covariates have to be       }
      included manually here.       fptt=(*func)(ptt);
       if (fptt < fp) {
      */        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);
         if (t < 0.0) {
   int i, j, d, h, k;          linmin(p,xit,n,fret,func);
   double **out, cov[NCOVMAX];          for (j=1;j<=n;j++) {
   double **newm;            xi[j][ibig]=xi[j][n];
             xi[j][n]=xit[j];
   /* Hstepm could be zero and should return the unit matrix */          }
   for (i=1;i<=nlstate+ndeath;i++)  #ifdef DEBUG
     for (j=1;j<=nlstate+ndeath;j++){          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
       oldm[i][j]=(i==j ? 1.0 : 0.0);          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
       po[i][j][0]=(i==j ? 1.0 : 0.0);          for(j=1;j<=n;j++){
     }            printf(" %.12e",xit[j]);
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */            fprintf(ficlog," %.12e",xit[j]);
   for(h=1; h <=nhstepm; h++){          }
     for(d=1; d <=hstepm; d++){          printf("\n");
       newm=savm;          fprintf(ficlog,"\n");
       /* Covariates have to be included here again */  #endif
       cov[1]=1.;        }
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;      }
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    }
       for (k=1; k<=cptcovage;k++)  }
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  
       for (k=1; k<=cptcovprod;k++)  /**** Prevalence limit (stable or period prevalence)  ****************/
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  
   double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
   {
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/       matrix by transitions matrix until convergence is reached */
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,   
                    pmij(pmmij,cov,ncovmodel,x,nlstate));    int i, ii,j,k;
       savm=oldm;    double min, max, maxmin, maxmax,sumnew=0.;
       oldm=newm;    double **matprod2();
     }    double **out, cov[NCOVMAX], **pmij();
     for(i=1; i<=nlstate+ndeath; i++)    double **newm;
       for(j=1;j<=nlstate+ndeath;j++) {    double agefin, delaymax=50 ; /* Max number of years to converge */
         po[i][j][h]=newm[i][j];  
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);    for (ii=1;ii<=nlstate+ndeath;ii++)
          */      for (j=1;j<=nlstate+ndeath;j++){
       }        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   } /* end h */      }
   return po;  
 }     cov[1]=1.;
    
    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
 /*************** log-likelihood *************/    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
 double func( double *x)      newm=savm;
 {      /* Covariates have to be included here again */
   int i, ii, j, k, mi, d, kk;       cov[2]=agefin;
   double l, ll[NLSTATEMAX], cov[NCOVMAX];   
   double **out;        for (k=1; k<=cptcovn;k++) {
   double sw; /* Sum of weights */          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   double lli; /* Individual log likelihood */          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
   int s1, s2;        }
   double bbh, survp;        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   long ipmx;        for (k=1; k<=cptcovprod;k++)
   /*extern weight */          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   /* We are differentiating ll according to initial status */  
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
   /*for(i=1;i<imx;i++)         /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
     printf(" %d\n",s[4][i]);        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
   */      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
   cov[1]=1.;  
       savm=oldm;
   for(k=1; k<=nlstate; k++) ll[k]=0.;      oldm=newm;
       maxmax=0.;
   if(mle==1){      for(j=1;j<=nlstate;j++){
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){        min=1.;
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];        max=0.;
       for(mi=1; mi<= wav[i]-1; mi++){        for(i=1; i<=nlstate; i++) {
         for (ii=1;ii<=nlstate+ndeath;ii++)          sumnew=0;
           for (j=1;j<=nlstate+ndeath;j++){          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);          prlim[i][j]= newm[i][j]/(1-sumnew);
             savm[ii][j]=(ii==j ? 1.0 : 0.0);          max=FMAX(max,prlim[i][j]);
           }          min=FMIN(min,prlim[i][j]);
         for(d=0; d<dh[mi][i]; d++){        }
           newm=savm;        maxmin=max-min;
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;        maxmax=FMAX(maxmax,maxmin);
           for (kk=1; kk<=cptcovage;kk++) {      }
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];      if(maxmax < ftolpl){
           }        return prlim;
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,      }
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));    }
           savm=oldm;  }
           oldm=newm;  
         } /* end mult */  /*************** transition probabilities ***************/
         
         /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
         /* But now since version 0.9 we anticipate for bias and large stepm.  {
          * If stepm is larger than one month (smallest stepm) and if the exact delay     double s1, s2;
          * (in months) between two waves is not a multiple of stepm, we rounded to     /*double t34;*/
          * the nearest (and in case of equal distance, to the lowest) interval but now    int i,j,j1, nc, ii, jj;
          * we keep into memory the bias bh[mi][i] and also the previous matrix product  
          * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the      for(i=1; i<= nlstate; i++){
          * probability in order to take into account the bias as a fraction of the way        for(j=1; j<i;j++){
          * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
          * -stepm/2 to stepm/2 .            /*s2 += param[i][j][nc]*cov[nc];*/
          * For stepm=1 the results are the same as for previous versions of Imach.            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
          * For stepm > 1 the results are less biased than in previous versions.   /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
          */          }
         s1=s[mw[mi][i]][i];          ps[i][j]=s2;
         s2=s[mw[mi+1][i]][i];  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
         bbh=(double)bh[mi][i]/(double)stepm;         }
         /* bias is positive if real duration        for(j=i+1; j<=nlstate+ndeath;j++){
          * is higher than the multiple of stepm and negative otherwise.          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
          */            s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
         /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/  /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
         if( s2 > nlstate){           }
           /* i.e. if s2 is a death state and if the date of death is known then the contribution          ps[i][j]=s2;
              to the likelihood is the probability to die between last step unit time and current         }
              step unit time, which is also the differences between probability to die before dh       }
              and probability to die before dh-stepm .       /*ps[3][2]=1;*/
              In version up to 0.92 likelihood was computed     
         as if date of death was unknown. Death was treated as any other      for(i=1; i<= nlstate; i++){
         health state: the date of the interview describes the actual state        s1=0;
         and not the date of a change in health state. The former idea was        for(j=1; j<i; j++)
         to consider that at each interview the state was recorded          s1+=exp(ps[i][j]);
         (healthy, disable or death) and IMaCh was corrected; but when we        for(j=i+1; j<=nlstate+ndeath; j++)
         introduced the exact date of death then we should have modified          s1+=exp(ps[i][j]);
         the contribution of an exact death to the likelihood. This new        ps[i][i]=1./(s1+1.);
         contribution is smaller and very dependent of the step unit        for(j=1; j<i; j++)
         stepm. It is no more the probability to die between last interview          ps[i][j]= exp(ps[i][j])*ps[i][i];
         and month of death but the probability to survive from last        for(j=i+1; j<=nlstate+ndeath; j++)
         interview up to one month before death multiplied by the          ps[i][j]= exp(ps[i][j])*ps[i][i];
         probability to die within a month. Thanks to Chris        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
         Jackson for correcting this bug.  Former versions increased      } /* end i */
         mortality artificially. The bad side is that we add another loop     
         which slows down the processing. The difference can be up to 10%      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
         lower mortality.        for(jj=1; jj<= nlstate+ndeath; jj++){
           */          ps[ii][jj]=0;
           lli=log(out[s1][s2] - savm[s1][s2]);          ps[ii][ii]=1;
         }else{        }
           lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */      }
           /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */     
         }   
         /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
         /*if(lli ==000.0)*/  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
         /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */  /*         printf("ddd %lf ",ps[ii][jj]); */
         ipmx +=1;  /*       } */
         sw += weight[i];  /*       printf("\n "); */
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;  /*        } */
       } /* end of wave */  /*        printf("\n ");printf("%lf ",cov[2]); */
     } /* end of individual */         /*
   }  else if(mle==2){        for(i=1; i<= npar; i++) printf("%f ",x[i]);
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){        goto end;*/
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];      return ps;
       for(mi=1; mi<= wav[i]-1; mi++){  }
         for (ii=1;ii<=nlstate+ndeath;ii++)  
           for (j=1;j<=nlstate+ndeath;j++){  /**************** Product of 2 matrices ******************/
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);  
             savm[ii][j]=(ii==j ? 1.0 : 0.0);  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
           }  {
         for(d=0; d<=dh[mi][i]; d++){    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
           newm=savm;       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;    /* in, b, out are matrice of pointers which should have been initialized
           for (kk=1; kk<=cptcovage;kk++) {       before: only the contents of out is modified. The function returns
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];       a pointer to pointers identical to out */
           }    long i, j, k;
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,    for(i=nrl; i<= nrh; i++)
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));      for(k=ncolol; k<=ncoloh; k++)
           savm=oldm;        for(j=ncl,out[i][k]=0.; j<=nch; j++)
           oldm=newm;          out[i][k] +=in[i][j]*b[j][k];
         } /* end mult */  
           return out;
         s1=s[mw[mi][i]][i];  }
         s2=s[mw[mi+1][i]][i];  
         bbh=(double)bh[mi][i]/(double)stepm;   
         lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */  /************* Higher Matrix Product ***************/
         ipmx +=1;  
         sw += weight[i];  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;  {
       } /* end of wave */    /* Computes the transition matrix starting at age 'age' over
     } /* end of individual */       'nhstepm*hstepm*stepm' months (i.e. until
   }  else if(mle==3){  /* exponential inter-extrapolation */       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){       nhstepm*hstepm matrices.
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];       Output is stored in matrix po[i][j][h] for h every 'hstepm' step
       for(mi=1; mi<= wav[i]-1; mi++){       (typically every 2 years instead of every month which is too big
         for (ii=1;ii<=nlstate+ndeath;ii++)       for the memory).
           for (j=1;j<=nlstate+ndeath;j++){       Model is determined by parameters x and covariates have to be
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);       included manually here.
             savm[ii][j]=(ii==j ? 1.0 : 0.0);  
           }       */
         for(d=0; d<dh[mi][i]; d++){  
           newm=savm;    int i, j, d, h, k;
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;    double **out, cov[NCOVMAX];
           for (kk=1; kk<=cptcovage;kk++) {    double **newm;
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];  
           }    /* Hstepm could be zero and should return the unit matrix */
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,    for (i=1;i<=nlstate+ndeath;i++)
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));      for (j=1;j<=nlstate+ndeath;j++){
           savm=oldm;        oldm[i][j]=(i==j ? 1.0 : 0.0);
           oldm=newm;        po[i][j][0]=(i==j ? 1.0 : 0.0);
         } /* end mult */      }
           /* Even if hstepm = 1, at least one multiplication by the unit matrix */
         s1=s[mw[mi][i]][i];    for(h=1; h <=nhstepm; h++){
         s2=s[mw[mi+1][i]][i];      for(d=1; d <=hstepm; d++){
         bbh=(double)bh[mi][i]/(double)stepm;         newm=savm;
         lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */        /* Covariates have to be included here again */
         ipmx +=1;        cov[1]=1.;
         sw += weight[i];        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
       } /* end of wave */        for (k=1; k<=cptcovage;k++)
     } /* end of individual */          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   }else if (mle==4){  /* ml=4 no inter-extrapolation */        for (k=1; k<=cptcovprod;k++)
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];  
       for(mi=1; mi<= wav[i]-1; mi++){  
         for (ii=1;ii<=nlstate+ndeath;ii++)        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
           for (j=1;j<=nlstate+ndeath;j++){        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,
             savm[ii][j]=(ii==j ? 1.0 : 0.0);                     pmij(pmmij,cov,ncovmodel,x,nlstate));
           }        savm=oldm;
         for(d=0; d<dh[mi][i]; d++){        oldm=newm;
           newm=savm;      }
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;      for(i=1; i<=nlstate+ndeath; i++)
           for (kk=1; kk<=cptcovage;kk++) {        for(j=1;j<=nlstate+ndeath;j++) {
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];          po[i][j][h]=newm[i][j];
           }          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
                    */
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,        }
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));    } /* end h */
           savm=oldm;    return po;
           oldm=newm;  }
         } /* end mult */  
         
         s1=s[mw[mi][i]][i];  /*************** log-likelihood *************/
         s2=s[mw[mi+1][i]][i];  double func( double *x)
         if( s2 > nlstate){   {
           lli=log(out[s1][s2] - savm[s1][s2]);    int i, ii, j, k, mi, d, kk;
         }else{    double l, ll[NLSTATEMAX], cov[NCOVMAX];
           lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */    double **out;
         }    double sw; /* Sum of weights */
         ipmx +=1;    double lli; /* Individual log likelihood */
         sw += weight[i];    int s1, s2;
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;    double bbh, survp;
 /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */    long ipmx;
       } /* end of wave */    /*extern weight */
     } /* end of individual */    /* We are differentiating ll according to initial status */
   }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){    /*for(i=1;i<imx;i++)
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];      printf(" %d\n",s[4][i]);
       for(mi=1; mi<= wav[i]-1; mi++){    */
         for (ii=1;ii<=nlstate+ndeath;ii++)    cov[1]=1.;
           for (j=1;j<=nlstate+ndeath;j++){  
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);    for(k=1; k<=nlstate; k++) ll[k]=0.;
             savm[ii][j]=(ii==j ? 1.0 : 0.0);  
           }    if(mle==1){
         for(d=0; d<dh[mi][i]; d++){      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           newm=savm;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;        for(mi=1; mi<= wav[i]-1; mi++){
           for (kk=1; kk<=cptcovage;kk++) {          for (ii=1;ii<=nlstate+ndeath;ii++)
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];            for (j=1;j<=nlstate+ndeath;j++){
           }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                       savm[ii][j]=(ii==j ? 1.0 : 0.0);
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,            }
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));          for(d=0; d<dh[mi][i]; d++){
           savm=oldm;            newm=savm;
           oldm=newm;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         } /* end mult */            for (kk=1; kk<=cptcovage;kk++) {
                     cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         s1=s[mw[mi][i]][i];            }
         s2=s[mw[mi+1][i]][i];            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         ipmx +=1;            savm=oldm;
         sw += weight[i];            oldm=newm;
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;          } /* end mult */
         /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/       
       } /* end of wave */          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
     } /* end of individual */          /* But now since version 0.9 we anticipate for bias at large stepm.
   } /* End of if */           * If stepm is larger than one month (smallest stepm) and if the exact delay
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];           * (in months) between two waves is not a multiple of stepm, we rounded to
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */           * the nearest (and in case of equal distance, to the lowest) interval but now
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */           * we keep into memory the bias bh[mi][i] and also the previous matrix product
   return -l;           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
 }           * probability in order to take into account the bias as a fraction of the way
            * from savm to out if bh is negative or even beyond if bh is positive. bh varies
 /*************** log-likelihood *************/           * -stepm/2 to stepm/2 .
 double funcone( double *x)           * For stepm=1 the results are the same as for previous versions of Imach.
 {           * For stepm > 1 the results are less biased than in previous versions.
   /* Same as likeli but slower because of a lot of printf and if */           */
   int i, ii, j, k, mi, d, kk;          s1=s[mw[mi][i]][i];
   double l, ll[NLSTATEMAX], cov[NCOVMAX];          s2=s[mw[mi+1][i]][i];
   double **out;          bbh=(double)bh[mi][i]/(double)stepm;
   double lli; /* Individual log likelihood */          /* bias bh is positive if real duration
   double llt;           * is higher than the multiple of stepm and negative otherwise.
   int s1, s2;           */
   double bbh, survp;          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
   /*extern weight */          if( s2 > nlstate){
   /* We are differentiating ll according to initial status */            /* i.e. if s2 is a death state and if the date of death is known
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/               then the contribution to the likelihood is the probability to
   /*for(i=1;i<imx;i++)                die between last step unit time and current  step unit time,
     printf(" %d\n",s[4][i]);               which is also equal to probability to die before dh
   */               minus probability to die before dh-stepm .
   cov[1]=1.;               In version up to 0.92 likelihood was computed
           as if date of death was unknown. Death was treated as any other
   for(k=1; k<=nlstate; k++) ll[k]=0.;          health state: the date of the interview describes the actual state
           and not the date of a change in health state. The former idea was
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){          to consider that at each interview the state was recorded
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];          (healthy, disable or death) and IMaCh was corrected; but when we
     for(mi=1; mi<= wav[i]-1; mi++){          introduced the exact date of death then we should have modified
       for (ii=1;ii<=nlstate+ndeath;ii++)          the contribution of an exact death to the likelihood. This new
         for (j=1;j<=nlstate+ndeath;j++){          contribution is smaller and very dependent of the step unit
           oldm[ii][j]=(ii==j ? 1.0 : 0.0);          stepm. It is no more the probability to die between last interview
           savm[ii][j]=(ii==j ? 1.0 : 0.0);          and month of death but the probability to survive from last
         }          interview up to one month before death multiplied by the
       for(d=0; d<dh[mi][i]; d++){          probability to die within a month. Thanks to Chris
         newm=savm;          Jackson for correcting this bug.  Former versions increased
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;          mortality artificially. The bad side is that we add another loop
         for (kk=1; kk<=cptcovage;kk++) {          which slows down the processing. The difference can be up to 10%
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];          lower mortality.
         }            */
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,            lli=log(out[s1][s2] - savm[s1][s2]);
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));  
         savm=oldm;  
         oldm=newm;          } else if  (s2==-2) {
       } /* end mult */            for (j=1,survp=0. ; j<=nlstate; j++)
                     survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
       s1=s[mw[mi][i]][i];            /*survp += out[s1][j]; */
       s2=s[mw[mi+1][i]][i];            lli= log(survp);
       bbh=(double)bh[mi][i]/(double)stepm;           }
       /* bias is positive if real duration         
        * is higher than the multiple of stepm and negative otherwise.          else if  (s2==-4) {
        */            for (j=3,survp=0. ; j<=nlstate; j++)  
       if( s2 > nlstate && (mle <5) ){  /* Jackson */              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
         lli=log(out[s1][s2] - savm[s1][s2]);            lli= log(survp);
       } else if (mle==1){          }
         lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */  
       } else if(mle==2){          else if  (s2==-5) {
         lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */            for (j=1,survp=0. ; j<=2; j++)  
       } else if(mle==3){  /* exponential inter-extrapolation */              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
         lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */            lli= log(survp);
       } else if (mle==4){  /* mle=4 no inter-extrapolation */          }
         lli=log(out[s1][s2]); /* Original formula */         
       } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */          else{
         lli=log(out[s1][s2]); /* Original formula */            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
       } /* End of if */            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
       ipmx +=1;          }
       sw += weight[i];          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;          /*if(lli ==000.0)*/
 /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
       if(globpr){          ipmx +=1;
         fprintf(ficresilk,"%9d %6d %1d %1d %1d %1d %3d %10.6f %6.4f\          sw += weight[i];
  %10.6f %10.6f %10.6f ", \          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
                 num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],        } /* end of wave */
                 2*weight[i]*lli,out[s1][s2],savm[s1][s2]);      } /* end of individual */
         for(k=1,llt=0.,l=0.; k<=nlstate; k++){    }  else if(mle==2){
           llt +=ll[k]*gipmx/gsw;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         }        for(mi=1; mi<= wav[i]-1; mi++){
         fprintf(ficresilk," %10.6f\n", -llt);          for (ii=1;ii<=nlstate+ndeath;ii++)
       }            for (j=1;j<=nlstate+ndeath;j++){
     } /* end of wave */              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   } /* end of individual */              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];            }
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */          for(d=0; d<=dh[mi][i]; d++){
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */            newm=savm;
   if(globpr==0){ /* First time we count the contributions and weights */            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     gipmx=ipmx;            for (kk=1; kk<=cptcovage;kk++) {
     gsw=sw;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   }            }
   return -l;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             savm=oldm;
             oldm=newm;
 /*************** function likelione ***********/          } /* end mult */
 void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))       
 {          s1=s[mw[mi][i]][i];
   /* This routine should help understanding what is done with           s2=s[mw[mi+1][i]][i];
      the selection of individuals/waves and          bbh=(double)bh[mi][i]/(double)stepm;
      to check the exact contribution to the likelihood.          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
      Plotting could be done.          ipmx +=1;
    */          sw += weight[i];
   int k;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         } /* end of wave */
   if(*globpri !=0){ /* Just counts and sums, no printings */      } /* end of individual */
     strcpy(fileresilk,"ilk");     }  else if(mle==3){  /* exponential inter-extrapolation */
     strcat(fileresilk,fileres);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     if((ficresilk=fopen(fileresilk,"w"))==NULL) {        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       printf("Problem with resultfile: %s\n", fileresilk);        for(mi=1; mi<= wav[i]-1; mi++){
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);          for (ii=1;ii<=nlstate+ndeath;ii++)
     }            for (j=1;j<=nlstate+ndeath;j++){
     fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */            }
     for(k=1; k<=nlstate; k++)           for(d=0; d<dh[mi][i]; d++){
       fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);            newm=savm;
     fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   }            for (kk=1; kk<=cptcovage;kk++) {
               cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   *fretone=(*funcone)(p);            }
   if(*globpri !=0){            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     fclose(ficresilk);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));            savm=oldm;
     fflush(fichtm);             oldm=newm;
   }           } /* end mult */
   return;       
 }          s1=s[mw[mi][i]][i];
           s2=s[mw[mi+1][i]][i];
           bbh=(double)bh[mi][i]/(double)stepm;
 /*********** Maximum Likelihood Estimation ***************/          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
           ipmx +=1;
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))          sw += weight[i];
 {          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   int i,j, iter;        } /* end of wave */
   double **xi;      } /* end of individual */
   double fret;    }else if (mle==4){  /* ml=4 no inter-extrapolation */
   double fretone; /* Only one call to likelihood */      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   char filerespow[FILENAMELENGTH];        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   xi=matrix(1,npar,1,npar);        for(mi=1; mi<= wav[i]-1; mi++){
   for (i=1;i<=npar;i++)          for (ii=1;ii<=nlstate+ndeath;ii++)
     for (j=1;j<=npar;j++)            for (j=1;j<=nlstate+ndeath;j++){
       xi[i][j]=(i==j ? 1.0 : 0.0);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   printf("Powell\n");  fprintf(ficlog,"Powell\n");              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   strcpy(filerespow,"pow");             }
   strcat(filerespow,fileres);          for(d=0; d<dh[mi][i]; d++){
   if((ficrespow=fopen(filerespow,"w"))==NULL) {            newm=savm;
     printf("Problem with resultfile: %s\n", filerespow);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);            for (kk=1; kk<=cptcovage;kk++) {
   }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   fprintf(ficrespow,"# Powell\n# iter -2*LL");            }
   for (i=1;i<=nlstate;i++)         
     for(j=1;j<=nlstate+ndeath;j++)            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   fprintf(ficrespow,"\n");            savm=oldm;
             oldm=newm;
   powell(p,xi,npar,ftol,&iter,&fret,func);          } /* end mult */
        
   fclose(ficrespow);          s1=s[mw[mi][i]][i];
   printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));          s2=s[mw[mi+1][i]][i];
   fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));          if( s2 > nlstate){
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));            lli=log(out[s1][s2] - savm[s1][s2]);
           }else{
 }            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
           }
 /**** Computes Hessian and covariance matrix ***/          ipmx +=1;
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))          sw += weight[i];
 {          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   double  **a,**y,*x,pd;  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
   double **hess;        } /* end of wave */
   int i, j,jk;      } /* end of individual */
   int *indx;    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
       for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   double hessii(double p[], double delta, int theta, double delti[]);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   double hessij(double p[], double delti[], int i, int j);        for(mi=1; mi<= wav[i]-1; mi++){
   void lubksb(double **a, int npar, int *indx, double b[]) ;          for (ii=1;ii<=nlstate+ndeath;ii++)
   void ludcmp(double **a, int npar, int *indx, double *d) ;            for (j=1;j<=nlstate+ndeath;j++){
               oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   hess=matrix(1,npar,1,npar);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
             }
   printf("\nCalculation of the hessian matrix. Wait...\n");          for(d=0; d<dh[mi][i]; d++){
   fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");            newm=savm;
   for (i=1;i<=npar;i++){            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     printf("%d",i);fflush(stdout);            for (kk=1; kk<=cptcovage;kk++) {
     fprintf(ficlog,"%d",i);fflush(ficlog);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     hess[i][i]=hessii(p,ftolhess,i,delti);            }
     /*printf(" %f ",p[i]);*/         
     /*printf(" %lf ",hess[i][i]);*/            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
               savm=oldm;
   for (i=1;i<=npar;i++) {            oldm=newm;
     for (j=1;j<=npar;j++)  {          } /* end mult */
       if (j>i) {        
         printf(".%d%d",i,j);fflush(stdout);          s1=s[mw[mi][i]][i];
         fprintf(ficlog,".%d%d",i,j);fflush(ficlog);          s2=s[mw[mi+1][i]][i];
         hess[i][j]=hessij(p,delti,i,j);          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
         hess[j][i]=hess[i][j];              ipmx +=1;
         /*printf(" %lf ",hess[i][j]);*/          sw += weight[i];
       }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     }          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
   }        } /* end of wave */
   printf("\n");      } /* end of individual */
   fprintf(ficlog,"\n");    } /* End of if */
     for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
       return -l;
   a=matrix(1,npar,1,npar);  }
   y=matrix(1,npar,1,npar);  
   x=vector(1,npar);  /*************** log-likelihood *************/
   indx=ivector(1,npar);  double funcone( double *x)
   for (i=1;i<=npar;i++)  {
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];    /* Same as likeli but slower because of a lot of printf and if */
   ludcmp(a,npar,indx,&pd);    int i, ii, j, k, mi, d, kk;
     double l, ll[NLSTATEMAX], cov[NCOVMAX];
   for (j=1;j<=npar;j++) {    double **out;
     for (i=1;i<=npar;i++) x[i]=0;    double lli; /* Individual log likelihood */
     x[j]=1;    double llt;
     lubksb(a,npar,indx,x);    int s1, s2;
     for (i=1;i<=npar;i++){     double bbh, survp;
       matcov[i][j]=x[i];    /*extern weight */
     }    /* We are differentiating ll according to initial status */
   }    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     /*for(i=1;i<imx;i++)
   printf("\n#Hessian matrix#\n");      printf(" %d\n",s[4][i]);
   fprintf(ficlog,"\n#Hessian matrix#\n");    */
   for (i=1;i<=npar;i++) {     cov[1]=1.;
     for (j=1;j<=npar;j++) {   
       printf("%.3e ",hess[i][j]);    for(k=1; k<=nlstate; k++) ll[k]=0.;
       fprintf(ficlog,"%.3e ",hess[i][j]);  
     }    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     printf("\n");      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     fprintf(ficlog,"\n");      for(mi=1; mi<= wav[i]-1; mi++){
   }        for (ii=1;ii<=nlstate+ndeath;ii++)
           for (j=1;j<=nlstate+ndeath;j++){
   /* Recompute Inverse */            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   for (i=1;i<=npar;i++)            savm[ii][j]=(ii==j ? 1.0 : 0.0);
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];          }
   ludcmp(a,npar,indx,&pd);        for(d=0; d<dh[mi][i]; d++){
           newm=savm;
   /*  printf("\n#Hessian matrix recomputed#\n");          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           for (kk=1; kk<=cptcovage;kk++) {
   for (j=1;j<=npar;j++) {            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     for (i=1;i<=npar;i++) x[i]=0;          }
     x[j]=1;          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     lubksb(a,npar,indx,x);                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     for (i=1;i<=npar;i++){           savm=oldm;
       y[i][j]=x[i];          oldm=newm;
       printf("%.3e ",y[i][j]);        } /* end mult */
       fprintf(ficlog,"%.3e ",y[i][j]);       
     }        s1=s[mw[mi][i]][i];
     printf("\n");        s2=s[mw[mi+1][i]][i];
     fprintf(ficlog,"\n");        bbh=(double)bh[mi][i]/(double)stepm;
   }        /* bias is positive if real duration
   */         * is higher than the multiple of stepm and negative otherwise.
          */
   free_matrix(a,1,npar,1,npar);        if( s2 > nlstate && (mle <5) ){  /* Jackson */
   free_matrix(y,1,npar,1,npar);          lli=log(out[s1][s2] - savm[s1][s2]);
   free_vector(x,1,npar);        } else if  (s2==-2) {
   free_ivector(indx,1,npar);          for (j=1,survp=0. ; j<=nlstate; j++)
   free_matrix(hess,1,npar,1,npar);            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
           lli= log(survp);
         }else if (mle==1){
 }          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
         } else if(mle==2){
 /*************** hessian matrix ****************/          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
 double hessii( double x[], double delta, int theta, double delti[])        } else if(mle==3){  /* exponential inter-extrapolation */
 {          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   int i;        } else if (mle==4){  /* mle=4 no inter-extrapolation */
   int l=1, lmax=20;          lli=log(out[s1][s2]); /* Original formula */
   double k1,k2;        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
   double p2[NPARMAX+1];          lli=log(out[s1][s2]); /* Original formula */
   double res;        } /* End of if */
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;        ipmx +=1;
   double fx;        sw += weight[i];
   int k=0,kmax=10;        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   double l1;  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
         if(globpr){
   fx=func(x);          fprintf(ficresilk,"%9d %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
   for (i=1;i<=npar;i++) p2[i]=x[i];   %11.6f %11.6f %11.6f ", \
   for(l=0 ; l <=lmax; l++){                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
     l1=pow(10,l);                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
     delts=delt;          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
     for(k=1 ; k <kmax; k=k+1){            llt +=ll[k]*gipmx/gsw;
       delt = delta*(l1*k);            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
       p2[theta]=x[theta] +delt;          }
       k1=func(p2)-fx;          fprintf(ficresilk," %10.6f\n", -llt);
       p2[theta]=x[theta]-delt;        }
       k2=func(p2)-fx;      } /* end of wave */
       /*res= (k1-2.0*fx+k2)/delt/delt; */    } /* end of individual */
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
           /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
 #ifdef DEBUG    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);    if(globpr==0){ /* First time we count the contributions and weights */
       fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);      gipmx=ipmx;
 #endif      gsw=sw;
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */    }
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){    return -l;
         k=kmax;  }
       }  
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */  
         k=kmax; l=lmax*10.;  /*************** function likelione ***********/
       }  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){   {
         delts=delt;    /* This routine should help understanding what is done with
       }       the selection of individuals/waves and
     }       to check the exact contribution to the likelihood.
   }       Plotting could be done.
   delti[theta]=delts;     */
   return res;     int k;
     
 }    if(*globpri !=0){ /* Just counts and sums, no printings */
       strcpy(fileresilk,"ilk");
 double hessij( double x[], double delti[], int thetai,int thetaj)      strcat(fileresilk,fileres);
 {      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
   int i;        printf("Problem with resultfile: %s\n", fileresilk);
   int l=1, l1, lmax=20;        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
   double k1,k2,k3,k4,res,fx;      }
   double p2[NPARMAX+1];      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
   int k;      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
       /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
   fx=func(x);      for(k=1; k<=nlstate; k++)
   for (k=1; k<=2; k++) {        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
     for (i=1;i<=npar;i++) p2[i]=x[i];      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
     p2[thetai]=x[thetai]+delti[thetai]/k;    }
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;  
     k1=func(p2)-fx;    *fretone=(*funcone)(p);
       if(*globpri !=0){
     p2[thetai]=x[thetai]+delti[thetai]/k;      fclose(ficresilk);
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
     k2=func(p2)-fx;      fflush(fichtm);
       }
     p2[thetai]=x[thetai]-delti[thetai]/k;    return;
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;  }
     k3=func(p2)-fx;  
     
     p2[thetai]=x[thetai]-delti[thetai]/k;  /*********** Maximum Likelihood Estimation ***************/
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;  
     k4=func(p2)-fx;  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */  {
 #ifdef DEBUG    int i,j, iter;
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);    double **xi;
     fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);    double fret;
 #endif    double fretone; /* Only one call to likelihood */
   }    /*  char filerespow[FILENAMELENGTH];*/
   return res;    xi=matrix(1,npar,1,npar);
 }    for (i=1;i<=npar;i++)
       for (j=1;j<=npar;j++)
 /************** Inverse of matrix **************/        xi[i][j]=(i==j ? 1.0 : 0.0);
 void ludcmp(double **a, int n, int *indx, double *d)     printf("Powell\n");  fprintf(ficlog,"Powell\n");
 {     strcpy(filerespow,"pow");
   int i,imax,j,k;     strcat(filerespow,fileres);
   double big,dum,sum,temp;     if((ficrespow=fopen(filerespow,"w"))==NULL) {
   double *vv;       printf("Problem with resultfile: %s\n", filerespow);
        fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
   vv=vector(1,n);     }
   *d=1.0;     fprintf(ficrespow,"# Powell\n# iter -2*LL");
   for (i=1;i<=n;i++) {     for (i=1;i<=nlstate;i++)
     big=0.0;       for(j=1;j<=nlstate+ndeath;j++)
     for (j=1;j<=n;j++)         if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       if ((temp=fabs(a[i][j])) > big) big=temp;     fprintf(ficrespow,"\n");
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");   
     vv[i]=1.0/big;     powell(p,xi,npar,ftol,&iter,&fret,func);
   }   
   for (j=1;j<=n;j++) {     free_matrix(xi,1,npar,1,npar);
     for (i=1;i<j;i++) {     fclose(ficrespow);
       sum=a[i][j];     printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];     fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
       a[i][j]=sum;     fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
     }   
     big=0.0;   }
     for (i=j;i<=n;i++) {   
       sum=a[i][j];   /**** Computes Hessian and covariance matrix ***/
       for (k=1;k<j;k++)   void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
         sum -= a[i][k]*a[k][j];   {
       a[i][j]=sum;     double  **a,**y,*x,pd;
       if ( (dum=vv[i]*fabs(sum)) >= big) {     double **hess;
         big=dum;     int i, j,jk;
         imax=i;     int *indx;
       }   
     }     double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
     if (j != imax) {     double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
       for (k=1;k<=n;k++) {     void lubksb(double **a, int npar, int *indx, double b[]) ;
         dum=a[imax][k];     void ludcmp(double **a, int npar, int *indx, double *d) ;
         a[imax][k]=a[j][k];     double gompertz(double p[]);
         a[j][k]=dum;     hess=matrix(1,npar,1,npar);
       }   
       *d = -(*d);     printf("\nCalculation of the hessian matrix. Wait...\n");
       vv[imax]=vv[j];     fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
     }     for (i=1;i<=npar;i++){
     indx[j]=imax;       printf("%d",i);fflush(stdout);
     if (a[j][j] == 0.0) a[j][j]=TINY;       fprintf(ficlog,"%d",i);fflush(ficlog);
     if (j != n) {      
       dum=1.0/(a[j][j]);        hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
       for (i=j+1;i<=n;i++) a[i][j] *= dum;      
     }       /*  printf(" %f ",p[i]);
   }           printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
   free_vector(vv,1,n);  /* Doesn't work */    }
 ;   
 }     for (i=1;i<=npar;i++) {
       for (j=1;j<=npar;j++)  {
 void lubksb(double **a, int n, int *indx, double b[])         if (j>i) {
 {           printf(".%d%d",i,j);fflush(stdout);
   int i,ii=0,ip,j;           fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
   double sum;           hess[i][j]=hessij(p,delti,i,j,func,npar);
           
   for (i=1;i<=n;i++) {           hess[j][i]=hess[i][j];    
     ip=indx[i];           /*printf(" %lf ",hess[i][j]);*/
     sum=b[ip];         }
     b[ip]=b[i];       }
     if (ii)     }
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];     printf("\n");
     else if (sum) ii=i;     fprintf(ficlog,"\n");
     b[i]=sum;   
   }     printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
   for (i=n;i>=1;i--) {     fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
     sum=b[i];    
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];     a=matrix(1,npar,1,npar);
     b[i]=sum/a[i][i];     y=matrix(1,npar,1,npar);
   }     x=vector(1,npar);
 }     indx=ivector(1,npar);
     for (i=1;i<=npar;i++)
 /************ Frequencies ********************/      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
 void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint)    ludcmp(a,npar,indx,&pd);
 {  /* Some frequencies */  
       for (j=1;j<=npar;j++) {
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;      for (i=1;i<=npar;i++) x[i]=0;
   int first;      x[j]=1;
   double ***freq; /* Frequencies */      lubksb(a,npar,indx,x);
   double *pp, **prop;      for (i=1;i<=npar;i++){
   double pos,posprop, k2, dateintsum=0,k2cpt=0;        matcov[i][j]=x[i];
   FILE *ficresp;      }
   char fileresp[FILENAMELENGTH];    }
     
   pp=vector(1,nlstate);    printf("\n#Hessian matrix#\n");
   prop=matrix(1,nlstate,iagemin,iagemax+3);    fprintf(ficlog,"\n#Hessian matrix#\n");
   strcpy(fileresp,"p");    for (i=1;i<=npar;i++) {
   strcat(fileresp,fileres);      for (j=1;j<=npar;j++) {
   if((ficresp=fopen(fileresp,"w"))==NULL) {        printf("%.3e ",hess[i][j]);
     printf("Problem with prevalence resultfile: %s\n", fileresp);        fprintf(ficlog,"%.3e ",hess[i][j]);
     fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);      }
     exit(0);      printf("\n");
   }      fprintf(ficlog,"\n");
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);    }
   j1=0;  
       /* Recompute Inverse */
   j=cptcoveff;    for (i=1;i<=npar;i++)
   if (cptcovn<1) {j=1;ncodemax[1]=1;}      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
     ludcmp(a,npar,indx,&pd);
   first=1;  
     /*  printf("\n#Hessian matrix recomputed#\n");
   for(k1=1; k1<=j;k1++){  
     for(i1=1; i1<=ncodemax[k1];i1++){    for (j=1;j<=npar;j++) {
       j1++;      for (i=1;i<=npar;i++) x[i]=0;
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);      x[j]=1;
         scanf("%d", i);*/      lubksb(a,npar,indx,x);
       for (i=-1; i<=nlstate+ndeath; i++)        for (i=1;i<=npar;i++){
         for (jk=-1; jk<=nlstate+ndeath; jk++)          y[i][j]=x[i];
           for(m=iagemin; m <= iagemax+3; m++)        printf("%.3e ",y[i][j]);
             freq[i][jk][m]=0;        fprintf(ficlog,"%.3e ",y[i][j]);
       }
     for (i=1; i<=nlstate; i++)        printf("\n");
       for(m=iagemin; m <= iagemax+3; m++)      fprintf(ficlog,"\n");
         prop[i][m]=0;    }
           */
       dateintsum=0;  
       k2cpt=0;    free_matrix(a,1,npar,1,npar);
       for (i=1; i<=imx; i++) {    free_matrix(y,1,npar,1,npar);
         bool=1;    free_vector(x,1,npar);
         if  (cptcovn>0) {    free_ivector(indx,1,npar);
           for (z1=1; z1<=cptcoveff; z1++)     free_matrix(hess,1,npar,1,npar);
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])   
               bool=0;  
         }  }
         if (bool==1){  
           for(m=firstpass; m<=lastpass; m++){  /*************** hessian matrix ****************/
             k2=anint[m][i]+(mint[m][i]/12.);  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
             /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/  {
               if(agev[m][i]==0) agev[m][i]=iagemax+1;    int i;
               if(agev[m][i]==1) agev[m][i]=iagemax+2;    int l=1, lmax=20;
               if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];    double k1,k2;
               if (m<lastpass) {    double p2[NPARMAX+1];
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];    double res;
                 freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
               }    double fx;
                   int k=0,kmax=10;
               if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {    double l1;
                 dateintsum=dateintsum+k2;  
                 k2cpt++;    fx=func(x);
               }    for (i=1;i<=npar;i++) p2[i]=x[i];
               /*}*/    for(l=0 ; l <=lmax; l++){
           }      l1=pow(10,l);
         }      delts=delt;
       }      for(k=1 ; k <kmax; k=k+1){
                delt = delta*(l1*k);
       /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/        p2[theta]=x[theta] +delt;
         k1=func(p2)-fx;
       if  (cptcovn>0) {        p2[theta]=x[theta]-delt;
         fprintf(ficresp, "\n#********** Variable ");         k2=func(p2)-fx;
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        /*res= (k1-2.0*fx+k2)/delt/delt; */
         fprintf(ficresp, "**********\n#");        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
       }       
       for(i=1; i<=nlstate;i++)   #ifdef DEBUG
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
       fprintf(ficresp, "\n");        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
         #endif
       for(i=iagemin; i <= iagemax+3; i++){        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
         if(i==iagemax+3){        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
           fprintf(ficlog,"Total");          k=kmax;
         }else{        }
           if(first==1){        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
             first=0;          k=kmax; l=lmax*10.;
             printf("See log file for details...\n");        }
           }        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){
           fprintf(ficlog,"Age %d", i);          delts=delt;
         }        }
         for(jk=1; jk <=nlstate ; jk++){      }
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)    }
             pp[jk] += freq[jk][m][i];     delti[theta]=delts;
         }    return res;
         for(jk=1; jk <=nlstate ; jk++){   
           for(m=-1, pos=0; m <=0 ; m++)  }
             pos += freq[jk][m][i];  
           if(pp[jk]>=1.e-10){  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
             if(first==1){  {
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);    int i;
             }    int l=1, l1, lmax=20;
             fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);    double k1,k2,k3,k4,res,fx;
           }else{    double p2[NPARMAX+1];
             if(first==1)    int k;
               printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);  
             fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);    fx=func(x);
           }    for (k=1; k<=2; k++) {
         }      for (i=1;i<=npar;i++) p2[i]=x[i];
       p2[thetai]=x[thetai]+delti[thetai]/k;
         for(jk=1; jk <=nlstate ; jk++){      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)      k1=func(p2)-fx;
             pp[jk] += freq[jk][m][i];   
         }             p2[thetai]=x[thetai]+delti[thetai]/k;
         for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
           pos += pp[jk];      k2=func(p2)-fx;
           posprop += prop[jk][i];   
         }      p2[thetai]=x[thetai]-delti[thetai]/k;
         for(jk=1; jk <=nlstate ; jk++){      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
           if(pos>=1.e-5){      k3=func(p2)-fx;
             if(first==1)   
               printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);      p2[thetai]=x[thetai]-delti[thetai]/k;
             fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
           }else{      k4=func(p2)-fx;
             if(first==1)      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
               printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);  #ifdef DEBUG
             fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
           }      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
           if( i <= iagemax){  #endif
             if(pos>=1.e-5){    }
               fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);    return res;
               /*probs[i][jk][j1]= pp[jk]/pos;*/  }
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/  
             }  /************** Inverse of matrix **************/
             else  void ludcmp(double **a, int n, int *indx, double *d)
               fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);  {
           }    int i,imax,j,k;
         }    double big,dum,sum,temp;
             double *vv;
         for(jk=-1; jk <=nlstate+ndeath; jk++)   
           for(m=-1; m <=nlstate+ndeath; m++)    vv=vector(1,n);
             if(freq[jk][m][i] !=0 ) {    *d=1.0;
             if(first==1)    for (i=1;i<=n;i++) {
               printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);      big=0.0;
               fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);      for (j=1;j<=n;j++)
             }        if ((temp=fabs(a[i][j])) > big) big=temp;
         if(i <= iagemax)      if (big == 0.0) nrerror("Singular matrix in routine ludcmp");
           fprintf(ficresp,"\n");      vv[i]=1.0/big;
         if(first==1)    }
           printf("Others in log...\n");    for (j=1;j<=n;j++) {
         fprintf(ficlog,"\n");      for (i=1;i<j;i++) {
       }        sum=a[i][j];
     }        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];
   }        a[i][j]=sum;
   dateintmean=dateintsum/k2cpt;       }
        big=0.0;
   fclose(ficresp);      for (i=j;i<=n;i++) {
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);        sum=a[i][j];
   free_vector(pp,1,nlstate);        for (k=1;k<j;k++)
   free_matrix(prop,1,nlstate,iagemin, iagemax+3);          sum -= a[i][k]*a[k][j];
   /* End of Freq */        a[i][j]=sum;
 }        if ( (dum=vv[i]*fabs(sum)) >= big) {
           big=dum;
 /************ Prevalence ********************/          imax=i;
 void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)        }
 {        }
   /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people      if (j != imax) {
      in each health status at the date of interview (if between dateprev1 and dateprev2).        for (k=1;k<=n;k++) {
      We still use firstpass and lastpass as another selection.          dum=a[imax][k];
   */          a[imax][k]=a[j][k];
            a[j][k]=dum;
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;        }
   double ***freq; /* Frequencies */        *d = -(*d);
   double *pp, **prop;        vv[imax]=vv[j];
   double pos,posprop;       }
   double  y2; /* in fractional years */      indx[j]=imax;
   int iagemin, iagemax;      if (a[j][j] == 0.0) a[j][j]=TINY;
       if (j != n) {
   iagemin= (int) agemin;        dum=1.0/(a[j][j]);
   iagemax= (int) agemax;        for (i=j+1;i<=n;i++) a[i][j] *= dum;
   /*pp=vector(1,nlstate);*/      }
   prop=matrix(1,nlstate,iagemin,iagemax+3);     }
   /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/    free_vector(vv,1,n);  /* Doesn't work */
   j1=0;  ;
     }
   j=cptcoveff;  
   if (cptcovn<1) {j=1;ncodemax[1]=1;}  void lubksb(double **a, int n, int *indx, double b[])
     {
   for(k1=1; k1<=j;k1++){    int i,ii=0,ip,j;
     for(i1=1; i1<=ncodemax[k1];i1++){    double sum;
       j1++;   
           for (i=1;i<=n;i++) {
       for (i=1; i<=nlstate; i++)        ip=indx[i];
         for(m=iagemin; m <= iagemax+3; m++)      sum=b[ip];
           prop[i][m]=0.0;      b[ip]=b[i];
            if (ii)
       for (i=1; i<=imx; i++) { /* Each individual */        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];
         bool=1;      else if (sum) ii=i;
         if  (cptcovn>0) {      b[i]=sum;
           for (z1=1; z1<=cptcoveff; z1++)     }
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])     for (i=n;i>=1;i--) {
               bool=0;      sum=b[i];
         }       for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];
         if (bool==1) {       b[i]=sum/a[i][i];
           for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/    }
             y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */  }
             if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */  
               if(agev[m][i]==0) agev[m][i]=iagemax+1;  void pstamp(FILE *fichier)
               if(agev[m][i]==1) agev[m][i]=iagemax+2;  {
               if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m);     fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
               if (s[m][i]>0 && s[m][i]<=nlstate) {   }
                 /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/  
                 prop[s[m][i]][(int)agev[m][i]] += weight[i];  /************ Frequencies ********************/
                 prop[s[m][i]][iagemax+3] += weight[i];   void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
               }   {  /* Some frequencies */
             }   
           } /* end selection of waves */    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
         }    int first;
       }    double ***freq; /* Frequencies */
       for(i=iagemin; i <= iagemax+3; i++){      double *pp, **prop;
             double pos,posprop, k2, dateintsum=0,k2cpt=0;
         for(jk=1,posprop=0; jk <=nlstate ; jk++) {     char fileresp[FILENAMELENGTH];
           posprop += prop[jk][i];    
         }     pp=vector(1,nlstate);
     prop=matrix(1,nlstate,iagemin,iagemax+3);
         for(jk=1; jk <=nlstate ; jk++){         strcpy(fileresp,"p");
           if( i <=  iagemax){     strcat(fileresp,fileres);
             if(posprop>=1.e-5){     if((ficresp=fopen(fileresp,"w"))==NULL) {
               probs[i][jk][j1]= prop[jk][i]/posprop;      printf("Problem with prevalence resultfile: %s\n", fileresp);
             }       fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
           }       exit(0);
         }/* end jk */     }
       }/* end i */     freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
     } /* end i1 */    j1=0;
   } /* end k1 */   
       j=cptcoveff;
   /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/    if (cptcovn<1) {j=1;ncodemax[1]=1;}
   /*free_vector(pp,1,nlstate);*/  
   free_matrix(prop,1,nlstate, iagemin,iagemax+3);    first=1;
 }  /* End of prevalence */  
     for(k1=1; k1<=j;k1++){
 /************* Waves Concatenation ***************/      for(i1=1; i1<=ncodemax[k1];i1++){
         j1++;
 void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
 {          scanf("%d", i);*/
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.        for (i=-5; i<=nlstate+ndeath; i++)  
      Death is a valid wave (if date is known).          for (jk=-5; jk<=nlstate+ndeath; jk++)  
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i            for(m=iagemin; m <= iagemax+3; m++)
      dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]              freq[i][jk][m]=0;
      and mw[mi+1][i]. dh depends on stepm.  
      */      for (i=1; i<=nlstate; i++)  
         for(m=iagemin; m <= iagemax+3; m++)
   int i, mi, m;          prop[i][m]=0;
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;       
      double sum=0., jmean=0.;*/        dateintsum=0;
   int first;        k2cpt=0;
   int j, k=0,jk, ju, jl;        for (i=1; i<=imx; i++) {
   double sum=0.;          bool=1;
   first=0;          if  (cptcovn>0) {
   jmin=1e+5;            for (z1=1; z1<=cptcoveff; z1++)
   jmax=-1;              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])
   jmean=0.;                bool=0;
   for(i=1; i<=imx; i++){          }
     mi=0;          if (bool==1){
     m=firstpass;            for(m=firstpass; m<=lastpass; m++){
     while(s[m][i] <= nlstate){              k2=anint[m][i]+(mint[m][i]/12.);
       if(s[m][i]>=1)              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
         mw[++mi][i]=m;                if(agev[m][i]==0) agev[m][i]=iagemax+1;
       if(m >=lastpass)                if(agev[m][i]==1) agev[m][i]=iagemax+2;
         break;                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
       else                if (m<lastpass) {
         m++;                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
     }/* end while */                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
     if (s[m][i] > nlstate){                }
       mi++;     /* Death is another wave */               
       /* if(mi==0)  never been interviewed correctly before death */                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
          /* Only death is a correct wave */                  dateintsum=dateintsum+k2;
       mw[mi][i]=m;                  k2cpt++;
     }                }
                 /*}*/
     wav[i]=mi;            }
     if(mi==0){          }
       nbwarn++;        }
       if(first==0){         
         printf("Warning! None valid information for:%ld line=%d (skipped) and may be others, see log file\n",num[i],i);        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
         first=1;        pstamp(ficresp);
       }        if  (cptcovn>0) {
       if(first==1){          fprintf(ficresp, "\n#********** Variable ");
         fprintf(ficlog,"Warning! None valid information for:%ld line=%d (skipped)\n",num[i],i);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       }          fprintf(ficresp, "**********\n#");
     } /* end mi==0 */        }
   } /* End individuals */        for(i=1; i<=nlstate;i++)
           fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
   for(i=1; i<=imx; i++){        fprintf(ficresp, "\n");
     for(mi=1; mi<wav[i];mi++){       
       if (stepm <=0)        for(i=iagemin; i <= iagemax+3; i++){
         dh[mi][i]=1;          if(i==iagemax+3){
       else{            fprintf(ficlog,"Total");
         if (s[mw[mi+1][i]][i] > nlstate) { /* A death */          }else{
           if (agedc[i] < 2*AGESUP) {            if(first==1){
             j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);               first=0;
             if(j==0) j=1;  /* Survives at least one month after exam */              printf("See log file for details...\n");
             else if(j<0){            }
               nberr++;            fprintf(ficlog,"Age %d", i);
               printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);          }
               j=1; /* Temporary Dangerous patch */          for(jk=1; jk <=nlstate ; jk++){
               printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
               fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);              pp[jk] += freq[jk][m][i];
               fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);          }
             }          for(jk=1; jk <=nlstate ; jk++){
             k=k+1;            for(m=-1, pos=0; m <=0 ; m++)
             if (j >= jmax) jmax=j;              pos += freq[jk][m][i];
             if (j <= jmin) jmin=j;            if(pp[jk]>=1.e-10){
             sum=sum+j;              if(first==1){
             /*if (j<0) printf("j=%d num=%d \n",j,i);*/              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
             /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/              }
           }              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
         }            }else{
         else{              if(first==1)
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
           /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
           k=k+1;            }
           if (j >= jmax) jmax=j;          }
           else if (j <= jmin)jmin=j;  
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */          for(jk=1; jk <=nlstate ; jk++){
           /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
           if(j<0){              pp[jk] += freq[jk][m][i];
             nberr++;          }      
             printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
             fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);            pos += pp[jk];
           }            posprop += prop[jk][i];
           sum=sum+j;          }
         }          for(jk=1; jk <=nlstate ; jk++){
         jk= j/stepm;            if(pos>=1.e-5){
         jl= j -jk*stepm;              if(first==1)
         ju= j -(jk+1)*stepm;                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
         if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
           if(jl==0){            }else{
             dh[mi][i]=jk;              if(first==1)
             bh[mi][i]=0;                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
           }else{ /* We want a negative bias in order to only have interpolation ie              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
                   * at the price of an extra matrix product in likelihood */            }
             dh[mi][i]=jk+1;            if( i <= iagemax){
             bh[mi][i]=ju;              if(pos>=1.e-5){
           }                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
         }else{                /*probs[i][jk][j1]= pp[jk]/pos;*/
           if(jl <= -ju){                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
             dh[mi][i]=jk;              }
             bh[mi][i]=jl;       /* bias is positive if real duration              else
                                  * is higher than the multiple of stepm and negative otherwise.                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
                                  */            }
           }          }
           else{         
             dh[mi][i]=jk+1;          for(jk=-1; jk <=nlstate+ndeath; jk++)
             bh[mi][i]=ju;            for(m=-1; m <=nlstate+ndeath; m++)
           }              if(freq[jk][m][i] !=0 ) {
           if(dh[mi][i]==0){              if(first==1)
             dh[mi][i]=1; /* At least one step */                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
             bh[mi][i]=ju; /* At least one step */                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
             /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/              }
           }          if(i <= iagemax)
         } /* end if mle */            fprintf(ficresp,"\n");
       }          if(first==1)
     } /* end wave */            printf("Others in log...\n");
   }          fprintf(ficlog,"\n");
   jmean=sum/k;        }
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);      }
   fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);    }
  }    dateintmean=dateintsum/k2cpt;
    
 /*********** Tricode ****************************/    fclose(ficresp);
 void tricode(int *Tvar, int **nbcode, int imx)    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
 {    free_vector(pp,1,nlstate);
       free_matrix(prop,1,nlstate,iagemin, iagemax+3);
   int Ndum[20],ij=1, k, j, i, maxncov=19;    /* End of Freq */
   int cptcode=0;  }
   cptcoveff=0;   
    /************ Prevalence ********************/
   for (k=0; k<maxncov; k++) Ndum[k]=0;  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
   for (k=1; k<=7; k++) ncodemax[k]=0;  {  
     /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {       in each health status at the date of interview (if between dateprev1 and dateprev2).
     for (i=1; i<=imx; i++) { /*reads the data file to get the maximum        We still use firstpass and lastpass as another selection.
                                modality*/     */
       ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/   
       Ndum[ij]++; /*store the modality */    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/    double ***freq; /* Frequencies */
       if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable     double *pp, **prop;
                                        Tvar[j]. If V=sex and male is 0 and     double pos,posprop;
                                        female is 1, then  cptcode=1.*/    double  y2; /* in fractional years */
     }    int iagemin, iagemax;
   
     for (i=0; i<=cptcode; i++) {    iagemin= (int) agemin;
       if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */    iagemax= (int) agemax;
     }    /*pp=vector(1,nlstate);*/
     prop=matrix(1,nlstate,iagemin,iagemax+3);
     ij=1;     /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
     for (i=1; i<=ncodemax[j]; i++) {    j1=0;
       for (k=0; k<= maxncov; k++) {   
         if (Ndum[k] != 0) {    j=cptcoveff;
           nbcode[Tvar[j]][ij]=k;     if (cptcovn<1) {j=1;ncodemax[1]=1;}
           /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */   
               for(k1=1; k1<=j;k1++){
           ij++;      for(i1=1; i1<=ncodemax[k1];i1++){
         }        j1++;
         if (ij > ncodemax[j]) break;        
       }          for (i=1; i<=nlstate; i++)  
     }           for(m=iagemin; m <= iagemax+3; m++)
   }              prop[i][m]=0.0;
        
  for (k=0; k< maxncov; k++) Ndum[k]=0;        for (i=1; i<=imx; i++) { /* Each individual */
           bool=1;
  for (i=1; i<=ncovmodel-2; i++) {           if  (cptcovn>0) {
    /* Listing of all covariables in staement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/            for (z1=1; z1<=cptcoveff; z1++)
    ij=Tvar[i];              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])
    Ndum[ij]++;                bool=0;
  }          }
           if (bool==1) {
  ij=1;            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
  for (i=1; i<= maxncov; i++) {              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
    if((Ndum[i]!=0) && (i<=ncovcol)){              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
      Tvaraff[ij]=i; /*For printing */                if(agev[m][i]==0) agev[m][i]=iagemax+1;
      ij++;                if(agev[m][i]==1) agev[m][i]=iagemax+2;
    }                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m);
  }                if (s[m][i]>0 && s[m][i]<=nlstate) {
                    /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
  cptcoveff=ij-1; /*Number of simple covariates*/                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
 }                  prop[s[m][i]][iagemax+3] += weight[i];
                 }
 /*********** Health Expectancies ****************/              }
             } /* end selection of waves */
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )          }
         }
 {        for(i=iagemin; i <= iagemax+3; i++){  
   /* Health expectancies */         
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;          for(jk=1,posprop=0; jk <=nlstate ; jk++) {
   double age, agelim, hf;            posprop += prop[jk][i];
   double ***p3mat,***varhe;          }
   double **dnewm,**doldm;  
   double *xp;          for(jk=1; jk <=nlstate ; jk++){    
   double **gp, **gm;            if( i <=  iagemax){
   double ***gradg, ***trgradg;              if(posprop>=1.e-5){
   int theta;                probs[i][jk][j1]= prop[jk][i]/posprop;
               }
   varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);            }
   xp=vector(1,npar);          }/* end jk */
   dnewm=matrix(1,nlstate*nlstate,1,npar);        }/* end i */
   doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);      } /* end i1 */
       } /* end k1 */
   fprintf(ficreseij,"# Health expectancies\n");   
   fprintf(ficreseij,"# Age");    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
   for(i=1; i<=nlstate;i++)    /*free_vector(pp,1,nlstate);*/
     for(j=1; j<=nlstate;j++)    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
       fprintf(ficreseij," %1d-%1d (SE)",i,j);  }  /* End of prevalence */
   fprintf(ficreseij,"\n");  
   /************* Waves Concatenation ***************/
   if(estepm < stepm){  
     printf ("Problem %d lower than %d\n",estepm, stepm);  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
   }  {
   else  hstepm=estepm;       /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
   /* We compute the life expectancy from trapezoids spaced every estepm months       Death is a valid wave (if date is known).
    * This is mainly to measure the difference between two models: for example       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
    * if stepm=24 months pijx are given only every 2 years and by summing them       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
    * we are calculating an estimate of the Life Expectancy assuming a linear        and mw[mi+1][i]. dh depends on stepm.
    * progression in between and thus overestimating or underestimating according       */
    * to the curvature of the survival function. If, for the same date, we   
    * estimate the model with stepm=1 month, we can keep estepm to 24 months    int i, mi, m;
    * to compare the new estimate of Life expectancy with the same linear     /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
    * hypothesis. A more precise result, taking into account a more precise       double sum=0., jmean=0.;*/
    * curvature will be obtained if estepm is as small as stepm. */    int first;
     int j, k=0,jk, ju, jl;
   /* For example we decided to compute the life expectancy with the smallest unit */    double sum=0.;
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.     first=0;
      nhstepm is the number of hstepm from age to agelim     jmin=1e+5;
      nstepm is the number of stepm from age to agelin.     jmax=-1;
      Look at hpijx to understand the reason of that which relies in memory size    jmean=0.;
      and note for a fixed period like estepm months */    for(i=1; i<=imx; i++){
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the      mi=0;
      survival function given by stepm (the optimization length). Unfortunately it      m=firstpass;
      means that if the survival funtion is printed only each two years of age and if      while(s[m][i] <= nlstate){
      you sum them up and add 1 year (area under the trapezoids) you won't get the same         if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
      results. So we changed our mind and took the option of the best precision.          mw[++mi][i]=m;
   */        if(m >=lastpass)
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */           break;
         else
   agelim=AGESUP;          m++;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */      }/* end while */
     /* nhstepm age range expressed in number of stepm */      if (s[m][i] > nlstate){
     nstepm=(int) rint((agelim-age)*YEARM/stepm);         mi++;     /* Death is another wave */
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */         /* if(mi==0)  never been interviewed correctly before death */
     /* if (stepm >= YEARM) hstepm=1;*/           /* Only death is a correct wave */
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */        mw[mi][i]=m;
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      }
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);  
     gp=matrix(0,nhstepm,1,nlstate*nlstate);      wav[i]=mi;
     gm=matrix(0,nhstepm,1,nlstate*nlstate);      if(mi==0){
         nbwarn++;
     /* Computed by stepm unit matrices, product of hstepm matrices, stored        if(first==0){
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);            first=1;
          }
         if(first==1){
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
         }
     /* Computing  Variances of health expectancies */      } /* end mi==0 */
     } /* End individuals */
      for(theta=1; theta <=npar; theta++){  
       for(i=1; i<=npar; i++){     for(i=1; i<=imx; i++){
         xp[i] = x[i] + (i==theta ?delti[theta]:0);      for(mi=1; mi<wav[i];mi++){
       }        if (stepm <=0)
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            dh[mi][i]=1;
           else{
       cptj=0;          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
       for(j=1; j<= nlstate; j++){            if (agedc[i] < 2*AGESUP) {
         for(i=1; i<=nlstate; i++){              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);
           cptj=cptj+1;              if(j==0) j=1;  /* Survives at least one month after exam */
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){              else if(j<0){
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;                nberr++;
           }                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
         }                j=1; /* Temporary Dangerous patch */
       }                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
                      fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                      fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
       for(i=1; i<=npar; i++)               }
         xp[i] = x[i] - (i==theta ?delti[theta]:0);              k=k+1;
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);                if (j >= jmax){
                       jmax=j;
       cptj=0;                ijmax=i;
       for(j=1; j<= nlstate; j++){              }
         for(i=1;i<=nlstate;i++){              if (j <= jmin){
           cptj=cptj+1;                jmin=j;
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){                ijmin=i;
               }
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;              sum=sum+j;
           }              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
         }              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
       }            }
       for(j=1; j<= nlstate*nlstate; j++)          }
         for(h=0; h<=nhstepm-1; h++){          else{
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
         }  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
      }   
                k=k+1;
 /* End theta */            if (j >= jmax) {
               jmax=j;
      trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);              ijmax=i;
             }
      for(h=0; h<=nhstepm-1; h++)            else if (j <= jmin){
       for(j=1; j<=nlstate*nlstate;j++)              jmin=j;
         for(theta=1; theta <=npar; theta++)              ijmin=i;
           trgradg[h][j][theta]=gradg[h][theta][j];            }
                  /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
             /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
      for(i=1;i<=nlstate*nlstate;i++)            if(j<0){
       for(j=1;j<=nlstate*nlstate;j++)              nberr++;
         varhe[i][j][(int)age] =0.;              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
               fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
      printf("%d|",(int)age);fflush(stdout);            }
      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);            sum=sum+j;
      for(h=0;h<=nhstepm-1;h++){          }
       for(k=0;k<=nhstepm-1;k++){          jk= j/stepm;
         matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);          jl= j -jk*stepm;
         matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);          ju= j -(jk+1)*stepm;
         for(i=1;i<=nlstate*nlstate;i++)          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
           for(j=1;j<=nlstate*nlstate;j++)            if(jl==0){
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;              dh[mi][i]=jk;
       }              bh[mi][i]=0;
     }            }else{ /* We want a negative bias in order to only have interpolation ie
     /* Computing expectancies */                    * at the price of an extra matrix product in likelihood */
     for(i=1; i<=nlstate;i++)              dh[mi][i]=jk+1;
       for(j=1; j<=nlstate;j++)              bh[mi][i]=ju;
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){            }
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;          }else{
                       if(jl <= -ju){
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/              dh[mi][i]=jk;
               bh[mi][i]=jl;       /* bias is positive if real duration
         }                                   * is higher than the multiple of stepm and negative otherwise.
                                    */
     fprintf(ficreseij,"%3.0f",age );            }
     cptj=0;            else{
     for(i=1; i<=nlstate;i++)              dh[mi][i]=jk+1;
       for(j=1; j<=nlstate;j++){              bh[mi][i]=ju;
         cptj++;            }
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );            if(dh[mi][i]==0){
       }              dh[mi][i]=1; /* At least one step */
     fprintf(ficreseij,"\n");              bh[mi][i]=ju; /* At least one step */
                  /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
     free_matrix(gm,0,nhstepm,1,nlstate*nlstate);            }
     free_matrix(gp,0,nhstepm,1,nlstate*nlstate);          } /* end if mle */
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);        }
     free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);      } /* end wave */
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    }
   }    jmean=sum/k;
   printf("\n");    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
   fprintf(ficlog,"\n");    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
    }
   free_vector(xp,1,npar);  
   free_matrix(dnewm,1,nlstate*nlstate,1,npar);  /*********** Tricode ****************************/
   free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);  void tricode(int *Tvar, int **nbcode, int imx)
   free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);  {
 }   
     int Ndum[20],ij=1, k, j, i, maxncov=19;
 /************ Variance ******************/    int cptcode=0;
 void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav)    cptcoveff=0;
 {   
   /* Variance of health expectancies */    for (k=0; k<maxncov; k++) Ndum[k]=0;
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    for (k=1; k<=7; k++) ncodemax[k]=0;
   /* double **newm;*/  
   double **dnewm,**doldm;    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
   double **dnewmp,**doldmp;      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum
   int i, j, nhstepm, hstepm, h, nstepm ;                                 modality*/
   int k, cptcode;        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
   double *xp;        Ndum[ij]++; /*store the modality */
   double **gp, **gm;  /* for var eij */        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
   double ***gradg, ***trgradg; /*for var eij */        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable
   double **gradgp, **trgradgp; /* for var p point j */                                         Tvar[j]. If V=sex and male is 0 and
   double *gpp, *gmp; /* for var p point j */                                         female is 1, then  cptcode=1.*/
   double **varppt; /* for var p point j nlstate to nlstate+ndeath */      }
   double ***p3mat;  
   double age,agelim, hf;      for (i=0; i<=cptcode; i++) {
   double ***mobaverage;        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
   int theta;      }
   char digit[4];  
   char digitp[25];      ij=1;
       for (i=1; i<=ncodemax[j]; i++) {
   char fileresprobmorprev[FILENAMELENGTH];        for (k=0; k<= maxncov; k++) {
           if (Ndum[k] != 0) {
   if(popbased==1){            nbcode[Tvar[j]][ij]=k;
     if(mobilav!=0)            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
       strcpy(digitp,"-populbased-mobilav-");           
     else strcpy(digitp,"-populbased-nomobil-");            ij++;
   }          }
   else           if (ij > ncodemax[j]) break;
     strcpy(digitp,"-stablbased-");        }  
       }
   if (mobilav!=0) {    }  
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
     if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){   for (k=0; k< maxncov; k++) Ndum[k]=0;
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);  
       printf(" Error in movingaverage mobilav=%d\n",mobilav);   for (i=1; i<=ncovmodel-2; i++) {
     }     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
   }     ij=Tvar[i];
      Ndum[ij]++;
   strcpy(fileresprobmorprev,"prmorprev");    }
   sprintf(digit,"%-d",ij);  
   /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/   ij=1;
   strcat(fileresprobmorprev,digit); /* Tvar to be done */   for (i=1; i<= maxncov; i++) {
   strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */     if((Ndum[i]!=0) && (i<=ncovcol)){
   strcat(fileresprobmorprev,fileres);       Tvaraff[ij]=i; /*For printing */
   if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {       ij++;
     printf("Problem with resultfile: %s\n", fileresprobmorprev);     }
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);   }
   }   
   printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);   cptcoveff=ij-1; /*Number of simple covariates*/
   fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);  }
   fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);  
   fprintf(ficresprobmorprev,"# Age cov=%-d",ij);  /*********** Health Expectancies ****************/
   for(j=nlstate+1; j<=(nlstate+ndeath);j++){  
     fprintf(ficresprobmorprev," p.%-d SE",j);  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
     for(i=1; i<=nlstate;i++)  
       fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);  {
   }      /* Health expectancies, no variances */
   fprintf(ficresprobmorprev,"\n");    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;
   fprintf(ficgp,"\n# Routine varevsij");    double age, agelim, hf;
   fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");    double ***p3mat;
   fprintf(fichtm,"\n<br>%s  <br>\n",digitp);    double eip;
 /*   } */  
   varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);    pstamp(ficreseij);
     fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");    fprintf(ficreseij,"# Age");
   fprintf(ficresvij,"# Age");    for(i=1; i<=nlstate;i++){
   for(i=1; i<=nlstate;i++)      for(j=1; j<=nlstate;j++){
     for(j=1; j<=nlstate;j++)        fprintf(ficreseij," e%1d%1d ",i,j);
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);      }
   fprintf(ficresvij,"\n");      fprintf(ficreseij," e%1d. ",i);
     }
   xp=vector(1,npar);    fprintf(ficreseij,"\n");
   dnewm=matrix(1,nlstate,1,npar);  
   doldm=matrix(1,nlstate,1,nlstate);   
   dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);    if(estepm < stepm){
   doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);      printf ("Problem %d lower than %d\n",estepm, stepm);
     }
   gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);    else  hstepm=estepm;  
   gpp=vector(nlstate+1,nlstate+ndeath);    /* We compute the life expectancy from trapezoids spaced every estepm months
   gmp=vector(nlstate+1,nlstate+ndeath);     * This is mainly to measure the difference between two models: for example
   trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/     * if stepm=24 months pijx are given only every 2 years and by summing them
        * we are calculating an estimate of the Life Expectancy assuming a linear
   if(estepm < stepm){     * progression in between and thus overestimating or underestimating according
     printf ("Problem %d lower than %d\n",estepm, stepm);     * to the curvature of the survival function. If, for the same date, we
   }     * estimate the model with stepm=1 month, we can keep estepm to 24 months
   else  hstepm=estepm;        * to compare the new estimate of Life expectancy with the same linear
   /* For example we decided to compute the life expectancy with the smallest unit */     * hypothesis. A more precise result, taking into account a more precise
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.      * curvature will be obtained if estepm is as small as stepm. */
      nhstepm is the number of hstepm from age to agelim   
      nstepm is the number of stepm from age to agelin.     /* For example we decided to compute the life expectancy with the smallest unit */
      Look at hpijx to understand the reason of that which relies in memory size    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.
      and note for a fixed period like k years */       nhstepm is the number of hstepm from age to agelim
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the       nstepm is the number of stepm from age to agelin.
      survival function given by stepm (the optimization length). Unfortunately it       Look at hpijx to understand the reason of that which relies in memory size
      means that if the survival funtion is printed every two years of age and if       and note for a fixed period like estepm months */
      you sum them up and add 1 year (area under the trapezoids) you won't get the same     /* We decided (b) to get a life expectancy respecting the most precise curvature of the
      results. So we changed our mind and took the option of the best precision.       survival function given by stepm (the optimization length). Unfortunately it
   */       means that if the survival funtion is printed only each two years of age and if
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */        you sum them up and add 1 year (area under the trapezoids) you won't get the same
   agelim = AGESUP;       results. So we changed our mind and took the option of the best precision.
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    */
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */     hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */  
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    agelim=AGESUP;
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);    /* If stepm=6 months */
     gp=matrix(0,nhstepm,1,nlstate);      /* Computed by stepm unit matrices, product of hstepm matrices, stored
     gm=matrix(0,nhstepm,1,nlstate);         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
      
   /* nhstepm age range expressed in number of stepm */
     for(theta=1; theta <=npar; theta++){    nstepm=(int) rint((agelim-bage)*YEARM/stepm);
       for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/    /* Typically if 20 years nstepm = 20*12/6=40 stepm */
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    /* if (stepm >= YEARM) hstepm=1;*/
       }    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  
     for (age=bage; age<=fage; age ++){
       if (popbased==1) {  
         if(mobilav ==0){  
           for(i=1; i<=nlstate;i++)      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
             prlim[i][i]=probs[(int)age][i][ij];     
         }else{ /* mobilav */       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
           for(i=1; i<=nlstate;i++)     
             prlim[i][i]=mobaverage[(int)age][i][ij];      printf("%d|",(int)age);fflush(stdout);
         }      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
       }     
     
       for(j=1; j<= nlstate; j++){      /* Computing expectancies */
         for(h=0; h<=nhstepm; h++){      for(i=1; i<=nlstate;i++)
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)        for(j=1; j<=nlstate;j++)
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
         }            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
       }           
       /* This for computing probability of death (h=1 means            /*if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
          computed over hstepm matrices product = hstepm*stepm months)   
          as a weighted average of prlim.          }
       */     
       for(j=nlstate+1;j<=nlstate+ndeath;j++){      fprintf(ficreseij,"%3.0f",age );
         for(i=1,gpp[j]=0.; i<= nlstate; i++)      for(i=1; i<=nlstate;i++){
           gpp[j] += prlim[i][i]*p3mat[i][j][1];        eip=0;
       }            for(j=1; j<=nlstate;j++){
       /* end probability of death */          eip +=eij[i][j][(int)age];
           fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
       for(i=1; i<=npar; i++) /* Computes gradient x - delta */        }
         xp[i] = x[i] - (i==theta ?delti[theta]:0);        fprintf(ficreseij,"%9.4f", eip );
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        }
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      fprintf(ficreseij,"\n");
       
       if (popbased==1) {    }
         if(mobilav ==0){    free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           for(i=1; i<=nlstate;i++)    printf("\n");
             prlim[i][i]=probs[(int)age][i][ij];    fprintf(ficlog,"\n");
         }else{ /* mobilav */    
           for(i=1; i<=nlstate;i++)  }
             prlim[i][i]=mobaverage[(int)age][i][ij];  
         }  void cvevsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
       }  
   {
       for(j=1; j<= nlstate; j++){    /* Covariances of health expectancies eij and of total life expectancies according
         for(h=0; h<=nhstepm; h++){     to initial status i, ei. .
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)    */
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
         }    double age, agelim, hf;
       }    double ***p3matp, ***p3matm, ***varhe;
       /* This for computing probability of death (h=1 means    double **dnewm,**doldm;
          computed over hstepm matrices product = hstepm*stepm months)     double *xp, *xm;
          as a weighted average of prlim.    double **gp, **gm;
       */    double ***gradg, ***trgradg;
       for(j=nlstate+1;j<=nlstate+ndeath;j++){    int theta;
         for(i=1,gmp[j]=0.; i<= nlstate; i++)  
          gmp[j] += prlim[i][i]*p3mat[i][j][1];    double eip, vip;
       }      
       /* end probability of death */    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
     xp=vector(1,npar);
       for(j=1; j<= nlstate; j++) /* vareij */    xm=vector(1,npar);
         for(h=0; h<=nhstepm; h++){    dnewm=matrix(1,nlstate*nlstate,1,npar);
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
         }   
     pstamp(ficresstdeij);
       for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */    fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
         gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];    fprintf(ficresstdeij,"# Age");
       }    for(i=1; i<=nlstate;i++){
       for(j=1; j<=nlstate;j++)
     } /* End theta */        fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
       fprintf(ficresstdeij," e%1d. ",i);
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */    }
     fprintf(ficresstdeij,"\n");
     for(h=0; h<=nhstepm; h++) /* veij */  
       for(j=1; j<=nlstate;j++)    pstamp(ficrescveij);
         for(theta=1; theta <=npar; theta++)    fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
           trgradg[h][j][theta]=gradg[h][theta][j];    fprintf(ficrescveij,"# Age");
     for(i=1; i<=nlstate;i++)
     for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */      for(j=1; j<=nlstate;j++){
       for(theta=1; theta <=npar; theta++)        cptj= (j-1)*nlstate+i;
         trgradgp[j][theta]=gradgp[theta][j];        for(i2=1; i2<=nlstate;i2++)
             for(j2=1; j2<=nlstate;j2++){
             cptj2= (j2-1)*nlstate+i2;
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */            if(cptj2 <= cptj)
     for(i=1;i<=nlstate;i++)              fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
       for(j=1;j<=nlstate;j++)          }
         vareij[i][j][(int)age] =0.;      }
     fprintf(ficrescveij,"\n");
     for(h=0;h<=nhstepm;h++){   
       for(k=0;k<=nhstepm;k++){    if(estepm < stepm){
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);      printf ("Problem %d lower than %d\n",estepm, stepm);
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);    }
         for(i=1;i<=nlstate;i++)    else  hstepm=estepm;  
           for(j=1;j<=nlstate;j++)    /* We compute the life expectancy from trapezoids spaced every estepm months
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;     * This is mainly to measure the difference between two models: for example
       }     * if stepm=24 months pijx are given only every 2 years and by summing them
     }     * we are calculating an estimate of the Life Expectancy assuming a linear
        * progression in between and thus overestimating or underestimating according
     /* pptj */     * to the curvature of the survival function. If, for the same date, we
     matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);     * estimate the model with stepm=1 month, we can keep estepm to 24 months
     matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);     * to compare the new estimate of Life expectancy with the same linear
     for(j=nlstate+1;j<=nlstate+ndeath;j++)     * hypothesis. A more precise result, taking into account a more precise
       for(i=nlstate+1;i<=nlstate+ndeath;i++)     * curvature will be obtained if estepm is as small as stepm. */
         varppt[j][i]=doldmp[j][i];  
     /* end ppptj */    /* For example we decided to compute the life expectancy with the smallest unit */
     /*  x centered again */    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);         nhstepm is the number of hstepm from age to agelim
     prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);       nstepm is the number of stepm from age to agelin.
         Look at hpijx to understand the reason of that which relies in memory size
     if (popbased==1) {       and note for a fixed period like estepm months */
       if(mobilav ==0){    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
         for(i=1; i<=nlstate;i++)       survival function given by stepm (the optimization length). Unfortunately it
           prlim[i][i]=probs[(int)age][i][ij];       means that if the survival funtion is printed only each two years of age and if
       }else{ /* mobilav */        you sum them up and add 1 year (area under the trapezoids) you won't get the same
         for(i=1; i<=nlstate;i++)       results. So we changed our mind and took the option of the best precision.
           prlim[i][i]=mobaverage[(int)age][i][ij];    */
       }    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */
     }  
                  /* If stepm=6 months */
     /* This for computing probability of death (h=1 means    /* nhstepm age range expressed in number of stepm */
        computed over hstepm (estepm) matrices product = hstepm*stepm months)     agelim=AGESUP;
        as a weighted average of prlim.    nstepm=(int) rint((agelim-bage)*YEARM/stepm);
     */    /* Typically if 20 years nstepm = 20*12/6=40 stepm */
     for(j=nlstate+1;j<=nlstate+ndeath;j++){    /* if (stepm >= YEARM) hstepm=1;*/
       for(i=1,gmp[j]=0.;i<= nlstate; i++)     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
         gmp[j] += prlim[i][i]*p3mat[i][j][1];    
     }        p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     /* end probability of death */    p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
     fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);    trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){    gp=matrix(0,nhstepm,1,nlstate*nlstate);
       fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));    gm=matrix(0,nhstepm,1,nlstate*nlstate);
       for(i=1; i<=nlstate;i++){  
         fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);    for (age=bage; age<=fage; age ++){
       }  
     }       /* Computed by stepm unit matrices, product of hstepm matrices, stored
     fprintf(ficresprobmorprev,"\n");         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
    
     fprintf(ficresvij,"%.0f ",age );      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
     for(i=1; i<=nlstate;i++)  
       for(j=1; j<=nlstate;j++){      /* Computing  Variances of health expectancies */
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);      /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
       }         decrease memory allocation */
     fprintf(ficresvij,"\n");      for(theta=1; theta <=npar; theta++){
     free_matrix(gp,0,nhstepm,1,nlstate);        for(i=1; i<=npar; i++){
     free_matrix(gm,0,nhstepm,1,nlstate);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);          xm[i] = x[i] - (i==theta ?delti[theta]:0);
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);        }
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
   } /* End age */        hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
   free_vector(gpp,nlstate+1,nlstate+ndeath);   
   free_vector(gmp,nlstate+1,nlstate+ndeath);        for(j=1; j<= nlstate; j++){
   free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);          for(i=1; i<=nlstate; i++){
   free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/            for(h=0; h<=nhstepm-1; h++){
   fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");              gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
   /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */              gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
   fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");            }
 /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */          }
 /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */        }
 /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */       
   fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));        for(ij=1; ij<= nlstate*nlstate; ij++)
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));          for(h=0; h<=nhstepm-1; h++){
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));            gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
   fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));          }
   fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);      }/* End theta */
   /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);     
 */     
 /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */      for(h=0; h<=nhstepm-1; h++)
   fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);        for(j=1; j<=nlstate*nlstate;j++)
           for(theta=1; theta <=npar; theta++)
   free_vector(xp,1,npar);            trgradg[h][j][theta]=gradg[h][theta][j];
   free_matrix(doldm,1,nlstate,1,nlstate);     
   free_matrix(dnewm,1,nlstate,1,npar);  
   free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);       for(ij=1;ij<=nlstate*nlstate;ij++)
   free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);        for(ji=1;ji<=nlstate*nlstate;ji++)
   free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);          varhe[ij][ji][(int)age] =0.;
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
   fclose(ficresprobmorprev);       printf("%d|",(int)age);fflush(stdout);
   fflush(ficgp);       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
   fflush(fichtm);        for(h=0;h<=nhstepm-1;h++){
 }  /* end varevsij */        for(k=0;k<=nhstepm-1;k++){
           matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
 /************ Variance of prevlim ******************/          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)          for(ij=1;ij<=nlstate*nlstate;ij++)
 {            for(ji=1;ji<=nlstate*nlstate;ji++)
   /* Variance of prevalence limit */              varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/        }
   double **newm;      }
   double **dnewm,**doldm;  
   int i, j, nhstepm, hstepm;      /* Computing expectancies */
   int k, cptcode;      hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
   double *xp;      for(i=1; i<=nlstate;i++)
   double *gp, *gm;        for(j=1; j<=nlstate;j++)
   double **gradg, **trgradg;          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
   double age,agelim;            eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
   int theta;           
                /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");  
   fprintf(ficresvpl,"# Age");          }
   for(i=1; i<=nlstate;i++)  
       fprintf(ficresvpl," %1d-%1d",i,i);      fprintf(ficresstdeij,"%3.0f",age );
   fprintf(ficresvpl,"\n");      for(i=1; i<=nlstate;i++){
         eip=0.;
   xp=vector(1,npar);        vip=0.;
   dnewm=matrix(1,nlstate,1,npar);        for(j=1; j<=nlstate;j++){
   doldm=matrix(1,nlstate,1,nlstate);          eip += eij[i][j][(int)age];
             for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
   hstepm=1*YEARM; /* Every year of age */            vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */           fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
   agelim = AGESUP;        }
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */        fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */       }
     if (stepm >= YEARM) hstepm=1;      fprintf(ficresstdeij,"\n");
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */  
     gradg=matrix(1,npar,1,nlstate);      fprintf(ficrescveij,"%3.0f",age );
     gp=vector(1,nlstate);      for(i=1; i<=nlstate;i++)
     gm=vector(1,nlstate);        for(j=1; j<=nlstate;j++){
           cptj= (j-1)*nlstate+i;
     for(theta=1; theta <=npar; theta++){          for(i2=1; i2<=nlstate;i2++)
       for(i=1; i<=npar; i++){ /* Computes gradient */            for(j2=1; j2<=nlstate;j2++){
         xp[i] = x[i] + (i==theta ?delti[theta]:0);              cptj2= (j2-1)*nlstate+i2;
       }              if(cptj2 <= cptj)
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);                fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
       for(i=1;i<=nlstate;i++)            }
         gp[i] = prlim[i][i];        }
           fprintf(ficrescveij,"\n");
       for(i=1; i<=npar; i++) /* Computes gradient */     
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    }
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
       for(i=1;i<=nlstate;i++)    free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
         gm[i] = prlim[i][i];    free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
     free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
       for(i=1;i<=nlstate;i++)    free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];    free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     } /* End theta */    printf("\n");
     fprintf(ficlog,"\n");
     trgradg =matrix(1,nlstate,1,npar);  
     free_vector(xm,1,npar);
     for(j=1; j<=nlstate;j++)    free_vector(xp,1,npar);
       for(theta=1; theta <=npar; theta++)    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
         trgradg[j][theta]=gradg[theta][j];    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
     free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
     for(i=1;i<=nlstate;i++)  }
       varpl[i][(int)age] =0.;  
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);  /************ Variance ******************/
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
     for(i=1;i<=nlstate;i++)  {
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */    /* Variance of health expectancies */
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
     fprintf(ficresvpl,"%.0f ",age );    /* double **newm;*/
     for(i=1; i<=nlstate;i++)    double **dnewm,**doldm;
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));    double **dnewmp,**doldmp;
     fprintf(ficresvpl,"\n");    int i, j, nhstepm, hstepm, h, nstepm ;
     free_vector(gp,1,nlstate);    int k, cptcode;
     free_vector(gm,1,nlstate);    double *xp;
     free_matrix(gradg,1,npar,1,nlstate);    double **gp, **gm;  /* for var eij */
     free_matrix(trgradg,1,nlstate,1,npar);    double ***gradg, ***trgradg; /*for var eij */
   } /* End age */    double **gradgp, **trgradgp; /* for var p point j */
     double *gpp, *gmp; /* for var p point j */
   free_vector(xp,1,npar);    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
   free_matrix(doldm,1,nlstate,1,npar);    double ***p3mat;
   free_matrix(dnewm,1,nlstate,1,nlstate);    double age,agelim, hf;
     double ***mobaverage;
 }    int theta;
     char digit[4];
 /************ Variance of one-step probabilities  ******************/    char digitp[25];
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)  
 {    char fileresprobmorprev[FILENAMELENGTH];
   int i, j=0,  i1, k1, l1, t, tj;  
   int k2, l2, j1,  z1;    if(popbased==1){
   int k=0,l, cptcode;      if(mobilav!=0)
   int first=1, first1;        strcpy(digitp,"-populbased-mobilav-");
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;      else strcpy(digitp,"-populbased-nomobil-");
   double **dnewm,**doldm;    }
   double *xp;    else
   double *gp, *gm;      strcpy(digitp,"-stablbased-");
   double **gradg, **trgradg;  
   double **mu;    if (mobilav!=0) {
   double age,agelim, cov[NCOVMAX];      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
   int theta;        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
   char fileresprob[FILENAMELENGTH];        printf(" Error in movingaverage mobilav=%d\n",mobilav);
   char fileresprobcov[FILENAMELENGTH];      }
   char fileresprobcor[FILENAMELENGTH];    }
   
   double ***varpij;    strcpy(fileresprobmorprev,"prmorprev");
     sprintf(digit,"%-d",ij);
   strcpy(fileresprob,"prob");     /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
   strcat(fileresprob,fileres);    strcat(fileresprobmorprev,digit); /* Tvar to be done */
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
     printf("Problem with resultfile: %s\n", fileresprob);    strcat(fileresprobmorprev,fileres);
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
   }      printf("Problem with resultfile: %s\n", fileresprobmorprev);
   strcpy(fileresprobcov,"probcov");       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
   strcat(fileresprobcov,fileres);    }
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     printf("Problem with resultfile: %s\n", fileresprobcov);   
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   }    pstamp(ficresprobmorprev);
   strcpy(fileresprobcor,"probcor");     fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
   strcat(fileresprobcor,fileres);    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
     printf("Problem with resultfile: %s\n", fileresprobcor);      fprintf(ficresprobmorprev," p.%-d SE",j);
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);      for(i=1; i<=nlstate;i++)
   }        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);    }  
   fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);    fprintf(ficresprobmorprev,"\n");
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);    fprintf(ficgp,"\n# Routine varevsij");
   fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
   fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
     /*   } */
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   fprintf(ficresprob,"# Age");    pstamp(ficresvij);
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
   fprintf(ficresprobcov,"# Age");    if(popbased==1)
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");      fprintf(ficresvij,"the age specific prevalence observed in the population i.e cross-sectionally\n in each health state (popbased=1)");
   fprintf(ficresprobcov,"# Age");    else
       fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
     fprintf(ficresvij,"# Age");
   for(i=1; i<=nlstate;i++)    for(i=1; i<=nlstate;i++)
     for(j=1; j<=(nlstate+ndeath);j++){      for(j=1; j<=nlstate;j++)
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);        fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
       fprintf(ficresprobcov," p%1d-%1d ",i,j);    fprintf(ficresvij,"\n");
       fprintf(ficresprobcor," p%1d-%1d ",i,j);  
     }      xp=vector(1,npar);
  /* fprintf(ficresprob,"\n");    dnewm=matrix(1,nlstate,1,npar);
   fprintf(ficresprobcov,"\n");    doldm=matrix(1,nlstate,1,nlstate);
   fprintf(ficresprobcor,"\n");    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
  */    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
  xp=vector(1,npar);  
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));    gpp=vector(nlstate+1,nlstate+ndeath);
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);    gmp=vector(nlstate+1,nlstate+ndeath);
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
   first=1;   
   fprintf(ficgp,"\n# Routine varprob");    if(estepm < stepm){
   fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");      printf ("Problem %d lower than %d\n",estepm, stepm);
   fprintf(fichtm,"\n");    }
     else  hstepm=estepm;  
   fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);    /* For example we decided to compute the life expectancy with the smallest unit */
   fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.
   file %s<br>\n",optionfilehtmcov);       nhstepm is the number of hstepm from age to agelim
   fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\       nstepm is the number of stepm from age to agelin.
 and drawn. It helps understanding how is the covariance between two incidences.\       Look at hpijx to understand the reason of that which relies in memory size
  They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");       and note for a fixed period like k years */
   fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
 It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \       survival function given by stepm (the optimization length). Unfortunately it
 would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \       means that if the survival funtion is printed every two years of age and if
 standard deviations wide on each axis. <br>\       you sum them up and add 1 year (area under the trapezoids) you won't get the same
  Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\       results. So we changed our mind and took the option of the best precision.
  and made the appropriate rotation to look at the uncorrelated principal directions.<br>\    */
 To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */
     agelim = AGESUP;
   cov[1]=1;    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   tj=cptcoveff;      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */
   if (cptcovn<1) {tj=1;ncodemax[1]=1;}      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   j1=0;      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   for(t=1; t<=tj;t++){      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
     for(i1=1; i1<=ncodemax[t];i1++){       gp=matrix(0,nhstepm,1,nlstate);
       j1++;      gm=matrix(0,nhstepm,1,nlstate);
       if  (cptcovn>0) {  
         fprintf(ficresprob, "\n#********** Variable ");   
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);      for(theta=1; theta <=npar; theta++){
         fprintf(ficresprob, "**********\n#\n");        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
         fprintf(ficresprobcov, "\n#********** Variable ");           xp[i] = x[i] + (i==theta ?delti[theta]:0);
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        }
         fprintf(ficresprobcov, "**********\n#\n");        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
                 prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         fprintf(ficgp, "\n#********** Variable ");   
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        if (popbased==1) {
         fprintf(ficgp, "**********\n#\n");          if(mobilav ==0){
                     for(i=1; i<=nlstate;i++)
                       prlim[i][i]=probs[(int)age][i][ij];
         fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable ");           }else{ /* mobilav */
         for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);            for(i=1; i<=nlstate;i++)
         fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");              prlim[i][i]=mobaverage[(int)age][i][ij];
                   }
         fprintf(ficresprobcor, "\n#********** Variable ");            }
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);   
         fprintf(ficresprobcor, "**********\n#");            for(j=1; j<= nlstate; j++){
       }          for(h=0; h<=nhstepm; h++){
                   for(i=1, gp[h][j]=0.;i<=nlstate;i++)
       for (age=bage; age<=fage; age ++){               gp[h][j] += prlim[i][i]*p3mat[i][j][h];
         cov[2]=age;          }
         for (k=1; k<=cptcovn;k++) {        }
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];        /* This for computing probability of death (h=1 means
         }           computed over hstepm matrices product = hstepm*stepm months)
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];           as a weighted average of prlim.
         for (k=1; k<=cptcovprod;k++)        */
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];        for(j=nlstate+1;j<=nlstate+ndeath;j++){
                   for(i=1,gpp[j]=0.; i<= nlstate; i++)
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));            gpp[j] += prlim[i][i]*p3mat[i][j][1];
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);        }    
         gp=vector(1,(nlstate)*(nlstate+ndeath));        /* end probability of death */
         gm=vector(1,(nlstate)*(nlstate+ndeath));  
             for(i=1; i<=npar; i++) /* Computes gradient x - delta */
         for(theta=1; theta <=npar; theta++){          xp[i] = x[i] - (i==theta ?delti[theta]:0);
           for(i=1; i<=npar; i++)        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
             xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
              
           pmij(pmmij,cov,ncovmodel,xp,nlstate);        if (popbased==1) {
                     if(mobilav ==0){
           k=0;            for(i=1; i<=nlstate;i++)
           for(i=1; i<= (nlstate); i++){              prlim[i][i]=probs[(int)age][i][ij];
             for(j=1; j<=(nlstate+ndeath);j++){          }else{ /* mobilav */
               k=k+1;            for(i=1; i<=nlstate;i++)
               gp[k]=pmmij[i][j];              prlim[i][i]=mobaverage[(int)age][i][ij];
             }          }
           }        }
             
           for(i=1; i<=npar; i++)        for(j=1; j<= nlstate; j++){
             xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);          for(h=0; h<=nhstepm; h++){
                 for(i=1, gm[h][j]=0.;i<=nlstate;i++)
           pmij(pmmij,cov,ncovmodel,xp,nlstate);              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
           k=0;          }
           for(i=1; i<=(nlstate); i++){        }
             for(j=1; j<=(nlstate+ndeath);j++){        /* This for computing probability of death (h=1 means
               k=k+1;           computed over hstepm matrices product = hstepm*stepm months)
               gm[k]=pmmij[i][j];           as a weighted average of prlim.
             }        */
           }        for(j=nlstate+1;j<=nlstate+ndeath;j++){
                for(i=1,gmp[j]=0.; i<= nlstate; i++)
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)            gmp[j] += prlim[i][i]*p3mat[i][j][1];
             gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];          }    
         }        /* end probability of death */
   
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)        for(j=1; j<= nlstate; j++) /* vareij */
           for(theta=1; theta <=npar; theta++)          for(h=0; h<=nhstepm; h++){
             trgradg[j][theta]=gradg[theta][j];            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
                   }
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);   
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
         free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
         free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));        }
         free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);  
         free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);      } /* End theta */
   
         pmij(pmmij,cov,ncovmodel,x,nlstate);      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
           
         k=0;      for(h=0; h<=nhstepm; h++) /* veij */
         for(i=1; i<=(nlstate); i++){        for(j=1; j<=nlstate;j++)
           for(j=1; j<=(nlstate+ndeath);j++){          for(theta=1; theta <=npar; theta++)
             k=k+1;            trgradg[h][j][theta]=gradg[h][theta][j];
             mu[k][(int) age]=pmmij[i][j];  
           }      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
         }        for(theta=1; theta <=npar; theta++)
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)          trgradgp[j][theta]=gradgp[theta][j];
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)   
             varpij[i][j][(int)age] = doldm[i][j];  
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
         /*printf("\n%d ",(int)age);      for(i=1;i<=nlstate;i++)
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){        for(j=1;j<=nlstate;j++)
           printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));          vareij[i][j][(int)age] =0.;
           fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));  
           }*/      for(h=0;h<=nhstepm;h++){
         for(k=0;k<=nhstepm;k++){
         fprintf(ficresprob,"\n%d ",(int)age);          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
         fprintf(ficresprobcov,"\n%d ",(int)age);          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
         fprintf(ficresprobcor,"\n%d ",(int)age);          for(i=1;i<=nlstate;i++)
             for(j=1;j<=nlstate;j++)
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));        }
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){      }
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);   
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);      /* pptj */
         }      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
         i=0;      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
         for (k=1; k<=(nlstate);k++){      for(j=nlstate+1;j<=nlstate+ndeath;j++)
           for (l=1; l<=(nlstate+ndeath);l++){         for(i=nlstate+1;i<=nlstate+ndeath;i++)
             i=i++;          varppt[j][i]=doldmp[j][i];
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);      /* end ppptj */
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);      /*  x centered again */
             for (j=1; j<=i;j++){      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));   
             }      if (popbased==1) {
           }        if(mobilav ==0){
         }/* end of loop for state */          for(i=1; i<=nlstate;i++)
       } /* end of loop for age */            prlim[i][i]=probs[(int)age][i][ij];
         }else{ /* mobilav */
       /* Confidence intervalle of pij  */          for(i=1; i<=nlstate;i++)
       /*            prlim[i][i]=mobaverage[(int)age][i][ij];
         fprintf(ficgp,"\nset noparametric;unset label");        }
         fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");      }
         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");               
         fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);      /* This for computing probability of death (h=1 means
         fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);         computed over hstepm (estepm) matrices product = hstepm*stepm months)
         fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);         as a weighted average of prlim.
         fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);      */
       */      for(j=nlstate+1;j<=nlstate+ndeath;j++){
         for(i=1,gmp[j]=0.;i<= nlstate; i++)
       /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/          gmp[j] += prlim[i][i]*p3mat[i][j][1];
       first1=1;      }    
       for (k2=1; k2<=(nlstate);k2++){      /* end probability of death */
         for (l2=1; l2<=(nlstate+ndeath);l2++){   
           if(l2==k2) continue;      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
           j=(k2-1)*(nlstate+ndeath)+l2;      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
           for (k1=1; k1<=(nlstate);k1++){        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
             for (l1=1; l1<=(nlstate+ndeath);l1++){         for(i=1; i<=nlstate;i++){
               if(l1==k1) continue;          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
               i=(k1-1)*(nlstate+ndeath)+l1;        }
               if(i<=j) continue;      }
               for (age=bage; age<=fage; age ++){       fprintf(ficresprobmorprev,"\n");
                 if ((int)age %5==0){  
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;      fprintf(ficresvij,"%.0f ",age );
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;      for(i=1; i<=nlstate;i++)
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;        for(j=1; j<=nlstate;j++){
                   mu1=mu[i][(int) age]/stepm*YEARM ;          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
                   mu2=mu[j][(int) age]/stepm*YEARM;        }
                   c12=cv12/sqrt(v1*v2);      fprintf(ficresvij,"\n");
                   /* Computing eigen value of matrix of covariance */      free_matrix(gp,0,nhstepm,1,nlstate);
                   lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;      free_matrix(gm,0,nhstepm,1,nlstate);
                   lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
                   /* Eigen vectors */      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                   /*v21=sqrt(1.-v11*v11); *//* error */    } /* End age */
                   v21=(lc1-v1)/cv12*v11;    free_vector(gpp,nlstate+1,nlstate+ndeath);
                   v12=-v21;    free_vector(gmp,nlstate+1,nlstate+ndeath);
                   v22=v11;    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
                   tnalp=v21/v11;    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
                   if(first1==1){    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
                     first1=0;    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
                     printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
                   }  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
                   fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
                   /*printf(fignu*/  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
                   /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
                   if(first==1){    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
                     first=0;    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
                     fprintf(ficgp,"\nset parametric;unset label");    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
                     fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");  */
                     fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
  :<a href=\"%s%d%1d%1d-%1d%1d.png\">\    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
 %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\  
                             subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\    free_vector(xp,1,npar);
                             subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);    free_matrix(doldm,1,nlstate,1,nlstate);
                     fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);    free_matrix(dnewm,1,nlstate,1,npar);
                     fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
                     fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\    fclose(ficresprobmorprev);
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\    fflush(ficgp);
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));    fflush(fichtm);
                   }else{  }  /* end varevsij */
                     first=0;  
                     fprintf(fichtmcov," %d (%.3f),",(int) age, c12);  /************ Variance of prevlim ******************/
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);  {
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\    /* Variance of prevalence limit */
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));    double **newm;
                   }/* if first */    double **dnewm,**doldm;
                 } /* age mod 5 */    int i, j, nhstepm, hstepm;
               } /* end loop age */    int k, cptcode;
               fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);    double *xp;
               first=1;    double *gp, *gm;
             } /*l12 */    double **gradg, **trgradg;
           } /* k12 */    double age,agelim;
         } /*l1 */    int theta;
       }/* k1 */   
     } /* loop covariates */    pstamp(ficresvpl);
   }    fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
   free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);    fprintf(ficresvpl,"# Age");
   free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);    for(i=1; i<=nlstate;i++)
   free_vector(xp,1,npar);        fprintf(ficresvpl," %1d-%1d",i,i);
   fclose(ficresprob);    fprintf(ficresvpl,"\n");
   fclose(ficresprobcov);  
   fclose(ficresprobcor);    xp=vector(1,npar);
   fflush(ficgp);    dnewm=matrix(1,nlstate,1,npar);
   fflush(fichtmcov);    doldm=matrix(1,nlstate,1,nlstate);
 }   
     hstepm=1*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */
 /******************* Printing html file ***********/    agelim = AGESUP;
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
                   int lastpass, int stepm, int weightopt, char model[],\      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\      if (stepm >= YEARM) hstepm=1;
                   int popforecast, int estepm ,\      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
                   double jprev1, double mprev1,double anprev1, \      gradg=matrix(1,npar,1,nlstate);
                   double jprev2, double mprev2,double anprev2){      gp=vector(1,nlstate);
   int jj1, k1, i1, cpt;      gm=vector(1,nlstate);
   
    fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n \      for(theta=1; theta <=npar; theta++){
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",        for(i=1; i<=npar; i++){ /* Computes gradient */
            jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));          xp[i] = x[i] + (i==theta ?delti[theta]:0);
    fprintf(fichtm,"\        }
  - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
            stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));        for(i=1;i<=nlstate;i++)
    fprintf(fichtm,"\          gp[i] = prlim[i][i];
  - Stable prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",     
            subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));        for(i=1; i<=npar; i++) /* Computes gradient */
    fprintf(fichtm,"\          xp[i] = x[i] - (i==theta ?delti[theta]:0);
  - Life expectancies by age and initial health status (estepm=%2d months): \        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
    <a href=\"%s\">%s</a> <br>\n</li>",        for(i=1;i<=nlstate;i++)
            estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));          gm[i] = prlim[i][i];
   
 fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");        for(i=1;i<=nlstate;i++)
           gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
  m=cptcoveff;      } /* End theta */
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}  
       trgradg =matrix(1,nlstate,1,npar);
  jj1=0;  
  for(k1=1; k1<=m;k1++){      for(j=1; j<=nlstate;j++)
    for(i1=1; i1<=ncodemax[k1];i1++){        for(theta=1; theta <=npar; theta++)
      jj1++;          trgradg[j][theta]=gradg[theta][j];
      if (cptcovn > 0) {  
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");      for(i=1;i<=nlstate;i++)
        for (cpt=1; cpt<=cptcoveff;cpt++)         varpl[i][(int)age] =0.;
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
      }      for(i=1;i<=nlstate;i++)
      /* Pij */        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: %s%d1.png<br> \  
 <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);           fprintf(ficresvpl,"%.0f ",age );
      /* Quasi-incidences */      for(i=1; i<=nlstate;i++)
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
  before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: %s%d2.png<br> \      fprintf(ficresvpl,"\n");
 <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);       free_vector(gp,1,nlstate);
        /* Stable prevalence in each health state */      free_vector(gm,1,nlstate);
        for(cpt=1; cpt<nlstate;cpt++){      free_matrix(gradg,1,npar,1,nlstate);
          fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \      free_matrix(trgradg,1,nlstate,1,npar);
 <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);    } /* End age */
        }  
      for(cpt=1; cpt<=nlstate;cpt++) {    free_vector(xp,1,npar);
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): %s%d%d.png <br> \    free_matrix(doldm,1,nlstate,1,npar);
 <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);    free_matrix(dnewm,1,nlstate,1,nlstate);
      }  
    } /* end i1 */  }
  }/* End k1 */  
  fprintf(fichtm,"</ul>");  /************ Variance of one-step probabilities  ******************/
   void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
   {
  fprintf(fichtm,"\    int i, j=0,  i1, k1, l1, t, tj;
 \n<br><li><h4> Result files (second order: variances)</h4>\n\    int k2, l2, j1,  z1;
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);    int k=0,l, cptcode;
     int first=1, first1;
  fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
          subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));    double **dnewm,**doldm;
  fprintf(fichtm,"\    double *xp;
  - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",    double *gp, *gm;
          subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));    double **gradg, **trgradg;
     double **mu;
  fprintf(fichtm,"\    double age,agelim, cov[NCOVMAX];
  - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
          subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));    int theta;
  fprintf(fichtm,"\    char fileresprob[FILENAMELENGTH];
  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"%s\">%s</a><br>\n",    char fileresprobcov[FILENAMELENGTH];
          estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));    char fileresprobcor[FILENAMELENGTH];
  fprintf(fichtm,"\  
  - Health expectancies with their variances (no covariance): <a href=\"%s\">%s</a> <br>\n",    double ***varpij;
          subdirf2(fileres,"t"),subdirf2(fileres,"t"));  
  fprintf(fichtm,"\    strcpy(fileresprob,"prob");
  - Standard deviation of stable prevalences: <a href=\"%s\">%s</a> <br>\n",\    strcat(fileresprob,fileres);
          subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprob);
 /*  if(popforecast==1) fprintf(fichtm,"\n */      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
 /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */    }
 /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */    strcpy(fileresprobcov,"probcov");
 /*      <br>",fileres,fileres,fileres,fileres); */    strcat(fileresprobcov,fileres);
 /*  else  */    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
 /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */      printf("Problem with resultfile: %s\n", fileresprobcov);
  fflush(fichtm);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
  fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");    }
     strcpy(fileresprobcor,"probcor");
  m=cptcoveff;    strcat(fileresprobcor,fileres);
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcor);
  jj1=0;      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
  for(k1=1; k1<=m;k1++){    }
    for(i1=1; i1<=ncodemax[k1];i1++){    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
      jj1++;    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
      if (cptcovn > 0) {    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
        for (cpt=1; cpt<=cptcoveff;cpt++)     printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");    pstamp(ficresprob);
      }    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
      for(cpt=1; cpt<=nlstate;cpt++) {    fprintf(ficresprob,"# Age");
        fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \    pstamp(ficresprobcov);
 prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
 <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);      fprintf(ficresprobcov,"# Age");
      }    pstamp(ficresprobcor);
      fprintf(fichtm,"\n<br>- Total life expectancy by age and \    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
 health expectancies in states (1) and (2): %s%d.png<br>\    fprintf(ficresprobcor,"# Age");
 <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);  
    } /* end i1 */  
  }/* End k1 */    for(i=1; i<=nlstate;i++)
  fprintf(fichtm,"</ul>");      for(j=1; j<=(nlstate+ndeath);j++){
  fflush(fichtm);        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
 }        fprintf(ficresprobcov," p%1d-%1d ",i,j);
         fprintf(ficresprobcor," p%1d-%1d ",i,j);
 /******************* Gnuplot file **************/      }  
 void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){   /* fprintf(ficresprob,"\n");
     fprintf(ficresprobcov,"\n");
   char dirfileres[132],optfileres[132];    fprintf(ficresprobcor,"\n");
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;   */
   int ng;   xp=vector(1,npar);
 /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
 /*     printf("Problem with file %s",optionfilegnuplot); */    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
 /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
 /*   } */    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     first=1;
   /*#ifdef windows */    fprintf(ficgp,"\n# Routine varprob");
   fprintf(ficgp,"cd \"%s\" \n",pathc);    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
     /*#endif */    fprintf(fichtm,"\n");
   m=pow(2,cptcoveff);  
     fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
   strcpy(dirfileres,optionfilefiname);    fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
   strcpy(optfileres,"vpl");    file %s<br>\n",optionfilehtmcov);
  /* 1eme*/    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
   for (cpt=1; cpt<= nlstate ; cpt ++) {  and drawn. It helps understanding how is the covariance between two incidences.\
    for (k1=1; k1<= m ; k1 ++) {   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
      fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
      fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
      fprintf(ficgp,"set xlabel \"Age\" \n\  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
 set ylabel \"Probability\" \n\  standard deviations wide on each axis. <br>\
 set ter png small\n\   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
 set size 0.65,0.65\n\   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
 plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
   
      for (i=1; i<= nlstate ; i ++) {    cov[1]=1;
        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    tj=cptcoveff;
        else fprintf(ficgp," \%%*lf (\%%*lf)");    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
      }    j1=0;
      fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);    for(t=1; t<=tj;t++){
      for (i=1; i<= nlstate ; i ++) {      for(i1=1; i1<=ncodemax[t];i1++){
        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");        j1++;
        else fprintf(ficgp," \%%*lf (\%%*lf)");        if  (cptcovn>0) {
      }           fprintf(ficresprob, "\n#********** Variable ");
      fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
      for (i=1; i<= nlstate ; i ++) {          fprintf(ficresprob, "**********\n#\n");
        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");          fprintf(ficresprobcov, "\n#********** Variable ");
        else fprintf(ficgp," \%%*lf (\%%*lf)");          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
      }            fprintf(ficresprobcov, "**********\n#\n");
      fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));         
    }          fprintf(ficgp, "\n#********** Variable ");
   }          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   /*2 eme*/          fprintf(ficgp, "**********\n#\n");
            
   for (k1=1; k1<= m ; k1 ++) {          
     fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);          fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable ");
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
               fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
     for (i=1; i<= nlstate+1 ; i ++) {         
       k=2*i;          fprintf(ficresprobcor, "\n#********** Variable ");    
       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       for (j=1; j<= nlstate+1 ; j ++) {          fprintf(ficresprobcor, "**********\n#");    
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");        }
         else fprintf(ficgp," \%%*lf (\%%*lf)");       
       }           for (age=bage; age<=fage; age ++){
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");          cov[2]=age;
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);          for (k=1; k<=cptcovn;k++) {
       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
       for (j=1; j<= nlstate+1 ; j ++) {          }
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
         else fprintf(ficgp," \%%*lf (\%%*lf)");          for (k=1; k<=cptcovprod;k++)
       }               cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
       fprintf(ficgp,"\" t\"\" w l 0,");         
       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
       for (j=1; j<= nlstate+1 ; j ++) {          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");          gp=vector(1,(nlstate)*(nlstate+ndeath));
         else fprintf(ficgp," \%%*lf (\%%*lf)");          gm=vector(1,(nlstate)*(nlstate+ndeath));
       }        
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");          for(theta=1; theta <=npar; theta++){
       else fprintf(ficgp,"\" t\"\" w l 0,");            for(i=1; i<=npar; i++)
     }              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
   }           
               pmij(pmmij,cov,ncovmodel,xp,nlstate);
   /*3eme*/           
               k=0;
   for (k1=1; k1<= m ; k1 ++) {             for(i=1; i<= (nlstate); i++){
     for (cpt=1; cpt<= nlstate ; cpt ++) {              for(j=1; j<=(nlstate+ndeath);j++){
       k=2+nlstate*(2*cpt-2);                k=k+1;
       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);                gp[k]=pmmij[i][j];
       fprintf(ficgp,"set ter png small\n\              }
 set size 0.65,0.65\n\            }
 plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);           
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);            for(i=1; i<=npar; i++)
         for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
         fprintf(ficgp,"\" t \"e%d1\" w l",cpt);     
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);            pmij(pmmij,cov,ncovmodel,xp,nlstate);
         for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");            k=0;
         fprintf(ficgp,"\" t \"e%d1\" w l",cpt);            for(i=1; i<=(nlstate); i++){
                       for(j=1; j<=(nlstate+ndeath);j++){
       */                k=k+1;
       for (i=1; i< nlstate ; i ++) {                gm[k]=pmmij[i][j];
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);              }
                     }
       }        
     }            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)
   }              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
             }
   /* CV preval stable (period) */  
   for (k1=1; k1<= m ; k1 ++) {           for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
     for (cpt=1; cpt<=nlstate ; cpt ++) {            for(theta=1; theta <=npar; theta++)
       k=3;              trgradg[j][theta]=gradg[theta][j];
       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);         
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);
 set ter png small\nset size 0.65,0.65\n\          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
 unset log y\n\          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
 plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
                 free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
       for (i=1; i< nlstate ; i ++)          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
         fprintf(ficgp,"+$%d",k+i+1);  
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);          pmij(pmmij,cov,ncovmodel,x,nlstate);
                
       l=3+(nlstate+ndeath)*cpt;          k=0;
       fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);          for(i=1; i<=(nlstate); i++){
       for (i=1; i< nlstate ; i ++) {            for(j=1; j<=(nlstate+ndeath);j++){
         l=3+(nlstate+ndeath)*cpt;              k=k+1;
         fprintf(ficgp,"+$%d",l+i+1);              mu[k][(int) age]=pmmij[i][j];
       }            }
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);             }
     }           for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
   }              for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
                 varpij[i][j][(int)age] = doldm[i][j];
   /* proba elementaires */  
   for(i=1,jk=1; i <=nlstate; i++){          /*printf("\n%d ",(int)age);
     for(k=1; k <=(nlstate+ndeath); k++){            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
       if (k != i) {            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
         for(j=1; j <=ncovmodel; j++){            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);            }*/
           jk++;   
           fprintf(ficgp,"\n");          fprintf(ficresprob,"\n%d ",(int)age);
         }          fprintf(ficresprobcov,"\n%d ",(int)age);
       }          fprintf(ficresprobcor,"\n%d ",(int)age);
     }  
    }          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
             fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
      for(jk=1; jk <=m; jk++) {            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng);             fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
        if (ng==2)          }
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");          i=0;
        else          for (k=1; k<=(nlstate);k++){
          fprintf(ficgp,"\nset title \"Probability\"\n");            for (l=1; l<=(nlstate+ndeath);l++){
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);              i=i++;
        i=1;              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
        for(k2=1; k2<=nlstate; k2++) {              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
          k3=i;              for (j=1; j<=i;j++){
          for(k=1; k<=(nlstate+ndeath); k++) {                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
            if (k != k2){                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
              if(ng==2)              }
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);            }
              else          }/* end of loop for state */
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);        } /* end of loop for age */
              ij=1;  
              for(j=3; j <=ncovmodel; j++) {        /* Confidence intervalle of pij  */
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {        /*
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);          fprintf(ficgp,"\nset noparametric;unset label");
                  ij++;          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
                }          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
                else          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
              }          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
              fprintf(ficgp,")/(1");          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
                      */
              for(k1=1; k1 <=nlstate; k1++){     
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
                ij=1;        first1=1;
                for(j=3; j <=ncovmodel; j++){        for (k2=1; k2<=(nlstate);k2++){
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {          for (l2=1; l2<=(nlstate+ndeath);l2++){
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);            if(l2==k2) continue;
                    ij++;            j=(k2-1)*(nlstate+ndeath)+l2;
                  }            for (k1=1; k1<=(nlstate);k1++){
                  else              for (l1=1; l1<=(nlstate+ndeath);l1++){
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);                if(l1==k1) continue;
                }                i=(k1-1)*(nlstate+ndeath)+l1;
                fprintf(ficgp,")");                if(i<=j) continue;
              }                for (age=bage; age<=fage; age ++){
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);                  if ((int)age %5==0){
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
              i=i+ncovmodel;                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
            }                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
          } /* end k */                    mu1=mu[i][(int) age]/stepm*YEARM ;
        } /* end k2 */                    mu2=mu[j][(int) age]/stepm*YEARM;
      } /* end jk */                    c12=cv12/sqrt(v1*v2);
    } /* end ng */                    /* Computing eigen value of matrix of covariance */
    fflush(ficgp);                     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
 }  /* end gnuplot */                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     /* Eigen vectors */
                     v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
 /*************** Moving average **************/                    /*v21=sqrt(1.-v11*v11); *//* error */
 int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){                    v21=(lc1-v1)/cv12*v11;
                     v12=-v21;
   int i, cpt, cptcod;                    v22=v11;
   int modcovmax =1;                    tnalp=v21/v11;
   int mobilavrange, mob;                    if(first1==1){
   double age;                      first1=0;
                       printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
   modcovmax=2*cptcoveff;/* Max number of modalities. We suppose                     }
                            a covariate has 2 modalities */                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
   if (cptcovn<1) modcovmax=1; /* At least 1 pass */                    /*printf(fignu*/
                     /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
   if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
     if(mobilav==1) mobilavrange=5; /* default */                    if(first==1){
     else mobilavrange=mobilav;                      first=0;
     for (age=bage; age<=fage; age++)                      fprintf(ficgp,"\nset parametric;unset label");
       for (i=1; i<=nlstate;i++)                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
         for (cptcod=1;cptcod<=modcovmax;cptcod++)                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];                      fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
     /* We keep the original values on the extreme ages bage, fage and for    :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
        fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2  %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
        we use a 5 terms etc. until the borders are no more concerned.                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
     */                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
     for (mob=3;mob <=mobilavrange;mob=mob+2){                      fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
       for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){                      fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
         for (i=1; i<=nlstate;i++){                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
           for (cptcod=1;cptcod<=modcovmax;cptcod++){                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
             mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
               for (cpt=1;cpt<=(mob-1)/2;cpt++){                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                 mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                 mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
               }                    }else{
             mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;                      first=0;
           }                      fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
         }                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
       }/* end age */                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
     }/* end mob */                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
   }else return -1;                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
   return 0;                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
 }/* End movingaverage */                    }/* if first */
                   } /* age mod 5 */
                 } /* end loop age */
 /************** Forecasting ******************/                fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
 prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){                first=1;
   /* proj1, year, month, day of starting projection               } /*l12 */
      agemin, agemax range of age            } /* k12 */
      dateprev1 dateprev2 range of dates during which prevalence is computed          } /*l1 */
      anproj2 year of en of projection (same day and month as proj1).        }/* k1 */
   */      } /* loop covariates */
   int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;    }
   int *popage;    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
   double agec; /* generic age */    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
   double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;    free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
   double *popeffectif,*popcount;    free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
   double ***p3mat;    free_vector(xp,1,npar);
   double ***mobaverage;    fclose(ficresprob);
   char fileresf[FILENAMELENGTH];    fclose(ficresprobcov);
     fclose(ficresprobcor);
   agelim=AGESUP;    fflush(ficgp);
   prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);    fflush(fichtmcov);
    }
   strcpy(fileresf,"f");   
   strcat(fileresf,fileres);  
   if((ficresf=fopen(fileresf,"w"))==NULL) {  /******************* Printing html file ***********/
     printf("Problem with forecast resultfile: %s\n", fileresf);  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);                    int lastpass, int stepm, int weightopt, char model[],\
   }                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
   printf("Computing forecasting: result on file '%s' \n", fileresf);                    int popforecast, int estepm ,\
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);                    double jprev1, double mprev1,double anprev1, \
                     double jprev2, double mprev2,double anprev2){
   if (cptcoveff==0) ncodemax[cptcoveff]=1;    int jj1, k1, i1, cpt;
   
   if (mobilav!=0) {     fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);     <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
     if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){  </ul>");
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);     fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
       printf(" Error in movingaverage mobilav=%d\n",mobilav);   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
     }             jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
   }     fprintf(fichtm,"\
    - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
   stepsize=(int) (stepm+YEARM-1)/YEARM;             stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
   if (stepm<=12) stepsize=1;     fprintf(fichtm,"\
   if(estepm < stepm){   - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
     printf ("Problem %d lower than %d\n",estepm, stepm);             subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
   }     fprintf(fichtm,"\
   else  hstepm=estepm;      - (a) Life expectancies by health status at initial age, (b) health expectancies by health status at initial age:  ei., eij . If one or more covariate are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n",
   hstepm=hstepm/stepm;              estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
   yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and     fprintf(fichtm,"\
                                fractional in yp1 */   - Population projections by age and states: \
   anprojmean=yp;     <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
   yp2=modf((yp1*12),&yp);  
   mprojmean=yp;  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   yp1=modf((yp2*30.5),&yp);  
   jprojmean=yp;   m=cptcoveff;
   if(jprojmean==0) jprojmean=1;   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   if(mprojmean==0) jprojmean=1;  
    jj1=0;
   i1=cptcoveff;   for(k1=1; k1<=m;k1++){
   if (cptcovn < 1){i1=1;}     for(i1=1; i1<=ncodemax[k1];i1++){
          jj1++;
   fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2);        if (cptcovn > 0) {
            fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
   fprintf(ficresf,"#****** Routine prevforecast **\n");         for (cpt=1; cpt<=cptcoveff;cpt++)
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
 /*            if (h==(int)(YEARM*yearp)){ */         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
   for(cptcov=1, k=0;cptcov<=i1;cptcov++){       }
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){       /* Pij */
       k=k+1;       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d1.png\">%s%d1.png</a><br> \
       fprintf(ficresf,"\n#******");  <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);    
       for(j=1;j<=cptcoveff;j++) {       /* Quasi-incidences */
         fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
       }   before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d2.png\">%s%d2.png</a><br> \
       fprintf(ficresf,"******\n");  <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);
       fprintf(ficresf,"# Covariate valuofcovar yearproj age");         /* Period (stable) prevalence in each health state */
       for(j=1; j<=nlstate+ndeath;j++){          for(cpt=1; cpt<nlstate;cpt++){
         for(i=1; i<=nlstate;i++)                         fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d%d.png\">%s%d%d.png</a><br> \
           fprintf(ficresf," p%d%d",i,j);  <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
         fprintf(ficresf," p.%d",j);         }
       }       for(cpt=1; cpt<=nlstate;cpt++) {
       for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) {           fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
         fprintf(ficresf,"\n");  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);          }
      } /* end i1 */
         for (agec=fage; agec>=(ageminpar-1); agec--){    }/* End k1 */
           nhstepm=(int) rint((agelim-agec)*YEARM/stepm);    fprintf(fichtm,"</ul>");
           nhstepm = nhstepm/hstepm;   
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
           oldm=oldms;savm=savms;   fprintf(fichtm,"\
           hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);    \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
            - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
           for (h=0; h<=nhstepm; h++){  
             if (h*hstepm/YEARM*stepm ==yearp) {   fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
               fprintf(ficresf,"\n");           subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
               for(j=1;j<=cptcoveff;j++)    fprintf(fichtm,"\
                 fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);   - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
               fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);           subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
             }   
             for(j=1; j<=nlstate+ndeath;j++) {   fprintf(fichtm,"\
               ppij=0.;   - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
               for(i=1; i<=nlstate;i++) {           subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
                 if (mobilav==1)    fprintf(fichtm,"\
                   ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];   - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
                 else {     <a href=\"%s\">%s</a> <br>\n</li>",
                   ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];             estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
                 }   fprintf(fichtm,"\
                 if (h*hstepm/YEARM*stepm== yearp) {   - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
                   fprintf(ficresf," %.3f", p3mat[i][j][h]);     <a href=\"%s\">%s</a> <br>\n</li>",
                 }             estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
               } /* end i */   fprintf(fichtm,"\
               if (h*hstepm/YEARM*stepm==yearp) {   - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), eij are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences (i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
                 fprintf(ficresf," %.3f", ppij);           estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
               }   fprintf(fichtm,"\
             }/* end j */   - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors: <a href=\"%s\">%s</a> <br>\n",
           } /* end h */           subdirf2(fileres,"t"),subdirf2(fileres,"t"));
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);   fprintf(fichtm,"\
         } /* end agec */   - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
       } /* end yearp */           subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
     } /* end cptcod */  
   } /* end  cptcov */  /*  if(popforecast==1) fprintf(fichtm,"\n */
          /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   fclose(ficresf);  /*  else  */
 }  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    fflush(fichtm);
 /************** Forecasting *****not tested NB*************/   fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){  
      m=cptcoveff;
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   int *popage;  
   double calagedatem, agelim, kk1, kk2;   jj1=0;
   double *popeffectif,*popcount;   for(k1=1; k1<=m;k1++){
   double ***p3mat,***tabpop,***tabpopprev;     for(i1=1; i1<=ncodemax[k1];i1++){
   double ***mobaverage;       jj1++;
   char filerespop[FILENAMELENGTH];       if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);         for (cpt=1; cpt<=cptcoveff;cpt++)
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
   agelim=AGESUP;         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
   calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;       }
          for(cpt=1; cpt<=nlstate;cpt++) {
   prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);         fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
     prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
     <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
   strcpy(filerespop,"pop");        }
   strcat(filerespop,fileres);       fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   if((ficrespop=fopen(filerespop,"w"))==NULL) {  health expectancies in states (1) and (2): %s%d.png<br>\
     printf("Problem with forecast resultfile: %s\n", filerespop);  <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);     } /* end i1 */
   }   }/* End k1 */
   printf("Computing forecasting: result on file '%s' \n", filerespop);   fprintf(fichtm,"</ul>");
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);   fflush(fichtm);
   }
   if (cptcoveff==0) ncodemax[cptcoveff]=1;  
   /******************* Gnuplot file **************/
   if (mobilav!=0) {  void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
     if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){    char dirfileres[132],optfileres[132];
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
       printf(" Error in movingaverage mobilav=%d\n",mobilav);    int ng;
     }  /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   }  /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   stepsize=(int) (stepm+YEARM-1)/YEARM;  /*   } */
   if (stepm<=12) stepsize=1;  
       /*#ifdef windows */
   agelim=AGESUP;    fprintf(ficgp,"cd \"%s\" \n",pathc);
         /*#endif */
   hstepm=1;    m=pow(2,cptcoveff);
   hstepm=hstepm/stepm;   
       strcpy(dirfileres,optionfilefiname);
   if (popforecast==1) {    strcpy(optfileres,"vpl");
     if((ficpop=fopen(popfile,"r"))==NULL) {   /* 1eme*/
       printf("Problem with population file : %s\n",popfile);exit(0);    for (cpt=1; cpt<= nlstate ; cpt ++) {
       fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);     for (k1=1; k1<= m ; k1 ++) {
     }        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
     popage=ivector(0,AGESUP);       fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
     popeffectif=vector(0,AGESUP);       fprintf(ficgp,"set xlabel \"Age\" \n\
     popcount=vector(0,AGESUP);  set ylabel \"Probability\" \n\
       set ter png small\n\
     i=1;     set size 0.65,0.65\n\
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
      
     imx=i;       for (i=1; i<= nlstate ; i ++) {
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
   }         else fprintf(ficgp," \%%*lf (\%%*lf)");
        }
   for(cptcov=1,k=0;cptcov<=i2;cptcov++){       fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){       for (i=1; i<= nlstate ; i ++) {
       k=k+1;         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
       fprintf(ficrespop,"\n#******");         else fprintf(ficgp," \%%*lf (\%%*lf)");
       for(j=1;j<=cptcoveff;j++) {       }
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);       fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
       }       for (i=1; i<= nlstate ; i ++) {
       fprintf(ficrespop,"******\n");         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
       fprintf(ficrespop,"# Age");         else fprintf(ficgp," \%%*lf (\%%*lf)");
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);       }  
       if (popforecast==1)  fprintf(ficrespop," [Population]");       fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
            }
       for (cpt=0; cpt<=0;cpt++) {     }
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);       /*2 eme*/
            
         for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){     for (k1=1; k1<= m ; k1 ++) {
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
           nhstepm = nhstepm/hstepm;       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
                
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      for (i=1; i<= nlstate+1 ; i ++) {
           oldm=oldms;savm=savms;        k=2*i;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);          fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
                 for (j=1; j<= nlstate+1 ; j ++) {
           for (h=0; h<=nhstepm; h++){          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
             if (h==(int) (calagedatem+YEARM*cpt)) {          else fprintf(ficgp," \%%*lf (\%%*lf)");
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);        }  
             }         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
             for(j=1; j<=nlstate+ndeath;j++) {        else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
               kk1=0.;kk2=0;        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
               for(i=1; i<=nlstate;i++) {                      for (j=1; j<= nlstate+1 ; j ++) {
                 if (mobilav==1)           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];          else fprintf(ficgp," \%%*lf (\%%*lf)");
                 else {        }  
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];        fprintf(ficgp,"\" t\"\" w l 0,");
                 }        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
               }        for (j=1; j<= nlstate+1 ; j ++) {
               if (h==(int)(calagedatem+12*cpt)){          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;          else fprintf(ficgp," \%%*lf (\%%*lf)");
                   /*fprintf(ficrespop," %.3f", kk1);        }  
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/        if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
               }        else fprintf(ficgp,"\" t\"\" w l 0,");
             }      }
             for(i=1; i<=nlstate;i++){    }
               kk1=0.;   
                 for(j=1; j<=nlstate;j++){    /*3eme*/
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];    
                 }    for (k1=1; k1<= m ; k1 ++) {
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];      for (cpt=1; cpt<= nlstate ; cpt ++) {
             }        /*       k=2+nlstate*(2*cpt-2); */
         k=2+(nlstate+1)*(cpt-1);
             if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++)         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);        fprintf(ficgp,"set ter png small\n\
           }  set size 0.65,0.65\n\
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         }        /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
       }          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
            fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
   /******/          fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);            
         for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){         */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);         for (i=1; i< nlstate ; i ++) {
           nhstepm = nhstepm/hstepm;           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
                     /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);         
           oldm=oldms;savm=savms;        }
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);          fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
           for (h=0; h<=nhstepm; h++){      }
             if (h==(int) (calagedatem+YEARM*cpt)) {    }
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);   
             }     /* CV preval stable (period) */
             for(j=1; j<=nlstate+ndeath;j++) {    for (k1=1; k1<= m ; k1 ++) {
               kk1=0.;kk2=0;      for (cpt=1; cpt<=nlstate ; cpt ++) {
               for(i=1; i<=nlstate;i++) {                      k=3;
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];            fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
               }        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
               if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);          set ter png small\nset size 0.65,0.65\n\
             }  unset log y\n\
           }  plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);       
         }        for (i=1; i< nlstate ; i ++)
       }          fprintf(ficgp,"+$%d",k+i+1);
    }         fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
   }       
          l=3+(nlstate+ndeath)*cpt;
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
         for (i=1; i< nlstate ; i ++) {
   if (popforecast==1) {          l=3+(nlstate+ndeath)*cpt;
     free_ivector(popage,0,AGESUP);          fprintf(ficgp,"+$%d",l+i+1);
     free_vector(popeffectif,0,AGESUP);        }
     free_vector(popcount,0,AGESUP);        fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);  
   }      }
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    }  
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);   
   fclose(ficrespop);    /* proba elementaires */
 } /* End of popforecast */    for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
 int fileappend(FILE *fichier, char *optionfich)        if (k != i) {
 {          for(j=1; j <=ncovmodel; j++){
   if((fichier=fopen(optionfich,"a"))==NULL) {            fprintf(ficgp,"p%d=%f ",jk,p[jk]);
     printf("Problem with file: %s\n", optionfich);            jk++;
     fprintf(ficlog,"Problem with file: %s\n", optionfich);            fprintf(ficgp,"\n");
     return (0);          }
   }        }
   fflush(fichier);      }
   return (1);     }
 }  
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
 /**************** function prwizard **********************/         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng);
 void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)         if (ng==2)
 {           fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
   /* Wizard to print covariance matrix template */           fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
   char ca[32], cb[32], cc[32];         i=1;
   int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;         for(k2=1; k2<=nlstate; k2++) {
   int numlinepar;           k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
   printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");             if (k != k2){
   fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");               if(ng==2)
   for(i=1; i <=nlstate; i++){                 fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
     jj=0;               else
     for(j=1; j <=nlstate+ndeath; j++){                 fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
       if(j==i) continue;               ij=1;
       jj++;               for(j=3; j <=ncovmodel; j++) {
       /*ca[0]= k+'a'-1;ca[1]='\0';*/                 if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
       printf("%1d%1d",i,j);                   fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
       fprintf(ficparo,"%1d%1d",i,j);                   ij++;
       for(k=1; k<=ncovmodel;k++){                 }
         /*        printf(" %lf",param[i][j][k]); */                 else
         /*        fprintf(ficparo," %lf",param[i][j][k]); */                   fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
         printf(" 0.");               }
         fprintf(ficparo," 0.");               fprintf(ficgp,")/(1");
       }               
       printf("\n");               for(k1=1; k1 <=nlstate; k1++){  
       fprintf(ficparo,"\n");                 fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
     }                 ij=1;
   }                 for(j=3; j <=ncovmodel; j++){
   printf("# Scales (for hessian or gradient estimation)\n");                   if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
   fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");                     fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
   npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/                      ij++;
   for(i=1; i <=nlstate; i++){                   }
     jj=0;                   else
     for(j=1; j <=nlstate+ndeath; j++){                     fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
       if(j==i) continue;                 }
       jj++;                 fprintf(ficgp,")");
       fprintf(ficparo,"%1d%1d",i,j);               }
       printf("%1d%1d",i,j);               fprintf(ficgp,") t \"p%d%d\" ", k2,k);
       fflush(stdout);               if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
       for(k=1; k<=ncovmodel;k++){               i=i+ncovmodel;
         /*      printf(" %le",delti3[i][j][k]); */             }
         /*      fprintf(ficparo," %le",delti3[i][j][k]); */           } /* end k */
         printf(" 0.");         } /* end k2 */
         fprintf(ficparo," 0.");       } /* end jk */
       }     } /* end ng */
       numlinepar++;     fflush(ficgp);
       printf("\n");  }  /* end gnuplot */
       fprintf(ficparo,"\n");  
     }  
   }  /*************** Moving average **************/
   printf("# Covariance matrix\n");  int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
 /* # 121 Var(a12)\n\ */  
 /* # 122 Cov(b12,a12) Var(b12)\n\ */    int i, cpt, cptcod;
 /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */    int modcovmax =1;
 /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */    int mobilavrange, mob;
 /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */    double age;
 /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */  
 /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */    modcovmax=2*cptcoveff;/* Max number of modalities. We suppose
 /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */                             a covariate has 2 modalities */
   fflush(stdout);    if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   fprintf(ficparo,"# Covariance matrix\n");  
   /* # 121 Var(a12)\n\ */    if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
   /* # 122 Cov(b12,a12) Var(b12)\n\ */      if(mobilav==1) mobilavrange=5; /* default */
   /* #   ...\n\ */      else mobilavrange=mobilav;
   /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */      for (age=bage; age<=fage; age++)
           for (i=1; i<=nlstate;i++)
   for(itimes=1;itimes<=2;itimes++){          for (cptcod=1;cptcod<=modcovmax;cptcod++)
     jj=0;            mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
     for(i=1; i <=nlstate; i++){      /* We keep the original values on the extreme ages bage, fage and for
       for(j=1; j <=nlstate+ndeath; j++){         fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
         if(j==i) continue;         we use a 5 terms etc. until the borders are no more concerned.
         for(k=1; k<=ncovmodel;k++){      */
           jj++;      for (mob=3;mob <=mobilavrange;mob=mob+2){
           ca[0]= k+'a'-1;ca[1]='\0';        for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           if(itimes==1){          for (i=1; i<=nlstate;i++){
             printf("#%1d%1d%d",i,j,k);            for (cptcod=1;cptcod<=modcovmax;cptcod++){
             fprintf(ficparo,"#%1d%1d%d",i,j,k);              mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
           }else{                for (cpt=1;cpt<=(mob-1)/2;cpt++){
             printf("%1d%1d%d",i,j,k);                  mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
             fprintf(ficparo,"%1d%1d%d",i,j,k);                  mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
             /*  printf(" %.5le",matcov[i][j]); */                }
           }              mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
           ll=0;            }
           for(li=1;li <=nlstate; li++){          }
             for(lj=1;lj <=nlstate+ndeath; lj++){        }/* end age */
               if(lj==li) continue;      }/* end mob */
               for(lk=1;lk<=ncovmodel;lk++){    }else return -1;
                 ll++;    return 0;
                 if(ll<=jj){  }/* End movingaverage */
                   cb[0]= lk +'a'-1;cb[1]='\0';  
                   if(ll<jj){  
                     if(itimes==1){  /************** Forecasting ******************/
                       printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);  prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
                       fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);    /* proj1, year, month, day of starting projection
                     }else{       agemin, agemax range of age
                       printf(" 0.");       dateprev1 dateprev2 range of dates during which prevalence is computed
                       fprintf(ficparo," 0.");       anproj2 year of en of projection (same day and month as proj1).
                     }    */
                   }else{    int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
                     if(itimes==1){    int *popage;
                       printf(" Var(%s%1d%1d)",ca,i,j);    double agec; /* generic age */
                       fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);    double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
                     }else{    double *popeffectif,*popcount;
                       printf(" 0.");    double ***p3mat;
                       fprintf(ficparo," 0.");    double ***mobaverage;
                     }    char fileresf[FILENAMELENGTH];
                   }  
                 }    agelim=AGESUP;
               } /* end lk */    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
             } /* end lj */   
           } /* end li */    strcpy(fileresf,"f");
           printf("\n");    strcat(fileresf,fileres);
           fprintf(ficparo,"\n");    if((ficresf=fopen(fileresf,"w"))==NULL) {
           numlinepar++;      printf("Problem with forecast resultfile: %s\n", fileresf);
         } /* end k*/      fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
       } /*end j */    }
     } /* end i */    printf("Computing forecasting: result on file '%s' \n", fileresf);
   } /* end itimes */    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
 } /* end of prwizard */    if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
 /***********************************************/      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 /**************** Main Program *****************/      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
 /***********************************************/        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
 int main(int argc, char *argv[])      }
 {    }
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);  
   int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;    stepsize=(int) (stepm+YEARM-1)/YEARM;
   int jj, ll, li, lj, lk, imk;    if (stepm<=12) stepsize=1;
   int numlinepar=0; /* Current linenumber of parameter file */    if(estepm < stepm){
   int itimes;      printf ("Problem %d lower than %d\n",estepm, stepm);
     }
   char ca[32], cb[32], cc[32];    else  hstepm=estepm;  
   /*  FILE *fichtm; *//* Html File */  
   /* FILE *ficgp;*/ /*Gnuplot File */    hstepm=hstepm/stepm;
   double agedeb, agefin,hf;    yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;                                 fractional in yp1 */
     anprojmean=yp;
   double fret;    yp2=modf((yp1*12),&yp);
   double **xi,tmp,delta;    mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
   double dum; /* Dummy variable */    jprojmean=yp;
   double ***p3mat;    if(jprojmean==0) jprojmean=1;
   double ***mobaverage;    if(mprojmean==0) jprojmean=1;
   int *indx;  
   char line[MAXLINE], linepar[MAXLINE];    i1=cptcoveff;
   char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];    if (cptcovn < 1){i1=1;}
   char pathr[MAXLINE];    
   int firstobs=1, lastobs=10;    fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2);
   int sdeb, sfin; /* Status at beginning and end */   
   int c,  h , cpt,l;    fprintf(ficresf,"#****** Routine prevforecast **\n");
   int ju,jl, mi;  
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;  /*            if (h==(int)(YEARM*yearp)){ */
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab;     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
   int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
   int mobilav=0,popforecast=0;        k=k+1;
   int hstepm, nhstepm;        fprintf(ficresf,"\n#******");
   double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;        for(j=1;j<=cptcoveff;j++) {
   double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;          fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
   double bage, fage, age, agelim, agebase;        fprintf(ficresf,"******\n");
   double ftolpl=FTOL;        fprintf(ficresf,"# Covariate valuofcovar yearproj age");
   double **prlim;        for(j=1; j<=nlstate+ndeath;j++){
   double *severity;          for(i=1; i<=nlstate;i++)              
   double ***param; /* Matrix of parameters */            fprintf(ficresf," p%d%d",i,j);
   double  *p;          fprintf(ficresf," p.%d",j);
   double **matcov; /* Matrix of covariance */        }
   double ***delti3; /* Scale */        for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) {
   double *delti; /* Scale */          fprintf(ficresf,"\n");
   double ***eij, ***vareij;          fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);  
   double **varpl; /* Variances of prevalence limits by age */  
   double *epj, vepp;          for (agec=fage; agec>=(ageminpar-1); agec--){
   double kk1, kk2;            nhstepm=(int) rint((agelim-agec)*YEARM/stepm);
   double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;            nhstepm = nhstepm/hstepm;
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   char *alph[]={"a","a","b","c","d","e"}, str[4];            oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
          
   char z[1]="c", occ;            for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];                fprintf(ficresf,"\n");
   char strstart[80], *strt, strtend[80];                for(j=1;j<=cptcoveff;j++)
   char *stratrunc;                  fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
   int lstra;                fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               }
   long total_usecs;              for(j=1; j<=nlstate+ndeath;j++) {
                  ppij=0.;
 /*   setlocale (LC_ALL, ""); */                for(i=1; i<=nlstate;i++) {
 /*   bindtextdomain (PACKAGE, LOCALEDIR); */                  if (mobilav==1)
 /*   textdomain (PACKAGE); */                    ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
 /*   setlocale (LC_CTYPE, ""); */                  else {
 /*   setlocale (LC_MESSAGES, ""); */                    ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
   /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */                  if (h*hstepm/YEARM*stepm== yearp) {
   (void) gettimeofday(&start_time,&tzp);                    fprintf(ficresf," %.3f", p3mat[i][j][h]);
   curr_time=start_time;                  }
   tm = *localtime(&start_time.tv_sec);                } /* end i */
   tmg = *gmtime(&start_time.tv_sec);                if (h*hstepm/YEARM*stepm==yearp) {
   strcpy(strstart,asctime(&tm));                  fprintf(ficresf," %.3f", ppij);
                 }
 /*  printf("Localtime (at start)=%s",strstart); */              }/* end j */
 /*  tp.tv_sec = tp.tv_sec +86400; */            } /* end h */
 /*  tm = *localtime(&start_time.tv_sec); */            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */          } /* end agec */
 /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */        } /* end yearp */
 /*   tmg.tm_hour=tmg.tm_hour + 1; */      } /* end cptcod */
 /*   tp.tv_sec = mktime(&tmg); */    } /* end  cptcov */
 /*   strt=asctime(&tmg); */         
 /*   printf("Time(after) =%s",strstart);  */    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 /*  (void) time (&time_value);  
 *  printf("time=%d,t-=%d\n",time_value,time_value-86400);    fclose(ficresf);
 *  tm = *localtime(&time_value);  }
 *  strstart=asctime(&tm);  
 *  printf("tim_value=%d,asctime=%s\n",time_value,strstart);   /************** Forecasting *****not tested NB*************/
 */  populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
    
   nberr=0; /* Number of errors and warnings */    int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
   nbwarn=0;    int *popage;
   getcwd(pathcd, size);    double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
   printf("\n%s\n%s",version,fullversion);    double ***p3mat,***tabpop,***tabpopprev;
   if(argc <=1){    double ***mobaverage;
     printf("\nEnter the parameter file name: ");    char filerespop[FILENAMELENGTH];
     scanf("%s",pathtot);  
   }    tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   else{    tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     strcpy(pathtot,argv[1]);    agelim=AGESUP;
   }    calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
   /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/   
   /*cygwin_split_path(pathtot,path,optionfile);    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/   
   /* cutv(path,optionfile,pathtot,'\\');*/   
     strcpy(filerespop,"pop");
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);    strcat(filerespop,fileres);
   printf("pathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);    if((ficrespop=fopen(filerespop,"w"))==NULL) {
   chdir(path);      printf("Problem with forecast resultfile: %s\n", filerespop);
   strcpy(command,"mkdir ");      fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
   strcat(command,optionfilefiname);    }
   if((outcmd=system(command)) != 0){    printf("Computing forecasting: result on file '%s' \n", filerespop);
     printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
     /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */  
     /* fclose(ficlog); */    if (cptcoveff==0) ncodemax[cptcoveff]=1;
 /*     exit(1); */  
   }    if (mobilav!=0) {
 /*   if((imk=mkdir(optionfilefiname))<0){ */      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 /*     perror("mkdir"); */      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
 /*   } */        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
   /*-------- arguments in the command line --------*/      }
     }
   /* Log file */  
   strcat(filelog, optionfilefiname);    stepsize=(int) (stepm+YEARM-1)/YEARM;
   strcat(filelog,".log");    /* */    if (stepm<=12) stepsize=1;
   if((ficlog=fopen(filelog,"w"))==NULL)    {   
     printf("Problem with logfile %s\n",filelog);    agelim=AGESUP;
     goto end;   
   }    hstepm=1;
   fprintf(ficlog,"Log filename:%s\n",filelog);    hstepm=hstepm/stepm;
   fprintf(ficlog,"\n%s\n%s",version,fullversion);   
   fprintf(ficlog,"\nEnter the parameter file name: ");    if (popforecast==1) {
   fprintf(ficlog,"pathtot=%s\n\      if((ficpop=fopen(popfile,"r"))==NULL) {
  path=%s \n\        printf("Problem with population file : %s\n",popfile);exit(0);
  optionfile=%s\n\        fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
  optionfilext=%s\n\      }
  optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);      popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
   printf("Local time (at start):%s",strstart);      popcount=vector(0,AGESUP);
   fprintf(ficlog,"Local time (at start): %s",strstart);     
   fflush(ficlog);      i=1;  
 /*   (void) gettimeofday(&curr_time,&tzp); */      while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
 /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */     
       imx=i;
   /* */      for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
   strcpy(fileres,"r");    }
   strcat(fileres, optionfilefiname);  
   strcat(fileres,".txt");    /* Other files have txt extension */    for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
   /*---------arguments file --------*/        k=k+1;
         fprintf(ficrespop,"\n#******");
   if((ficpar=fopen(optionfile,"r"))==NULL)    {        for(j=1;j<=cptcoveff;j++) {
     printf("Problem with optionfile %s\n",optionfile);          fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
     fprintf(ficlog,"Problem with optionfile %s\n",optionfile);        }
     fflush(ficlog);        fprintf(ficrespop,"******\n");
     goto end;        fprintf(ficrespop,"# Age");
   }        for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
        
         for (cpt=0; cpt<=0;cpt++) {
   strcpy(filereso,"o");          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);  
   strcat(filereso,fileres);         
   if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){
     printf("Problem with Output resultfile: %s\n", filereso);            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);
     fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);            nhstepm = nhstepm/hstepm;
     fflush(ficlog);           
     goto end;            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   }            oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
   /* Reads comments: lines beginning with '#' */         
   numlinepar=0;            for (h=0; h<=nhstepm; h++){
   while((c=getc(ficpar))=='#' && c!= EOF){              if (h==(int) (calagedatem+YEARM*cpt)) {
     ungetc(c,ficpar);                fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
     fgets(line, MAXLINE, ficpar);              }
     numlinepar++;              for(j=1; j<=nlstate+ndeath;j++) {
     puts(line);                kk1=0.;kk2=0;
     fputs(line,ficparo);                for(i=1; i<=nlstate;i++) {              
     fputs(line,ficlog);                  if (mobilav==1)
   }                    kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
   ungetc(c,ficpar);                  else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);                  }
   numlinepar++;                }
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);                if (h==(int)(calagedatem+12*cpt)){
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);                  tabpop[(int)(agedeb)][j][cptcod]=kk1;
   fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);                    /*fprintf(ficrespop," %.3f", kk1);
   fflush(ficlog);                      if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
   while((c=getc(ficpar))=='#' && c!= EOF){                }
     ungetc(c,ficpar);              }
     fgets(line, MAXLINE, ficpar);              for(i=1; i<=nlstate;i++){
     numlinepar++;                kk1=0.;
     puts(line);                  for(j=1; j<=nlstate;j++){
     fputs(line,ficparo);                    kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];
     fputs(line,ficlog);                  }
   }                    tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
   ungetc(c,ficpar);              }
   
                  if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++)
   covar=matrix(0,NCOVMAX,1,n);                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
   cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/            }
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
   ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */        }
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */   
      /******/
   if(mle==-1){ /* Print a wizard for help writing covariance matrix */  
     prwizard(ncovmodel, nlstate, ndeath, model, ficparo);        for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {
     printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);  
     fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){
     fclose (ficparo);            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);
     fclose (ficlog);            nhstepm = nhstepm/hstepm;
     exit(0);           
   }            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   /* Read guess parameters */            oldm=oldms;savm=savms;
   /* Reads comments: lines beginning with '#' */            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
   while((c=getc(ficpar))=='#' && c!= EOF){            for (h=0; h<=nhstepm; h++){
     ungetc(c,ficpar);              if (h==(int) (calagedatem+YEARM*cpt)) {
     fgets(line, MAXLINE, ficpar);                fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
     numlinepar++;              }
     puts(line);              for(j=1; j<=nlstate+ndeath;j++) {
     fputs(line,ficparo);                kk1=0.;kk2=0;
     fputs(line,ficlog);                for(i=1; i<=nlstate;i++) {              
   }                  kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
   ungetc(c,ficpar);                }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);              }
   for(i=1; i <=nlstate; i++){            }
     j=0;            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     for(jj=1; jj <=nlstate+ndeath; jj++){          }
       if(jj==i) continue;        }
       j++;     }
       fscanf(ficpar,"%1d%1d",&i1,&j1);    }
       if ((i1 != i) && (j1 != j)){   
         printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         exit(1);  
       }    if (popforecast==1) {
       fprintf(ficparo,"%1d%1d",i1,j1);      free_ivector(popage,0,AGESUP);
       if(mle==1)      free_vector(popeffectif,0,AGESUP);
         printf("%1d%1d",i,j);      free_vector(popcount,0,AGESUP);
       fprintf(ficlog,"%1d%1d",i,j);    }
       for(k=1; k<=ncovmodel;k++){    free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         fscanf(ficpar," %lf",&param[i][j][k]);    free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if(mle==1){    fclose(ficrespop);
           printf(" %lf",param[i][j][k]);  } /* End of popforecast */
           fprintf(ficlog," %lf",param[i][j][k]);  
         }  int fileappend(FILE *fichier, char *optionfich)
         else  {
           fprintf(ficlog," %lf",param[i][j][k]);    if((fichier=fopen(optionfich,"a"))==NULL) {
         fprintf(ficparo," %lf",param[i][j][k]);      printf("Problem with file: %s\n", optionfich);
       }      fprintf(ficlog,"Problem with file: %s\n", optionfich);
       fscanf(ficpar,"\n");      return (0);
       numlinepar++;    }
       if(mle==1)    fflush(fichier);
         printf("\n");    return (1);
       fprintf(ficlog,"\n");  }
       fprintf(ficparo,"\n");  
     }  
   }    /**************** function prwizard **********************/
   fflush(ficlog);  void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/  
     /* Wizard to print covariance matrix template */
   p=param[1][1];  
       char ca[32], cb[32], cc[32];
   /* Reads comments: lines beginning with '#' */    int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
   while((c=getc(ficpar))=='#' && c!= EOF){    int numlinepar;
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     numlinepar++;    fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     puts(line);    for(i=1; i <=nlstate; i++){
     fputs(line,ficparo);      jj=0;
     fputs(line,ficlog);      for(j=1; j <=nlstate+ndeath; j++){
   }        if(j==i) continue;
   ungetc(c,ficpar);        jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);        printf("%1d%1d",i,j);
   /* delti=vector(1,npar); *//* Scale of each paramater (output from hesscov) */        fprintf(ficparo,"%1d%1d",i,j);
   for(i=1; i <=nlstate; i++){        for(k=1; k<=ncovmodel;k++){
     for(j=1; j <=nlstate+ndeath-1; j++){          /*        printf(" %lf",param[i][j][k]); */
       fscanf(ficpar,"%1d%1d",&i1,&j1);          /*        fprintf(ficparo," %lf",param[i][j][k]); */
       if ((i1-i)*(j1-j)!=0){          printf(" 0.");
         printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);          fprintf(ficparo," 0.");
         exit(1);        }
       }        printf("\n");
       printf("%1d%1d",i,j);        fprintf(ficparo,"\n");
       fprintf(ficparo,"%1d%1d",i1,j1);      }
       fprintf(ficlog,"%1d%1d",i1,j1);    }
       for(k=1; k<=ncovmodel;k++){    printf("# Scales (for hessian or gradient estimation)\n");
         fscanf(ficpar,"%le",&delti3[i][j][k]);    fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
         printf(" %le",delti3[i][j][k]);    npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
         fprintf(ficparo," %le",delti3[i][j][k]);    for(i=1; i <=nlstate; i++){
         fprintf(ficlog," %le",delti3[i][j][k]);      jj=0;
       }      for(j=1; j <=nlstate+ndeath; j++){
       fscanf(ficpar,"\n");        if(j==i) continue;
       numlinepar++;        jj++;
       printf("\n");        fprintf(ficparo,"%1d%1d",i,j);
       fprintf(ficparo,"\n");        printf("%1d%1d",i,j);
       fprintf(ficlog,"\n");        fflush(stdout);
     }        for(k=1; k<=ncovmodel;k++){
   }          /*      printf(" %le",delti3[i][j][k]); */
   fflush(ficlog);          /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
   delti=delti3[1][1];          fprintf(ficparo," 0.");
         }
         numlinepar++;
   /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */        printf("\n");
           fprintf(ficparo,"\n");
   /* Reads comments: lines beginning with '#' */      }
   while((c=getc(ficpar))=='#' && c!= EOF){    }
     ungetc(c,ficpar);    printf("# Covariance matrix\n");
     fgets(line, MAXLINE, ficpar);  /* # 121 Var(a12)\n\ */
     numlinepar++;  /* # 122 Cov(b12,a12) Var(b12)\n\ */
     puts(line);  /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
     fputs(line,ficparo);  /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
     fputs(line,ficlog);  /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   }  /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   ungetc(c,ficpar);  /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
     /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
   matcov=matrix(1,npar,1,npar);    fflush(stdout);
   for(i=1; i <=npar; i++){    fprintf(ficparo,"# Covariance matrix\n");
     fscanf(ficpar,"%s",&str);    /* # 121 Var(a12)\n\ */
     if(mle==1)    /* # 122 Cov(b12,a12) Var(b12)\n\ */
       printf("%s",str);    /* #   ...\n\ */
     fprintf(ficlog,"%s",str);    /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     fprintf(ficparo,"%s",str);   
     for(j=1; j <=i; j++){    for(itimes=1;itimes<=2;itimes++){
       fscanf(ficpar," %le",&matcov[i][j]);      jj=0;
       if(mle==1){      for(i=1; i <=nlstate; i++){
         printf(" %.5le",matcov[i][j]);        for(j=1; j <=nlstate+ndeath; j++){
       }          if(j==i) continue;
       fprintf(ficlog," %.5le",matcov[i][j]);          for(k=1; k<=ncovmodel;k++){
       fprintf(ficparo," %.5le",matcov[i][j]);            jj++;
     }            ca[0]= k+'a'-1;ca[1]='\0';
     fscanf(ficpar,"\n");            if(itimes==1){
     numlinepar++;              printf("#%1d%1d%d",i,j,k);
     if(mle==1)              fprintf(ficparo,"#%1d%1d%d",i,j,k);
       printf("\n");            }else{
     fprintf(ficlog,"\n");              printf("%1d%1d%d",i,j,k);
     fprintf(ficparo,"\n");              fprintf(ficparo,"%1d%1d%d",i,j,k);
   }              /*  printf(" %.5le",matcov[i][j]); */
   for(i=1; i <=npar; i++)            }
     for(j=i+1;j<=npar;j++)            ll=0;
       matcov[i][j]=matcov[j][i];            for(li=1;li <=nlstate; li++){
                  for(lj=1;lj <=nlstate+ndeath; lj++){
   if(mle==1)                if(lj==li) continue;
     printf("\n");                for(lk=1;lk<=ncovmodel;lk++){
   fprintf(ficlog,"\n");                  ll++;
                   if(ll<=jj){
   fflush(ficlog);                    cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
   /*-------- Rewriting paramater file ----------*/                      if(itimes==1){
   strcpy(rfileres,"r");    /* "Rparameterfile */                        printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
   strcat(rfileres,optionfilefiname);    /* Parameter file first name*/                        fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
   strcat(rfileres,".");    /* */                      }else{
   strcat(rfileres,optionfilext);    /* Other files have txt extension */                        printf(" 0.");
   if((ficres =fopen(rfileres,"w"))==NULL) {                        fprintf(ficparo," 0.");
     printf("Problem writing new parameter file: %s\n", fileres);goto end;                      }
     fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;                    }else{
   }                      if(itimes==1){
   fprintf(ficres,"#%s\n",version);                        printf(" Var(%s%1d%1d)",ca,i,j);
                             fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
   /*-------- data file ----------*/                      }else{
   if((fic=fopen(datafile,"r"))==NULL)    {                        printf(" 0.");
     printf("Problem with datafile: %s\n", datafile);goto end;                        fprintf(ficparo," 0.");
     fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;                      }
   }                    }
                   }
   n= lastobs;                } /* end lk */
   severity = vector(1,maxwav);              } /* end lj */
   outcome=imatrix(1,maxwav+1,1,n);            } /* end li */
   num=lvector(1,n);            printf("\n");
   moisnais=vector(1,n);            fprintf(ficparo,"\n");
   annais=vector(1,n);            numlinepar++;
   moisdc=vector(1,n);          } /* end k*/
   andc=vector(1,n);        } /*end j */
   agedc=vector(1,n);      } /* end i */
   cod=ivector(1,n);    } /* end itimes */
   weight=vector(1,n);  
   for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */  } /* end of prwizard */
   mint=matrix(1,maxwav,1,n);  /******************* Gompertz Likelihood ******************************/
   anint=matrix(1,maxwav,1,n);  double gompertz(double x[])
   s=imatrix(1,maxwav+1,1,n);  {
   tab=ivector(1,NCOVMAX);    double A,B,L=0.0,sump=0.,num=0.;
   ncodemax=ivector(1,8);    int i,n=0; /* n is the size of the sample */
   
   i=1;    for (i=0;i<=imx-1 ; i++) {
   while (fgets(line, MAXLINE, fic) != NULL)    {      sump=sump+weight[i];
     if ((i >= firstobs) && (i <=lastobs)) {      /*    sump=sump+1;*/
               num=num+1;
       for (j=maxwav;j>=1;j--){    }
         cutv(stra, strb,line,' '); s[j][i]=atoi(strb);    
         strcpy(line,stra);   
         cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);    /* for (i=0; i<=imx; i++)
         cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);       if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
       }  
             for (i=1;i<=imx ; i++)
       cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);      {
       cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);        if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
       cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);       
       cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);        if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
       cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);               +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
       for (j=ncovcol;j>=1;j--){       
         cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);        /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
       }         if (wav[i] > 1 ) { /* ??? */
       lstra=strlen(stra);          L=L+A*weight[i];
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */          /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         stratrunc = &(stra[lstra-9]);        }
         num[i]=atol(stratrunc);      }
       }  
       else   /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
         num[i]=atol(stra);   
             return -2*L*num/sump;
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){  }
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/  
   /******************* Printing html file ***********/
       i=i+1;  void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
     }                    int lastpass, int stepm, int weightopt, char model[],\
   }                    int imx,  double p[],double **matcov,double agemortsup){
   /* printf("ii=%d", ij);    int i,k;
      scanf("%d",i);*/  
   imx=i-1; /* Number of individuals */    fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
   /* for (i=1; i<=imx; i++){    for (i=1;i<=2;i++)
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;      fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;    fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;    fprintf(fichtm,"</ul>");
     }*/  
    /*  for (i=1; i<=imx; i++){  fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
      if (s[4][i]==9)  s[4][i]=-1;   
      printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/   fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
     
  for (i=1; i<=imx; i++)   for (k=agegomp;k<(agemortsup-2);k++)
       fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
    /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;  
      else weight[i]=1;*/   
     fflush(fichtm);
   /* Calculation of the number of parameter from char model*/  }
   Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */  
   Tprod=ivector(1,15);   /******************* Gnuplot file **************/
   Tvaraff=ivector(1,15);   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   Tvard=imatrix(1,15,1,2);  
   Tage=ivector(1,15);          char dirfileres[132],optfileres[132];
        int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
   if (strlen(model) >1){ /* If there is at least 1 covariate */    int ng;
     j=0, j1=0, k1=1, k2=1;  
     j=nbocc(model,'+'); /* j=Number of '+' */  
     j1=nbocc(model,'*'); /* j1=Number of '*' */    /*#ifdef windows */
     cptcovn=j+1;     fprintf(ficgp,"cd \"%s\" \n",pathc);
     cptcovprod=j1; /*Number of products */      /*#endif */
       
     strcpy(modelsav,model);   
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){    strcpy(dirfileres,optionfilefiname);
       printf("Error. Non available option model=%s ",model);    strcpy(optfileres,"vpl");
       fprintf(ficlog,"Error. Non available option model=%s ",model);    fprintf(ficgp,"set out \"graphmort.png\"\n ");
       goto end;    fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n ");
     }    fprintf(ficgp, "set ter png small\n set log y\n");
         fprintf(ficgp, "set size 0.65,0.65\n");
     /* This loop fills the array Tvar from the string 'model'.*/    fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
     for(i=(j+1); i>=1;i--){  }
       cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */   
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */  
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/  
       /*scanf("%d",i);*/  
       if (strchr(strb,'*')) {  /* Model includes a product */  
         cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/  /***********************************************/
         if (strcmp(strc,"age")==0) { /* Vn*age */  /**************** Main Program *****************/
           cptcovprod--;  /***********************************************/
           cutv(strb,stre,strd,'V');  
           Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/  int main(int argc, char *argv[])
           cptcovage++;  {
             Tage[cptcovage]=i;    int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
             /*printf("stre=%s ", stre);*/    int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
         }    int linei, month, year,iout;
         else if (strcmp(strd,"age")==0) { /* or age*Vn */    int jj, ll, li, lj, lk, imk;
           cptcovprod--;    int numlinepar=0; /* Current linenumber of parameter file */
           cutv(strb,stre,strc,'V');    int itimes;
           Tvar[i]=atoi(stre);    int NDIM=2;
           cptcovage++;  
           Tage[cptcovage]=i;    char ca[32], cb[32], cc[32];
         }    char dummy[]="                         ";
         else {  /* Age is not in the model */    /*  FILE *fichtm; *//* Html File */
           cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/    /* FILE *ficgp;*/ /*Gnuplot File */
           Tvar[i]=ncovcol+k1;    struct stat info;
           cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */    double agedeb, agefin,hf;
           Tprod[k1]=i;    double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
           Tvard[k1][1]=atoi(strc); /* m*/  
           Tvard[k1][2]=atoi(stre); /* n */    double fret;
           Tvar[cptcovn+k2]=Tvard[k1][1];    double **xi,tmp,delta;
           Tvar[cptcovn+k2+1]=Tvard[k1][2];   
           for (k=1; k<=lastobs;k++)     double dum; /* Dummy variable */
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];    double ***p3mat;
           k1++;    double ***mobaverage;
           k2=k2+2;    int *indx;
         }    char line[MAXLINE], linepar[MAXLINE];
       }    char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
       else { /* no more sum */    char pathr[MAXLINE], pathimach[MAXLINE];
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/    char **bp, *tok, *val; /* pathtot */
        /*  scanf("%d",i);*/    int firstobs=1, lastobs=10;
       cutv(strd,strc,strb,'V');    int sdeb, sfin; /* Status at beginning and end */
       Tvar[i]=atoi(strc);    int c,  h , cpt,l;
       }    int ju,jl, mi;
       strcpy(modelsav,stra);      int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);    int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab;
         scanf("%d",i);*/    int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     } /* end of loop + */    int mobilav=0,popforecast=0;
   } /* end model */    int hstepm, nhstepm;
       int agemortsup;
   /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.    float  sumlpop=0.;
     If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/    double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);  
   printf("cptcovprod=%d ", cptcovprod);    double bage, fage, age, agelim, agebase;
   fprintf(ficlog,"cptcovprod=%d ", cptcovprod);    double ftolpl=FTOL;
     double **prlim;
   scanf("%d ",i);    double *severity;
   fclose(fic);*/    double ***param; /* Matrix of parameters */
     double  *p;
     /*  if(mle==1){*/    double **matcov; /* Matrix of covariance */
   if (weightopt != 1) { /* Maximisation without weights*/    double ***delti3; /* Scale */
     for(i=1;i<=n;i++) weight[i]=1.0;    double *delti; /* Scale */
   }    double ***eij, ***vareij;
     /*-calculation of age at interview from date of interview and age at death -*/    double **varpl; /* Variances of prevalence limits by age */
   agev=matrix(1,maxwav,1,imx);    double *epj, vepp;
     double kk1, kk2;
   for (i=1; i<=imx; i++) {    double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     for(m=2; (m<= maxwav); m++) {    double **ximort;
       if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){    char *alph[]={"a","a","b","c","d","e"}, str[4];
         anint[m][i]=9999;    int *dcwave;
         s[m][i]=-1;  
       }    char z[1]="c", occ;
       if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){  
         nberr++;    char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
         printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);    char  *strt, strtend[80];
         fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);    char *stratrunc;
         s[m][i]=-1;    int lstra;
       }  
       if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){    long total_usecs;
         nberr++;   
         printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]);   /*   setlocale (LC_ALL, ""); */
         fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]);   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
         s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */  /*   textdomain (PACKAGE); */
       }  /*   setlocale (LC_CTYPE, ""); */
     }  /*   setlocale (LC_MESSAGES, ""); */
   }  
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
   for (i=1; i<=imx; i++)  {    (void) gettimeofday(&start_time,&tzp);
     agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);    curr_time=start_time;
     for(m=firstpass; (m<= lastpass); m++){    tm = *localtime(&start_time.tv_sec);
       if(s[m][i] >0){    tmg = *gmtime(&start_time.tv_sec);
         if (s[m][i] >= nlstate+1) {    strcpy(strstart,asctime(&tm));
           if(agedc[i]>0)  
             if((int)moisdc[i]!=99 && (int)andc[i]!=9999)  /*  printf("Localtime (at start)=%s",strstart); */
               agev[m][i]=agedc[i];  /*  tp.tv_sec = tp.tv_sec +86400; */
           /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/  /*  tm = *localtime(&start_time.tv_sec); */
             else {  /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
               if ((int)andc[i]!=9999){  /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
                 nbwarn++;  /*   tmg.tm_hour=tmg.tm_hour + 1; */
                 printf("Warning negative age at death: %ld line:%d\n",num[i],i);  /*   tp.tv_sec = mktime(&tmg); */
                 fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);  /*   strt=asctime(&tmg); */
                 agev[m][i]=-1;  /*   printf("Time(after) =%s",strstart);  */
               }  /*  (void) time (&time_value);
             }  *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
         }  *  tm = *localtime(&time_value);
         else if(s[m][i] !=9){ /* Standard case, age in fractional  *  strstart=asctime(&tm);
                                  years but with the precision of a  *  printf("tim_value=%d,asctime=%s\n",time_value,strstart);
                                  month */  */
           agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);  
           if((int)mint[m][i]==99 || (int)anint[m][i]==9999)    nberr=0; /* Number of errors and warnings */
             agev[m][i]=1;    nbwarn=0;
           else if(agev[m][i] <agemin){     getcwd(pathcd, size);
             agemin=agev[m][i];  
             /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/    printf("\n%s\n%s",version,fullversion);
           }    if(argc <=1){
           else if(agev[m][i] >agemax){      printf("\nEnter the parameter file name: ");
             agemax=agev[m][i];      fgets(pathr,FILENAMELENGTH,stdin);
             /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/      i=strlen(pathr);
           }      if(pathr[i-1]=='\n')
           /*agev[m][i]=anint[m][i]-annais[i];*/        pathr[i-1]='\0';
           /*     agev[m][i] = age[i]+2*m;*/     for (tok = pathr; tok != NULL; ){
         }        printf("Pathr |%s|\n",pathr);
         else { /* =9 */        while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
           agev[m][i]=1;        printf("val= |%s| pathr=%s\n",val,pathr);
           s[m][i]=-1;        strcpy (pathtot, val);
         }        if(pathr[0] == '\0') break; /* Dirty */
       }      }
       else /*= 0 Unknown */    }
         agev[m][i]=1;    else{
     }      strcpy(pathtot,argv[1]);
         }
   }    /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
   for (i=1; i<=imx; i++)  {    /*cygwin_split_path(pathtot,path,optionfile);
     for(m=firstpass; (m<=lastpass); m++){      printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
       if (s[m][i] > (nlstate+ndeath)) {    /* cutv(path,optionfile,pathtot,'\\');*/
         nberr++;  
         printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);         /* Split argv[0], imach program to get pathimach */
         fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);         printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
         goto end;    split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
       }    printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     }   /*   strcpy(pathimach,argv[0]); */
   }    /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
   /*for (i=1; i<=imx; i++){    printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
   for (m=firstpass; (m<lastpass); m++){    chdir(path); /* Can be a relative path */
      printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);    if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
 }      printf("Current directory %s!\n",pathcd);
     strcpy(command,"mkdir ");
 }*/    strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
   printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);      /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
   fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);       /* fclose(ficlog); */
   /*     exit(1); */
   free_vector(severity,1,maxwav);    }
   free_imatrix(outcome,1,maxwav+1,1,n);  /*   if((imk=mkdir(optionfilefiname))<0){ */
   free_vector(moisnais,1,n);  /*     perror("mkdir"); */
   free_vector(annais,1,n);  /*   } */
   /* free_matrix(mint,1,maxwav,1,n);  
      free_matrix(anint,1,maxwav,1,n);*/    /*-------- arguments in the command line --------*/
   free_vector(moisdc,1,n);  
   free_vector(andc,1,n);    /* Log file */
     strcat(filelog, optionfilefiname);
        strcat(filelog,".log");    /* */
   wav=ivector(1,imx);    if((ficlog=fopen(filelog,"w"))==NULL)    {
   dh=imatrix(1,lastpass-firstpass+1,1,imx);      printf("Problem with logfile %s\n",filelog);
   bh=imatrix(1,lastpass-firstpass+1,1,imx);      goto end;
   mw=imatrix(1,lastpass-firstpass+1,1,imx);    }
        fprintf(ficlog,"Log filename:%s\n",filelog);
   /* Concatenates waves */    fprintf(ficlog,"\n%s\n%s",version,fullversion);
   concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);    fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
   /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */   path=%s \n\
    optionfile=%s\n\
   Tcode=ivector(1,100);   optionfilext=%s\n\
   nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   ncodemax[1]=1;  
   if (cptcovn > 0) tricode(Tvar,nbcode,imx);    printf("Local time (at start):%s",strstart);
           fprintf(ficlog,"Local time (at start): %s",strstart);
   codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of     fflush(ficlog);
                                  the estimations*/  /*   (void) gettimeofday(&curr_time,&tzp); */
   h=0;  /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   m=pow(2,cptcoveff);  
      /* */
   for(k=1;k<=cptcoveff; k++){    strcpy(fileres,"r");
     for(i=1; i <=(m/pow(2,k));i++){    strcat(fileres, optionfilefiname);
       for(j=1; j <= ncodemax[k]; j++){    strcat(fileres,".txt");    /* Other files have txt extension */
         for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){  
           h++;    /*---------arguments file --------*/
           if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;  
           /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/    if((ficpar=fopen(optionfile,"r"))==NULL)    {
         }       printf("Problem with optionfile %s\n",optionfile);
       }      fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
     }      fflush(ficlog);
   }       goto end;
   /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);     }
      codtab[1][2]=1;codtab[2][2]=2; */  
   /* for(i=1; i <=m ;i++){   
      for(k=1; k <=cptcovn; k++){  
      printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);    strcpy(filereso,"o");
      }    strcat(filereso,fileres);
      printf("\n");    if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
      }      printf("Problem with Output resultfile: %s\n", filereso);
      scanf("%d",i);*/      fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
           fflush(ficlog);
   /*------------ gnuplot -------------*/      goto end;
   strcpy(optionfilegnuplot,optionfilefiname);    }
   strcat(optionfilegnuplot,".gp");  
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {    /* Reads comments: lines beginning with '#' */
     printf("Problem with file %s",optionfilegnuplot);    numlinepar=0;
   }    while((c=getc(ficpar))=='#' && c!= EOF){
   else{      ungetc(c,ficpar);
     fprintf(ficgp,"\n# %s\n", version);       fgets(line, MAXLINE, ficpar);
     fprintf(ficgp,"# %s\n", optionfilegnuplot);       numlinepar++;
     fprintf(ficgp,"set missing 'NaNq'\n");      puts(line);
   }      fputs(line,ficparo);
   /*  fclose(ficgp);*/      fputs(line,ficlog);
   /*--------- index.htm --------*/    }
     ungetc(c,ficpar);
   strcpy(optionfilehtm,optionfilefiname); /* Main html file */  
   strcat(optionfilehtm,".htm");    fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {    numlinepar++;
     printf("Problem with %s \n",optionfilehtm), exit(0);    printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
   }    fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
   strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */    fflush(ficlog);
   strcat(optionfilehtmcov,"-cov.htm");    while((c=getc(ficpar))=='#' && c!= EOF){
   if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {      ungetc(c,ficpar);
     printf("Problem with %s \n",optionfilehtmcov), exit(0);      fgets(line, MAXLINE, ficpar);
   }      numlinepar++;
   else{      puts(line);
   fprintf(fichtmcov,"<body>\n<title>IMaCh Cov %s</title>\n <font size=\"2\">%s <br> %s</font> \      fputs(line,ficparo);
 <hr size=\"2\" color=\"#EC5E5E\"> \n\      fputs(line,ficlog);
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\    }
           fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);    ungetc(c,ficpar);
   }  
      
   fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \    covar=matrix(0,NCOVMAX,1,n);
 <hr size=\"2\" color=\"#EC5E5E\"> \n\    cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\    if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
 \n\  
 <hr  size=\"2\" color=\"#EC5E5E\">\    ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
  <ul><li><h4>Parameter files</h4>\n\    nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\    npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
  - Log file of the run: <a href=\"%s\">%s</a><br>\n\  
  - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\    delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
  - Date and time at start: %s</ul>\n",\    delti=delti3[1][1];
           fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\    /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
           fileres,fileres,\    if(mle==-1){ /* Print a wizard for help writing covariance matrix */
           filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);      prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
   fflush(fichtm);      printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
   strcpy(pathr,path);      free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   strcat(pathr,optionfilefiname);      fclose (ficparo);
   chdir(optionfilefiname); /* Move to directory named optionfile */      fclose (ficlog);
         goto end;
   /* Calculates basic frequencies. Computes observed prevalence at single age      exit(0);
      and prints on file fileres'p'. */    }
   freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);    else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
   fprintf(fichtm,"\n");      printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
   fprintf(fichtm,"<br>Total number of observations=%d <br>\n\      fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
 Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\      param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\      matcov=matrix(1,npar,1,npar);
           imx,agemin,agemax,jmin,jmax,jmean);    }
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    else{
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      /* Read guess parameters */
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      /* Reads comments: lines beginning with '#' */
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      while((c=getc(ficpar))=='#' && c!= EOF){
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */        ungetc(c,ficpar);
             fgets(line, MAXLINE, ficpar);
            numlinepar++;
   /* For Powell, parameters are in a vector p[] starting at p[1]        puts(line);
      so we point p on param[1][1] so that p[1] maps on param[1][1][1] */        fputs(line,ficparo);
   p=param[1][1]; /* *(*(*(param +1)+1)+0) */        fputs(line,ficlog);
       }
   globpr=0; /* To get the number ipmx of contributions and the sum of weights*/      ungetc(c,ficpar);
   likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */     
   printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);      param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
   for (k=1; k<=npar;k++)      for(i=1; i <=nlstate; i++){
     printf(" %d %8.5f",k,p[k]);        j=0;
   printf("\n");        for(jj=1; jj <=nlstate+ndeath; jj++){
   globpr=1; /* to print the contributions */          if(jj==i) continue;
   likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */          j++;
   printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);          fscanf(ficpar,"%1d%1d",&i1,&j1);
   for (k=1; k<=npar;k++)          if ((i1 != i) && (j1 != j)){
     printf(" %d %8.5f",k,p[k]);            printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
   printf("\n");  It might be a problem of design; if ncovcol and the model are correct\n \
   if(mle>=1){ /* Could be 1 or 2 */  run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);            exit(1);
   }          }
               fprintf(ficparo,"%1d%1d",i1,j1);
   /*--------- results files --------------*/          if(mle==1)
   fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);            printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
   fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");            fscanf(ficpar," %lf",&param[i][j][k]);
   printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");            if(mle==1){
   fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");              printf(" %lf",param[i][j][k]);
   for(i=1,jk=1; i <=nlstate; i++){              fprintf(ficlog," %lf",param[i][j][k]);
     for(k=1; k <=(nlstate+ndeath); k++){            }
       if (k != i) {            else
         printf("%d%d ",i,k);              fprintf(ficlog," %lf",param[i][j][k]);
         fprintf(ficlog,"%d%d ",i,k);            fprintf(ficparo," %lf",param[i][j][k]);
         fprintf(ficres,"%1d%1d ",i,k);          }
         for(j=1; j <=ncovmodel; j++){          fscanf(ficpar,"\n");
           printf("%f ",p[jk]);          numlinepar++;
           fprintf(ficlog,"%f ",p[jk]);          if(mle==1)
           fprintf(ficres,"%f ",p[jk]);            printf("\n");
           jk++;           fprintf(ficlog,"\n");
         }          fprintf(ficparo,"\n");
         printf("\n");        }
         fprintf(ficlog,"\n");      }  
         fprintf(ficres,"\n");      fflush(ficlog);
       }  
     }      p=param[1][1];
   }     
   if(mle!=0){      /* Reads comments: lines beginning with '#' */
     /* Computing hessian and covariance matrix */      while((c=getc(ficpar))=='#' && c!= EOF){
     ftolhess=ftol; /* Usually correct */        ungetc(c,ficpar);
     hesscov(matcov, p, npar, delti, ftolhess, func);        fgets(line, MAXLINE, ficpar);
   }        numlinepar++;
   fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");        puts(line);
   printf("# Scales (for hessian or gradient estimation)\n");        fputs(line,ficparo);
   fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");        fputs(line,ficlog);
   for(i=1,jk=1; i <=nlstate; i++){      }
     for(j=1; j <=nlstate+ndeath; j++){      ungetc(c,ficpar);
       if (j!=i) {  
         fprintf(ficres,"%1d%1d",i,j);      for(i=1; i <=nlstate; i++){
         printf("%1d%1d",i,j);        for(j=1; j <=nlstate+ndeath-1; j++){
         fprintf(ficlog,"%1d%1d",i,j);          fscanf(ficpar,"%1d%1d",&i1,&j1);
         for(k=1; k<=ncovmodel;k++){          if ((i1-i)*(j1-j)!=0){
           printf(" %.5e",delti[jk]);            printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
           fprintf(ficlog," %.5e",delti[jk]);            exit(1);
           fprintf(ficres," %.5e",delti[jk]);          }
           jk++;          printf("%1d%1d",i,j);
         }          fprintf(ficparo,"%1d%1d",i1,j1);
         printf("\n");          fprintf(ficlog,"%1d%1d",i1,j1);
         fprintf(ficlog,"\n");          for(k=1; k<=ncovmodel;k++){
         fprintf(ficres,"\n");            fscanf(ficpar,"%le",&delti3[i][j][k]);
       }            printf(" %le",delti3[i][j][k]);
     }            fprintf(ficparo," %le",delti3[i][j][k]);
   }            fprintf(ficlog," %le",delti3[i][j][k]);
              }
   fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");          fscanf(ficpar,"\n");
   if(mle>=1)          numlinepar++;
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");          printf("\n");
   fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");          fprintf(ficparo,"\n");
 /* # 121 Var(a12)\n\ */          fprintf(ficlog,"\n");
 /* # 122 Cov(b12,a12) Var(b12)\n\ */        }
 /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */      }
 /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */      fflush(ficlog);
 /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */  
 /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */      delti=delti3[1][1];
 /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */  
 /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */  
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
    
 /* Just to have a covariance matrix which will be more understandable      /* Reads comments: lines beginning with '#' */
    even is we still don't want to manage dictionary of variables      while((c=getc(ficpar))=='#' && c!= EOF){
 */        ungetc(c,ficpar);
   for(itimes=1;itimes<=2;itimes++){        fgets(line, MAXLINE, ficpar);
     jj=0;        numlinepar++;
     for(i=1; i <=nlstate; i++){        puts(line);
       for(j=1; j <=nlstate+ndeath; j++){        fputs(line,ficparo);
         if(j==i) continue;        fputs(line,ficlog);
         for(k=1; k<=ncovmodel;k++){      }
           jj++;      ungetc(c,ficpar);
           ca[0]= k+'a'-1;ca[1]='\0';   
           if(itimes==1){      matcov=matrix(1,npar,1,npar);
             if(mle>=1)      for(i=1; i <=npar; i++){
               printf("#%1d%1d%d",i,j,k);        fscanf(ficpar,"%s",&str);
             fprintf(ficlog,"#%1d%1d%d",i,j,k);        if(mle==1)
             fprintf(ficres,"#%1d%1d%d",i,j,k);          printf("%s",str);
           }else{        fprintf(ficlog,"%s",str);
             if(mle>=1)        fprintf(ficparo,"%s",str);
               printf("%1d%1d%d",i,j,k);        for(j=1; j <=i; j++){
             fprintf(ficlog,"%1d%1d%d",i,j,k);          fscanf(ficpar," %le",&matcov[i][j]);
             fprintf(ficres,"%1d%1d%d",i,j,k);          if(mle==1){
           }            printf(" %.5le",matcov[i][j]);
           ll=0;          }
           for(li=1;li <=nlstate; li++){          fprintf(ficlog," %.5le",matcov[i][j]);
             for(lj=1;lj <=nlstate+ndeath; lj++){          fprintf(ficparo," %.5le",matcov[i][j]);
               if(lj==li) continue;        }
               for(lk=1;lk<=ncovmodel;lk++){        fscanf(ficpar,"\n");
                 ll++;        numlinepar++;
                 if(ll<=jj){        if(mle==1)
                   cb[0]= lk +'a'-1;cb[1]='\0';          printf("\n");
                   if(ll<jj){        fprintf(ficlog,"\n");
                     if(itimes==1){        fprintf(ficparo,"\n");
                       if(mle>=1)      }
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);      for(i=1; i <=npar; i++)
                       fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);        for(j=i+1;j<=npar;j++)
                       fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);          matcov[i][j]=matcov[j][i];
                     }else{     
                       if(mle>=1)      if(mle==1)
                         printf(" %.5e",matcov[jj][ll]);         printf("\n");
                       fprintf(ficlog," %.5e",matcov[jj][ll]);       fprintf(ficlog,"\n");
                       fprintf(ficres," %.5e",matcov[jj][ll]);      
                     }      fflush(ficlog);
                   }else{     
                     if(itimes==1){      /*-------- Rewriting parameter file ----------*/
                       if(mle>=1)      strcpy(rfileres,"r");    /* "Rparameterfile */
                         printf(" Var(%s%1d%1d)",ca,i,j);      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
                       fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);      strcat(rfileres,".");    /* */
                       fprintf(ficres," Var(%s%1d%1d)",ca,i,j);      strcat(rfileres,optionfilext);    /* Other files have txt extension */
                     }else{      if((ficres =fopen(rfileres,"w"))==NULL) {
                       if(mle>=1)        printf("Problem writing new parameter file: %s\n", fileres);goto end;
                         printf(" %.5e",matcov[jj][ll]);         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
                       fprintf(ficlog," %.5e",matcov[jj][ll]);       }
                       fprintf(ficres," %.5e",matcov[jj][ll]);       fprintf(ficres,"#%s\n",version);
                     }    }    /* End of mle != -3 */
                   }  
                 }    /*-------- data file ----------*/
               } /* end lk */    if((fic=fopen(datafile,"r"))==NULL)    {
             } /* end lj */      printf("Problem while opening datafile: %s\n", datafile);goto end;
           } /* end li */      fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);goto end;
           if(mle>=1)    }
             printf("\n");  
           fprintf(ficlog,"\n");    n= lastobs;
           fprintf(ficres,"\n");    severity = vector(1,maxwav);
           numlinepar++;    outcome=imatrix(1,maxwav+1,1,n);
         } /* end k*/    num=lvector(1,n);
       } /*end j */    moisnais=vector(1,n);
     } /* end i */    annais=vector(1,n);
   } /* end itimes */    moisdc=vector(1,n);
     andc=vector(1,n);
   fflush(ficlog);    agedc=vector(1,n);
   fflush(ficres);    cod=ivector(1,n);
     weight=vector(1,n);
   while((c=getc(ficpar))=='#' && c!= EOF){    for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     ungetc(c,ficpar);    mint=matrix(1,maxwav,1,n);
     fgets(line, MAXLINE, ficpar);    anint=matrix(1,maxwav,1,n);
     puts(line);    s=imatrix(1,maxwav+1,1,n);
     fputs(line,ficparo);    tab=ivector(1,NCOVMAX);
   }    ncodemax=ivector(1,8);
   ungetc(c,ficpar);  
     i=1;
   estepm=0;    linei=0;
   fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);    while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
   if (estepm==0 || estepm < stepm) estepm=stepm;      linei=linei+1;
   if (fage <= 2) {      for(j=strlen(line); j>=0;j--){  /* Untabifies line */
     bage = ageminpar;        if(line[j] == '\t')
     fage = agemaxpar;          line[j] = ' ';
   }      }
          for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
   fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");        ;
   fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);      };
   fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);      line[j+1]=0;  /* Trims blanks at end of line */
          if(line[0]=='#'){
   while((c=getc(ficpar))=='#' && c!= EOF){        fprintf(ficlog,"Comment line\n%s\n",line);
     ungetc(c,ficpar);        printf("Comment line\n%s\n",line);
     fgets(line, MAXLINE, ficpar);        continue;
     puts(line);      }
     fputs(line,ficparo);  
   }      for (j=maxwav;j>=1;j--){
   ungetc(c,ficpar);        cutv(stra, strb,line,' ');
           errno=0;
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);        lval=strtol(strb,&endptr,10);
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);        /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
   fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);        if( strb[0]=='\0' || (*endptr != '\0')){
   printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);          printf("Error reading data around '%d' at line number %d %s for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
   fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);          exit(1);
            }
   while((c=getc(ficpar))=='#' && c!= EOF){        s[j][i]=lval;
     ungetc(c,ficpar);       
     fgets(line, MAXLINE, ficpar);        strcpy(line,stra);
     puts(line);        cutv(stra, strb,line,' ');
     fputs(line,ficparo);        if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
   }        }
   ungetc(c,ficpar);        else  if(iout=sscanf(strb,"%s.") != 0){
            month=99;
           year=9999;
   dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;        }else{
   dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;          printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           exit(1);
   fscanf(ficpar,"pop_based=%d\n",&popbased);        }
   fprintf(ficparo,"pop_based=%d\n",popbased);           anint[j][i]= (double) year;
   fprintf(ficres,"pop_based=%d\n",popbased);           mint[j][i]= (double)month;
           strcpy(line,stra);
   while((c=getc(ficpar))=='#' && c!= EOF){      } /* ENd Waves */
     ungetc(c,ficpar);     
     fgets(line, MAXLINE, ficpar);      cutv(stra, strb,line,' ');
     puts(line);      if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
     fputs(line,ficparo);      }
   }      else  if(iout=sscanf(strb,"%s.",dummy) != 0){
   ungetc(c,ficpar);        month=99;
         year=9999;
   fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);      }else{
   fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);        printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
   printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);        exit(1);
   fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);      }
   fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);      andc[i]=(double) year;
   /* day and month of proj2 are not used but only year anproj2.*/      moisdc[i]=(double) month;
       strcpy(line,stra);
   while((c=getc(ficpar))=='#' && c!= EOF){     
     ungetc(c,ficpar);      cutv(stra, strb,line,' ');
     fgets(line, MAXLINE, ficpar);      if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
     puts(line);      }
     fputs(line,ficparo);      else  if(iout=sscanf(strb,"%s.") != 0){
   }        month=99;
   ungetc(c,ficpar);        year=9999;
       }else{
   /*  fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);        printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line,j);
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);        exit(1);
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);*/      }
       annais[i]=(double)(year);
   /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/      moisnais[i]=(double)(month);
   /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/      strcpy(line,stra);
      
   replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */      cutv(stra, strb,line,' ');
   printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);      errno=0;
       dval=strtod(strb,&endptr);
   printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\      if( strb[0]=='\0' || (*endptr != '\0')){
                model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\        printf("Error reading data around '%f' at line number %ld, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
                jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);        exit(1);
        }
   /*------------ free_vector  -------------*/      weight[i]=dval;
   /*  chdir(path); */      strcpy(line,stra);
       
   free_ivector(wav,1,imx);      for (j=ncovcol;j>=1;j--){
   free_imatrix(dh,1,lastpass-firstpass+1,1,imx);        cutv(stra, strb,line,' ');
   free_imatrix(bh,1,lastpass-firstpass+1,1,imx);        errno=0;
   free_imatrix(mw,1,lastpass-firstpass+1,1,imx);           lval=strtol(strb,&endptr,10);
   free_lvector(num,1,n);        if( strb[0]=='\0' || (*endptr != '\0')){
   free_vector(agedc,1,n);          printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a covar (meaning 0 for the reference or 1).  Exiting.\n",lval, linei,i, line);
   /*free_matrix(covar,0,NCOVMAX,1,n);*/          exit(1);
   /*free_matrix(covar,1,NCOVMAX,1,n);*/        }
   fclose(ficparo);        if(lval <-1 || lval >1){
   fclose(ficres);          printf("Error reading data around '%d' at line number %ld for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
   /*--------------- Prevalence limit  (stable prevalence) --------------*/   For example, for multinomial values like 1, 2 and 3,\n \
      build V1=0 V2=0 for the reference value (1),\n \
   strcpy(filerespl,"pl");          V1=1 V2=0 for (2) \n \
   strcat(filerespl,fileres);   and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
   if((ficrespl=fopen(filerespl,"w"))==NULL) {   output of IMaCh is often meaningless.\n \
     printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;   Exiting.\n",lval,linei, i,line,j);
     fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;          exit(1);
   }        }
   printf("Computing stable prevalence: result on file '%s' \n", filerespl);        covar[j][i]=(double)(lval);
   fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);        strcpy(line,stra);
   fprintf(ficrespl,"#Stable prevalence \n");      }
   fprintf(ficrespl,"#Age ");      lstra=strlen(stra);
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);     
   fprintf(ficrespl,"\n");      if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
           stratrunc = &(stra[lstra-9]);
   prlim=matrix(1,nlstate,1,nlstate);        num[i]=atol(stratrunc);
       }
   agebase=ageminpar;      else
   agelim=agemaxpar;        num[i]=atol(stra);
   ftolpl=1.e-10;      /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
   i1=cptcoveff;        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
   if (cptcovn < 1){i1=1;}     
       i=i+1;
   for(cptcov=1,k=0;cptcov<=i1;cptcov++){    } /* End loop reading  data */
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    fclose(fic);
       k=k+1;    /* printf("ii=%d", ij);
       /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/       scanf("%d",i);*/
       fprintf(ficrespl,"\n#******");    imx=i-1; /* Number of individuals */
       printf("\n#******");  
       fprintf(ficlog,"\n#******");    /* for (i=1; i<=imx; i++){
       for(j=1;j<=cptcoveff;j++) {      if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
         fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
         printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
         fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      }*/
       }     /*  for (i=1; i<=imx; i++){
       fprintf(ficrespl,"******\n");       if (s[4][i]==9)  s[4][i]=-1;
       printf("******\n");       printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
       fprintf(ficlog,"******\n");   
             /* for (i=1; i<=imx; i++) */
       for (age=agebase; age<=agelim; age++){   
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);     /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
         fprintf(ficrespl,"%.0f ",age );       else weight[i]=1;*/
         for(j=1;j<=cptcoveff;j++)  
           fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    /* Calculation of the number of parameters from char model */
         for(i=1; i<=nlstate;i++)    Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
           fprintf(ficrespl," %.5f", prlim[i][i]);    Tprod=ivector(1,15);
         fprintf(ficrespl,"\n");    Tvaraff=ivector(1,15);
       }    Tvard=imatrix(1,15,1,2);
     }    Tage=ivector(1,15);      
   }     
   fclose(ficrespl);    if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
   /*------------- h Pij x at various ages ------------*/      j=nbocc(model,'+'); /* j=Number of '+' */
         j1=nbocc(model,'*'); /* j1=Number of '*' */
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);      cptcovn=j+1;
   if((ficrespij=fopen(filerespij,"w"))==NULL) {      cptcovprod=j1; /*Number of products */
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;     
     fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;      strcpy(modelsav,model);
   }      if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
   printf("Computing pij: result on file '%s' \n", filerespij);        printf("Error. Non available option model=%s ",model);
   fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);        fprintf(ficlog,"Error. Non available option model=%s ",model);
           goto end;
   stepsize=(int) (stepm+YEARM-1)/YEARM;      }
   /*if (stepm<=24) stepsize=2;*/     
       /* This loop fills the array Tvar from the string 'model'.*/
   agelim=AGESUP;  
   hstepm=stepsize*YEARM; /* Every year of age */      for(i=(j+1); i>=1;i--){
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
   /* hstepm=1;   aff par mois*/        /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
   fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");        if (strchr(strb,'*')) {  /* Model includes a product */
   for(cptcov=1,k=0;cptcov<=i1;cptcov++){          cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){          if (strcmp(strc,"age")==0) { /* Vn*age */
       k=k+1;            cptcovprod--;
       fprintf(ficrespij,"\n#****** ");            cutv(strb,stre,strd,'V');
       for(j=1;j<=cptcoveff;j++)             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
         fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            cptcovage++;
       fprintf(ficrespij,"******\n");              Tage[cptcovage]=i;
                       /*printf("stre=%s ", stre);*/
       for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */          }
         nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */           else if (strcmp(strd,"age")==0) { /* or age*Vn */
         nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */            cptcovprod--;
             cutv(strb,stre,strc,'V');
         /*        nhstepm=nhstepm*YEARM; aff par mois*/            Tvar[i]=atoi(stre);
             cptcovage++;
         p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            Tage[cptcovage]=i;
         oldm=oldms;savm=savms;          }
         hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);            else {  /* Age is not in the model */
         fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");            cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
         for(i=1; i<=nlstate;i++)            Tvar[i]=ncovcol+k1;
           for(j=1; j<=nlstate+ndeath;j++)            cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             fprintf(ficrespij," %1d-%1d",i,j);            Tprod[k1]=i;
         fprintf(ficrespij,"\n");            Tvard[k1][1]=atoi(strc); /* m*/
         for (h=0; h<=nhstepm; h++){            Tvard[k1][2]=atoi(stre); /* n */
           fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );            Tvar[cptcovn+k2]=Tvard[k1][1];
           for(i=1; i<=nlstate;i++)            Tvar[cptcovn+k2+1]=Tvard[k1][2];
             for(j=1; j<=nlstate+ndeath;j++)            for (k=1; k<=lastobs;k++)
               fprintf(ficrespij," %.5f", p3mat[i][j][h]);              covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
           fprintf(ficrespij,"\n");            k1++;
         }            k2=k2+2;
         free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          }
         fprintf(ficrespij,"\n");        }
       }        else { /* no more sum */
     }          /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
   }         /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
   varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax);        Tvar[i]=atoi(strc);
         }
   fclose(ficrespij);        strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);          scanf("%d",i);*/
   for(i=1;i<=AGESUP;i++)      } /* end of loop + */
     for(j=1;j<=NCOVMAX;j++)    } /* end model */
       for(k=1;k<=NCOVMAX;k++)   
         probs[i][j][k]=0.;    /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   /*---------- Forecasting ------------------*/  
   /*if((stepm == 1) && (strcmp(model,".")==0)){*/    /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
   if(prevfcast==1){    printf("cptcovprod=%d ", cptcovprod);
     /*    if(stepm ==1){*/    fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
       prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);  
       /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/    scanf("%d ",i);*/
 /*      }  */  
 /*      else{ */      /*  if(mle==1){*/
 /*        erreur=108; */    if (weightopt != 1) { /* Maximisation without weights*/
 /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */      for(i=1;i<=n;i++) weight[i]=1.0;
 /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */    }
 /*      } */      /*-calculation of age at interview from date of interview and age at death -*/
   }    agev=matrix(1,maxwav,1,imx);
     
     for (i=1; i<=imx; i++) {
   /*---------- Health expectancies and variances ------------*/      for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
   strcpy(filerest,"t");          anint[m][i]=9999;
   strcat(filerest,fileres);          s[m][i]=-1;
   if((ficrest=fopen(filerest,"w"))==NULL) {        }
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;        if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
     fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;          nberr++;
   }          printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
   printf("Computing Total LEs with variances: file '%s' \n", filerest);           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
   fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest);           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
   strcpy(filerese,"e");          nberr++;
   strcat(filerese,fileres);          printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]);
   if((ficreseij=fopen(filerese,"w"))==NULL) {          fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]);
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);          s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
     fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);        }
   }      }
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);    }
   fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);  
     for (i=1; i<=imx; i++)  {
   strcpy(fileresv,"v");      agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
   strcat(fileresv,fileres);      for(m=firstpass; (m<= lastpass); m++){
   if((ficresvij=fopen(fileresv,"w"))==NULL) {        if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);          if (s[m][i] >= nlstate+1) {
     fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);            if(agedc[i]>0)
   }              if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);                agev[m][i]=agedc[i];
   fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);            /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
   /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */                if ((int)andc[i]!=9999){
   prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);                  nbwarn++;
   /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\                  printf("Warning negative age at death: %ld line:%d\n",num[i],i);
 ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);                  fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
   */                  agev[m][i]=-1;
                 }
   if (mobilav!=0) {              }
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          }
     if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){          else if(s[m][i] !=9){ /* Standard case, age in fractional
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);                                   years but with the precision of a month */
       printf(" Error in movingaverage mobilav=%d\n",mobilav);            agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
     }            if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
   }              agev[m][i]=1;
             else if(agev[m][i] <agemin){
   for(cptcov=1,k=0;cptcov<=i1;cptcov++){              agemin=agev[m][i];
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){              /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
       k=k+1;             }
       fprintf(ficrest,"\n#****** ");            else if(agev[m][i] >agemax){
       for(j=1;j<=cptcoveff;j++)               agemax=agev[m][i];
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
       fprintf(ficrest,"******\n");            }
             /*agev[m][i]=anint[m][i]-annais[i];*/
       fprintf(ficreseij,"\n#****** ");            /*     agev[m][i] = age[i]+2*m;*/
       for(j=1;j<=cptcoveff;j++)           }
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          else { /* =9 */
       fprintf(ficreseij,"******\n");            agev[m][i]=1;
             s[m][i]=-1;
       fprintf(ficresvij,"\n#****** ");          }
       for(j=1;j<=cptcoveff;j++)         }
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        else /*= 0 Unknown */
       fprintf(ficresvij,"******\n");          agev[m][i]=1;
       }
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);     
       oldm=oldms;savm=savms;    }
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);      for (i=1; i<=imx; i++)  {
        for(m=firstpass; (m<=lastpass); m++){
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);        if (s[m][i] > (nlstate+ndeath)) {
       oldm=oldms;savm=savms;          nberr++;
       varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav);          printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);    
       if(popbased==1){          fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);    
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav);          goto end;
       }        }
       }
      }
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");  
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);    /*for (i=1; i<=imx; i++){
       fprintf(ficrest,"\n");    for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
       epj=vector(1,nlstate+1);  }
       for(age=bage; age <=fage ;age++){  
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);  }*/
         if (popbased==1) {  
           if(mobilav ==0){  
             for(i=1; i<=nlstate;i++)    printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
               prlim[i][i]=probs[(int)age][i][k];    fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
           }else{ /* mobilav */   
             for(i=1; i<=nlstate;i++)    agegomp=(int)agemin;
               prlim[i][i]=mobaverage[(int)age][i][k];    free_vector(severity,1,maxwav);
           }    free_imatrix(outcome,1,maxwav+1,1,n);
         }    free_vector(moisnais,1,n);
             free_vector(annais,1,n);
         fprintf(ficrest," %4.0f",age);    /* free_matrix(mint,1,maxwav,1,n);
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){       free_matrix(anint,1,maxwav,1,n);*/
           for(i=1, epj[j]=0.;i <=nlstate;i++) {    free_vector(moisdc,1,n);
             epj[j] += prlim[i][i]*eij[i][j][(int)age];    free_vector(andc,1,n);
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/  
           }     
           epj[nlstate+1] +=epj[j];    wav=ivector(1,imx);
         }    dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
         for(i=1, vepp=0.;i <=nlstate;i++)    mw=imatrix(1,lastpass-firstpass+1,1,imx);
           for(j=1;j <=nlstate;j++)     
             vepp += vareij[i][j][(int)age];    /* Concatenates waves */
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));    concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
         for(j=1;j <=nlstate;j++){  
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));    /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
         }  
         fprintf(ficrest,"\n");    Tcode=ivector(1,100);
       }    nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);
       free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);    ncodemax[1]=1;
       free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);    if (cptcovn > 0) tricode(Tvar,nbcode,imx);
       free_vector(epj,1,nlstate+1);       
     }    codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of
   }                                   the estimations*/
   free_vector(weight,1,n);    h=0;
   free_imatrix(Tvard,1,15,1,2);    m=pow(2,cptcoveff);
   free_imatrix(s,1,maxwav+1,1,n);   
   free_matrix(anint,1,maxwav,1,n);     for(k=1;k<=cptcoveff; k++){
   free_matrix(mint,1,maxwav,1,n);      for(i=1; i <=(m/pow(2,k));i++){
   free_ivector(cod,1,n);        for(j=1; j <= ncodemax[k]; j++){
   free_ivector(tab,1,NCOVMAX);          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
   fclose(ficreseij);            h++;
   fclose(ficresvij);            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
   fclose(ficrest);            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
   fclose(ficpar);          }
           }
   /*------- Variance of stable prevalence------*/         }
     }
   strcpy(fileresvpl,"vpl");    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);
   strcat(fileresvpl,fileres);       codtab[1][2]=1;codtab[2][2]=2; */
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {    /* for(i=1; i <=m ;i++){
     printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);       for(k=1; k <=cptcovn; k++){
     exit(0);       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
   }       }
   printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);       printf("\n");
        }
   for(cptcov=1,k=0;cptcov<=i1;cptcov++){       scanf("%d",i);*/
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){     
       k=k+1;    /*------------ gnuplot -------------*/
       fprintf(ficresvpl,"\n#****** ");    strcpy(optionfilegnuplot,optionfilefiname);
       for(j=1;j<=cptcoveff;j++)     if(mle==-3)
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      strcat(optionfilegnuplot,"-mort");
       fprintf(ficresvpl,"******\n");    strcat(optionfilegnuplot,".gp");
         
       varpl=matrix(1,nlstate,(int) bage, (int) fage);    if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       oldm=oldms;savm=savms;      printf("Problem with file %s",optionfilegnuplot);
       varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);    }
       free_matrix(varpl,1,nlstate,(int) bage, (int)fage);    else{
     }      fprintf(ficgp,"\n# %s\n", version);
   }      fprintf(ficgp,"# %s\n", optionfilegnuplot);
       fprintf(ficgp,"set missing 'NaNq'\n");
   fclose(ficresvpl);    }
     /*  fclose(ficgp);*/
   /*---------- End : free ----------------*/    /*--------- index.htm --------*/
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);  
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);    strcpy(optionfilehtm,optionfilefiname); /* Main html file */
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);    if(mle==-3)
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);      strcat(optionfilehtm,"-mort");
       strcat(optionfilehtm,".htm");
   free_matrix(covar,0,NCOVMAX,1,n);    if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
   free_matrix(matcov,1,npar,1,npar);      printf("Problem with %s \n",optionfilehtm), exit(0);
   /*free_vector(delti,1,npar);*/    }
   free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);   
   free_matrix(agev,1,maxwav,1,imx);    strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);    strcat(optionfilehtmcov,"-cov.htm");
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
   free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);      printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
   free_ivector(ncodemax,1,8);    else{
   free_ivector(Tvar,1,15);    fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   free_ivector(Tprod,1,15);  <hr size=\"2\" color=\"#EC5E5E\"> \n\
   free_ivector(Tvaraff,1,15);  Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
   free_ivector(Tage,1,15);            optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
   free_ivector(Tcode,1,100);    }
   
   fflush(fichtm);    fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   fflush(ficgp);  <hr size=\"2\" color=\"#EC5E5E\"> \n\
     Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   if((nberr >0) || (nbwarn>0)){  <hr  size=\"2\" color=\"#EC5E5E\">\
     printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);   <ul><li><h4>Parameter files</h4>\n\
     fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);   - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
   }else{   - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
     printf("End of Imach\n");   - Log file of the run: <a href=\"%s\">%s</a><br>\n\
     fprintf(ficlog,"End of Imach\n");   - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
   }   - Date and time at start: %s</ul>\n",\
   printf("See log file on %s\n",filelog);            optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */            optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
   (void) gettimeofday(&end_time,&tzp);            fileres,fileres,\
   tm = *localtime(&end_time.tv_sec);            filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
   tmg = *gmtime(&end_time.tv_sec);    fflush(fichtm);
   strcpy(strtend,asctime(&tm));  
   printf("Local time at start %s\nLocaltime at end   %s",strstart, strtend);     strcpy(pathr,path);
   fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend);     strcat(pathr,optionfilefiname);
   printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));    chdir(optionfilefiname); /* Move to directory named optionfile */
    
   printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);    /* Calculates basic frequencies. Computes observed prevalence at single age
   fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));       and prints on file fileres'p'. */
   fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);    freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   /*  printf("Total time was %d uSec.\n", total_usecs);*/  
 /*   if(fileappend(fichtm,optionfilehtm)){ */    fprintf(fichtm,"\n");
   fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);    fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   fclose(fichtm);  Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   fclose(fichtmcov);  Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
   fclose(ficgp);            imx,agemin,agemax,jmin,jmax,jmean);
   fclose(ficlog);    pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
   /*------ End -----------*/      oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
   chdir(path);      savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
   strcpy(plotcmd,GNUPLOTPROGRAM);      oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
   strcat(plotcmd," ");     
   strcat(plotcmd,optionfilegnuplot);     
   printf("Starting graphs with: %s",plotcmd);fflush(stdout);    /* For Powell, parameters are in a vector p[] starting at p[1]
   if((outcmd=system(plotcmd)) != 0){       so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     printf(" Problem with gnuplot\n");    p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   }  
   printf(" Wait...");    globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   while (z[0] != 'q') {  
     /* chdir(path); */    if (mle==-3){
     printf("\nType e to edit output files, g to graph again and q for exiting: ");      ximort=matrix(1,NDIM,1,NDIM);
     scanf("%s",z);      cens=ivector(1,n);
 /*     if (z[0] == 'c') system("./imach"); */      ageexmed=vector(1,n);
     if (z[0] == 'e') system(optionfilehtm);      agecens=vector(1,n);
     else if (z[0] == 'g') system(plotcmd);      dcwave=ivector(1,n);
     else if (z[0] == 'q') exit(0);   
   }      for (i=1; i<=imx; i++){
   end:        dcwave[i]=-1;
   while (z[0] != 'q') {        for (m=firstpass; m<=lastpass; m++)
     printf("\nType  q for exiting: ");          if (s[m][i]>nlstate) {
     scanf("%s",z);            dcwave[i]=m;
   }            /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
 }            break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.;
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1)
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
      
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
      
       p[1]=0.0268; p[NDIM]=0.083;
       /*printf("%lf %lf", p[1], p[2]);*/
      
      
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
       strcpy(filerespow,"pow-mort");
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
      
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
      
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz);
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
      
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
      
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++)
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
      
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
      
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
      
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
      
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
      
      
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++)
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
      
      
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
      
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
      
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
     } /* Endof if mle==-3 */
    
     else{ /* For mle >=1 */
    
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
      
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
      
      
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%lf ",p[jk]);
               fprintf(ficlog,"%lf ",p[jk]);
               fprintf(ficres,"%lf ",p[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
      
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
      
      
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]);
                           fprintf(ficlog," %.5e",matcov[jj][ll]);
                           fprintf(ficres," %.5e",matcov[jj][ll]);
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]);
                           fprintf(ficlog," %.5e",matcov[jj][ll]);
                           fprintf(ficres," %.5e",matcov[jj][ll]);
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
      
       fflush(ficlog);
       fflush(ficres);
      
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
      
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
      
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
      
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
      
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
      
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
      
      
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
      
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);  
       fprintf(ficres,"pop_based=%d\n",popbased);  
      
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
      
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
      
      
      
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
      
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
      
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
        
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);  
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
    
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       pstamp(ficrespl);
       fprintf(ficrespl,"# Period (stable) prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
    
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
          
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
    
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
    
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */
   
       /* hstepm=1;   aff par mois*/
       pstamp(ficrespij);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
          
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
    
   
       /*---------- Health expectancies and variances ------------*/
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest);
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest);
   
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficreseij,"\n#****** ");
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
           cvevsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav, strstart);
           if(popbased==1){
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav, strstart);
           }
   
           pstamp(ficrest);
           fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n# Age ( e.. (std) ");
           for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
           fprintf(ficrest,"\n");
   
           epj=vector(1,nlstate+1);
           for(age=bage; age <=fage ;age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             if (popbased==1) {
               if(mobilav ==0){
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=probs[(int)age][i][k];
               }else{ /* mobilav */
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=mobaverage[(int)age][i][k];
               }
             }
          
             fprintf(ficrest," %4.0f",age);
             for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
               for(i=1, epj[j]=0.;i <=nlstate;i++) {
                 epj[j] += prlim[i][i]*eij[i][j][(int)age];
                 /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
               }
               epj[nlstate+1] +=epj[j];
             }
   
             for(i=1, vepp=0.;i <=nlstate;i++)
               for(j=1;j <=nlstate;j++)
                 vepp += vareij[i][j][(int)age];
             fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
             for(j=1;j <=nlstate;j++){
               fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
             }
             fprintf(ficrest,"\n");
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n);
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficreseij);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
    
       /*------- Variance of period (stable) prevalence------*/  
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
        
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
     free_matrix(prlim,1,nlstate,1,nlstate);
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
       free_ivector(Tcode,1,100);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
    
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend);
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend);
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
    
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.97  
changed lines
  Added in v.1.125


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>