Diff for /imach/src/imach.c between versions 1.52 and 1.87

version 1.52, 2002/07/19 18:49:30 version 1.87, 2003/06/18 12:26:01
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.87  2003/06/18 12:26:01  brouard
      Version 0.96
   This program computes Healthy Life Expectancies from  
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    Revision 1.86  2003/06/17 20:04:08  brouard
   first survey ("cross") where individuals from different ages are    (Module): Change position of html and gnuplot routines and added
   interviewed on their health status or degree of disability (in the    routine fileappend.
   case of a health survey which is our main interest) -2- at least a  
   second wave of interviews ("longitudinal") which measure each change    Revision 1.85  2003/06/17 13:12:43  brouard
   (if any) in individual health status.  Health expectancies are    * imach.c (Repository): Check when date of death was earlier that
   computed from the time spent in each health state according to a    current date of interview. It may happen when the death was just
   model. More health states you consider, more time is necessary to reach the    prior to the death. In this case, dh was negative and likelihood
   Maximum Likelihood of the parameters involved in the model.  The    was wrong (infinity). We still send an "Error" but patch by
   simplest model is the multinomial logistic model where pij is the    assuming that the date of death was just one stepm after the
   probability to be observed in state j at the second wave    interview.
   conditional to be observed in state i at the first wave. Therefore    (Repository): Because some people have very long ID (first column)
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    we changed int to long in num[] and we added a new lvector for
   'age' is age and 'sex' is a covariate. If you want to have a more    memory allocation. But we also truncated to 8 characters (left
   complex model than "constant and age", you should modify the program    truncation)
   where the markup *Covariates have to be included here again* invites    (Repository): No more line truncation errors.
   you to do it.  More covariates you add, slower the  
   convergence.    Revision 1.84  2003/06/13 21:44:43  brouard
     * imach.c (Repository): Replace "freqsummary" at a correct
   The advantage of this computer programme, compared to a simple    place. It differs from routine "prevalence" which may be called
   multinomial logistic model, is clear when the delay between waves is not    many times. Probs is memory consuming and must be used with
   identical for each individual. Also, if a individual missed an    parcimony.
   intermediate interview, the information is lost, but taken into    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
   account using an interpolation or extrapolation.    
     Revision 1.83  2003/06/10 13:39:11  lievre
   hPijx is the probability to be observed in state i at age x+h    *** empty log message ***
   conditional to the observed state i at age x. The delay 'h' can be  
   split into an exact number (nh*stepm) of unobserved intermediate    Revision 1.82  2003/06/05 15:57:20  brouard
   states. This elementary transition (by month or quarter trimester,    Add log in  imach.c and  fullversion number is now printed.
   semester or year) is model as a multinomial logistic.  The hPx  
   matrix is simply the matrix product of nh*stepm elementary matrices  */
   and the contribution of each individual to the likelihood is simply  /*
   hPijx.     Interpolated Markov Chain
   
   Also this programme outputs the covariance matrix of the parameters but also    Short summary of the programme:
   of the life expectancies. It also computes the prevalence limits.    
      This program computes Healthy Life Expectancies from
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
            Institut national d'études démographiques, Paris.    first survey ("cross") where individuals from different ages are
   This software have been partly granted by Euro-REVES, a concerted action    interviewed on their health status or degree of disability (in the
   from the European Union.    case of a health survey which is our main interest) -2- at least a
   It is copyrighted identically to a GNU software product, ie programme and    second wave of interviews ("longitudinal") which measure each change
   software can be distributed freely for non commercial use. Latest version    (if any) in individual health status.  Health expectancies are
   can be accessed at http://euroreves.ined.fr/imach .    computed from the time spent in each health state according to a
   **********************************************************************/    model. More health states you consider, more time is necessary to reach the
      Maximum Likelihood of the parameters involved in the model.  The
 #include <math.h>    simplest model is the multinomial logistic model where pij is the
 #include <stdio.h>    probability to be observed in state j at the second wave
 #include <stdlib.h>    conditional to be observed in state i at the first wave. Therefore
 #include <unistd.h>    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
     'age' is age and 'sex' is a covariate. If you want to have a more
 #define MAXLINE 256    complex model than "constant and age", you should modify the program
 #define GNUPLOTPROGRAM "gnuplot"    where the markup *Covariates have to be included here again* invites
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    you to do it.  More covariates you add, slower the
 #define FILENAMELENGTH 80    convergence.
 /*#define DEBUG*/  
 #define windows    The advantage of this computer programme, compared to a simple
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    multinomial logistic model, is clear when the delay between waves is not
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    identical for each individual. Also, if a individual missed an
     intermediate interview, the information is lost, but taken into
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    account using an interpolation or extrapolation.  
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */  
     hPijx is the probability to be observed in state i at age x+h
 #define NINTERVMAX 8    conditional to the observed state i at age x. The delay 'h' can be
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    split into an exact number (nh*stepm) of unobserved intermediate
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    states. This elementary transition (by month, quarter,
 #define NCOVMAX 8 /* Maximum number of covariates */    semester or year) is modelled as a multinomial logistic.  The hPx
 #define MAXN 20000    matrix is simply the matrix product of nh*stepm elementary matrices
 #define YEARM 12. /* Number of months per year */    and the contribution of each individual to the likelihood is simply
 #define AGESUP 130    hPijx.
 #define AGEBASE 40  
 #ifdef windows    Also this programme outputs the covariance matrix of the parameters but also
 #define DIRSEPARATOR '\\'    of the life expectancies. It also computes the stable prevalence. 
 #define ODIRSEPARATOR '/'    
 #else    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
 #define DIRSEPARATOR '/'             Institut national d'études démographiques, Paris.
 #define ODIRSEPARATOR '\\'    This software have been partly granted by Euro-REVES, a concerted action
 #endif    from the European Union.
     It is copyrighted identically to a GNU software product, ie programme and
 char version[80]="Imach version 0.8i, June 2002, INED-EUROREVES ";    software can be distributed freely for non commercial use. Latest version
 int erreur; /* Error number */    can be accessed at http://euroreves.ined.fr/imach .
 int nvar;  
 int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
 int npar=NPARMAX;    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
 int nlstate=2; /* Number of live states */    
 int ndeath=1; /* Number of dead states */    **********************************************************************/
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */  /*
 int popbased=0;    main
     read parameterfile
 int *wav; /* Number of waves for this individuual 0 is possible */    read datafile
 int maxwav; /* Maxim number of waves */    concatwav
 int jmin, jmax; /* min, max spacing between 2 waves */    freqsummary
 int mle, weightopt;    if (mle >= 1)
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */      mlikeli
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    print results files
 double jmean; /* Mean space between 2 waves */    if mle==1 
 double **oldm, **newm, **savm; /* Working pointers to matrices */       computes hessian
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    read end of parameter file: agemin, agemax, bage, fage, estepm
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;        begin-prev-date,...
 FILE *ficlog;    open gnuplot file
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;    open html file
 FILE *ficresprobmorprev;    stable prevalence
 FILE *fichtm; /* Html File */     for age prevalim()
 FILE *ficreseij;    h Pij x
 char filerese[FILENAMELENGTH];    variance of p varprob
 FILE  *ficresvij;    forecasting if prevfcast==1 prevforecast call prevalence()
 char fileresv[FILENAMELENGTH];    health expectancies
 FILE  *ficresvpl;    Variance-covariance of DFLE
 char fileresvpl[FILENAMELENGTH];    prevalence()
 char title[MAXLINE];     movingaverage()
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];    varevsij() 
 char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];    if popbased==1 varevsij(,popbased)
     total life expectancies
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];    Variance of stable prevalence
 char filelog[FILENAMELENGTH]; /* Log file */   end
 char filerest[FILENAMELENGTH];  */
 char fileregp[FILENAMELENGTH];  
 char popfile[FILENAMELENGTH];  
   
 char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];   
   #include <math.h>
 #define NR_END 1  #include <stdio.h>
 #define FREE_ARG char*  #include <stdlib.h>
 #define FTOL 1.0e-10  #include <unistd.h>
   
 #define NRANSI  #include <sys/time.h>
 #define ITMAX 200  #include <time.h>
   #include "timeval.h"
 #define TOL 2.0e-4  
   #define MAXLINE 256
 #define CGOLD 0.3819660  #define GNUPLOTPROGRAM "gnuplot"
 #define ZEPS 1.0e-10  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);  #define FILENAMELENGTH 132
   /*#define DEBUG*/
 #define GOLD 1.618034  /*#define windows*/
 #define GLIMIT 100.0  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
 #define TINY 1.0e-20  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
   
 static double maxarg1,maxarg2;  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))  
    #define NINTERVMAX 8
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
 #define rint(a) floor(a+0.5)  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
   #define NCOVMAX 8 /* Maximum number of covariates */
 static double sqrarg;  #define MAXN 20000
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)  #define YEARM 12. /* Number of months per year */
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}  #define AGESUP 130
   #define AGEBASE 40
 int imx;  #ifdef unix
 int stepm;  #define DIRSEPARATOR '/'
 /* Stepm, step in month: minimum step interpolation*/  #define ODIRSEPARATOR '\\'
   #else
 int estepm;  #define DIRSEPARATOR '\\'
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/  #define ODIRSEPARATOR '/'
   #endif
 int m,nb;  
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;  /* $Id$ */
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;  /* $State$ */
 double **pmmij, ***probs, ***mobaverage;  
 double dateintmean=0;  char version[]="Imach version 0.96, June 2003, INED-EUROREVES ";
   char fullversion[]="$Revision$ $Date$"; 
 double *weight;  int erreur; /* Error number */
 int **s; /* Status */  int nvar;
 double *agedc, **covar, idx;  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;  int npar=NPARMAX;
   int nlstate=2; /* Number of live states */
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */  int ndeath=1; /* Number of dead states */
 double ftolhess; /* Tolerance for computing hessian */  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
   int popbased=0;
 /**************** split *************************/  
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )  int *wav; /* Number of waves for this individuual 0 is possible */
 {  int maxwav; /* Maxim number of waves */
    char *s;                             /* pointer */  int jmin, jmax; /* min, max spacing between 2 waves */
    int  l1, l2;                         /* length counters */  int gipmx, gsw; /* Global variables on the number of contributions 
                      to the likelihood and the sum of weights (done by funcone)*/
    l1 = strlen( path );                 /* length of path */  int mle, weightopt;
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
    s= strrchr( path, DIRSEPARATOR );            /* find last / */  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
    if ( s == NULL ) {                   /* no directory, so use current */  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
      /*if(strrchr(path, ODIRSEPARATOR )==NULL)             * wave mi and wave mi+1 is not an exact multiple of stepm. */
        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/  double jmean; /* Mean space between 2 waves */
 #if     defined(__bsd__)                /* get current working directory */  double **oldm, **newm, **savm; /* Working pointers to matrices */
       extern char       *getwd( );  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
   FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
       if ( getwd( dirc ) == NULL ) {  FILE *ficlog, *ficrespow;
 #else  int globpr; /* Global variable for printing or not */
       extern char       *getcwd( );  double fretone; /* Only one call to likelihood */
   long ipmx; /* Number of contributions */
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {  double sw; /* Sum of weights */
 #endif  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
          return( GLOCK_ERROR_GETCWD );  FILE *ficresilk;
       }  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
       strcpy( name, path );             /* we've got it */  FILE *ficresprobmorprev;
    } else {                             /* strip direcotry from path */  FILE *fichtm; /* Html File */
       s++;                              /* after this, the filename */  FILE *ficreseij;
       l2 = strlen( s );                 /* length of filename */  char filerese[FILENAMELENGTH];
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );  FILE  *ficresvij;
       strcpy( name, s );                /* save file name */  char fileresv[FILENAMELENGTH];
       strncpy( dirc, path, l1 - l2 );   /* now the directory */  FILE  *ficresvpl;
       dirc[l1-l2] = 0;                  /* add zero */  char fileresvpl[FILENAMELENGTH];
    }  char title[MAXLINE];
    l1 = strlen( dirc );                 /* length of directory */  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
 #ifdef windows  char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }  
 #else  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }  char filelog[FILENAMELENGTH]; /* Log file */
 #endif  char filerest[FILENAMELENGTH];
    s = strrchr( name, '.' );            /* find last / */  char fileregp[FILENAMELENGTH];
    s++;  char popfile[FILENAMELENGTH];
    strcpy(ext,s);                       /* save extension */  
    l1= strlen( name);  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];
    l2= strlen( s)+1;  
    strncpy( finame, name, l1-l2);  #define NR_END 1
    finame[l1-l2]= 0;  #define FREE_ARG char*
    return( 0 );                         /* we're done */  #define FTOL 1.0e-10
 }  
   #define NRANSI 
   #define ITMAX 200 
 /******************************************/  
   #define TOL 2.0e-4 
 void replace(char *s, char*t)  
 {  #define CGOLD 0.3819660 
   int i;  #define ZEPS 1.0e-10 
   int lg=20;  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
   i=0;  
   lg=strlen(t);  #define GOLD 1.618034 
   for(i=0; i<= lg; i++) {  #define GLIMIT 100.0 
     (s[i] = t[i]);  #define TINY 1.0e-20 
     if (t[i]== '\\') s[i]='/';  
   }  static double maxarg1,maxarg2;
 }  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
   #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
 int nbocc(char *s, char occ)    
 {  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
   int i,j=0;  #define rint(a) floor(a+0.5)
   int lg=20;  
   i=0;  static double sqrarg;
   lg=strlen(s);  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   for(i=0; i<= lg; i++) {  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
   if  (s[i] == occ ) j++;  
   }  int imx; 
   return j;  int stepm;
 }  /* Stepm, step in month: minimum step interpolation*/
   
 void cutv(char *u,char *v, char*t, char occ)  int estepm;
 {  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
   /* cuts string t into u and v where u is ended by char occ excluding it  
      and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)  int m,nb;
      gives u="abcedf" and v="ghi2j" */  long *num;
   int i,lg,j,p=0;  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;
   i=0;  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
   for(j=0; j<=strlen(t)-1; j++) {  double **pmmij, ***probs;
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  double dateintmean=0;
   }  
   double *weight;
   lg=strlen(t);  int **s; /* Status */
   for(j=0; j<p; j++) {  double *agedc, **covar, idx;
     (u[j] = t[j]);  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
   }  
      u[p]='\0';  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
   double ftolhess; /* Tolerance for computing hessian */
    for(j=0; j<= lg; j++) {  
     if (j>=(p+1))(v[j-p-1] = t[j]);  /**************** split *************************/
   }  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
 }  {
     char  *ss;                            /* pointer */
 /********************** nrerror ********************/    int   l1, l2;                         /* length counters */
   
 void nrerror(char error_text[])    l1 = strlen(path );                   /* length of path */
 {    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
   fprintf(stderr,"ERREUR ...\n");    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
   fprintf(stderr,"%s\n",error_text);    if ( ss == NULL ) {                   /* no directory, so use current */
   exit(1);      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
 }        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
 /*********************** vector *******************/      /* get current working directory */
 double *vector(int nl, int nh)      /*    extern  char* getcwd ( char *buf , int len);*/
 {      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
   double *v;        return( GLOCK_ERROR_GETCWD );
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));      }
   if (!v) nrerror("allocation failure in vector");      strcpy( name, path );               /* we've got it */
   return v-nl+NR_END;    } else {                              /* strip direcotry from path */
 }      ss++;                               /* after this, the filename */
       l2 = strlen( ss );                  /* length of filename */
 /************************ free vector ******************/      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
 void free_vector(double*v, int nl, int nh)      strcpy( name, ss );         /* save file name */
 {      strncpy( dirc, path, l1 - l2 );     /* now the directory */
   free((FREE_ARG)(v+nl-NR_END));      dirc[l1-l2] = 0;                    /* add zero */
 }    }
     l1 = strlen( dirc );                  /* length of directory */
 /************************ivector *******************************/    /*#ifdef windows
 int *ivector(long nl,long nh)    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }
 {  #else
   int *v;    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  #endif
   if (!v) nrerror("allocation failure in ivector");    */
   return v-nl+NR_END;    ss = strrchr( name, '.' );            /* find last / */
 }    ss++;
     strcpy(ext,ss);                       /* save extension */
 /******************free ivector **************************/    l1= strlen( name);
 void free_ivector(int *v, long nl, long nh)    l2= strlen(ss)+1;
 {    strncpy( finame, name, l1-l2);
   free((FREE_ARG)(v+nl-NR_END));    finame[l1-l2]= 0;
 }    return( 0 );                          /* we're done */
   }
 /******************* imatrix *******************************/  
 int **imatrix(long nrl, long nrh, long ncl, long nch)  
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  /******************************************/
 {  
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  void replace(char *s, char*t)
   int **m;  {
      int i;
   /* allocate pointers to rows */    int lg=20;
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));    i=0;
   if (!m) nrerror("allocation failure 1 in matrix()");    lg=strlen(t);
   m += NR_END;    for(i=0; i<= lg; i++) {
   m -= nrl;      (s[i] = t[i]);
        if (t[i]== '\\') s[i]='/';
      }
   /* allocate rows and set pointers to them */  }
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  int nbocc(char *s, char occ)
   m[nrl] += NR_END;  {
   m[nrl] -= ncl;    int i,j=0;
      int lg=20;
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;    i=0;
      lg=strlen(s);
   /* return pointer to array of pointers to rows */    for(i=0; i<= lg; i++) {
   return m;    if  (s[i] == occ ) j++;
 }    }
     return j;
 /****************** free_imatrix *************************/  }
 void free_imatrix(m,nrl,nrh,ncl,nch)  
       int **m;  void cutv(char *u,char *v, char*t, char occ)
       long nch,ncl,nrh,nrl;  {
      /* free an int matrix allocated by imatrix() */    /* cuts string t into u and v where u is ended by char occ excluding it
 {       and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)
   free((FREE_ARG) (m[nrl]+ncl-NR_END));       gives u="abcedf" and v="ghi2j" */
   free((FREE_ARG) (m+nrl-NR_END));    int i,lg,j,p=0;
 }    i=0;
     for(j=0; j<=strlen(t)-1; j++) {
 /******************* matrix *******************************/      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
 double **matrix(long nrl, long nrh, long ncl, long nch)    }
 {  
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;    lg=strlen(t);
   double **m;    for(j=0; j<p; j++) {
       (u[j] = t[j]);
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    }
   if (!m) nrerror("allocation failure 1 in matrix()");       u[p]='\0';
   m += NR_END;  
   m -= nrl;     for(j=0; j<= lg; j++) {
       if (j>=(p+1))(v[j-p-1] = t[j]);
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    }
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  }
   m[nrl] += NR_END;  
   m[nrl] -= ncl;  /********************** nrerror ********************/
   
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  void nrerror(char error_text[])
   return m;  {
 }    fprintf(stderr,"ERREUR ...\n");
     fprintf(stderr,"%s\n",error_text);
 /*************************free matrix ************************/    exit(EXIT_FAILURE);
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  }
 {  /*********************** vector *******************/
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  double *vector(int nl, int nh)
   free((FREE_ARG)(m+nrl-NR_END));  {
 }    double *v;
     v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
 /******************* ma3x *******************************/    if (!v) nrerror("allocation failure in vector");
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)    return v-nl+NR_END;
 {  }
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  
   double ***m;  /************************ free vector ******************/
   void free_vector(double*v, int nl, int nh)
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  {
   if (!m) nrerror("allocation failure 1 in matrix()");    free((FREE_ARG)(v+nl-NR_END));
   m += NR_END;  }
   m -= nrl;  
   /************************ivector *******************************/
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  int *ivector(long nl,long nh)
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  {
   m[nrl] += NR_END;    int *v;
   m[nrl] -= ncl;    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
     if (!v) nrerror("allocation failure in ivector");
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    return v-nl+NR_END;
   }
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  /******************free ivector **************************/
   m[nrl][ncl] += NR_END;  void free_ivector(int *v, long nl, long nh)
   m[nrl][ncl] -= nll;  {
   for (j=ncl+1; j<=nch; j++)    free((FREE_ARG)(v+nl-NR_END));
     m[nrl][j]=m[nrl][j-1]+nlay;  }
    
   for (i=nrl+1; i<=nrh; i++) {  /************************lvector *******************************/
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  long *lvector(long nl,long nh)
     for (j=ncl+1; j<=nch; j++)  {
       m[i][j]=m[i][j-1]+nlay;    long *v;
   }    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
   return m;    if (!v) nrerror("allocation failure in ivector");
 }    return v-nl+NR_END;
   }
 /*************************free ma3x ************************/  
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  /******************free lvector **************************/
 {  void free_lvector(long *v, long nl, long nh)
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  {
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    free((FREE_ARG)(v+nl-NR_END));
   free((FREE_ARG)(m+nrl-NR_END));  }
 }  
   /******************* imatrix *******************************/
 /***************** f1dim *************************/  int **imatrix(long nrl, long nrh, long ncl, long nch) 
 extern int ncom;       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
 extern double *pcom,*xicom;  { 
 extern double (*nrfunc)(double []);    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
      int **m; 
 double f1dim(double x)    
 {    /* allocate pointers to rows */ 
   int j;    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
   double f;    if (!m) nrerror("allocation failure 1 in matrix()"); 
   double *xt;    m += NR_END; 
      m -= nrl; 
   xt=vector(1,ncom);    
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];    
   f=(*nrfunc)(xt);    /* allocate rows and set pointers to them */ 
   free_vector(xt,1,ncom);    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
   return f;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
 }    m[nrl] += NR_END; 
     m[nrl] -= ncl; 
 /*****************brent *************************/    
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
 {    
   int iter;    /* return pointer to array of pointers to rows */ 
   double a,b,d,etemp;    return m; 
   double fu,fv,fw,fx;  } 
   double ftemp;  
   double p,q,r,tol1,tol2,u,v,w,x,xm;  /****************** free_imatrix *************************/
   double e=0.0;  void free_imatrix(m,nrl,nrh,ncl,nch)
          int **m;
   a=(ax < cx ? ax : cx);        long nch,ncl,nrh,nrl; 
   b=(ax > cx ? ax : cx);       /* free an int matrix allocated by imatrix() */ 
   x=w=v=bx;  { 
   fw=fv=fx=(*f)(x);    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
   for (iter=1;iter<=ITMAX;iter++) {    free((FREE_ARG) (m+nrl-NR_END)); 
     xm=0.5*(a+b);  } 
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  /******************* matrix *******************************/
     printf(".");fflush(stdout);  double **matrix(long nrl, long nrh, long ncl, long nch)
     fprintf(ficlog,".");fflush(ficlog);  {
 #ifdef DEBUG    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    double **m;
     fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
 #endif    if (!m) nrerror("allocation failure 1 in matrix()");
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){    m += NR_END;
       *xmin=x;    m -= nrl;
       return fx;  
     }    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     ftemp=fu;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     if (fabs(e) > tol1) {    m[nrl] += NR_END;
       r=(x-w)*(fx-fv);    m[nrl] -= ncl;
       q=(x-v)*(fx-fw);  
       p=(x-v)*q-(x-w)*r;    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
       q=2.0*(q-r);    return m;
       if (q > 0.0) p = -p;    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
       q=fabs(q);     */
       etemp=e;  }
       e=d;  
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  /*************************free matrix ************************/
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
       else {  {
         d=p/q;    free((FREE_ARG)(m[nrl]+ncl-NR_END));
         u=x+d;    free((FREE_ARG)(m+nrl-NR_END));
         if (u-a < tol2 || b-u < tol2)  }
           d=SIGN(tol1,xm-x);  
       }  /******************* ma3x *******************************/
     } else {  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  {
     }    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));    double ***m;
     fu=(*f)(u);  
     if (fu <= fx) {    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
       if (u >= x) a=x; else b=x;    if (!m) nrerror("allocation failure 1 in matrix()");
       SHFT(v,w,x,u)    m += NR_END;
         SHFT(fv,fw,fx,fu)    m -= nrl;
         } else {  
           if (u < x) a=u; else b=u;    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
           if (fu <= fw || w == x) {    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
             v=w;    m[nrl] += NR_END;
             w=u;    m[nrl] -= ncl;
             fv=fw;  
             fw=fu;    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
           } else if (fu <= fv || v == x || v == w) {  
             v=u;    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
             fv=fu;    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
           }    m[nrl][ncl] += NR_END;
         }    m[nrl][ncl] -= nll;
   }    for (j=ncl+1; j<=nch; j++) 
   nrerror("Too many iterations in brent");      m[nrl][j]=m[nrl][j-1]+nlay;
   *xmin=x;    
   return fx;    for (i=nrl+1; i<=nrh; i++) {
 }      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
       for (j=ncl+1; j<=nch; j++) 
 /****************** mnbrak ***********************/        m[i][j]=m[i][j-1]+nlay;
     }
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,    return m; 
             double (*func)(double))    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
 {             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
   double ulim,u,r,q, dum;    */
   double fu;  }
    
   *fa=(*func)(*ax);  /*************************free ma3x ************************/
   *fb=(*func)(*bx);  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
   if (*fb > *fa) {  {
     SHFT(dum,*ax,*bx,dum)    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
       SHFT(dum,*fb,*fa,dum)    free((FREE_ARG)(m[nrl]+ncl-NR_END));
       }    free((FREE_ARG)(m+nrl-NR_END));
   *cx=(*bx)+GOLD*(*bx-*ax);  }
   *fc=(*func)(*cx);  
   while (*fb > *fc) {  /***************** f1dim *************************/
     r=(*bx-*ax)*(*fb-*fc);  extern int ncom; 
     q=(*bx-*cx)*(*fb-*fa);  extern double *pcom,*xicom;
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/  extern double (*nrfunc)(double []); 
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));   
     ulim=(*bx)+GLIMIT*(*cx-*bx);  double f1dim(double x) 
     if ((*bx-u)*(u-*cx) > 0.0) {  { 
       fu=(*func)(u);    int j; 
     } else if ((*cx-u)*(u-ulim) > 0.0) {    double f;
       fu=(*func)(u);    double *xt; 
       if (fu < *fc) {   
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))    xt=vector(1,ncom); 
           SHFT(*fb,*fc,fu,(*func)(u))    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
           }    f=(*nrfunc)(xt); 
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {    free_vector(xt,1,ncom); 
       u=ulim;    return f; 
       fu=(*func)(u);  } 
     } else {  
       u=(*cx)+GOLD*(*cx-*bx);  /*****************brent *************************/
       fu=(*func)(u);  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
     }  { 
     SHFT(*ax,*bx,*cx,u)    int iter; 
       SHFT(*fa,*fb,*fc,fu)    double a,b,d,etemp;
       }    double fu,fv,fw,fx;
 }    double ftemp;
     double p,q,r,tol1,tol2,u,v,w,x,xm; 
 /*************** linmin ************************/    double e=0.0; 
    
 int ncom;    a=(ax < cx ? ax : cx); 
 double *pcom,*xicom;    b=(ax > cx ? ax : cx); 
 double (*nrfunc)(double []);    x=w=v=bx; 
      fw=fv=fx=(*f)(x); 
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))    for (iter=1;iter<=ITMAX;iter++) { 
 {      xm=0.5*(a+b); 
   double brent(double ax, double bx, double cx,      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
                double (*f)(double), double tol, double *xmin);      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
   double f1dim(double x);      printf(".");fflush(stdout);
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,      fprintf(ficlog,".");fflush(ficlog);
               double *fc, double (*func)(double));  #ifdef DEBUG
   int j;      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   double xx,xmin,bx,ax;      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   double fx,fb,fa;      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
    #endif
   ncom=n;      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
   pcom=vector(1,n);        *xmin=x; 
   xicom=vector(1,n);        return fx; 
   nrfunc=func;      } 
   for (j=1;j<=n;j++) {      ftemp=fu;
     pcom[j]=p[j];      if (fabs(e) > tol1) { 
     xicom[j]=xi[j];        r=(x-w)*(fx-fv); 
   }        q=(x-v)*(fx-fw); 
   ax=0.0;        p=(x-v)*q-(x-w)*r; 
   xx=1.0;        q=2.0*(q-r); 
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);        if (q > 0.0) p = -p; 
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);        q=fabs(q); 
 #ifdef DEBUG        etemp=e; 
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);        e=d; 
   fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
 #endif          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
   for (j=1;j<=n;j++) {        else { 
     xi[j] *= xmin;          d=p/q; 
     p[j] += xi[j];          u=x+d; 
   }          if (u-a < tol2 || b-u < tol2) 
   free_vector(xicom,1,n);            d=SIGN(tol1,xm-x); 
   free_vector(pcom,1,n);        } 
 }      } else { 
         d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
 /*************** powell ************************/      } 
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
             double (*func)(double []))      fu=(*f)(u); 
 {      if (fu <= fx) { 
   void linmin(double p[], double xi[], int n, double *fret,        if (u >= x) a=x; else b=x; 
               double (*func)(double []));        SHFT(v,w,x,u) 
   int i,ibig,j;          SHFT(fv,fw,fx,fu) 
   double del,t,*pt,*ptt,*xit;          } else { 
   double fp,fptt;            if (u < x) a=u; else b=u; 
   double *xits;            if (fu <= fw || w == x) { 
   pt=vector(1,n);              v=w; 
   ptt=vector(1,n);              w=u; 
   xit=vector(1,n);              fv=fw; 
   xits=vector(1,n);              fw=fu; 
   *fret=(*func)(p);            } else if (fu <= fv || v == x || v == w) { 
   for (j=1;j<=n;j++) pt[j]=p[j];              v=u; 
   for (*iter=1;;++(*iter)) {              fv=fu; 
     fp=(*fret);            } 
     ibig=0;          } 
     del=0.0;    } 
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);    nrerror("Too many iterations in brent"); 
     fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f",*iter,*fret);    *xmin=x; 
     for (i=1;i<=n;i++)    return fx; 
       printf(" %d %.12f",i, p[i]);  } 
     fprintf(ficlog," %d %.12f",i, p[i]);  
     printf("\n");  /****************** mnbrak ***********************/
     fprintf(ficlog,"\n");  
     for (i=1;i<=n;i++) {  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
       for (j=1;j<=n;j++) xit[j]=xi[j][i];              double (*func)(double)) 
       fptt=(*fret);  { 
 #ifdef DEBUG    double ulim,u,r,q, dum;
       printf("fret=%lf \n",*fret);    double fu; 
       fprintf(ficlog,"fret=%lf \n",*fret);   
 #endif    *fa=(*func)(*ax); 
       printf("%d",i);fflush(stdout);    *fb=(*func)(*bx); 
       fprintf(ficlog,"%d",i);fflush(ficlog);    if (*fb > *fa) { 
       linmin(p,xit,n,fret,func);      SHFT(dum,*ax,*bx,dum) 
       if (fabs(fptt-(*fret)) > del) {        SHFT(dum,*fb,*fa,dum) 
         del=fabs(fptt-(*fret));        } 
         ibig=i;    *cx=(*bx)+GOLD*(*bx-*ax); 
       }    *fc=(*func)(*cx); 
 #ifdef DEBUG    while (*fb > *fc) { 
       printf("%d %.12e",i,(*fret));      r=(*bx-*ax)*(*fb-*fc); 
       fprintf(ficlog,"%d %.12e",i,(*fret));      q=(*bx-*cx)*(*fb-*fa); 
       for (j=1;j<=n;j++) {      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
         printf(" x(%d)=%.12e",j,xit[j]);      ulim=(*bx)+GLIMIT*(*cx-*bx); 
         fprintf(ficlog," x(%d)=%.12e",j,xit[j]);      if ((*bx-u)*(u-*cx) > 0.0) { 
       }        fu=(*func)(u); 
       for(j=1;j<=n;j++) {      } else if ((*cx-u)*(u-ulim) > 0.0) { 
         printf(" p=%.12e",p[j]);        fu=(*func)(u); 
         fprintf(ficlog," p=%.12e",p[j]);        if (fu < *fc) { 
       }          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
       printf("\n");            SHFT(*fb,*fc,fu,(*func)(u)) 
       fprintf(ficlog,"\n");            } 
 #endif      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
     }        u=ulim; 
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {        fu=(*func)(u); 
 #ifdef DEBUG      } else { 
       int k[2],l;        u=(*cx)+GOLD*(*cx-*bx); 
       k[0]=1;        fu=(*func)(u); 
       k[1]=-1;      } 
       printf("Max: %.12e",(*func)(p));      SHFT(*ax,*bx,*cx,u) 
       fprintf(ficlog,"Max: %.12e",(*func)(p));        SHFT(*fa,*fb,*fc,fu) 
       for (j=1;j<=n;j++) {        } 
         printf(" %.12e",p[j]);  } 
         fprintf(ficlog," %.12e",p[j]);  
       }  /*************** linmin ************************/
       printf("\n");  
       fprintf(ficlog,"\n");  int ncom; 
       for(l=0;l<=1;l++) {  double *pcom,*xicom;
         for (j=1;j<=n;j++) {  double (*nrfunc)(double []); 
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];   
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
           fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  { 
         }    double brent(double ax, double bx, double cx, 
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));                 double (*f)(double), double tol, double *xmin); 
         fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    double f1dim(double x); 
       }    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
 #endif                double *fc, double (*func)(double)); 
     int j; 
     double xx,xmin,bx,ax; 
       free_vector(xit,1,n);    double fx,fb,fa;
       free_vector(xits,1,n);   
       free_vector(ptt,1,n);    ncom=n; 
       free_vector(pt,1,n);    pcom=vector(1,n); 
       return;    xicom=vector(1,n); 
     }    nrfunc=func; 
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");    for (j=1;j<=n;j++) { 
     for (j=1;j<=n;j++) {      pcom[j]=p[j]; 
       ptt[j]=2.0*p[j]-pt[j];      xicom[j]=xi[j]; 
       xit[j]=p[j]-pt[j];    } 
       pt[j]=p[j];    ax=0.0; 
     }    xx=1.0; 
     fptt=(*func)(ptt);    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
     if (fptt < fp) {    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);  #ifdef DEBUG
       if (t < 0.0) {    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
         linmin(p,xit,n,fret,func);    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
         for (j=1;j<=n;j++) {  #endif
           xi[j][ibig]=xi[j][n];    for (j=1;j<=n;j++) { 
           xi[j][n]=xit[j];      xi[j] *= xmin; 
         }      p[j] += xi[j]; 
 #ifdef DEBUG    } 
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);    free_vector(xicom,1,n); 
         fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);    free_vector(pcom,1,n); 
         for(j=1;j<=n;j++){  } 
           printf(" %.12e",xit[j]);  
           fprintf(ficlog," %.12e",xit[j]);  /*************** powell ************************/
         }  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
         printf("\n");              double (*func)(double [])) 
         fprintf(ficlog,"\n");  { 
 #endif    void linmin(double p[], double xi[], int n, double *fret, 
       }                double (*func)(double [])); 
     }    int i,ibig,j; 
   }    double del,t,*pt,*ptt,*xit;
 }    double fp,fptt;
     double *xits;
 /**** Prevalence limit ****************/    pt=vector(1,n); 
     ptt=vector(1,n); 
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)    xit=vector(1,n); 
 {    xits=vector(1,n); 
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit    *fret=(*func)(p); 
      matrix by transitions matrix until convergence is reached */    for (j=1;j<=n;j++) pt[j]=p[j]; 
     for (*iter=1;;++(*iter)) { 
   int i, ii,j,k;      fp=(*fret); 
   double min, max, maxmin, maxmax,sumnew=0.;      ibig=0; 
   double **matprod2();      del=0.0; 
   double **out, cov[NCOVMAX], **pmij();      printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);
   double **newm;      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f",*iter,*fret);
   double agefin, delaymax=50 ; /* Max number of years to converge */      fprintf(ficrespow,"%d %.12f",*iter,*fret);
       for (i=1;i<=n;i++) {
   for (ii=1;ii<=nlstate+ndeath;ii++)        printf(" %d %.12f",i, p[i]);
     for (j=1;j<=nlstate+ndeath;j++){        fprintf(ficlog," %d %.12lf",i, p[i]);
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);        fprintf(ficrespow," %.12lf", p[i]);
     }      }
       printf("\n");
    cov[1]=1.;      fprintf(ficlog,"\n");
        fprintf(ficrespow,"\n");
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */      for (i=1;i<=n;i++) { 
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
     newm=savm;        fptt=(*fret); 
     /* Covariates have to be included here again */  #ifdef DEBUG
      cov[2]=agefin;        printf("fret=%lf \n",*fret);
          fprintf(ficlog,"fret=%lf \n",*fret);
       for (k=1; k<=cptcovn;k++) {  #endif
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];        printf("%d",i);fflush(stdout);
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/        fprintf(ficlog,"%d",i);fflush(ficlog);
       }        linmin(p,xit,n,fret,func); 
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];        if (fabs(fptt-(*fret)) > del) { 
       for (k=1; k<=cptcovprod;k++)          del=fabs(fptt-(*fret)); 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];          ibig=i; 
         } 
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/  #ifdef DEBUG
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/        printf("%d %.12e",i,(*fret));
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/        fprintf(ficlog,"%d %.12e",i,(*fret));
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);        for (j=1;j<=n;j++) {
           xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
     savm=oldm;          printf(" x(%d)=%.12e",j,xit[j]);
     oldm=newm;          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
     maxmax=0.;        }
     for(j=1;j<=nlstate;j++){        for(j=1;j<=n;j++) {
       min=1.;          printf(" p=%.12e",p[j]);
       max=0.;          fprintf(ficlog," p=%.12e",p[j]);
       for(i=1; i<=nlstate; i++) {        }
         sumnew=0;        printf("\n");
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];        fprintf(ficlog,"\n");
         prlim[i][j]= newm[i][j]/(1-sumnew);  #endif
         max=FMAX(max,prlim[i][j]);      } 
         min=FMIN(min,prlim[i][j]);      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
       }  #ifdef DEBUG
       maxmin=max-min;        int k[2],l;
       maxmax=FMAX(maxmax,maxmin);        k[0]=1;
     }        k[1]=-1;
     if(maxmax < ftolpl){        printf("Max: %.12e",(*func)(p));
       return prlim;        fprintf(ficlog,"Max: %.12e",(*func)(p));
     }        for (j=1;j<=n;j++) {
   }          printf(" %.12e",p[j]);
 }          fprintf(ficlog," %.12e",p[j]);
         }
 /*************** transition probabilities ***************/        printf("\n");
         fprintf(ficlog,"\n");
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )        for(l=0;l<=1;l++) {
 {          for (j=1;j<=n;j++) {
   double s1, s2;            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
   /*double t34;*/            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   int i,j,j1, nc, ii, jj;            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
           }
     for(i=1; i<= nlstate; i++){          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
     for(j=1; j<i;j++){          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){        }
         /*s2 += param[i][j][nc]*cov[nc];*/  #endif
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/  
       }        free_vector(xit,1,n); 
       ps[i][j]=s2;        free_vector(xits,1,n); 
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/        free_vector(ptt,1,n); 
     }        free_vector(pt,1,n); 
     for(j=i+1; j<=nlstate+ndeath;j++){        return; 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){      } 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/      for (j=1;j<=n;j++) { 
       }        ptt[j]=2.0*p[j]-pt[j]; 
       ps[i][j]=s2;        xit[j]=p[j]-pt[j]; 
     }        pt[j]=p[j]; 
   }      } 
     /*ps[3][2]=1;*/      fptt=(*func)(ptt); 
       if (fptt < fp) { 
   for(i=1; i<= nlstate; i++){        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
      s1=0;        if (t < 0.0) { 
     for(j=1; j<i; j++)          linmin(p,xit,n,fret,func); 
       s1+=exp(ps[i][j]);          for (j=1;j<=n;j++) { 
     for(j=i+1; j<=nlstate+ndeath; j++)            xi[j][ibig]=xi[j][n]; 
       s1+=exp(ps[i][j]);            xi[j][n]=xit[j]; 
     ps[i][i]=1./(s1+1.);          }
     for(j=1; j<i; j++)  #ifdef DEBUG
       ps[i][j]= exp(ps[i][j])*ps[i][i];          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
     for(j=i+1; j<=nlstate+ndeath; j++)          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
       ps[i][j]= exp(ps[i][j])*ps[i][i];          for(j=1;j<=n;j++){
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */            printf(" %.12e",xit[j]);
   } /* end i */            fprintf(ficlog," %.12e",xit[j]);
           }
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){          printf("\n");
     for(jj=1; jj<= nlstate+ndeath; jj++){          fprintf(ficlog,"\n");
       ps[ii][jj]=0;  #endif
       ps[ii][ii]=1;        }
     }      } 
   }    } 
   } 
   
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){  /**** Prevalence limit (stable prevalence)  ****************/
     for(jj=1; jj<= nlstate+ndeath; jj++){  
      printf("%lf ",ps[ii][jj]);  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
    }  {
     printf("\n ");    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
     }       matrix by transitions matrix until convergence is reached */
     printf("\n ");printf("%lf ",cov[2]);*/  
 /*    int i, ii,j,k;
   for(i=1; i<= npar; i++) printf("%f ",x[i]);    double min, max, maxmin, maxmax,sumnew=0.;
   goto end;*/    double **matprod2();
     return ps;    double **out, cov[NCOVMAX], **pmij();
 }    double **newm;
     double agefin, delaymax=50 ; /* Max number of years to converge */
 /**************** Product of 2 matrices ******************/  
     for (ii=1;ii<=nlstate+ndeath;ii++)
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)      for (j=1;j<=nlstate+ndeath;j++){
 {        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times      }
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */  
   /* in, b, out are matrice of pointers which should have been initialized     cov[1]=1.;
      before: only the contents of out is modified. The function returns   
      a pointer to pointers identical to out */   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   long i, j, k;    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
   for(i=nrl; i<= nrh; i++)      newm=savm;
     for(k=ncolol; k<=ncoloh; k++)      /* Covariates have to be included here again */
       for(j=ncl,out[i][k]=0.; j<=nch; j++)       cov[2]=agefin;
         out[i][k] +=in[i][j]*b[j][k];    
         for (k=1; k<=cptcovn;k++) {
   return out;          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
 }          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
         }
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
 /************* Higher Matrix Product ***************/        for (k=1; k<=cptcovprod;k++)
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )  
 {        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
      duration (i.e. until        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step  
      (typically every 2 years instead of every month which is too big).      savm=oldm;
      Model is determined by parameters x and covariates have to be      oldm=newm;
      included manually here.      maxmax=0.;
       for(j=1;j<=nlstate;j++){
      */        min=1.;
         max=0.;
   int i, j, d, h, k;        for(i=1; i<=nlstate; i++) {
   double **out, cov[NCOVMAX];          sumnew=0;
   double **newm;          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
           prlim[i][j]= newm[i][j]/(1-sumnew);
   /* Hstepm could be zero and should return the unit matrix */          max=FMAX(max,prlim[i][j]);
   for (i=1;i<=nlstate+ndeath;i++)          min=FMIN(min,prlim[i][j]);
     for (j=1;j<=nlstate+ndeath;j++){        }
       oldm[i][j]=(i==j ? 1.0 : 0.0);        maxmin=max-min;
       po[i][j][0]=(i==j ? 1.0 : 0.0);        maxmax=FMAX(maxmax,maxmin);
     }      }
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */      if(maxmax < ftolpl){
   for(h=1; h <=nhstepm; h++){        return prlim;
     for(d=1; d <=hstepm; d++){      }
       newm=savm;    }
       /* Covariates have to be included here again */  }
       cov[1]=1.;  
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;  /*************** transition probabilities ***************/ 
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  
       for (k=1; k<=cptcovage;k++)  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  {
       for (k=1; k<=cptcovprod;k++)    double s1, s2;
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    /*double t34;*/
     int i,j,j1, nc, ii, jj;
   
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/      for(i=1; i<= nlstate; i++){
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/      for(j=1; j<i;j++){
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
                    pmij(pmmij,cov,ncovmodel,x,nlstate));          /*s2 += param[i][j][nc]*cov[nc];*/
       savm=oldm;          s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
       oldm=newm;          /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/
     }        }
     for(i=1; i<=nlstate+ndeath; i++)        ps[i][j]=s2;
       for(j=1;j<=nlstate+ndeath;j++) {        /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/
         po[i][j][h]=newm[i][j];      }
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);      for(j=i+1; j<=nlstate+ndeath;j++){
          */        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
       }          s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
   } /* end h */          /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/
   return po;        }
 }        ps[i][j]=s2;
       }
     }
 /*************** log-likelihood *************/      /*ps[3][2]=1;*/
 double func( double *x)  
 {    for(i=1; i<= nlstate; i++){
   int i, ii, j, k, mi, d, kk;       s1=0;
   double l, ll[NLSTATEMAX], cov[NCOVMAX];      for(j=1; j<i; j++)
   double **out;        s1+=exp(ps[i][j]);
   double sw; /* Sum of weights */      for(j=i+1; j<=nlstate+ndeath; j++)
   double lli; /* Individual log likelihood */        s1+=exp(ps[i][j]);
   long ipmx;      ps[i][i]=1./(s1+1.);
   /*extern weight */      for(j=1; j<i; j++)
   /* We are differentiating ll according to initial status */        ps[i][j]= exp(ps[i][j])*ps[i][i];
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/      for(j=i+1; j<=nlstate+ndeath; j++)
   /*for(i=1;i<imx;i++)        ps[i][j]= exp(ps[i][j])*ps[i][i];
     printf(" %d\n",s[4][i]);      /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
   */    } /* end i */
   cov[1]=1.;  
     for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
   for(k=1; k<=nlstate; k++) ll[k]=0.;      for(jj=1; jj<= nlstate+ndeath; jj++){
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){        ps[ii][jj]=0;
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];        ps[ii][ii]=1;
     for(mi=1; mi<= wav[i]-1; mi++){      }
       for (ii=1;ii<=nlstate+ndeath;ii++)    }
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);  
       for(d=0; d<dh[mi][i]; d++){  
         newm=savm;    /*   for(ii=1; ii<= nlstate+ndeath; ii++){
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;      for(jj=1; jj<= nlstate+ndeath; jj++){
         for (kk=1; kk<=cptcovage;kk++) {       printf("%lf ",ps[ii][jj]);
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];     }
         }      printf("\n ");
              }
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,      printf("\n ");printf("%lf ",cov[2]);*/
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));  /*
         savm=oldm;    for(i=1; i<= npar; i++) printf("%f ",x[i]);
         oldm=newm;    goto end;*/
              return ps;
          }
       } /* end mult */  
        /**************** Product of 2 matrices ******************/
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);  
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
       ipmx +=1;  {
       sw += weight[i];    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
     } /* end of wave */    /* in, b, out are matrice of pointers which should have been initialized 
   } /* end of individual */       before: only the contents of out is modified. The function returns
        a pointer to pointers identical to out */
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];    long i, j, k;
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */    for(i=nrl; i<= nrh; i++)
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */      for(k=ncolol; k<=ncoloh; k++)
   return -l;        for(j=ncl,out[i][k]=0.; j<=nch; j++)
 }          out[i][k] +=in[i][j]*b[j][k];
   
     return out;
 /*********** Maximum Likelihood Estimation ***************/  }
   
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))  
 {  /************* Higher Matrix Product ***************/
   int i,j, iter;  
   double **xi,*delti;  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
   double fret;  {
   xi=matrix(1,npar,1,npar);    /* Computes the transition matrix starting at age 'age' over 
   for (i=1;i<=npar;i++)       'nhstepm*hstepm*stepm' months (i.e. until
     for (j=1;j<=npar;j++)       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
       xi[i][j]=(i==j ? 1.0 : 0.0);       nhstepm*hstepm matrices. 
   printf("Powell\n");  fprintf(ficlog,"Powell\n");       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
   powell(p,xi,npar,ftol,&iter,&fret,func);       (typically every 2 years instead of every month which is too big 
        for the memory).
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));       Model is determined by parameters x and covariates have to be 
   fprintf(ficlog,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));       included manually here. 
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));  
        */
 }  
     int i, j, d, h, k;
 /**** Computes Hessian and covariance matrix ***/    double **out, cov[NCOVMAX];
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))    double **newm;
 {  
   double  **a,**y,*x,pd;    /* Hstepm could be zero and should return the unit matrix */
   double **hess;    for (i=1;i<=nlstate+ndeath;i++)
   int i, j,jk;      for (j=1;j<=nlstate+ndeath;j++){
   int *indx;        oldm[i][j]=(i==j ? 1.0 : 0.0);
         po[i][j][0]=(i==j ? 1.0 : 0.0);
   double hessii(double p[], double delta, int theta, double delti[]);      }
   double hessij(double p[], double delti[], int i, int j);    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   void lubksb(double **a, int npar, int *indx, double b[]) ;    for(h=1; h <=nhstepm; h++){
   void ludcmp(double **a, int npar, int *indx, double *d) ;      for(d=1; d <=hstepm; d++){
         newm=savm;
   hess=matrix(1,npar,1,npar);        /* Covariates have to be included here again */
         cov[1]=1.;
   printf("\nCalculation of the hessian matrix. Wait...\n");        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
   fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   for (i=1;i<=npar;i++){        for (k=1; k<=cptcovage;k++)
     printf("%d",i);fflush(stdout);          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
     fprintf(ficlog,"%d",i);fflush(ficlog);        for (k=1; k<=cptcovprod;k++)
     hess[i][i]=hessii(p,ftolhess,i,delti);          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
     /*printf(" %f ",p[i]);*/  
     /*printf(" %lf ",hess[i][i]);*/  
   }        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
          /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
   for (i=1;i<=npar;i++) {        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
     for (j=1;j<=npar;j++)  {                     pmij(pmmij,cov,ncovmodel,x,nlstate));
       if (j>i) {        savm=oldm;
         printf(".%d%d",i,j);fflush(stdout);        oldm=newm;
         fprintf(ficlog,".%d%d",i,j);fflush(ficlog);      }
         hess[i][j]=hessij(p,delti,i,j);      for(i=1; i<=nlstate+ndeath; i++)
         hess[j][i]=hess[i][j];            for(j=1;j<=nlstate+ndeath;j++) {
         /*printf(" %lf ",hess[i][j]);*/          po[i][j][h]=newm[i][j];
       }          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
     }           */
   }        }
   printf("\n");    } /* end h */
   fprintf(ficlog,"\n");    return po;
   }
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");  
   fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");  
    /*************** log-likelihood *************/
   a=matrix(1,npar,1,npar);  double func( double *x)
   y=matrix(1,npar,1,npar);  {
   x=vector(1,npar);    int i, ii, j, k, mi, d, kk;
   indx=ivector(1,npar);    double l, ll[NLSTATEMAX], cov[NCOVMAX];
   for (i=1;i<=npar;i++)    double **out;
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];    double sw; /* Sum of weights */
   ludcmp(a,npar,indx,&pd);    double lli; /* Individual log likelihood */
     int s1, s2;
   for (j=1;j<=npar;j++) {    double bbh, survp;
     for (i=1;i<=npar;i++) x[i]=0;    long ipmx;
     x[j]=1;    /*extern weight */
     lubksb(a,npar,indx,x);    /* We are differentiating ll according to initial status */
     for (i=1;i<=npar;i++){    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
       matcov[i][j]=x[i];    /*for(i=1;i<imx;i++) 
     }      printf(" %d\n",s[4][i]);
   }    */
     cov[1]=1.;
   printf("\n#Hessian matrix#\n");  
   fprintf(ficlog,"\n#Hessian matrix#\n");    for(k=1; k<=nlstate; k++) ll[k]=0.;
   for (i=1;i<=npar;i++) {  
     for (j=1;j<=npar;j++) {    if(mle==1){
       printf("%.3e ",hess[i][j]);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       fprintf(ficlog,"%.3e ",hess[i][j]);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     }        for(mi=1; mi<= wav[i]-1; mi++){
     printf("\n");          for (ii=1;ii<=nlstate+ndeath;ii++)
     fprintf(ficlog,"\n");            for (j=1;j<=nlstate+ndeath;j++){
   }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               savm[ii][j]=(ii==j ? 1.0 : 0.0);
   /* Recompute Inverse */            }
   for (i=1;i<=npar;i++)          for(d=0; d<dh[mi][i]; d++){
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];            newm=savm;
   ludcmp(a,npar,indx,&pd);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             for (kk=1; kk<=cptcovage;kk++) {
   /*  printf("\n#Hessian matrix recomputed#\n");              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             }
   for (j=1;j<=npar;j++) {            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     for (i=1;i<=npar;i++) x[i]=0;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     x[j]=1;            savm=oldm;
     lubksb(a,npar,indx,x);            oldm=newm;
     for (i=1;i<=npar;i++){          } /* end mult */
       y[i][j]=x[i];        
       printf("%.3e ",y[i][j]);          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
       fprintf(ficlog,"%.3e ",y[i][j]);          /* But now since version 0.9 we anticipate for bias and large stepm.
     }           * If stepm is larger than one month (smallest stepm) and if the exact delay 
     printf("\n");           * (in months) between two waves is not a multiple of stepm, we rounded to 
     fprintf(ficlog,"\n");           * the nearest (and in case of equal distance, to the lowest) interval but now
   }           * we keep into memory the bias bh[mi][i] and also the previous matrix product
   */           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
            * probability in order to take into account the bias as a fraction of the way
   free_matrix(a,1,npar,1,npar);           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
   free_matrix(y,1,npar,1,npar);           * -stepm/2 to stepm/2 .
   free_vector(x,1,npar);           * For stepm=1 the results are the same as for previous versions of Imach.
   free_ivector(indx,1,npar);           * For stepm > 1 the results are less biased than in previous versions. 
   free_matrix(hess,1,npar,1,npar);           */
           s1=s[mw[mi][i]][i];
           s2=s[mw[mi+1][i]][i];
 }          bbh=(double)bh[mi][i]/(double)stepm; 
           /* bias is positive if real duration
 /*************** hessian matrix ****************/           * is higher than the multiple of stepm and negative otherwise.
 double hessii( double x[], double delta, int theta, double delti[])           */
 {          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
   int i;          if( s2 > nlstate){ 
   int l=1, lmax=20;            /* i.e. if s2 is a death state and if the date of death is known then the contribution
   double k1,k2;               to the likelihood is the probability to die between last step unit time and current 
   double p2[NPARMAX+1];               step unit time, which is also the differences between probability to die before dh 
   double res;               and probability to die before dh-stepm . 
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;               In version up to 0.92 likelihood was computed
   double fx;          as if date of death was unknown. Death was treated as any other
   int k=0,kmax=10;          health state: the date of the interview describes the actual state
   double l1;          and not the date of a change in health state. The former idea was
           to consider that at each interview the state was recorded
   fx=func(x);          (healthy, disable or death) and IMaCh was corrected; but when we
   for (i=1;i<=npar;i++) p2[i]=x[i];          introduced the exact date of death then we should have modified
   for(l=0 ; l <=lmax; l++){          the contribution of an exact death to the likelihood. This new
     l1=pow(10,l);          contribution is smaller and very dependent of the step unit
     delts=delt;          stepm. It is no more the probability to die between last interview
     for(k=1 ; k <kmax; k=k+1){          and month of death but the probability to survive from last
       delt = delta*(l1*k);          interview up to one month before death multiplied by the
       p2[theta]=x[theta] +delt;          probability to die within a month. Thanks to Chris
       k1=func(p2)-fx;          Jackson for correcting this bug.  Former versions increased
       p2[theta]=x[theta]-delt;          mortality artificially. The bad side is that we add another loop
       k2=func(p2)-fx;          which slows down the processing. The difference can be up to 10%
       /*res= (k1-2.0*fx+k2)/delt/delt; */          lower mortality.
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */            */
                  lli=log(out[s1][s2] - savm[s1][s2]);
 #ifdef DEBUG          }else{
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
       fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
 #endif          } 
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){          /*if(lli ==000.0)*/
         k=kmax;          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
       }          ipmx +=1;
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */          sw += weight[i];
         k=kmax; l=lmax*10.;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       }        } /* end of wave */
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){      } /* end of individual */
         delts=delt;    }  else if(mle==2){
       }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   }        for(mi=1; mi<= wav[i]-1; mi++){
   delti[theta]=delts;          for (ii=1;ii<=nlstate+ndeath;ii++)
   return res;            for (j=1;j<=nlstate+ndeath;j++){
                oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
             }
 double hessij( double x[], double delti[], int thetai,int thetaj)          for(d=0; d<=dh[mi][i]; d++){
 {            newm=savm;
   int i;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   int l=1, l1, lmax=20;            for (kk=1; kk<=cptcovage;kk++) {
   double k1,k2,k3,k4,res,fx;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   double p2[NPARMAX+1];            }
   int k;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                          1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   fx=func(x);            savm=oldm;
   for (k=1; k<=2; k++) {            oldm=newm;
     for (i=1;i<=npar;i++) p2[i]=x[i];          } /* end mult */
     p2[thetai]=x[thetai]+delti[thetai]/k;        
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
     k1=func(p2)-fx;          /* But now since version 0.9 we anticipate for bias and large stepm.
             * If stepm is larger than one month (smallest stepm) and if the exact delay 
     p2[thetai]=x[thetai]+delti[thetai]/k;           * (in months) between two waves is not a multiple of stepm, we rounded to 
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;           * the nearest (and in case of equal distance, to the lowest) interval but now
     k2=func(p2)-fx;           * we keep into memory the bias bh[mi][i] and also the previous matrix product
             * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
     p2[thetai]=x[thetai]-delti[thetai]/k;           * probability in order to take into account the bias as a fraction of the way
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
     k3=func(p2)-fx;           * -stepm/2 to stepm/2 .
             * For stepm=1 the results are the same as for previous versions of Imach.
     p2[thetai]=x[thetai]-delti[thetai]/k;           * For stepm > 1 the results are less biased than in previous versions. 
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;           */
     k4=func(p2)-fx;          s1=s[mw[mi][i]][i];
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */          s2=s[mw[mi+1][i]][i];
 #ifdef DEBUG          bbh=(double)bh[mi][i]/(double)stepm; 
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);          /* bias is positive if real duration
     fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);           * is higher than the multiple of stepm and negative otherwise.
 #endif           */
   }          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
   return res;          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
 }          /*lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.-+bh)*out[s1][s2])); */ /* exponential interpolation */
           /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
 /************** Inverse of matrix **************/          /*if(lli ==000.0)*/
 void ludcmp(double **a, int n, int *indx, double *d)          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
 {          ipmx +=1;
   int i,imax,j,k;          sw += weight[i];
   double big,dum,sum,temp;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   double *vv;        } /* end of wave */
        } /* end of individual */
   vv=vector(1,n);    }  else if(mle==3){  /* exponential inter-extrapolation */
   *d=1.0;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   for (i=1;i<=n;i++) {        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     big=0.0;        for(mi=1; mi<= wav[i]-1; mi++){
     for (j=1;j<=n;j++)          for (ii=1;ii<=nlstate+ndeath;ii++)
       if ((temp=fabs(a[i][j])) > big) big=temp;            for (j=1;j<=nlstate+ndeath;j++){
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     vv[i]=1.0/big;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   }            }
   for (j=1;j<=n;j++) {          for(d=0; d<dh[mi][i]; d++){
     for (i=1;i<j;i++) {            newm=savm;
       sum=a[i][j];            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];            for (kk=1; kk<=cptcovage;kk++) {
       a[i][j]=sum;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     }            }
     big=0.0;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     for (i=j;i<=n;i++) {                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       sum=a[i][j];            savm=oldm;
       for (k=1;k<j;k++)            oldm=newm;
         sum -= a[i][k]*a[k][j];          } /* end mult */
       a[i][j]=sum;        
       if ( (dum=vv[i]*fabs(sum)) >= big) {          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
         big=dum;          /* But now since version 0.9 we anticipate for bias and large stepm.
         imax=i;           * If stepm is larger than one month (smallest stepm) and if the exact delay 
       }           * (in months) between two waves is not a multiple of stepm, we rounded to 
     }           * the nearest (and in case of equal distance, to the lowest) interval but now
     if (j != imax) {           * we keep into memory the bias bh[mi][i] and also the previous matrix product
       for (k=1;k<=n;k++) {           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
         dum=a[imax][k];           * probability in order to take into account the bias as a fraction of the way
         a[imax][k]=a[j][k];           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
         a[j][k]=dum;           * -stepm/2 to stepm/2 .
       }           * For stepm=1 the results are the same as for previous versions of Imach.
       *d = -(*d);           * For stepm > 1 the results are less biased than in previous versions. 
       vv[imax]=vv[j];           */
     }          s1=s[mw[mi][i]][i];
     indx[j]=imax;          s2=s[mw[mi+1][i]][i];
     if (a[j][j] == 0.0) a[j][j]=TINY;          bbh=(double)bh[mi][i]/(double)stepm; 
     if (j != n) {          /* bias is positive if real duration
       dum=1.0/(a[j][j]);           * is higher than the multiple of stepm and negative otherwise.
       for (i=j+1;i<=n;i++) a[i][j] *= dum;           */
     }          /* lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); */ /* linear interpolation */
   }          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   free_vector(vv,1,n);  /* Doesn't work */          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
 ;          /*if(lli ==000.0)*/
 }          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
           ipmx +=1;
 void lubksb(double **a, int n, int *indx, double b[])          sw += weight[i];
 {          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   int i,ii=0,ip,j;        } /* end of wave */
   double sum;      } /* end of individual */
      }else if (mle==4){  /* ml=4 no inter-extrapolation */
   for (i=1;i<=n;i++) {      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     ip=indx[i];        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     sum=b[ip];        for(mi=1; mi<= wav[i]-1; mi++){
     b[ip]=b[i];          for (ii=1;ii<=nlstate+ndeath;ii++)
     if (ii)            for (j=1;j<=nlstate+ndeath;j++){
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     else if (sum) ii=i;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     b[i]=sum;            }
   }          for(d=0; d<dh[mi][i]; d++){
   for (i=n;i>=1;i--) {            newm=savm;
     sum=b[i];            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];            for (kk=1; kk<=cptcovage;kk++) {
     b[i]=sum/a[i][i];              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   }            }
 }          
             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 /************ Frequencies ********************/                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)            savm=oldm;
 {  /* Some frequencies */            oldm=newm;
            } /* end mult */
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;        
   int first;          s1=s[mw[mi][i]][i];
   double ***freq; /* Frequencies */          s2=s[mw[mi+1][i]][i];
   double *pp;          if( s2 > nlstate){ 
   double pos, k2, dateintsum=0,k2cpt=0;            lli=log(out[s1][s2] - savm[s1][s2]);
   FILE *ficresp;          }else{
   char fileresp[FILENAMELENGTH];            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
            }
   pp=vector(1,nlstate);          ipmx +=1;
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);          sw += weight[i];
   strcpy(fileresp,"p");          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   strcat(fileresp,fileres);  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
   if((ficresp=fopen(fileresp,"w"))==NULL) {        } /* end of wave */
     printf("Problem with prevalence resultfile: %s\n", fileresp);      } /* end of individual */
     fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
     exit(0);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);        for(mi=1; mi<= wav[i]-1; mi++){
   j1=0;          for (ii=1;ii<=nlstate+ndeath;ii++)
              for (j=1;j<=nlstate+ndeath;j++){
   j=cptcoveff;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   if (cptcovn<1) {j=1;ncodemax[1]=1;}              savm[ii][j]=(ii==j ? 1.0 : 0.0);
             }
   first=1;          for(d=0; d<dh[mi][i]; d++){
             newm=savm;
   for(k1=1; k1<=j;k1++){            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     for(i1=1; i1<=ncodemax[k1];i1++){            for (kk=1; kk<=cptcovage;kk++) {
       j1++;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);            }
         scanf("%d", i);*/          
       for (i=-1; i<=nlstate+ndeath; i++)              out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         for (jk=-1; jk<=nlstate+ndeath; jk++)                           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           for(m=agemin; m <= agemax+3; m++)            savm=oldm;
             freq[i][jk][m]=0;            oldm=newm;
                } /* end mult */
       dateintsum=0;        
       k2cpt=0;          s1=s[mw[mi][i]][i];
       for (i=1; i<=imx; i++) {          s2=s[mw[mi+1][i]][i];
         bool=1;          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
         if  (cptcovn>0) {          ipmx +=1;
           for (z1=1; z1<=cptcoveff; z1++)          sw += weight[i];
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
               bool=0;          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
         }        } /* end of wave */
         if (bool==1) {      } /* end of individual */
           for(m=firstpass; m<=lastpass; m++){    } /* End of if */
             k2=anint[m][i]+(mint[m][i]/12.);    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
             if ((k2>=dateprev1) && (k2<=dateprev2)) {    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
               if(agev[m][i]==0) agev[m][i]=agemax+1;    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
               if(agev[m][i]==1) agev[m][i]=agemax+2;    return -l;
               if (m<lastpass) {  }
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];  
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];  /*************** log-likelihood *************/
               }  double funcone( double *x)
                {
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {    /* Same as likeli but slower because of a lot of printf and if */
                 dateintsum=dateintsum+k2;    int i, ii, j, k, mi, d, kk;
                 k2cpt++;    double l, ll[NLSTATEMAX], cov[NCOVMAX];
               }    double **out;
             }    double lli; /* Individual log likelihood */
           }    double llt;
         }    int s1, s2;
       }    double bbh, survp;
            /*extern weight */
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    /* We are differentiating ll according to initial status */
     /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
       if  (cptcovn>0) {    /*for(i=1;i<imx;i++) 
         fprintf(ficresp, "\n#********** Variable ");      printf(" %d\n",s[4][i]);
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    */
         fprintf(ficresp, "**********\n#");    cov[1]=1.;
       }  
       for(i=1; i<=nlstate;i++)    for(k=1; k<=nlstate; k++) ll[k]=0.;
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);  
       fprintf(ficresp, "\n");    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
            for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       for(i=(int)agemin; i <= (int)agemax+3; i++){      for(mi=1; mi<= wav[i]-1; mi++){
         if(i==(int)agemax+3){        for (ii=1;ii<=nlstate+ndeath;ii++)
           fprintf(ficlog,"Total");          for (j=1;j<=nlstate+ndeath;j++){
         }else{            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           if(first==1){            savm[ii][j]=(ii==j ? 1.0 : 0.0);
             first=0;          }
             printf("See log file for details...\n");        for(d=0; d<dh[mi][i]; d++){
           }          newm=savm;
           fprintf(ficlog,"Age %d", i);          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         }          for (kk=1; kk<=cptcovage;kk++) {
         for(jk=1; jk <=nlstate ; jk++){            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)          }
             pp[jk] += freq[jk][m][i];          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         }                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         for(jk=1; jk <=nlstate ; jk++){          savm=oldm;
           for(m=-1, pos=0; m <=0 ; m++)          oldm=newm;
             pos += freq[jk][m][i];        } /* end mult */
           if(pp[jk]>=1.e-10){        
             if(first==1){        s1=s[mw[mi][i]][i];
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);        s2=s[mw[mi+1][i]][i];
             }        bbh=(double)bh[mi][i]/(double)stepm; 
             fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);        /* bias is positive if real duration
           }else{         * is higher than the multiple of stepm and negative otherwise.
             if(first==1)         */
               printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);        if( s2 > nlstate && (mle <5) ){  /* Jackson */
             fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);          lli=log(out[s1][s2] - savm[s1][s2]);
           }        } else if (mle==1){
         }          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
         } else if(mle==2){
         for(jk=1; jk <=nlstate ; jk++){          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)        } else if(mle==3){  /* exponential inter-extrapolation */
             pp[jk] += freq[jk][m][i];          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
         }        } else if (mle==4){  /* mle=4 no inter-extrapolation */
           lli=log(out[s1][s2]); /* Original formula */
         for(jk=1,pos=0; jk <=nlstate ; jk++)        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
           pos += pp[jk];          lli=log(out[s1][s2]); /* Original formula */
         for(jk=1; jk <=nlstate ; jk++){        } /* End of if */
           if(pos>=1.e-5){        ipmx +=1;
             if(first==1)        sw += weight[i];
               printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
             fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
           }else{        if(globpr){
             if(first==1)          fprintf(ficresilk,"%ld %6d %1d %1d %1d %1d %3d %10.6f %6.4f\
               printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);   %10.6f %10.6f %10.6f ", \
             fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
           }                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
           if( i <= (int) agemax){          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
             if(pos>=1.e-5){            llt +=ll[k]*gipmx/gsw;
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
               probs[i][jk][j1]= pp[jk]/pos;          }
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/          fprintf(ficresilk," %10.6f\n", -llt);
             }        }
             else      } /* end of wave */
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);    } /* end of individual */
           }    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
         }    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
            l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
         for(jk=-1; jk <=nlstate+ndeath; jk++)    if(globpr==0){ /* First time we count the contributions and weights */
           for(m=-1; m <=nlstate+ndeath; m++)      gipmx=ipmx;
             if(freq[jk][m][i] !=0 ) {      gsw=sw;
             if(first==1)    }
               printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);    return -l;
               fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);  }
             }  
         if(i <= (int) agemax)  
           fprintf(ficresp,"\n");  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
         if(first==1)  {
           printf("Others in log...\n");    /* This routine should help understanding what is done with 
         fprintf(ficlog,"\n");       the selection of individuals/waves and
       }       to check the exact contribution to the likelihood.
     }       Plotting could be done.
   }     */
   dateintmean=dateintsum/k2cpt;    int k;
    
   fclose(ficresp);    if(*globpri !=0){ /* Just counts and sums no printings */
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);      strcpy(fileresilk,"ilk"); 
   free_vector(pp,1,nlstate);      strcat(fileresilk,fileres);
        if((ficresilk=fopen(fileresilk,"w"))==NULL) {
   /* End of Freq */        printf("Problem with resultfile: %s\n", fileresilk);
 }        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
       }
 /************ Prevalence ********************/      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight out sav ");
 {  /* Some frequencies */      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
        for(k=1; k<=nlstate; k++) 
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
   double ***freq; /* Frequencies */      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
   double *pp;    }
   double pos, k2;  
     *fretone=(*funcone)(p);
   pp=vector(1,nlstate);    if(*globpri !=0){
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);      fclose(ficresilk);
        fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",fileresilk,fileresilk);
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);      fflush(fichtm); 
   j1=0;    } 
      return;
   j=cptcoveff;  }
   if (cptcovn<1) {j=1;ncodemax[1]=1;}  
    /*********** Maximum Likelihood Estimation ***************/
   for(k1=1; k1<=j;k1++){  
     for(i1=1; i1<=ncodemax[k1];i1++){  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
       j1++;  {
          int i,j, iter;
       for (i=-1; i<=nlstate+ndeath; i++)      double **xi;
         for (jk=-1; jk<=nlstate+ndeath; jk++)      double fret;
           for(m=agemin; m <= agemax+3; m++)    double fretone; /* Only one call to likelihood */
             freq[i][jk][m]=0;    char filerespow[FILENAMELENGTH];
          xi=matrix(1,npar,1,npar);
       for (i=1; i<=imx; i++) {    for (i=1;i<=npar;i++)
         bool=1;      for (j=1;j<=npar;j++)
         if  (cptcovn>0) {        xi[i][j]=(i==j ? 1.0 : 0.0);
           for (z1=1; z1<=cptcoveff; z1++)    printf("Powell\n");  fprintf(ficlog,"Powell\n");
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])    strcpy(filerespow,"pow"); 
               bool=0;    strcat(filerespow,fileres);
         }    if((ficrespow=fopen(filerespow,"w"))==NULL) {
         if (bool==1) {      printf("Problem with resultfile: %s\n", filerespow);
           for(m=firstpass; m<=lastpass; m++){      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
             k2=anint[m][i]+(mint[m][i]/12.);    }
             if ((k2>=dateprev1) && (k2<=dateprev2)) {    fprintf(ficrespow,"# Powell\n# iter -2*LL");
               if(agev[m][i]==0) agev[m][i]=agemax+1;    for (i=1;i<=nlstate;i++)
               if(agev[m][i]==1) agev[m][i]=agemax+2;      for(j=1;j<=nlstate+ndeath;j++)
               if (m<lastpass) {        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
                 if (calagedate>0)    fprintf(ficrespow,"\n");
                   freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];  
                 else    powell(p,xi,npar,ftol,&iter,&fret,func);
                   freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];  
                 freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];    fclose(ficrespow);
               }    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
             }    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
           }    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
         }  
       }  }
       for(i=(int)agemin; i <= (int)agemax+3; i++){  
         for(jk=1; jk <=nlstate ; jk++){  /**** Computes Hessian and covariance matrix ***/
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
             pp[jk] += freq[jk][m][i];  {
         }    double  **a,**y,*x,pd;
         for(jk=1; jk <=nlstate ; jk++){    double **hess;
           for(m=-1, pos=0; m <=0 ; m++)    int i, j,jk;
             pos += freq[jk][m][i];    int *indx;
         }  
            double hessii(double p[], double delta, int theta, double delti[]);
         for(jk=1; jk <=nlstate ; jk++){    double hessij(double p[], double delti[], int i, int j);
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)    void lubksb(double **a, int npar, int *indx, double b[]) ;
             pp[jk] += freq[jk][m][i];    void ludcmp(double **a, int npar, int *indx, double *d) ;
         }  
            hess=matrix(1,npar,1,npar);
         for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];  
            printf("\nCalculation of the hessian matrix. Wait...\n");
         for(jk=1; jk <=nlstate ; jk++){        fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
           if( i <= (int) agemax){    for (i=1;i<=npar;i++){
             if(pos>=1.e-5){      printf("%d",i);fflush(stdout);
               probs[i][jk][j1]= pp[jk]/pos;      fprintf(ficlog,"%d",i);fflush(ficlog);
             }      hess[i][i]=hessii(p,ftolhess,i,delti);
           }      /*printf(" %f ",p[i]);*/
         }/* end jk */      /*printf(" %lf ",hess[i][i]);*/
       }/* end i */    }
     } /* end i1 */    
   } /* end k1 */    for (i=1;i<=npar;i++) {
       for (j=1;j<=npar;j++)  {
          if (j>i) { 
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);          printf(".%d%d",i,j);fflush(stdout);
   free_vector(pp,1,nlstate);          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
            hess[i][j]=hessij(p,delti,i,j);
 }  /* End of Freq */          hess[j][i]=hess[i][j];    
           /*printf(" %lf ",hess[i][j]);*/
 /************* Waves Concatenation ***************/        }
       }
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)    }
 {    printf("\n");
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.    fprintf(ficlog,"\n");
      Death is a valid wave (if date is known).  
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
      and mw[mi+1][i]. dh depends on stepm.    
      */    a=matrix(1,npar,1,npar);
     y=matrix(1,npar,1,npar);
   int i, mi, m;    x=vector(1,npar);
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;    indx=ivector(1,npar);
      double sum=0., jmean=0.;*/    for (i=1;i<=npar;i++)
   int first;      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
   int j, k=0,jk, ju, jl;    ludcmp(a,npar,indx,&pd);
   double sum=0.;  
   first=0;    for (j=1;j<=npar;j++) {
   jmin=1e+5;      for (i=1;i<=npar;i++) x[i]=0;
   jmax=-1;      x[j]=1;
   jmean=0.;      lubksb(a,npar,indx,x);
   for(i=1; i<=imx; i++){      for (i=1;i<=npar;i++){ 
     mi=0;        matcov[i][j]=x[i];
     m=firstpass;      }
     while(s[m][i] <= nlstate){    }
       if(s[m][i]>=1)  
         mw[++mi][i]=m;    printf("\n#Hessian matrix#\n");
       if(m >=lastpass)    fprintf(ficlog,"\n#Hessian matrix#\n");
         break;    for (i=1;i<=npar;i++) { 
       else      for (j=1;j<=npar;j++) { 
         m++;        printf("%.3e ",hess[i][j]);
     }/* end while */        fprintf(ficlog,"%.3e ",hess[i][j]);
     if (s[m][i] > nlstate){      }
       mi++;     /* Death is another wave */      printf("\n");
       /* if(mi==0)  never been interviewed correctly before death */      fprintf(ficlog,"\n");
          /* Only death is a correct wave */    }
       mw[mi][i]=m;  
     }    /* Recompute Inverse */
     for (i=1;i<=npar;i++)
     wav[i]=mi;      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
     if(mi==0){    ludcmp(a,npar,indx,&pd);
       if(first==0){  
         printf("Warning, no any valid information for:%d line=%d and may be others, see log file\n",num[i],i);    /*  printf("\n#Hessian matrix recomputed#\n");
         first=1;  
       }    for (j=1;j<=npar;j++) {
       if(first==1){      for (i=1;i<=npar;i++) x[i]=0;
         fprintf(ficlog,"Warning, no any valid information for:%d line=%d\n",num[i],i);      x[j]=1;
       }      lubksb(a,npar,indx,x);
     } /* end mi==0 */      for (i=1;i<=npar;i++){ 
   }        y[i][j]=x[i];
         printf("%.3e ",y[i][j]);
   for(i=1; i<=imx; i++){        fprintf(ficlog,"%.3e ",y[i][j]);
     for(mi=1; mi<wav[i];mi++){      }
       if (stepm <=0)      printf("\n");
         dh[mi][i]=1;      fprintf(ficlog,"\n");
       else{    }
         if (s[mw[mi+1][i]][i] > nlstate) {    */
           if (agedc[i] < 2*AGESUP) {  
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);    free_matrix(a,1,npar,1,npar);
           if(j==0) j=1;  /* Survives at least one month after exam */    free_matrix(y,1,npar,1,npar);
           k=k+1;    free_vector(x,1,npar);
           if (j >= jmax) jmax=j;    free_ivector(indx,1,npar);
           if (j <= jmin) jmin=j;    free_matrix(hess,1,npar,1,npar);
           sum=sum+j;  
           /*if (j<0) printf("j=%d num=%d \n",j,i); */  
           }  }
         }  
         else{  /*************** hessian matrix ****************/
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));  double hessii( double x[], double delta, int theta, double delti[])
           k=k+1;  {
           if (j >= jmax) jmax=j;    int i;
           else if (j <= jmin)jmin=j;    int l=1, lmax=20;
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */    double k1,k2;
           sum=sum+j;    double p2[NPARMAX+1];
         }    double res;
         jk= j/stepm;    double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;
         jl= j -jk*stepm;    double fx;
         ju= j -(jk+1)*stepm;    int k=0,kmax=10;
         if(jl <= -ju)    double l1;
           dh[mi][i]=jk;  
         else    fx=func(x);
           dh[mi][i]=jk+1;    for (i=1;i<=npar;i++) p2[i]=x[i];
         if(dh[mi][i]==0)    for(l=0 ; l <=lmax; l++){
           dh[mi][i]=1; /* At least one step */      l1=pow(10,l);
       }      delts=delt;
     }      for(k=1 ; k <kmax; k=k+1){
   }        delt = delta*(l1*k);
   jmean=sum/k;        p2[theta]=x[theta] +delt;
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);        k1=func(p2)-fx;
   fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);        p2[theta]=x[theta]-delt;
  }        k2=func(p2)-fx;
         /*res= (k1-2.0*fx+k2)/delt/delt; */
 /*********** Tricode ****************************/        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
 void tricode(int *Tvar, int **nbcode, int imx)        
 {  #ifdef DEBUG
   int Ndum[20],ij=1, k, j, i;        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   int cptcode=0;        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   cptcoveff=0;  #endif
          /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
   for (k=0; k<19; k++) Ndum[k]=0;        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
   for (k=1; k<=7; k++) ncodemax[k]=0;          k=kmax;
         }
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
     for (i=1; i<=imx; i++) {          k=kmax; l=lmax*10.;
       ij=(int)(covar[Tvar[j]][i]);        }
       Ndum[ij]++;        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/          delts=delt;
       if (ij > cptcode) cptcode=ij;        }
     }      }
     }
     for (i=0; i<=cptcode; i++) {    delti[theta]=delts;
       if(Ndum[i]!=0) ncodemax[j]++;    return res; 
     }    
     ij=1;  }
   
   double hessij( double x[], double delti[], int thetai,int thetaj)
     for (i=1; i<=ncodemax[j]; i++) {  {
       for (k=0; k<=19; k++) {    int i;
         if (Ndum[k] != 0) {    int l=1, l1, lmax=20;
           nbcode[Tvar[j]][ij]=k;    double k1,k2,k3,k4,res,fx;
              double p2[NPARMAX+1];
           ij++;    int k;
         }  
         if (ij > ncodemax[j]) break;    fx=func(x);
       }      for (k=1; k<=2; k++) {
     }      for (i=1;i<=npar;i++) p2[i]=x[i];
   }        p2[thetai]=x[thetai]+delti[thetai]/k;
       p2[thetaj]=x[thetaj]+delti[thetaj]/k;
  for (k=0; k<19; k++) Ndum[k]=0;      k1=func(p2)-fx;
     
  for (i=1; i<=ncovmodel-2; i++) {      p2[thetai]=x[thetai]+delti[thetai]/k;
    ij=Tvar[i];      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
    Ndum[ij]++;      k2=func(p2)-fx;
  }    
       p2[thetai]=x[thetai]-delti[thetai]/k;
  ij=1;      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
  for (i=1; i<=10; i++) {      k3=func(p2)-fx;
    if((Ndum[i]!=0) && (i<=ncovcol)){    
      Tvaraff[ij]=i;      p2[thetai]=x[thetai]-delti[thetai]/k;
      ij++;      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
    }      k4=func(p2)-fx;
  }      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
    #ifdef DEBUG
  cptcoveff=ij-1;      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
 }      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   #endif
 /*********** Health Expectancies ****************/    }
     return res;
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )  }
   
 {  /************** Inverse of matrix **************/
   /* Health expectancies */  void ludcmp(double **a, int n, int *indx, double *d) 
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;  { 
   double age, agelim, hf;    int i,imax,j,k; 
   double ***p3mat,***varhe;    double big,dum,sum,temp; 
   double **dnewm,**doldm;    double *vv; 
   double *xp;   
   double **gp, **gm;    vv=vector(1,n); 
   double ***gradg, ***trgradg;    *d=1.0; 
   int theta;    for (i=1;i<=n;i++) { 
       big=0.0; 
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);      for (j=1;j<=n;j++) 
   xp=vector(1,npar);        if ((temp=fabs(a[i][j])) > big) big=temp; 
   dnewm=matrix(1,nlstate*2,1,npar);      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
   doldm=matrix(1,nlstate*2,1,nlstate*2);      vv[i]=1.0/big; 
      } 
   fprintf(ficreseij,"# Health expectancies\n");    for (j=1;j<=n;j++) { 
   fprintf(ficreseij,"# Age");      for (i=1;i<j;i++) { 
   for(i=1; i<=nlstate;i++)        sum=a[i][j]; 
     for(j=1; j<=nlstate;j++)        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
       fprintf(ficreseij," %1d-%1d (SE)",i,j);        a[i][j]=sum; 
   fprintf(ficreseij,"\n");      } 
       big=0.0; 
   if(estepm < stepm){      for (i=j;i<=n;i++) { 
     printf ("Problem %d lower than %d\n",estepm, stepm);        sum=a[i][j]; 
   }        for (k=1;k<j;k++) 
   else  hstepm=estepm;            sum -= a[i][k]*a[k][j]; 
   /* We compute the life expectancy from trapezoids spaced every estepm months        a[i][j]=sum; 
    * This is mainly to measure the difference between two models: for example        if ( (dum=vv[i]*fabs(sum)) >= big) { 
    * if stepm=24 months pijx are given only every 2 years and by summing them          big=dum; 
    * we are calculating an estimate of the Life Expectancy assuming a linear          imax=i; 
    * progression inbetween and thus overestimating or underestimating according        } 
    * to the curvature of the survival function. If, for the same date, we      } 
    * estimate the model with stepm=1 month, we can keep estepm to 24 months      if (j != imax) { 
    * to compare the new estimate of Life expectancy with the same linear        for (k=1;k<=n;k++) { 
    * hypothesis. A more precise result, taking into account a more precise          dum=a[imax][k]; 
    * curvature will be obtained if estepm is as small as stepm. */          a[imax][k]=a[j][k]; 
           a[j][k]=dum; 
   /* For example we decided to compute the life expectancy with the smallest unit */        } 
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.        *d = -(*d); 
      nhstepm is the number of hstepm from age to agelim        vv[imax]=vv[j]; 
      nstepm is the number of stepm from age to agelin.      } 
      Look at hpijx to understand the reason of that which relies in memory size      indx[j]=imax; 
      and note for a fixed period like estepm months */      if (a[j][j] == 0.0) a[j][j]=TINY; 
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the      if (j != n) { 
      survival function given by stepm (the optimization length). Unfortunately it        dum=1.0/(a[j][j]); 
      means that if the survival funtion is printed only each two years of age and if        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
      you sum them up and add 1 year (area under the trapezoids) you won't get the same      } 
      results. So we changed our mind and took the option of the best precision.    } 
   */    free_vector(vv,1,n);  /* Doesn't work */
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */  ;
   } 
   agelim=AGESUP;  
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */  void lubksb(double **a, int n, int *indx, double b[]) 
     /* nhstepm age range expressed in number of stepm */  { 
     nstepm=(int) rint((agelim-age)*YEARM/stepm);    int i,ii=0,ip,j; 
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */    double sum; 
     /* if (stepm >= YEARM) hstepm=1;*/   
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */    for (i=1;i<=n;i++) { 
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      ip=indx[i]; 
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);      sum=b[ip]; 
     gp=matrix(0,nhstepm,1,nlstate*2);      b[ip]=b[i]; 
     gm=matrix(0,nhstepm,1,nlstate*2);      if (ii) 
         for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
     /* Computed by stepm unit matrices, product of hstepm matrices, stored      else if (sum) ii=i; 
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */      b[i]=sum; 
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);      } 
      for (i=n;i>=1;i--) { 
       sum=b[i]; 
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
       b[i]=sum/a[i][i]; 
     /* Computing Variances of health expectancies */    } 
   } 
      for(theta=1; theta <=npar; theta++){  
       for(i=1; i<=npar; i++){  /************ Frequencies ********************/
         xp[i] = x[i] + (i==theta ?delti[theta]:0);  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint)
       }  {  /* Some frequencies */
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      
      int i, m, jk, k1,i1, j1, bool, z1,z2,j;
       cptj=0;    int first;
       for(j=1; j<= nlstate; j++){    double ***freq; /* Frequencies */
         for(i=1; i<=nlstate; i++){    double *pp, **prop;
           cptj=cptj+1;    double pos,posprop, k2, dateintsum=0,k2cpt=0;
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){    FILE *ficresp;
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;    char fileresp[FILENAMELENGTH];
           }    
         }    pp=vector(1,nlstate);
       }    prop=matrix(1,nlstate,iagemin,iagemax+3);
          strcpy(fileresp,"p");
          strcat(fileresp,fileres);
       for(i=1; i<=npar; i++)    if((ficresp=fopen(fileresp,"w"))==NULL) {
         xp[i] = x[i] - (i==theta ?delti[theta]:0);      printf("Problem with prevalence resultfile: %s\n", fileresp);
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
            exit(0);
       cptj=0;    }
       for(j=1; j<= nlstate; j++){    freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);
         for(i=1;i<=nlstate;i++){    j1=0;
           cptj=cptj+1;    
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){    j=cptcoveff;
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;    if (cptcovn<1) {j=1;ncodemax[1]=1;}
           }  
         }    first=1;
       }  
       for(j=1; j<= nlstate*2; j++)    for(k1=1; k1<=j;k1++){
         for(h=0; h<=nhstepm-1; h++){      for(i1=1; i1<=ncodemax[k1];i1++){
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];        j1++;
         }        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
      }          scanf("%d", i);*/
            for (i=-1; i<=nlstate+ndeath; i++)  
 /* End theta */          for (jk=-1; jk<=nlstate+ndeath; jk++)  
             for(m=iagemin; m <= iagemax+3; m++)
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);              freq[i][jk][m]=0;
   
      for(h=0; h<=nhstepm-1; h++)      for (i=1; i<=nlstate; i++)  
       for(j=1; j<=nlstate*2;j++)        for(m=iagemin; m <= iagemax+3; m++)
         for(theta=1; theta <=npar; theta++)          prop[i][m]=0;
           trgradg[h][j][theta]=gradg[h][theta][j];        
              dateintsum=0;
         k2cpt=0;
      for(i=1;i<=nlstate*2;i++)        for (i=1; i<=imx; i++) {
       for(j=1;j<=nlstate*2;j++)          bool=1;
         varhe[i][j][(int)age] =0.;          if  (cptcovn>0) {
             for (z1=1; z1<=cptcoveff; z1++) 
      printf("%d|",(int)age);fflush(stdout);              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);                bool=0;
      for(h=0;h<=nhstepm-1;h++){          }
       for(k=0;k<=nhstepm-1;k++){          if (bool==1){
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);            for(m=firstpass; m<=lastpass; m++){
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);              k2=anint[m][i]+(mint[m][i]/12.);
         for(i=1;i<=nlstate*2;i++)              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
           for(j=1;j<=nlstate*2;j++)                if(agev[m][i]==0) agev[m][i]=iagemax+1;
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;                if(agev[m][i]==1) agev[m][i]=iagemax+2;
       }                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
     }                if (m<lastpass) {
     /* Computing expectancies */                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
     for(i=1; i<=nlstate;i++)                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
       for(j=1; j<=nlstate;j++)                }
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){                
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
                            dateintsum=dateintsum+k2;
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/                  k2cpt++;
                 }
         }                /*}*/
             }
     fprintf(ficreseij,"%3.0f",age );          }
     cptj=0;        }
     for(i=1; i<=nlstate;i++)         
       for(j=1; j<=nlstate;j++){        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
         cptj++;  
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );        if  (cptcovn>0) {
       }          fprintf(ficresp, "\n#********** Variable "); 
     fprintf(ficreseij,"\n");          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
              fprintf(ficresp, "**********\n#");
     free_matrix(gm,0,nhstepm,1,nlstate*2);        }
     free_matrix(gp,0,nhstepm,1,nlstate*2);        for(i=1; i<=nlstate;i++) 
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);        fprintf(ficresp, "\n");
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        
   }        for(i=iagemin; i <= iagemax+3; i++){
   printf("\n");          if(i==iagemax+3){
   fprintf(ficlog,"\n");            fprintf(ficlog,"Total");
           }else{
   free_vector(xp,1,npar);            if(first==1){
   free_matrix(dnewm,1,nlstate*2,1,npar);              first=0;
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);              printf("See log file for details...\n");
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);            }
 }            fprintf(ficlog,"Age %d", i);
           }
 /************ Variance ******************/          for(jk=1; jk <=nlstate ; jk++){
 void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased)            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
 {              pp[jk] += freq[jk][m][i]; 
   /* Variance of health expectancies */          }
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/          for(jk=1; jk <=nlstate ; jk++){
   /* double **newm;*/            for(m=-1, pos=0; m <=0 ; m++)
   double **dnewm,**doldm;              pos += freq[jk][m][i];
   double **dnewmp,**doldmp;            if(pp[jk]>=1.e-10){
   int i, j, nhstepm, hstepm, h, nstepm ;              if(first==1){
   int k, cptcode;              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
   double *xp;              }
   double **gp, **gm;  /* for var eij */              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
   double ***gradg, ***trgradg; /*for var eij */            }else{
   double **gradgp, **trgradgp; /* for var p point j */              if(first==1)
   double *gpp, *gmp; /* for var p point j */                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
   double **varppt; /* for var p point j nlstate to nlstate+ndeath */              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
   double ***p3mat;            }
   double age,agelim, hf;          }
   int theta;  
   char digit[4];          for(jk=1; jk <=nlstate ; jk++){
   char digitp[16];            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
               pp[jk] += freq[jk][m][i];
   char fileresprobmorprev[FILENAMELENGTH];          }       
           for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
   if(popbased==1)            pos += pp[jk];
     strcpy(digitp,"-populbased-");            posprop += prop[jk][i];
   else          }
     strcpy(digitp,"-stablbased-");          for(jk=1; jk <=nlstate ; jk++){
             if(pos>=1.e-5){
   strcpy(fileresprobmorprev,"prmorprev");              if(first==1)
   sprintf(digit,"%-d",ij);                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   strcat(fileresprobmorprev,digit); /* Tvar to be done */            }else{
   strcat(fileresprobmorprev,digitp); /* Popbased or not */              if(first==1)
   strcat(fileresprobmorprev,fileres);                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
   if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
     printf("Problem with resultfile: %s\n", fileresprobmorprev);            }
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);            if( i <= iagemax){
   }              if(pos>=1.e-5){
   printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
   fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);                /*probs[i][jk][j1]= pp[jk]/pos;*/
   fprintf(ficresprobmorprev,"# probabilities of dying during a year and weighted mean w1*p1j+w2*p2j+... stand dev in()\n");                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
   fprintf(ficresprobmorprev,"# Age cov=%-d",ij);              }
   for(j=nlstate+1; j<=(nlstate+ndeath);j++){              else
     fprintf(ficresprobmorprev," p.%-d SE",j);                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
     for(i=1; i<=nlstate;i++)            }
       fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);          }
   }            
   fprintf(ficresprobmorprev,"\n");          for(jk=-1; jk <=nlstate+ndeath; jk++)
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {            for(m=-1; m <=nlstate+ndeath; m++)
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);              if(freq[jk][m][i] !=0 ) {
     fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);              if(first==1)
     exit(0);                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
   }                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
   else{              }
     fprintf(ficgp,"\n# Routine varevsij");          if(i <= iagemax)
   }            fprintf(ficresp,"\n");
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {          if(first==1)
     printf("Problem with html file: %s\n", optionfilehtm);            printf("Others in log...\n");
     fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);          fprintf(ficlog,"\n");
     exit(0);        }
   }      }
   else{    }
     fprintf(fichtm,"\n<li><h4> Computing probabilities of dying as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");    dateintmean=dateintsum/k2cpt; 
   }   
   varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);    fclose(ficresp);
     free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");    free_vector(pp,1,nlstate);
   fprintf(ficresvij,"# Age");    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
   for(i=1; i<=nlstate;i++)    /* End of Freq */
     for(j=1; j<=nlstate;j++)  }
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);  
   fprintf(ficresvij,"\n");  /************ Prevalence ********************/
   void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
   xp=vector(1,npar);  {  
   dnewm=matrix(1,nlstate,1,npar);    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
   doldm=matrix(1,nlstate,1,nlstate);       in each health status at the date of interview (if between dateprev1 and dateprev2).
   dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);       We still use firstpass and lastpass as another selection.
   doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);    */
    
   gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
   gpp=vector(nlstate+1,nlstate+ndeath);    double ***freq; /* Frequencies */
   gmp=vector(nlstate+1,nlstate+ndeath);    double *pp, **prop;
   trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/    double pos,posprop; 
      double  y2; /* in fractional years */
   if(estepm < stepm){    int iagemin, iagemax;
     printf ("Problem %d lower than %d\n",estepm, stepm);  
   }    iagemin= (int) agemin;
   else  hstepm=estepm;      iagemax= (int) agemax;
   /* For example we decided to compute the life expectancy with the smallest unit */    /*pp=vector(1,nlstate);*/
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.    prop=matrix(1,nlstate,iagemin,iagemax+3); 
      nhstepm is the number of hstepm from age to agelim    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
      nstepm is the number of stepm from age to agelin.    j1=0;
      Look at hpijx to understand the reason of that which relies in memory size    
      and note for a fixed period like k years */    j=cptcoveff;
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the    if (cptcovn<1) {j=1;ncodemax[1]=1;}
      survival function given by stepm (the optimization length). Unfortunately it    
      means that if the survival funtion is printed only each two years of age and if    for(k1=1; k1<=j;k1++){
      you sum them up and add 1 year (area under the trapezoids) you won't get the same      for(i1=1; i1<=ncodemax[k1];i1++){
      results. So we changed our mind and took the option of the best precision.        j1++;
   */        
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */        for (i=1; i<=nlstate; i++)  
   agelim = AGESUP;          for(m=iagemin; m <= iagemax+3; m++)
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */            prop[i][m]=0.0;
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */       
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */        for (i=1; i<=imx; i++) { /* Each individual */
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          bool=1;
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);          if  (cptcovn>0) {
     gp=matrix(0,nhstepm,1,nlstate);            for (z1=1; z1<=cptcoveff; z1++) 
     gm=matrix(0,nhstepm,1,nlstate);              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
                 bool=0;
           } 
     for(theta=1; theta <=npar; theta++){          if (bool==1) { 
       for(i=1; i<=npar; i++){ /* Computes gradient */            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
         xp[i] = x[i] + (i==theta ?delti[theta]:0);              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
       }              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);                  if(agev[m][i]==0) agev[m][i]=iagemax+1;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
                 if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
       if (popbased==1) {                if (s[m][i]>0 && s[m][i]<=nlstate) { 
         for(i=1; i<=nlstate;i++)                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
           prlim[i][i]=probs[(int)age][i][ij];                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
       }                  prop[s[m][i]][iagemax+3] += weight[i]; 
                  } 
       for(j=1; j<= nlstate; j++){              }
         for(h=0; h<=nhstepm; h++){            } /* end selection of waves */
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)          }
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];        }
         }        for(i=iagemin; i <= iagemax+3; i++){  
       }          
       /* This for computing forces of mortality (h=1)as a weighted average */          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
       for(j=nlstate+1,gpp[j]=0.;j<=nlstate+ndeath;j++){            posprop += prop[jk][i]; 
         for(i=1; i<= nlstate; i++)          } 
           gpp[j] += prlim[i][i]*p3mat[i][j][1];  
       }              for(jk=1; jk <=nlstate ; jk++){     
       /* end force of mortality */            if( i <=  iagemax){ 
               if(posprop>=1.e-5){ 
       for(i=1; i<=npar; i++) /* Computes gradient */                probs[i][jk][j1]= prop[jk][i]/posprop;
         xp[i] = x[i] - (i==theta ?delti[theta]:0);              } 
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);              } 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          }/* end jk */ 
          }/* end i */ 
       if (popbased==1) {      } /* end i1 */
         for(i=1; i<=nlstate;i++)    } /* end k1 */
           prlim[i][i]=probs[(int)age][i][ij];    
       }    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
     /*free_vector(pp,1,nlstate);*/
       for(j=1; j<= nlstate; j++){    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
         for(h=0; h<=nhstepm; h++){  }  /* End of prevalence */
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)  
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];  /************* Waves Concatenation ***************/
         }  
       }  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
       /* This for computing force of mortality (h=1)as a weighted average */  {
       for(j=nlstate+1,gmp[j]=0.;j<=nlstate+ndeath;j++){    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
         for(i=1; i<= nlstate; i++)       Death is a valid wave (if date is known).
           gmp[j] += prlim[i][i]*p3mat[i][j][1];       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
       }           dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
       /* end force of mortality */       and mw[mi+1][i]. dh depends on stepm.
        */
       for(j=1; j<= nlstate; j++) /* vareij */  
         for(h=0; h<=nhstepm; h++){    int i, mi, m;
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
         }       double sum=0., jmean=0.;*/
       for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */    int first;
         gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];    int j, k=0,jk, ju, jl;
       }    double sum=0.;
     first=0;
     } /* End theta */    jmin=1e+5;
     jmax=-1;
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */    jmean=0.;
     for(i=1; i<=imx; i++){
     for(h=0; h<=nhstepm; h++) /* veij */      mi=0;
       for(j=1; j<=nlstate;j++)      m=firstpass;
         for(theta=1; theta <=npar; theta++)      while(s[m][i] <= nlstate){
           trgradg[h][j][theta]=gradg[h][theta][j];        if(s[m][i]>=1)
           mw[++mi][i]=m;
     for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */        if(m >=lastpass)
       for(theta=1; theta <=npar; theta++)          break;
         trgradgp[j][theta]=gradgp[theta][j];        else
           m++;
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */      }/* end while */
     for(i=1;i<=nlstate;i++)      if (s[m][i] > nlstate){
       for(j=1;j<=nlstate;j++)        mi++;     /* Death is another wave */
         vareij[i][j][(int)age] =0.;        /* if(mi==0)  never been interviewed correctly before death */
            /* Only death is a correct wave */
     for(h=0;h<=nhstepm;h++){        mw[mi][i]=m;
       for(k=0;k<=nhstepm;k++){      }
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);  
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);      wav[i]=mi;
         for(i=1;i<=nlstate;i++)      if(mi==0){
           for(j=1;j<=nlstate;j++)        if(first==0){
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;          printf("Warning! None valid information for:%ld line=%d (skipped) and may be others, see log file\n",num[i],i);
       }          first=1;
     }        }
         if(first==1){
     /* pptj */          fprintf(ficlog,"Warning! None valid information for:%ld line=%d (skipped)\n",num[i],i);
     matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);        }
     matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);      } /* end mi==0 */
     for(j=nlstate+1;j<=nlstate+ndeath;j++)    } /* End individuals */
       for(i=nlstate+1;i<=nlstate+ndeath;i++)  
         varppt[j][i]=doldmp[j][i];    for(i=1; i<=imx; i++){
     /* end ppptj */      for(mi=1; mi<wav[i];mi++){
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);          if (stepm <=0)
     prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);          dh[mi][i]=1;
          else{
     if (popbased==1) {          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
       for(i=1; i<=nlstate;i++)            if (agedc[i] < 2*AGESUP) {
         prlim[i][i]=probs[(int)age][i][ij];              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
     }              if(j==0) j=1;  /* Survives at least one month after exam */
                  else if(j<0){
     /* This for computing force of mortality (h=1)as a weighted average */                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     for(j=nlstate+1,gmp[j]=0.;j<=nlstate+ndeath;j++){                j=1; /* Careful Patch */
       for(i=1; i<= nlstate; i++)                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
         gmp[j] += prlim[i][i]*p3mat[i][j][1];                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     }                    fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
     /* end force of mortality */              }
               k=k+1;
     fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);              if (j >= jmax) jmax=j;
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){              if (j <= jmin) jmin=j;
       fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));              sum=sum+j;
       for(i=1; i<=nlstate;i++){              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
         fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
       }            }
     }          }
     fprintf(ficresprobmorprev,"\n");          else{
             j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
     fprintf(ficresvij,"%.0f ",age );            /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
     for(i=1; i<=nlstate;i++)            k=k+1;
       for(j=1; j<=nlstate;j++){            if (j >= jmax) jmax=j;
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);            else if (j <= jmin)jmin=j;
       }            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
     fprintf(ficresvij,"\n");            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
     free_matrix(gp,0,nhstepm,1,nlstate);            if(j<0){
     free_matrix(gm,0,nhstepm,1,nlstate);              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);            }
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            sum=sum+j;
   } /* End age */          }
   free_vector(gpp,nlstate+1,nlstate+ndeath);          jk= j/stepm;
   free_vector(gmp,nlstate+1,nlstate+ndeath);          jl= j -jk*stepm;
   free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);          ju= j -(jk+1)*stepm;
   free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
   fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");            if(jl==0){
   /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */              dh[mi][i]=jk;
   fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");              bh[mi][i]=0;
   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm);            }else{ /* We want a negative bias in order to only have interpolation ie
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm);                    * at the price of an extra matrix product in likelihood */
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm);              dh[mi][i]=jk+1;
   fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",fileresprobmorprev,fileresprobmorprev);              bh[mi][i]=ju;
   fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,digitp,digit);            }
   /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);          }else{
 */            if(jl <= -ju){
   fprintf(ficgp,"\nset out \"varmuptjgr%s%s.png\";replot;",digitp,digit);              dh[mi][i]=jk;
               bh[mi][i]=jl;       /* bias is positive if real duration
   free_vector(xp,1,npar);                                   * is higher than the multiple of stepm and negative otherwise.
   free_matrix(doldm,1,nlstate,1,nlstate);                                   */
   free_matrix(dnewm,1,nlstate,1,npar);            }
   free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);            else{
   free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);              dh[mi][i]=jk+1;
   free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);              bh[mi][i]=ju;
   fclose(ficresprobmorprev);            }
   fclose(ficgp);            if(dh[mi][i]==0){
   fclose(fichtm);              dh[mi][i]=1; /* At least one step */
               bh[mi][i]=ju; /* At least one step */
 }              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
             }
 /************ Variance of prevlim ******************/          } /* end if mle */
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)        }
 {      } /* end wave */
   /* Variance of prevalence limit */    }
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    jmean=sum/k;
   double **newm;    printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
   double **dnewm,**doldm;    fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
   int i, j, nhstepm, hstepm;   }
   int k, cptcode;  
   double *xp;  /*********** Tricode ****************************/
   double *gp, *gm;  void tricode(int *Tvar, int **nbcode, int imx)
   double **gradg, **trgradg;  {
   double age,agelim;    
   int theta;    int Ndum[20],ij=1, k, j, i, maxncov=19;
        int cptcode=0;
   fprintf(ficresvpl,"# Standard deviation of prevalence's limit\n");    cptcoveff=0; 
   fprintf(ficresvpl,"# Age");   
   for(i=1; i<=nlstate;i++)    for (k=0; k<maxncov; k++) Ndum[k]=0;
       fprintf(ficresvpl," %1d-%1d",i,i);    for (k=1; k<=7; k++) ncodemax[k]=0;
   fprintf(ficresvpl,"\n");  
     for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
   xp=vector(1,npar);      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
   dnewm=matrix(1,nlstate,1,npar);                                 modality*/ 
   doldm=matrix(1,nlstate,1,nlstate);        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
          Ndum[ij]++; /*store the modality */
   hstepm=1*YEARM; /* Every year of age */        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
   agelim = AGESUP;                                         Tvar[j]. If V=sex and male is 0 and 
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */                                         female is 1, then  cptcode=1.*/
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */      }
     if (stepm >= YEARM) hstepm=1;  
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */      for (i=0; i<=cptcode; i++) {
     gradg=matrix(1,npar,1,nlstate);        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
     gp=vector(1,nlstate);      }
     gm=vector(1,nlstate);  
       ij=1; 
     for(theta=1; theta <=npar; theta++){      for (i=1; i<=ncodemax[j]; i++) {
       for(i=1; i<=npar; i++){ /* Computes gradient */        for (k=0; k<= maxncov; k++) {
         xp[i] = x[i] + (i==theta ?delti[theta]:0);          if (Ndum[k] != 0) {
       }            nbcode[Tvar[j]][ij]=k; 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
       for(i=1;i<=nlstate;i++)            
         gp[i] = prlim[i][i];            ij++;
              }
       for(i=1; i<=npar; i++) /* Computes gradient */          if (ij > ncodemax[j]) break; 
         xp[i] = x[i] - (i==theta ?delti[theta]:0);        }  
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      } 
       for(i=1;i<=nlstate;i++)    }  
         gm[i] = prlim[i][i];  
    for (k=0; k< maxncov; k++) Ndum[k]=0;
       for(i=1;i<=nlstate;i++)  
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];   for (i=1; i<=ncovmodel-2; i++) { 
     } /* End theta */     /* Listing of all covariables in staement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
      ij=Tvar[i];
     trgradg =matrix(1,nlstate,1,npar);     Ndum[ij]++;
    }
     for(j=1; j<=nlstate;j++)  
       for(theta=1; theta <=npar; theta++)   ij=1;
         trgradg[j][theta]=gradg[theta][j];   for (i=1; i<= maxncov; i++) {
      if((Ndum[i]!=0) && (i<=ncovcol)){
     for(i=1;i<=nlstate;i++)       Tvaraff[ij]=i; /*For printing */
       varpl[i][(int)age] =0.;       ij++;
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);     }
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);   }
     for(i=1;i<=nlstate;i++)   
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */   cptcoveff=ij-1; /*Number of simple covariates*/
   }
     fprintf(ficresvpl,"%.0f ",age );  
     for(i=1; i<=nlstate;i++)  /*********** Health Expectancies ****************/
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));  
     fprintf(ficresvpl,"\n");  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )
     free_vector(gp,1,nlstate);  
     free_vector(gm,1,nlstate);  {
     free_matrix(gradg,1,npar,1,nlstate);    /* Health expectancies */
     free_matrix(trgradg,1,nlstate,1,npar);    int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
   } /* End age */    double age, agelim, hf;
     double ***p3mat,***varhe;
   free_vector(xp,1,npar);    double **dnewm,**doldm;
   free_matrix(doldm,1,nlstate,1,npar);    double *xp;
   free_matrix(dnewm,1,nlstate,1,nlstate);    double **gp, **gm;
     double ***gradg, ***trgradg;
 }    int theta;
   
 /************ Variance of one-step probabilities  ******************/    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)    xp=vector(1,npar);
 {    dnewm=matrix(1,nlstate*nlstate,1,npar);
   int i, j=0,  i1, k1, l1, t, tj;    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
   int k2, l2, j1,  z1;    
   int k=0,l, cptcode;    fprintf(ficreseij,"# Health expectancies\n");
   int first=1, first1;    fprintf(ficreseij,"# Age");
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;    for(i=1; i<=nlstate;i++)
   double **dnewm,**doldm;      for(j=1; j<=nlstate;j++)
   double *xp;        fprintf(ficreseij," %1d-%1d (SE)",i,j);
   double *gp, *gm;    fprintf(ficreseij,"\n");
   double **gradg, **trgradg;  
   double **mu;    if(estepm < stepm){
   double age,agelim, cov[NCOVMAX];      printf ("Problem %d lower than %d\n",estepm, stepm);
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */    }
   int theta;    else  hstepm=estepm;   
   char fileresprob[FILENAMELENGTH];    /* We compute the life expectancy from trapezoids spaced every estepm months
   char fileresprobcov[FILENAMELENGTH];     * This is mainly to measure the difference between two models: for example
   char fileresprobcor[FILENAMELENGTH];     * if stepm=24 months pijx are given only every 2 years and by summing them
      * we are calculating an estimate of the Life Expectancy assuming a linear 
   double ***varpij;     * progression in between and thus overestimating or underestimating according
      * to the curvature of the survival function. If, for the same date, we 
   strcpy(fileresprob,"prob");     * estimate the model with stepm=1 month, we can keep estepm to 24 months
   strcat(fileresprob,fileres);     * to compare the new estimate of Life expectancy with the same linear 
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {     * hypothesis. A more precise result, taking into account a more precise
     printf("Problem with resultfile: %s\n", fileresprob);     * curvature will be obtained if estepm is as small as stepm. */
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);  
   }    /* For example we decided to compute the life expectancy with the smallest unit */
   strcpy(fileresprobcov,"probcov");    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   strcat(fileresprobcov,fileres);       nhstepm is the number of hstepm from age to agelim 
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {       nstepm is the number of stepm from age to agelin. 
     printf("Problem with resultfile: %s\n", fileresprobcov);       Look at hpijx to understand the reason of that which relies in memory size
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);       and note for a fixed period like estepm months */
   }    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   strcpy(fileresprobcor,"probcor");       survival function given by stepm (the optimization length). Unfortunately it
   strcat(fileresprobcor,fileres);       means that if the survival funtion is printed only each two years of age and if
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
     printf("Problem with resultfile: %s\n", fileresprobcor);       results. So we changed our mind and took the option of the best precision.
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);    */
   }    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);  
   fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);    agelim=AGESUP;
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);      /* nhstepm age range expressed in number of stepm */
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);      nstepm=(int) rint((agelim-age)*YEARM/stepm); 
   fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
        /* if (stepm >= YEARM) hstepm=1;*/
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   fprintf(ficresprob,"# Age");      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");      gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
   fprintf(ficresprobcov,"# Age");      gp=matrix(0,nhstepm,1,nlstate*nlstate);
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");      gm=matrix(0,nhstepm,1,nlstate*nlstate);
   fprintf(ficresprobcov,"# Age");  
       /* Computed by stepm unit matrices, product of hstepm matrices, stored
          in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
   for(i=1; i<=nlstate;i++)      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
     for(j=1; j<=(nlstate+ndeath);j++){   
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);  
       fprintf(ficresprobcov," p%1d-%1d ",i,j);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       fprintf(ficresprobcor," p%1d-%1d ",i,j);  
     }        /* Computing Variances of health expectancies */
   fprintf(ficresprob,"\n");  
   fprintf(ficresprobcov,"\n");       for(theta=1; theta <=npar; theta++){
   fprintf(ficresprobcor,"\n");        for(i=1; i<=npar; i++){ 
   xp=vector(1,npar);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);        }
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);    
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);        cptj=0;
   first=1;        for(j=1; j<= nlstate; j++){
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {          for(i=1; i<=nlstate; i++){
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);            cptj=cptj+1;
     fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);            for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
     exit(0);              gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
   }            }
   else{          }
     fprintf(ficgp,"\n# Routine varprob");        }
   }       
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {       
     printf("Problem with html file: %s\n", optionfilehtm);        for(i=1; i<=npar; i++) 
     fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
     exit(0);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   }        
   else{        cptj=0;
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");        for(j=1; j<= nlstate; j++){
     fprintf(fichtm,"\n");          for(i=1;i<=nlstate;i++){
             cptj=cptj+1;
     fprintf(fichtm,"\n<li><h4> Computing matrix of variance-covariance of step probabilities</h4></li>\n");            for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
     fprintf(fichtm,"\nWe have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");  
     fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");              gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
             }
   }          }
         }
          for(j=1; j<= nlstate*nlstate; j++)
   cov[1]=1;          for(h=0; h<=nhstepm-1; h++){
   tj=cptcoveff;            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
   if (cptcovn<1) {tj=1;ncodemax[1]=1;}          }
   j1=0;       } 
   for(t=1; t<=tj;t++){     
     for(i1=1; i1<=ncodemax[t];i1++){  /* End theta */
       j1++;  
             trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
       if  (cptcovn>0) {  
         fprintf(ficresprob, "\n#********** Variable ");       for(h=0; h<=nhstepm-1; h++)
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        for(j=1; j<=nlstate*nlstate;j++)
         fprintf(ficresprob, "**********\n#");          for(theta=1; theta <=npar; theta++)
         fprintf(ficresprobcov, "\n#********** Variable ");            trgradg[h][j][theta]=gradg[h][theta][j];
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);       
         fprintf(ficresprobcov, "**********\n#");  
               for(i=1;i<=nlstate*nlstate;i++)
         fprintf(ficgp, "\n#********** Variable ");        for(j=1;j<=nlstate*nlstate;j++)
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, "# V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          varhe[i][j][(int)age] =0.;
         fprintf(ficgp, "**********\n#");  
               printf("%d|",(int)age);fflush(stdout);
               fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
         fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable ");       for(h=0;h<=nhstepm-1;h++){
         for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        for(k=0;k<=nhstepm-1;k++){
         fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
                  matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
         fprintf(ficresprobcor, "\n#********** Variable ");              for(i=1;i<=nlstate*nlstate;i++)
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);            for(j=1;j<=nlstate*nlstate;j++)
         fprintf(ficgp, "**********\n#");                  varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
       }        }
            }
       for (age=bage; age<=fage; age ++){      /* Computing expectancies */
         cov[2]=age;      for(i=1; i<=nlstate;i++)
         for (k=1; k<=cptcovn;k++) {        for(j=1; j<=nlstate;j++)
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
         }            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];            
         for (k=1; k<=cptcovprod;k++)  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  
                  }
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));  
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);      fprintf(ficreseij,"%3.0f",age );
         gp=vector(1,(nlstate)*(nlstate+ndeath));      cptj=0;
         gm=vector(1,(nlstate)*(nlstate+ndeath));      for(i=1; i<=nlstate;i++)
            for(j=1; j<=nlstate;j++){
         for(theta=1; theta <=npar; theta++){          cptj++;
           for(i=1; i<=npar; i++)          fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
             xp[i] = x[i] + (i==theta ?delti[theta]:0);        }
                fprintf(ficreseij,"\n");
           pmij(pmmij,cov,ncovmodel,xp,nlstate);     
                free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
           k=0;      free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
           for(i=1; i<= (nlstate); i++){      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
             for(j=1; j<=(nlstate+ndeath);j++){      free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
               k=k+1;      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
               gp[k]=pmmij[i][j];    }
             }    printf("\n");
           }    fprintf(ficlog,"\n");
            
           for(i=1; i<=npar; i++)    free_vector(xp,1,npar);
             xp[i] = x[i] - (i==theta ?delti[theta]:0);    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
        free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
           pmij(pmmij,cov,ncovmodel,xp,nlstate);    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
           k=0;  }
           for(i=1; i<=(nlstate); i++){  
             for(j=1; j<=(nlstate+ndeath);j++){  /************ Variance ******************/
               k=k+1;  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav)
               gm[k]=pmmij[i][j];  {
             }    /* Variance of health expectancies */
           }    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
          /* double **newm;*/
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)    double **dnewm,**doldm;
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];      double **dnewmp,**doldmp;
         }    int i, j, nhstepm, hstepm, h, nstepm ;
     int k, cptcode;
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)    double *xp;
           for(theta=1; theta <=npar; theta++)    double **gp, **gm;  /* for var eij */
             trgradg[j][theta]=gradg[theta][j];    double ***gradg, ***trgradg; /*for var eij */
            double **gradgp, **trgradgp; /* for var p point j */
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);    double *gpp, *gmp; /* for var p point j */
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
            double ***p3mat;
         pmij(pmmij,cov,ncovmodel,x,nlstate);    double age,agelim, hf;
            double ***mobaverage;
         k=0;    int theta;
         for(i=1; i<=(nlstate); i++){    char digit[4];
           for(j=1; j<=(nlstate+ndeath);j++){    char digitp[25];
             k=k+1;  
             mu[k][(int) age]=pmmij[i][j];    char fileresprobmorprev[FILENAMELENGTH];
           }  
         }    if(popbased==1){
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)      if(mobilav!=0)
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)        strcpy(digitp,"-populbased-mobilav-");
             varpij[i][j][(int)age] = doldm[i][j];      else strcpy(digitp,"-populbased-nomobil-");
     }
         /*printf("\n%d ",(int)age);    else 
      for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){      strcpy(digitp,"-stablbased-");
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));  
        fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));    if (mobilav!=0) {
      }*/      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         fprintf(ficresprob,"\n%d ",(int)age);        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         fprintf(ficresprobcov,"\n%d ",(int)age);        printf(" Error in movingaverage mobilav=%d\n",mobilav);
         fprintf(ficresprobcor,"\n%d ",(int)age);      }
     }
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)  
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));    strcpy(fileresprobmorprev,"prmorprev"); 
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){    sprintf(digit,"%-d",ij);
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);    strcat(fileresprobmorprev,digit); /* Tvar to be done */
         }    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
         i=0;    strcat(fileresprobmorprev,fileres);
         for (k=1; k<=(nlstate);k++){    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
           for (l=1; l<=(nlstate+ndeath);l++){      printf("Problem with resultfile: %s\n", fileresprobmorprev);
             i=i++;      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);    }
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
             for (j=1; j<=i;j++){    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
             }    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
           }      fprintf(ficresprobmorprev," p.%-d SE",j);
         }/* end of loop for state */      for(i=1; i<=nlstate;i++)
       } /* end of loop for age */        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
     }  
       /* Confidence intervalle of pij  */    fprintf(ficresprobmorprev,"\n");
       /*    if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {
       fprintf(ficgp,"\nset noparametric;unset label");      printf("Problem with gnuplot file: %s\n", optionfilegnuplot);
       fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");      fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);
       fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");      exit(0);
       fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);    }
       fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);    else{
       fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);      fprintf(ficgp,"\n# Routine varevsij");
       fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);    }
       */  /*   if((fichtm=fopen(optionfilehtm,"a"))==NULL) { */
   /*     printf("Problem with html file: %s\n", optionfilehtm); */
       /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/  /*     fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm); */
       first1=1;  /*     exit(0); */
       for (k2=1; k2<=(nlstate);k2++){  /*   } */
         for (l2=1; l2<=(nlstate+ndeath);l2++){  /*   else{ */
           if(l2==k2) continue;    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
           j=(k2-1)*(nlstate+ndeath)+l2;    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
           for (k1=1; k1<=(nlstate);k1++){  /*   } */
             for (l1=1; l1<=(nlstate+ndeath);l1++){    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
               if(l1==k1) continue;  
               i=(k1-1)*(nlstate+ndeath)+l1;    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
               if(i<=j) continue;    fprintf(ficresvij,"# Age");
               for (age=bage; age<=fage; age ++){    for(i=1; i<=nlstate;i++)
                 if ((int)age %5==0){      for(j=1; j<=nlstate;j++)
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;        fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;    fprintf(ficresvij,"\n");
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;  
                   mu1=mu[i][(int) age]/stepm*YEARM ;    xp=vector(1,npar);
                   mu2=mu[j][(int) age]/stepm*YEARM;    dnewm=matrix(1,nlstate,1,npar);
                   c12=cv12/sqrt(v1*v2);    doldm=matrix(1,nlstate,1,nlstate);
                   /* Computing eigen value of matrix of covariance */    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
                   lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
                   lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;  
                   /* Eigen vectors */    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));    gpp=vector(nlstate+1,nlstate+ndeath);
                   /*v21=sqrt(1.-v11*v11); *//* error */    gmp=vector(nlstate+1,nlstate+ndeath);
                   v21=(lc1-v1)/cv12*v11;    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
                   v12=-v21;    
                   v22=v11;    if(estepm < stepm){
                   tnalp=v21/v11;      printf ("Problem %d lower than %d\n",estepm, stepm);
                   if(first1==1){    }
                     first1=0;    else  hstepm=estepm;   
                     printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);    /* For example we decided to compute the life expectancy with the smallest unit */
                   }    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
                   fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);       nhstepm is the number of hstepm from age to agelim 
                   /*printf(fignu*/       nstepm is the number of stepm from age to agelin. 
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */       Look at hpijx to understand the reason of that which relies in memory size
                   /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */       and note for a fixed period like k years */
                   if(first==1){    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
                     first=0;       survival function given by stepm (the optimization length). Unfortunately it
                     fprintf(ficgp,"\nset parametric;unset label");       means that if the survival funtion is printed every two years of age and if
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
                     fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");       results. So we changed our mind and took the option of the best precision.
                     fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%d%1d%1d-%1d%1d.png\">varpijgr%s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2);    */
                     fprintf(fichtm,"\n<br><img src=\"varpijgr%s%d%1d%1d-%1d%1d.png\"> ",optionfilefiname, j1,k1,l1,k2,l2);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
                     fprintf(fichtm,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);    agelim = AGESUP;
                     fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\"",optionfilefiname, j1,k1,l1,k2,l2);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));      gp=matrix(0,nhstepm,1,nlstate);
                   }else{      gm=matrix(0,nhstepm,1,nlstate);
                     first=0;  
                     fprintf(fichtm," %d (%.3f),",(int) age, c12);  
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);      for(theta=1; theta <=npar; theta++){
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\          xp[i] = x[i] + (i==theta ?delti[theta]:0);
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\        }
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
                   }/* if first */        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
                 } /* age mod 5 */  
               } /* end loop age */        if (popbased==1) {
               fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\";replot;",optionfilefiname, j1,k1,l1,k2,l2);          if(mobilav ==0){
               first=1;            for(i=1; i<=nlstate;i++)
             } /*l12 */              prlim[i][i]=probs[(int)age][i][ij];
           } /* k12 */          }else{ /* mobilav */ 
         } /*l1 */            for(i=1; i<=nlstate;i++)
       }/* k1 */              prlim[i][i]=mobaverage[(int)age][i][ij];
     } /* loop covariates */          }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);        }
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));    
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));        for(j=1; j<= nlstate; j++){
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);          for(h=0; h<=nhstepm; h++){
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
   }          }
   free_vector(xp,1,npar);        }
   fclose(ficresprob);        /* This for computing probability of death (h=1 means
   fclose(ficresprobcov);           computed over hstepm matrices product = hstepm*stepm months) 
   fclose(ficresprobcor);           as a weighted average of prlim.
   fclose(ficgp);        */
   fclose(fichtm);        for(j=nlstate+1;j<=nlstate+ndeath;j++){
 }          for(i=1,gpp[j]=0.; i<= nlstate; i++)
             gpp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
 /******************* Printing html file ***********/        /* end probability of death */
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \  
                   int lastpass, int stepm, int weightopt, char model[],\        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\          xp[i] = x[i] - (i==theta ?delti[theta]:0);
                   int popforecast, int estepm ,\        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
                   double jprev1, double mprev1,double anprev1, \        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
                   double jprev2, double mprev2,double anprev2){   
   int jj1, k1, i1, cpt;        if (popbased==1) {
   /*char optionfilehtm[FILENAMELENGTH];*/          if(mobilav ==0){
   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {            for(i=1; i<=nlstate;i++)
     printf("Problem with %s \n",optionfilehtm), exit(0);              prlim[i][i]=probs[(int)age][i][ij];
     fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0);          }else{ /* mobilav */ 
   }            for(i=1; i<=nlstate;i++)
               prlim[i][i]=mobaverage[(int)age][i][ij];
    fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n          }
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n        }
  - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n  
  - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n        for(j=1; j<= nlstate; j++){
  - Life expectancies by age and initial health status (estepm=%2d months):          for(h=0; h<=nhstepm; h++){
    <a href=\"e%s\">e%s</a> <br>\n</li>", \            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
   jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
           }
 fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");        }
         /* This for computing probability of death (h=1 means
  m=cptcoveff;           computed over hstepm matrices product = hstepm*stepm months) 
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}           as a weighted average of prlim.
         */
  jj1=0;        for(j=nlstate+1;j<=nlstate+ndeath;j++){
  for(k1=1; k1<=m;k1++){          for(i=1,gmp[j]=0.; i<= nlstate; i++)
    for(i1=1; i1<=ncodemax[k1];i1++){           gmp[j] += prlim[i][i]*p3mat[i][j][1];
      jj1++;        }    
      if (cptcovn > 0) {        /* end probability of death */
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");  
        for (cpt=1; cpt<=cptcoveff;cpt++)        for(j=1; j<= nlstate; j++) /* vareij */
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);          for(h=0; h<=nhstepm; h++){
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
      }          }
      /* Pij */  
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before: pe%s%d1.png<br>        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
 <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);              gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
      /* Quasi-incidences */        }
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>  
 <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);      } /* End theta */
        /* Stable prevalence in each health state */  
        for(cpt=1; cpt<nlstate;cpt++){      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
          fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>  
 <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);      for(h=0; h<=nhstepm; h++) /* veij */
        }        for(j=1; j<=nlstate;j++)
      for(cpt=1; cpt<=nlstate;cpt++) {          for(theta=1; theta <=npar; theta++)
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>            trgradg[h][j][theta]=gradg[h][theta][j];
 <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);  
      }      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
      fprintf(fichtm,"\n<br>- Total life expectancy by age and        for(theta=1; theta <=npar; theta++)
 health expectancies in states (1) and (2): e%s%d.png<br>          trgradgp[j][theta]=gradgp[theta][j];
 <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);    
    } /* end i1 */  
  }/* End k1 */      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
  fprintf(fichtm,"</ul>");      for(i=1;i<=nlstate;i++)
         for(j=1;j<=nlstate;j++)
           vareij[i][j][(int)age] =0.;
  fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n  
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n      for(h=0;h<=nhstepm;h++){
  - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n        for(k=0;k<=nhstepm;k++){
  - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
  - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n          for(i=1;i<=nlstate;i++)
  - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n            for(j=1;j<=nlstate;j++)
  - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
         }
  if(popforecast==1) fprintf(fichtm,"\n      }
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n    
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n      /* pptj */
         <br>",fileres,fileres,fileres,fileres);      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
  else      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);      for(j=nlstate+1;j<=nlstate+ndeath;j++)
 fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");        for(i=nlstate+1;i<=nlstate+ndeath;i++)
           varppt[j][i]=doldmp[j][i];
  m=cptcoveff;      /* end ppptj */
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}      /*  x centered again */
       hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
  jj1=0;      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
  for(k1=1; k1<=m;k1++){   
    for(i1=1; i1<=ncodemax[k1];i1++){      if (popbased==1) {
      jj1++;        if(mobilav ==0){
      if (cptcovn > 0) {          for(i=1; i<=nlstate;i++)
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");            prlim[i][i]=probs[(int)age][i][ij];
        for (cpt=1; cpt<=cptcoveff;cpt++)        }else{ /* mobilav */ 
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);          for(i=1; i<=nlstate;i++)
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");            prlim[i][i]=mobaverage[(int)age][i][ij];
      }        }
      for(cpt=1; cpt<=nlstate;cpt++) {      }
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident               
 interval) in state (%d): v%s%d%d.png <br>      /* This for computing probability of death (h=1 means
 <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);           computed over hstepm (estepm) matrices product = hstepm*stepm months) 
      }         as a weighted average of prlim.
    } /* end i1 */      */
  }/* End k1 */      for(j=nlstate+1;j<=nlstate+ndeath;j++){
  fprintf(fichtm,"</ul>");        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
 fclose(fichtm);          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
 }      }    
       /* end probability of death */
 /******************* Gnuplot file **************/  
 void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
       for(j=nlstate+1; j<=(nlstate+ndeath);j++){
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
   int ng;        for(i=1; i<=nlstate;i++){
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
     printf("Problem with file %s",optionfilegnuplot);        }
     fprintf(ficlog,"Problem with file %s",optionfilegnuplot);      } 
   }      fprintf(ficresprobmorprev,"\n");
   
 #ifdef windows      fprintf(ficresvij,"%.0f ",age );
     fprintf(ficgp,"cd \"%s\" \n",pathc);      for(i=1; i<=nlstate;i++)
 #endif        for(j=1; j<=nlstate;j++){
 m=pow(2,cptcoveff);          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
          }
  /* 1eme*/      fprintf(ficresvij,"\n");
   for (cpt=1; cpt<= nlstate ; cpt ++) {      free_matrix(gp,0,nhstepm,1,nlstate);
    for (k1=1; k1<= m ; k1 ++) {      free_matrix(gm,0,nhstepm,1,nlstate);
       free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
 #ifdef windows      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
      fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);    } /* End age */
 #endif    free_vector(gpp,nlstate+1,nlstate+ndeath);
 #ifdef unix    free_vector(gmp,nlstate+1,nlstate+ndeath);
 fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
 #endif    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
     /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
 for (i=1; i<= nlstate ; i ++) {    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   else fprintf(ficgp," \%%*lf (\%%*lf)");  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
 }  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",fileresprobmorprev);
     for (i=1; i<= nlstate ; i ++) {    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",fileresprobmorprev);
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",fileresprobmorprev);
   else fprintf(ficgp," \%%*lf (\%%*lf)");    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",fileresprobmorprev,fileresprobmorprev);
 }    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"varmuptjgr%s%s%s.png\"> <br>\n", estepm,digitp,optionfilefiname,digit);
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
      for (i=1; i<= nlstate ; i ++) {  */
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit);
   else fprintf(ficgp," \%%*lf (\%%*lf)");  
 }      free_vector(xp,1,npar);
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));    free_matrix(doldm,1,nlstate,1,nlstate);
 #ifdef unix    free_matrix(dnewm,1,nlstate,1,npar);
 fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\n");    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
 #endif    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
    }    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   }    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   /*2 eme*/    fclose(ficresprobmorprev);
     fclose(ficgp);
   for (k1=1; k1<= m ; k1 ++) {  /*   fclose(fichtm); */
     fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);  }  /* end varevsij */
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);  
      /************ Variance of prevlim ******************/
     for (i=1; i<= nlstate+1 ; i ++) {  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)
       k=2*i;  {
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);    /* Variance of prevalence limit */
       for (j=1; j<= nlstate+1 ; j ++) {    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    double **newm;
   else fprintf(ficgp," \%%*lf (\%%*lf)");    double **dnewm,**doldm;
 }      int i, j, nhstepm, hstepm;
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");    int k, cptcode;
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);    double *xp;
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);    double *gp, *gm;
       for (j=1; j<= nlstate+1 ; j ++) {    double **gradg, **trgradg;
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    double age,agelim;
         else fprintf(ficgp," \%%*lf (\%%*lf)");    int theta;
 }       
       fprintf(ficgp,"\" t\"\" w l 0,");    fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);    fprintf(ficresvpl,"# Age");
       for (j=1; j<= nlstate+1 ; j ++) {    for(i=1; i<=nlstate;i++)
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");        fprintf(ficresvpl," %1d-%1d",i,i);
   else fprintf(ficgp," \%%*lf (\%%*lf)");    fprintf(ficresvpl,"\n");
 }    
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");    xp=vector(1,npar);
       else fprintf(ficgp,"\" t\"\" w l 0,");    dnewm=matrix(1,nlstate,1,npar);
     }    doldm=matrix(1,nlstate,1,nlstate);
   }    
      hstepm=1*YEARM; /* Every year of age */
   /*3eme*/    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
     agelim = AGESUP;
   for (k1=1; k1<= m ; k1 ++) {    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
     for (cpt=1; cpt<= nlstate ; cpt ++) {      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       k=2+nlstate*(2*cpt-2);      if (stepm >= YEARM) hstepm=1;
       fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
       fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);      gradg=matrix(1,npar,1,nlstate);
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);      gp=vector(1,nlstate);
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");      gm=vector(1,nlstate);
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);  
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);      for(theta=1; theta <=npar; theta++){
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");        for(i=1; i<=npar; i++){ /* Computes gradient */
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
 */        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
       for (i=1; i< nlstate ; i ++) {        for(i=1;i<=nlstate;i++)
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);          gp[i] = prlim[i][i];
       
       }        for(i=1; i<=npar; i++) /* Computes gradient */
     }          xp[i] = x[i] - (i==theta ?delti[theta]:0);
   }        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
          for(i=1;i<=nlstate;i++)
   /* CV preval stat */          gm[i] = prlim[i][i];
     for (k1=1; k1<= m ; k1 ++) {  
     for (cpt=1; cpt<nlstate ; cpt ++) {        for(i=1;i<=nlstate;i++)
       k=3;          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
       fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);      } /* End theta */
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);  
       trgradg =matrix(1,nlstate,1,npar);
       for (i=1; i< nlstate ; i ++)  
         fprintf(ficgp,"+$%d",k+i+1);      for(j=1; j<=nlstate;j++)
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);        for(theta=1; theta <=npar; theta++)
                trgradg[j][theta]=gradg[theta][j];
       l=3+(nlstate+ndeath)*cpt;  
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);      for(i=1;i<=nlstate;i++)
       for (i=1; i< nlstate ; i ++) {        varpl[i][(int)age] =0.;
         l=3+(nlstate+ndeath)*cpt;      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
         fprintf(ficgp,"+$%d",l+i+1);      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
       }      for(i=1;i<=nlstate;i++)
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);          varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
     }  
   }        fprintf(ficresvpl,"%.0f ",age );
        for(i=1; i<=nlstate;i++)
   /* proba elementaires */        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
    for(i=1,jk=1; i <=nlstate; i++){      fprintf(ficresvpl,"\n");
     for(k=1; k <=(nlstate+ndeath); k++){      free_vector(gp,1,nlstate);
       if (k != i) {      free_vector(gm,1,nlstate);
         for(j=1; j <=ncovmodel; j++){      free_matrix(gradg,1,npar,1,nlstate);
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);      free_matrix(trgradg,1,nlstate,1,npar);
           jk++;    } /* End age */
           fprintf(ficgp,"\n");  
         }    free_vector(xp,1,npar);
       }    free_matrix(doldm,1,nlstate,1,npar);
     }    free_matrix(dnewm,1,nlstate,1,nlstate);
    }  
   }
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/  
      for(jk=1; jk <=m; jk++) {  /************ Variance of one-step probabilities  ******************/
        fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng);  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)
        if (ng==2)  {
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");    int i, j=0,  i1, k1, l1, t, tj;
        else    int k2, l2, j1,  z1;
          fprintf(ficgp,"\nset title \"Probability\"\n");    int k=0,l, cptcode;
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);    int first=1, first1;
        i=1;    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
        for(k2=1; k2<=nlstate; k2++) {    double **dnewm,**doldm;
          k3=i;    double *xp;
          for(k=1; k<=(nlstate+ndeath); k++) {    double *gp, *gm;
            if (k != k2){    double **gradg, **trgradg;
              if(ng==2)    double **mu;
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);    double age,agelim, cov[NCOVMAX];
              else    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);    int theta;
              ij=1;    char fileresprob[FILENAMELENGTH];
              for(j=3; j <=ncovmodel; j++) {    char fileresprobcov[FILENAMELENGTH];
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {    char fileresprobcor[FILENAMELENGTH];
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);  
                  ij++;    double ***varpij;
                }  
                else    strcpy(fileresprob,"prob"); 
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    strcat(fileresprob,fileres);
              }    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
              fprintf(ficgp,")/(1");      printf("Problem with resultfile: %s\n", fileresprob);
                    fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
              for(k1=1; k1 <=nlstate; k1++){      }
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);    strcpy(fileresprobcov,"probcov"); 
                ij=1;    strcat(fileresprobcov,fileres);
                for(j=3; j <=ncovmodel; j++){    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {      printf("Problem with resultfile: %s\n", fileresprobcov);
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
                    ij++;    }
                  }    strcpy(fileresprobcor,"probcor"); 
                  else    strcat(fileresprobcor,fileres);
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
                }      printf("Problem with resultfile: %s\n", fileresprobcor);
                fprintf(ficgp,")");      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
              }    }
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
              i=i+ncovmodel;    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
            }    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
          } /* end k */    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
        } /* end k2 */    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
      } /* end jk */    
    } /* end ng */    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
    fclose(ficgp);    fprintf(ficresprob,"# Age");
 }  /* end gnuplot */    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
     fprintf(ficresprobcov,"# Age");
     fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
 /*************** Moving average **************/    fprintf(ficresprobcov,"# Age");
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){  
   
   int i, cpt, cptcod;    for(i=1; i<=nlstate;i++)
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)      for(j=1; j<=(nlstate+ndeath);j++){
       for (i=1; i<=nlstate;i++)        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)        fprintf(ficresprobcov," p%1d-%1d ",i,j);
           mobaverage[(int)agedeb][i][cptcod]=0.;        fprintf(ficresprobcor," p%1d-%1d ",i,j);
          }  
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){   /* fprintf(ficresprob,"\n");
       for (i=1; i<=nlstate;i++){    fprintf(ficresprobcov,"\n");
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    fprintf(ficresprobcor,"\n");
           for (cpt=0;cpt<=4;cpt++){   */
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];   xp=vector(1,npar);
           }    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
         }    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
       }    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     }    first=1;
        if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {
 }      printf("Problem with gnuplot file: %s\n", optionfilegnuplot);
       fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);
       exit(0);
 /************** Forecasting ******************/    }
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){    else{
        fprintf(ficgp,"\n# Routine varprob");
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;    }
   int *popage;  /*   if((fichtm=fopen(optionfilehtm,"a"))==NULL) { */
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;  /*     printf("Problem with html file: %s\n", optionfilehtm); */
   double *popeffectif,*popcount;  /*     fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm); */
   double ***p3mat;  /*     exit(0); */
   char fileresf[FILENAMELENGTH];  /*   } */
   /*   else{ */
  agelim=AGESUP;      fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;      fprintf(fichtm,"\n");
   
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);      fprintf(fichtm,"\n<li><h4> Computing matrix of variance-covariance of step probabilities</h4></li>\n");
        fprintf(fichtm,"\nWe have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
        fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");
   strcpy(fileresf,"f");  
   strcat(fileresf,fileres);  /*   } */
   if((ficresf=fopen(fileresf,"w"))==NULL) {  
     printf("Problem with forecast resultfile: %s\n", fileresf);    cov[1]=1;
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);    tj=cptcoveff;
   }    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
   printf("Computing forecasting: result on file '%s' \n", fileresf);    j1=0;
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);    for(t=1; t<=tj;t++){
       for(i1=1; i1<=ncodemax[t];i1++){ 
   if (cptcoveff==0) ncodemax[cptcoveff]=1;        j1++;
         if  (cptcovn>0) {
   if (mobilav==1) {          fprintf(ficresprob, "\n#********** Variable "); 
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     movingaverage(agedeb, fage, ageminpar, mobaverage);          fprintf(ficresprob, "**********\n#\n");
   }          fprintf(ficresprobcov, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   stepsize=(int) (stepm+YEARM-1)/YEARM;          fprintf(ficresprobcov, "**********\n#\n");
   if (stepm<=12) stepsize=1;          
            fprintf(ficgp, "\n#********** Variable "); 
   agelim=AGESUP;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
            fprintf(ficgp, "**********\n#\n");
   hstepm=1;          
   hstepm=hstepm/stepm;          
   yp1=modf(dateintmean,&yp);          fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
   anprojmean=yp;          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   yp2=modf((yp1*12),&yp);          fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
   mprojmean=yp;          
   yp1=modf((yp2*30.5),&yp);          fprintf(ficresprobcor, "\n#********** Variable ");    
   jprojmean=yp;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   if(jprojmean==0) jprojmean=1;          fprintf(ficresprobcor, "**********\n#");    
   if(mprojmean==0) jprojmean=1;        }
          
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);        for (age=bage; age<=fage; age ++){ 
            cov[2]=age;
   for(cptcov=1;cptcov<=i2;cptcov++){          for (k=1; k<=cptcovn;k++) {
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
       k=k+1;          }
       fprintf(ficresf,"\n#******");          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
       for(j=1;j<=cptcoveff;j++) {          for (k=1; k<=cptcovprod;k++)
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
       }          
       fprintf(ficresf,"******\n");          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
       fprintf(ficresf,"# StartingAge FinalAge");          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);          gp=vector(1,(nlstate)*(nlstate+ndeath));
                gm=vector(1,(nlstate)*(nlstate+ndeath));
            
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {          for(theta=1; theta <=npar; theta++){
         fprintf(ficresf,"\n");            for(i=1; i<=npar; i++)
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);                xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
             
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){            pmij(pmmij,cov,ncovmodel,xp,nlstate);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);            
           nhstepm = nhstepm/hstepm;            k=0;
                      for(i=1; i<= (nlstate); i++){
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);              for(j=1; j<=(nlstate+ndeath);j++){
           oldm=oldms;savm=savms;                k=k+1;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);                  gp[k]=pmmij[i][j];
                      }
           for (h=0; h<=nhstepm; h++){            }
             if (h==(int) (calagedate+YEARM*cpt)) {            
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);            for(i=1; i<=npar; i++)
             }              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
             for(j=1; j<=nlstate+ndeath;j++) {      
               kk1=0.;kk2=0;            pmij(pmmij,cov,ncovmodel,xp,nlstate);
               for(i=1; i<=nlstate;i++) {                          k=0;
                 if (mobilav==1)            for(i=1; i<=(nlstate); i++){
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];              for(j=1; j<=(nlstate+ndeath);j++){
                 else {                k=k+1;
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];                gm[k]=pmmij[i][j];
                 }              }
                            }
               }       
               if (h==(int)(calagedate+12*cpt)){            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
                 fprintf(ficresf," %.3f", kk1);              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
                                  }
               }  
             }          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
           }            for(theta=1; theta <=npar; theta++)
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);              trgradg[j][theta]=gradg[theta][j];
         }          
       }          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
     }          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
   }          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
                  free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
           free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   fclose(ficresf);  
 }          pmij(pmmij,cov,ncovmodel,x,nlstate);
 /************** Forecasting ******************/          
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){          k=0;
            for(i=1; i<=(nlstate); i++){
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;            for(j=1; j<=(nlstate+ndeath);j++){
   int *popage;              k=k+1;
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;              mu[k][(int) age]=pmmij[i][j];
   double *popeffectif,*popcount;            }
   double ***p3mat,***tabpop,***tabpopprev;          }
   char filerespop[FILENAMELENGTH];          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
             for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);              varpij[i][j][(int)age] = doldm[i][j];
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
   agelim=AGESUP;          /*printf("\n%d ",(int)age);
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
              printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
              }*/
    
   strcpy(filerespop,"pop");          fprintf(ficresprob,"\n%d ",(int)age);
   strcat(filerespop,fileres);          fprintf(ficresprobcov,"\n%d ",(int)age);
   if((ficrespop=fopen(filerespop,"w"))==NULL) {          fprintf(ficresprobcor,"\n%d ",(int)age);
     printf("Problem with forecast resultfile: %s\n", filerespop);  
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
   }            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
   printf("Computing forecasting: result on file '%s' \n", filerespop);          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
             fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
   if (cptcoveff==0) ncodemax[cptcoveff]=1;          }
           i=0;
   if (mobilav==1) {          for (k=1; k<=(nlstate);k++){
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);            for (l=1; l<=(nlstate+ndeath);l++){ 
     movingaverage(agedeb, fage, ageminpar, mobaverage);              i=i++;
   }              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
               fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
   stepsize=(int) (stepm+YEARM-1)/YEARM;              for (j=1; j<=i;j++){
   if (stepm<=12) stepsize=1;                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                  fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
   agelim=AGESUP;              }
              }
   hstepm=1;          }/* end of loop for state */
   hstepm=hstepm/stepm;        } /* end of loop for age */
    
   if (popforecast==1) {        /* Confidence intervalle of pij  */
     if((ficpop=fopen(popfile,"r"))==NULL) {        /*
       printf("Problem with population file : %s\n",popfile);exit(0);          fprintf(ficgp,"\nset noparametric;unset label");
       fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
     }          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
     popage=ivector(0,AGESUP);          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
     popeffectif=vector(0,AGESUP);          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
     popcount=vector(0,AGESUP);          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
              fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
     i=1;          */
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;  
            /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
     imx=i;        first1=1;
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];        for (k2=1; k2<=(nlstate);k2++){
   }          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
             if(l2==k2) continue;
   for(cptcov=1;cptcov<=i2;cptcov++){            j=(k2-1)*(nlstate+ndeath)+l2;
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){            for (k1=1; k1<=(nlstate);k1++){
       k=k+1;              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
       fprintf(ficrespop,"\n#******");                if(l1==k1) continue;
       for(j=1;j<=cptcoveff;j++) {                i=(k1-1)*(nlstate+ndeath)+l1;
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                if(i<=j) continue;
       }                for (age=bage; age<=fage; age ++){ 
       fprintf(ficrespop,"******\n");                  if ((int)age %5==0){
       fprintf(ficrespop,"# Age");                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
       if (popforecast==1)  fprintf(ficrespop," [Population]");                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                          mu1=mu[i][(int) age]/stepm*YEARM ;
       for (cpt=0; cpt<=0;cpt++) {                    mu2=mu[j][(int) age]/stepm*YEARM;
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);                      c12=cv12/sqrt(v1*v2);
                            /* Computing eigen value of matrix of covariance */
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
           nhstepm = nhstepm/hstepm;                    /* Eigen vectors */
                              v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                    /*v21=sqrt(1.-v11*v11); *//* error */
           oldm=oldms;savm=savms;                    v21=(lc1-v1)/cv12*v11;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);                      v12=-v21;
                            v22=v11;
           for (h=0; h<=nhstepm; h++){                    tnalp=v21/v11;
             if (h==(int) (calagedate+YEARM*cpt)) {                    if(first1==1){
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);                      first1=0;
             }                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
             for(j=1; j<=nlstate+ndeath;j++) {                    }
               kk1=0.;kk2=0;                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
               for(i=1; i<=nlstate;i++) {                                  /*printf(fignu*/
                 if (mobilav==1)                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                 else {                    if(first==1){
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];                      first=0;
                 }                      fprintf(ficgp,"\nset parametric;unset label");
               }                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
               if (h==(int)(calagedate+12*cpt)){                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;                      fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%d%1d%1d-%1d%1d.png\">varpijgr%s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2);
                   /*fprintf(ficrespop," %.3f", kk1);                      fprintf(fichtm,"\n<br><img src=\"varpijgr%s%d%1d%1d-%1d%1d.png\"> ",optionfilefiname, j1,k1,l1,k2,l2);
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/                      fprintf(fichtm,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
               }                      fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\"",optionfilefiname, j1,k1,l1,k2,l2);
             }                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
             for(i=1; i<=nlstate;i++){                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
               kk1=0.;                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                 for(j=1; j<=nlstate;j++){                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                 }                    }else{
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];                      first=0;
             }                      fprintf(fichtm," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
           }                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
         }                    }/* if first */
       }                  } /* age mod 5 */
                  } /* end loop age */
   /******/                fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\";replot;",optionfilefiname, j1,k1,l1,k2,l2);
                 first=1;
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {              } /*l12 */
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);              } /* k12 */
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){          } /*l1 */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);        }/* k1 */
           nhstepm = nhstepm/hstepm;      } /* loop covariates */
              }
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
           oldm=oldms;savm=savms;    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      free_vector(xp,1,npar);
           for (h=0; h<=nhstepm; h++){    fclose(ficresprob);
             if (h==(int) (calagedate+YEARM*cpt)) {    fclose(ficresprobcov);
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);    fclose(ficresprobcor);
             }    fclose(ficgp);
             for(j=1; j<=nlstate+ndeath;j++) {  }
               kk1=0.;kk2=0;  
               for(i=1; i<=nlstate;i++) {                
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];      /******************* Printing html file ***********/
               }  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);                    int lastpass, int stepm, int weightopt, char model[],\
             }                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
           }                    int popforecast, int estepm ,\
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                    double jprev1, double mprev1,double anprev1, \
         }                    double jprev2, double mprev2,double anprev2){
       }    int jj1, k1, i1, cpt;
    }    /*char optionfilehtm[FILENAMELENGTH];*/
   }  /*   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    { */
    /*     printf("Problem with %s \n",optionfilehtm), exit(0); */
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  /*     fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0); */
   /*   } */
   if (popforecast==1) {  
     free_ivector(popage,0,AGESUP);     fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n \
     free_vector(popeffectif,0,AGESUP);   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n \
     free_vector(popcount,0,AGESUP);   - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n \
   }   - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n \
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);   - Life expectancies by age and initial health status (estepm=%2d months): \
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);     <a href=\"e%s\">e%s</a> <br>\n</li>", \
   fclose(ficrespop);    jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);
 }  
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
 /***********************************************/  
 /**************** Main Program *****************/   m=cptcoveff;
 /***********************************************/   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
 int main(int argc, char *argv[])   jj1=0;
 {   for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;       jj1++;
   double agedeb, agefin,hf;       if (cptcovn > 0) {
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
   double fret;           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
   double **xi,tmp,delta;         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
   double dum; /* Dummy variable */       /* Pij */
   double ***p3mat;       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: pe%s%d1.png<br> \
   int *indx;  <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);     
   char line[MAXLINE], linepar[MAXLINE];       /* Quasi-incidences */
   char path[80],pathc[80],pathcd[80],pathtot[80],model[80];       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
   int firstobs=1, lastobs=10;   before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br> \
   int sdeb, sfin; /* Status at beginning and end */  <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1); 
   int c,  h , cpt,l;         /* Stable prevalence in each health state */
   int ju,jl, mi;         for(cpt=1; cpt<nlstate;cpt++){
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;           fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;  <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);
   int mobilav=0,popforecast=0;         }
   int hstepm, nhstepm;       for(cpt=1; cpt<=nlstate;cpt++) {
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;          fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br> \
   <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);
   double bage, fage, age, agelim, agebase;       }
   double ftolpl=FTOL;       fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   double **prlim;  health expectancies in states (1) and (2): e%s%d.png<br>\
   double *severity;  <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);
   double ***param; /* Matrix of parameters */     } /* end i1 */
   double  *p;   }/* End k1 */
   double **matcov; /* Matrix of covariance */   fprintf(fichtm,"</ul>");
   double ***delti3; /* Scale */  
   double *delti; /* Scale */  
   double ***eij, ***vareij;   fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n\
   double **varpl; /* Variances of prevalence limits by age */   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n\
   double *epj, vepp;   - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n\
   double kk1, kk2;   - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n\
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;   - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n\
     - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n\
    - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n\
   char *alph[]={"a","a","b","c","d","e"}, str[4];   - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   char z[1]="c", occ;  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
 #include <sys/time.h>  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
 #include <time.h>  /*      <br>",fileres,fileres,fileres,fileres); */
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];  /*  else  */
    /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
   /* long total_usecs;  fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   struct timeval start_time, end_time;  
     m=cptcoveff;
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   getcwd(pathcd, size);  
    jj1=0;
   printf("\n%s",version);   for(k1=1; k1<=m;k1++){
   if(argc <=1){     for(i1=1; i1<=ncodemax[k1];i1++){
     printf("\nEnter the parameter file name: ");       jj1++;
     scanf("%s",pathtot);       if (cptcovn > 0) {
   }         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
   else{         for (cpt=1; cpt<=cptcoveff;cpt++) 
     strcpy(pathtot,argv[1]);           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
   }         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/       }
   /*cygwin_split_path(pathtot,path,optionfile);       for(cpt=1; cpt<=nlstate;cpt++) {
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/         fprintf(fichtm,"<br>- Observed and period prevalence (with confident\
   /* cutv(path,optionfile,pathtot,'\\');*/  interval) in state (%d): v%s%d%d.png <br>\
   <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);  
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);       }
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);     } /* end i1 */
   chdir(path);   }/* End k1 */
   replace(pathc,path);   fprintf(fichtm,"</ul>");
    fflush(fichtm);
 /*-------- arguments in the command line --------*/  }
   
   /* Log file */  /******************* Gnuplot file **************/
   strcat(filelog, optionfilefiname);  void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   strcat(filelog,".log");    /* */  
   if((ficlog=fopen(filelog,"w"))==NULL)    {    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     printf("Problem with logfile %s\n",filelog);    int ng;
     goto end;    if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {
   }      printf("Problem with file %s",optionfilegnuplot);
   fprintf(ficlog,"Log filename:%s\n",filelog);      fprintf(ficlog,"Problem with file %s",optionfilegnuplot);
   fprintf(ficlog,"\n%s",version);    }
   fprintf(ficlog,"\nEnter the parameter file name: ");  
   fprintf(ficlog,"pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);    /*#ifdef windows */
   fflush(ficlog);      fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   /* */  m=pow(2,cptcoveff);
   strcpy(fileres,"r");    
   strcat(fileres, optionfilefiname);   /* 1eme*/
   strcat(fileres,".txt");    /* Other files have txt extension */    for (cpt=1; cpt<= nlstate ; cpt ++) {
      for (k1=1; k1<= m ; k1 ++) {
   /*---------arguments file --------*/       fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);
   if((ficpar=fopen(optionfile,"r"))==NULL)    {  
     printf("Problem with optionfile %s\n",optionfile);       for (i=1; i<= nlstate ; i ++) {
     fprintf(ficlog,"Problem with optionfile %s\n",optionfile);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
     goto end;         else fprintf(ficgp," \%%*lf (\%%*lf)");
   }       }
        fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",fileres,k1-1,k1-1);
   strcpy(filereso,"o");       for (i=1; i<= nlstate ; i ++) {
   strcat(filereso,fileres);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
   if((ficparo=fopen(filereso,"w"))==NULL) {         else fprintf(ficgp," \%%*lf (\%%*lf)");
     printf("Problem with Output resultfile: %s\n", filereso);       } 
     fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);       fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",fileres,k1-1,k1-1); 
     goto end;       for (i=1; i<= nlstate ; i ++) {
   }         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
   /* Reads comments: lines beginning with '#' */       }  
   while((c=getc(ficpar))=='#' && c!= EOF){       fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));
     ungetc(c,ficpar);     }
     fgets(line, MAXLINE, ficpar);    }
     puts(line);    /*2 eme*/
     fputs(line,ficparo);    
   }    for (k1=1; k1<= m ; k1 ++) { 
   ungetc(c,ficpar);      fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);      
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);      for (i=1; i<= nlstate+1 ; i ++) {
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);        k=2*i;
 while((c=getc(ficpar))=='#' && c!= EOF){        fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);
     ungetc(c,ficpar);        for (j=1; j<= nlstate+1 ; j ++) {
     fgets(line, MAXLINE, ficpar);          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
     puts(line);          else fprintf(ficgp," \%%*lf (\%%*lf)");
     fputs(line,ficparo);        }   
   }        if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
   ungetc(c,ficpar);        else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
          fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);
            for (j=1; j<= nlstate+1 ; j ++) {
   covar=matrix(0,NCOVMAX,1,n);          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
   cptcovn=0;          else fprintf(ficgp," \%%*lf (\%%*lf)");
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;        }   
         fprintf(ficgp,"\" t\"\" w l 0,");
   ncovmodel=2+cptcovn;        fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */        for (j=1; j<= nlstate+1 ; j ++) {
            if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
   /* Read guess parameters */          else fprintf(ficgp," \%%*lf (\%%*lf)");
   /* Reads comments: lines beginning with '#' */        }   
   while((c=getc(ficpar))=='#' && c!= EOF){        if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
     ungetc(c,ficpar);        else fprintf(ficgp,"\" t\"\" w l 0,");
     fgets(line, MAXLINE, ficpar);      }
     puts(line);    }
     fputs(line,ficparo);    
   }    /*3eme*/
   ungetc(c,ficpar);    
      for (k1=1; k1<= m ; k1 ++) { 
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);      for (cpt=1; cpt<= nlstate ; cpt ++) {
     for(i=1; i <=nlstate; i++)        k=2+nlstate*(2*cpt-2);
     for(j=1; j <=nlstate+ndeath-1; j++){        fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);
       fscanf(ficpar,"%1d%1d",&i1,&j1);        fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);
       fprintf(ficparo,"%1d%1d",i1,j1);        /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
       if(mle==1)          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
         printf("%1d%1d",i,j);          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
       fprintf(ficlog,"%1d%1d",i,j);          fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
       for(k=1; k<=ncovmodel;k++){          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
         fscanf(ficpar," %lf",&param[i][j][k]);          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
         if(mle==1){          
           printf(" %lf",param[i][j][k]);        */
           fprintf(ficlog," %lf",param[i][j][k]);        for (i=1; i< nlstate ; i ++) {
         }          fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);
         else          
           fprintf(ficlog," %lf",param[i][j][k]);        } 
         fprintf(ficparo," %lf",param[i][j][k]);      }
       }    }
       fscanf(ficpar,"\n");    
       if(mle==1)    /* CV preval stable (period) */
         printf("\n");    for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficlog,"\n");      for (cpt=1; cpt<=nlstate ; cpt ++) {
       fprintf(ficparo,"\n");        k=3;
     }        fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);
          fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;        
         for (i=1; i< nlstate ; i ++)
   p=param[1][1];          fprintf(ficgp,"+$%d",k+i+1);
          fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
   /* Reads comments: lines beginning with '#' */        
   while((c=getc(ficpar))=='#' && c!= EOF){        l=3+(nlstate+ndeath)*cpt;
     ungetc(c,ficpar);        fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);
     fgets(line, MAXLINE, ficpar);        for (i=1; i< nlstate ; i ++) {
     puts(line);          l=3+(nlstate+ndeath)*cpt;
     fputs(line,ficparo);          fprintf(ficgp,"+$%d",l+i+1);
   }        }
   ungetc(c,ficpar);        fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       } 
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    }  
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */    
   for(i=1; i <=nlstate; i++){    /* proba elementaires */
     for(j=1; j <=nlstate+ndeath-1; j++){    for(i=1,jk=1; i <=nlstate; i++){
       fscanf(ficpar,"%1d%1d",&i1,&j1);      for(k=1; k <=(nlstate+ndeath); k++){
       printf("%1d%1d",i,j);        if (k != i) {
       fprintf(ficparo,"%1d%1d",i1,j1);          for(j=1; j <=ncovmodel; j++){
       for(k=1; k<=ncovmodel;k++){            fprintf(ficgp,"p%d=%f ",jk,p[jk]);
         fscanf(ficpar,"%le",&delti3[i][j][k]);            jk++; 
         printf(" %le",delti3[i][j][k]);            fprintf(ficgp,"\n");
         fprintf(ficparo," %le",delti3[i][j][k]);          }
       }        }
       fscanf(ficpar,"\n");      }
       printf("\n");     }
       fprintf(ficparo,"\n");  
     }     for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
   }       for(jk=1; jk <=m; jk++) {
   delti=delti3[1][1];         fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng); 
           if (ng==2)
   /* Reads comments: lines beginning with '#' */           fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
   while((c=getc(ficpar))=='#' && c!= EOF){         else
     ungetc(c,ficpar);           fprintf(ficgp,"\nset title \"Probability\"\n");
     fgets(line, MAXLINE, ficpar);         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
     puts(line);         i=1;
     fputs(line,ficparo);         for(k2=1; k2<=nlstate; k2++) {
   }           k3=i;
   ungetc(c,ficpar);           for(k=1; k<=(nlstate+ndeath); k++) {
               if (k != k2){
   matcov=matrix(1,npar,1,npar);               if(ng==2)
   for(i=1; i <=npar; i++){                 fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
     fscanf(ficpar,"%s",&str);               else
     if(mle==1)                 fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
       printf("%s",str);               ij=1;
     fprintf(ficlog,"%s",str);               for(j=3; j <=ncovmodel; j++) {
     fprintf(ficparo,"%s",str);                 if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
     for(j=1; j <=i; j++){                   fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
       fscanf(ficpar," %le",&matcov[i][j]);                   ij++;
       if(mle==1){                 }
         printf(" %.5le",matcov[i][j]);                 else
         fprintf(ficlog," %.5le",matcov[i][j]);                   fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
       }               }
       else               fprintf(ficgp,")/(1");
         fprintf(ficlog," %.5le",matcov[i][j]);               
       fprintf(ficparo," %.5le",matcov[i][j]);               for(k1=1; k1 <=nlstate; k1++){   
     }                 fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
     fscanf(ficpar,"\n");                 ij=1;
     if(mle==1)                 for(j=3; j <=ncovmodel; j++){
       printf("\n");                   if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
     fprintf(ficlog,"\n");                     fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
     fprintf(ficparo,"\n");                     ij++;
   }                   }
   for(i=1; i <=npar; i++)                   else
     for(j=i+1;j<=npar;j++)                     fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
       matcov[i][j]=matcov[j][i];                 }
                     fprintf(ficgp,")");
   if(mle==1)               }
     printf("\n");               fprintf(ficgp,") t \"p%d%d\" ", k2,k);
   fprintf(ficlog,"\n");               if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
     /*-------- Rewriting paramater file ----------*/           } /* end k */
      strcpy(rfileres,"r");    /* "Rparameterfile */         } /* end k2 */
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/       } /* end jk */
      strcat(rfileres,".");    /* */     } /* end ng */
      strcat(rfileres,optionfilext);    /* Other files have txt extension */     fclose(ficgp); 
     if((ficres =fopen(rfileres,"w"))==NULL) {  }  /* end gnuplot */
       printf("Problem writing new parameter file: %s\n", fileres);goto end;  
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;  
     }  /*************** Moving average **************/
     fprintf(ficres,"#%s\n",version);  int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
      
     /*-------- data file ----------*/    int i, cpt, cptcod;
     if((fic=fopen(datafile,"r"))==NULL)    {    int modcovmax =1;
       printf("Problem with datafile: %s\n", datafile);goto end;    int mobilavrange, mob;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;    double age;
     }  
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
     n= lastobs;                             a covariate has 2 modalities */
     severity = vector(1,maxwav);    if (cptcovn<1) modcovmax=1; /* At least 1 pass */
     outcome=imatrix(1,maxwav+1,1,n);  
     num=ivector(1,n);    if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
     moisnais=vector(1,n);      if(mobilav==1) mobilavrange=5; /* default */
     annais=vector(1,n);      else mobilavrange=mobilav;
     moisdc=vector(1,n);      for (age=bage; age<=fage; age++)
     andc=vector(1,n);        for (i=1; i<=nlstate;i++)
     agedc=vector(1,n);          for (cptcod=1;cptcod<=modcovmax;cptcod++)
     cod=ivector(1,n);            mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
     weight=vector(1,n);      /* We keep the original values on the extreme ages bage, fage and for 
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */         fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
     mint=matrix(1,maxwav,1,n);         we use a 5 terms etc. until the borders are no more concerned. 
     anint=matrix(1,maxwav,1,n);      */ 
     s=imatrix(1,maxwav+1,1,n);      for (mob=3;mob <=mobilavrange;mob=mob+2){
     adl=imatrix(1,maxwav+1,1,n);            for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
     tab=ivector(1,NCOVMAX);          for (i=1; i<=nlstate;i++){
     ncodemax=ivector(1,8);            for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
     i=1;                for (cpt=1;cpt<=(mob-1)/2;cpt++){
     while (fgets(line, MAXLINE, fic) != NULL)    {                  mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
       if ((i >= firstobs) && (i <=lastobs)) {                  mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                        }
         for (j=maxwav;j>=1;j--){              mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);            }
           strcpy(line,stra);          }
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);        }/* end age */
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);      }/* end mob */
         }    }else return -1;
            return 0;
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);  }/* End movingaverage */
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);  
   
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);  /************** Forecasting ******************/
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);  prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);       agemin, agemax range of age
         for (j=ncovcol;j>=1;j--){       dateprev1 dateprev2 range of dates during which prevalence is computed
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);       anproj2 year of en of projection (same day and month as proj1).
         }    */
         num[i]=atol(stra);    int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
            int *popage;
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){    double agec; /* generic age */
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/    double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
         i=i+1;    double ***p3mat;
       }    double ***mobaverage;
     }    char fileresf[FILENAMELENGTH];
     /* printf("ii=%d", ij);  
        scanf("%d",i);*/    agelim=AGESUP;
   imx=i-1; /* Number of individuals */    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
   /* for (i=1; i<=imx; i++){    strcpy(fileresf,"f"); 
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;    strcat(fileresf,fileres);
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;    if((ficresf=fopen(fileresf,"w"))==NULL) {
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;      printf("Problem with forecast resultfile: %s\n", fileresf);
     }*/      fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
    /*  for (i=1; i<=imx; i++){    }
      if (s[4][i]==9)  s[4][i]=-1;    printf("Computing forecasting: result on file '%s' \n", fileresf);
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
    
      if (cptcoveff==0) ncodemax[cptcoveff]=1;
   /* Calculation of the number of parameter from char model*/  
   Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */    if (mobilav!=0) {
   Tprod=ivector(1,15);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   Tvaraff=ivector(1,15);      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
   Tvard=imatrix(1,15,1,2);        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
   Tage=ivector(1,15);              printf(" Error in movingaverage mobilav=%d\n",mobilav);
          }
   if (strlen(model) >1){    }
     j=0, j1=0, k1=1, k2=1;  
     j=nbocc(model,'+');    stepsize=(int) (stepm+YEARM-1)/YEARM;
     j1=nbocc(model,'*');    if (stepm<=12) stepsize=1;
     cptcovn=j+1;    if(estepm < stepm){
     cptcovprod=j1;      printf ("Problem %d lower than %d\n",estepm, stepm);
        }
     strcpy(modelsav,model);    else  hstepm=estepm;   
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){  
       printf("Error. Non available option model=%s ",model);    hstepm=hstepm/stepm; 
       fprintf(ficlog,"Error. Non available option model=%s ",model);    yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
       goto end;                                 fractional in yp1 */
     }    anprojmean=yp;
        yp2=modf((yp1*12),&yp);
     for(i=(j+1); i>=1;i--){    mprojmean=yp;
       cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */    yp1=modf((yp2*30.5),&yp);
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyze it */    jprojmean=yp;
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/    if(jprojmean==0) jprojmean=1;
       /*scanf("%d",i);*/    if(mprojmean==0) jprojmean=1;
       if (strchr(strb,'*')) {  /* Model includes a product */  
         cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/    i1=cptcoveff;
         if (strcmp(strc,"age")==0) { /* Vn*age */    if (cptcovn < 1){i1=1;}
           cptcovprod--;    
           cutv(strb,stre,strd,'V');    fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
           Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/    
           cptcovage++;    fprintf(ficresf,"#****** Routine prevforecast **\n");
             Tage[cptcovage]=i;  
             /*printf("stre=%s ", stre);*/  /*            if (h==(int)(YEARM*yearp)){ */
         }    for(cptcov=1, k=0;cptcov<=i1;cptcov++){
         else if (strcmp(strd,"age")==0) { /* or age*Vn */      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
           cptcovprod--;        k=k+1;
           cutv(strb,stre,strc,'V');        fprintf(ficresf,"\n#******");
           Tvar[i]=atoi(stre);        for(j=1;j<=cptcoveff;j++) {
           cptcovage++;          fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           Tage[cptcovage]=i;        }
         }        fprintf(ficresf,"******\n");
         else {  /* Age is not in the model */        fprintf(ficresf,"# Covariate valuofcovar yearproj age");
           cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/        for(j=1; j<=nlstate+ndeath;j++){ 
           Tvar[i]=ncovcol+k1;          for(i=1; i<=nlstate;i++)              
           cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */            fprintf(ficresf," p%d%d",i,j);
           Tprod[k1]=i;          fprintf(ficresf," p.%d",j);
           Tvard[k1][1]=atoi(strc); /* m*/        }
           Tvard[k1][2]=atoi(stre); /* n */        for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           Tvar[cptcovn+k2]=Tvard[k1][1];          fprintf(ficresf,"\n");
           Tvar[cptcovn+k2+1]=Tvard[k1][2];          fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
           for (k=1; k<=lastobs;k++)  
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];          for (agec=fage; agec>=(ageminpar-1); agec--){ 
           k1++;            nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
           k2=k2+2;            nhstepm = nhstepm/hstepm; 
         }            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       }            oldm=oldms;savm=savms;
       else { /* no more sum */            hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/          
        /*  scanf("%d",i);*/            for (h=0; h<=nhstepm; h++){
       cutv(strd,strc,strb,'V');              if (h*hstepm/YEARM*stepm ==yearp) {
       Tvar[i]=atoi(strc);                fprintf(ficresf,"\n");
       }                for(j=1;j<=cptcoveff;j++) 
       strcpy(modelsav,stra);                    fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);                fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
         scanf("%d",i);*/              } 
     } /* end of loop + */              for(j=1; j<=nlstate+ndeath;j++) {
   } /* end model */                ppij=0.;
                  for(i=1; i<=nlstate;i++) {
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);                  if (mobilav==1) 
   printf("cptcovprod=%d ", cptcovprod);                    ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
   fprintf(ficlog,"cptcovprod=%d ", cptcovprod);                  else {
   scanf("%d ",i);*/                    ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
     fclose(fic);                  }
                   if (h*hstepm/YEARM*stepm== yearp) {
     /*  if(mle==1){*/                    fprintf(ficresf," %.3f", p3mat[i][j][h]);
     if (weightopt != 1) { /* Maximisation without weights*/                  }
       for(i=1;i<=n;i++) weight[i]=1.0;                } /* end i */
     }                if (h*hstepm/YEARM*stepm==yearp) {
     /*-calculation of age at interview from date of interview and age at death -*/                  fprintf(ficresf," %.3f", ppij);
     agev=matrix(1,maxwav,1,imx);                }
               }/* end j */
     for (i=1; i<=imx; i++) {            } /* end h */
       for(m=2; (m<= maxwav); m++) {            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){          } /* end agec */
          anint[m][i]=9999;        } /* end yearp */
          s[m][i]=-1;      } /* end cptcod */
        }    } /* end  cptcov */
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;         
       }    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     }  
     fclose(ficresf);
     for (i=1; i<=imx; i++)  {  }
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);  
       for(m=1; (m<= maxwav); m++){  /************** Forecasting *****not tested NB*************/
         if(s[m][i] >0){  populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
           if (s[m][i] >= nlstate+1) {    
             if(agedc[i]>0)    int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
               if(moisdc[i]!=99 && andc[i]!=9999)    int *popage;
                 agev[m][i]=agedc[i];    double calagedatem, agelim, kk1, kk2;
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/    double *popeffectif,*popcount;
            else {    double ***p3mat,***tabpop,***tabpopprev;
               if (andc[i]!=9999){    double ***mobaverage;
               printf("Warning negative age at death: %d line:%d\n",num[i],i);    char filerespop[FILENAMELENGTH];
               fprintf(ficlog,"Warning negative age at death: %d line:%d\n",num[i],i);  
               agev[m][i]=-1;    tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
               }    tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
             }    agelim=AGESUP;
           }    calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
           else if(s[m][i] !=9){ /* Should no more exist */    
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
             if(mint[m][i]==99 || anint[m][i]==9999)    
               agev[m][i]=1;    
             else if(agev[m][i] <agemin){    strcpy(filerespop,"pop"); 
               agemin=agev[m][i];    strcat(filerespop,fileres);
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/    if((ficrespop=fopen(filerespop,"w"))==NULL) {
             }      printf("Problem with forecast resultfile: %s\n", filerespop);
             else if(agev[m][i] >agemax){      fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
               agemax=agev[m][i];    }
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/    printf("Computing forecasting: result on file '%s' \n", filerespop);
             }    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
             /*agev[m][i]=anint[m][i]-annais[i];*/  
             /*   agev[m][i] = age[i]+2*m;*/    if (cptcoveff==0) ncodemax[cptcoveff]=1;
           }  
           else { /* =9 */    if (mobilav!=0) {
             agev[m][i]=1;      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
             s[m][i]=-1;      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
           }        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         }        printf(" Error in movingaverage mobilav=%d\n",mobilav);
         else /*= 0 Unknown */      }
           agev[m][i]=1;    }
       }  
        stepsize=(int) (stepm+YEARM-1)/YEARM;
     }    if (stepm<=12) stepsize=1;
     for (i=1; i<=imx; i++)  {    
       for(m=1; (m<= maxwav); m++){    agelim=AGESUP;
         if (s[m][i] > (nlstate+ndeath)) {    
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);      hstepm=1;
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);      hstepm=hstepm/stepm; 
           goto end;    
         }    if (popforecast==1) {
       }      if((ficpop=fopen(popfile,"r"))==NULL) {
     }        printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);      } 
  fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);      popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
     free_vector(severity,1,maxwav);      popcount=vector(0,AGESUP);
     free_imatrix(outcome,1,maxwav+1,1,n);      
     free_vector(moisnais,1,n);      i=1;   
     free_vector(annais,1,n);      while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
     /* free_matrix(mint,1,maxwav,1,n);     
        free_matrix(anint,1,maxwav,1,n);*/      imx=i;
     free_vector(moisdc,1,n);      for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     free_vector(andc,1,n);    }
   
        for(cptcov=1,k=0;cptcov<=i2;cptcov++){
     wav=ivector(1,imx);     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
     dh=imatrix(1,lastpass-firstpass+1,1,imx);        k=k+1;
     mw=imatrix(1,lastpass-firstpass+1,1,imx);        fprintf(ficrespop,"\n#******");
            for(j=1;j<=cptcoveff;j++) {
     /* Concatenates waves */          fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);        }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
       Tcode=ivector(1,100);        for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);        if (popforecast==1)  fprintf(ficrespop," [Population]");
       ncodemax[1]=1;        
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);        for (cpt=0; cpt<=0;cpt++) { 
                fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
    codtab=imatrix(1,100,1,10);          
    h=0;          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
    m=pow(2,cptcoveff);            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
              nhstepm = nhstepm/hstepm; 
    for(k=1;k<=cptcoveff; k++){            
      for(i=1; i <=(m/pow(2,k));i++){            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
        for(j=1; j <= ncodemax[k]; j++){            oldm=oldms;savm=savms;
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
            h++;          
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;            for (h=0; h<=nhstepm; h++){
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/              if (h==(int) (calagedatem+YEARM*cpt)) {
          }                fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
        }              } 
      }              for(j=1; j<=nlstate+ndeath;j++) {
    }                kk1=0.;kk2=0;
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);                for(i=1; i<=nlstate;i++) {              
       codtab[1][2]=1;codtab[2][2]=2; */                  if (mobilav==1) 
    /* for(i=1; i <=m ;i++){                    kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
       for(k=1; k <=cptcovn; k++){                  else {
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);                    kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
       }                  }
       printf("\n");                }
       }                if (h==(int)(calagedatem+12*cpt)){
       scanf("%d",i);*/                  tabpop[(int)(agedeb)][j][cptcod]=kk1;
                        /*fprintf(ficrespop," %.3f", kk1);
    /* Calculates basic frequencies. Computes observed prevalence at single age                      if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
        and prints on file fileres'p'. */                }
               }
                  for(i=1; i<=nlstate;i++){
                    kk1=0.;
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                  for(j=1; j<=nlstate;j++){
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                    kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                  }
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                    tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */              }
        
     /* For Powell, parameters are in a vector p[] starting at p[1]              if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */                fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */            }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     if(mle==1){          }
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);        }
     }   
        /******/
     /*--------- results files --------------*/  
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);        for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
            fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
    jk=1;            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");            nhstepm = nhstepm/hstepm; 
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");            
    fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
    for(i=1,jk=1; i <=nlstate; i++){            oldm=oldms;savm=savms;
      for(k=1; k <=(nlstate+ndeath); k++){            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
        if (k != i)            for (h=0; h<=nhstepm; h++){
          {              if (h==(int) (calagedatem+YEARM*cpt)) {
            printf("%d%d ",i,k);                fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
            fprintf(ficlog,"%d%d ",i,k);              } 
            fprintf(ficres,"%1d%1d ",i,k);              for(j=1; j<=nlstate+ndeath;j++) {
            for(j=1; j <=ncovmodel; j++){                kk1=0.;kk2=0;
              printf("%f ",p[jk]);                for(i=1; i<=nlstate;i++) {              
              fprintf(ficlog,"%f ",p[jk]);                  kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
              fprintf(ficres,"%f ",p[jk]);                }
              jk++;                if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
            }              }
            printf("\n");            }
            fprintf(ficlog,"\n");            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
            fprintf(ficres,"\n");          }
          }        }
      }     } 
    }    }
    if(mle==1){   
      /* Computing hessian and covariance matrix */    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
      ftolhess=ftol; /* Usually correct */  
      hesscov(matcov, p, npar, delti, ftolhess, func);    if (popforecast==1) {
    }      free_ivector(popage,0,AGESUP);
    fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");      free_vector(popeffectif,0,AGESUP);
    printf("# Scales (for hessian or gradient estimation)\n");      free_vector(popcount,0,AGESUP);
    fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");    }
    for(i=1,jk=1; i <=nlstate; i++){    free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
      for(j=1; j <=nlstate+ndeath; j++){    free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
        if (j!=i) {    fclose(ficrespop);
          fprintf(ficres,"%1d%1d",i,j);  } /* End of popforecast */
          printf("%1d%1d",i,j);  
          fprintf(ficlog,"%1d%1d",i,j);  int fileappend(FILE *fichier, char *optionfich)
          for(k=1; k<=ncovmodel;k++){  {
            printf(" %.5e",delti[jk]);    if((fichier=fopen(optionfich,"a"))==NULL) {
            fprintf(ficlog," %.5e",delti[jk]);      printf("Problem with file: %s\n", optionfich);
            fprintf(ficres," %.5e",delti[jk]);      fprintf(ficlog,"Problem with file: %s\n", optionfich);
            jk++;      return (0);
          }    }
          printf("\n");    fflush(fichier);
          fprintf(ficlog,"\n");    return (1);
          fprintf(ficres,"\n");  }
        }  /***********************************************/
      }  /**************** Main Program *****************/
    }  /***********************************************/
      
    k=1;  int main(int argc, char *argv[])
    fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");  {
    if(mle==1)    int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
      printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");    int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
    fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");    int jj;
    for(i=1;i<=npar;i++){    int numlinepar=0; /* Current linenumber of parameter file */
      /*  if (k>nlstate) k=1;    /*  FILE *fichtm; *//* Html File */
          i1=(i-1)/(ncovmodel*nlstate)+1;    /* FILE *ficgp;*/ /*Gnuplot File */
          fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);    double agedeb, agefin,hf;
          printf("%s%d%d",alph[k],i1,tab[i]);*/    double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
      fprintf(ficres,"%3d",i);  
      if(mle==1)    double fret;
        printf("%3d",i);    double **xi,tmp,delta;
      fprintf(ficlog,"%3d",i);  
      for(j=1; j<=i;j++){    double dum; /* Dummy variable */
        fprintf(ficres," %.5e",matcov[i][j]);    double ***p3mat;
        if(mle==1)    double ***mobaverage;
          printf(" %.5e",matcov[i][j]);    int *indx;
        fprintf(ficlog," %.5e",matcov[i][j]);    char line[MAXLINE], linepar[MAXLINE];
      }    char path[132],pathc[132],pathcd[132],pathtot[132],model[132];
      fprintf(ficres,"\n");    int firstobs=1, lastobs=10;
      if(mle==1)    int sdeb, sfin; /* Status at beginning and end */
        printf("\n");    int c,  h , cpt,l;
      fprintf(ficlog,"\n");    int ju,jl, mi;
      k++;    int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
    }    int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
        int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
    while((c=getc(ficpar))=='#' && c!= EOF){    int mobilav=0,popforecast=0;
      ungetc(c,ficpar);    int hstepm, nhstepm;
      fgets(line, MAXLINE, ficpar);    double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
      puts(line);    double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
      fputs(line,ficparo);  
    }    double bage, fage, age, agelim, agebase;
    ungetc(c,ficpar);    double ftolpl=FTOL;
    estepm=0;    double **prlim;
    fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);    double *severity;
    if (estepm==0 || estepm < stepm) estepm=stepm;    double ***param; /* Matrix of parameters */
    if (fage <= 2) {    double  *p;
      bage = ageminpar;    double **matcov; /* Matrix of covariance */
      fage = agemaxpar;    double ***delti3; /* Scale */
    }    double *delti; /* Scale */
        double ***eij, ***vareij;
    fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");    double **varpl; /* Variances of prevalence limits by age */
    fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);    double *epj, vepp;
    fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);    double kk1, kk2;
        double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
    while((c=getc(ficpar))=='#' && c!= EOF){  
      ungetc(c,ficpar);    char *alph[]={"a","a","b","c","d","e"}, str[4];
      fgets(line, MAXLINE, ficpar);  
      puts(line);  
      fputs(line,ficparo);    char z[1]="c", occ;
    }  
    ungetc(c,ficpar);    char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
      char *strt, *strtend;
    fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);    char *stratrunc;
    fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    int lstra;
    fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);  
        long total_usecs;
    while((c=getc(ficpar))=='#' && c!= EOF){    struct timeval start_time, end_time, curr_time;
      ungetc(c,ficpar);    struct timezone tzp;
      fgets(line, MAXLINE, ficpar);    extern int gettimeofday();
      puts(line);    struct tm tmg, tm, *gmtime(), *localtime();
      fputs(line,ficparo);    long time_value;
    }    extern long time();
    ungetc(c,ficpar);   
      /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
    dateprev1=anprev1+mprev1/12.+jprev1/365.;    tm = *localtime(&start_time.tv_sec);
    dateprev2=anprev2+mprev2/12.+jprev2/365.;    tmg = *gmtime(&start_time.tv_sec);
     strt=asctime(&tm);
   fscanf(ficpar,"pop_based=%d\n",&popbased);  
   fprintf(ficparo,"pop_based=%d\n",popbased);    /*  printf("Localtime (at start)=%s",strt); */
   fprintf(ficres,"pop_based=%d\n",popbased);    /*  tp.tv_sec = tp.tv_sec +86400; */
    /*  tm = *localtime(&start_time.tv_sec); */
   while((c=getc(ficpar))=='#' && c!= EOF){  /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
     ungetc(c,ficpar);  /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
     fgets(line, MAXLINE, ficpar);  /*   tmg.tm_hour=tmg.tm_hour + 1; */
     puts(line);  /*   tp.tv_sec = mktime(&tmg); */
     fputs(line,ficparo);  /*   strt=asctime(&tmg); */
   }  /*   printf("Time(after) =%s",strt);  */
   ungetc(c,ficpar);  /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);  *  tm = *localtime(&time_value);
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);  *  strt=asctime(&tm);
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);  *  printf("tim_value=%d,asctime=%s\n",time_value,strt); 
   */
   
 while((c=getc(ficpar))=='#' && c!= EOF){    getcwd(pathcd, size);
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);    printf("\n%s\n%s",version,fullversion);
     puts(line);    if(argc <=1){
     fputs(line,ficparo);      printf("\nEnter the parameter file name: ");
   }      scanf("%s",pathtot);
   ungetc(c,ficpar);    }
     else{
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);      strcpy(pathtot,argv[1]);
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);    }
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);    /*if(getcwd(pathcd, 132)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);      printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
 /*------------ gnuplot -------------*/  
   strcpy(optionfilegnuplot,optionfilefiname);    split(pathtot,path,optionfile,optionfilext,optionfilefiname);
   strcat(optionfilegnuplot,".gp");    printf("pathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {    chdir(path);
     printf("Problem with file %s",optionfilegnuplot);    replace(pathc,path);
   }  
   fclose(ficgp);    /*-------- arguments in the command line --------*/
  printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);  
 /*--------- index.htm --------*/    /* Log file */
     strcat(filelog, optionfilefiname);
   strcpy(optionfilehtm,optionfile);    strcat(filelog,".log");    /* */
   strcat(optionfilehtm,".htm");    if((ficlog=fopen(filelog,"w"))==NULL)    {
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {      printf("Problem with logfile %s\n",filelog);
     printf("Problem with %s \n",optionfilehtm), exit(0);      goto end;
   }    }
     fprintf(ficlog,"Log filename:%s\n",filelog);
   fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n    fprintf(ficlog,"\n%s\n%s",version,fullversion);
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n    fprintf(ficlog,"\nEnter the parameter file name: ");
 \n    fprintf(ficlog,"pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
 Total number of observations=%d <br>\n  
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n    printf("Localtime (at start)=%s",strt);
 <hr  size=\"2\" color=\"#EC5E5E\">    fprintf(ficlog,"Localtime (at start)=%s",strt);
  <ul><li><h4>Parameter files</h4>\n    fflush(ficlog);
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n  
  - Log file of the run: <a href=\"%s\">%s</a><br>\n    /* */
  - Gnuplot file name: <a href=\"%s\">%s</a></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,filelog,filelog,optionfilegnuplot,optionfilegnuplot);    strcpy(fileres,"r");
   fclose(fichtm);    strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
  printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);  
      /*---------arguments file --------*/
 /*------------ free_vector  -------------*/  
  chdir(path);    if((ficpar=fopen(optionfile,"r"))==NULL)    {
        printf("Problem with optionfile %s\n",optionfile);
  free_ivector(wav,1,imx);      fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);      fflush(ficlog);
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);        goto end;
  free_ivector(num,1,n);    }
  free_vector(agedc,1,n);  
  /*free_matrix(covar,1,NCOVMAX,1,n);*/    strcpy(filereso,"o");
  fclose(ficparo);    strcat(filereso,fileres);
  fclose(ficres);    if((ficparo=fopen(filereso,"w"))==NULL) {
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
   /*--------------- Prevalence limit --------------*/      fflush(ficlog);
        goto end;
   strcpy(filerespl,"pl");    }
   strcat(filerespl,fileres);  
   if((ficrespl=fopen(filerespl,"w"))==NULL) {    /* Reads comments: lines beginning with '#' */
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;    numlinepar=0;
     fprintf(ficlog,"Problem with Prev limit resultfile: %s\n", filerespl);goto end;    while((c=getc(ficpar))=='#' && c!= EOF){
   }      ungetc(c,ficpar);
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);      fgets(line, MAXLINE, ficpar);
   fprintf(ficlog,"Computing prevalence limit: result on file '%s' \n", filerespl);      numlinepar++;
   fprintf(ficrespl,"#Prevalence limit\n");      puts(line);
   fprintf(ficrespl,"#Age ");      fputs(line,ficparo);
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);      fputs(line,ficlog);
   fprintf(ficrespl,"\n");    }
      ungetc(c,ficpar);
   prlim=matrix(1,nlstate,1,nlstate);  
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    numlinepar++;
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
   k=0;    fflush(ficlog);
   agebase=ageminpar;    while((c=getc(ficpar))=='#' && c!= EOF){
   agelim=agemaxpar;      ungetc(c,ficpar);
   ftolpl=1.e-10;      fgets(line, MAXLINE, ficpar);
   i1=cptcoveff;      numlinepar++;
   if (cptcovn < 1){i1=1;}      puts(line);
       fputs(line,ficparo);
   for(cptcov=1;cptcov<=i1;cptcov++){      fputs(line,ficlog);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    }
         k=k+1;    ungetc(c,ficpar);
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/  
         fprintf(ficrespl,"\n#******");     
         printf("\n#******");    covar=matrix(0,NCOVMAX,1,n); 
         fprintf(ficlog,"\n#******");    cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
         for(j=1;j<=cptcoveff;j++) {    if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
         }    
         fprintf(ficrespl,"******\n");    /* Read guess parameters */
         printf("******\n");    /* Reads comments: lines beginning with '#' */
         fprintf(ficlog,"******\n");    while((c=getc(ficpar))=='#' && c!= EOF){
              ungetc(c,ficpar);
         for (age=agebase; age<=agelim; age++){      fgets(line, MAXLINE, ficpar);
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);      numlinepar++;
           fprintf(ficrespl,"%.0f",age );      puts(line);
           for(i=1; i<=nlstate;i++)      fputs(line,ficparo);
           fprintf(ficrespl," %.5f", prlim[i][i]);      fputs(line,ficlog);
           fprintf(ficrespl,"\n");    }
         }    ungetc(c,ficpar);
       }  
     }    param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
   fclose(ficrespl);    for(i=1; i <=nlstate; i++){
       j=0;
   /*------------- h Pij x at various ages ------------*/      for(jj=1; jj <=nlstate+ndeath; jj++){
          if(jj==i) continue;
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);        j++;
   if((ficrespij=fopen(filerespij,"w"))==NULL) {        fscanf(ficpar,"%1d%1d",&i1,&j1);
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;        if ((i1 != i) && (j1 != j)){
     fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;          printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
   }          exit(1);
   printf("Computing pij: result on file '%s' \n", filerespij);        }
   fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);        fprintf(ficparo,"%1d%1d",i1,j1);
          if(mle==1)
   stepsize=(int) (stepm+YEARM-1)/YEARM;          printf("%1d%1d",i,j);
   /*if (stepm<=24) stepsize=2;*/        fprintf(ficlog,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
   agelim=AGESUP;          fscanf(ficpar," %lf",&param[i][j][k]);
   hstepm=stepsize*YEARM; /* Every year of age */          if(mle==1){
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */            printf(" %lf",param[i][j][k]);
             fprintf(ficlog," %lf",param[i][j][k]);
   /* hstepm=1;   aff par mois*/          }
           else
   k=0;            fprintf(ficlog," %lf",param[i][j][k]);
   for(cptcov=1;cptcov<=i1;cptcov++){          fprintf(ficparo," %lf",param[i][j][k]);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        }
       k=k+1;        fscanf(ficpar,"\n");
         fprintf(ficrespij,"\n#****** ");        numlinepar++;
         for(j=1;j<=cptcoveff;j++)        if(mle==1)
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          printf("\n");
         fprintf(ficrespij,"******\n");        fprintf(ficlog,"\n");
                fprintf(ficparo,"\n");
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */      }
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    }  
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    fflush(ficlog);
   
           /*      nhstepm=nhstepm*YEARM; aff par mois*/    npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    p=param[1][1];
           oldm=oldms;savm=savms;    
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      /* Reads comments: lines beginning with '#' */
           fprintf(ficrespij,"# Age");    while((c=getc(ficpar))=='#' && c!= EOF){
           for(i=1; i<=nlstate;i++)      ungetc(c,ficpar);
             for(j=1; j<=nlstate+ndeath;j++)      fgets(line, MAXLINE, ficpar);
               fprintf(ficrespij," %1d-%1d",i,j);      numlinepar++;
           fprintf(ficrespij,"\n");      puts(line);
            for (h=0; h<=nhstepm; h++){      fputs(line,ficparo);
             fprintf(ficrespij,"%d %f %f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );      fputs(line,ficlog);
             for(i=1; i<=nlstate;i++)    }
               for(j=1; j<=nlstate+ndeath;j++)    ungetc(c,ficpar);
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);  
             fprintf(ficrespij,"\n");    delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
              }    /* delti=vector(1,npar); *//* Scale of each paramater (output from hesscov) */
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    for(i=1; i <=nlstate; i++){
           fprintf(ficrespij,"\n");      for(j=1; j <=nlstate+ndeath-1; j++){
         }        fscanf(ficpar,"%1d%1d",&i1,&j1);
     }        if ((i1-i)*(j1-j)!=0){
   }          printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
           exit(1);
   varprob(optionfilefiname, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);        }
         printf("%1d%1d",i,j);
   fclose(ficrespij);        fprintf(ficparo,"%1d%1d",i1,j1);
         fprintf(ficlog,"%1d%1d",i1,j1);
         for(k=1; k<=ncovmodel;k++){
   /*---------- Forecasting ------------------*/          fscanf(ficpar,"%le",&delti3[i][j][k]);
   if((stepm == 1) && (strcmp(model,".")==0)){          printf(" %le",delti3[i][j][k]);
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);          fprintf(ficparo," %le",delti3[i][j][k]);
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);          fprintf(ficlog," %le",delti3[i][j][k]);
   }        }
   else{        fscanf(ficpar,"\n");
     erreur=108;        numlinepar++;
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);        printf("\n");
     fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);        fprintf(ficparo,"\n");
   }        fprintf(ficlog,"\n");
        }
     }
   /*---------- Health expectancies and variances ------------*/    fflush(ficlog);
   
   strcpy(filerest,"t");    delti=delti3[1][1];
   strcat(filerest,fileres);  
   if((ficrest=fopen(filerest,"w"))==NULL) {  
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;    /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;    
   }    /* Reads comments: lines beginning with '#' */
   printf("Computing Total LEs with variances: file '%s' \n", filerest);    while((c=getc(ficpar))=='#' && c!= EOF){
   fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest);      ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
   strcpy(filerese,"e");      puts(line);
   strcat(filerese,fileres);      fputs(line,ficparo);
   if((ficreseij=fopen(filerese,"w"))==NULL) {      fputs(line,ficlog);
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);    }
     fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);    ungetc(c,ficpar);
   }    
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);    matcov=matrix(1,npar,1,npar);
   fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);    for(i=1; i <=npar; i++){
       fscanf(ficpar,"%s",&str);
   strcpy(fileresv,"v");      if(mle==1)
   strcat(fileresv,fileres);        printf("%s",str);
   if((ficresvij=fopen(fileresv,"w"))==NULL) {      fprintf(ficlog,"%s",str);
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);      fprintf(ficparo,"%s",str);
     fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);      for(j=1; j <=i; j++){
   }        fscanf(ficpar," %le",&matcov[i][j]);
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);        if(mle==1){
   fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);          printf(" %.5le",matcov[i][j]);
   calagedate=-1;        }
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);        fprintf(ficlog," %.5le",matcov[i][j]);
         fprintf(ficparo," %.5le",matcov[i][j]);
   k=0;      }
   for(cptcov=1;cptcov<=i1;cptcov++){      fscanf(ficpar,"\n");
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      numlinepar++;
       k=k+1;      if(mle==1)
       fprintf(ficrest,"\n#****** ");        printf("\n");
       for(j=1;j<=cptcoveff;j++)      fprintf(ficlog,"\n");
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      fprintf(ficparo,"\n");
       fprintf(ficrest,"******\n");    }
     for(i=1; i <=npar; i++)
       fprintf(ficreseij,"\n#****** ");      for(j=i+1;j<=npar;j++)
       for(j=1;j<=cptcoveff;j++)        matcov[i][j]=matcov[j][i];
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);     
       fprintf(ficreseij,"******\n");    if(mle==1)
       printf("\n");
       fprintf(ficresvij,"\n#****** ");    fprintf(ficlog,"\n");
       for(j=1;j<=cptcoveff;j++)  
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    fflush(ficlog);
       fprintf(ficresvij,"******\n");  
     /*-------- Rewriting paramater file ----------*/
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    strcpy(rfileres,"r");    /* "Rparameterfile */
       oldm=oldms;savm=savms;    strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);      strcat(rfileres,".");    /* */
      strcat(rfileres,optionfilext);    /* Other files have txt extension */
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    if((ficres =fopen(rfileres,"w"))==NULL) {
       oldm=oldms;savm=savms;      printf("Problem writing new parameter file: %s\n", fileres);goto end;
       varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0);      fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       if(popbased==1){    }
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased);    fprintf(ficres,"#%s\n",version);
        }      
     /*-------- data file ----------*/
      if((fic=fopen(datafile,"r"))==NULL)    {
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");      printf("Problem with datafile: %s\n", datafile);goto end;
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);      fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
       fprintf(ficrest,"\n");    }
   
       epj=vector(1,nlstate+1);    n= lastobs;
       for(age=bage; age <=fage ;age++){    severity = vector(1,maxwav);
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    outcome=imatrix(1,maxwav+1,1,n);
         if (popbased==1) {    num=lvector(1,n);
           for(i=1; i<=nlstate;i++)    moisnais=vector(1,n);
             prlim[i][i]=probs[(int)age][i][k];    annais=vector(1,n);
         }    moisdc=vector(1,n);
            andc=vector(1,n);
         fprintf(ficrest," %4.0f",age);    agedc=vector(1,n);
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){    cod=ivector(1,n);
           for(i=1, epj[j]=0.;i <=nlstate;i++) {    weight=vector(1,n);
             epj[j] += prlim[i][i]*eij[i][j][(int)age];    for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/    mint=matrix(1,maxwav,1,n);
           }    anint=matrix(1,maxwav,1,n);
           epj[nlstate+1] +=epj[j];    s=imatrix(1,maxwav+1,1,n);
         }    tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
         for(i=1, vepp=0.;i <=nlstate;i++)  
           for(j=1;j <=nlstate;j++)    i=1;
             vepp += vareij[i][j][(int)age];    while (fgets(line, MAXLINE, fic) != NULL)    {
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));      if ((i >= firstobs) && (i <=lastobs)) {
         for(j=1;j <=nlstate;j++){          
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));        for (j=maxwav;j>=1;j--){
         }          cutv(stra, strb,line,' '); s[j][i]=atoi(strb); 
         fprintf(ficrest,"\n");          strcpy(line,stra);
       }          cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
     }          cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
   }        }
 free_matrix(mint,1,maxwav,1,n);          
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);        cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);
     free_vector(weight,1,n);        cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);
   fclose(ficreseij);  
   fclose(ficresvij);        cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);
   fclose(ficrest);        cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);
   fclose(ficpar);  
   free_vector(epj,1,nlstate+1);        cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);
          for (j=ncovcol;j>=1;j--){
   /*------- Variance limit prevalence------*/            cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         } 
   strcpy(fileresvpl,"vpl");        lstra=strlen(stra);
   strcat(fileresvpl,fileres);        if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {          stratrunc = &(stra[lstra-9]);
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);          num[i]=atol(stratrunc);
     exit(0);        }
   }        else
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);          num[i]=atol(stra);
           
   k=0;        /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
   for(cptcov=1;cptcov<=i1;cptcov++){          printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  
       k=k+1;        i=i+1;
       fprintf(ficresvpl,"\n#****** ");      }
       for(j=1;j<=cptcoveff;j++)    }
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    /* printf("ii=%d", ij);
       fprintf(ficresvpl,"******\n");       scanf("%d",i);*/
          imx=i-1; /* Number of individuals */
       varpl=matrix(1,nlstate,(int) bage, (int) fage);  
       oldm=oldms;savm=savms;    /* for (i=1; i<=imx; i++){
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);      if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
     }      if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
  }      if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
   fclose(ficresvpl);     /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
   /*---------- End : free ----------------*/       printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);    
     for (i=1; i<=imx; i++)
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);   
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);     /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
         else weight[i]=1;*/
    
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);    /* Calculation of the number of parameter from char model*/
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);    Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);    Tprod=ivector(1,15); 
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);    Tvaraff=ivector(1,15); 
      Tvard=imatrix(1,15,1,2);
   free_matrix(matcov,1,npar,1,npar);    Tage=ivector(1,15);      
   free_vector(delti,1,npar);     
   free_matrix(agev,1,maxwav,1,imx);    if (strlen(model) >1){ /* If there is at least 1 covariate */
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);      j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
   fprintf(fichtm,"\n</body>");      j1=nbocc(model,'*'); /* j1=Number of '*' */
   fclose(fichtm);      cptcovn=j+1; 
   fclose(ficgp);      cptcovprod=j1; /*Number of products */
        
       strcpy(modelsav,model); 
   if(erreur >0){      if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
     printf("End of Imach with error or warning %d\n",erreur);        printf("Error. Non available option model=%s ",model);
     fprintf(ficlog,"End of Imach with error or warning %d\n",erreur);        fprintf(ficlog,"Error. Non available option model=%s ",model);
   }else{        goto end;
    printf("End of Imach\n");      }
    fprintf(ficlog,"End of Imach\n");      
   }      /* This loop fills the array Tvar from the string 'model'.*/
   printf("See log file on %s\n",filelog);  
   fclose(ficlog);      for(i=(j+1); i>=1;i--){
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */        cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
          if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/        /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
   /*printf("Total time was %d uSec.\n", total_usecs);*/        /*scanf("%d",i);*/
   /*------ End -----------*/        if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
  end:            cptcovprod--;
 #ifdef windows            cutv(strb,stre,strd,'V');
   /* chdir(pathcd);*/            Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
 #endif            cptcovage++;
  /*system("wgnuplot graph.plt");*/              Tage[cptcovage]=i;
  /*system("../gp37mgw/wgnuplot graph.plt");*/              /*printf("stre=%s ", stre);*/
  /*system("cd ../gp37mgw");*/          }
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/          else if (strcmp(strd,"age")==0) { /* or age*Vn */
  strcpy(plotcmd,GNUPLOTPROGRAM);            cptcovprod--;
  strcat(plotcmd," ");            cutv(strb,stre,strc,'V');
  strcat(plotcmd,optionfilegnuplot);            Tvar[i]=atoi(stre);
  system(plotcmd);            cptcovage++;
             Tage[cptcovage]=i;
 #ifdef windows          }
   while (z[0] != 'q') {          else {  /* Age is not in the model */
     /* chdir(path); */            cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");            Tvar[i]=ncovcol+k1;
     scanf("%s",z);            cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
     if (z[0] == 'c') system("./imach");            Tprod[k1]=i;
     else if (z[0] == 'e') system(optionfilehtm);            Tvard[k1][1]=atoi(strc); /* m*/
     else if (z[0] == 'g') system(plotcmd);            Tvard[k1][2]=atoi(stre); /* n */
     else if (z[0] == 'q') exit(0);            Tvar[cptcovn+k2]=Tvard[k1][1];
   }            Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
 #endif            for (k=1; k<=lastobs;k++) 
 }              covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);
     fclose(fic);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a
                                    month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     strcat(optionfilegnuplot,".gp");
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     fclose(ficgp);
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname);
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt,\
             model,fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strt);
     /*fclose(fichtm);*/
     fflush(fichtm);
   
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);
   
   /*   if((fichtm=fopen(optionfilehtm,"a"))==NULL) { */
   /*     printf("Problem with file: %s\n", optionfilehtm); */
   /*     fprintf(ficlog,"Problem with file: %s\n", optionfilehtm); */
   /*   } */
   
   
   /*   if(fileappend(fichtm, optionfilehtm)){ */
       fprintf(fichtm,"\n");
       fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
           imx,agemin,agemax,jmin,jmax,jmean);
   /*     fclose(fichtm); */
   /*   } */
   
       pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
     printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
     for (k=1; k<=npar;k++)
       printf(" %d %8.5f",k,p[k]);
     printf("\n");
     globpr=1; /* to print the contributions */
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
     printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
     for (k=1; k<=npar;k++)
       printf(" %d %8.5f",k,p[k]);
     printf("\n");
     if(mle>=1){ /* Could be 1 or 2 */
       mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
     }
       
     /*--------- results files --------------*/
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
     
   
     jk=1;
     fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) 
           {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
       }
     }
     if(mle!=0){
       /* Computing hessian and covariance matrix */
       ftolhess=ftol; /* Usually correct */
       hesscov(matcov, p, npar, delti, ftolhess, func);
     }
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(j=1; j <=nlstate+ndeath; j++){
         if (j!=i) {
           fprintf(ficres,"%1d%1d",i,j);
           printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             printf(" %.5e",delti[jk]);
             fprintf(ficlog," %.5e",delti[jk]);
             fprintf(ficres," %.5e",delti[jk]);
             jk++;
           }
           printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficres,"\n");
         }
       }
     }
      
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     if(mle==1)
       printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     for(i=1,k=1;i<=npar;i++){
       /*  if (k>nlstate) k=1;
           i1=(i-1)/(ncovmodel*nlstate)+1; 
           fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);
           printf("%s%d%d",alph[k],i1,tab[i]);
       */
       fprintf(ficres,"%3d",i);
       if(mle==1)
         printf("%3d",i);
       fprintf(ficlog,"%3d",i);
       for(j=1; j<=i;j++){
         fprintf(ficres," %.5e",matcov[i][j]);
         if(mle==1)
           printf(" %.5e",matcov[i][j]);
         fprintf(ficlog," %.5e",matcov[i][j]);
       }
       fprintf(ficres,"\n");
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       k++;
     }
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     estepm=0;
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
     if (estepm==0 || estepm < stepm) estepm=stepm;
     if (fage <= 2) {
       bage = ageminpar;
       fage = agemaxpar;
     }
      
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
     
     fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
     fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
    
   
     dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
     dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
   
     fscanf(ficpar,"pop_based=%d\n",&popbased);
     fprintf(ficparo,"pop_based=%d\n",popbased);   
     fprintf(ficres,"pop_based=%d\n",popbased);   
     
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
     fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     /* day and month of proj2 are not used but only year anproj2.*/
   
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);
     fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
     fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
   
     /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
     /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
   
     printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);
   
     printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                  model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                  jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
    
     /*------------ free_vector  -------------*/
     chdir(path);
    
     free_ivector(wav,1,imx);
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
     free_lvector(num,1,n);
     free_vector(agedc,1,n);
     /*free_matrix(covar,0,NCOVMAX,1,n);*/
     /*free_matrix(covar,1,NCOVMAX,1,n);*/
     fclose(ficparo);
     fclose(ficres);
   
   
     /*--------------- Prevalence limit  (stable prevalence) --------------*/
     
     strcpy(filerespl,"pl");
     strcat(filerespl,fileres);
     if((ficrespl=fopen(filerespl,"w"))==NULL) {
       printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
     }
     printf("Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficrespl,"#Stable prevalence \n");
     fprintf(ficrespl,"#Age ");
     for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
     fprintf(ficrespl,"\n");
     
     prlim=matrix(1,nlstate,1,nlstate);
   
     agebase=ageminpar;
     agelim=agemaxpar;
     ftolpl=1.e-10;
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
         fprintf(ficrespl,"\n#******");
         printf("\n#******");
         fprintf(ficlog,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespl,"******\n");
         printf("******\n");
         fprintf(ficlog,"******\n");
           
         for (age=agebase; age<=agelim; age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           fprintf(ficrespl,"%.0f ",age );
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           for(i=1; i<=nlstate;i++)
             fprintf(ficrespl," %.5f", prlim[i][i]);
           fprintf(ficrespl,"\n");
         }
       }
     }
     fclose(ficrespl);
   
     /*------------- h Pij x at various ages ------------*/
     
     strcpy(filerespij,"pij");  strcat(filerespij,fileres);
     if((ficrespij=fopen(filerespij,"w"))==NULL) {
       printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
       fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
     }
     printf("Computing pij: result on file '%s' \n", filerespij);
     fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     /*if (stepm<=24) stepsize=2;*/
   
     agelim=AGESUP;
     hstepm=stepsize*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
     /* hstepm=1;   aff par mois*/
   
     fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficrespij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrespij,"******\n");
           
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
           /*        nhstepm=nhstepm*YEARM; aff par mois*/
   
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           oldm=oldms;savm=savms;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
           for(i=1; i<=nlstate;i++)
             for(j=1; j<=nlstate+ndeath;j++)
               fprintf(ficrespij," %1d-%1d",i,j);
           fprintf(ficrespij,"\n");
           for (h=0; h<=nhstepm; h++){
             fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);
             fprintf(ficrespij,"\n");
           }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           fprintf(ficrespij,"\n");
         }
       }
     }
   
     varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax);
   
     fclose(ficrespij);
   
     probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     /*---------- Forecasting ------------------*/
     /*if((stepm == 1) && (strcmp(model,".")==0)){*/
     if(prevfcast==1){
       /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
   /*      }  */
   /*      else{ */
   /*        erreur=108; */
   /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*      } */
     }
     
   
     /*---------- Health expectancies and variances ------------*/
   
     strcpy(filerest,"t");
     strcat(filerest,fileres);
     if((ficrest=fopen(filerest,"w"))==NULL) {
       printf("Problem with total LE resultfile: %s\n", filerest);goto end;
       fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
     }
     printf("Computing Total LEs with variances: file '%s' \n", filerest); 
     fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
     strcpy(filerese,"e");
     strcat(filerese,fileres);
     if((ficreseij=fopen(filerese,"w"))==NULL) {
       printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
     }
     printf("Computing Health Expectancies: result on file '%s' \n", filerese);
     fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
     strcpy(fileresv,"v");
     strcat(fileresv,fileres);
     if((ficresvij=fopen(fileresv,"w"))==NULL) {
       printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
       fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
     }
     printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
     fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
     /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
     prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
   ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
     */
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1; 
         fprintf(ficrest,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrest,"******\n");
   
         fprintf(ficreseij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficreseij,"******\n");
   
         fprintf(ficresvij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvij,"******\n");
   
         eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);  
    
         vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav);
         if(popbased==1){
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav);
         }
   
    
         fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
         for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
         fprintf(ficrest,"\n");
   
         epj=vector(1,nlstate+1);
         for(age=bage; age <=fage ;age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           if (popbased==1) {
             if(mobilav ==0){
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=probs[(int)age][i][k];
             }else{ /* mobilav */ 
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=mobaverage[(int)age][i][k];
             }
           }
           
           fprintf(ficrest," %4.0f",age);
           for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
             for(i=1, epj[j]=0.;i <=nlstate;i++) {
               epj[j] += prlim[i][i]*eij[i][j][(int)age];
               /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
             }
             epj[nlstate+1] +=epj[j];
           }
   
           for(i=1, vepp=0.;i <=nlstate;i++)
             for(j=1;j <=nlstate;j++)
               vepp += vareij[i][j][(int)age];
           fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
           for(j=1;j <=nlstate;j++){
             fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
           }
           fprintf(ficrest,"\n");
         }
         free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_vector(epj,1,nlstate+1);
       }
     }
     free_vector(weight,1,n);
     free_imatrix(Tvard,1,15,1,2);
     free_imatrix(s,1,maxwav+1,1,n);
     free_matrix(anint,1,maxwav,1,n); 
     free_matrix(mint,1,maxwav,1,n);
     free_ivector(cod,1,n);
     free_ivector(tab,1,NCOVMAX);
     fclose(ficreseij);
     fclose(ficresvij);
     fclose(ficrest);
     fclose(ficpar);
     
     /*------- Variance of stable prevalence------*/   
   
     strcpy(fileresvpl,"vpl");
     strcat(fileresvpl,fileres);
     if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
       printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
       exit(0);
     }
     printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficresvpl,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvpl,"******\n");
         
         varpl=matrix(1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);
         free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
       }
     }
   
     fclose(ficresvpl);
   
     /*---------- End : free ----------------*/
     free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
     
     free_matrix(covar,0,NCOVMAX,1,n);
     free_matrix(matcov,1,npar,1,npar);
     /*free_vector(delti,1,npar);*/
     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
     free_matrix(agev,1,maxwav,1,imx);
     free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     free_ivector(ncodemax,1,8);
     free_ivector(Tvar,1,15);
     free_ivector(Tprod,1,15);
     free_ivector(Tvaraff,1,15);
     free_ivector(Tage,1,15);
     free_ivector(Tcode,1,100);
   
     /*  fclose(fichtm);*/
     /*  fclose(ficgp);*/ /* ALready done */
     
   
     if(erreur >0){
       printf("End of Imach with error or warning %d\n",erreur);
       fprintf(ficlog,"End of Imach with error or warning %d\n",erreur);
     }else{
      printf("End of Imach\n");
      fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     fclose(ficlog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strtend=asctime(&tm);
     printf("Localtime at start %s and at end=%s",strt, strtend); 
     fprintf(ficlog,"Localtime at start %s and at end=%s",strt, strtend); 
     /*  printf("Total time used %d Sec\n", asc_time(end_time.tv_sec -start_time.tv_sec);*/
   
     printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);
     fprintf(ficlog,"Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Localtime at start %s and at end=%s<br>",strt, strtend);
     fclose(fichtm);
     /*------ End -----------*/
   
     end:
   #ifdef windows
     /* chdir(pathcd);*/
   #endif 
    /*system("wgnuplot graph.plt");*/
    /*system("../gp37mgw/wgnuplot graph.plt");*/
    /*system("cd ../gp37mgw");*/
    /* system("..\\gp37mgw\\wgnuplot graph.plt");*/
     strcpy(plotcmd,GNUPLOTPROGRAM);
     strcat(plotcmd," ");
     strcat(plotcmd,optionfilegnuplot);
     printf("Starting graphs with: %s",plotcmd);fflush(stdout);
     system(plotcmd);
     printf(" Wait...");
   
    /*#ifdef windows*/
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");
       scanf("%s",z);
       if (z[0] == 'c') system("./imach");
       else if (z[0] == 'e') system(optionfilehtm);
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     /*#endif */
   }
   
   

Removed from v.1.52  
changed lines
  Added in v.1.87


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>