Diff for /imach/src/imach.c between versions 1.76 and 1.125

version 1.76, 2003/05/16 10:44:42 version 1.125, 2006/04/04 15:20:31
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.125  2006/04/04 15:20:31  lievre
       Errors in calculation of health expectancies. Age was not initialized.
   This program computes Healthy Life Expectancies from    Forecasting file added.
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a  
   first survey ("cross") where individuals from different ages are    Revision 1.124  2006/03/22 17:13:53  lievre
   interviewed on their health status or degree of disability (in the    Parameters are printed with %lf instead of %f (more numbers after the comma).
   case of a health survey which is our main interest) -2- at least a    The log-likelihood is printed in the log file
   second wave of interviews ("longitudinal") which measure each change  
   (if any) in individual health status.  Health expectancies are    Revision 1.123  2006/03/20 10:52:43  brouard
   computed from the time spent in each health state according to a    * imach.c (Module): <title> changed, corresponds to .htm file
   model. More health states you consider, more time is necessary to reach the    name. <head> headers where missing.
   Maximum Likelihood of the parameters involved in the model.  The  
   simplest model is the multinomial logistic model where pij is the    * imach.c (Module): Weights can have a decimal point as for
   probability to be observed in state j at the second wave    English (a comma might work with a correct LC_NUMERIC environment,
   conditional to be observed in state i at the first wave. Therefore    otherwise the weight is truncated).
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    Modification of warning when the covariates values are not 0 or
   'age' is age and 'sex' is a covariate. If you want to have a more    1.
   complex model than "constant and age", you should modify the program    Version 0.98g
   where the markup *Covariates have to be included here again* invites  
   you to do it.  More covariates you add, slower the    Revision 1.122  2006/03/20 09:45:41  brouard
   convergence.    (Module): Weights can have a decimal point as for
     English (a comma might work with a correct LC_NUMERIC environment,
   The advantage of this computer programme, compared to a simple    otherwise the weight is truncated).
   multinomial logistic model, is clear when the delay between waves is not    Modification of warning when the covariates values are not 0 or
   identical for each individual. Also, if a individual missed an    1.
   intermediate interview, the information is lost, but taken into    Version 0.98g
   account using an interpolation or extrapolation.    
     Revision 1.121  2006/03/16 17:45:01  lievre
   hPijx is the probability to be observed in state i at age x+h    * imach.c (Module): Comments concerning covariates added
   conditional to the observed state i at age x. The delay 'h' can be  
   split into an exact number (nh*stepm) of unobserved intermediate    * imach.c (Module): refinements in the computation of lli if
   states. This elementary transition (by month, quarter,    status=-2 in order to have more reliable computation if stepm is
   semester or year) is modelled as a multinomial logistic.  The hPx    not 1 month. Version 0.98f
   matrix is simply the matrix product of nh*stepm elementary matrices  
   and the contribution of each individual to the likelihood is simply    Revision 1.120  2006/03/16 15:10:38  lievre
   hPijx.    (Module): refinements in the computation of lli if
     status=-2 in order to have more reliable computation if stepm is
   Also this programme outputs the covariance matrix of the parameters but also    not 1 month. Version 0.98f
   of the life expectancies. It also computes the stable prevalence.   
       Revision 1.119  2006/03/15 17:42:26  brouard
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    (Module): Bug if status = -2, the loglikelihood was
            Institut national d'études démographiques, Paris.    computed as likelihood omitting the logarithm. Version O.98e
   This software have been partly granted by Euro-REVES, a concerted action  
   from the European Union.    Revision 1.118  2006/03/14 18:20:07  brouard
   It is copyrighted identically to a GNU software product, ie programme and    (Module): varevsij Comments added explaining the second
   software can be distributed freely for non commercial use. Latest version    table of variances if popbased=1 .
   can be accessed at http://euroreves.ined.fr/imach .    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
     (Module): Function pstamp added
   Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach    (Module): Version 0.98d
   or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so  
       Revision 1.117  2006/03/14 17:16:22  brouard
   **********************************************************************/    (Module): varevsij Comments added explaining the second
 /*    table of variances if popbased=1 .
   main    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   read parameterfile    (Module): Function pstamp added
   read datafile    (Module): Version 0.98d
   concatwav  
   if (mle >= 1)    Revision 1.116  2006/03/06 10:29:27  brouard
     mlikeli    (Module): Variance-covariance wrong links and
   print results files    varian-covariance of ej. is needed (Saito).
   if mle==1   
      computes hessian    Revision 1.115  2006/02/27 12:17:45  brouard
   read end of parameter file: agemin, agemax, bage, fage, estepm    (Module): One freematrix added in mlikeli! 0.98c
       begin-prev-date,...  
   open gnuplot file    Revision 1.114  2006/02/26 12:57:58  brouard
   open html file    (Module): Some improvements in processing parameter
   stable prevalence    filename with strsep.
    for age prevalim()  
   h Pij x    Revision 1.113  2006/02/24 14:20:24  brouard
   variance of p varprob    (Module): Memory leaks checks with valgrind and:
   forecasting if prevfcast==1 prevforecast call prevalence()    datafile was not closed, some imatrix were not freed and on matrix
   health expectancies    allocation too.
   Variance-covariance of DFLE  
   prevalence()    Revision 1.112  2006/01/30 09:55:26  brouard
    movingaverage()    (Module): Back to gnuplot.exe instead of wgnuplot.exe
   varevsij()   
   if popbased==1 varevsij(,popbased)    Revision 1.111  2006/01/25 20:38:18  brouard
   total life expectancies    (Module): Lots of cleaning and bugs added (Gompertz)
   Variance of stable prevalence    (Module): Comments can be added in data file. Missing date values
  end    can be a simple dot '.'.
 */  
     Revision 1.110  2006/01/25 00:51:50  brouard
     (Module): Lots of cleaning and bugs added (Gompertz)
   
      Revision 1.109  2006/01/24 19:37:15  brouard
 #include <math.h>    (Module): Comments (lines starting with a #) are allowed in data.
 #include <stdio.h>  
 #include <stdlib.h>    Revision 1.108  2006/01/19 18:05:42  lievre
 #include <unistd.h>    Gnuplot problem appeared...
     To be fixed
 #define MAXLINE 256  
 #define GNUPLOTPROGRAM "gnuplot"    Revision 1.107  2006/01/19 16:20:37  brouard
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    Test existence of gnuplot in imach path
 #define FILENAMELENGTH 80  
 /*#define DEBUG*/    Revision 1.106  2006/01/19 13:24:36  brouard
 #define windows    Some cleaning and links added in html output
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */  
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    Revision 1.105  2006/01/05 20:23:19  lievre
     *** empty log message ***
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */  
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    Revision 1.104  2005/09/30 16:11:43  lievre
     (Module): sump fixed, loop imx fixed, and simplifications.
 #define NINTERVMAX 8    (Module): If the status is missing at the last wave but we know
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    that the person is alive, then we can code his/her status as -2
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    (instead of missing=-1 in earlier versions) and his/her
 #define NCOVMAX 8 /* Maximum number of covariates */    contributions to the likelihood is 1 - Prob of dying from last
 #define MAXN 20000    health status (= 1-p13= p11+p12 in the easiest case of somebody in
 #define YEARM 12. /* Number of months per year */    the healthy state at last known wave). Version is 0.98
 #define AGESUP 130  
 #define AGEBASE 40    Revision 1.103  2005/09/30 15:54:49  lievre
 #ifdef windows    (Module): sump fixed, loop imx fixed, and simplifications.
 #define DIRSEPARATOR '\\'  
 #define ODIRSEPARATOR '/'    Revision 1.102  2004/09/15 17:31:30  brouard
 #else    Add the possibility to read data file including tab characters.
 #define DIRSEPARATOR '/'  
 #define ODIRSEPARATOR '\\'    Revision 1.101  2004/09/15 10:38:38  brouard
 #endif    Fix on curr_time
   
 char version[80]="Imach version 0.95a, May 2003, INED-EUROREVES ";    Revision 1.100  2004/07/12 18:29:06  brouard
 int erreur; /* Error number */    Add version for Mac OS X. Just define UNIX in Makefile
 int nvar;  
 int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;    Revision 1.99  2004/06/05 08:57:40  brouard
 int npar=NPARMAX;    *** empty log message ***
 int nlstate=2; /* Number of live states */  
 int ndeath=1; /* Number of dead states */    Revision 1.98  2004/05/16 15:05:56  brouard
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    New version 0.97 . First attempt to estimate force of mortality
 int popbased=0;    directly from the data i.e. without the need of knowing the health
     state at each age, but using a Gompertz model: log u =a + b*age .
 int *wav; /* Number of waves for this individuual 0 is possible */    This is the basic analysis of mortality and should be done before any
 int maxwav; /* Maxim number of waves */    other analysis, in order to test if the mortality estimated from the
 int jmin, jmax; /* min, max spacing between 2 waves */    cross-longitudinal survey is different from the mortality estimated
 int mle, weightopt;    from other sources like vital statistic data.
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */  
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    The same imach parameter file can be used but the option for mle should be -3.
 int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between  
            * wave mi and wave mi+1 is not an exact multiple of stepm. */    Agnès, who wrote this part of the code, tried to keep most of the
 double jmean; /* Mean space between 2 waves */    former routines in order to include the new code within the former code.
 double **oldm, **newm, **savm; /* Working pointers to matrices */  
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    The output is very simple: only an estimate of the intercept and of
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    the slope with 95% confident intervals.
 FILE *ficlog, *ficrespow;  
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;    Current limitations:
 FILE *ficresprobmorprev;    A) Even if you enter covariates, i.e. with the
 FILE *fichtm; /* Html File */    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
 FILE *ficreseij;    B) There is no computation of Life Expectancy nor Life Table.
 char filerese[FILENAMELENGTH];  
 FILE  *ficresvij;    Revision 1.97  2004/02/20 13:25:42  lievre
 char fileresv[FILENAMELENGTH];    Version 0.96d. Population forecasting command line is (temporarily)
 FILE  *ficresvpl;    suppressed.
 char fileresvpl[FILENAMELENGTH];  
 char title[MAXLINE];    Revision 1.96  2003/07/15 15:38:55  brouard
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
 char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];    rewritten within the same printf. Workaround: many printfs.
   
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];    Revision 1.95  2003/07/08 07:54:34  brouard
 char filelog[FILENAMELENGTH]; /* Log file */    * imach.c (Repository):
 char filerest[FILENAMELENGTH];    (Repository): Using imachwizard code to output a more meaningful covariance
 char fileregp[FILENAMELENGTH];    matrix (cov(a12,c31) instead of numbers.
 char popfile[FILENAMELENGTH];  
     Revision 1.94  2003/06/27 13:00:02  brouard
 char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];    Just cleaning
   
 #define NR_END 1    Revision 1.93  2003/06/25 16:33:55  brouard
 #define FREE_ARG char*    (Module): On windows (cygwin) function asctime_r doesn't
 #define FTOL 1.0e-10    exist so I changed back to asctime which exists.
     (Module): Version 0.96b
 #define NRANSI   
 #define ITMAX 200     Revision 1.92  2003/06/25 16:30:45  brouard
     (Module): On windows (cygwin) function asctime_r doesn't
 #define TOL 2.0e-4     exist so I changed back to asctime which exists.
   
 #define CGOLD 0.3819660     Revision 1.91  2003/06/25 15:30:29  brouard
 #define ZEPS 1.0e-10     * imach.c (Repository): Duplicated warning errors corrected.
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);     (Repository): Elapsed time after each iteration is now output. It
     helps to forecast when convergence will be reached. Elapsed time
 #define GOLD 1.618034     is stamped in powell.  We created a new html file for the graphs
 #define GLIMIT 100.0     concerning matrix of covariance. It has extension -cov.htm.
 #define TINY 1.0e-20   
     Revision 1.90  2003/06/24 12:34:15  brouard
 static double maxarg1,maxarg2;    (Module): Some bugs corrected for windows. Also, when
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    mle=-1 a template is output in file "or"mypar.txt with the design
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    of the covariance matrix to be input.
     
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    Revision 1.89  2003/06/24 12:30:52  brouard
 #define rint(a) floor(a+0.5)    (Module): Some bugs corrected for windows. Also, when
     mle=-1 a template is output in file "or"mypar.txt with the design
 static double sqrarg;    of the covariance matrix to be input.
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)  
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}     Revision 1.88  2003/06/23 17:54:56  brouard
     * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
 int imx;   
 int stepm;    Revision 1.87  2003/06/18 12:26:01  brouard
 /* Stepm, step in month: minimum step interpolation*/    Version 0.96
   
 int estepm;    Revision 1.86  2003/06/17 20:04:08  brouard
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/    (Module): Change position of html and gnuplot routines and added
     routine fileappend.
 int m,nb;  
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    Revision 1.85  2003/06/17 13:12:43  brouard
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    * imach.c (Repository): Check when date of death was earlier that
 double **pmmij, ***probs;    current date of interview. It may happen when the death was just
 double dateintmean=0;    prior to the death. In this case, dh was negative and likelihood
     was wrong (infinity). We still send an "Error" but patch by
 double *weight;    assuming that the date of death was just one stepm after the
 int **s; /* Status */    interview.
 double *agedc, **covar, idx;    (Repository): Because some people have very long ID (first column)
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    we changed int to long in num[] and we added a new lvector for
     memory allocation. But we also truncated to 8 characters (left
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    truncation)
 double ftolhess; /* Tolerance for computing hessian */    (Repository): No more line truncation errors.
   
 /**************** split *************************/    Revision 1.84  2003/06/13 21:44:43  brouard
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    * imach.c (Repository): Replace "freqsummary" at a correct
 {    place. It differs from routine "prevalence" which may be called
   char  *ss;                            /* pointer */    many times. Probs is memory consuming and must be used with
   int   l1, l2;                         /* length counters */    parcimony.
     Version 0.95a3 (should output exactly the same maximization than 0.8a2)
   l1 = strlen(path );                   /* length of path */  
   if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    Revision 1.83  2003/06/10 13:39:11  lievre
   ss= strrchr( path, DIRSEPARATOR );            /* find last / */    *** empty log message ***
   if ( ss == NULL ) {                   /* no directory, so use current */  
     /*if(strrchr(path, ODIRSEPARATOR )==NULL)    Revision 1.82  2003/06/05 15:57:20  brouard
       printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/    Add log in  imach.c and  fullversion number is now printed.
     /* get current working directory */  
     /*    extern  char* getcwd ( char *buf , int len);*/  */
     if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {  /*
       return( GLOCK_ERROR_GETCWD );     Interpolated Markov Chain
     }  
     strcpy( name, path );               /* we've got it */    Short summary of the programme:
   } else {                              /* strip direcotry from path */   
     ss++;                               /* after this, the filename */    This program computes Healthy Life Expectancies from
     l2 = strlen( ss );                  /* length of filename */    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
     if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    first survey ("cross") where individuals from different ages are
     strcpy( name, ss );         /* save file name */    interviewed on their health status or degree of disability (in the
     strncpy( dirc, path, l1 - l2 );     /* now the directory */    case of a health survey which is our main interest) -2- at least a
     dirc[l1-l2] = 0;                    /* add zero */    second wave of interviews ("longitudinal") which measure each change
   }    (if any) in individual health status.  Health expectancies are
   l1 = strlen( dirc );                  /* length of directory */    computed from the time spent in each health state according to a
 #ifdef windows    model. More health states you consider, more time is necessary to reach the
   if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    Maximum Likelihood of the parameters involved in the model.  The
 #else    simplest model is the multinomial logistic model where pij is the
   if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }    probability to be observed in state j at the second wave
 #endif    conditional to be observed in state i at the first wave. Therefore
   ss = strrchr( name, '.' );            /* find last / */    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
   ss++;    'age' is age and 'sex' is a covariate. If you want to have a more
   strcpy(ext,ss);                       /* save extension */    complex model than "constant and age", you should modify the program
   l1= strlen( name);    where the markup *Covariates have to be included here again* invites
   l2= strlen(ss)+1;    you to do it.  More covariates you add, slower the
   strncpy( finame, name, l1-l2);    convergence.
   finame[l1-l2]= 0;  
   return( 0 );                          /* we're done */    The advantage of this computer programme, compared to a simple
 }    multinomial logistic model, is clear when the delay between waves is not
     identical for each individual. Also, if a individual missed an
     intermediate interview, the information is lost, but taken into
 /******************************************/    account using an interpolation or extrapolation.  
   
 void replace(char *s, char*t)    hPijx is the probability to be observed in state i at age x+h
 {    conditional to the observed state i at age x. The delay 'h' can be
   int i;    split into an exact number (nh*stepm) of unobserved intermediate
   int lg=20;    states. This elementary transition (by month, quarter,
   i=0;    semester or year) is modelled as a multinomial logistic.  The hPx
   lg=strlen(t);    matrix is simply the matrix product of nh*stepm elementary matrices
   for(i=0; i<= lg; i++) {    and the contribution of each individual to the likelihood is simply
     (s[i] = t[i]);    hPijx.
     if (t[i]== '\\') s[i]='/';  
   }    Also this programme outputs the covariance matrix of the parameters but also
 }    of the life expectancies. It also computes the period (stable) prevalence.
    
 int nbocc(char *s, char occ)    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
 {             Institut national d'études démographiques, Paris.
   int i,j=0;    This software have been partly granted by Euro-REVES, a concerted action
   int lg=20;    from the European Union.
   i=0;    It is copyrighted identically to a GNU software product, ie programme and
   lg=strlen(s);    software can be distributed freely for non commercial use. Latest version
   for(i=0; i<= lg; i++) {    can be accessed at http://euroreves.ined.fr/imach .
   if  (s[i] == occ ) j++;  
   }    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
   return j;    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
 }   
     **********************************************************************/
 void cutv(char *u,char *v, char*t, char occ)  /*
 {    main
   /* cuts string t into u and v where u is ended by char occ excluding it    read parameterfile
      and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)    read datafile
      gives u="abcedf" and v="ghi2j" */    concatwav
   int i,lg,j,p=0;    freqsummary
   i=0;    if (mle >= 1)
   for(j=0; j<=strlen(t)-1; j++) {      mlikeli
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;    print results files
   }    if mle==1
        computes hessian
   lg=strlen(t);    read end of parameter file: agemin, agemax, bage, fage, estepm
   for(j=0; j<p; j++) {        begin-prev-date,...
     (u[j] = t[j]);    open gnuplot file
   }    open html file
      u[p]='\0';    period (stable) prevalence
      for age prevalim()
    for(j=0; j<= lg; j++) {    h Pij x
     if (j>=(p+1))(v[j-p-1] = t[j]);    variance of p varprob
   }    forecasting if prevfcast==1 prevforecast call prevalence()
 }    health expectancies
     Variance-covariance of DFLE
 /********************** nrerror ********************/    prevalence()
      movingaverage()
 void nrerror(char error_text[])    varevsij()
 {    if popbased==1 varevsij(,popbased)
   fprintf(stderr,"ERREUR ...\n");    total life expectancies
   fprintf(stderr,"%s\n",error_text);    Variance of period (stable) prevalence
   exit(EXIT_FAILURE);   end
 }  */
 /*********************** vector *******************/  
 double *vector(int nl, int nh)  
 {  
   double *v;   
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  #include <math.h>
   if (!v) nrerror("allocation failure in vector");  #include <stdio.h>
   return v-nl+NR_END;  #include <stdlib.h>
 }  #include <string.h>
   #include <unistd.h>
 /************************ free vector ******************/  
 void free_vector(double*v, int nl, int nh)  #include <limits.h>
 {  #include <sys/types.h>
   free((FREE_ARG)(v+nl-NR_END));  #include <sys/stat.h>
 }  #include <errno.h>
   extern int errno;
 /************************ivector *******************************/  
 char *cvector(long nl,long nh)  /* #include <sys/time.h> */
 {  #include <time.h>
   char *v;  #include "timeval.h"
   v=(char *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(char)));  
   if (!v) nrerror("allocation failure in cvector");  /* #include <libintl.h> */
   return v-nl+NR_END;  /* #define _(String) gettext (String) */
 }  
   #define MAXLINE 256
 /******************free ivector **************************/  
 void free_cvector(char *v, long nl, long nh)  #define GNUPLOTPROGRAM "gnuplot"
 {  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
   free((FREE_ARG)(v+nl-NR_END));  #define FILENAMELENGTH 132
 }  
   #define GLOCK_ERROR_NOPATH              -1      /* empty path */
 /************************ivector *******************************/  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
 int *ivector(long nl,long nh)  
 {  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
   int *v;  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  
   if (!v) nrerror("allocation failure in ivector");  #define NINTERVMAX 8
   return v-nl+NR_END;  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
 }  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
   #define NCOVMAX 8 /* Maximum number of covariates */
 /******************free ivector **************************/  #define MAXN 20000
 void free_ivector(int *v, long nl, long nh)  #define YEARM 12. /* Number of months per year */
 {  #define AGESUP 130
   free((FREE_ARG)(v+nl-NR_END));  #define AGEBASE 40
 }  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
   #ifdef UNIX
 /******************* imatrix *******************************/  #define DIRSEPARATOR '/'
 int **imatrix(long nrl, long nrh, long ncl, long nch)   #define CHARSEPARATOR "/"
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */   #define ODIRSEPARATOR '\\'
 {   #else
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;   #define DIRSEPARATOR '\\'
   int **m;   #define CHARSEPARATOR "\\"
     #define ODIRSEPARATOR '/'
   /* allocate pointers to rows */   #endif
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));   
   if (!m) nrerror("allocation failure 1 in matrix()");   /* $Id$ */
   m += NR_END;   /* $State$ */
   m -= nrl;   
     char version[]="Imach version 0.98g, March 2006, INED-EUROREVES-Institut de longevite ";
     char fullversion[]="$Revision$ $Date$";
   /* allocate rows and set pointers to them */   char strstart[80];
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));   char optionfilext[10], optionfilefiname[FILENAMELENGTH];
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");   int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
   m[nrl] += NR_END;   int nvar;
   m[nrl] -= ncl;   int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
     int npar=NPARMAX;
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;   int nlstate=2; /* Number of live states */
     int ndeath=1; /* Number of dead states */
   /* return pointer to array of pointers to rows */   int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
   return m;   int popbased=0;
 }   
   int *wav; /* Number of waves for this individuual 0 is possible */
 /****************** free_imatrix *************************/  int maxwav; /* Maxim number of waves */
 void free_imatrix(m,nrl,nrh,ncl,nch)  int jmin, jmax; /* min, max spacing between 2 waves */
       int **m;  int ijmin, ijmax; /* Individuals having jmin and jmax */
       long nch,ncl,nrh,nrl;   int gipmx, gsw; /* Global variables on the number of contributions
      /* free an int matrix allocated by imatrix() */                      to the likelihood and the sum of weights (done by funcone)*/
 {   int mle, weightopt;
   free((FREE_ARG) (m[nrl]+ncl-NR_END));   int **mw; /* mw[mi][i] is number of the mi wave for this individual */
   free((FREE_ARG) (m+nrl-NR_END));   int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
 }   int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
              * wave mi and wave mi+1 is not an exact multiple of stepm. */
 /******************* matrix *******************************/  double jmean; /* Mean space between 2 waves */
 double **matrix(long nrl, long nrh, long ncl, long nch)  double **oldm, **newm, **savm; /* Working pointers to matrices */
 {  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  FILE *fic,*ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
   double **m;  FILE *ficlog, *ficrespow;
   int globpr; /* Global variable for printing or not */
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  double fretone; /* Only one call to likelihood */
   if (!m) nrerror("allocation failure 1 in matrix()");  long ipmx; /* Number of contributions */
   m += NR_END;  double sw; /* Sum of weights */
   m -= nrl;  char filerespow[FILENAMELENGTH];
   char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  FILE *ficresilk;
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
   m[nrl] += NR_END;  FILE *ficresprobmorprev;
   m[nrl] -= ncl;  FILE *fichtm, *fichtmcov; /* Html File */
   FILE *ficreseij;
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  char filerese[FILENAMELENGTH];
   return m;  FILE *ficresstdeij;
   /* print *(*(m+1)+70) ou print m[1][70]; print m+1 or print &(m[1])   char fileresstde[FILENAMELENGTH];
    */  FILE *ficrescveij;
 }  char filerescve[FILENAMELENGTH];
   FILE  *ficresvij;
 /*************************free matrix ************************/  char fileresv[FILENAMELENGTH];
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  FILE  *ficresvpl;
 {  char fileresvpl[FILENAMELENGTH];
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  char title[MAXLINE];
   free((FREE_ARG)(m+nrl-NR_END));  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
 }  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
   char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH];
 /******************* ma3x *******************************/  char command[FILENAMELENGTH];
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  int  outcmd=0;
 {  
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
   double ***m;  
   char filelog[FILENAMELENGTH]; /* Log file */
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  char filerest[FILENAMELENGTH];
   if (!m) nrerror("allocation failure 1 in matrix()");  char fileregp[FILENAMELENGTH];
   m += NR_END;  char popfile[FILENAMELENGTH];
   m -= nrl;  
   char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
   m[nrl] += NR_END;  struct timezone tzp;
   m[nrl] -= ncl;  extern int gettimeofday();
   struct tm tmg, tm, tmf, *gmtime(), *localtime();
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  long time_value;
   extern long time();
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  char strcurr[80], strfor[80];
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  
   m[nrl][ncl] += NR_END;  char *endptr;
   m[nrl][ncl] -= nll;  long lval;
   for (j=ncl+1; j<=nch; j++)   double dval;
     m[nrl][j]=m[nrl][j-1]+nlay;  
     #define NR_END 1
   for (i=nrl+1; i<=nrh; i++) {  #define FREE_ARG char*
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  #define FTOL 1.0e-10
     for (j=ncl+1; j<=nch; j++)   
       m[i][j]=m[i][j-1]+nlay;  #define NRANSI
   }  #define ITMAX 200
   return m;   
   /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])  #define TOL 2.0e-4
            &(m[i][j][k]) <=> *((*(m+i) + j)+k)  
   */  #define CGOLD 0.3819660
 }  #define ZEPS 1.0e-10
   #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);
 /*************************free ma3x ************************/  
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  #define GOLD 1.618034
 {  #define GLIMIT 100.0
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  #define TINY 1.0e-20
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  
   free((FREE_ARG)(m+nrl-NR_END));  static double maxarg1,maxarg2;
 }  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
   #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
 /***************** f1dim *************************/   
 extern int ncom;   #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
 extern double *pcom,*xicom;  #define rint(a) floor(a+0.5)
 extern double (*nrfunc)(double []);   
    static double sqrarg;
 double f1dim(double x)   #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
 {   #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}
   int j;   int agegomp= AGEGOMP;
   double f;  
   double *xt;   int imx;
    int stepm=1;
   xt=vector(1,ncom);   /* Stepm, step in month: minimum step interpolation*/
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];   
   f=(*nrfunc)(xt);   int estepm;
   free_vector(xt,1,ncom);   /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
   return f;   
 }   int m,nb;
   long *num;
 /*****************brent *************************/  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)   double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
 {   double **pmmij, ***probs;
   int iter;   double *ageexmed,*agecens;
   double a,b,d,etemp;  double dateintmean=0;
   double fu,fv,fw,fx;  
   double ftemp;  double *weight;
   double p,q,r,tol1,tol2,u,v,w,x,xm;   int **s; /* Status */
   double e=0.0;   double *agedc, **covar, idx;
    int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
   a=(ax < cx ? ax : cx);   double *lsurv, *lpop, *tpop;
   b=(ax > cx ? ax : cx);   
   x=w=v=bx;   double ftol=FTOL; /* Tolerance for computing Max Likelihood */
   fw=fv=fx=(*f)(x);   double ftolhess; /* Tolerance for computing hessian */
   for (iter=1;iter<=ITMAX;iter++) {   
     xm=0.5*(a+b);   /**************** split *************************/
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);   static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  {
     printf(".");fflush(stdout);    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
     fprintf(ficlog,".");fflush(ficlog);       the name of the file (name), its extension only (ext) and its first part of the name (finame)
 #ifdef DEBUG    */
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    char  *ss;                            /* pointer */
     fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    int   l1, l2;                         /* length counters */
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  
 #endif    l1 = strlen(path );                   /* length of path */
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){     if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
       *xmin=x;     ss= strrchr( path, DIRSEPARATOR );            /* find last / */
       return fx;     if ( ss == NULL ) {                   /* no directory, so determine current directory */
     }       strcpy( name, path );               /* we got the fullname name because no directory */
     ftemp=fu;      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
     if (fabs(e) > tol1) {         printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
       r=(x-w)*(fx-fv);       /* get current working directory */
       q=(x-v)*(fx-fw);       /*    extern  char* getcwd ( char *buf , int len);*/
       p=(x-v)*q-(x-w)*r;       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
       q=2.0*(q-r);         return( GLOCK_ERROR_GETCWD );
       if (q > 0.0) p = -p;       }
       q=fabs(q);       /* got dirc from getcwd*/
       etemp=e;       printf(" DIRC = %s \n",dirc);
       e=d;     } else {                              /* strip direcotry from path */
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))       ss++;                               /* after this, the filename */
         d=CGOLD*(e=(x >= xm ? a-x : b-x));       l2 = strlen( ss );                  /* length of filename */
       else {       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
         d=p/q;       strcpy( name, ss );         /* save file name */
         u=x+d;       strncpy( dirc, path, l1 - l2 );     /* now the directory */
         if (u-a < tol2 || b-u < tol2)       dirc[l1-l2] = 0;                    /* add zero */
           d=SIGN(tol1,xm-x);       printf(" DIRC2 = %s \n",dirc);
       }     }
     } else {     /* We add a separator at the end of dirc if not exists */
       d=CGOLD*(e=(x >= xm ? a-x : b-x));     l1 = strlen( dirc );                  /* length of directory */
     }     if( dirc[l1-1] != DIRSEPARATOR ){
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));       dirc[l1] =  DIRSEPARATOR;
     fu=(*f)(u);       dirc[l1+1] = 0;
     if (fu <= fx) {       printf(" DIRC3 = %s \n",dirc);
       if (u >= x) a=x; else b=x;     }
       SHFT(v,w,x,u)     ss = strrchr( name, '.' );            /* find last / */
         SHFT(fv,fw,fx,fu)     if (ss >0){
         } else {       ss++;
           if (u < x) a=u; else b=u;       strcpy(ext,ss);                     /* save extension */
           if (fu <= fw || w == x) {       l1= strlen( name);
             v=w;       l2= strlen(ss)+1;
             w=u;       strncpy( finame, name, l1-l2);
             fv=fw;       finame[l1-l2]= 0;
             fw=fu;     }
           } else if (fu <= fv || v == x || v == w) {   
             v=u;     return( 0 );                          /* we're done */
             fv=fu;   }
           }   
         }   
   }   /******************************************/
   nrerror("Too many iterations in brent");   
   *xmin=x;   void replace_back_to_slash(char *s, char*t)
   return fx;   {
 }     int i;
     int lg=0;
 /****************** mnbrak ***********************/    i=0;
     lg=strlen(t);
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,     for(i=0; i<= lg; i++) {
             double (*func)(double))       (s[i] = t[i]);
 {       if (t[i]== '\\') s[i]='/';
   double ulim,u,r,q, dum;    }
   double fu;   }
    
   *fa=(*func)(*ax);   int nbocc(char *s, char occ)
   *fb=(*func)(*bx);   {
   if (*fb > *fa) {     int i,j=0;
     SHFT(dum,*ax,*bx,dum)     int lg=20;
       SHFT(dum,*fb,*fa,dum)     i=0;
       }     lg=strlen(s);
   *cx=(*bx)+GOLD*(*bx-*ax);     for(i=0; i<= lg; i++) {
   *fc=(*func)(*cx);     if  (s[i] == occ ) j++;
   while (*fb > *fc) {     }
     r=(*bx-*ax)*(*fb-*fc);     return j;
     q=(*bx-*cx)*(*fb-*fa);   }
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/   
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));   void cutv(char *u,char *v, char*t, char occ)
     ulim=(*bx)+GLIMIT*(*cx-*bx);   {
     if ((*bx-u)*(u-*cx) > 0.0) {     /* cuts string t into u and v where u ends before first occurence of char 'occ'
       fu=(*func)(u);        and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
     } else if ((*cx-u)*(u-ulim) > 0.0) {        gives u="abcedf" and v="ghi2j" */
       fu=(*func)(u);     int i,lg,j,p=0;
       if (fu < *fc) {     i=0;
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))     for(j=0; j<=strlen(t)-1; j++) {
           SHFT(*fb,*fc,fu,(*func)(u))       if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
           }     }
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {   
       u=ulim;     lg=strlen(t);
       fu=(*func)(u);     for(j=0; j<p; j++) {
     } else {       (u[j] = t[j]);
       u=(*cx)+GOLD*(*cx-*bx);     }
       fu=(*func)(u);        u[p]='\0';
     }   
     SHFT(*ax,*bx,*cx,u)      for(j=0; j<= lg; j++) {
       SHFT(*fa,*fb,*fc,fu)       if (j>=(p+1))(v[j-p-1] = t[j]);
       }     }
 }   }
   
 /*************** linmin ************************/  /********************** nrerror ********************/
   
 int ncom;   void nrerror(char error_text[])
 double *pcom,*xicom;  {
 double (*nrfunc)(double []);     fprintf(stderr,"ERREUR ...\n");
      fprintf(stderr,"%s\n",error_text);
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))     exit(EXIT_FAILURE);
 {   }
   double brent(double ax, double bx, double cx,   /*********************** vector *******************/
                double (*f)(double), double tol, double *xmin);   double *vector(int nl, int nh)
   double f1dim(double x);   {
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,     double *v;
               double *fc, double (*func)(double));     v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
   int j;     if (!v) nrerror("allocation failure in vector");
   double xx,xmin,bx,ax;     return v-nl+NR_END;
   double fx,fb,fa;  }
    
   ncom=n;   /************************ free vector ******************/
   pcom=vector(1,n);   void free_vector(double*v, int nl, int nh)
   xicom=vector(1,n);   {
   nrfunc=func;     free((FREE_ARG)(v+nl-NR_END));
   for (j=1;j<=n;j++) {   }
     pcom[j]=p[j];   
     xicom[j]=xi[j];   /************************ivector *******************************/
   }   int *ivector(long nl,long nh)
   ax=0.0;   {
   xx=1.0;     int *v;
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);     v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);     if (!v) nrerror("allocation failure in ivector");
 #ifdef DEBUG    return v-nl+NR_END;
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  }
   fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  
 #endif  /******************free ivector **************************/
   for (j=1;j<=n;j++) {   void free_ivector(int *v, long nl, long nh)
     xi[j] *= xmin;   {
     p[j] += xi[j];     free((FREE_ARG)(v+nl-NR_END));
   }   }
   free_vector(xicom,1,n);   
   free_vector(pcom,1,n);   /************************lvector *******************************/
 }   long *lvector(long nl,long nh)
   {
 /*************** powell ************************/    long *v;
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,     v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
             double (*func)(double []))     if (!v) nrerror("allocation failure in ivector");
 {     return v-nl+NR_END;
   void linmin(double p[], double xi[], int n, double *fret,   }
               double (*func)(double []));   
   int i,ibig,j;   /******************free lvector **************************/
   double del,t,*pt,*ptt,*xit;  void free_lvector(long *v, long nl, long nh)
   double fp,fptt;  {
   double *xits;    free((FREE_ARG)(v+nl-NR_END));
   pt=vector(1,n);   }
   ptt=vector(1,n);   
   xit=vector(1,n);   /******************* imatrix *******************************/
   xits=vector(1,n);   int **imatrix(long nrl, long nrh, long ncl, long nch)
   *fret=(*func)(p);        /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */
   for (j=1;j<=n;j++) pt[j]=p[j];   {
   for (*iter=1;;++(*iter)) {     long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;
     fp=(*fret);     int **m;
     ibig=0;    
     del=0.0;     /* allocate pointers to rows */
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));
     fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f",*iter,*fret);    if (!m) nrerror("allocation failure 1 in matrix()");
     fprintf(ficrespow,"%d %.12f",*iter,*fret);    m += NR_END;
     for (i=1;i<=n;i++) {    m -= nrl;
       printf(" %d %.12f",i, p[i]);   
       fprintf(ficlog," %d %.12lf",i, p[i]);   
       fprintf(ficrespow," %.12lf", p[i]);    /* allocate rows and set pointers to them */
     }    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));
     printf("\n");    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     fprintf(ficlog,"\n");    m[nrl] += NR_END;
     fprintf(ficrespow,"\n");    m[nrl] -= ncl;
     for (i=1;i<=n;i++) {    
       for (j=1;j<=n;j++) xit[j]=xi[j][i];     for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;
       fptt=(*fret);    
 #ifdef DEBUG    /* return pointer to array of pointers to rows */
       printf("fret=%lf \n",*fret);    return m;
       fprintf(ficlog,"fret=%lf \n",*fret);  }
 #endif  
       printf("%d",i);fflush(stdout);  /****************** free_imatrix *************************/
       fprintf(ficlog,"%d",i);fflush(ficlog);  void free_imatrix(m,nrl,nrh,ncl,nch)
       linmin(p,xit,n,fret,func);         int **m;
       if (fabs(fptt-(*fret)) > del) {         long nch,ncl,nrh,nrl;
         del=fabs(fptt-(*fret));        /* free an int matrix allocated by imatrix() */
         ibig=i;   {
       }     free((FREE_ARG) (m[nrl]+ncl-NR_END));
 #ifdef DEBUG    free((FREE_ARG) (m+nrl-NR_END));
       printf("%d %.12e",i,(*fret));  }
       fprintf(ficlog,"%d %.12e",i,(*fret));  
       for (j=1;j<=n;j++) {  /******************* matrix *******************************/
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);  double **matrix(long nrl, long nrh, long ncl, long nch)
         printf(" x(%d)=%.12e",j,xit[j]);  {
         fprintf(ficlog," x(%d)=%.12e",j,xit[j]);    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
       }    double **m;
       for(j=1;j<=n;j++) {  
         printf(" p=%.12e",p[j]);    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
         fprintf(ficlog," p=%.12e",p[j]);    if (!m) nrerror("allocation failure 1 in matrix()");
       }    m += NR_END;
       printf("\n");    m -= nrl;
       fprintf(ficlog,"\n");  
 #endif    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     }     if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {    m[nrl] += NR_END;
 #ifdef DEBUG    m[nrl] -= ncl;
       int k[2],l;  
       k[0]=1;    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
       k[1]=-1;    return m;
       printf("Max: %.12e",(*func)(p));    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1])
       fprintf(ficlog,"Max: %.12e",(*func)(p));     */
       for (j=1;j<=n;j++) {  }
         printf(" %.12e",p[j]);  
         fprintf(ficlog," %.12e",p[j]);  /*************************free matrix ************************/
       }  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
       printf("\n");  {
       fprintf(ficlog,"\n");    free((FREE_ARG)(m[nrl]+ncl-NR_END));
       for(l=0;l<=1;l++) {    free((FREE_ARG)(m+nrl-NR_END));
         for (j=1;j<=n;j++) {  }
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];  
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  /******************* ma3x *******************************/
           fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
         }  {
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
         fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    double ***m;
       }  
 #endif    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     if (!m) nrerror("allocation failure 1 in matrix()");
     m += NR_END;
       free_vector(xit,1,n);     m -= nrl;
       free_vector(xits,1,n);   
       free_vector(ptt,1,n);     m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
       free_vector(pt,1,n);     if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       return;     m[nrl] += NR_END;
     }     m[nrl] -= ncl;
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");   
     for (j=1;j<=n;j++) {     for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
       ptt[j]=2.0*p[j]-pt[j];   
       xit[j]=p[j]-pt[j];     m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
       pt[j]=p[j];     if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
     }     m[nrl][ncl] += NR_END;
     fptt=(*func)(ptt);     m[nrl][ncl] -= nll;
     if (fptt < fp) {     for (j=ncl+1; j<=nch; j++)
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);       m[nrl][j]=m[nrl][j-1]+nlay;
       if (t < 0.0) {    
         linmin(p,xit,n,fret,func);     for (i=nrl+1; i<=nrh; i++) {
         for (j=1;j<=n;j++) {       m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
           xi[j][ibig]=xi[j][n];       for (j=ncl+1; j<=nch; j++)
           xi[j][n]=xit[j];         m[i][j]=m[i][j-1]+nlay;
         }    }
 #ifdef DEBUG    return m;
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
         fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
         for(j=1;j<=n;j++){    */
           printf(" %.12e",xit[j]);  }
           fprintf(ficlog," %.12e",xit[j]);  
         }  /*************************free ma3x ************************/
         printf("\n");  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
         fprintf(ficlog,"\n");  {
 #endif    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
       }    free((FREE_ARG)(m[nrl]+ncl-NR_END));
     }     free((FREE_ARG)(m+nrl-NR_END));
   }   }
 }   
   /*************** function subdirf ***********/
 /**** Prevalence limit (stable prevalence)  ****************/  char *subdirf(char fileres[])
   {
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)    /* Caution optionfilefiname is hidden */
 {    strcpy(tmpout,optionfilefiname);
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit    strcat(tmpout,"/"); /* Add to the right */
      matrix by transitions matrix until convergence is reached */    strcat(tmpout,fileres);
     return tmpout;
   int i, ii,j,k;  }
   double min, max, maxmin, maxmax,sumnew=0.;  
   double **matprod2();  /*************** function subdirf2 ***********/
   double **out, cov[NCOVMAX], **pmij();  char *subdirf2(char fileres[], char *preop)
   double **newm;  {
   double agefin, delaymax=50 ; /* Max number of years to converge */   
     /* Caution optionfilefiname is hidden */
   for (ii=1;ii<=nlstate+ndeath;ii++)    strcpy(tmpout,optionfilefiname);
     for (j=1;j<=nlstate+ndeath;j++){    strcat(tmpout,"/");
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);    strcat(tmpout,preop);
     }    strcat(tmpout,fileres);
     return tmpout;
    cov[1]=1.;  }
    
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */  /*************** function subdirf3 ***********/
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){  char *subdirf3(char fileres[], char *preop, char *preop2)
     newm=savm;  {
     /* Covariates have to be included here again */   
      cov[2]=agefin;    /* Caution optionfilefiname is hidden */
       strcpy(tmpout,optionfilefiname);
       for (k=1; k<=cptcovn;k++) {    strcat(tmpout,"/");
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    strcat(tmpout,preop);
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/    strcat(tmpout,preop2);
       }    strcat(tmpout,fileres);
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    return tmpout;
       for (k=1; k<=cptcovprod;k++)  }
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  
   /***************** f1dim *************************/
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/  extern int ncom;
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/  extern double *pcom,*xicom;
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/  extern double (*nrfunc)(double []);
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);   
   double f1dim(double x)
     savm=oldm;  {
     oldm=newm;    int j;
     maxmax=0.;    double f;
     for(j=1;j<=nlstate;j++){    double *xt;
       min=1.;   
       max=0.;    xt=vector(1,ncom);
       for(i=1; i<=nlstate; i++) {    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];
         sumnew=0;    f=(*nrfunc)(xt);
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];    free_vector(xt,1,ncom);
         prlim[i][j]= newm[i][j]/(1-sumnew);    return f;
         max=FMAX(max,prlim[i][j]);  }
         min=FMIN(min,prlim[i][j]);  
       }  /*****************brent *************************/
       maxmin=max-min;  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)
       maxmax=FMAX(maxmax,maxmin);  {
     }    int iter;
     if(maxmax < ftolpl){    double a,b,d,etemp;
       return prlim;    double fu,fv,fw,fx;
     }    double ftemp;
   }    double p,q,r,tol1,tol2,u,v,w,x,xm;
 }    double e=0.0;
    
 /*************** transition probabilities ***************/     a=(ax < cx ? ax : cx);
     b=(ax > cx ? ax : cx);
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )    x=w=v=bx;
 {    fw=fv=fx=(*f)(x);
   double s1, s2;    for (iter=1;iter<=ITMAX;iter++) {
   /*double t34;*/      xm=0.5*(a+b);
   int i,j,j1, nc, ii, jj;      tol2=2.0*(tol1=tol*fabs(x)+ZEPS);
       /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
     for(i=1; i<= nlstate; i++){      printf(".");fflush(stdout);
     for(j=1; j<i;j++){      fprintf(ficlog,".");fflush(ficlog);
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  #ifdef DEBUG
         /*s2 += param[i][j][nc]*cov[nc];*/      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
       }  #endif
       ps[i][j]=s2;      if (fabs(x-xm) <= (tol2-0.5*(b-a))){
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/        *xmin=x;
     }        return fx;
     for(j=i+1; j<=nlstate+ndeath;j++){      }
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){      ftemp=fu;
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];      if (fabs(e) > tol1) {
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/        r=(x-w)*(fx-fv);
       }        q=(x-v)*(fx-fw);
       ps[i][j]=s2;        p=(x-v)*q-(x-w)*r;
     }        q=2.0*(q-r);
   }        if (q > 0.0) p = -p;
     /*ps[3][2]=1;*/        q=fabs(q);
         etemp=e;
   for(i=1; i<= nlstate; i++){        e=d;
      s1=0;        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))
     for(j=1; j<i; j++)          d=CGOLD*(e=(x >= xm ? a-x : b-x));
       s1+=exp(ps[i][j]);        else {
     for(j=i+1; j<=nlstate+ndeath; j++)          d=p/q;
       s1+=exp(ps[i][j]);          u=x+d;
     ps[i][i]=1./(s1+1.);          if (u-a < tol2 || b-u < tol2)
     for(j=1; j<i; j++)            d=SIGN(tol1,xm-x);
       ps[i][j]= exp(ps[i][j])*ps[i][i];        }
     for(j=i+1; j<=nlstate+ndeath; j++)      } else {
       ps[i][j]= exp(ps[i][j])*ps[i][i];        d=CGOLD*(e=(x >= xm ? a-x : b-x));
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */      }
   } /* end i */      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));
       fu=(*f)(u);
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){      if (fu <= fx) {
     for(jj=1; jj<= nlstate+ndeath; jj++){        if (u >= x) a=x; else b=x;
       ps[ii][jj]=0;        SHFT(v,w,x,u)
       ps[ii][ii]=1;          SHFT(fv,fw,fx,fu)
     }          } else {
   }            if (u < x) a=u; else b=u;
             if (fu <= fw || w == x) {
               v=w;
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){              w=u;
     for(jj=1; jj<= nlstate+ndeath; jj++){              fv=fw;
      printf("%lf ",ps[ii][jj]);              fw=fu;
    }            } else if (fu <= fv || v == x || v == w) {
     printf("\n ");              v=u;
     }              fv=fu;
     printf("\n ");printf("%lf ",cov[2]);*/            }
 /*          }
   for(i=1; i<= npar; i++) printf("%f ",x[i]);    }
   goto end;*/    nrerror("Too many iterations in brent");
     return ps;    *xmin=x;
 }    return fx;
   }
 /**************** Product of 2 matrices ******************/  
   /****************** mnbrak ***********************/
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)  
 {  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times              double (*func)(double))
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */  {
   /* in, b, out are matrice of pointers which should have been initialized     double ulim,u,r,q, dum;
      before: only the contents of out is modified. The function returns    double fu;
      a pointer to pointers identical to out */   
   long i, j, k;    *fa=(*func)(*ax);
   for(i=nrl; i<= nrh; i++)    *fb=(*func)(*bx);
     for(k=ncolol; k<=ncoloh; k++)    if (*fb > *fa) {
       for(j=ncl,out[i][k]=0.; j<=nch; j++)      SHFT(dum,*ax,*bx,dum)
         out[i][k] +=in[i][j]*b[j][k];        SHFT(dum,*fb,*fa,dum)
         }
   return out;    *cx=(*bx)+GOLD*(*bx-*ax);
 }    *fc=(*func)(*cx);
     while (*fb > *fc) {
       r=(*bx-*ax)*(*fb-*fc);
 /************* Higher Matrix Product ***************/      q=(*bx-*cx)*(*fb-*fa);
       u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));
 {      ulim=(*bx)+GLIMIT*(*cx-*bx);
   /* Computes the transition matrix starting at age 'age' over       if ((*bx-u)*(u-*cx) > 0.0) {
      'nhstepm*hstepm*stepm' months (i.e. until        fu=(*func)(u);
      age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying       } else if ((*cx-u)*(u-ulim) > 0.0) {
      nhstepm*hstepm matrices.         fu=(*func)(u);
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step         if (fu < *fc) {
      (typically every 2 years instead of every month which is too big           SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))
      for the memory).            SHFT(*fb,*fc,fu,(*func)(u))
      Model is determined by parameters x and covariates have to be             }
      included manually here.       } else if ((u-ulim)*(ulim-*cx) >= 0.0) {
         u=ulim;
      */        fu=(*func)(u);
       } else {
   int i, j, d, h, k;        u=(*cx)+GOLD*(*cx-*bx);
   double **out, cov[NCOVMAX];        fu=(*func)(u);
   double **newm;      }
       SHFT(*ax,*bx,*cx,u)
   /* Hstepm could be zero and should return the unit matrix */        SHFT(*fa,*fb,*fc,fu)
   for (i=1;i<=nlstate+ndeath;i++)        }
     for (j=1;j<=nlstate+ndeath;j++){  }
       oldm[i][j]=(i==j ? 1.0 : 0.0);  
       po[i][j][0]=(i==j ? 1.0 : 0.0);  /*************** linmin ************************/
     }  
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */  int ncom;
   for(h=1; h <=nhstepm; h++){  double *pcom,*xicom;
     for(d=1; d <=hstepm; d++){  double (*nrfunc)(double []);
       newm=savm;   
       /* Covariates have to be included here again */  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))
       cov[1]=1.;  {
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;    double brent(double ax, double bx, double cx,
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];                 double (*f)(double), double tol, double *xmin);
       for (k=1; k<=cptcovage;k++)    double f1dim(double x);
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,
       for (k=1; k<=cptcovprod;k++)                double *fc, double (*func)(double));
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    int j;
     double xx,xmin,bx,ax;
     double fx,fb,fa;
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/   
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/    ncom=n;
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,     pcom=vector(1,n);
                    pmij(pmmij,cov,ncovmodel,x,nlstate));    xicom=vector(1,n);
       savm=oldm;    nrfunc=func;
       oldm=newm;    for (j=1;j<=n;j++) {
     }      pcom[j]=p[j];
     for(i=1; i<=nlstate+ndeath; i++)      xicom[j]=xi[j];
       for(j=1;j<=nlstate+ndeath;j++) {    }
         po[i][j][h]=newm[i][j];    ax=0.0;
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);    xx=1.0;
          */    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);
       }    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);
   } /* end h */  #ifdef DEBUG
   return po;    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
 }    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   #endif
     for (j=1;j<=n;j++) {
 /*************** log-likelihood *************/      xi[j] *= xmin;
 double func( double *x)      p[j] += xi[j];
 {    }
   int i, ii, j, k, mi, d, kk;    free_vector(xicom,1,n);
   double l, ll[NLSTATEMAX], cov[NCOVMAX];    free_vector(pcom,1,n);
   double **out;  }
   double sw; /* Sum of weights */  
   double lli; /* Individual log likelihood */  char *asc_diff_time(long time_sec, char ascdiff[])
   int s1, s2;  {
   double bbh, survp;    long sec_left, days, hours, minutes;
   long ipmx;    days = (time_sec) / (60*60*24);
   /*extern weight */    sec_left = (time_sec) % (60*60*24);
   /* We are differentiating ll according to initial status */    hours = (sec_left) / (60*60) ;
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/    sec_left = (sec_left) %(60*60);
   /*for(i=1;i<imx;i++)     minutes = (sec_left) /60;
     printf(" %d\n",s[4][i]);    sec_left = (sec_left) % (60);
   */    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
   cov[1]=1.;    return ascdiff;
   }
   for(k=1; k<=nlstate; k++) ll[k]=0.;  
   /*************** powell ************************/
   if(mle==1){  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){              double (*func)(double []))
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];  {
       for(mi=1; mi<= wav[i]-1; mi++){    void linmin(double p[], double xi[], int n, double *fret,
         for (ii=1;ii<=nlstate+ndeath;ii++)                double (*func)(double []));
           for (j=1;j<=nlstate+ndeath;j++){    int i,ibig,j;
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);    double del,t,*pt,*ptt,*xit;
             savm[ii][j]=(ii==j ? 1.0 : 0.0);    double fp,fptt;
           }    double *xits;
         for(d=0; d<dh[mi][i]; d++){    int niterf, itmp;
           newm=savm;  
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;    pt=vector(1,n);
           for (kk=1; kk<=cptcovage;kk++) {    ptt=vector(1,n);
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];    xit=vector(1,n);
           }    xits=vector(1,n);
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,    *fret=(*func)(p);
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));    for (j=1;j<=n;j++) pt[j]=p[j];
           savm=oldm;    for (*iter=1;;++(*iter)) {
           oldm=newm;      fp=(*fret);
         } /* end mult */      ibig=0;
             del=0.0;
         /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */      last_time=curr_time;
         /* But now since version 0.9 we anticipate for bias and large stepm.      (void) gettimeofday(&curr_time,&tzp);
          * If stepm is larger than one month (smallest stepm) and if the exact delay       printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
          * (in months) between two waves is not a multiple of stepm, we rounded to       fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec); fflush(ficlog);
          * the nearest (and in case of equal distance, to the lowest) interval but now  /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec); */
          * we keep into memory the bias bh[mi][i] and also the previous matrix product     for (i=1;i<=n;i++) {
          * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the        printf(" %d %.12f",i, p[i]);
          * probability in order to take into account the bias as a fraction of the way        fprintf(ficlog," %d %.12lf",i, p[i]);
          * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies        fprintf(ficrespow," %.12lf", p[i]);
          * -stepm/2 to stepm/2 .      }
          * For stepm=1 the results are the same as for previous versions of Imach.      printf("\n");
          * For stepm > 1 the results are less biased than in previous versions.       fprintf(ficlog,"\n");
          */      fprintf(ficrespow,"\n");fflush(ficrespow);
         s1=s[mw[mi][i]][i];      if(*iter <=3){
         s2=s[mw[mi+1][i]][i];        tm = *localtime(&curr_time.tv_sec);
         bbh=(double)bh[mi][i]/(double)stepm;         strcpy(strcurr,asctime(&tm));
         /* bias is positive if real duration  /*       asctime_r(&tm,strcurr); */
          * is higher than the multiple of stepm and negative otherwise.        forecast_time=curr_time;
          */        itmp = strlen(strcurr);
         /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
         if( s2 > nlstate){           strcurr[itmp-1]='\0';
           /* i.e. if s2 is a death state and if the date of death is known then the contribution        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
              to the likelihood is the probability to die between last step unit time and current         fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
              step unit time, which is also the differences between probability to die before dh         for(niterf=10;niterf<=30;niterf+=10){
              and probability to die before dh-stepm .           forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
              In version up to 0.92 likelihood was computed          tmf = *localtime(&forecast_time.tv_sec);
         as if date of death was unknown. Death was treated as any other  /*      asctime_r(&tmf,strfor); */
         health state: the date of the interview describes the actual state          strcpy(strfor,asctime(&tmf));
         and not the date of a change in health state. The former idea was          itmp = strlen(strfor);
         to consider that at each interview the state was recorded          if(strfor[itmp-1]=='\n')
         (healthy, disable or death) and IMaCh was corrected; but when we          strfor[itmp-1]='\0';
         introduced the exact date of death then we should have modified          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
         the contribution of an exact death to the likelihood. This new          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
         contribution is smaller and very dependent of the step unit        }
         stepm. It is no more the probability to die between last interview      }
         and month of death but the probability to survive from last      for (i=1;i<=n;i++) {
         interview up to one month before death multiplied by the        for (j=1;j<=n;j++) xit[j]=xi[j][i];
         probability to die within a month. Thanks to Chris        fptt=(*fret);
         Jackson for correcting this bug.  Former versions increased  #ifdef DEBUG
         mortality artificially. The bad side is that we add another loop        printf("fret=%lf \n",*fret);
         which slows down the processing. The difference can be up to 10%        fprintf(ficlog,"fret=%lf \n",*fret);
         lower mortality.  #endif
           */        printf("%d",i);fflush(stdout);
           lli=log(out[s1][s2] - savm[s1][s2]);        fprintf(ficlog,"%d",i);fflush(ficlog);
         }else{        linmin(p,xit,n,fret,func);
           lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */        if (fabs(fptt-(*fret)) > del) {
           /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */          del=fabs(fptt-(*fret));
         }           ibig=i;
         /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/        }
         /*if(lli ==000.0)*/  #ifdef DEBUG
         /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */        printf("%d %.12e",i,(*fret));
         ipmx +=1;        fprintf(ficlog,"%d %.12e",i,(*fret));
         sw += weight[i];        for (j=1;j<=n;j++) {
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
       } /* end of wave */          printf(" x(%d)=%.12e",j,xit[j]);
     } /* end of individual */          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
   }  else if(mle==2){        }
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){        for(j=1;j<=n;j++) {
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];          printf(" p=%.12e",p[j]);
       for(mi=1; mi<= wav[i]-1; mi++){          fprintf(ficlog," p=%.12e",p[j]);
         for (ii=1;ii<=nlstate+ndeath;ii++)        }
           for (j=1;j<=nlstate+ndeath;j++){        printf("\n");
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);        fprintf(ficlog,"\n");
             savm[ii][j]=(ii==j ? 1.0 : 0.0);  #endif
           }      }
         for(d=0; d<=dh[mi][i]; d++){      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
           newm=savm;  #ifdef DEBUG
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;        int k[2],l;
           for (kk=1; kk<=cptcovage;kk++) {        k[0]=1;
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];        k[1]=-1;
           }        printf("Max: %.12e",(*func)(p));
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,        fprintf(ficlog,"Max: %.12e",(*func)(p));
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));        for (j=1;j<=n;j++) {
           savm=oldm;          printf(" %.12e",p[j]);
           oldm=newm;          fprintf(ficlog," %.12e",p[j]);
         } /* end mult */        }
               printf("\n");
         /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */        fprintf(ficlog,"\n");
         /* But now since version 0.9 we anticipate for bias and large stepm.        for(l=0;l<=1;l++) {
          * If stepm is larger than one month (smallest stepm) and if the exact delay           for (j=1;j<=n;j++) {
          * (in months) between two waves is not a multiple of stepm, we rounded to             ptt[j]=p[j]+(p[j]-pt[j])*k[l];
          * the nearest (and in case of equal distance, to the lowest) interval but now            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
          * we keep into memory the bias bh[mi][i] and also the previous matrix product            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
          * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the          }
          * probability in order to take into account the bias as a fraction of the way          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
          * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
          * -stepm/2 to stepm/2 .        }
          * For stepm=1 the results are the same as for previous versions of Imach.  #endif
          * For stepm > 1 the results are less biased than in previous versions.   
          */  
         s1=s[mw[mi][i]][i];        free_vector(xit,1,n);
         s2=s[mw[mi+1][i]][i];        free_vector(xits,1,n);
         bbh=(double)bh[mi][i]/(double)stepm;         free_vector(ptt,1,n);
         /* bias is positive if real duration        free_vector(pt,1,n);
          * is higher than the multiple of stepm and negative otherwise.        return;
          */      }
         lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");
         /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/      for (j=1;j<=n;j++) {
         /*lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.-+bh)*out[s1][s2])); */ /* exponential interpolation */        ptt[j]=2.0*p[j]-pt[j];
         /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/        xit[j]=p[j]-pt[j];
         /*if(lli ==000.0)*/        pt[j]=p[j];
         /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */      }
         ipmx +=1;      fptt=(*func)(ptt);
         sw += weight[i];      if (fptt < fp) {
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);
       } /* end of wave */        if (t < 0.0) {
     } /* end of individual */          linmin(p,xit,n,fret,func);
   }  else if(mle==3){  /* exponential inter-extrapolation */          for (j=1;j<=n;j++) {
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){            xi[j][ibig]=xi[j][n];
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];            xi[j][n]=xit[j];
       for(mi=1; mi<= wav[i]-1; mi++){          }
         for (ii=1;ii<=nlstate+ndeath;ii++)  #ifdef DEBUG
           for (j=1;j<=nlstate+ndeath;j++){          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
             savm[ii][j]=(ii==j ? 1.0 : 0.0);          for(j=1;j<=n;j++){
           }            printf(" %.12e",xit[j]);
         for(d=0; d<dh[mi][i]; d++){            fprintf(ficlog," %.12e",xit[j]);
           newm=savm;          }
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;          printf("\n");
           for (kk=1; kk<=cptcovage;kk++) {          fprintf(ficlog,"\n");
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];  #endif
           }        }
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,      }
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));    }
           savm=oldm;  }
           oldm=newm;  
         } /* end mult */  /**** Prevalence limit (stable or period prevalence)  ****************/
         
         /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
         /* But now since version 0.9 we anticipate for bias and large stepm.  {
          * If stepm is larger than one month (smallest stepm) and if the exact delay     /* Computes the prevalence limit in each live state at age x by left multiplying the unit
          * (in months) between two waves is not a multiple of stepm, we rounded to        matrix by transitions matrix until convergence is reached */
          * the nearest (and in case of equal distance, to the lowest) interval but now  
          * we keep into memory the bias bh[mi][i] and also the previous matrix product    int i, ii,j,k;
          * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the    double min, max, maxmin, maxmax,sumnew=0.;
          * probability in order to take into account the bias as a fraction of the way    double **matprod2();
          * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies    double **out, cov[NCOVMAX], **pmij();
          * -stepm/2 to stepm/2 .    double **newm;
          * For stepm=1 the results are the same as for previous versions of Imach.    double agefin, delaymax=50 ; /* Max number of years to converge */
          * For stepm > 1 the results are less biased than in previous versions.   
          */    for (ii=1;ii<=nlstate+ndeath;ii++)
         s1=s[mw[mi][i]][i];      for (j=1;j<=nlstate+ndeath;j++){
         s2=s[mw[mi+1][i]][i];        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         bbh=(double)bh[mi][i]/(double)stepm;       }
         /* bias is positive if real duration  
          * is higher than the multiple of stepm and negative otherwise.     cov[1]=1.;
          */   
         /* lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); */ /* linear interpolation */   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
         lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
         /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/      newm=savm;
         /*if(lli ==000.0)*/      /* Covariates have to be included here again */
         /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */       cov[2]=agefin;
         ipmx +=1;   
         sw += weight[i];        for (k=1; k<=cptcovn;k++) {
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
       } /* end of wave */          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
     } /* end of individual */        }
   }else{  /* ml=4 no inter-extrapolation */        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){        for (k=1; k<=cptcovprod;k++)
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
       for(mi=1; mi<= wav[i]-1; mi++){  
         for (ii=1;ii<=nlstate+ndeath;ii++)        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
           for (j=1;j<=nlstate+ndeath;j++){        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
             savm[ii][j]=(ii==j ? 1.0 : 0.0);      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
           }  
         for(d=0; d<dh[mi][i]; d++){      savm=oldm;
           newm=savm;      oldm=newm;
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;      maxmax=0.;
           for (kk=1; kk<=cptcovage;kk++) {      for(j=1;j<=nlstate;j++){
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];        min=1.;
           }        max=0.;
                 for(i=1; i<=nlstate; i++) {
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,          sumnew=0;
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
           savm=oldm;          prlim[i][j]= newm[i][j]/(1-sumnew);
           oldm=newm;          max=FMAX(max,prlim[i][j]);
         } /* end mult */          min=FMIN(min,prlim[i][j]);
               }
         lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */        maxmin=max-min;
         ipmx +=1;        maxmax=FMAX(maxmax,maxmin);
         sw += weight[i];      }
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;      if(maxmax < ftolpl){
       } /* end of wave */        return prlim;
     } /* end of individual */      }
   } /* End of if */    }
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];  }
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */  
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */  /*************** transition probabilities ***************/
   return -l;  
 }  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
   {
     double s1, s2;
 /*********** Maximum Likelihood Estimation ***************/    /*double t34;*/
     int i,j,j1, nc, ii, jj;
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))  
 {      for(i=1; i<= nlstate; i++){
   int i,j, iter;        for(j=1; j<i;j++){
   double **xi;          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
   double fret;            /*s2 += param[i][j][nc]*cov[nc];*/
   char filerespow[FILENAMELENGTH];            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
   xi=matrix(1,npar,1,npar);  /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
   for (i=1;i<=npar;i++)          }
     for (j=1;j<=npar;j++)          ps[i][j]=s2;
       xi[i][j]=(i==j ? 1.0 : 0.0);  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
   printf("Powell\n");  fprintf(ficlog,"Powell\n");        }
   strcpy(filerespow,"pow");         for(j=i+1; j<=nlstate+ndeath;j++){
   strcat(filerespow,fileres);          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
   if((ficrespow=fopen(filerespow,"w"))==NULL) {            s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
     printf("Problem with resultfile: %s\n", filerespow);  /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
     fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);          }
   }          ps[i][j]=s2;
   fprintf(ficrespow,"# Powell\n# iter -2*LL");        }
   for (i=1;i<=nlstate;i++)      }
     for(j=1;j<=nlstate+ndeath;j++)      /*ps[3][2]=1;*/
       if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);     
   fprintf(ficrespow,"\n");      for(i=1; i<= nlstate; i++){
   powell(p,xi,npar,ftol,&iter,&fret,func);        s1=0;
         for(j=1; j<i; j++)
   fclose(ficrespow);          s1+=exp(ps[i][j]);
   printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));        for(j=i+1; j<=nlstate+ndeath; j++)
   fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));          s1+=exp(ps[i][j]);
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));        ps[i][i]=1./(s1+1.);
         for(j=1; j<i; j++)
 }          ps[i][j]= exp(ps[i][j])*ps[i][i];
         for(j=i+1; j<=nlstate+ndeath; j++)
 /**** Computes Hessian and covariance matrix ***/          ps[i][j]= exp(ps[i][j])*ps[i][i];
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
 {      } /* end i */
   double  **a,**y,*x,pd;     
   double **hess;      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
   int i, j,jk;        for(jj=1; jj<= nlstate+ndeath; jj++){
   int *indx;          ps[ii][jj]=0;
           ps[ii][ii]=1;
   double hessii(double p[], double delta, int theta, double delti[]);        }
   double hessij(double p[], double delti[], int i, int j);      }
   void lubksb(double **a, int npar, int *indx, double b[]) ;     
   void ludcmp(double **a, int npar, int *indx, double *d) ;  
   /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
   hess=matrix(1,npar,1,npar);  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
   /*         printf("ddd %lf ",ps[ii][jj]); */
   printf("\nCalculation of the hessian matrix. Wait...\n");  /*       } */
   fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");  /*       printf("\n "); */
   for (i=1;i<=npar;i++){  /*        } */
     printf("%d",i);fflush(stdout);  /*        printf("\n ");printf("%lf ",cov[2]); */
     fprintf(ficlog,"%d",i);fflush(ficlog);         /*
     hess[i][i]=hessii(p,ftolhess,i,delti);        for(i=1; i<= npar; i++) printf("%f ",x[i]);
     /*printf(" %f ",p[i]);*/        goto end;*/
     /*printf(" %lf ",hess[i][i]);*/      return ps;
   }  }
     
   for (i=1;i<=npar;i++) {  /**************** Product of 2 matrices ******************/
     for (j=1;j<=npar;j++)  {  
       if (j>i) {   double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
         printf(".%d%d",i,j);fflush(stdout);  {
         fprintf(ficlog,".%d%d",i,j);fflush(ficlog);    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
         hess[i][j]=hessij(p,delti,i,j);       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
         hess[j][i]=hess[i][j];        /* in, b, out are matrice of pointers which should have been initialized
         /*printf(" %lf ",hess[i][j]);*/       before: only the contents of out is modified. The function returns
       }       a pointer to pointers identical to out */
     }    long i, j, k;
   }    for(i=nrl; i<= nrh; i++)
   printf("\n");      for(k=ncolol; k<=ncoloh; k++)
   fprintf(ficlog,"\n");        for(j=ncl,out[i][k]=0.; j<=nch; j++)
           out[i][k] +=in[i][j]*b[j][k];
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");  
   fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");    return out;
     }
   a=matrix(1,npar,1,npar);  
   y=matrix(1,npar,1,npar);  
   x=vector(1,npar);  /************* Higher Matrix Product ***************/
   indx=ivector(1,npar);  
   for (i=1;i<=npar;i++)  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];  {
   ludcmp(a,npar,indx,&pd);    /* Computes the transition matrix starting at age 'age' over
        'nhstepm*hstepm*stepm' months (i.e. until
   for (j=1;j<=npar;j++) {       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying
     for (i=1;i<=npar;i++) x[i]=0;       nhstepm*hstepm matrices.
     x[j]=1;       Output is stored in matrix po[i][j][h] for h every 'hstepm' step
     lubksb(a,npar,indx,x);       (typically every 2 years instead of every month which is too big
     for (i=1;i<=npar;i++){        for the memory).
       matcov[i][j]=x[i];       Model is determined by parameters x and covariates have to be
     }       included manually here.
   }  
        */
   printf("\n#Hessian matrix#\n");  
   fprintf(ficlog,"\n#Hessian matrix#\n");    int i, j, d, h, k;
   for (i=1;i<=npar;i++) {     double **out, cov[NCOVMAX];
     for (j=1;j<=npar;j++) {     double **newm;
       printf("%.3e ",hess[i][j]);  
       fprintf(ficlog,"%.3e ",hess[i][j]);    /* Hstepm could be zero and should return the unit matrix */
     }    for (i=1;i<=nlstate+ndeath;i++)
     printf("\n");      for (j=1;j<=nlstate+ndeath;j++){
     fprintf(ficlog,"\n");        oldm[i][j]=(i==j ? 1.0 : 0.0);
   }        po[i][j][0]=(i==j ? 1.0 : 0.0);
       }
   /* Recompute Inverse */    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   for (i=1;i<=npar;i++)    for(h=1; h <=nhstepm; h++){
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];      for(d=1; d <=hstepm; d++){
   ludcmp(a,npar,indx,&pd);        newm=savm;
         /* Covariates have to be included here again */
   /*  printf("\n#Hessian matrix recomputed#\n");        cov[1]=1.;
         cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
   for (j=1;j<=npar;j++) {        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
     for (i=1;i<=npar;i++) x[i]=0;        for (k=1; k<=cptcovage;k++)
     x[j]=1;          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
     lubksb(a,npar,indx,x);        for (k=1; k<=cptcovprod;k++)
     for (i=1;i<=npar;i++){           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
       y[i][j]=x[i];  
       printf("%.3e ",y[i][j]);  
       fprintf(ficlog,"%.3e ",y[i][j]);        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
     }        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
     printf("\n");        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,
     fprintf(ficlog,"\n");                     pmij(pmmij,cov,ncovmodel,x,nlstate));
   }        savm=oldm;
   */        oldm=newm;
       }
   free_matrix(a,1,npar,1,npar);      for(i=1; i<=nlstate+ndeath; i++)
   free_matrix(y,1,npar,1,npar);        for(j=1;j<=nlstate+ndeath;j++) {
   free_vector(x,1,npar);          po[i][j][h]=newm[i][j];
   free_ivector(indx,1,npar);          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
   free_matrix(hess,1,npar,1,npar);           */
         }
     } /* end h */
 }    return po;
   }
 /*************** hessian matrix ****************/  
 double hessii( double x[], double delta, int theta, double delti[])  
 {  /*************** log-likelihood *************/
   int i;  double func( double *x)
   int l=1, lmax=20;  {
   double k1,k2;    int i, ii, j, k, mi, d, kk;
   double p2[NPARMAX+1];    double l, ll[NLSTATEMAX], cov[NCOVMAX];
   double res;    double **out;
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;    double sw; /* Sum of weights */
   double fx;    double lli; /* Individual log likelihood */
   int k=0,kmax=10;    int s1, s2;
   double l1;    double bbh, survp;
     long ipmx;
   fx=func(x);    /*extern weight */
   for (i=1;i<=npar;i++) p2[i]=x[i];    /* We are differentiating ll according to initial status */
   for(l=0 ; l <=lmax; l++){    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     l1=pow(10,l);    /*for(i=1;i<imx;i++)
     delts=delt;      printf(" %d\n",s[4][i]);
     for(k=1 ; k <kmax; k=k+1){    */
       delt = delta*(l1*k);    cov[1]=1.;
       p2[theta]=x[theta] +delt;  
       k1=func(p2)-fx;    for(k=1; k<=nlstate; k++) ll[k]=0.;
       p2[theta]=x[theta]-delt;  
       k2=func(p2)-fx;    if(mle==1){
       /*res= (k1-2.0*fx+k2)/delt/delt; */      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
               for(mi=1; mi<= wav[i]-1; mi++){
 #ifdef DEBUG          for (ii=1;ii<=nlstate+ndeath;ii++)
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);            for (j=1;j<=nlstate+ndeath;j++){
       fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 #endif              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */            }
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){          for(d=0; d<dh[mi][i]; d++){
         k=kmax;            newm=savm;
       }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */            for (kk=1; kk<=cptcovage;kk++) {
         k=kmax; l=lmax*10.;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       }            }
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         delts=delt;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       }            savm=oldm;
     }            oldm=newm;
   }          } /* end mult */
   delti[theta]=delts;       
   return res;           /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
             /* But now since version 0.9 we anticipate for bias at large stepm.
 }           * If stepm is larger than one month (smallest stepm) and if the exact delay
            * (in months) between two waves is not a multiple of stepm, we rounded to
 double hessij( double x[], double delti[], int thetai,int thetaj)           * the nearest (and in case of equal distance, to the lowest) interval but now
 {           * we keep into memory the bias bh[mi][i] and also the previous matrix product
   int i;           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
   int l=1, l1, lmax=20;           * probability in order to take into account the bias as a fraction of the way
   double k1,k2,k3,k4,res,fx;           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
   double p2[NPARMAX+1];           * -stepm/2 to stepm/2 .
   int k;           * For stepm=1 the results are the same as for previous versions of Imach.
            * For stepm > 1 the results are less biased than in previous versions.
   fx=func(x);           */
   for (k=1; k<=2; k++) {          s1=s[mw[mi][i]][i];
     for (i=1;i<=npar;i++) p2[i]=x[i];          s2=s[mw[mi+1][i]][i];
     p2[thetai]=x[thetai]+delti[thetai]/k;          bbh=(double)bh[mi][i]/(double)stepm;
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;          /* bias bh is positive if real duration
     k1=func(p2)-fx;           * is higher than the multiple of stepm and negative otherwise.
              */
     p2[thetai]=x[thetai]+delti[thetai]/k;          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;          if( s2 > nlstate){
     k2=func(p2)-fx;            /* i.e. if s2 is a death state and if the date of death is known
                  then the contribution to the likelihood is the probability to
     p2[thetai]=x[thetai]-delti[thetai]/k;               die between last step unit time and current  step unit time,
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;               which is also equal to probability to die before dh
     k3=func(p2)-fx;               minus probability to die before dh-stepm .
                  In version up to 0.92 likelihood was computed
     p2[thetai]=x[thetai]-delti[thetai]/k;          as if date of death was unknown. Death was treated as any other
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;          health state: the date of the interview describes the actual state
     k4=func(p2)-fx;          and not the date of a change in health state. The former idea was
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */          to consider that at each interview the state was recorded
 #ifdef DEBUG          (healthy, disable or death) and IMaCh was corrected; but when we
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);          introduced the exact date of death then we should have modified
     fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);          the contribution of an exact death to the likelihood. This new
 #endif          contribution is smaller and very dependent of the step unit
   }          stepm. It is no more the probability to die between last interview
   return res;          and month of death but the probability to survive from last
 }          interview up to one month before death multiplied by the
           probability to die within a month. Thanks to Chris
 /************** Inverse of matrix **************/          Jackson for correcting this bug.  Former versions increased
 void ludcmp(double **a, int n, int *indx, double *d)           mortality artificially. The bad side is that we add another loop
 {           which slows down the processing. The difference can be up to 10%
   int i,imax,j,k;           lower mortality.
   double big,dum,sum,temp;             */
   double *vv;             lli=log(out[s1][s2] - savm[s1][s2]);
    
   vv=vector(1,n);   
   *d=1.0;           } else if  (s2==-2) {
   for (i=1;i<=n;i++) {             for (j=1,survp=0. ; j<=nlstate; j++)
     big=0.0;               survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
     for (j=1;j<=n;j++)             /*survp += out[s1][j]; */
       if ((temp=fabs(a[i][j])) > big) big=temp;             lli= log(survp);
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");           }
     vv[i]=1.0/big;          
   }           else if  (s2==-4) {
   for (j=1;j<=n;j++) {             for (j=3,survp=0. ; j<=nlstate; j++)  
     for (i=1;i<j;i++) {               survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
       sum=a[i][j];             lli= log(survp);
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];           }
       a[i][j]=sum;   
     }           else if  (s2==-5) {
     big=0.0;             for (j=1,survp=0. ; j<=2; j++)  
     for (i=j;i<=n;i++) {               survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
       sum=a[i][j];             lli= log(survp);
       for (k=1;k<j;k++)           }
         sum -= a[i][k]*a[k][j];          
       a[i][j]=sum;           else{
       if ( (dum=vv[i]*fabs(sum)) >= big) {             lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
         big=dum;             /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
         imax=i;           }
       }           /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
     }           /*if(lli ==000.0)*/
     if (j != imax) {           /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
       for (k=1;k<=n;k++) {           ipmx +=1;
         dum=a[imax][k];           sw += weight[i];
         a[imax][k]=a[j][k];           ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         a[j][k]=dum;         } /* end of wave */
       }       } /* end of individual */
       *d = -(*d);     }  else if(mle==2){
       vv[imax]=vv[j];       for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     }         for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     indx[j]=imax;         for(mi=1; mi<= wav[i]-1; mi++){
     if (a[j][j] == 0.0) a[j][j]=TINY;           for (ii=1;ii<=nlstate+ndeath;ii++)
     if (j != n) {             for (j=1;j<=nlstate+ndeath;j++){
       dum=1.0/(a[j][j]);               oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       for (i=j+1;i<=n;i++) a[i][j] *= dum;               savm[ii][j]=(ii==j ? 1.0 : 0.0);
     }             }
   }           for(d=0; d<=dh[mi][i]; d++){
   free_vector(vv,1,n);  /* Doesn't work */            newm=savm;
 ;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 }             for (kk=1; kk<=cptcovage;kk++) {
               cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 void lubksb(double **a, int n, int *indx, double b[])             }
 {             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   int i,ii=0,ip,j;                          1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   double sum;             savm=oldm;
              oldm=newm;
   for (i=1;i<=n;i++) {           } /* end mult */
     ip=indx[i];        
     sum=b[ip];           s1=s[mw[mi][i]][i];
     b[ip]=b[i];           s2=s[mw[mi+1][i]][i];
     if (ii)           bbh=(double)bh[mi][i]/(double)stepm;
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];           lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
     else if (sum) ii=i;           ipmx +=1;
     b[i]=sum;           sw += weight[i];
   }           ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   for (i=n;i>=1;i--) {         } /* end of wave */
     sum=b[i];       } /* end of individual */
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];     }  else if(mle==3){  /* exponential inter-extrapolation */
     b[i]=sum/a[i][i];       for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   }         for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 }         for(mi=1; mi<= wav[i]-1; mi++){
           for (ii=1;ii<=nlstate+ndeath;ii++)
 /************ Frequencies ********************/            for (j=1;j<=nlstate+ndeath;j++){
 void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 {  /* Some frequencies */              savm[ii][j]=(ii==j ? 1.0 : 0.0);
               }
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;          for(d=0; d<dh[mi][i]; d++){
   int first;            newm=savm;
   double ***freq; /* Frequencies */            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   double *pp, **prop;            for (kk=1; kk<=cptcovage;kk++) {
   double pos,posprop, k2, dateintsum=0,k2cpt=0;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   FILE *ficresp;            }
   char fileresp[FILENAMELENGTH];            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                            1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   pp=vector(1,nlstate);            savm=oldm;
   prop=matrix(1,nlstate,iagemin,iagemax+3);            oldm=newm;
   strcpy(fileresp,"p");          } /* end mult */
   strcat(fileresp,fileres);       
   if((ficresp=fopen(fileresp,"w"))==NULL) {          s1=s[mw[mi][i]][i];
     printf("Problem with prevalence resultfile: %s\n", fileresp);          s2=s[mw[mi+1][i]][i];
     fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);          bbh=(double)bh[mi][i]/(double)stepm;
     exit(0);          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   }          ipmx +=1;
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);          sw += weight[i];
   j1=0;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           } /* end of wave */
   j=cptcoveff;      } /* end of individual */
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    }else if (mle==4){  /* ml=4 no inter-extrapolation */
       for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   first=1;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(mi=1; mi<= wav[i]-1; mi++){
   for(k1=1; k1<=j;k1++){          for (ii=1;ii<=nlstate+ndeath;ii++)
     for(i1=1; i1<=ncodemax[k1];i1++){            for (j=1;j<=nlstate+ndeath;j++){
       j1++;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         scanf("%d", i);*/            }
       for (i=-1; i<=nlstate+ndeath; i++)            for(d=0; d<dh[mi][i]; d++){
         for (jk=-1; jk<=nlstate+ndeath; jk++)              newm=savm;
           for(m=iagemin; m <= iagemax+3; m++)            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             freq[i][jk][m]=0;            for (kk=1; kk<=cptcovage;kk++) {
               cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     for (i=1; i<=nlstate; i++)              }
       for(m=iagemin; m <= iagemax+3; m++)         
         prop[i][m]=0;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                                1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       dateintsum=0;            savm=oldm;
       k2cpt=0;            oldm=newm;
       for (i=1; i<=imx; i++) {          } /* end mult */
         bool=1;       
         if  (cptcovn>0) {          s1=s[mw[mi][i]][i];
           for (z1=1; z1<=cptcoveff; z1++)           s2=s[mw[mi+1][i]][i];
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])           if( s2 > nlstate){
               bool=0;            lli=log(out[s1][s2] - savm[s1][s2]);
         }          }else{
         if (bool==1){            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
           for(m=firstpass; m<=lastpass; m++){          }
             k2=anint[m][i]+(mint[m][i]/12.);          ipmx +=1;
             if ((k2>=dateprev1) && (k2<=dateprev2)) {          sw += weight[i];
               if(agev[m][i]==0) agev[m][i]=iagemax+1;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
               if(agev[m][i]==1) agev[m][i]=iagemax+2;  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
               if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];        } /* end of wave */
               if (m<lastpass) {      } /* end of individual */
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
                 freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
               }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
                       for(mi=1; mi<= wav[i]-1; mi++){
               if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {          for (ii=1;ii<=nlstate+ndeath;ii++)
                 dateintsum=dateintsum+k2;            for (j=1;j<=nlstate+ndeath;j++){
                 k2cpt++;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
             }            }
           }          for(d=0; d<dh[mi][i]; d++){
         }            newm=savm;
       }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
                    for (kk=1; kk<=cptcovage;kk++) {
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             }
       if  (cptcovn>0) {         
         fprintf(ficresp, "\n#********** Variable ");             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         fprintf(ficresp, "**********\n#");            savm=oldm;
       }            oldm=newm;
       for(i=1; i<=nlstate;i++)           } /* end mult */
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);       
       fprintf(ficresp, "\n");          s1=s[mw[mi][i]][i];
                 s2=s[mw[mi+1][i]][i];
       for(i=iagemin; i <= iagemax+3; i++){          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
         if(i==iagemax+3){          ipmx +=1;
           fprintf(ficlog,"Total");          sw += weight[i];
         }else{          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           if(first==1){          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
             first=0;        } /* end of wave */
             printf("See log file for details...\n");      } /* end of individual */
           }    } /* End of if */
           fprintf(ficlog,"Age %d", i);    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
         }    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
         for(jk=1; jk <=nlstate ; jk++){    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)    return -l;
             pp[jk] += freq[jk][m][i];   }
         }  
         for(jk=1; jk <=nlstate ; jk++){  /*************** log-likelihood *************/
           for(m=-1, pos=0; m <=0 ; m++)  double funcone( double *x)
             pos += freq[jk][m][i];  {
           if(pp[jk]>=1.e-10){    /* Same as likeli but slower because of a lot of printf and if */
             if(first==1){    int i, ii, j, k, mi, d, kk;
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);    double l, ll[NLSTATEMAX], cov[NCOVMAX];
             }    double **out;
             fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);    double lli; /* Individual log likelihood */
           }else{    double llt;
             if(first==1)    int s1, s2;
               printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);    double bbh, survp;
             fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);    /*extern weight */
           }    /* We are differentiating ll according to initial status */
         }    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     /*for(i=1;i<imx;i++)
         for(jk=1; jk <=nlstate ; jk++){      printf(" %d\n",s[4][i]);
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)    */
             pp[jk] += freq[jk][m][i];    cov[1]=1.;
         }         
         for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){    for(k=1; k<=nlstate; k++) ll[k]=0.;
           pos += pp[jk];  
           posprop += prop[jk][i];    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         }      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(jk=1; jk <=nlstate ; jk++){      for(mi=1; mi<= wav[i]-1; mi++){
           if(pos>=1.e-5){        for (ii=1;ii<=nlstate+ndeath;ii++)
             if(first==1)          for (j=1;j<=nlstate+ndeath;j++){
               printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
             fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);            savm[ii][j]=(ii==j ? 1.0 : 0.0);
           }else{          }
             if(first==1)        for(d=0; d<dh[mi][i]; d++){
               printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);          newm=savm;
             fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           }          for (kk=1; kk<=cptcovage;kk++) {
           if( i <= iagemax){            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             if(pos>=1.e-5){          }
               fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
               probs[i][jk][j1]= pp[jk]/pos;                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/          savm=oldm;
             }          oldm=newm;
             else        } /* end mult */
               fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);       
           }        s1=s[mw[mi][i]][i];
         }        s2=s[mw[mi+1][i]][i];
                 bbh=(double)bh[mi][i]/(double)stepm;
         for(jk=-1; jk <=nlstate+ndeath; jk++)        /* bias is positive if real duration
           for(m=-1; m <=nlstate+ndeath; m++)         * is higher than the multiple of stepm and negative otherwise.
             if(freq[jk][m][i] !=0 ) {         */
             if(first==1)        if( s2 > nlstate && (mle <5) ){  /* Jackson */
               printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);          lli=log(out[s1][s2] - savm[s1][s2]);
               fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);        } else if  (s2==-2) {
             }          for (j=1,survp=0. ; j<=nlstate; j++)
         if(i <= iagemax)            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
           fprintf(ficresp,"\n");          lli= log(survp);
         if(first==1)        }else if (mle==1){
           printf("Others in log...\n");          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
         fprintf(ficlog,"\n");        } else if(mle==2){
       }          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
     }        } else if(mle==3){  /* exponential inter-extrapolation */
   }          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   dateintmean=dateintsum/k2cpt;         } else if (mle==4){  /* mle=4 no inter-extrapolation */
            lli=log(out[s1][s2]); /* Original formula */
   fclose(ficresp);        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);          lli=log(out[s1][s2]); /* Original formula */
   free_vector(pp,1,nlstate);        } /* End of if */
   free_matrix(prop,1,nlstate,iagemin, iagemax+3);        ipmx +=1;
   /* End of Freq */        sw += weight[i];
 }        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
 /************ Prevalence ********************/        if(globpr){
 void prevalence(double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)          fprintf(ficresilk,"%9d %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
 {     %11.6f %11.6f %11.6f ", \
   /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
      in each health status at the date of interview (if between dateprev1 and dateprev2).                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
      We still use firstpass and lastpass as another selection.          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
   */            llt +=ll[k]*gipmx/gsw;
              fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;          }
   double ***freq; /* Frequencies */          fprintf(ficresilk," %10.6f\n", -llt);
   double *pp, **prop;        }
   double pos,posprop;       } /* end of wave */
   double  y2; /* in fractional years */    } /* end of individual */
   int iagemin, iagemax;    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
     /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   iagemin= (int) agemin;    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   iagemax= (int) agemax;    if(globpr==0){ /* First time we count the contributions and weights */
   /*pp=vector(1,nlstate);*/      gipmx=ipmx;
   prop=matrix(1,nlstate,iagemin,iagemax+3);       gsw=sw;
   /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/    }
   j1=0;    return -l;
     }
   j=cptcoveff;  
   if (cptcovn<1) {j=1;ncodemax[1]=1;}  
     /*************** function likelione ***********/
   for(k1=1; k1<=j;k1++){  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
     for(i1=1; i1<=ncodemax[k1];i1++){  {
       j1++;    /* This routine should help understanding what is done with
              the selection of individuals/waves and
       for (i=1; i<=nlstate; i++)         to check the exact contribution to the likelihood.
         for(m=iagemin; m <= iagemax+3; m++)       Plotting could be done.
           prop[i][m]=0.0;     */
          int k;
       for (i=1; i<=imx; i++) { /* Each individual */  
         bool=1;    if(*globpri !=0){ /* Just counts and sums, no printings */
         if  (cptcovn>0) {      strcpy(fileresilk,"ilk");
           for (z1=1; z1<=cptcoveff; z1++)       strcat(fileresilk,fileres);
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])       if((ficresilk=fopen(fileresilk,"w"))==NULL) {
               bool=0;        printf("Problem with resultfile: %s\n", fileresilk);
         }         fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
         if (bool==1) {       }
           for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
             y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
             if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
               if(agev[m][i]==0) agev[m][i]=iagemax+1;      for(k=1; k<=nlstate; k++)
               if(agev[m][i]==1) agev[m][i]=iagemax+2;        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
               if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m);       fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
               if (s[m][i]>0 && s[m][i]<=nlstate) {     }
                 /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/  
                 prop[s[m][i]][(int)agev[m][i]] += weight[i];    *fretone=(*funcone)(p);
                 prop[s[m][i]][iagemax+3] += weight[i];     if(*globpri !=0){
               }       fclose(ficresilk);
             }      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
           } /* end selection of waves */      fflush(fichtm);
         }    }
       }    return;
       for(i=iagemin; i <= iagemax+3; i++){    }
           
         for(jk=1,posprop=0; jk <=nlstate ; jk++) {   
           posprop += prop[jk][i];   /*********** Maximum Likelihood Estimation ***************/
         }   
   void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
         for(jk=1; jk <=nlstate ; jk++){       {
           if( i <=  iagemax){     int i,j, iter;
             if(posprop>=1.e-5){     double **xi;
               probs[i][jk][j1]= prop[jk][i]/posprop;    double fret;
             }     double fretone; /* Only one call to likelihood */
           }     /*  char filerespow[FILENAMELENGTH];*/
         }/* end jk */     xi=matrix(1,npar,1,npar);
       }/* end i */     for (i=1;i<=npar;i++)
     } /* end i1 */      for (j=1;j<=npar;j++)
   } /* end k1 */        xi[i][j]=(i==j ? 1.0 : 0.0);
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
   /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/    strcpy(filerespow,"pow");
   /*free_vector(pp,1,nlstate);*/    strcat(filerespow,fileres);
   free_matrix(prop,1,nlstate, iagemin,iagemax+3);    if((ficrespow=fopen(filerespow,"w"))==NULL) {
 }  /* End of prevalence */      printf("Problem with resultfile: %s\n", filerespow);
       fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
 /************* Waves Concatenation ***************/    }
     fprintf(ficrespow,"# Powell\n# iter -2*LL");
 void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)    for (i=1;i<=nlstate;i++)
 {      for(j=1;j<=nlstate+ndeath;j++)
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
      Death is a valid wave (if date is known).    fprintf(ficrespow,"\n");
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i  
      dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]    powell(p,xi,npar,ftol,&iter,&fret,func);
      and mw[mi+1][i]. dh depends on stepm.  
      */    free_matrix(xi,1,npar,1,npar);
     fclose(ficrespow);
   int i, mi, m;    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
      double sum=0., jmean=0.;*/    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   int first;  
   int j, k=0,jk, ju, jl;  }
   double sum=0.;  
   first=0;  /**** Computes Hessian and covariance matrix ***/
   jmin=1e+5;  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
   jmax=-1;  {
   jmean=0.;    double  **a,**y,*x,pd;
   for(i=1; i<=imx; i++){    double **hess;
     mi=0;    int i, j,jk;
     m=firstpass;    int *indx;
     while(s[m][i] <= nlstate){  
       if(s[m][i]>=1)    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
         mw[++mi][i]=m;    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
       if(m >=lastpass)    void lubksb(double **a, int npar, int *indx, double b[]) ;
         break;    void ludcmp(double **a, int npar, int *indx, double *d) ;
       else    double gompertz(double p[]);
         m++;    hess=matrix(1,npar,1,npar);
     }/* end while */  
     if (s[m][i] > nlstate){    printf("\nCalculation of the hessian matrix. Wait...\n");
       mi++;     /* Death is another wave */    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
       /* if(mi==0)  never been interviewed correctly before death */    for (i=1;i<=npar;i++){
          /* Only death is a correct wave */      printf("%d",i);fflush(stdout);
       mw[mi][i]=m;      fprintf(ficlog,"%d",i);fflush(ficlog);
     }     
        hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
     wav[i]=mi;     
     if(mi==0){      /*  printf(" %f ",p[i]);
       if(first==0){          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
         printf("Warning, no any valid information for:%d line=%d and may be others, see log file\n",num[i],i);    }
         first=1;   
       }    for (i=1;i<=npar;i++) {
       if(first==1){      for (j=1;j<=npar;j++)  {
         fprintf(ficlog,"Warning, no any valid information for:%d line=%d\n",num[i],i);        if (j>i) {
       }          printf(".%d%d",i,j);fflush(stdout);
     } /* end mi==0 */          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
   }          hess[i][j]=hessij(p,delti,i,j,func,npar);
          
   for(i=1; i<=imx; i++){          hess[j][i]=hess[i][j];    
     for(mi=1; mi<wav[i];mi++){          /*printf(" %lf ",hess[i][j]);*/
       if (stepm <=0)        }
         dh[mi][i]=1;      }
       else{    }
         if (s[mw[mi+1][i]][i] > nlstate) {    printf("\n");
           if (agedc[i] < 2*AGESUP) {    fprintf(ficlog,"\n");
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);   
           if(j==0) j=1;  /* Survives at least one month after exam */    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
           k=k+1;    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
           if (j >= jmax) jmax=j;   
           if (j <= jmin) jmin=j;    a=matrix(1,npar,1,npar);
           sum=sum+j;    y=matrix(1,npar,1,npar);
           /*if (j<0) printf("j=%d num=%d \n",j,i); */    x=vector(1,npar);
           /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/    indx=ivector(1,npar);
           /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/    for (i=1;i<=npar;i++)
           }      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
         }    ludcmp(a,npar,indx,&pd);
         else{  
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));    for (j=1;j<=npar;j++) {
           /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/      for (i=1;i<=npar;i++) x[i]=0;
           k=k+1;      x[j]=1;
           if (j >= jmax) jmax=j;      lubksb(a,npar,indx,x);
           else if (j <= jmin)jmin=j;      for (i=1;i<=npar;i++){
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */        matcov[i][j]=x[i];
           /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/      }
           sum=sum+j;    }
         }  
         jk= j/stepm;    printf("\n#Hessian matrix#\n");
         jl= j -jk*stepm;    fprintf(ficlog,"\n#Hessian matrix#\n");
         ju= j -(jk+1)*stepm;    for (i=1;i<=npar;i++) {
         if(mle <=1){       for (j=1;j<=npar;j++) {
           if(jl==0){        printf("%.3e ",hess[i][j]);
             dh[mi][i]=jk;        fprintf(ficlog,"%.3e ",hess[i][j]);
             bh[mi][i]=0;      }
           }else{ /* We want a negative bias in order to only have interpolation ie      printf("\n");
                   * at the price of an extra matrix product in likelihood */      fprintf(ficlog,"\n");
             dh[mi][i]=jk+1;    }
             bh[mi][i]=ju;  
           }    /* Recompute Inverse */
         }else{    for (i=1;i<=npar;i++)
           if(jl <= -ju){      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
             dh[mi][i]=jk;    ludcmp(a,npar,indx,&pd);
             bh[mi][i]=jl;       /* bias is positive if real duration  
                                  * is higher than the multiple of stepm and negative otherwise.    /*  printf("\n#Hessian matrix recomputed#\n");
                                  */  
           }    for (j=1;j<=npar;j++) {
           else{      for (i=1;i<=npar;i++) x[i]=0;
             dh[mi][i]=jk+1;      x[j]=1;
             bh[mi][i]=ju;      lubksb(a,npar,indx,x);
           }      for (i=1;i<=npar;i++){
           if(dh[mi][i]==0){        y[i][j]=x[i];
             dh[mi][i]=1; /* At least one step */        printf("%.3e ",y[i][j]);
             bh[mi][i]=ju; /* At least one step */        fprintf(ficlog,"%.3e ",y[i][j]);
             /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/      }
           }      printf("\n");
         }      fprintf(ficlog,"\n");
       } /* end if mle */    }
     } /* end wave */    */
   }  
   jmean=sum/k;    free_matrix(a,1,npar,1,npar);
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);    free_matrix(y,1,npar,1,npar);
   fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);    free_vector(x,1,npar);
  }    free_ivector(indx,1,npar);
     free_matrix(hess,1,npar,1,npar);
 /*********** Tricode ****************************/  
 void tricode(int *Tvar, int **nbcode, int imx)  
 {  }
     
   int Ndum[20],ij=1, k, j, i, maxncov=19;  /*************** hessian matrix ****************/
   int cptcode=0;  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
   cptcoveff=0;   {
      int i;
   for (k=0; k<maxncov; k++) Ndum[k]=0;    int l=1, lmax=20;
   for (k=1; k<=7; k++) ncodemax[k]=0;    double k1,k2;
     double p2[NPARMAX+1];
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {    double res;
     for (i=1; i<=imx; i++) { /*reads the data file to get the maximum     double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
                                modality*/     double fx;
       ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/    int k=0,kmax=10;
       Ndum[ij]++; /*store the modality */    double l1;
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/  
       if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable     fx=func(x);
                                        Tvar[j]. If V=sex and male is 0 and     for (i=1;i<=npar;i++) p2[i]=x[i];
                                        female is 1, then  cptcode=1.*/    for(l=0 ; l <=lmax; l++){
     }      l1=pow(10,l);
       delts=delt;
     for (i=0; i<=cptcode; i++) {      for(k=1 ; k <kmax; k=k+1){
       if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */        delt = delta*(l1*k);
     }        p2[theta]=x[theta] +delt;
         k1=func(p2)-fx;
     ij=1;         p2[theta]=x[theta]-delt;
     for (i=1; i<=ncodemax[j]; i++) {        k2=func(p2)-fx;
       for (k=0; k<= maxncov; k++) {        /*res= (k1-2.0*fx+k2)/delt/delt; */
         if (Ndum[k] != 0) {        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
           nbcode[Tvar[j]][ij]=k;        
           /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */  #ifdef DEBUG
                   printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
           ij++;        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
         }  #endif
         if (ij > ncodemax[j]) break;         /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
       }          if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
     }           k=kmax;
   }          }
         else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
  for (k=0; k< maxncov; k++) Ndum[k]=0;          k=kmax; l=lmax*10.;
         }
  for (i=1; i<=ncovmodel-2; i++) {         else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){
    /* Listing of all covariables in staement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/          delts=delt;
    ij=Tvar[i];        }
    Ndum[ij]++;      }
  }    }
     delti[theta]=delts;
  ij=1;    return res;
  for (i=1; i<= maxncov; i++) {   
    if((Ndum[i]!=0) && (i<=ncovcol)){  }
      Tvaraff[ij]=i; /*For printing */  
      ij++;  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
    }  {
  }    int i;
      int l=1, l1, lmax=20;
  cptcoveff=ij-1; /*Number of simple covariates*/    double k1,k2,k3,k4,res,fx;
 }    double p2[NPARMAX+1];
     int k;
 /*********** Health Expectancies ****************/  
     fx=func(x);
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )    for (k=1; k<=2; k++) {
       for (i=1;i<=npar;i++) p2[i]=x[i];
 {      p2[thetai]=x[thetai]+delti[thetai]/k;
   /* Health expectancies */      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;      k1=func(p2)-fx;
   double age, agelim, hf;   
   double ***p3mat,***varhe;      p2[thetai]=x[thetai]+delti[thetai]/k;
   double **dnewm,**doldm;      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   double *xp;      k2=func(p2)-fx;
   double **gp, **gm;   
   double ***gradg, ***trgradg;      p2[thetai]=x[thetai]-delti[thetai]/k;
   int theta;      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
       k3=func(p2)-fx;
   varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);   
   xp=vector(1,npar);      p2[thetai]=x[thetai]-delti[thetai]/k;
   dnewm=matrix(1,nlstate*nlstate,1,npar);      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);      k4=func(p2)-fx;
         res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
   fprintf(ficreseij,"# Health expectancies\n");  #ifdef DEBUG
   fprintf(ficreseij,"# Age");      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   for(i=1; i<=nlstate;i++)      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
     for(j=1; j<=nlstate;j++)  #endif
       fprintf(ficreseij," %1d-%1d (SE)",i,j);    }
   fprintf(ficreseij,"\n");    return res;
   }
   if(estepm < stepm){  
     printf ("Problem %d lower than %d\n",estepm, stepm);  /************** Inverse of matrix **************/
   }  void ludcmp(double **a, int n, int *indx, double *d)
   else  hstepm=estepm;     {
   /* We compute the life expectancy from trapezoids spaced every estepm months    int i,imax,j,k;
    * This is mainly to measure the difference between two models: for example    double big,dum,sum,temp;
    * if stepm=24 months pijx are given only every 2 years and by summing them    double *vv;
    * we are calculating an estimate of the Life Expectancy assuming a linear    
    * progression in between and thus overestimating or underestimating according    vv=vector(1,n);
    * to the curvature of the survival function. If, for the same date, we     *d=1.0;
    * estimate the model with stepm=1 month, we can keep estepm to 24 months    for (i=1;i<=n;i++) {
    * to compare the new estimate of Life expectancy with the same linear       big=0.0;
    * hypothesis. A more precise result, taking into account a more precise      for (j=1;j<=n;j++)
    * curvature will be obtained if estepm is as small as stepm. */        if ((temp=fabs(a[i][j])) > big) big=temp;
       if (big == 0.0) nrerror("Singular matrix in routine ludcmp");
   /* For example we decided to compute the life expectancy with the smallest unit */      vv[i]=1.0/big;
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.     }
      nhstepm is the number of hstepm from age to agelim     for (j=1;j<=n;j++) {
      nstepm is the number of stepm from age to agelin.       for (i=1;i<j;i++) {
      Look at hpijx to understand the reason of that which relies in memory size        sum=a[i][j];
      and note for a fixed period like estepm months */        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the        a[i][j]=sum;
      survival function given by stepm (the optimization length). Unfortunately it      }
      means that if the survival funtion is printed only each two years of age and if      big=0.0;
      you sum them up and add 1 year (area under the trapezoids) you won't get the same       for (i=j;i<=n;i++) {
      results. So we changed our mind and took the option of the best precision.        sum=a[i][j];
   */        for (k=1;k<j;k++)
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */           sum -= a[i][k]*a[k][j];
         a[i][j]=sum;
   agelim=AGESUP;        if ( (dum=vv[i]*fabs(sum)) >= big) {
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */          big=dum;
     /* nhstepm age range expressed in number of stepm */          imax=i;
     nstepm=(int) rint((agelim-age)*YEARM/stepm);         }
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */       }
     /* if (stepm >= YEARM) hstepm=1;*/      if (j != imax) {
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */        for (k=1;k<=n;k++) {
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          dum=a[imax][k];
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);          a[imax][k]=a[j][k];
     gp=matrix(0,nhstepm,1,nlstate*nlstate);          a[j][k]=dum;
     gm=matrix(0,nhstepm,1,nlstate*nlstate);        }
         *d = -(*d);
     /* Computed by stepm unit matrices, product of hstepm matrices, stored        vv[imax]=vv[j];
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */      }
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);        indx[j]=imax;
        if (a[j][j] == 0.0) a[j][j]=TINY;
       if (j != n) {
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */        dum=1.0/(a[j][j]);
         for (i=j+1;i<=n;i++) a[i][j] *= dum;
     /* Computing Variances of health expectancies */      }
     }
      for(theta=1; theta <=npar; theta++){    free_vector(vv,1,n);  /* Doesn't work */
       for(i=1; i<=npar; i++){   ;
         xp[i] = x[i] + (i==theta ?delti[theta]:0);  }
       }  
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);    void lubksb(double **a, int n, int *indx, double b[])
     {
       cptj=0;    int i,ii=0,ip,j;
       for(j=1; j<= nlstate; j++){    double sum;
         for(i=1; i<=nlstate; i++){   
           cptj=cptj+1;    for (i=1;i<=n;i++) {
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){      ip=indx[i];
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;      sum=b[ip];
           }      b[ip]=b[i];
         }      if (ii)
       }        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];
            else if (sum) ii=i;
            b[i]=sum;
       for(i=1; i<=npar; i++)     }
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    for (i=n;i>=1;i--) {
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        sum=b[i];
             for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];
       cptj=0;      b[i]=sum/a[i][i];
       for(j=1; j<= nlstate; j++){    }
         for(i=1;i<=nlstate;i++){  }
           cptj=cptj+1;  
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){  void pstamp(FILE *fichier)
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;  {
           }    fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
         }  }
       }  
       for(j=1; j<= nlstate*nlstate; j++)  /************ Frequencies ********************/
         for(h=0; h<=nhstepm-1; h++){  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];  {  /* Some frequencies */
         }   
      }     int i, m, jk, k1,i1, j1, bool, z1,z2,j;
        int first;
 /* End theta */    double ***freq; /* Frequencies */
     double *pp, **prop;
      trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);    double pos,posprop, k2, dateintsum=0,k2cpt=0;
     char fileresp[FILENAMELENGTH];
      for(h=0; h<=nhstepm-1; h++)   
       for(j=1; j<=nlstate*nlstate;j++)    pp=vector(1,nlstate);
         for(theta=1; theta <=npar; theta++)    prop=matrix(1,nlstate,iagemin,iagemax+3);
           trgradg[h][j][theta]=gradg[h][theta][j];    strcpy(fileresp,"p");
          strcat(fileresp,fileres);
     if((ficresp=fopen(fileresp,"w"))==NULL) {
      for(i=1;i<=nlstate*nlstate;i++)      printf("Problem with prevalence resultfile: %s\n", fileresp);
       for(j=1;j<=nlstate*nlstate;j++)      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
         varhe[i][j][(int)age] =0.;      exit(0);
     }
      printf("%d|",(int)age);fflush(stdout);    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);    j1=0;
      for(h=0;h<=nhstepm-1;h++){   
       for(k=0;k<=nhstepm-1;k++){    j=cptcoveff;
         matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);    if (cptcovn<1) {j=1;ncodemax[1]=1;}
         matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);  
         for(i=1;i<=nlstate*nlstate;i++)    first=1;
           for(j=1;j<=nlstate*nlstate;j++)  
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;    for(k1=1; k1<=j;k1++){
       }      for(i1=1; i1<=ncodemax[k1];i1++){
     }        j1++;
     /* Computing expectancies */        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
     for(i=1; i<=nlstate;i++)          scanf("%d", i);*/
       for(j=1; j<=nlstate;j++)        for (i=-5; i<=nlstate+ndeath; i++)  
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){          for (jk=-5; jk<=nlstate+ndeath; jk++)  
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;            for(m=iagemin; m <= iagemax+3; m++)
                         freq[i][jk][m]=0;
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/  
       for (i=1; i<=nlstate; i++)  
         }        for(m=iagemin; m <= iagemax+3; m++)
           prop[i][m]=0;
     fprintf(ficreseij,"%3.0f",age );       
     cptj=0;        dateintsum=0;
     for(i=1; i<=nlstate;i++)        k2cpt=0;
       for(j=1; j<=nlstate;j++){        for (i=1; i<=imx; i++) {
         cptj++;          bool=1;
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );          if  (cptcovn>0) {
       }            for (z1=1; z1<=cptcoveff; z1++)
     fprintf(ficreseij,"\n");              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])
                    bool=0;
     free_matrix(gm,0,nhstepm,1,nlstate*nlstate);          }
     free_matrix(gp,0,nhstepm,1,nlstate*nlstate);          if (bool==1){
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);            for(m=firstpass; m<=lastpass; m++){
     free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);              k2=anint[m][i]+(mint[m][i]/12.);
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
   }                if(agev[m][i]==0) agev[m][i]=iagemax+1;
   printf("\n");                if(agev[m][i]==1) agev[m][i]=iagemax+2;
   fprintf(ficlog,"\n");                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
                 if (m<lastpass) {
   free_vector(xp,1,npar);                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
   free_matrix(dnewm,1,nlstate*nlstate,1,npar);                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
   free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);                }
   free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);               
 }                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
                   dateintsum=dateintsum+k2;
 /************ Variance ******************/                  k2cpt++;
 void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav)                }
 {                /*}*/
   /* Variance of health expectancies */            }
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/          }
   /* double **newm;*/        }
   double **dnewm,**doldm;         
   double **dnewmp,**doldmp;        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
   int i, j, nhstepm, hstepm, h, nstepm ;        pstamp(ficresp);
   int k, cptcode;        if  (cptcovn>0) {
   double *xp;          fprintf(ficresp, "\n#********** Variable ");
   double **gp, **gm;  /* for var eij */          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   double ***gradg, ***trgradg; /*for var eij */          fprintf(ficresp, "**********\n#");
   double **gradgp, **trgradgp; /* for var p point j */        }
   double *gpp, *gmp; /* for var p point j */        for(i=1; i<=nlstate;i++)
   double **varppt; /* for var p point j nlstate to nlstate+ndeath */          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
   double ***p3mat;        fprintf(ficresp, "\n");
   double age,agelim, hf;       
   double ***mobaverage;        for(i=iagemin; i <= iagemax+3; i++){
   int theta;          if(i==iagemax+3){
   char digit[4];            fprintf(ficlog,"Total");
   char digitp[25];          }else{
             if(first==1){
   char fileresprobmorprev[FILENAMELENGTH];              first=0;
               printf("See log file for details...\n");
   if(popbased==1){            }
     if(mobilav!=0)            fprintf(ficlog,"Age %d", i);
       strcpy(digitp,"-populbased-mobilav-");          }
     else strcpy(digitp,"-populbased-nomobil-");          for(jk=1; jk <=nlstate ; jk++){
   }            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
   else               pp[jk] += freq[jk][m][i];
     strcpy(digitp,"-stablbased-");          }
           for(jk=1; jk <=nlstate ; jk++){
   if (mobilav!=0) {            for(m=-1, pos=0; m <=0 ; m++)
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);              pos += freq[jk][m][i];
     if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){            if(pp[jk]>=1.e-10){
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);              if(first==1){
       printf(" Error in movingaverage mobilav=%d\n",mobilav);              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
     }              }
   }              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
             }else{
   strcpy(fileresprobmorprev,"prmorprev");               if(first==1)
   sprintf(digit,"%-d",ij);                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
   /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
   strcat(fileresprobmorprev,digit); /* Tvar to be done */            }
   strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */          }
   strcat(fileresprobmorprev,fileres);  
   if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {          for(jk=1; jk <=nlstate ; jk++){
     printf("Problem with resultfile: %s\n", fileresprobmorprev);            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);              pp[jk] += freq[jk][m][i];
   }          }      
   printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
   fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);            pos += pp[jk];
   fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);            posprop += prop[jk][i];
   fprintf(ficresprobmorprev,"# Age cov=%-d",ij);          }
   for(j=nlstate+1; j<=(nlstate+ndeath);j++){          for(jk=1; jk <=nlstate ; jk++){
     fprintf(ficresprobmorprev," p.%-d SE",j);            if(pos>=1.e-5){
     for(i=1; i<=nlstate;i++)              if(first==1)
       fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   }                fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   fprintf(ficresprobmorprev,"\n");            }else{
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {              if(first==1)
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
     fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
     exit(0);            }
   }            if( i <= iagemax){
   else{              if(pos>=1.e-5){
     fprintf(ficgp,"\n# Routine varevsij");                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
   }                /*probs[i][jk][j1]= pp[jk]/pos;*/
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
     printf("Problem with html file: %s\n", optionfilehtm);              }
     fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);              else
     exit(0);                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
   }            }
   else{          }
     fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");         
     fprintf(fichtm,"\n<br>%s  <br>\n",digitp);          for(jk=-1; jk <=nlstate+ndeath; jk++)
   }            for(m=-1; m <=nlstate+ndeath; m++)
   varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);              if(freq[jk][m][i] !=0 ) {
               if(first==1)
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
   fprintf(ficresvij,"# Age");                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
   for(i=1; i<=nlstate;i++)              }
     for(j=1; j<=nlstate;j++)          if(i <= iagemax)
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);            fprintf(ficresp,"\n");
   fprintf(ficresvij,"\n");          if(first==1)
             printf("Others in log...\n");
   xp=vector(1,npar);          fprintf(ficlog,"\n");
   dnewm=matrix(1,nlstate,1,npar);        }
   doldm=matrix(1,nlstate,1,nlstate);      }
   dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);    }
   doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);    dateintmean=dateintsum/k2cpt;
    
   gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);    fclose(ficresp);
   gpp=vector(nlstate+1,nlstate+ndeath);    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
   gmp=vector(nlstate+1,nlstate+ndeath);    free_vector(pp,1,nlstate);
   trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
       /* End of Freq */
   if(estepm < stepm){  }
     printf ("Problem %d lower than %d\n",estepm, stepm);  
   }  /************ Prevalence ********************/
   else  hstepm=estepm;     void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
   /* For example we decided to compute the life expectancy with the smallest unit */  {  
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.     /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
      nhstepm is the number of hstepm from age to agelim        in each health status at the date of interview (if between dateprev1 and dateprev2).
      nstepm is the number of stepm from age to agelin.        We still use firstpass and lastpass as another selection.
      Look at hpijx to understand the reason of that which relies in memory size    */
      and note for a fixed period like k years */   
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
      survival function given by stepm (the optimization length). Unfortunately it    double ***freq; /* Frequencies */
      means that if the survival funtion is printed every two years of age and if    double *pp, **prop;
      you sum them up and add 1 year (area under the trapezoids) you won't get the same     double pos,posprop;
      results. So we changed our mind and took the option of the best precision.    double  y2; /* in fractional years */
   */    int iagemin, iagemax;
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */   
   agelim = AGESUP;    iagemin= (int) agemin;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    iagemax= (int) agemax;
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */     /*pp=vector(1,nlstate);*/
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */    prop=matrix(1,nlstate,iagemin,iagemax+3);
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);    j1=0;
     gp=matrix(0,nhstepm,1,nlstate);   
     gm=matrix(0,nhstepm,1,nlstate);    j=cptcoveff;
     if (cptcovn<1) {j=1;ncodemax[1]=1;}
    
     for(theta=1; theta <=npar; theta++){    for(k1=1; k1<=j;k1++){
       for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/      for(i1=1; i1<=ncodemax[k1];i1++){
         xp[i] = x[i] + (i==theta ?delti[theta]:0);        j1++;
       }       
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);          for (i=1; i<=nlstate; i++)  
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          for(m=iagemin; m <= iagemax+3; m++)
             prop[i][m]=0.0;
       if (popbased==1) {       
         if(mobilav ==0){        for (i=1; i<=imx; i++) { /* Each individual */
           for(i=1; i<=nlstate;i++)          bool=1;
             prlim[i][i]=probs[(int)age][i][ij];          if  (cptcovn>0) {
         }else{ /* mobilav */             for (z1=1; z1<=cptcoveff; z1++)
           for(i=1; i<=nlstate;i++)              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])
             prlim[i][i]=mobaverage[(int)age][i][ij];                bool=0;
         }          }
       }          if (bool==1) {
               for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
       for(j=1; j<= nlstate; j++){              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
         for(h=0; h<=nhstepm; h++){              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)                if(agev[m][i]==0) agev[m][i]=iagemax+1;
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];                if(agev[m][i]==1) agev[m][i]=iagemax+2;
         }                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m);
       }                if (s[m][i]>0 && s[m][i]<=nlstate) {
       /* This for computing probability of death (h=1 means                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
          computed over hstepm matrices product = hstepm*stepm months)                   prop[s[m][i]][(int)agev[m][i]] += weight[i];
          as a weighted average of prlim.                  prop[s[m][i]][iagemax+3] += weight[i];
       */                }
       for(j=nlstate+1;j<=nlstate+ndeath;j++){              }
         for(i=1,gpp[j]=0.; i<= nlstate; i++)            } /* end selection of waves */
           gpp[j] += prlim[i][i]*p3mat[i][j][1];          }
       }            }
       /* end probability of death */        for(i=iagemin; i <= iagemax+3; i++){  
          
       for(i=1; i<=npar; i++) /* Computes gradient x - delta */          for(jk=1,posprop=0; jk <=nlstate ; jk++) {
         xp[i] = x[i] - (i==theta ?delti[theta]:0);            posprop += prop[jk][i];
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            }
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  
            for(jk=1; jk <=nlstate ; jk++){    
       if (popbased==1) {            if( i <=  iagemax){
         if(mobilav ==0){              if(posprop>=1.e-5){
           for(i=1; i<=nlstate;i++)                probs[i][jk][j1]= prop[jk][i]/posprop;
             prlim[i][i]=probs[(int)age][i][ij];              }
         }else{ /* mobilav */             }
           for(i=1; i<=nlstate;i++)          }/* end jk */
             prlim[i][i]=mobaverage[(int)age][i][ij];        }/* end i */
         }      } /* end i1 */
       }    } /* end k1 */
    
       for(j=1; j<= nlstate; j++){    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
         for(h=0; h<=nhstepm; h++){    /*free_vector(pp,1,nlstate);*/
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];  }  /* End of prevalence */
         }  
       }  /************* Waves Concatenation ***************/
       /* This for computing probability of death (h=1 means  
          computed over hstepm matrices product = hstepm*stepm months)   void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
          as a weighted average of prlim.  {
       */    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
       for(j=nlstate+1;j<=nlstate+ndeath;j++){       Death is a valid wave (if date is known).
         for(i=1,gmp[j]=0.; i<= nlstate; i++)       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
          gmp[j] += prlim[i][i]*p3mat[i][j][1];       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
       }           and mw[mi+1][i]. dh depends on stepm.
       /* end probability of death */       */
   
       for(j=1; j<= nlstate; j++) /* vareij */    int i, mi, m;
         for(h=0; h<=nhstepm; h++){    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];       double sum=0., jmean=0.;*/
         }    int first;
     int j, k=0,jk, ju, jl;
       for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */    double sum=0.;
         gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];    first=0;
       }    jmin=1e+5;
     jmax=-1;
     } /* End theta */    jmean=0.;
     for(i=1; i<=imx; i++){
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */      mi=0;
       m=firstpass;
     for(h=0; h<=nhstepm; h++) /* veij */      while(s[m][i] <= nlstate){
       for(j=1; j<=nlstate;j++)        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
         for(theta=1; theta <=npar; theta++)          mw[++mi][i]=m;
           trgradg[h][j][theta]=gradg[h][theta][j];        if(m >=lastpass)
           break;
     for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */        else
       for(theta=1; theta <=npar; theta++)          m++;
         trgradgp[j][theta]=gradgp[theta][j];      }/* end while */
         if (s[m][i] > nlstate){
         mi++;     /* Death is another wave */
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */        /* if(mi==0)  never been interviewed correctly before death */
     for(i=1;i<=nlstate;i++)           /* Only death is a correct wave */
       for(j=1;j<=nlstate;j++)        mw[mi][i]=m;
         vareij[i][j][(int)age] =0.;      }
   
     for(h=0;h<=nhstepm;h++){      wav[i]=mi;
       for(k=0;k<=nhstepm;k++){      if(mi==0){
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);        nbwarn++;
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);        if(first==0){
         for(i=1;i<=nlstate;i++)          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
           for(j=1;j<=nlstate;j++)          first=1;
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;        }
       }        if(first==1){
     }          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
           }
     /* pptj */      } /* end mi==0 */
     matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);    } /* End individuals */
     matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);  
     for(j=nlstate+1;j<=nlstate+ndeath;j++)    for(i=1; i<=imx; i++){
       for(i=nlstate+1;i<=nlstate+ndeath;i++)      for(mi=1; mi<wav[i];mi++){
         varppt[j][i]=doldmp[j][i];        if (stepm <=0)
     /* end ppptj */          dh[mi][i]=1;
     /*  x centered again */        else{
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);            if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
     prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);            if (agedc[i] < 2*AGESUP) {
                j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);
     if (popbased==1) {              if(j==0) j=1;  /* Survives at least one month after exam */
       if(mobilav ==0){              else if(j<0){
         for(i=1; i<=nlstate;i++)                nberr++;
           prlim[i][i]=probs[(int)age][i][ij];                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
       }else{ /* mobilav */                 j=1; /* Temporary Dangerous patch */
         for(i=1; i<=nlstate;i++)                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
           prlim[i][i]=mobaverage[(int)age][i][ij];                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
       }                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
     }              }
                            k=k+1;
     /* This for computing probability of death (h=1 means              if (j >= jmax){
        computed over hstepm (estepm) matrices product = hstepm*stepm months)                 jmax=j;
        as a weighted average of prlim.                ijmax=i;
     */              }
     for(j=nlstate+1;j<=nlstate+ndeath;j++){              if (j <= jmin){
       for(i=1,gmp[j]=0.;i<= nlstate; i++)                 jmin=j;
         gmp[j] += prlim[i][i]*p3mat[i][j][1];                 ijmin=i;
     }                  }
     /* end probability of death */              sum=sum+j;
               /*if (j<0) printf("j=%d num=%d \n",j,i);*/
     fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){            }
       fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));          }
       for(i=1; i<=nlstate;i++){          else{
         fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
       }  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
     }   
     fprintf(ficresprobmorprev,"\n");            k=k+1;
             if (j >= jmax) {
     fprintf(ficresvij,"%.0f ",age );              jmax=j;
     for(i=1; i<=nlstate;i++)              ijmax=i;
       for(j=1; j<=nlstate;j++){            }
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);            else if (j <= jmin){
       }              jmin=j;
     fprintf(ficresvij,"\n");              ijmin=i;
     free_matrix(gp,0,nhstepm,1,nlstate);            }
     free_matrix(gm,0,nhstepm,1,nlstate);            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);            if(j<0){
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);              nberr++;
   } /* End age */              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   free_vector(gpp,nlstate+1,nlstate+ndeath);              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   free_vector(gmp,nlstate+1,nlstate+ndeath);            }
   free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);            sum=sum+j;
   free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/          }
   fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");          jk= j/stepm;
   /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */          jl= j -jk*stepm;
   fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");          ju= j -(jk+1)*stepm;
 /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
 /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */            if(jl==0){
 /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */              dh[mi][i]=jk;
   fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",fileresprobmorprev);              bh[mi][i]=0;
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",fileresprobmorprev);            }else{ /* We want a negative bias in order to only have interpolation ie
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",fileresprobmorprev);                    * at the price of an extra matrix product in likelihood */
   fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",fileresprobmorprev,fileresprobmorprev);              dh[mi][i]=jk+1;
   fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"varmuptjgr%s%s%s.png\"> <br>\n", estepm,digitp,optionfilefiname,digit);              bh[mi][i]=ju;
   /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);            }
 */          }else{
   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit);            if(jl <= -ju){
               dh[mi][i]=jk;
   free_vector(xp,1,npar);              bh[mi][i]=jl;       /* bias is positive if real duration
   free_matrix(doldm,1,nlstate,1,nlstate);                                   * is higher than the multiple of stepm and negative otherwise.
   free_matrix(dnewm,1,nlstate,1,npar);                                   */
   free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);            }
   free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);            else{
   free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);              dh[mi][i]=jk+1;
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);              bh[mi][i]=ju;
   fclose(ficresprobmorprev);            }
   fclose(ficgp);            if(dh[mi][i]==0){
   fclose(fichtm);              dh[mi][i]=1; /* At least one step */
 }                bh[mi][i]=ju; /* At least one step */
               /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
 /************ Variance of prevlim ******************/            }
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)          } /* end if mle */
 {        }
   /* Variance of prevalence limit */      } /* end wave */
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/    }
   double **newm;    jmean=sum/k;
   double **dnewm,**doldm;    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
   int i, j, nhstepm, hstepm;    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
   int k, cptcode;   }
   double *xp;  
   double *gp, *gm;  /*********** Tricode ****************************/
   double **gradg, **trgradg;  void tricode(int *Tvar, int **nbcode, int imx)
   double age,agelim;  {
   int theta;   
        int Ndum[20],ij=1, k, j, i, maxncov=19;
   fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");    int cptcode=0;
   fprintf(ficresvpl,"# Age");    cptcoveff=0;
   for(i=1; i<=nlstate;i++)   
       fprintf(ficresvpl," %1d-%1d",i,i);    for (k=0; k<maxncov; k++) Ndum[k]=0;
   fprintf(ficresvpl,"\n");    for (k=1; k<=7; k++) ncodemax[k]=0;
   
   xp=vector(1,npar);    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
   dnewm=matrix(1,nlstate,1,npar);      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum
   doldm=matrix(1,nlstate,1,nlstate);                                 modality*/
           ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
   hstepm=1*YEARM; /* Every year of age */        Ndum[ij]++; /*store the modality */
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */         /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
   agelim = AGESUP;        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */                                         Tvar[j]. If V=sex and male is 0 and
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */                                          female is 1, then  cptcode=1.*/
     if (stepm >= YEARM) hstepm=1;      }
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */  
     gradg=matrix(1,npar,1,nlstate);      for (i=0; i<=cptcode; i++) {
     gp=vector(1,nlstate);        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
     gm=vector(1,nlstate);      }
   
     for(theta=1; theta <=npar; theta++){      ij=1;
       for(i=1; i<=npar; i++){ /* Computes gradient */      for (i=1; i<=ncodemax[j]; i++) {
         xp[i] = x[i] + (i==theta ?delti[theta]:0);        for (k=0; k<= maxncov; k++) {
       }          if (Ndum[k] != 0) {
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);            nbcode[Tvar[j]][ij]=k;
       for(i=1;i<=nlstate;i++)            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
         gp[i] = prlim[i][i];           
                 ij++;
       for(i=1; i<=npar; i++) /* Computes gradient */          }
         xp[i] = x[i] - (i==theta ?delti[theta]:0);          if (ij > ncodemax[j]) break;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        }  
       for(i=1;i<=nlstate;i++)      }
         gm[i] = prlim[i][i];    }  
   
       for(i=1;i<=nlstate;i++)   for (k=0; k< maxncov; k++) Ndum[k]=0;
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];  
     } /* End theta */   for (i=1; i<=ncovmodel-2; i++) {
      /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
     trgradg =matrix(1,nlstate,1,npar);     ij=Tvar[i];
      Ndum[ij]++;
     for(j=1; j<=nlstate;j++)   }
       for(theta=1; theta <=npar; theta++)  
         trgradg[j][theta]=gradg[theta][j];   ij=1;
    for (i=1; i<= maxncov; i++) {
     for(i=1;i<=nlstate;i++)     if((Ndum[i]!=0) && (i<=ncovcol)){
       varpl[i][(int)age] =0.;       Tvaraff[ij]=i; /*For printing */
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);       ij++;
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);     }
     for(i=1;i<=nlstate;i++)   }
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */   
    cptcoveff=ij-1; /*Number of simple covariates*/
     fprintf(ficresvpl,"%.0f ",age );  }
     for(i=1; i<=nlstate;i++)  
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));  /*********** Health Expectancies ****************/
     fprintf(ficresvpl,"\n");  
     free_vector(gp,1,nlstate);  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
     free_vector(gm,1,nlstate);  
     free_matrix(gradg,1,npar,1,nlstate);  {
     free_matrix(trgradg,1,nlstate,1,npar);    /* Health expectancies, no variances */
   } /* End age */    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;
     double age, agelim, hf;
   free_vector(xp,1,npar);    double ***p3mat;
   free_matrix(doldm,1,nlstate,1,npar);    double eip;
   free_matrix(dnewm,1,nlstate,1,nlstate);  
     pstamp(ficreseij);
 }    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
     fprintf(ficreseij,"# Age");
 /************ Variance of one-step probabilities  ******************/    for(i=1; i<=nlstate;i++){
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)      for(j=1; j<=nlstate;j++){
 {        fprintf(ficreseij," e%1d%1d ",i,j);
   int i, j=0,  i1, k1, l1, t, tj;      }
   int k2, l2, j1,  z1;      fprintf(ficreseij," e%1d. ",i);
   int k=0,l, cptcode;    }
   int first=1, first1;    fprintf(ficreseij,"\n");
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;  
   double **dnewm,**doldm;   
   double *xp;    if(estepm < stepm){
   double *gp, *gm;      printf ("Problem %d lower than %d\n",estepm, stepm);
   double **gradg, **trgradg;    }
   double **mu;    else  hstepm=estepm;  
   double age,agelim, cov[NCOVMAX];    /* We compute the life expectancy from trapezoids spaced every estepm months
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */     * This is mainly to measure the difference between two models: for example
   int theta;     * if stepm=24 months pijx are given only every 2 years and by summing them
   char fileresprob[FILENAMELENGTH];     * we are calculating an estimate of the Life Expectancy assuming a linear
   char fileresprobcov[FILENAMELENGTH];     * progression in between and thus overestimating or underestimating according
   char fileresprobcor[FILENAMELENGTH];     * to the curvature of the survival function. If, for the same date, we
      * estimate the model with stepm=1 month, we can keep estepm to 24 months
   double ***varpij;     * to compare the new estimate of Life expectancy with the same linear
      * hypothesis. A more precise result, taking into account a more precise
   strcpy(fileresprob,"prob");      * curvature will be obtained if estepm is as small as stepm. */
   strcat(fileresprob,fileres);  
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {    /* For example we decided to compute the life expectancy with the smallest unit */
     printf("Problem with resultfile: %s\n", fileresprob);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);       nhstepm is the number of hstepm from age to agelim
   }       nstepm is the number of stepm from age to agelin.
   strcpy(fileresprobcov,"probcov");        Look at hpijx to understand the reason of that which relies in memory size
   strcat(fileresprobcov,fileres);       and note for a fixed period like estepm months */
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
     printf("Problem with resultfile: %s\n", fileresprobcov);       survival function given by stepm (the optimization length). Unfortunately it
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);       means that if the survival funtion is printed only each two years of age and if
   }       you sum them up and add 1 year (area under the trapezoids) you won't get the same
   strcpy(fileresprobcor,"probcor");        results. So we changed our mind and took the option of the best precision.
   strcat(fileresprobcor,fileres);    */
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */
     printf("Problem with resultfile: %s\n", fileresprobcor);  
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);    agelim=AGESUP;
   }    /* If stepm=6 months */
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);      /* Computed by stepm unit matrices, product of hstepm matrices, stored
   fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);     
   fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);  /* nhstepm age range expressed in number of stepm */
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);    nstepm=(int) rint((agelim-bage)*YEARM/stepm);
   fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);    /* Typically if 20 years nstepm = 20*12/6=40 stepm */
       /* if (stepm >= YEARM) hstepm=1;*/
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   fprintf(ficresprob,"# Age");    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");  
   fprintf(ficresprobcov,"# Age");    for (age=bage; age<=fage; age ++){
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");  
   fprintf(ficresprobcov,"# Age");  
       hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
      
   for(i=1; i<=nlstate;i++)      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
     for(j=1; j<=(nlstate+ndeath);j++){     
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);      printf("%d|",(int)age);fflush(stdout);
       fprintf(ficresprobcov," p%1d-%1d ",i,j);      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
       fprintf(ficresprobcor," p%1d-%1d ",i,j);     
     }    
  /* fprintf(ficresprob,"\n");      /* Computing expectancies */
   fprintf(ficresprobcov,"\n");      for(i=1; i<=nlstate;i++)
   fprintf(ficresprobcor,"\n");        for(j=1; j<=nlstate;j++)
  */          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
  xp=vector(1,npar);            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);           
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));            /*if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);  
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);          }
   first=1;     
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {      fprintf(ficreseij,"%3.0f",age );
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);      for(i=1; i<=nlstate;i++){
     fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);        eip=0;
     exit(0);        for(j=1; j<=nlstate;j++){
   }          eip +=eij[i][j][(int)age];
   else{          fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
     fprintf(ficgp,"\n# Routine varprob");        }
   }        fprintf(ficreseij,"%9.4f", eip );
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {      }
     printf("Problem with html file: %s\n", optionfilehtm);      fprintf(ficreseij,"\n");
     fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);     
     exit(0);    }
   }    free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   else{    printf("\n");
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");    fprintf(ficlog,"\n");
     fprintf(fichtm,"\n");   
   }
     fprintf(fichtm,"\n<li><h4> Computing matrix of variance-covariance of step probabilities</h4></li>\n");  
     fprintf(fichtm,"\nWe have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");  void cvevsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
     fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");  
   {
   }    /* Covariances of health expectancies eij and of total life expectancies according
      to initial status i, ei. .
   cov[1]=1;    */
   tj=cptcoveff;    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
   if (cptcovn<1) {tj=1;ncodemax[1]=1;}    double age, agelim, hf;
   j1=0;    double ***p3matp, ***p3matm, ***varhe;
   for(t=1; t<=tj;t++){    double **dnewm,**doldm;
     for(i1=1; i1<=ncodemax[t];i1++){     double *xp, *xm;
       j1++;    double **gp, **gm;
       if  (cptcovn>0) {    double ***gradg, ***trgradg;
         fprintf(ficresprob, "\n#********** Variable ");     int theta;
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);  
         fprintf(ficresprob, "**********\n#\n");    double eip, vip;
         fprintf(ficresprobcov, "\n#********** Variable ");   
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
         fprintf(ficresprobcov, "**********\n#\n");    xp=vector(1,npar);
             xm=vector(1,npar);
         fprintf(ficgp, "\n#********** Variable ");     dnewm=matrix(1,nlstate*nlstate,1,npar);
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
         fprintf(ficgp, "**********\n#\n");   
             pstamp(ficresstdeij);
             fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
         fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable ");     fprintf(ficresstdeij,"# Age");
         for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    for(i=1; i<=nlstate;i++){
         fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");      for(j=1; j<=nlstate;j++)
                 fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
         fprintf(ficresprobcor, "\n#********** Variable ");          fprintf(ficresstdeij," e%1d. ",i);
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    }
         fprintf(ficresprobcor, "**********\n#");        fprintf(ficresstdeij,"\n");
       }  
           pstamp(ficrescveij);
       for (age=bage; age<=fage; age ++){     fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
         cov[2]=age;    fprintf(ficrescveij,"# Age");
         for (k=1; k<=cptcovn;k++) {    for(i=1; i<=nlstate;i++)
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];      for(j=1; j<=nlstate;j++){
         }        cptj= (j-1)*nlstate+i;
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];        for(i2=1; i2<=nlstate;i2++)
         for (k=1; k<=cptcovprod;k++)          for(j2=1; j2<=nlstate;j2++){
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];            cptj2= (j2-1)*nlstate+i2;
                     if(cptj2 <= cptj)
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));              fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);          }
         gp=vector(1,(nlstate)*(nlstate+ndeath));      }
         gm=vector(1,(nlstate)*(nlstate+ndeath));    fprintf(ficrescveij,"\n");
        
         for(theta=1; theta <=npar; theta++){    if(estepm < stepm){
           for(i=1; i<=npar; i++)      printf ("Problem %d lower than %d\n",estepm, stepm);
             xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);    }
               else  hstepm=estepm;  
           pmij(pmmij,cov,ncovmodel,xp,nlstate);    /* We compute the life expectancy from trapezoids spaced every estepm months
                * This is mainly to measure the difference between two models: for example
           k=0;     * if stepm=24 months pijx are given only every 2 years and by summing them
           for(i=1; i<= (nlstate); i++){     * we are calculating an estimate of the Life Expectancy assuming a linear
             for(j=1; j<=(nlstate+ndeath);j++){     * progression in between and thus overestimating or underestimating according
               k=k+1;     * to the curvature of the survival function. If, for the same date, we
               gp[k]=pmmij[i][j];     * estimate the model with stepm=1 month, we can keep estepm to 24 months
             }     * to compare the new estimate of Life expectancy with the same linear
           }     * hypothesis. A more precise result, taking into account a more precise
                * curvature will be obtained if estepm is as small as stepm. */
           for(i=1; i<=npar; i++)  
             xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);    /* For example we decided to compute the life expectancy with the smallest unit */
         /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.
           pmij(pmmij,cov,ncovmodel,xp,nlstate);       nhstepm is the number of hstepm from age to agelim
           k=0;       nstepm is the number of stepm from age to agelin.
           for(i=1; i<=(nlstate); i++){       Look at hpijx to understand the reason of that which relies in memory size
             for(j=1; j<=(nlstate+ndeath);j++){       and note for a fixed period like estepm months */
               k=k+1;    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
               gm[k]=pmmij[i][j];       survival function given by stepm (the optimization length). Unfortunately it
             }       means that if the survival funtion is printed only each two years of age and if
           }       you sum them up and add 1 year (area under the trapezoids) you won't get the same
             results. So we changed our mind and took the option of the best precision.
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)     */
             gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];      hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */
         }  
     /* If stepm=6 months */
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)    /* nhstepm age range expressed in number of stepm */
           for(theta=1; theta <=npar; theta++)    agelim=AGESUP;
             trgradg[j][theta]=gradg[theta][j];    nstepm=(int) rint((agelim-bage)*YEARM/stepm);
             /* Typically if 20 years nstepm = 20*12/6=40 stepm */
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);     /* if (stepm >= YEARM) hstepm=1;*/
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
         free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));   
         free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));    p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
     trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
         pmij(pmmij,cov,ncovmodel,x,nlstate);    gp=matrix(0,nhstepm,1,nlstate*nlstate);
             gm=matrix(0,nhstepm,1,nlstate*nlstate);
         k=0;  
         for(i=1; i<=(nlstate); i++){    for (age=bage; age<=fage; age ++){
           for(j=1; j<=(nlstate+ndeath);j++){  
             k=k+1;      /* Computed by stepm unit matrices, product of hstepm matrices, stored
             mu[k][(int) age]=pmmij[i][j];         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
           }   
         }      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)  
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)      /* Computing  Variances of health expectancies */
             varpij[i][j][(int)age] = doldm[i][j];      /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
          decrease memory allocation */
         /*printf("\n%d ",(int)age);      for(theta=1; theta <=npar; theta++){
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){        for(i=1; i<=npar; i++){
           printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));          xp[i] = x[i] + (i==theta ?delti[theta]:0);
           fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));          xm[i] = x[i] - (i==theta ?delti[theta]:0);
           }*/        }
         hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
         fprintf(ficresprob,"\n%d ",(int)age);        hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
         fprintf(ficresprobcov,"\n%d ",(int)age);   
         fprintf(ficresprobcor,"\n%d ",(int)age);        for(j=1; j<= nlstate; j++){
           for(i=1; i<=nlstate; i++){
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)            for(h=0; h<=nhstepm-1; h++){
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));              gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){              gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);            }
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);          }
         }        }
         i=0;       
         for (k=1; k<=(nlstate);k++){        for(ij=1; ij<= nlstate*nlstate; ij++)
           for (l=1; l<=(nlstate+ndeath);l++){           for(h=0; h<=nhstepm-1; h++){
             i=i++;            gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);          }
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);      }/* End theta */
             for (j=1; j<=i;j++){     
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);     
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));      for(h=0; h<=nhstepm-1; h++)
             }        for(j=1; j<=nlstate*nlstate;j++)
           }          for(theta=1; theta <=npar; theta++)
         }/* end of loop for state */            trgradg[h][j][theta]=gradg[h][theta][j];
       } /* end of loop for age */     
   
       /* Confidence intervalle of pij  */       for(ij=1;ij<=nlstate*nlstate;ij++)
       /*        for(ji=1;ji<=nlstate*nlstate;ji++)
         fprintf(ficgp,"\nset noparametric;unset label");          varhe[ij][ji][(int)age] =0.;
         fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");  
         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");       printf("%d|",(int)age);fflush(stdout);
         fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
         fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);       for(h=0;h<=nhstepm-1;h++){
         fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);        for(k=0;k<=nhstepm-1;k++){
         fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
       */          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
           for(ij=1;ij<=nlstate*nlstate;ij++)
       /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/            for(ji=1;ji<=nlstate*nlstate;ji++)
       first1=1;              varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
       for (k2=1; k2<=(nlstate);k2++){        }
         for (l2=1; l2<=(nlstate+ndeath);l2++){       }
           if(l2==k2) continue;  
           j=(k2-1)*(nlstate+ndeath)+l2;      /* Computing expectancies */
           for (k1=1; k1<=(nlstate);k1++){      hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
             for (l1=1; l1<=(nlstate+ndeath);l1++){       for(i=1; i<=nlstate;i++)
               if(l1==k1) continue;        for(j=1; j<=nlstate;j++)
               i=(k1-1)*(nlstate+ndeath)+l1;          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
               if(i<=j) continue;            eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
               for (age=bage; age<=fage; age ++){            
                 if ((int)age %5==0){            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;  
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;          }
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;  
                   mu1=mu[i][(int) age]/stepm*YEARM ;      fprintf(ficresstdeij,"%3.0f",age );
                   mu2=mu[j][(int) age]/stepm*YEARM;      for(i=1; i<=nlstate;i++){
                   c12=cv12/sqrt(v1*v2);        eip=0.;
                   /* Computing eigen value of matrix of covariance */        vip=0.;
                   lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;        for(j=1; j<=nlstate;j++){
                   lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;          eip += eij[i][j][(int)age];
                   /* Eigen vectors */          for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));            vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
                   /*v21=sqrt(1.-v11*v11); *//* error */          fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
                   v21=(lc1-v1)/cv12*v11;        }
                   v12=-v21;        fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
                   v22=v11;      }
                   tnalp=v21/v11;      fprintf(ficresstdeij,"\n");
                   if(first1==1){  
                     first1=0;      fprintf(ficrescveij,"%3.0f",age );
                     printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);      for(i=1; i<=nlstate;i++)
                   }        for(j=1; j<=nlstate;j++){
                   fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);          cptj= (j-1)*nlstate+i;
                   /*printf(fignu*/          for(i2=1; i2<=nlstate;i2++)
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */            for(j2=1; j2<=nlstate;j2++){
                   /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */              cptj2= (j2-1)*nlstate+i2;
                   if(first==1){              if(cptj2 <= cptj)
                     first=0;                fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
                     fprintf(ficgp,"\nset parametric;unset label");            }
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);        }
                     fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");      fprintf(ficrescveij,"\n");
                     fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%d%1d%1d-%1d%1d.png\">varpijgr%s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2);     
                     fprintf(fichtm,"\n<br><img src=\"varpijgr%s%d%1d%1d-%1d%1d.png\"> ",optionfilefiname, j1,k1,l1,k2,l2);    }
                     fprintf(fichtm,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);    free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
                     fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\"",optionfilefiname, j1,k1,l1,k2,l2);    free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);    free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);    free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\    free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\    free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));    printf("\n");
                   }else{    fprintf(ficlog,"\n");
                     first=0;  
                     fprintf(fichtm," %d (%.3f),",(int) age, c12);    free_vector(xm,1,npar);
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);    free_vector(xp,1,npar);
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));  }
                   }/* if first */  
                 } /* age mod 5 */  /************ Variance ******************/
               } /* end loop age */  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
               fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\";replot;",optionfilefiname, j1,k1,l1,k2,l2);  {
               first=1;    /* Variance of health expectancies */
             } /*l12 */    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
           } /* k12 */    /* double **newm;*/
         } /*l1 */    double **dnewm,**doldm;
       }/* k1 */    double **dnewmp,**doldmp;
     } /* loop covariates */    int i, j, nhstepm, hstepm, h, nstepm ;
   }    int k, cptcode;
   free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);    double *xp;
   free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);    double **gp, **gm;  /* for var eij */
   free_vector(xp,1,npar);    double ***gradg, ***trgradg; /*for var eij */
   fclose(ficresprob);    double **gradgp, **trgradgp; /* for var p point j */
   fclose(ficresprobcov);    double *gpp, *gmp; /* for var p point j */
   fclose(ficresprobcor);    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
   fclose(ficgp);    double ***p3mat;
   fclose(fichtm);    double age,agelim, hf;
 }    double ***mobaverage;
     int theta;
     char digit[4];
 /******************* Printing html file ***********/    char digitp[25];
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \  
                   int lastpass, int stepm, int weightopt, char model[],\    char fileresprobmorprev[FILENAMELENGTH];
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\  
                   int popforecast, int estepm ,\    if(popbased==1){
                   double jprev1, double mprev1,double anprev1, \      if(mobilav!=0)
                   double jprev2, double mprev2,double anprev2){        strcpy(digitp,"-populbased-mobilav-");
   int jj1, k1, i1, cpt;      else strcpy(digitp,"-populbased-nomobil-");
   /*char optionfilehtm[FILENAMELENGTH];*/    }
   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {    else
     printf("Problem with %s \n",optionfilehtm), exit(0);      strcpy(digitp,"-stablbased-");
     fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0);  
   }    if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
    fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
  - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n        printf(" Error in movingaverage mobilav=%d\n",mobilav);
  - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n      }
  - Life expectancies by age and initial health status (estepm=%2d months):     }
    <a href=\"e%s\">e%s</a> <br>\n</li>", \  
   jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);    strcpy(fileresprobmorprev,"prmorprev");
     sprintf(digit,"%-d",ij);
 fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
     strcat(fileresprobmorprev,digit); /* Tvar to be done */
  m=cptcoveff;    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}    strcat(fileresprobmorprev,fileres);
     if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
  jj1=0;      printf("Problem with resultfile: %s\n", fileresprobmorprev);
  for(k1=1; k1<=m;k1++){      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
    for(i1=1; i1<=ncodemax[k1];i1++){    }
      jj1++;    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
      if (cptcovn > 0) {   
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
        for (cpt=1; cpt<=cptcoveff;cpt++)     pstamp(ficresprobmorprev);
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
      }    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
      /* Pij */      fprintf(ficresprobmorprev," p.%-d SE",j);
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: pe%s%d1.png<br>      for(i=1; i<=nlstate;i++)
 <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);             fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
      /* Quasi-incidences */    }  
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>    fprintf(ficresprobmorprev,"\n");
 <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);     fprintf(ficgp,"\n# Routine varevsij");
        /* Stable prevalence in each health state */    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
        for(cpt=1; cpt<nlstate;cpt++){    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
          fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
 <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);  /*   } */
        }    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
      for(cpt=1; cpt<=nlstate;cpt++) {    pstamp(ficresvij);
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
 <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);    if(popbased==1)
      }      fprintf(ficresvij,"the age specific prevalence observed in the population i.e cross-sectionally\n in each health state (popbased=1)");
      fprintf(fichtm,"\n<br>- Total life expectancy by age and    else
 health expectancies in states (1) and (2): e%s%d.png<br>      fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
 <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);    fprintf(ficresvij,"# Age");
    } /* end i1 */    for(i=1; i<=nlstate;i++)
  }/* End k1 */      for(j=1; j<=nlstate;j++)
  fprintf(fichtm,"</ul>");        fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
     fprintf(ficresvij,"\n");
   
  fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n    xp=vector(1,npar);
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n    dnewm=matrix(1,nlstate,1,npar);
  - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n    doldm=matrix(1,nlstate,1,nlstate);
  - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
  - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n   
  - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
  - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);    gpp=vector(nlstate+1,nlstate+ndeath);
     gmp=vector(nlstate+1,nlstate+ndeath);
 /*  if(popforecast==1) fprintf(fichtm,"\n */    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
 /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */   
 /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */    if(estepm < stepm){
 /*      <br>",fileres,fileres,fileres,fileres); */      printf ("Problem %d lower than %d\n",estepm, stepm);
 /*  else  */    }
 /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */    else  hstepm=estepm;  
 fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");    /* For example we decided to compute the life expectancy with the smallest unit */
     /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.
  m=cptcoveff;       nhstepm is the number of hstepm from age to agelim
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}       nstepm is the number of stepm from age to agelin.
        Look at hpijx to understand the reason of that which relies in memory size
  jj1=0;       and note for a fixed period like k years */
  for(k1=1; k1<=m;k1++){    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
    for(i1=1; i1<=ncodemax[k1];i1++){       survival function given by stepm (the optimization length). Unfortunately it
      jj1++;       means that if the survival funtion is printed every two years of age and if
      if (cptcovn > 0) {       you sum them up and add 1 year (area under the trapezoids) you won't get the same
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");       results. So we changed our mind and took the option of the best precision.
        for (cpt=1; cpt<=cptcoveff;cpt++)     */
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");    agelim = AGESUP;
      }    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
      for(cpt=1; cpt<=nlstate;cpt++) {      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */
        fprintf(fichtm,"<br>- Observed and period prevalence (with confident      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
 interval) in state (%d): v%s%d%d.png <br>      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);        gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
      }      gp=matrix(0,nhstepm,1,nlstate);
    } /* end i1 */      gm=matrix(0,nhstepm,1,nlstate);
  }/* End k1 */  
  fprintf(fichtm,"</ul>");  
 fclose(fichtm);      for(theta=1; theta <=npar; theta++){
 }        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
 /******************* Gnuplot file **************/        }
 void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;  
   int ng;        if (popbased==1) {
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {          if(mobilav ==0){
     printf("Problem with file %s",optionfilegnuplot);            for(i=1; i<=nlstate;i++)
     fprintf(ficlog,"Problem with file %s",optionfilegnuplot);              prlim[i][i]=probs[(int)age][i][ij];
   }          }else{ /* mobilav */
             for(i=1; i<=nlstate;i++)
   /*#ifdef windows */              prlim[i][i]=mobaverage[(int)age][i][ij];
     fprintf(ficgp,"cd \"%s\" \n",pathc);          }
     /*#endif */        }
 m=pow(2,cptcoveff);   
           for(j=1; j<= nlstate; j++){
  /* 1eme*/          for(h=0; h<=nhstepm; h++){
   for (cpt=1; cpt<= nlstate ; cpt ++) {            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
    for (k1=1; k1<= m ; k1 ++) {              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
      fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);          }
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);        }
         /* This for computing probability of death (h=1 means
      for (i=1; i<= nlstate ; i ++) {           computed over hstepm matrices product = hstepm*stepm months)
        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");           as a weighted average of prlim.
        else fprintf(ficgp," \%%*lf (\%%*lf)");        */
      }        for(j=nlstate+1;j<=nlstate+ndeath;j++){
      fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",fileres,k1-1,k1-1);          for(i=1,gpp[j]=0.; i<= nlstate; i++)
      for (i=1; i<= nlstate ; i ++) {            gpp[j] += prlim[i][i]*p3mat[i][j][1];
        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");        }    
        else fprintf(ficgp," \%%*lf (\%%*lf)");        /* end probability of death */
      }   
      fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",fileres,k1-1,k1-1);         for(i=1; i<=npar; i++) /* Computes gradient x - delta */
      for (i=1; i<= nlstate ; i ++) {          xp[i] = x[i] - (i==theta ?delti[theta]:0);
        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
        else fprintf(ficgp," \%%*lf (\%%*lf)");        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
      }     
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));        if (popbased==1) {
    }          if(mobilav ==0){
   }            for(i=1; i<=nlstate;i++)
   /*2 eme*/              prlim[i][i]=probs[(int)age][i][ij];
             }else{ /* mobilav */
   for (k1=1; k1<= m ; k1 ++) {             for(i=1; i<=nlstate;i++)
     fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);              prlim[i][i]=mobaverage[(int)age][i][ij];
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);          }
             }
     for (i=1; i<= nlstate+1 ; i ++) {  
       k=2*i;        for(j=1; j<= nlstate; j++){
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);          for(h=0; h<=nhstepm; h++){
       for (j=1; j<= nlstate+1 ; j ++) {            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
         else fprintf(ficgp," \%%*lf (\%%*lf)");          }
       }           }
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");        /* This for computing probability of death (h=1 means
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);           computed over hstepm matrices product = hstepm*stepm months)
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);           as a weighted average of prlim.
       for (j=1; j<= nlstate+1 ; j ++) {        */
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");        for(j=nlstate+1;j<=nlstate+ndeath;j++){
         else fprintf(ficgp," \%%*lf (\%%*lf)");          for(i=1,gmp[j]=0.; i<= nlstate; i++)
       }              gmp[j] += prlim[i][i]*p3mat[i][j][1];
       fprintf(ficgp,"\" t\"\" w l 0,");        }    
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);        /* end probability of death */
       for (j=1; j<= nlstate+1 ; j ++) {  
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");        for(j=1; j<= nlstate; j++) /* vareij */
         else fprintf(ficgp," \%%*lf (\%%*lf)");          for(h=0; h<=nhstepm; h++){
       }               gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");          }
       else fprintf(ficgp,"\" t\"\" w l 0,");  
     }        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
   }          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
           }
   /*3eme*/  
         } /* End theta */
   for (k1=1; k1<= m ; k1 ++) {   
     for (cpt=1; cpt<= nlstate ; cpt ++) {      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
       k=2+nlstate*(2*cpt-2);  
       fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);      for(h=0; h<=nhstepm; h++) /* veij */
       fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);        for(j=1; j<=nlstate;j++)
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);          for(theta=1; theta <=npar; theta++)
         for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");            trgradg[h][j][theta]=gradg[h][theta][j];
         fprintf(ficgp,"\" t \"e%d1\" w l",cpt);  
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
         for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");        for(theta=1; theta <=npar; theta++)
         fprintf(ficgp,"\" t \"e%d1\" w l",cpt);          trgradgp[j][theta]=gradgp[theta][j];
            
       */  
       for (i=1; i< nlstate ; i ++) {      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);      for(i=1;i<=nlstate;i++)
                 for(j=1;j<=nlstate;j++)
       }           vareij[i][j][(int)age] =0.;
     }  
   }      for(h=0;h<=nhstepm;h++){
           for(k=0;k<=nhstepm;k++){
   /* CV preval stable (period) */          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
   for (k1=1; k1<= m ; k1 ++) {           matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
     for (cpt=1; cpt<=nlstate ; cpt ++) {          for(i=1;i<=nlstate;i++)
       k=3;            for(j=1;j<=nlstate;j++)
       fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);        }
             }
       for (i=1; i<= nlstate ; i ++)   
         fprintf(ficgp,"+$%d",k+i+1);      /* pptj */
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
             matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
       l=3+(nlstate+ndeath)*cpt;      for(j=nlstate+1;j<=nlstate+ndeath;j++)
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);        for(i=nlstate+1;i<=nlstate+ndeath;i++)
       for (i=1; i< nlstate ; i ++) {          varppt[j][i]=doldmp[j][i];
         l=3+(nlstate+ndeath)*cpt;      /* end ppptj */
         fprintf(ficgp,"+$%d",l+i+1);      /*  x centered again */
       }      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);         prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
     }    
   }        if (popbased==1) {
           if(mobilav ==0){
   /* proba elementaires */          for(i=1; i<=nlstate;i++)
   for(i=1,jk=1; i <=nlstate; i++){            prlim[i][i]=probs[(int)age][i][ij];
     for(k=1; k <=(nlstate+ndeath); k++){        }else{ /* mobilav */
       if (k != i) {          for(i=1; i<=nlstate;i++)
         for(j=1; j <=ncovmodel; j++){            prlim[i][i]=mobaverage[(int)age][i][ij];
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);        }
           jk++;       }
           fprintf(ficgp,"\n");               
         }      /* This for computing probability of death (h=1 means
       }         computed over hstepm (estepm) matrices product = hstepm*stepm months)
     }         as a weighted average of prlim.
    }      */
       for(j=nlstate+1;j<=nlstate+ndeath;j++){
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/        for(i=1,gmp[j]=0.;i<= nlstate; i++)
      for(jk=1; jk <=m; jk++) {          gmp[j] += prlim[i][i]*p3mat[i][j][1];
        fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng);       }    
        if (ng==2)      /* end probability of death */
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");  
        else      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
          fprintf(ficgp,"\nset title \"Probability\"\n");      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
        i=1;        for(i=1; i<=nlstate;i++){
        for(k2=1; k2<=nlstate; k2++) {          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
          k3=i;        }
          for(k=1; k<=(nlstate+ndeath); k++) {      }
            if (k != k2){      fprintf(ficresprobmorprev,"\n");
              if(ng==2)  
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);      fprintf(ficresvij,"%.0f ",age );
              else      for(i=1; i<=nlstate;i++)
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);        for(j=1; j<=nlstate;j++){
              ij=1;          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
              for(j=3; j <=ncovmodel; j++) {        }
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {      fprintf(ficresvij,"\n");
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);      free_matrix(gp,0,nhstepm,1,nlstate);
                  ij++;      free_matrix(gm,0,nhstepm,1,nlstate);
                }      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
                else      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
              }    } /* End age */
              fprintf(ficgp,")/(1");    free_vector(gpp,nlstate+1,nlstate+ndeath);
                  free_vector(gmp,nlstate+1,nlstate+ndeath);
              for(k1=1; k1 <=nlstate; k1++){       free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
                ij=1;    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
                for(j=3; j <=ncovmodel; j++){    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
                    ij++;  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
                  }  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
                  else    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
                }    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
                fprintf(ficgp,")");    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
              }    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");  */
              i=i+ncovmodel;  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
            }    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
          } /* end k */  
        } /* end k2 */    free_vector(xp,1,npar);
      } /* end jk */    free_matrix(doldm,1,nlstate,1,nlstate);
    } /* end ng */    free_matrix(dnewm,1,nlstate,1,npar);
    fclose(ficgp);     free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
 }  /* end gnuplot */    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
     free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 /*************** Moving average **************/    fclose(ficresprobmorprev);
 int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){    fflush(ficgp);
     fflush(fichtm);
   int i, cpt, cptcod;  }  /* end varevsij */
   int modcovmax =1;  
   int mobilavrange, mob;  /************ Variance of prevlim ******************/
   double age;  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
   {
   modcovmax=2*cptcoveff;/* Max number of modalities. We suppose     /* Variance of prevalence limit */
                            a covariate has 2 modalities */    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
   if (cptcovn<1) modcovmax=1; /* At least 1 pass */    double **newm;
     double **dnewm,**doldm;
   if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){    int i, j, nhstepm, hstepm;
     if(mobilav==1) mobilavrange=5; /* default */    int k, cptcode;
     else mobilavrange=mobilav;    double *xp;
     for (age=bage; age<=fage; age++)    double *gp, *gm;
       for (i=1; i<=nlstate;i++)    double **gradg, **trgradg;
         for (cptcod=1;cptcod<=modcovmax;cptcod++)    double age,agelim;
           mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];    int theta;
     /* We keep the original values on the extreme ages bage, fage and for    
        fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2    pstamp(ficresvpl);
        we use a 5 terms etc. until the borders are no more concerned.     fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
     */     fprintf(ficresvpl,"# Age");
     for (mob=3;mob <=mobilavrange;mob=mob+2){    for(i=1; i<=nlstate;i++)
       for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){        fprintf(ficresvpl," %1d-%1d",i,i);
         for (i=1; i<=nlstate;i++){    fprintf(ficresvpl,"\n");
           for (cptcod=1;cptcod<=modcovmax;cptcod++){  
             mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];    xp=vector(1,npar);
               for (cpt=1;cpt<=(mob-1)/2;cpt++){    dnewm=matrix(1,nlstate,1,npar);
                 mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];    doldm=matrix(1,nlstate,1,nlstate);
                 mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];   
               }    hstepm=1*YEARM; /* Every year of age */
             mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */
           }    agelim = AGESUP;
         }    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       }/* end age */      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */
     }/* end mob */      if (stepm >= YEARM) hstepm=1;
   }else return -1;      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   return 0;      gradg=matrix(1,npar,1,nlstate);
 }/* End movingaverage */      gp=vector(1,nlstate);
       gm=vector(1,nlstate);
   
 /************** Forecasting ******************/      for(theta=1; theta <=npar; theta++){
 prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){        for(i=1; i<=npar; i++){ /* Computes gradient */
   /* proj1, year, month, day of starting projection           xp[i] = x[i] + (i==theta ?delti[theta]:0);
      agemin, agemax range of age        }
      dateprev1 dateprev2 range of dates during which prevalence is computed        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
      anproj2 year of en of projection (same day and month as proj1).        for(i=1;i<=nlstate;i++)
   */          gp[i] = prlim[i][i];
   int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;     
   int *popage;        for(i=1; i<=npar; i++) /* Computes gradient */
   double agec; /* generic age */          xp[i] = x[i] - (i==theta ?delti[theta]:0);
   double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   double *popeffectif,*popcount;        for(i=1;i<=nlstate;i++)
   double ***p3mat;          gm[i] = prlim[i][i];
   double ***mobaverage;  
   char fileresf[FILENAMELENGTH];        for(i=1;i<=nlstate;i++)
           gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
   agelim=AGESUP;      } /* End theta */
   prevalence(ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);  
        trgradg =matrix(1,nlstate,1,npar);
   strcpy(fileresf,"f");   
   strcat(fileresf,fileres);      for(j=1; j<=nlstate;j++)
   if((ficresf=fopen(fileresf,"w"))==NULL) {        for(theta=1; theta <=npar; theta++)
     printf("Problem with forecast resultfile: %s\n", fileresf);          trgradg[j][theta]=gradg[theta][j];
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);  
   }      for(i=1;i<=nlstate;i++)
   printf("Computing forecasting: result on file '%s' \n", fileresf);        varpl[i][(int)age] =0.;
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
       matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
   if (cptcoveff==0) ncodemax[cptcoveff]=1;      for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   if (mobilav!=0) {  
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      fprintf(ficresvpl,"%.0f ",age );
     if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){      for(i=1; i<=nlstate;i++)
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
       printf(" Error in movingaverage mobilav=%d\n",mobilav);      fprintf(ficresvpl,"\n");
     }      free_vector(gp,1,nlstate);
   }      free_vector(gm,1,nlstate);
       free_matrix(gradg,1,npar,1,nlstate);
   stepsize=(int) (stepm+YEARM-1)/YEARM;      free_matrix(trgradg,1,nlstate,1,npar);
   if (stepm<=12) stepsize=1;    } /* End age */
   if(estepm < stepm){  
     printf ("Problem %d lower than %d\n",estepm, stepm);    free_vector(xp,1,npar);
   }    free_matrix(doldm,1,nlstate,1,npar);
   else  hstepm=estepm;       free_matrix(dnewm,1,nlstate,1,nlstate);
   
   hstepm=hstepm/stepm;   }
   yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and  
                                fractional in yp1 */  /************ Variance of one-step probabilities  ******************/
   anprojmean=yp;  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
   yp2=modf((yp1*12),&yp);  {
   mprojmean=yp;    int i, j=0,  i1, k1, l1, t, tj;
   yp1=modf((yp2*30.5),&yp);    int k2, l2, j1,  z1;
   jprojmean=yp;    int k=0,l, cptcode;
   if(jprojmean==0) jprojmean=1;    int first=1, first1;
   if(mprojmean==0) jprojmean=1;    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
     double **dnewm,**doldm;
   i1=cptcoveff;    double *xp;
   if (cptcovn < 1){i1=1;}    double *gp, *gm;
       double **gradg, **trgradg;
   fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2);     double **mu;
       double age,agelim, cov[NCOVMAX];
   fprintf(ficresf,"#****** Routine prevforecast **\n");    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     int theta;
 /*            if (h==(int)(YEARM*yearp)){ */    char fileresprob[FILENAMELENGTH];
   for(cptcov=1, k=0;cptcov<=i1;cptcov++){    char fileresprobcov[FILENAMELENGTH];
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    char fileresprobcor[FILENAMELENGTH];
       k=k+1;  
       fprintf(ficresf,"\n#******");    double ***varpij;
       for(j=1;j<=cptcoveff;j++) {  
         fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    strcpy(fileresprob,"prob");
       }    strcat(fileresprob,fileres);
       fprintf(ficresf,"******\n");    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
       fprintf(ficresf,"# Covariate valuofcovar yearproj age");      printf("Problem with resultfile: %s\n", fileresprob);
       for(j=1; j<=nlstate+ndeath;j++){       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
         for(i=1; i<=nlstate;i++)                  }
           fprintf(ficresf," p%d%d",i,j);    strcpy(fileresprobcov,"probcov");
         fprintf(ficresf," p.%d",j);    strcat(fileresprobcov,fileres);
       }    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
       for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) {       printf("Problem with resultfile: %s\n", fileresprobcov);
         fprintf(ficresf,"\n");      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);       }
     strcpy(fileresprobcor,"probcor");
         for (agec=fage; agec>=(ageminpar-1); agec--){     strcat(fileresprobcor,fileres);
           nhstepm=(int) rint((agelim-agec)*YEARM/stepm);     if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
           nhstepm = nhstepm/hstepm;       printf("Problem with resultfile: %s\n", fileresprobcor);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
           oldm=oldms;savm=savms;    }
           hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);      printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
             fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
           for (h=0; h<=nhstepm; h++){    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
             if (h*hstepm/YEARM*stepm ==yearp) {    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
               fprintf(ficresf,"\n");    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
               for(j=1;j<=cptcoveff;j++)     fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
                 fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    pstamp(ficresprob);
               fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
             }     fprintf(ficresprob,"# Age");
             for(j=1; j<=nlstate+ndeath;j++) {    pstamp(ficresprobcov);
               ppij=0.;    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
               for(i=1; i<=nlstate;i++) {    fprintf(ficresprobcov,"# Age");
                 if (mobilav==1)     pstamp(ficresprobcor);
                   ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
                 else {    fprintf(ficresprobcor,"# Age");
                   ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];  
                 }  
                 if (h*hstepm/YEARM*stepm== yearp) {    for(i=1; i<=nlstate;i++)
                   fprintf(ficresf," %.3f", p3mat[i][j][h]);      for(j=1; j<=(nlstate+ndeath);j++){
                 }        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
               } /* end i */        fprintf(ficresprobcov," p%1d-%1d ",i,j);
               if (h*hstepm/YEARM*stepm==yearp) {        fprintf(ficresprobcor," p%1d-%1d ",i,j);
                 fprintf(ficresf," %.3f", ppij);      }  
               }   /* fprintf(ficresprob,"\n");
             }/* end j */    fprintf(ficresprobcov,"\n");
           } /* end h */    fprintf(ficresprobcor,"\n");
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);   */
         } /* end agec */   xp=vector(1,npar);
       } /* end yearp */    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     } /* end cptcod */    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
   } /* end  cptcov */    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
            varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    first=1;
     fprintf(ficgp,"\n# Routine varprob");
   fclose(ficresf);    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
 }    fprintf(fichtm,"\n");
   
 /************** Forecasting *****not tested NB*************/    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){    fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
       file %s<br>\n",optionfilehtmcov);
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
   int *popage;  and drawn. It helps understanding how is the covariance between two incidences.\
   double calagedatem, agelim, kk1, kk2;   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
   double *popeffectif,*popcount;    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
   double ***p3mat,***tabpop,***tabpopprev;  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
   double ***mobaverage;  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
   char filerespop[FILENAMELENGTH];  standard deviations wide on each axis. <br>\
    Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
   agelim=AGESUP;  
   calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;    cov[1]=1;
       tj=cptcoveff;
   prevalence(ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
       j1=0;
       for(t=1; t<=tj;t++){
   strcpy(filerespop,"pop");       for(i1=1; i1<=ncodemax[t];i1++){
   strcat(filerespop,fileres);        j1++;
   if((ficrespop=fopen(filerespop,"w"))==NULL) {        if  (cptcovn>0) {
     printf("Problem with forecast resultfile: %s\n", filerespop);          fprintf(ficresprob, "\n#********** Variable ");
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   }          fprintf(ficresprob, "**********\n#\n");
   printf("Computing forecasting: result on file '%s' \n", filerespop);          fprintf(ficresprobcov, "\n#********** Variable ");
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcov, "**********\n#\n");
   if (cptcoveff==0) ncodemax[cptcoveff]=1;         
           fprintf(ficgp, "\n#********** Variable ");
   if (mobilav!=0) {          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          fprintf(ficgp, "**********\n#\n");
     if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){         
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);         
       printf(" Error in movingaverage mobilav=%d\n",mobilav);          fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable ");
     }          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   }          fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
          
   stepsize=(int) (stepm+YEARM-1)/YEARM;          fprintf(ficresprobcor, "\n#********** Variable ");    
   if (stepm<=12) stepsize=1;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
             fprintf(ficresprobcor, "**********\n#");    
   agelim=AGESUP;        }
          
   hstepm=1;        for (age=bage; age<=fage; age ++){
   hstepm=hstepm/stepm;           cov[2]=age;
             for (k=1; k<=cptcovn;k++) {
   if (popforecast==1) {            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
     if((ficpop=fopen(popfile,"r"))==NULL) {          }
       printf("Problem with population file : %s\n",popfile);exit(0);          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
       fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);          for (k=1; k<=cptcovprod;k++)
     }             cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
     popage=ivector(0,AGESUP);         
     popeffectif=vector(0,AGESUP);          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
     popcount=vector(0,AGESUP);          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
               gp=vector(1,(nlstate)*(nlstate+ndeath));
     i=1;             gm=vector(1,(nlstate)*(nlstate+ndeath));
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;     
              for(theta=1; theta <=npar; theta++){
     imx=i;            for(i=1; i<=npar; i++)
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
   }           
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
   for(cptcov=1,k=0;cptcov<=i2;cptcov++){           
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){            k=0;
       k=k+1;            for(i=1; i<= (nlstate); i++){
       fprintf(ficrespop,"\n#******");              for(j=1; j<=(nlstate+ndeath);j++){
       for(j=1;j<=cptcoveff;j++) {                k=k+1;
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                gp[k]=pmmij[i][j];
       }              }
       fprintf(ficrespop,"******\n");            }
       fprintf(ficrespop,"# Age");           
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);            for(i=1; i<=npar; i++)
       if (popforecast==1)  fprintf(ficrespop," [Population]");              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
            
       for (cpt=0; cpt<=0;cpt++) {             pmij(pmmij,cov,ncovmodel,xp,nlstate);
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);               k=0;
                     for(i=1; i<=(nlstate); i++){
         for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){               for(j=1; j<=(nlstate+ndeath);j++){
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);                 k=k+1;
           nhstepm = nhstepm/hstepm;                 gm[k]=pmmij[i][j];
                         }
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            }
           oldm=oldms;savm=savms;       
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);              for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)
                       gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
           for (h=0; h<=nhstepm; h++){          }
             if (h==(int) (calagedatem+YEARM*cpt)) {  
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
             }             for(theta=1; theta <=npar; theta++)
             for(j=1; j<=nlstate+ndeath;j++) {              trgradg[j][theta]=gradg[theta][j];
               kk1=0.;kk2=0;         
               for(i=1; i<=nlstate;i++) {                        matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);
                 if (mobilav==1)           matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
                 else {          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
                 }          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
               }  
               if (h==(int)(calagedatem+12*cpt)){          pmij(pmmij,cov,ncovmodel,x,nlstate);
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;         
                   /*fprintf(ficrespop," %.3f", kk1);          k=0;
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/          for(i=1; i<=(nlstate); i++){
               }            for(j=1; j<=(nlstate+ndeath);j++){
             }              k=k+1;
             for(i=1; i<=nlstate;i++){              mu[k][(int) age]=pmmij[i][j];
               kk1=0.;            }
                 for(j=1; j<=nlstate;j++){          }
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];           for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
                 }            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];              varpij[i][j][(int)age] = doldm[i][j];
             }  
           /*printf("\n%d ",(int)age);
             if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++)             for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
           }            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            }*/
         }  
       }          fprintf(ficresprob,"\n%d ",(int)age);
            fprintf(ficresprobcov,"\n%d ",(int)age);
   /******/          fprintf(ficresprobcor,"\n%d ",(int)age);
   
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);               fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
         for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);             fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
           nhstepm = nhstepm/hstepm;             fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
                     }
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          i=0;
           oldm=oldms;savm=savms;          for (k=1; k<=(nlstate);k++){
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);              for (l=1; l<=(nlstate+ndeath);l++){
           for (h=0; h<=nhstepm; h++){              i=i++;
             if (h==(int) (calagedatem+YEARM*cpt)) {              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
             }               for (j=1; j<=i;j++){
             for(j=1; j<=nlstate+ndeath;j++) {                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
               kk1=0.;kk2=0;                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
               for(i=1; i<=nlstate;i++) {                            }
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];                }
               }          }/* end of loop for state */
               if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);                } /* end of loop for age */
             }  
           }        /* Confidence intervalle of pij  */
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        /*
         }          fprintf(ficgp,"\nset noparametric;unset label");
       }          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
    }           fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
   }          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
            fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
           fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
   if (popforecast==1) {        */
     free_ivector(popage,0,AGESUP);  
     free_vector(popeffectif,0,AGESUP);        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
     free_vector(popcount,0,AGESUP);        first1=1;
   }        for (k2=1; k2<=(nlstate);k2++){
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          for (l2=1; l2<=(nlstate+ndeath);l2++){
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);            if(l2==k2) continue;
   fclose(ficrespop);            j=(k2-1)*(nlstate+ndeath)+l2;
 }            for (k1=1; k1<=(nlstate);k1++){
               for (l1=1; l1<=(nlstate+ndeath);l1++){
 /***********************************************/                if(l1==k1) continue;
 /**************** Main Program *****************/                i=(k1-1)*(nlstate+ndeath)+l1;
 /***********************************************/                if(i<=j) continue;
                 for (age=bage; age<=fage; age ++){
 int main(int argc, char *argv[])                  if ((int)age %5==0){
 {                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
   int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
   double agedeb, agefin,hf;                    mu1=mu[i][(int) age]/stepm*YEARM ;
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;                    mu2=mu[j][(int) age]/stepm*YEARM;
                     c12=cv12/sqrt(v1*v2);
   double fret;                    /* Computing eigen value of matrix of covariance */
   double **xi,tmp,delta;                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
   double dum; /* Dummy variable */                    /* Eigen vectors */
   double ***p3mat;                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
   double ***mobaverage;                    /*v21=sqrt(1.-v11*v11); *//* error */
   int *indx;                    v21=(lc1-v1)/cv12*v11;
   char line[MAXLINE], linepar[MAXLINE];                    v12=-v21;
   char path[80],pathc[80],pathcd[80],pathtot[80],model[80];                    v22=v11;
   int firstobs=1, lastobs=10;                    tnalp=v21/v11;
   int sdeb, sfin; /* Status at beginning and end */                    if(first1==1){
   int c,  h , cpt,l;                      first1=0;
   int ju,jl, mi;                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;                    }
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab;                     fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
   int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */                    /*printf(fignu*/
   int mobilav=0,popforecast=0;                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
   int hstepm, nhstepm;                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
   double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;                    if(first==1){
   double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;                      first=0;
                       fprintf(ficgp,"\nset parametric;unset label");
   double bage, fage, age, agelim, agebase;                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
   double ftolpl=FTOL;                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
   double **prlim;                      fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
   double *severity;   :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   double ***param; /* Matrix of parameters */  %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
   double  *p;                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
   double **matcov; /* Matrix of covariance */                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
   double ***delti3; /* Scale */                      fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
   double *delti; /* Scale */                      fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
   double ***eij, ***vareij;                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
   double **varpl; /* Variances of prevalence limits by age */                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
   double *epj, vepp;                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
   double kk1, kk2;                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
   double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
   char *alph[]={"a","a","b","c","d","e"}, str[4];                    }else{
                       first=0;
                       fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
   char z[1]="c", occ;                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
 #include <sys/time.h>                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
 #include <time.h>                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                                mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
   /* long total_usecs;                    }/* if first */
      struct timeval start_time, end_time;                  } /* age mod 5 */
                   } /* end loop age */
      gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */                fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
   getcwd(pathcd, size);                first=1;
               } /*l12 */
   printf("\n%s",version);            } /* k12 */
   if(argc <=1){          } /*l1 */
     printf("\nEnter the parameter file name: ");        }/* k1 */
     scanf("%s",pathtot);      } /* loop covariates */
   }    }
   else{    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     strcpy(pathtot,argv[1]);    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
   }    free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/    free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
   /*cygwin_split_path(pathtot,path,optionfile);    free_vector(xp,1,npar);
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/    fclose(ficresprob);
   /* cutv(path,optionfile,pathtot,'\\');*/    fclose(ficresprobcov);
     fclose(ficresprobcor);
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);    fflush(ficgp);
   printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);    fflush(fichtmcov);
   chdir(path);  }
   replace(pathc,path);  
   
   /*-------- arguments in the command line --------*/  /******************* Printing html file ***********/
   void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
   /* Log file */                    int lastpass, int stepm, int weightopt, char model[],\
   strcat(filelog, optionfilefiname);                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
   strcat(filelog,".log");    /* */                    int popforecast, int estepm ,\
   if((ficlog=fopen(filelog,"w"))==NULL)    {                    double jprev1, double mprev1,double anprev1, \
     printf("Problem with logfile %s\n",filelog);                    double jprev2, double mprev2,double anprev2){
     goto end;    int jj1, k1, i1, cpt;
   }  
   fprintf(ficlog,"Log filename:%s\n",filelog);     fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
   fprintf(ficlog,"\n%s",version);     <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   fprintf(ficlog,"\nEnter the parameter file name: ");  </ul>");
   fprintf(ficlog,"pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);     fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
   fflush(ficlog);   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
   /* */     fprintf(fichtm,"\
   strcpy(fileres,"r");   - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
   strcat(fileres, optionfilefiname);             stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
   strcat(fileres,".txt");    /* Other files have txt extension */     fprintf(fichtm,"\
    - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
   /*---------arguments file --------*/             subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
      fprintf(fichtm,"\
   if((ficpar=fopen(optionfile,"r"))==NULL)    {   - (a) Life expectancies by health status at initial age, (b) health expectancies by health status at initial age:  ei., eij . If one or more covariate are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
     printf("Problem with optionfile %s\n",optionfile);     <a href=\"%s\">%s</a> <br>\n",
     fprintf(ficlog,"Problem with optionfile %s\n",optionfile);             estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
     goto end;     fprintf(fichtm,"\
   }   - Population projections by age and states: \
      <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
   strcpy(filereso,"o");  
   strcat(filereso,fileres);  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   if((ficparo=fopen(filereso,"w"))==NULL) {  
     printf("Problem with Output resultfile: %s\n", filereso);   m=cptcoveff;
     fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
     goto end;  
   }   jj1=0;
    for(k1=1; k1<=m;k1++){
   /* Reads comments: lines beginning with '#' */     for(i1=1; i1<=ncodemax[k1];i1++){
   while((c=getc(ficpar))=='#' && c!= EOF){       jj1++;
     ungetc(c,ficpar);       if (cptcovn > 0) {
     fgets(line, MAXLINE, ficpar);         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
     puts(line);         for (cpt=1; cpt<=cptcoveff;cpt++)
     fputs(line,ficparo);           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
   }         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
   ungetc(c,ficpar);       }
        /* Pij */
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d1.png\">%s%d1.png</a><br> \
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);  <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);    
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);       /* Quasi-incidences */
   while((c=getc(ficpar))=='#' && c!= EOF){       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
     ungetc(c,ficpar);   before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d2.png\">%s%d2.png</a><br> \
     fgets(line, MAXLINE, ficpar);  <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);
     puts(line);         /* Period (stable) prevalence in each health state */
     fputs(line,ficparo);         for(cpt=1; cpt<nlstate;cpt++){
   }           fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d%d.png\">%s%d%d.png</a><br> \
   ungetc(c,ficpar);  <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
            }
           for(cpt=1; cpt<=nlstate;cpt++) {
   covar=matrix(0,NCOVMAX,1,n);           fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
   cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;       }
      } /* end i1 */
   ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */   }/* End k1 */
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */   fprintf(fichtm,"</ul>");
     
   /* Read guess parameters */  
   /* Reads comments: lines beginning with '#' */   fprintf(fichtm,"\
   while((c=getc(ficpar))=='#' && c!= EOF){  \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
     ungetc(c,ficpar);   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
     fgets(line, MAXLINE, ficpar);  
     puts(line);   fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
     fputs(line,ficparo);           subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
   }   fprintf(fichtm,"\
   ungetc(c,ficpar);   - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);  
   for(i=1; i <=nlstate; i++)   fprintf(fichtm,"\
     for(j=1; j <=nlstate+ndeath-1; j++){   - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
       fscanf(ficpar,"%1d%1d",&i1,&j1);           subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
       fprintf(ficparo,"%1d%1d",i1,j1);   fprintf(fichtm,"\
       if(mle==1)   - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
         printf("%1d%1d",i,j);     <a href=\"%s\">%s</a> <br>\n</li>",
       fprintf(ficlog,"%1d%1d",i,j);             estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
       for(k=1; k<=ncovmodel;k++){   fprintf(fichtm,"\
         fscanf(ficpar," %lf",&param[i][j][k]);   - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
         if(mle==1){     <a href=\"%s\">%s</a> <br>\n</li>",
           printf(" %lf",param[i][j][k]);             estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
           fprintf(ficlog," %lf",param[i][j][k]);   fprintf(fichtm,"\
         }   - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), eij are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences (i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
         else           estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
           fprintf(ficlog," %lf",param[i][j][k]);   fprintf(fichtm,"\
         fprintf(ficparo," %lf",param[i][j][k]);   - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors: <a href=\"%s\">%s</a> <br>\n",
       }           subdirf2(fileres,"t"),subdirf2(fileres,"t"));
       fscanf(ficpar,"\n");   fprintf(fichtm,"\
       if(mle==1)   - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
         printf("\n");           subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
       fprintf(ficlog,"\n");  
       fprintf(ficparo,"\n");  /*  if(popforecast==1) fprintf(fichtm,"\n */
     }  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
     /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/  /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   p=param[1][1];  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
      fflush(fichtm);
   /* Reads comments: lines beginning with '#' */   fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);   m=cptcoveff;
     fgets(line, MAXLINE, ficpar);   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
     puts(line);  
     fputs(line,ficparo);   jj1=0;
   }   for(k1=1; k1<=m;k1++){
   ungetc(c,ficpar);     for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);       if (cptcovn > 0) {
   /* delti=vector(1,npar); *//* Scale of each paramater (output from hesscov) */         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
   for(i=1; i <=nlstate; i++){         for (cpt=1; cpt<=cptcoveff;cpt++)
     for(j=1; j <=nlstate+ndeath-1; j++){           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
       fscanf(ficpar,"%1d%1d",&i1,&j1);         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
       printf("%1d%1d",i,j);       }
       fprintf(ficparo,"%1d%1d",i1,j1);       for(cpt=1; cpt<=nlstate;cpt++) {
       for(k=1; k<=ncovmodel;k++){         fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
         fscanf(ficpar,"%le",&delti3[i][j][k]);  prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
         printf(" %le",delti3[i][j][k]);  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
         fprintf(ficparo," %le",delti3[i][j][k]);       }
       }       fprintf(fichtm,"\n<br>- Total life expectancy by age and \
       fscanf(ficpar,"\n");  health expectancies in states (1) and (2): %s%d.png<br>\
       printf("\n");  <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
       fprintf(ficparo,"\n");     } /* end i1 */
     }   }/* End k1 */
   }   fprintf(fichtm,"</ul>");
   delti=delti3[1][1];   fflush(fichtm);
   }
   
   /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */  /******************* Gnuplot file **************/
     void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   /* Reads comments: lines beginning with '#' */  
   while((c=getc(ficpar))=='#' && c!= EOF){    char dirfileres[132],optfileres[132];
     ungetc(c,ficpar);    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     fgets(line, MAXLINE, ficpar);    int ng;
     puts(line);  /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
     fputs(line,ficparo);  /*     printf("Problem with file %s",optionfilegnuplot); */
   }  /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   ungetc(c,ficpar);  /*   } */
     
   matcov=matrix(1,npar,1,npar);    /*#ifdef windows */
   for(i=1; i <=npar; i++){    fprintf(ficgp,"cd \"%s\" \n",pathc);
     fscanf(ficpar,"%s",&str);      /*#endif */
     if(mle==1)    m=pow(2,cptcoveff);
       printf("%s",str);  
     fprintf(ficlog,"%s",str);    strcpy(dirfileres,optionfilefiname);
     fprintf(ficparo,"%s",str);    strcpy(optfileres,"vpl");
     for(j=1; j <=i; j++){   /* 1eme*/
       fscanf(ficpar," %le",&matcov[i][j]);    for (cpt=1; cpt<= nlstate ; cpt ++) {
       if(mle==1){     for (k1=1; k1<= m ; k1 ++) {
         printf(" %.5le",matcov[i][j]);       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
         fprintf(ficlog," %.5le",matcov[i][j]);       fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
       }       fprintf(ficgp,"set xlabel \"Age\" \n\
       else  set ylabel \"Probability\" \n\
         fprintf(ficlog," %.5le",matcov[i][j]);  set ter png small\n\
       fprintf(ficparo," %.5le",matcov[i][j]);  set size 0.65,0.65\n\
     }  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
     fscanf(ficpar,"\n");  
     if(mle==1)       for (i=1; i<= nlstate ; i ++) {
       printf("\n");         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
     fprintf(ficlog,"\n");         else fprintf(ficgp," \%%*lf (\%%*lf)");
     fprintf(ficparo,"\n");       }
   }       fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
   for(i=1; i <=npar; i++)       for (i=1; i<= nlstate ; i ++) {
     for(j=i+1;j<=npar;j++)         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
       matcov[i][j]=matcov[j][i];         else fprintf(ficgp," \%%*lf (\%%*lf)");
           }
   if(mle==1)       fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
     printf("\n");       for (i=1; i<= nlstate ; i ++) {
   fprintf(ficlog,"\n");         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }  
   /*-------- Rewriting paramater file ----------*/       fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
   strcpy(rfileres,"r");    /* "Rparameterfile */     }
   strcat(rfileres,optionfilefiname);    /* Parameter file first name*/    }
   strcat(rfileres,".");    /* */    /*2 eme*/
   strcat(rfileres,optionfilext);    /* Other files have txt extension */   
   if((ficres =fopen(rfileres,"w"))==NULL) {    for (k1=1; k1<= m ; k1 ++) {
     printf("Problem writing new parameter file: %s\n", fileres);goto end;      fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
     fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;      fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
   }     
   fprintf(ficres,"#%s\n",version);      for (i=1; i<= nlstate+1 ; i ++) {
             k=2*i;
   /*-------- data file ----------*/        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
   if((fic=fopen(datafile,"r"))==NULL)    {        for (j=1; j<= nlstate+1 ; j ++) {
     printf("Problem with datafile: %s\n", datafile);goto end;          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
     fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;          else fprintf(ficgp," \%%*lf (\%%*lf)");
   }        }  
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
   n= lastobs;        else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
   severity = vector(1,maxwav);        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
   outcome=imatrix(1,maxwav+1,1,n);        for (j=1; j<= nlstate+1 ; j ++) {
   num=ivector(1,n);          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
   moisnais=vector(1,n);          else fprintf(ficgp," \%%*lf (\%%*lf)");
   annais=vector(1,n);        }  
   moisdc=vector(1,n);        fprintf(ficgp,"\" t\"\" w l 0,");
   andc=vector(1,n);        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
   agedc=vector(1,n);        for (j=1; j<= nlstate+1 ; j ++) {
   cod=ivector(1,n);          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
   weight=vector(1,n);          else fprintf(ficgp," \%%*lf (\%%*lf)");
   for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */        }  
   mint=matrix(1,maxwav,1,n);        if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
   anint=matrix(1,maxwav,1,n);        else fprintf(ficgp,"\" t\"\" w l 0,");
   s=imatrix(1,maxwav+1,1,n);      }
   tab=ivector(1,NCOVMAX);    }
   ncodemax=ivector(1,8);   
     /*3eme*/
   i=1;   
   while (fgets(line, MAXLINE, fic) != NULL)    {    for (k1=1; k1<= m ; k1 ++) {
     if ((i >= firstobs) && (i <=lastobs)) {      for (cpt=1; cpt<= nlstate ; cpt ++) {
                 /*       k=2+nlstate*(2*cpt-2); */
       for (j=maxwav;j>=1;j--){        k=2+(nlstate+1)*(cpt-1);
         cutv(stra, strb,line,' '); s[j][i]=atoi(strb);         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         strcpy(line,stra);        fprintf(ficgp,"set ter png small\n\
         cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);  set size 0.65,0.65\n\
         cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
       }        /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
                   for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
       cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
       cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);          fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
       cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
       cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);         
         */
       cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);        for (i=1; i< nlstate ; i ++) {
       for (j=ncovcol;j>=1;j--){          fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
         cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);          /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
       }          
       num[i]=atol(stra);        }
                 fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){      }
         printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/    }
    
       i=i+1;    /* CV preval stable (period) */
     }    for (k1=1; k1<= m ; k1 ++) {
   }      for (cpt=1; cpt<=nlstate ; cpt ++) {
   /* printf("ii=%d", ij);        k=3;
      scanf("%d",i);*/        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
   imx=i-1; /* Number of individuals */        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small\nset size 0.65,0.65\n\
   /* for (i=1; i<=imx; i++){  unset log y\n\
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;  plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;       
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;        for (i=1; i< nlstate ; i ++)
     }*/          fprintf(ficgp,"+$%d",k+i+1);
    /*  for (i=1; i<=imx; i++){        fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
      if (s[4][i]==9)  s[4][i]=-1;        
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/        l=3+(nlstate+ndeath)*cpt;
           fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
  for (i=1; i<=imx; i++)        for (i=1; i< nlstate ; i ++) {
            l=3+(nlstate+ndeath)*cpt;
    /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;          fprintf(ficgp,"+$%d",l+i+1);
      else weight[i]=1;*/        }
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);  
   /* Calculation of the number of parameter from char model*/      }
   Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */    }  
   Tprod=ivector(1,15);    
   Tvaraff=ivector(1,15);     /* proba elementaires */
   Tvard=imatrix(1,15,1,2);    for(i=1,jk=1; i <=nlstate; i++){
   Tage=ivector(1,15);            for(k=1; k <=(nlstate+ndeath); k++){
            if (k != i) {
   if (strlen(model) >1){ /* If there is at least 1 covariate */          for(j=1; j <=ncovmodel; j++){
     j=0, j1=0, k1=1, k2=1;            fprintf(ficgp,"p%d=%f ",jk,p[jk]);
     j=nbocc(model,'+'); /* j=Number of '+' */            jk++;
     j1=nbocc(model,'*'); /* j1=Number of '*' */            fprintf(ficgp,"\n");
     cptcovn=j+1;           }
     cptcovprod=j1; /*Number of products */        }
           }
     strcpy(modelsav,model);      }
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){  
       printf("Error. Non available option model=%s ",model);     for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
       fprintf(ficlog,"Error. Non available option model=%s ",model);       for(jk=1; jk <=m; jk++) {
       goto end;         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng);
     }         if (ng==2)
                fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
     /* This loop fills the array Tvar from the string 'model'.*/         else
            fprintf(ficgp,"\nset title \"Probability\"\n");
     for(i=(j+1); i>=1;i--){         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
       cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */          i=1;
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */         for(k2=1; k2<=nlstate; k2++) {
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/           k3=i;
       /*scanf("%d",i);*/           for(k=1; k<=(nlstate+ndeath); k++) {
       if (strchr(strb,'*')) {  /* Model includes a product */             if (k != k2){
         cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/               if(ng==2)
         if (strcmp(strc,"age")==0) { /* Vn*age */                 fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
           cptcovprod--;               else
           cutv(strb,stre,strd,'V');                 fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
           Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/               ij=1;
           cptcovage++;               for(j=3; j <=ncovmodel; j++) {
             Tage[cptcovage]=i;                 if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
             /*printf("stre=%s ", stre);*/                   fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
         }                   ij++;
         else if (strcmp(strd,"age")==0) { /* or age*Vn */                 }
           cptcovprod--;                 else
           cutv(strb,stre,strc,'V');                   fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
           Tvar[i]=atoi(stre);               }
           cptcovage++;               fprintf(ficgp,")/(1");
           Tage[cptcovage]=i;               
         }               for(k1=1; k1 <=nlstate; k1++){  
         else {  /* Age is not in the model */                 fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
           cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/                 ij=1;
           Tvar[i]=ncovcol+k1;                 for(j=3; j <=ncovmodel; j++){
           cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */                   if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
           Tprod[k1]=i;                     fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
           Tvard[k1][1]=atoi(strc); /* m*/                     ij++;
           Tvard[k1][2]=atoi(stre); /* n */                   }
           Tvar[cptcovn+k2]=Tvard[k1][1];                   else
           Tvar[cptcovn+k2+1]=Tvard[k1][2];                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
           for (k=1; k<=lastobs;k++)                  }
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];                 fprintf(ficgp,")");
           k1++;               }
           k2=k2+2;               fprintf(ficgp,") t \"p%d%d\" ", k2,k);
         }               if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
       }               i=i+ncovmodel;
       else { /* no more sum */             }
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/           } /* end k */
        /*  scanf("%d",i);*/         } /* end k2 */
       cutv(strd,strc,strb,'V');       } /* end jk */
       Tvar[i]=atoi(strc);     } /* end ng */
       }     fflush(ficgp);
       strcpy(modelsav,stra);    }  /* end gnuplot */
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);  
         scanf("%d",i);*/  
     } /* end of loop + */  /*************** Moving average **************/
   } /* end model */  int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
     
   /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.    int i, cpt, cptcod;
     If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/    int modcovmax =1;
     int mobilavrange, mob;
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);    double age;
   printf("cptcovprod=%d ", cptcovprod);  
   fprintf(ficlog,"cptcovprod=%d ", cptcovprod);    modcovmax=2*cptcoveff;/* Max number of modalities. We suppose
                              a covariate has 2 modalities */
   scanf("%d ",i);    if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   fclose(fic);*/  
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
     /*  if(mle==1){*/      if(mobilav==1) mobilavrange=5; /* default */
   if (weightopt != 1) { /* Maximisation without weights*/      else mobilavrange=mobilav;
     for(i=1;i<=n;i++) weight[i]=1.0;      for (age=bage; age<=fage; age++)
   }        for (i=1; i<=nlstate;i++)
     /*-calculation of age at interview from date of interview and age at death -*/          for (cptcod=1;cptcod<=modcovmax;cptcod++)
   agev=matrix(1,maxwav,1,imx);            mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for
   for (i=1; i<=imx; i++) {         fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
     for(m=2; (m<= maxwav); m++) {         we use a 5 terms etc. until the borders are no more concerned.
       if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){      */
         anint[m][i]=9999;      for (mob=3;mob <=mobilavrange;mob=mob+2){
         s[m][i]=-1;        for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
       }          for (i=1; i<=nlstate;i++){
       if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){            for (cptcod=1;cptcod<=modcovmax;cptcod++){
         printf("Error! Date of death (month %2d and year %4d) of individual %d on line %d was unknown %d, set an arbitrary year of death\n",(int)moisdc[i],(int)andc[i],num[i],i);              mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
         fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %d on line %d was unknown %d, set an arbitrary year of death\n",(int)moisdc[i],(int)andc[i],num[i],i);                for (cpt=1;cpt<=(mob-1)/2;cpt++){
         s[m][i]=-1;                  mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
       }                  mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
       if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){                }
         printf("Warning! Month of death of individual %d on line %d was unknown %2d, we set it to June\n",num[i],i,(int)moisdc[i]);               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
         fprintf(ficlog,"Warning! Month of death of individual %d on line %d was unknown %f, we set it to June\n",num[i],i,moisdc[i]);             }
         moisdc[i]=6;          }
         s[m][i]=-1;        }/* end age */
       }      }/* end mob */
     }    }else return -1;
   }    return 0;
   }/* End movingaverage */
   for (i=1; i<=imx; i++)  {  
     agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);  
     for(m=firstpass; (m<= lastpass); m++){  /************** Forecasting ******************/
       if(s[m][i] >0){  prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
         if (s[m][i] >= nlstate+1) {    /* proj1, year, month, day of starting projection
           if(agedc[i]>0)       agemin, agemax range of age
             if((int)moisdc[i]!=99 && (int)andc[i]!=9999)       dateprev1 dateprev2 range of dates during which prevalence is computed
               agev[m][i]=agedc[i];       anproj2 year of en of projection (same day and month as proj1).
           /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/    */
             else {    int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
               if ((int)andc[i]!=9999){    int *popage;
                 printf("Warning negative age at death: %d line:%d\n",num[i],i);    double agec; /* generic age */
                 fprintf(ficlog,"Warning negative age at death: %d line:%d\n",num[i],i);    double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
                 agev[m][i]=-1;    double *popeffectif,*popcount;
               }    double ***p3mat;
             }    double ***mobaverage;
         }    char fileresf[FILENAMELENGTH];
         else if(s[m][i] !=9){ /* Standard case, age in fractional  
                                  years but with the precision of a    agelim=AGESUP;
                                  month */    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
           agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);   
           if((int)mint[m][i]==99 || (int)anint[m][i]==9999)    strcpy(fileresf,"f");
             agev[m][i]=1;    strcat(fileresf,fileres);
           else if(agev[m][i] <agemin){     if((ficresf=fopen(fileresf,"w"))==NULL) {
             agemin=agev[m][i];      printf("Problem with forecast resultfile: %s\n", fileresf);
             /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/      fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
           }    }
           else if(agev[m][i] >agemax){    printf("Computing forecasting: result on file '%s' \n", fileresf);
             agemax=agev[m][i];    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
             /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/  
           }    if (cptcoveff==0) ncodemax[cptcoveff]=1;
           /*agev[m][i]=anint[m][i]-annais[i];*/  
           /*     agev[m][i] = age[i]+2*m;*/    if (mobilav!=0) {
         }      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         else { /* =9 */      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
           agev[m][i]=1;        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           s[m][i]=-1;        printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }      }
       }    }
       else /*= 0 Unknown */  
         agev[m][i]=1;    stepsize=(int) (stepm+YEARM-1)/YEARM;
     }    if (stepm<=12) stepsize=1;
         if(estepm < stepm){
   }      printf ("Problem %d lower than %d\n",estepm, stepm);
   for (i=1; i<=imx; i++)  {    }
     for(m=firstpass; (m<=lastpass); m++){    else  hstepm=estepm;  
       if (s[m][i] > (nlstate+ndeath)) {  
         printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);         hstepm=hstepm/stepm;
         fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);         yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
         goto end;                                 fractional in yp1 */
       }    anprojmean=yp;
     }    yp2=modf((yp1*12),&yp);
   }    mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
   /*for (i=1; i<=imx; i++){    jprojmean=yp;
   for (m=firstpass; (m<lastpass); m++){    if(jprojmean==0) jprojmean=1;
      printf("%d %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);    if(mprojmean==0) jprojmean=1;
 }  
     i1=cptcoveff;
 }*/    if (cptcovn < 1){i1=1;}
    
   printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);    fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2);
   fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);    
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   free_vector(severity,1,maxwav);  
   free_imatrix(outcome,1,maxwav+1,1,n);  /*            if (h==(int)(YEARM*yearp)){ */
   free_vector(moisnais,1,n);    for(cptcov=1, k=0;cptcov<=i1;cptcov++){
   free_vector(annais,1,n);      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
   /* free_matrix(mint,1,maxwav,1,n);        k=k+1;
      free_matrix(anint,1,maxwav,1,n);*/        fprintf(ficresf,"\n#******");
   free_vector(moisdc,1,n);        for(j=1;j<=cptcoveff;j++) {
   free_vector(andc,1,n);          fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
            fprintf(ficresf,"******\n");
   wav=ivector(1,imx);        fprintf(ficresf,"# Covariate valuofcovar yearproj age");
   dh=imatrix(1,lastpass-firstpass+1,1,imx);        for(j=1; j<=nlstate+ndeath;j++){
   bh=imatrix(1,lastpass-firstpass+1,1,imx);          for(i=1; i<=nlstate;i++)              
   mw=imatrix(1,lastpass-firstpass+1,1,imx);            fprintf(ficresf," p%d%d",i,j);
              fprintf(ficresf," p.%d",j);
   /* Concatenates waves */        }
   concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);        for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) {
           fprintf(ficresf,"\n");
   /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */          fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);  
   
   Tcode=ivector(1,100);          for (agec=fage; agec>=(ageminpar-1); agec--){
   nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);             nhstepm=(int) rint((agelim-agec)*YEARM/stepm);
   ncodemax[1]=1;            nhstepm = nhstepm/hstepm;
   if (cptcovn > 0) tricode(Tvar,nbcode,imx);            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                   oldm=oldms;savm=savms;
   codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
                                  the estimations*/         
   h=0;            for (h=0; h<=nhstepm; h++){
   m=pow(2,cptcoveff);              if (h*hstepm/YEARM*stepm ==yearp) {
                  fprintf(ficresf,"\n");
   for(k=1;k<=cptcoveff; k++){                for(j=1;j<=cptcoveff;j++)
     for(i=1; i <=(m/pow(2,k));i++){                  fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
       for(j=1; j <= ncodemax[k]; j++){                fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
         for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){              }
           h++;              for(j=1; j<=nlstate+ndeath;j++) {
           if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;                ppij=0.;
           /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/                for(i=1; i<=nlstate;i++) {
         }                   if (mobilav==1)
       }                    ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
     }                  else {
   }                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
   /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);                   }
      codtab[1][2]=1;codtab[2][2]=2; */                  if (h*hstepm/YEARM*stepm== yearp) {
   /* for(i=1; i <=m ;i++){                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
      for(k=1; k <=cptcovn; k++){                  }
      printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);                } /* end i */
      }                if (h*hstepm/YEARM*stepm==yearp) {
      printf("\n");                  fprintf(ficresf," %.3f", ppij);
      }                }
      scanf("%d",i);*/              }/* end j */
                 } /* end h */
   /* Calculates basic frequencies. Computes observed prevalence at single age            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
      and prints on file fileres'p'. */          } /* end agec */
         } /* end yearp */
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      } /* end cptcod */
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    } /* end  cptcov */
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */         
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */  
         fclose(ficresf);
      }
   /* For Powell, parameters are in a vector p[] starting at p[1]  
      so we point p on param[1][1] so that p[1] maps on param[1][1][1] */  /************** Forecasting *****not tested NB*************/
   p=param[1][1]; /* *(*(*(param +1)+1)+0) */  populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
    
   if(mle>=1){ /* Could be 1 or 2 */    int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);    int *popage;
   }    double calagedatem, agelim, kk1, kk2;
         double *popeffectif,*popcount;
   /*--------- results files --------------*/    double ***p3mat,***tabpop,***tabpopprev;
   fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);    double ***mobaverage;
       char filerespop[FILENAMELENGTH];
   
   jk=1;    tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    agelim=AGESUP;
   fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
   for(i=1,jk=1; i <=nlstate; i++){   
     for(k=1; k <=(nlstate+ndeath); k++){    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       if (k != i)    
         {   
           printf("%d%d ",i,k);    strcpy(filerespop,"pop");
           fprintf(ficlog,"%d%d ",i,k);    strcat(filerespop,fileres);
           fprintf(ficres,"%1d%1d ",i,k);    if((ficrespop=fopen(filerespop,"w"))==NULL) {
           for(j=1; j <=ncovmodel; j++){      printf("Problem with forecast resultfile: %s\n", filerespop);
             printf("%f ",p[jk]);      fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
             fprintf(ficlog,"%f ",p[jk]);    }
             fprintf(ficres,"%f ",p[jk]);    printf("Computing forecasting: result on file '%s' \n", filerespop);
             jk++;     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
           }  
           printf("\n");    if (cptcoveff==0) ncodemax[cptcoveff]=1;
           fprintf(ficlog,"\n");  
           fprintf(ficres,"\n");    if (mobilav!=0) {
         }      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     }      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
   }        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
   if(mle==1){        printf(" Error in movingaverage mobilav=%d\n",mobilav);
     /* Computing hessian and covariance matrix */      }
     ftolhess=ftol; /* Usually correct */    }
     hesscov(matcov, p, npar, delti, ftolhess, func);  
   }    stepsize=(int) (stepm+YEARM-1)/YEARM;
   fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");    if (stepm<=12) stepsize=1;
   printf("# Scales (for hessian or gradient estimation)\n");   
   fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");    agelim=AGESUP;
   for(i=1,jk=1; i <=nlstate; i++){   
     for(j=1; j <=nlstate+ndeath; j++){    hstepm=1;
       if (j!=i) {    hstepm=hstepm/stepm;
         fprintf(ficres,"%1d%1d",i,j);   
         printf("%1d%1d",i,j);    if (popforecast==1) {
         fprintf(ficlog,"%1d%1d",i,j);      if((ficpop=fopen(popfile,"r"))==NULL) {
         for(k=1; k<=ncovmodel;k++){        printf("Problem with population file : %s\n",popfile);exit(0);
           printf(" %.5e",delti[jk]);        fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
           fprintf(ficlog," %.5e",delti[jk]);      }
           fprintf(ficres," %.5e",delti[jk]);      popage=ivector(0,AGESUP);
           jk++;      popeffectif=vector(0,AGESUP);
         }      popcount=vector(0,AGESUP);
         printf("\n");     
         fprintf(ficlog,"\n");      i=1;  
         fprintf(ficres,"\n");      while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
       }     
     }      imx=i;
   }      for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
        }
   fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");  
   if(mle==1)    for(cptcov=1,k=0;cptcov<=i2;cptcov++){
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
   fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");        k=k+1;
   for(i=1,k=1;i<=npar;i++){        fprintf(ficrespop,"\n#******");
     /*  if (k>nlstate) k=1;        for(j=1;j<=cptcoveff;j++) {
         i1=(i-1)/(ncovmodel*nlstate)+1;           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);        }
         printf("%s%d%d",alph[k],i1,tab[i]);        fprintf(ficrespop,"******\n");
     */        fprintf(ficrespop,"# Age");
     fprintf(ficres,"%3d",i);        for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
     if(mle==1)        if (popforecast==1)  fprintf(ficrespop," [Population]");
       printf("%3d",i);       
     fprintf(ficlog,"%3d",i);        for (cpt=0; cpt<=0;cpt++) {
     for(j=1; j<=i;j++){          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);  
       fprintf(ficres," %.5e",matcov[i][j]);         
       if(mle==1)          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){
         printf(" %.5e",matcov[i][j]);            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);
       fprintf(ficlog," %.5e",matcov[i][j]);            nhstepm = nhstepm/hstepm;
     }           
     fprintf(ficres,"\n");            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     if(mle==1)            oldm=oldms;savm=savms;
       printf("\n");            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
     fprintf(ficlog,"\n");         
     k++;            for (h=0; h<=nhstepm; h++){
   }              if (h==(int) (calagedatem+YEARM*cpt)) {
                    fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
   while((c=getc(ficpar))=='#' && c!= EOF){              }
     ungetc(c,ficpar);              for(j=1; j<=nlstate+ndeath;j++) {
     fgets(line, MAXLINE, ficpar);                kk1=0.;kk2=0;
     puts(line);                for(i=1; i<=nlstate;i++) {              
     fputs(line,ficparo);                  if (mobilav==1)
   }                    kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
   ungetc(c,ficpar);                  else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
   estepm=0;                  }
   fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);                }
   if (estepm==0 || estepm < stepm) estepm=stepm;                if (h==(int)(calagedatem+12*cpt)){
   if (fage <= 2) {                  tabpop[(int)(agedeb)][j][cptcod]=kk1;
     bage = ageminpar;                    /*fprintf(ficrespop," %.3f", kk1);
     fage = agemaxpar;                      if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
   }                }
                  }
   fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");              for(i=1; i<=nlstate;i++){
   fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);                kk1=0.;
   fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);                  for(j=1; j<=nlstate;j++){
                        kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];
   while((c=getc(ficpar))=='#' && c!= EOF){                  }
     ungetc(c,ficpar);                    tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
     fgets(line, MAXLINE, ficpar);              }
     puts(line);  
     fputs(line,ficparo);              if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++)
   }                fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
   ungetc(c,ficpar);            }
               free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);          }
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);        }
   fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);   
   printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);    /******/
   fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);  
            for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {
   while((c=getc(ficpar))=='#' && c!= EOF){          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);  
     ungetc(c,ficpar);          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){
     fgets(line, MAXLINE, ficpar);            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);
     puts(line);            nhstepm = nhstepm/hstepm;
     fputs(line,ficparo);           
   }            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   ungetc(c,ficpar);            oldm=oldms;savm=savms;
              hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
   dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;              if (h==(int) (calagedatem+YEARM*cpt)) {
   dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;                fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               }
   fscanf(ficpar,"pop_based=%d\n",&popbased);              for(j=1; j<=nlstate+ndeath;j++) {
   fprintf(ficparo,"pop_based=%d\n",popbased);                   kk1=0.;kk2=0;
   fprintf(ficres,"pop_based=%d\n",popbased);                   for(i=1; i<=nlstate;i++) {              
                     kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
   while((c=getc(ficpar))=='#' && c!= EOF){                }
     ungetc(c,ficpar);                if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
     fgets(line, MAXLINE, ficpar);              }
     puts(line);            }
     fputs(line,ficparo);            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   }          }
   ungetc(c,ficpar);        }
      }
   fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);    }
   fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);   
   printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);  
   fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);    if (popforecast==1) {
   /* day and month of proj2 are not used but only year anproj2.*/      free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
   while((c=getc(ficpar))=='#' && c!= EOF){      free_vector(popcount,0,AGESUP);
     ungetc(c,ficpar);    }
     fgets(line, MAXLINE, ficpar);    free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     puts(line);    free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fputs(line,ficparo);    fclose(ficrespop);
   }  } /* End of popforecast */
   ungetc(c,ficpar);  
   int fileappend(FILE *fichier, char *optionfich)
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);  {
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);    if((fichier=fopen(optionfich,"a"))==NULL) {
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);      printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);      return (0);
   freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    }
     fflush(fichier);
   /*------------ gnuplot -------------*/    return (1);
   strcpy(optionfilegnuplot,optionfilefiname);  }
   strcat(optionfilegnuplot,".gp");  
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {  
     printf("Problem with file %s",optionfilegnuplot);  /**************** function prwizard **********************/
   }  void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   else{  {
     fprintf(ficgp,"\n# %s\n", version);   
     fprintf(ficgp,"# %s\n", optionfilegnuplot);     /* Wizard to print covariance matrix template */
     fprintf(ficgp,"set missing 'NaNq'\n");  
   }    char ca[32], cb[32], cc[32];
   fclose(ficgp);    int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
   printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);    int numlinepar;
   /*--------- index.htm --------*/  
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
   strcpy(optionfilehtm,optionfile);    fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
   strcat(optionfilehtm,".htm");    for(i=1; i <=nlstate; i++){
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {      jj=0;
     printf("Problem with %s \n",optionfilehtm), exit(0);      for(j=1; j <=nlstate+ndeath; j++){
   }        if(j==i) continue;
         jj++;
   fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n        /*ca[0]= k+'a'-1;ca[1]='\0';*/
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n        printf("%1d%1d",i,j);
 \n        fprintf(ficparo,"%1d%1d",i,j);
 Total number of observations=%d <br>\n        for(k=1; k<=ncovmodel;k++){
 Youngest age at first pass %.2f, oldest age %.2f<br>\n          /*        printf(" %lf",param[i][j][k]); */
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n          /*        fprintf(ficparo," %lf",param[i][j][k]); */
 <hr  size=\"2\" color=\"#EC5E5E\">          printf(" 0.");
  <ul><li><h4>Parameter files</h4>\n          fprintf(ficparo," 0.");
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n        }
  - Log file of the run: <a href=\"%s\">%s</a><br>\n        printf("\n");
  - Gnuplot file name: <a href=\"%s\">%s</a></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,agemin,agemax,jmin,jmax,jmean,fileres,fileres,filelog,filelog,optionfilegnuplot,optionfilegnuplot);        fprintf(ficparo,"\n");
    fclose(fichtm);      }
     }
   printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);    printf("# Scales (for hessian or gradient estimation)\n");
      fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
   /*------------ free_vector  -------------*/    npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   chdir(path);    for(i=1; i <=nlstate; i++){
        jj=0;
   free_ivector(wav,1,imx);      for(j=1; j <=nlstate+ndeath; j++){
   free_imatrix(dh,1,lastpass-firstpass+1,1,imx);        if(j==i) continue;
   free_imatrix(bh,1,lastpass-firstpass+1,1,imx);        jj++;
   free_imatrix(mw,1,lastpass-firstpass+1,1,imx);           fprintf(ficparo,"%1d%1d",i,j);
   free_ivector(num,1,n);        printf("%1d%1d",i,j);
   free_vector(agedc,1,n);        fflush(stdout);
   /*free_matrix(covar,0,NCOVMAX,1,n);*/        for(k=1; k<=ncovmodel;k++){
   /*free_matrix(covar,1,NCOVMAX,1,n);*/          /*      printf(" %le",delti3[i][j][k]); */
   fclose(ficparo);          /*      fprintf(ficparo," %le",delti3[i][j][k]); */
   fclose(ficres);          printf(" 0.");
           fprintf(ficparo," 0.");
         }
   /*--------------- Prevalence limit  (stable prevalence) --------------*/        numlinepar++;
           printf("\n");
   strcpy(filerespl,"pl");        fprintf(ficparo,"\n");
   strcat(filerespl,fileres);      }
   if((ficrespl=fopen(filerespl,"w"))==NULL) {    }
     printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;    printf("# Covariance matrix\n");
     fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;  /* # 121 Var(a12)\n\ */
   }  /* # 122 Cov(b12,a12) Var(b12)\n\ */
   printf("Computing stable prevalence: result on file '%s' \n", filerespl);  /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);  /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   fprintf(ficrespl,"#Stable prevalence \n");  /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   fprintf(ficrespl,"#Age ");  /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);  /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   fprintf(ficrespl,"\n");  /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       fflush(stdout);
   prlim=matrix(1,nlstate,1,nlstate);    fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
   agebase=ageminpar;    /* # 122 Cov(b12,a12) Var(b12)\n\ */
   agelim=agemaxpar;    /* #   ...\n\ */
   ftolpl=1.e-10;    /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
   i1=cptcoveff;   
   if (cptcovn < 1){i1=1;}    for(itimes=1;itimes<=2;itimes++){
       jj=0;
   for(cptcov=1,k=0;cptcov<=i1;cptcov++){      for(i=1; i <=nlstate; i++){
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        for(j=1; j <=nlstate+ndeath; j++){
       k=k+1;          if(j==i) continue;
       /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/          for(k=1; k<=ncovmodel;k++){
       fprintf(ficrespl,"\n#******");            jj++;
       printf("\n#******");            ca[0]= k+'a'-1;ca[1]='\0';
       fprintf(ficlog,"\n#******");            if(itimes==1){
       for(j=1;j<=cptcoveff;j++) {              printf("#%1d%1d%d",i,j,k);
         fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);              fprintf(ficparo,"#%1d%1d%d",i,j,k);
         printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            }else{
         fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);              printf("%1d%1d%d",i,j,k);
       }              fprintf(ficparo,"%1d%1d%d",i,j,k);
       fprintf(ficrespl,"******\n");              /*  printf(" %.5le",matcov[i][j]); */
       printf("******\n");            }
       fprintf(ficlog,"******\n");            ll=0;
                     for(li=1;li <=nlstate; li++){
       for (age=agebase; age<=agelim; age++){              for(lj=1;lj <=nlstate+ndeath; lj++){
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);                if(lj==li) continue;
         fprintf(ficrespl,"%.0f ",age );                for(lk=1;lk<=ncovmodel;lk++){
         for(j=1;j<=cptcoveff;j++)                  ll++;
           fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                  if(ll<=jj){
         for(i=1; i<=nlstate;i++)                    cb[0]= lk +'a'-1;cb[1]='\0';
           fprintf(ficrespl," %.5f", prlim[i][i]);                    if(ll<jj){
         fprintf(ficrespl,"\n");                      if(itimes==1){
       }                        printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
     }                        fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
   }                      }else{
   fclose(ficrespl);                        printf(" 0.");
                         fprintf(ficparo," 0.");
   /*------------- h Pij x at various ages ------------*/                      }
                       }else{
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);                      if(itimes==1){
   if((ficrespij=fopen(filerespij,"w"))==NULL) {                        printf(" Var(%s%1d%1d)",ca,i,j);
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;                        fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
     fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;                      }else{
   }                        printf(" 0.");
   printf("Computing pij: result on file '%s' \n", filerespij);                        fprintf(ficparo," 0.");
   fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);                      }
                       }
   stepsize=(int) (stepm+YEARM-1)/YEARM;                  }
   /*if (stepm<=24) stepsize=2;*/                } /* end lk */
               } /* end lj */
   agelim=AGESUP;            } /* end li */
   hstepm=stepsize*YEARM; /* Every year of age */            printf("\n");
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */             fprintf(ficparo,"\n");
             numlinepar++;
   /* hstepm=1;   aff par mois*/          } /* end k*/
         } /*end j */
   fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");      } /* end i */
   for(cptcov=1,k=0;cptcov<=i1;cptcov++){    } /* end itimes */
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  
       k=k+1;  } /* end of prwizard */
       fprintf(ficrespij,"\n#****** ");  /******************* Gompertz Likelihood ******************************/
       for(j=1;j<=cptcoveff;j++)   double gompertz(double x[])
         fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  {
       fprintf(ficrespij,"******\n");    double A,B,L=0.0,sump=0.,num=0.;
             int i,n=0; /* n is the size of the sample */
       for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */  
         nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */     for (i=0;i<=imx-1 ; i++) {
         nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */      sump=sump+weight[i];
       /*    sump=sump+1;*/
         /*        nhstepm=nhstepm*YEARM; aff par mois*/      num=num+1;
     }
         p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);   
         oldm=oldms;savm=savms;   
         hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      /* for (i=0; i<=imx; i++)
         fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");       if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
         for(i=1; i<=nlstate;i++)  
           for(j=1; j<=nlstate+ndeath;j++)    for (i=1;i<=imx ; i++)
             fprintf(ficrespij," %1d-%1d",i,j);      {
         fprintf(ficrespij,"\n");        if (cens[i] == 1 && wav[i]>1)
         for (h=0; h<=nhstepm; h++){          A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
           fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );       
           for(i=1; i<=nlstate;i++)        if (cens[i] == 0 && wav[i]>1)
             for(j=1; j<=nlstate+ndeath;j++)          A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
               fprintf(ficrespij," %.5f", p3mat[i][j][h]);               +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
           fprintf(ficrespij,"\n");       
         }        /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        if (wav[i] > 1 ) { /* ??? */
         fprintf(ficrespij,"\n");          L=L+A*weight[i];
       }          /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
     }        }
   }      }
   
   varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax);   /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
   fclose(ficrespij);    return -2*L*num/sump;
   }
   
   /*---------- Forecasting ------------------*/  /******************* Printing html file ***********/
   /*if((stepm == 1) && (strcmp(model,".")==0)){*/  void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
   if(prevfcast==1){                    int lastpass, int stepm, int weightopt, char model[],\
     /*    if(stepm ==1){*/                    int imx,  double p[],double **matcov,double agemortsup){
       prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);    int i,k;
       /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/  
 /*      }  */    fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
 /*      else{ */    fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
 /*        erreur=108; */    for (i=1;i<=2;i++)
 /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */      fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
 /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */    fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
 /*      } */    fprintf(fichtm,"</ul>");
   }  
     fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
   /*---------- Health expectancies and variances ------------*/   fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
   strcpy(filerest,"t");   for (k=agegomp;k<(agemortsup-2);k++)
   strcat(filerest,fileres);     fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   if((ficrest=fopen(filerest,"w"))==NULL) {  
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;   
     fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;    fflush(fichtm);
   }  }
   printf("Computing Total LEs with variances: file '%s' \n", filerest);   
   fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest);   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
   strcpy(filerese,"e");    char dirfileres[132],optfileres[132];
   strcat(filerese,fileres);    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
   if((ficreseij=fopen(filerese,"w"))==NULL) {    int ng;
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);  
     fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);  
   }    /*#ifdef windows */
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);    fprintf(ficgp,"cd \"%s\" \n",pathc);
   fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);      /*#endif */
   
   strcpy(fileresv,"v");  
   strcat(fileresv,fileres);    strcpy(dirfileres,optionfilefiname);
   if((ficresvij=fopen(fileresv,"w"))==NULL) {    strcpy(optfileres,"vpl");
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);    fprintf(ficgp,"set out \"graphmort.png\"\n ");
     fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);    fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n ");
   }    fprintf(ficgp, "set ter png small\n set log y\n");
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);    fprintf(ficgp, "set size 0.65,0.65\n");
   fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);    fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */  }
   prevalence(agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);  
   /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\  
 ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);  
   */  
   
   if (mobilav!=0) {  /***********************************************/
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  /**************** Main Program *****************/
     if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){  /***********************************************/
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);  
       printf(" Error in movingaverage mobilav=%d\n",mobilav);  int main(int argc, char *argv[])
     }  {
   }    int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
   for(cptcov=1,k=0;cptcov<=i1;cptcov++){    int linei, month, year,iout;
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    int jj, ll, li, lj, lk, imk;
       k=k+1;     int numlinepar=0; /* Current linenumber of parameter file */
       fprintf(ficrest,"\n#****** ");    int itimes;
       for(j=1;j<=cptcoveff;j++)     int NDIM=2;
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
       fprintf(ficrest,"******\n");    char ca[32], cb[32], cc[32];
     char dummy[]="                         ";
       fprintf(ficreseij,"\n#****** ");    /*  FILE *fichtm; *//* Html File */
       for(j=1;j<=cptcoveff;j++)     /* FILE *ficgp;*/ /*Gnuplot File */
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    struct stat info;
       fprintf(ficreseij,"******\n");    double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
       fprintf(ficresvij,"\n#****** ");  
       for(j=1;j<=cptcoveff;j++)     double fret;
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    double **xi,tmp,delta;
       fprintf(ficresvij,"******\n");  
     double dum; /* Dummy variable */
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    double ***p3mat;
       oldm=oldms;savm=savms;    double ***mobaverage;
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);      int *indx;
      char line[MAXLINE], linepar[MAXLINE];
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
       oldm=oldms;savm=savms;    char pathr[MAXLINE], pathimach[MAXLINE];
       varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav);    char **bp, *tok, *val; /* pathtot */
       if(popbased==1){    int firstobs=1, lastobs=10;
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav);    int sdeb, sfin; /* Status at beginning and end */
       }    int c,  h , cpt,l;
     int ju,jl, mi;
      int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");    int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab;
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);    int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
       fprintf(ficrest,"\n");    int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
       epj=vector(1,nlstate+1);    int agemortsup;
       for(age=bage; age <=fage ;age++){    float  sumlpop=0.;
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
         if (popbased==1) {    double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
           if(mobilav ==0){  
             for(i=1; i<=nlstate;i++)    double bage, fage, age, agelim, agebase;
               prlim[i][i]=probs[(int)age][i][k];    double ftolpl=FTOL;
           }else{ /* mobilav */     double **prlim;
             for(i=1; i<=nlstate;i++)    double *severity;
               prlim[i][i]=mobaverage[(int)age][i][k];    double ***param; /* Matrix of parameters */
           }    double  *p;
         }    double **matcov; /* Matrix of covariance */
             double ***delti3; /* Scale */
         fprintf(ficrest," %4.0f",age);    double *delti; /* Scale */
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){    double ***eij, ***vareij;
           for(i=1, epj[j]=0.;i <=nlstate;i++) {    double **varpl; /* Variances of prevalence limits by age */
             epj[j] += prlim[i][i]*eij[i][j][(int)age];    double *epj, vepp;
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/    double kk1, kk2;
           }    double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
           epj[nlstate+1] +=epj[j];    double **ximort;
         }    char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
         for(i=1, vepp=0.;i <=nlstate;i++)  
           for(j=1;j <=nlstate;j++)    char z[1]="c", occ;
             vepp += vareij[i][j][(int)age];  
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));    char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
         for(j=1;j <=nlstate;j++){    char  *strt, strtend[80];
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));    char *stratrunc;
         }    int lstra;
         fprintf(ficrest,"\n");  
       }    long total_usecs;
       free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);   
       free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);  /*   setlocale (LC_ALL, ""); */
       free_vector(epj,1,nlstate+1);  /*   bindtextdomain (PACKAGE, LOCALEDIR); */
     }  /*   textdomain (PACKAGE); */
   }  /*   setlocale (LC_CTYPE, ""); */
   free_vector(weight,1,n);  /*   setlocale (LC_MESSAGES, ""); */
   free_imatrix(Tvard,1,15,1,2);  
   free_imatrix(s,1,maxwav+1,1,n);    /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
   free_matrix(anint,1,maxwav,1,n);     (void) gettimeofday(&start_time,&tzp);
   free_matrix(mint,1,maxwav,1,n);    curr_time=start_time;
   free_ivector(cod,1,n);    tm = *localtime(&start_time.tv_sec);
   free_ivector(tab,1,NCOVMAX);    tmg = *gmtime(&start_time.tv_sec);
   fclose(ficreseij);    strcpy(strstart,asctime(&tm));
   fclose(ficresvij);  
   fclose(ficrest);  /*  printf("Localtime (at start)=%s",strstart); */
   fclose(ficpar);  /*  tp.tv_sec = tp.tv_sec +86400; */
     /*  tm = *localtime(&start_time.tv_sec); */
   /*------- Variance of stable prevalence------*/     /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   strcpy(fileresvpl,"vpl");  /*   tmg.tm_hour=tmg.tm_hour + 1; */
   strcat(fileresvpl,fileres);  /*   tp.tv_sec = mktime(&tmg); */
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {  /*   strt=asctime(&tmg); */
     printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);  /*   printf("Time(after) =%s",strstart);  */
     exit(0);  /*  (void) time (&time_value);
   }  *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);  *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   for(cptcov=1,k=0;cptcov<=i1;cptcov++){  *  printf("tim_value=%d,asctime=%s\n",time_value,strstart);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  */
       k=k+1;  
       fprintf(ficresvpl,"\n#****** ");    nberr=0; /* Number of errors and warnings */
       for(j=1;j<=cptcoveff;j++)     nbwarn=0;
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    getcwd(pathcd, size);
       fprintf(ficresvpl,"******\n");  
           printf("\n%s\n%s",version,fullversion);
       varpl=matrix(1,nlstate,(int) bage, (int) fage);    if(argc <=1){
       oldm=oldms;savm=savms;      printf("\nEnter the parameter file name: ");
       varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);      fgets(pathr,FILENAMELENGTH,stdin);
       free_matrix(varpl,1,nlstate,(int) bage, (int)fage);      i=strlen(pathr);
     }      if(pathr[i-1]=='\n')
   }        pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
   fclose(ficresvpl);        printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
   /*---------- End : free ----------------*/        printf("val= |%s| pathr=%s\n",val,pathr);
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);        strcpy (pathtot, val);
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);        if(pathr[0] == '\0') break; /* Dirty */
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);      }
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);    }
       else{
   free_matrix(covar,0,NCOVMAX,1,n);      strcpy(pathtot,argv[1]);
   free_matrix(matcov,1,npar,1,npar);    }
   /*free_vector(delti,1,npar);*/    /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
   free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);     /*cygwin_split_path(pathtot,path,optionfile);
   free_matrix(agev,1,maxwav,1,imx);      printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);    /* cutv(path,optionfile,pathtot,'\\');*/
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
   free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);    /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
   free_ivector(ncodemax,1,8);    split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
   free_ivector(Tvar,1,15);    printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
   free_ivector(Tprod,1,15);   /*   strcpy(pathimach,argv[0]); */
   free_ivector(Tvaraff,1,15);    /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
   free_ivector(Tage,1,15);    split(pathtot,path,optionfile,optionfilext,optionfilefiname);
   free_ivector(Tcode,1,100);    printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path); /* Can be a relative path */
   /*  fclose(fichtm);*/    if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
   /*  fclose(ficgp);*/ /* ALready done */      printf("Current directory %s!\n",pathcd);
       strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
   if(erreur >0){    if((outcmd=system(command)) != 0){
     printf("End of Imach with error or warning %d\n",erreur);      printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
     fprintf(ficlog,"End of Imach with error or warning %d\n",erreur);      /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
   }else{      /* fclose(ficlog); */
    printf("End of Imach\n");  /*     exit(1); */
    fprintf(ficlog,"End of Imach\n");    }
   }  /*   if((imk=mkdir(optionfilefiname))<0){ */
   printf("See log file on %s\n",filelog);  /*     perror("mkdir"); */
   fclose(ficlog);  /*   } */
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */  
       /*-------- arguments in the command line --------*/
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/  
   /*printf("Total time was %d uSec.\n", total_usecs);*/    /* Log file */
   /*------ End -----------*/    strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
   end:    if((ficlog=fopen(filelog,"w"))==NULL)    {
 #ifdef windows      printf("Problem with logfile %s\n",filelog);
   /* chdir(pathcd);*/      goto end;
 #endif     }
  /*system("wgnuplot graph.plt");*/    fprintf(ficlog,"Log filename:%s\n",filelog);
  /*system("../gp37mgw/wgnuplot graph.plt");*/    fprintf(ficlog,"\n%s\n%s",version,fullversion);
  /*system("cd ../gp37mgw");*/    fprintf(ficlog,"\nEnter the parameter file name: \n");
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/    fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
   strcpy(plotcmd,GNUPLOTPROGRAM);   path=%s \n\
   strcat(plotcmd," ");   optionfile=%s\n\
   strcat(plotcmd,optionfilegnuplot);   optionfilext=%s\n\
   printf("Starting graphs with: %s",plotcmd);fflush(stdout);   optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   system(plotcmd);  
   printf(" Wait...");    printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
  /*#ifdef windows*/    fflush(ficlog);
   while (z[0] != 'q') {  /*   (void) gettimeofday(&curr_time,&tzp); */
     /* chdir(path); */  /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");  
     scanf("%s",z);    /* */
     if (z[0] == 'c') system("./imach");    strcpy(fileres,"r");
     else if (z[0] == 'e') system(optionfilehtm);    strcat(fileres, optionfilefiname);
     else if (z[0] == 'g') system(plotcmd);    strcat(fileres,".txt");    /* Other files have txt extension */
     else if (z[0] == 'q') exit(0);  
   }    /*---------arguments file --------*/
   /*#endif */  
 }    if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n);
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
       fclose (ficparo);
       fclose (ficlog);
       goto end;
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
      
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
   It might be a problem of design; if ncovcol and the model are correct\n \
   run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       p=param[1][1];
      
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
    
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
    
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
      
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
      
       fflush(ficlog);
      
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb,line,' ');
         errno=0;
         lval=strtol(strb,&endptr,10);
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %d %s for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
           exit(1);
         }
         s[j][i]=lval;
        
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }
         else  if(iout=sscanf(strb,"%s.") != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           exit(1);
         }
         anint[j][i]= (double) year;
         mint[j][i]= (double)month;
         strcpy(line,stra);
       } /* ENd Waves */
      
       cutv(stra, strb,line,' ');
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.",dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         exit(1);
       }
       andc[i]=(double) year;
       moisdc[i]=(double) month;
       strcpy(line,stra);
      
       cutv(stra, strb,line,' ');
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.") != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line,j);
         exit(1);
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month);
       strcpy(line,stra);
      
       cutv(stra, strb,line,' ');
       errno=0;
       dval=strtod(strb,&endptr);
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%f' at line number %ld, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         exit(1);
       }
       weight[i]=dval;
       strcpy(line,stra);
      
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' ');
         errno=0;
         lval=strtol(strb,&endptr,10);
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a covar (meaning 0 for the reference or 1).  Exiting.\n",lval, linei,i, line);
           exit(1);
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%d' at line number %ld for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);
           exit(1);
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       }
       lstra=strlen(stra);
      
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
      
       i=i+1;
     } /* End loop reading  data */
     fclose(fic);
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1;
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
    
     /* for (i=1; i<=imx; i++) */
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameters from char model */
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15);
     Tvaraff=ivector(1,15);
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1;
       cptcovprod=j1; /*Number of products */
      
       strcpy(modelsav,model);
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
      
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2];
             for (k=1; k<=lastobs;k++)
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
    
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]);
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]);
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
      
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);    
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);    
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
   
     agegomp=(int)agemin;
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
        
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           }
         }
       }
     }
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
      
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version);
       fprintf(ficgp,"# %s\n", optionfilegnuplot);
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
    
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
      
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.;
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1)
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
      
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
      
       p[1]=0.0268; p[NDIM]=0.083;
       /*printf("%lf %lf", p[1], p[2]);*/
      
      
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
       strcpy(filerespow,"pow-mort");
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
      
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
      
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz);
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
      
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
      
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++)
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
      
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
      
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
      
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
      
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
      
      
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++)
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
      
      
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
      
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
      
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
     } /* Endof if mle==-3 */
    
     else{ /* For mle >=1 */
    
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
      
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
      
      
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%lf ",p[jk]);
               fprintf(ficlog,"%lf ",p[jk]);
               fprintf(ficres,"%lf ",p[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
      
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
      
      
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]);
                           fprintf(ficlog," %.5e",matcov[jj][ll]);
                           fprintf(ficres," %.5e",matcov[jj][ll]);
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]);
                           fprintf(ficlog," %.5e",matcov[jj][ll]);
                           fprintf(ficres," %.5e",matcov[jj][ll]);
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
      
       fflush(ficlog);
       fflush(ficres);
      
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
      
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
      
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
      
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
      
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
      
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
      
      
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
      
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);  
       fprintf(ficres,"pop_based=%d\n",popbased);  
      
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
      
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
      
      
      
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
      
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
      
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
        
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);  
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
    
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       pstamp(ficrespl);
       fprintf(ficrespl,"# Period (stable) prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
    
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
          
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
    
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
    
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */
   
       /* hstepm=1;   aff par mois*/
       pstamp(ficrespij);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
          
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
    
   
       /*---------- Health expectancies and variances ------------*/
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest);
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest);
   
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficreseij,"\n#****** ");
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
           cvevsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav, strstart);
           if(popbased==1){
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav, strstart);
           }
   
           pstamp(ficrest);
           fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n# Age ( e.. (std) ");
           for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
           fprintf(ficrest,"\n");
   
           epj=vector(1,nlstate+1);
           for(age=bage; age <=fage ;age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             if (popbased==1) {
               if(mobilav ==0){
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=probs[(int)age][i][k];
               }else{ /* mobilav */
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=mobaverage[(int)age][i][k];
               }
             }
          
             fprintf(ficrest," %4.0f",age);
             for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
               for(i=1, epj[j]=0.;i <=nlstate;i++) {
                 epj[j] += prlim[i][i]*eij[i][j][(int)age];
                 /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
               }
               epj[nlstate+1] +=epj[j];
             }
   
             for(i=1, vepp=0.;i <=nlstate;i++)
               for(j=1;j <=nlstate;j++)
                 vepp += vareij[i][j][(int)age];
             fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
             for(j=1;j <=nlstate;j++){
               fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
             }
             fprintf(ficrest,"\n");
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n);
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficreseij);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
    
       /*------- Variance of period (stable) prevalence------*/  
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
        
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
     free_matrix(prlim,1,nlstate,1,nlstate);
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
       free_ivector(Tcode,1,100);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
    
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend);
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend);
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
    
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.76  
changed lines
  Added in v.1.125


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>