Diff for /imach/src/imach.c between versions 1.21 and 1.87

version 1.21, 2002/02/21 18:42:24 version 1.87, 2003/06/18 12:26:01
Line 1 Line 1
      /* $Id$
 /*********************** Imach **************************************            $State$
   This program computes Healthy Life Expectancies from cross-longitudinal    $Log$
   data. Cross-longitudinal consist in a first survey ("cross") where    Revision 1.87  2003/06/18 12:26:01  brouard
   individuals from different ages are interviewed on their health status    Version 0.96
   or degree of  disability. At least a second wave of interviews  
   ("longitudinal") should  measure each new individual health status.    Revision 1.86  2003/06/17 20:04:08  brouard
   Health expectancies are computed from the transistions observed between    (Module): Change position of html and gnuplot routines and added
   waves and are computed for each degree of severity of disability (number    routine fileappend.
   of life states). More degrees you consider, more time is necessary to  
   reach the Maximum Likelihood of the parameters involved in the model.    Revision 1.85  2003/06/17 13:12:43  brouard
   The simplest model is the multinomial logistic model where pij is    * imach.c (Repository): Check when date of death was earlier that
   the probabibility to be observed in state j at the second wave conditional    current date of interview. It may happen when the death was just
   to be observed in state i at the first wave. Therefore the model is:    prior to the death. In this case, dh was negative and likelihood
   log(pij/pii)= aij + bij*age+ cij*sex + etc , where 'age' is age and 'sex'    was wrong (infinity). We still send an "Error" but patch by
   is a covariate. If you want to have a more complex model than "constant and    assuming that the date of death was just one stepm after the
   age", you should modify the program where the markup    interview.
     *Covariates have to be included here again* invites you to do it.    (Repository): Because some people have very long ID (first column)
   More covariates you add, less is the speed of the convergence.    we changed int to long in num[] and we added a new lvector for
     memory allocation. But we also truncated to 8 characters (left
   The advantage that this computer programme claims, comes from that if the    truncation)
   delay between waves is not identical for each individual, or if some    (Repository): No more line truncation errors.
   individual missed an interview, the information is not rounded or lost, but  
   taken into account using an interpolation or extrapolation.    Revision 1.84  2003/06/13 21:44:43  brouard
   hPijx is the probability to be    * imach.c (Repository): Replace "freqsummary" at a correct
   observed in state i at age x+h conditional to the observed state i at age    place. It differs from routine "prevalence" which may be called
   x. The delay 'h' can be split into an exact number (nh*stepm) of    many times. Probs is memory consuming and must be used with
   unobserved intermediate  states. This elementary transition (by month or    parcimony.
   quarter trimester, semester or year) is model as a multinomial logistic.    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
   The hPx matrix is simply the matrix product of nh*stepm elementary matrices  
   and the contribution of each individual to the likelihood is simply hPijx.    Revision 1.83  2003/06/10 13:39:11  lievre
     *** empty log message ***
   Also this programme outputs the covariance matrix of the parameters but also  
   of the life expectancies. It also computes the prevalence limits.    Revision 1.82  2003/06/05 15:57:20  brouard
      Add log in  imach.c and  fullversion number is now printed.
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).  
            Institut national d'études démographiques, Paris.  */
   This software have been partly granted by Euro-REVES, a concerted action  /*
   from the European Union.     Interpolated Markov Chain
   It is copyrighted identically to a GNU software product, ie programme and  
   software can be distributed freely for non commercial use. Latest version    Short summary of the programme:
   can be accessed at http://euroreves.ined.fr/imach .    
   **********************************************************************/    This program computes Healthy Life Expectancies from
      cross-longitudinal data. Cross-longitudinal data consist in: -1- a
 #include <math.h>    first survey ("cross") where individuals from different ages are
 #include <stdio.h>    interviewed on their health status or degree of disability (in the
 #include <stdlib.h>    case of a health survey which is our main interest) -2- at least a
 #include <unistd.h>    second wave of interviews ("longitudinal") which measure each change
     (if any) in individual health status.  Health expectancies are
 #define MAXLINE 256    computed from the time spent in each health state according to a
 #define FILENAMELENGTH 80    model. More health states you consider, more time is necessary to reach the
 /*#define DEBUG*/    Maximum Likelihood of the parameters involved in the model.  The
 #define windows    simplest model is the multinomial logistic model where pij is the
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    probability to be observed in state j at the second wave
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    conditional to be observed in state i at the first wave. Therefore
     the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    'age' is age and 'sex' is a covariate. If you want to have a more
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    complex model than "constant and age", you should modify the program
     where the markup *Covariates have to be included here again* invites
 #define NINTERVMAX 8    you to do it.  More covariates you add, slower the
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    convergence.
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */  
 #define NCOVMAX 8 /* Maximum number of covariates */    The advantage of this computer programme, compared to a simple
 #define MAXN 20000    multinomial logistic model, is clear when the delay between waves is not
 #define YEARM 12. /* Number of months per year */    identical for each individual. Also, if a individual missed an
 #define AGESUP 130    intermediate interview, the information is lost, but taken into
 #define AGEBASE 40    account using an interpolation or extrapolation.  
   
     hPijx is the probability to be observed in state i at age x+h
 int erreur; /* Error number */    conditional to the observed state i at age x. The delay 'h' can be
 int nvar;    split into an exact number (nh*stepm) of unobserved intermediate
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    states. This elementary transition (by month, quarter,
 int npar=NPARMAX;    semester or year) is modelled as a multinomial logistic.  The hPx
 int nlstate=2; /* Number of live states */    matrix is simply the matrix product of nh*stepm elementary matrices
 int ndeath=1; /* Number of dead states */    and the contribution of each individual to the likelihood is simply
 int ncovmodel, ncov;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    hPijx.
 int popbased=0;  
     Also this programme outputs the covariance matrix of the parameters but also
 int *wav; /* Number of waves for this individuual 0 is possible */    of the life expectancies. It also computes the stable prevalence. 
 int maxwav; /* Maxim number of waves */    
 int jmin, jmax; /* min, max spacing between 2 waves */    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
 int mle, weightopt;             Institut national d'études démographiques, Paris.
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    This software have been partly granted by Euro-REVES, a concerted action
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    from the European Union.
 double jmean; /* Mean space between 2 waves */    It is copyrighted identically to a GNU software product, ie programme and
 double **oldm, **newm, **savm; /* Working pointers to matrices */    software can be distributed freely for non commercial use. Latest version
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    can be accessed at http://euroreves.ined.fr/imach .
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf;  
 FILE *ficgp, *fichtm,*ficresprob,*ficpop;    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
 FILE *ficreseij;    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
   char filerese[FILENAMELENGTH];    
  FILE  *ficresvij;    **********************************************************************/
   char fileresv[FILENAMELENGTH];  /*
  FILE  *ficresvpl;    main
   char fileresvpl[FILENAMELENGTH];    read parameterfile
     read datafile
 #define NR_END 1    concatwav
 #define FREE_ARG char*    freqsummary
 #define FTOL 1.0e-10    if (mle >= 1)
       mlikeli
 #define NRANSI    print results files
 #define ITMAX 200    if mle==1 
        computes hessian
 #define TOL 2.0e-4    read end of parameter file: agemin, agemax, bage, fage, estepm
         begin-prev-date,...
 #define CGOLD 0.3819660    open gnuplot file
 #define ZEPS 1.0e-10    open html file
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    stable prevalence
      for age prevalim()
 #define GOLD 1.618034    h Pij x
 #define GLIMIT 100.0    variance of p varprob
 #define TINY 1.0e-20    forecasting if prevfcast==1 prevforecast call prevalence()
     health expectancies
 static double maxarg1,maxarg2;    Variance-covariance of DFLE
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    prevalence()
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))     movingaverage()
      varevsij() 
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    if popbased==1 varevsij(,popbased)
 #define rint(a) floor(a+0.5)    total life expectancies
     Variance of stable prevalence
 static double sqrarg;   end
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)  */
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}  
   
 int imx;  
 int stepm;   
 /* Stepm, step in month: minimum step interpolation*/  #include <math.h>
   #include <stdio.h>
 int m,nb;  #include <stdlib.h>
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;  #include <unistd.h>
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;  
 double **pmmij, ***probs, ***mobaverage;  #include <sys/time.h>
 double dateintmean=0;  #include <time.h>
   #include "timeval.h"
 double *weight;  
 int **s; /* Status */  #define MAXLINE 256
 double *agedc, **covar, idx;  #define GNUPLOTPROGRAM "gnuplot"
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
   #define FILENAMELENGTH 132
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */  /*#define DEBUG*/
 double ftolhess; /* Tolerance for computing hessian */  /*#define windows*/
   #define GLOCK_ERROR_NOPATH              -1      /* empty path */
 /**************** split *************************/  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
 static  int split( char *path, char *dirc, char *name )  
 {  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
    char *s;                             /* pointer */  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
    int  l1, l2;                         /* length counters */  
   #define NINTERVMAX 8
    l1 = strlen( path );                 /* length of path */  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
    s = strrchr( path, '\\' );           /* find last / */  #define NCOVMAX 8 /* Maximum number of covariates */
    if ( s == NULL ) {                   /* no directory, so use current */  #define MAXN 20000
 #if     defined(__bsd__)                /* get current working directory */  #define YEARM 12. /* Number of months per year */
       extern char       *getwd( );  #define AGESUP 130
   #define AGEBASE 40
       if ( getwd( dirc ) == NULL ) {  #ifdef unix
 #else  #define DIRSEPARATOR '/'
       extern char       *getcwd( );  #define ODIRSEPARATOR '\\'
   #else
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {  #define DIRSEPARATOR '\\'
 #endif  #define ODIRSEPARATOR '/'
          return( GLOCK_ERROR_GETCWD );  #endif
       }  
       strcpy( name, path );             /* we've got it */  /* $Id$ */
    } else {                             /* strip direcotry from path */  /* $State$ */
       s++;                              /* after this, the filename */  
       l2 = strlen( s );                 /* length of filename */  char version[]="Imach version 0.96, June 2003, INED-EUROREVES ";
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );  char fullversion[]="$Revision$ $Date$"; 
       strcpy( name, s );                /* save file name */  int erreur; /* Error number */
       strncpy( dirc, path, l1 - l2 );   /* now the directory */  int nvar;
       dirc[l1-l2] = 0;                  /* add zero */  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
    }  int npar=NPARMAX;
    l1 = strlen( dirc );                 /* length of directory */  int nlstate=2; /* Number of live states */
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }  int ndeath=1; /* Number of dead states */
    return( 0 );                         /* we're done */  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
 }  int popbased=0;
   
   int *wav; /* Number of waves for this individuual 0 is possible */
 /******************************************/  int maxwav; /* Maxim number of waves */
   int jmin, jmax; /* min, max spacing between 2 waves */
 void replace(char *s, char*t)  int gipmx, gsw; /* Global variables on the number of contributions 
 {                     to the likelihood and the sum of weights (done by funcone)*/
   int i;  int mle, weightopt;
   int lg=20;  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
   i=0;  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
   lg=strlen(t);  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
   for(i=0; i<= lg; i++) {             * wave mi and wave mi+1 is not an exact multiple of stepm. */
     (s[i] = t[i]);  double jmean; /* Mean space between 2 waves */
     if (t[i]== '\\') s[i]='/';  double **oldm, **newm, **savm; /* Working pointers to matrices */
   }  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
 }  FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
   FILE *ficlog, *ficrespow;
 int nbocc(char *s, char occ)  int globpr; /* Global variable for printing or not */
 {  double fretone; /* Only one call to likelihood */
   int i,j=0;  long ipmx; /* Number of contributions */
   int lg=20;  double sw; /* Sum of weights */
   i=0;  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
   lg=strlen(s);  FILE *ficresilk;
   for(i=0; i<= lg; i++) {  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
   if  (s[i] == occ ) j++;  FILE *ficresprobmorprev;
   }  FILE *fichtm; /* Html File */
   return j;  FILE *ficreseij;
 }  char filerese[FILENAMELENGTH];
   FILE  *ficresvij;
 void cutv(char *u,char *v, char*t, char occ)  char fileresv[FILENAMELENGTH];
 {  FILE  *ficresvpl;
   int i,lg,j,p=0;  char fileresvpl[FILENAMELENGTH];
   i=0;  char title[MAXLINE];
   for(j=0; j<=strlen(t)-1; j++) {  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];
   }  
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
   lg=strlen(t);  char filelog[FILENAMELENGTH]; /* Log file */
   for(j=0; j<p; j++) {  char filerest[FILENAMELENGTH];
     (u[j] = t[j]);  char fileregp[FILENAMELENGTH];
   }  char popfile[FILENAMELENGTH];
      u[p]='\0';  
   char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];
    for(j=0; j<= lg; j++) {  
     if (j>=(p+1))(v[j-p-1] = t[j]);  #define NR_END 1
   }  #define FREE_ARG char*
 }  #define FTOL 1.0e-10
   
 /********************** nrerror ********************/  #define NRANSI 
   #define ITMAX 200 
 void nrerror(char error_text[])  
 {  #define TOL 2.0e-4 
   fprintf(stderr,"ERREUR ...\n");  
   fprintf(stderr,"%s\n",error_text);  #define CGOLD 0.3819660 
   exit(1);  #define ZEPS 1.0e-10 
 }  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
 /*********************** vector *******************/  
 double *vector(int nl, int nh)  #define GOLD 1.618034 
 {  #define GLIMIT 100.0 
   double *v;  #define TINY 1.0e-20 
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  
   if (!v) nrerror("allocation failure in vector");  static double maxarg1,maxarg2;
   return v-nl+NR_END;  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
 }  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
     
 /************************ free vector ******************/  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
 void free_vector(double*v, int nl, int nh)  #define rint(a) floor(a+0.5)
 {  
   free((FREE_ARG)(v+nl-NR_END));  static double sqrarg;
 }  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
 /************************ivector *******************************/  
 int *ivector(long nl,long nh)  int imx; 
 {  int stepm;
   int *v;  /* Stepm, step in month: minimum step interpolation*/
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  
   if (!v) nrerror("allocation failure in ivector");  int estepm;
   return v-nl+NR_END;  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
 }  
   int m,nb;
 /******************free ivector **************************/  long *num;
 void free_ivector(int *v, long nl, long nh)  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;
 {  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
   free((FREE_ARG)(v+nl-NR_END));  double **pmmij, ***probs;
 }  double dateintmean=0;
   
 /******************* imatrix *******************************/  double *weight;
 int **imatrix(long nrl, long nrh, long ncl, long nch)  int **s; /* Status */
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  double *agedc, **covar, idx;
 {  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  
   int **m;  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
    double ftolhess; /* Tolerance for computing hessian */
   /* allocate pointers to rows */  
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  /**************** split *************************/
   if (!m) nrerror("allocation failure 1 in matrix()");  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   m += NR_END;  {
   m -= nrl;    char  *ss;                            /* pointer */
      int   l1, l2;                         /* length counters */
    
   /* allocate rows and set pointers to them */    l1 = strlen(path );                   /* length of path */
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
   m[nrl] += NR_END;    if ( ss == NULL ) {                   /* no directory, so use current */
   m[nrl] -= ncl;      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
          printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;      /* get current working directory */
        /*    extern  char* getcwd ( char *buf , int len);*/
   /* return pointer to array of pointers to rows */      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
   return m;        return( GLOCK_ERROR_GETCWD );
 }      }
       strcpy( name, path );               /* we've got it */
 /****************** free_imatrix *************************/    } else {                              /* strip direcotry from path */
 void free_imatrix(m,nrl,nrh,ncl,nch)      ss++;                               /* after this, the filename */
       int **m;      l2 = strlen( ss );                  /* length of filename */
       long nch,ncl,nrh,nrl;      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
      /* free an int matrix allocated by imatrix() */      strcpy( name, ss );         /* save file name */
 {      strncpy( dirc, path, l1 - l2 );     /* now the directory */
   free((FREE_ARG) (m[nrl]+ncl-NR_END));      dirc[l1-l2] = 0;                    /* add zero */
   free((FREE_ARG) (m+nrl-NR_END));    }
 }    l1 = strlen( dirc );                  /* length of directory */
     /*#ifdef windows
 /******************* matrix *******************************/    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }
 double **matrix(long nrl, long nrh, long ncl, long nch)  #else
 {    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  #endif
   double **m;    */
     ss = strrchr( name, '.' );            /* find last / */
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    ss++;
   if (!m) nrerror("allocation failure 1 in matrix()");    strcpy(ext,ss);                       /* save extension */
   m += NR_END;    l1= strlen( name);
   m -= nrl;    l2= strlen(ss)+1;
     strncpy( finame, name, l1-l2);
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    finame[l1-l2]= 0;
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    return( 0 );                          /* we're done */
   m[nrl] += NR_END;  }
   m[nrl] -= ncl;  
   
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  /******************************************/
   return m;  
 }  void replace(char *s, char*t)
   {
 /*************************free matrix ************************/    int i;
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)    int lg=20;
 {    i=0;
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    lg=strlen(t);
   free((FREE_ARG)(m+nrl-NR_END));    for(i=0; i<= lg; i++) {
 }      (s[i] = t[i]);
       if (t[i]== '\\') s[i]='/';
 /******************* ma3x *******************************/    }
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  }
 {  
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  int nbocc(char *s, char occ)
   double ***m;  {
     int i,j=0;
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    int lg=20;
   if (!m) nrerror("allocation failure 1 in matrix()");    i=0;
   m += NR_END;    lg=strlen(s);
   m -= nrl;    for(i=0; i<= lg; i++) {
     if  (s[i] == occ ) j++;
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    }
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    return j;
   m[nrl] += NR_END;  }
   m[nrl] -= ncl;  
   void cutv(char *u,char *v, char*t, char occ)
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  {
     /* cuts string t into u and v where u is ended by char occ excluding it
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));       and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");       gives u="abcedf" and v="ghi2j" */
   m[nrl][ncl] += NR_END;    int i,lg,j,p=0;
   m[nrl][ncl] -= nll;    i=0;
   for (j=ncl+1; j<=nch; j++)    for(j=0; j<=strlen(t)-1; j++) {
     m[nrl][j]=m[nrl][j-1]+nlay;      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
      }
   for (i=nrl+1; i<=nrh; i++) {  
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;    lg=strlen(t);
     for (j=ncl+1; j<=nch; j++)    for(j=0; j<p; j++) {
       m[i][j]=m[i][j-1]+nlay;      (u[j] = t[j]);
   }    }
   return m;       u[p]='\0';
 }  
      for(j=0; j<= lg; j++) {
 /*************************free ma3x ************************/      if (j>=(p+1))(v[j-p-1] = t[j]);
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)    }
 {  }
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  /********************** nrerror ********************/
   free((FREE_ARG)(m+nrl-NR_END));  
 }  void nrerror(char error_text[])
   {
 /***************** f1dim *************************/    fprintf(stderr,"ERREUR ...\n");
 extern int ncom;    fprintf(stderr,"%s\n",error_text);
 extern double *pcom,*xicom;    exit(EXIT_FAILURE);
 extern double (*nrfunc)(double []);  }
    /*********************** vector *******************/
 double f1dim(double x)  double *vector(int nl, int nh)
 {  {
   int j;    double *v;
   double f;    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
   double *xt;    if (!v) nrerror("allocation failure in vector");
      return v-nl+NR_END;
   xt=vector(1,ncom);  }
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  
   f=(*nrfunc)(xt);  /************************ free vector ******************/
   free_vector(xt,1,ncom);  void free_vector(double*v, int nl, int nh)
   return f;  {
 }    free((FREE_ARG)(v+nl-NR_END));
   }
 /*****************brent *************************/  
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  /************************ivector *******************************/
 {  int *ivector(long nl,long nh)
   int iter;  {
   double a,b,d,etemp;    int *v;
   double fu,fv,fw,fx;    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
   double ftemp;    if (!v) nrerror("allocation failure in ivector");
   double p,q,r,tol1,tol2,u,v,w,x,xm;    return v-nl+NR_END;
   double e=0.0;  }
    
   a=(ax < cx ? ax : cx);  /******************free ivector **************************/
   b=(ax > cx ? ax : cx);  void free_ivector(int *v, long nl, long nh)
   x=w=v=bx;  {
   fw=fv=fx=(*f)(x);    free((FREE_ARG)(v+nl-NR_END));
   for (iter=1;iter<=ITMAX;iter++) {  }
     xm=0.5*(a+b);  
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  /************************lvector *******************************/
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  long *lvector(long nl,long nh)
     printf(".");fflush(stdout);  {
 #ifdef DEBUG    long *v;
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */    if (!v) nrerror("allocation failure in ivector");
 #endif    return v-nl+NR_END;
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  }
       *xmin=x;  
       return fx;  /******************free lvector **************************/
     }  void free_lvector(long *v, long nl, long nh)
     ftemp=fu;  {
     if (fabs(e) > tol1) {    free((FREE_ARG)(v+nl-NR_END));
       r=(x-w)*(fx-fv);  }
       q=(x-v)*(fx-fw);  
       p=(x-v)*q-(x-w)*r;  /******************* imatrix *******************************/
       q=2.0*(q-r);  int **imatrix(long nrl, long nrh, long ncl, long nch) 
       if (q > 0.0) p = -p;       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
       q=fabs(q);  { 
       etemp=e;    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
       e=d;    int **m; 
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))    
         d=CGOLD*(e=(x >= xm ? a-x : b-x));    /* allocate pointers to rows */ 
       else {    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
         d=p/q;    if (!m) nrerror("allocation failure 1 in matrix()"); 
         u=x+d;    m += NR_END; 
         if (u-a < tol2 || b-u < tol2)    m -= nrl; 
           d=SIGN(tol1,xm-x);    
       }    
     } else {    /* allocate rows and set pointers to them */ 
       d=CGOLD*(e=(x >= xm ? a-x : b-x));    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
     }    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));    m[nrl] += NR_END; 
     fu=(*f)(u);    m[nrl] -= ncl; 
     if (fu <= fx) {    
       if (u >= x) a=x; else b=x;    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
       SHFT(v,w,x,u)    
         SHFT(fv,fw,fx,fu)    /* return pointer to array of pointers to rows */ 
         } else {    return m; 
           if (u < x) a=u; else b=u;  } 
           if (fu <= fw || w == x) {  
             v=w;  /****************** free_imatrix *************************/
             w=u;  void free_imatrix(m,nrl,nrh,ncl,nch)
             fv=fw;        int **m;
             fw=fu;        long nch,ncl,nrh,nrl; 
           } else if (fu <= fv || v == x || v == w) {       /* free an int matrix allocated by imatrix() */ 
             v=u;  { 
             fv=fu;    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
           }    free((FREE_ARG) (m+nrl-NR_END)); 
         }  } 
   }  
   nrerror("Too many iterations in brent");  /******************* matrix *******************************/
   *xmin=x;  double **matrix(long nrl, long nrh, long ncl, long nch)
   return fx;  {
 }    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
     double **m;
 /****************** mnbrak ***********************/  
     m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,    if (!m) nrerror("allocation failure 1 in matrix()");
             double (*func)(double))    m += NR_END;
 {    m -= nrl;
   double ulim,u,r,q, dum;  
   double fu;    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
      if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   *fa=(*func)(*ax);    m[nrl] += NR_END;
   *fb=(*func)(*bx);    m[nrl] -= ncl;
   if (*fb > *fa) {  
     SHFT(dum,*ax,*bx,dum)    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
       SHFT(dum,*fb,*fa,dum)    return m;
       }    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
   *cx=(*bx)+GOLD*(*bx-*ax);     */
   *fc=(*func)(*cx);  }
   while (*fb > *fc) {  
     r=(*bx-*ax)*(*fb-*fc);  /*************************free matrix ************************/
     q=(*bx-*cx)*(*fb-*fa);  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/  {
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));    free((FREE_ARG)(m[nrl]+ncl-NR_END));
     ulim=(*bx)+GLIMIT*(*cx-*bx);    free((FREE_ARG)(m+nrl-NR_END));
     if ((*bx-u)*(u-*cx) > 0.0) {  }
       fu=(*func)(u);  
     } else if ((*cx-u)*(u-ulim) > 0.0) {  /******************* ma3x *******************************/
       fu=(*func)(u);  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
       if (fu < *fc) {  {
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
           SHFT(*fb,*fc,fu,(*func)(u))    double ***m;
           }  
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
       u=ulim;    if (!m) nrerror("allocation failure 1 in matrix()");
       fu=(*func)(u);    m += NR_END;
     } else {    m -= nrl;
       u=(*cx)+GOLD*(*cx-*bx);  
       fu=(*func)(u);    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     }    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     SHFT(*ax,*bx,*cx,u)    m[nrl] += NR_END;
       SHFT(*fa,*fb,*fc,fu)    m[nrl] -= ncl;
       }  
 }    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   
 /*************** linmin ************************/    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
     if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
 int ncom;    m[nrl][ncl] += NR_END;
 double *pcom,*xicom;    m[nrl][ncl] -= nll;
 double (*nrfunc)(double []);    for (j=ncl+1; j<=nch; j++) 
        m[nrl][j]=m[nrl][j-1]+nlay;
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))    
 {    for (i=nrl+1; i<=nrh; i++) {
   double brent(double ax, double bx, double cx,      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
                double (*f)(double), double tol, double *xmin);      for (j=ncl+1; j<=nch; j++) 
   double f1dim(double x);        m[i][j]=m[i][j-1]+nlay;
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,    }
               double *fc, double (*func)(double));    return m; 
   int j;    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
   double xx,xmin,bx,ax;             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
   double fx,fb,fa;    */
    }
   ncom=n;  
   pcom=vector(1,n);  /*************************free ma3x ************************/
   xicom=vector(1,n);  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
   nrfunc=func;  {
   for (j=1;j<=n;j++) {    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
     pcom[j]=p[j];    free((FREE_ARG)(m[nrl]+ncl-NR_END));
     xicom[j]=xi[j];    free((FREE_ARG)(m+nrl-NR_END));
   }  }
   ax=0.0;  
   xx=1.0;  /***************** f1dim *************************/
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  extern int ncom; 
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);  extern double *pcom,*xicom;
 #ifdef DEBUG  extern double (*nrfunc)(double []); 
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);   
 #endif  double f1dim(double x) 
   for (j=1;j<=n;j++) {  { 
     xi[j] *= xmin;    int j; 
     p[j] += xi[j];    double f;
   }    double *xt; 
   free_vector(xicom,1,n);   
   free_vector(pcom,1,n);    xt=vector(1,ncom); 
 }    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
     f=(*nrfunc)(xt); 
 /*************** powell ************************/    free_vector(xt,1,ncom); 
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,    return f; 
             double (*func)(double []))  } 
 {  
   void linmin(double p[], double xi[], int n, double *fret,  /*****************brent *************************/
               double (*func)(double []));  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
   int i,ibig,j;  { 
   double del,t,*pt,*ptt,*xit;    int iter; 
   double fp,fptt;    double a,b,d,etemp;
   double *xits;    double fu,fv,fw,fx;
   pt=vector(1,n);    double ftemp;
   ptt=vector(1,n);    double p,q,r,tol1,tol2,u,v,w,x,xm; 
   xit=vector(1,n);    double e=0.0; 
   xits=vector(1,n);   
   *fret=(*func)(p);    a=(ax < cx ? ax : cx); 
   for (j=1;j<=n;j++) pt[j]=p[j];    b=(ax > cx ? ax : cx); 
   for (*iter=1;;++(*iter)) {    x=w=v=bx; 
     fp=(*fret);    fw=fv=fx=(*f)(x); 
     ibig=0;    for (iter=1;iter<=ITMAX;iter++) { 
     del=0.0;      xm=0.5*(a+b); 
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
     for (i=1;i<=n;i++)      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
       printf(" %d %.12f",i, p[i]);      printf(".");fflush(stdout);
     printf("\n");      fprintf(ficlog,".");fflush(ficlog);
     for (i=1;i<=n;i++) {  #ifdef DEBUG
       for (j=1;j<=n;j++) xit[j]=xi[j][i];      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       fptt=(*fret);      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
 #ifdef DEBUG      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
       printf("fret=%lf \n",*fret);  #endif
 #endif      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
       printf("%d",i);fflush(stdout);        *xmin=x; 
       linmin(p,xit,n,fret,func);        return fx; 
       if (fabs(fptt-(*fret)) > del) {      } 
         del=fabs(fptt-(*fret));      ftemp=fu;
         ibig=i;      if (fabs(e) > tol1) { 
       }        r=(x-w)*(fx-fv); 
 #ifdef DEBUG        q=(x-v)*(fx-fw); 
       printf("%d %.12e",i,(*fret));        p=(x-v)*q-(x-w)*r; 
       for (j=1;j<=n;j++) {        q=2.0*(q-r); 
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);        if (q > 0.0) p = -p; 
         printf(" x(%d)=%.12e",j,xit[j]);        q=fabs(q); 
       }        etemp=e; 
       for(j=1;j<=n;j++)        e=d; 
         printf(" p=%.12e",p[j]);        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
       printf("\n");          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
 #endif        else { 
     }          d=p/q; 
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {          u=x+d; 
 #ifdef DEBUG          if (u-a < tol2 || b-u < tol2) 
       int k[2],l;            d=SIGN(tol1,xm-x); 
       k[0]=1;        } 
       k[1]=-1;      } else { 
       printf("Max: %.12e",(*func)(p));        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
       for (j=1;j<=n;j++)      } 
         printf(" %.12e",p[j]);      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
       printf("\n");      fu=(*f)(u); 
       for(l=0;l<=1;l++) {      if (fu <= fx) { 
         for (j=1;j<=n;j++) {        if (u >= x) a=x; else b=x; 
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];        SHFT(v,w,x,u) 
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);          SHFT(fv,fw,fx,fu) 
         }          } else { 
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));            if (u < x) a=u; else b=u; 
       }            if (fu <= fw || w == x) { 
 #endif              v=w; 
               w=u; 
               fv=fw; 
       free_vector(xit,1,n);              fw=fu; 
       free_vector(xits,1,n);            } else if (fu <= fv || v == x || v == w) { 
       free_vector(ptt,1,n);              v=u; 
       free_vector(pt,1,n);              fv=fu; 
       return;            } 
     }          } 
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");    } 
     for (j=1;j<=n;j++) {    nrerror("Too many iterations in brent"); 
       ptt[j]=2.0*p[j]-pt[j];    *xmin=x; 
       xit[j]=p[j]-pt[j];    return fx; 
       pt[j]=p[j];  } 
     }  
     fptt=(*func)(ptt);  /****************** mnbrak ***********************/
     if (fptt < fp) {  
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
       if (t < 0.0) {              double (*func)(double)) 
         linmin(p,xit,n,fret,func);  { 
         for (j=1;j<=n;j++) {    double ulim,u,r,q, dum;
           xi[j][ibig]=xi[j][n];    double fu; 
           xi[j][n]=xit[j];   
         }    *fa=(*func)(*ax); 
 #ifdef DEBUG    *fb=(*func)(*bx); 
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);    if (*fb > *fa) { 
         for(j=1;j<=n;j++)      SHFT(dum,*ax,*bx,dum) 
           printf(" %.12e",xit[j]);        SHFT(dum,*fb,*fa,dum) 
         printf("\n");        } 
 #endif    *cx=(*bx)+GOLD*(*bx-*ax); 
       }    *fc=(*func)(*cx); 
     }    while (*fb > *fc) { 
   }      r=(*bx-*ax)*(*fb-*fc); 
 }      q=(*bx-*cx)*(*fb-*fa); 
       u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
 /**** Prevalence limit ****************/        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
       ulim=(*bx)+GLIMIT*(*cx-*bx); 
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)      if ((*bx-u)*(u-*cx) > 0.0) { 
 {        fu=(*func)(u); 
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit      } else if ((*cx-u)*(u-ulim) > 0.0) { 
      matrix by transitions matrix until convergence is reached */        fu=(*func)(u); 
         if (fu < *fc) { 
   int i, ii,j,k;          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
   double min, max, maxmin, maxmax,sumnew=0.;            SHFT(*fb,*fc,fu,(*func)(u)) 
   double **matprod2();            } 
   double **out, cov[NCOVMAX], **pmij();      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
   double **newm;        u=ulim; 
   double agefin, delaymax=50 ; /* Max number of years to converge */        fu=(*func)(u); 
       } else { 
   for (ii=1;ii<=nlstate+ndeath;ii++)        u=(*cx)+GOLD*(*cx-*bx); 
     for (j=1;j<=nlstate+ndeath;j++){        fu=(*func)(u); 
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);      } 
     }      SHFT(*ax,*bx,*cx,u) 
         SHFT(*fa,*fb,*fc,fu) 
    cov[1]=1.;        } 
    } 
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */  
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){  /*************** linmin ************************/
     newm=savm;  
     /* Covariates have to be included here again */  int ncom; 
      cov[2]=agefin;  double *pcom,*xicom;
    double (*nrfunc)(double []); 
       for (k=1; k<=cptcovn;k++) {   
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
         /*printf("ij=%d Tvar[k]=%d nbcode=%d cov=%lf\n",ij, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k]);*/  { 
       }    double brent(double ax, double bx, double cx, 
       for (k=1; k<=cptcovage;k++)                 double (*f)(double), double tol, double *xmin); 
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    double f1dim(double x); 
       for (k=1; k<=cptcovprod;k++)    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];                double *fc, double (*func)(double)); 
     int j; 
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/    double xx,xmin,bx,ax; 
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/    double fx,fb,fa;
    
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);    ncom=n; 
     pcom=vector(1,n); 
     savm=oldm;    xicom=vector(1,n); 
     oldm=newm;    nrfunc=func; 
     maxmax=0.;    for (j=1;j<=n;j++) { 
     for(j=1;j<=nlstate;j++){      pcom[j]=p[j]; 
       min=1.;      xicom[j]=xi[j]; 
       max=0.;    } 
       for(i=1; i<=nlstate; i++) {    ax=0.0; 
         sumnew=0;    xx=1.0; 
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
         prlim[i][j]= newm[i][j]/(1-sumnew);    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
         max=FMAX(max,prlim[i][j]);  #ifdef DEBUG
         min=FMIN(min,prlim[i][j]);    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
       }    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
       maxmin=max-min;  #endif
       maxmax=FMAX(maxmax,maxmin);    for (j=1;j<=n;j++) { 
     }      xi[j] *= xmin; 
     if(maxmax < ftolpl){      p[j] += xi[j]; 
       return prlim;    } 
     }    free_vector(xicom,1,n); 
   }    free_vector(pcom,1,n); 
 }  } 
   
 /*************** transition probabilities ***************/  /*************** powell ************************/
   void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )              double (*func)(double [])) 
 {  { 
   double s1, s2;    void linmin(double p[], double xi[], int n, double *fret, 
   /*double t34;*/                double (*func)(double [])); 
   int i,j,j1, nc, ii, jj;    int i,ibig,j; 
     double del,t,*pt,*ptt,*xit;
     for(i=1; i<= nlstate; i++){    double fp,fptt;
     for(j=1; j<i;j++){    double *xits;
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    pt=vector(1,n); 
         /*s2 += param[i][j][nc]*cov[nc];*/    ptt=vector(1,n); 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    xit=vector(1,n); 
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/    xits=vector(1,n); 
       }    *fret=(*func)(p); 
       ps[i][j]=s2;    for (j=1;j<=n;j++) pt[j]=p[j]; 
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/    for (*iter=1;;++(*iter)) { 
     }      fp=(*fret); 
     for(j=i+1; j<=nlstate+ndeath;j++){      ibig=0; 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){      del=0.0; 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];      printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f",*iter,*fret);
       }      fprintf(ficrespow,"%d %.12f",*iter,*fret);
       ps[i][j]=(s2);      for (i=1;i<=n;i++) {
     }        printf(" %d %.12f",i, p[i]);
   }        fprintf(ficlog," %d %.12lf",i, p[i]);
     /*ps[3][2]=1;*/        fprintf(ficrespow," %.12lf", p[i]);
       }
   for(i=1; i<= nlstate; i++){      printf("\n");
      s1=0;      fprintf(ficlog,"\n");
     for(j=1; j<i; j++)      fprintf(ficrespow,"\n");
       s1+=exp(ps[i][j]);      for (i=1;i<=n;i++) { 
     for(j=i+1; j<=nlstate+ndeath; j++)        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
       s1+=exp(ps[i][j]);        fptt=(*fret); 
     ps[i][i]=1./(s1+1.);  #ifdef DEBUG
     for(j=1; j<i; j++)        printf("fret=%lf \n",*fret);
       ps[i][j]= exp(ps[i][j])*ps[i][i];        fprintf(ficlog,"fret=%lf \n",*fret);
     for(j=i+1; j<=nlstate+ndeath; j++)  #endif
       ps[i][j]= exp(ps[i][j])*ps[i][i];        printf("%d",i);fflush(stdout);
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */        fprintf(ficlog,"%d",i);fflush(ficlog);
   } /* end i */        linmin(p,xit,n,fret,func); 
         if (fabs(fptt-(*fret)) > del) { 
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){          del=fabs(fptt-(*fret)); 
     for(jj=1; jj<= nlstate+ndeath; jj++){          ibig=i; 
       ps[ii][jj]=0;        } 
       ps[ii][ii]=1;  #ifdef DEBUG
     }        printf("%d %.12e",i,(*fret));
   }        fprintf(ficlog,"%d %.12e",i,(*fret));
         for (j=1;j<=n;j++) {
           xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){          printf(" x(%d)=%.12e",j,xit[j]);
     for(jj=1; jj<= nlstate+ndeath; jj++){          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
      printf("%lf ",ps[ii][jj]);        }
    }        for(j=1;j<=n;j++) {
     printf("\n ");          printf(" p=%.12e",p[j]);
     }          fprintf(ficlog," p=%.12e",p[j]);
     printf("\n ");printf("%lf ",cov[2]);*/        }
 /*        printf("\n");
   for(i=1; i<= npar; i++) printf("%f ",x[i]);        fprintf(ficlog,"\n");
   goto end;*/  #endif
     return ps;      } 
 }      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
   #ifdef DEBUG
 /**************** Product of 2 matrices ******************/        int k[2],l;
         k[0]=1;
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)        k[1]=-1;
 {        printf("Max: %.12e",(*func)(p));
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times        fprintf(ficlog,"Max: %.12e",(*func)(p));
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */        for (j=1;j<=n;j++) {
   /* in, b, out are matrice of pointers which should have been initialized          printf(" %.12e",p[j]);
      before: only the contents of out is modified. The function returns          fprintf(ficlog," %.12e",p[j]);
      a pointer to pointers identical to out */        }
   long i, j, k;        printf("\n");
   for(i=nrl; i<= nrh; i++)        fprintf(ficlog,"\n");
     for(k=ncolol; k<=ncoloh; k++)        for(l=0;l<=1;l++) {
       for(j=ncl,out[i][k]=0.; j<=nch; j++)          for (j=1;j<=n;j++) {
         out[i][k] +=in[i][j]*b[j][k];            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
             printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   return out;            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
 }          }
           printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
           fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
 /************* Higher Matrix Product ***************/        }
   #endif
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )  
 {  
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month        free_vector(xit,1,n); 
      duration (i.e. until        free_vector(xits,1,n); 
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.        free_vector(ptt,1,n); 
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step        free_vector(pt,1,n); 
      (typically every 2 years instead of every month which is too big).        return; 
      Model is determined by parameters x and covariates have to be      } 
      included manually here.      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
       for (j=1;j<=n;j++) { 
      */        ptt[j]=2.0*p[j]-pt[j]; 
         xit[j]=p[j]-pt[j]; 
   int i, j, d, h, k;        pt[j]=p[j]; 
   double **out, cov[NCOVMAX];      } 
   double **newm;      fptt=(*func)(ptt); 
       if (fptt < fp) { 
   /* Hstepm could be zero and should return the unit matrix */        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
   for (i=1;i<=nlstate+ndeath;i++)        if (t < 0.0) { 
     for (j=1;j<=nlstate+ndeath;j++){          linmin(p,xit,n,fret,func); 
       oldm[i][j]=(i==j ? 1.0 : 0.0);          for (j=1;j<=n;j++) { 
       po[i][j][0]=(i==j ? 1.0 : 0.0);            xi[j][ibig]=xi[j][n]; 
     }            xi[j][n]=xit[j]; 
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */          }
   for(h=1; h <=nhstepm; h++){  #ifdef DEBUG
     for(d=1; d <=hstepm; d++){          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
       newm=savm;          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
       /* Covariates have to be included here again */          for(j=1;j<=n;j++){
       cov[1]=1.;            printf(" %.12e",xit[j]);
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;            fprintf(ficlog," %.12e",xit[j]);
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];          }
       for (k=1; k<=cptcovage;k++)          printf("\n");
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];          fprintf(ficlog,"\n");
       for (k=1; k<=cptcovprod;k++)  #endif
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];        }
       } 
     } 
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/  } 
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/  
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,  /**** Prevalence limit (stable prevalence)  ****************/
                    pmij(pmmij,cov,ncovmodel,x,nlstate));  
       savm=oldm;  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
       oldm=newm;  {
     }    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
     for(i=1; i<=nlstate+ndeath; i++)       matrix by transitions matrix until convergence is reached */
       for(j=1;j<=nlstate+ndeath;j++) {  
         po[i][j][h]=newm[i][j];    int i, ii,j,k;
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);    double min, max, maxmin, maxmax,sumnew=0.;
          */    double **matprod2();
       }    double **out, cov[NCOVMAX], **pmij();
   } /* end h */    double **newm;
   return po;    double agefin, delaymax=50 ; /* Max number of years to converge */
 }  
     for (ii=1;ii<=nlstate+ndeath;ii++)
       for (j=1;j<=nlstate+ndeath;j++){
 /*************** log-likelihood *************/        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 double func( double *x)      }
 {  
   int i, ii, j, k, mi, d, kk;     cov[1]=1.;
   double l, ll[NLSTATEMAX], cov[NCOVMAX];   
   double **out;   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   double sw; /* Sum of weights */    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
   double lli; /* Individual log likelihood */      newm=savm;
   long ipmx;      /* Covariates have to be included here again */
   /*extern weight */       cov[2]=agefin;
   /* We are differentiating ll according to initial status */    
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/        for (k=1; k<=cptcovn;k++) {
   /*for(i=1;i<imx;i++)          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
     printf(" %d\n",s[4][i]);          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
   */        }
   cov[1]=1.;        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
         for (k=1; k<=cptcovprod;k++)
   for(k=1; k<=nlstate; k++) ll[k]=0.;          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){  
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
     for(mi=1; mi<= wav[i]-1; mi++){        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
       for (ii=1;ii<=nlstate+ndeath;ii++)        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
       for(d=0; d<dh[mi][i]; d++){  
         newm=savm;      savm=oldm;
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;      oldm=newm;
         for (kk=1; kk<=cptcovage;kk++) {      maxmax=0.;
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];      for(j=1;j<=nlstate;j++){
         }        min=1.;
                max=0.;
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,        for(i=1; i<=nlstate; i++) {
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));          sumnew=0;
         savm=oldm;          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
         oldm=newm;          prlim[i][j]= newm[i][j]/(1-sumnew);
                  max=FMAX(max,prlim[i][j]);
                  min=FMIN(min,prlim[i][j]);
       } /* end mult */        }
              maxmin=max-min;
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);        maxmax=FMAX(maxmax,maxmin);
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/      }
       ipmx +=1;      if(maxmax < ftolpl){
       sw += weight[i];        return prlim;
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;      }
     } /* end of wave */    }
   } /* end of individual */  }
   
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];  /*************** transition probabilities ***************/ 
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */  
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
   return -l;  {
 }    double s1, s2;
     /*double t34;*/
     int i,j,j1, nc, ii, jj;
 /*********** Maximum Likelihood Estimation ***************/  
       for(i=1; i<= nlstate; i++){
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))      for(j=1; j<i;j++){
 {        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
   int i,j, iter;          /*s2 += param[i][j][nc]*cov[nc];*/
   double **xi,*delti;          s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
   double fret;          /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/
   xi=matrix(1,npar,1,npar);        }
   for (i=1;i<=npar;i++)        ps[i][j]=s2;
     for (j=1;j<=npar;j++)        /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/
       xi[i][j]=(i==j ? 1.0 : 0.0);      }
   printf("Powell\n");      for(j=i+1; j<=nlstate+ndeath;j++){
   powell(p,xi,npar,ftol,&iter,&fret,func);        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
           s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));          /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));        }
         ps[i][j]=s2;
 }      }
     }
 /**** Computes Hessian and covariance matrix ***/      /*ps[3][2]=1;*/
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))  
 {    for(i=1; i<= nlstate; i++){
   double  **a,**y,*x,pd;       s1=0;
   double **hess;      for(j=1; j<i; j++)
   int i, j,jk;        s1+=exp(ps[i][j]);
   int *indx;      for(j=i+1; j<=nlstate+ndeath; j++)
         s1+=exp(ps[i][j]);
   double hessii(double p[], double delta, int theta, double delti[]);      ps[i][i]=1./(s1+1.);
   double hessij(double p[], double delti[], int i, int j);      for(j=1; j<i; j++)
   void lubksb(double **a, int npar, int *indx, double b[]) ;        ps[i][j]= exp(ps[i][j])*ps[i][i];
   void ludcmp(double **a, int npar, int *indx, double *d) ;      for(j=i+1; j<=nlstate+ndeath; j++)
         ps[i][j]= exp(ps[i][j])*ps[i][i];
   hess=matrix(1,npar,1,npar);      /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
     } /* end i */
   printf("\nCalculation of the hessian matrix. Wait...\n");  
   for (i=1;i<=npar;i++){    for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
     printf("%d",i);fflush(stdout);      for(jj=1; jj<= nlstate+ndeath; jj++){
     hess[i][i]=hessii(p,ftolhess,i,delti);        ps[ii][jj]=0;
     /*printf(" %f ",p[i]);*/        ps[ii][ii]=1;
     /*printf(" %lf ",hess[i][i]);*/      }
   }    }
    
   for (i=1;i<=npar;i++) {  
     for (j=1;j<=npar;j++)  {    /*   for(ii=1; ii<= nlstate+ndeath; ii++){
       if (j>i) {      for(jj=1; jj<= nlstate+ndeath; jj++){
         printf(".%d%d",i,j);fflush(stdout);       printf("%lf ",ps[ii][jj]);
         hess[i][j]=hessij(p,delti,i,j);     }
         hess[j][i]=hess[i][j];          printf("\n ");
         /*printf(" %lf ",hess[i][j]);*/      }
       }      printf("\n ");printf("%lf ",cov[2]);*/
     }  /*
   }    for(i=1; i<= npar; i++) printf("%f ",x[i]);
   printf("\n");    goto end;*/
       return ps;
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");  }
    
   a=matrix(1,npar,1,npar);  /**************** Product of 2 matrices ******************/
   y=matrix(1,npar,1,npar);  
   x=vector(1,npar);  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
   indx=ivector(1,npar);  {
   for (i=1;i<=npar;i++)    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
   ludcmp(a,npar,indx,&pd);    /* in, b, out are matrice of pointers which should have been initialized 
        before: only the contents of out is modified. The function returns
   for (j=1;j<=npar;j++) {       a pointer to pointers identical to out */
     for (i=1;i<=npar;i++) x[i]=0;    long i, j, k;
     x[j]=1;    for(i=nrl; i<= nrh; i++)
     lubksb(a,npar,indx,x);      for(k=ncolol; k<=ncoloh; k++)
     for (i=1;i<=npar;i++){        for(j=ncl,out[i][k]=0.; j<=nch; j++)
       matcov[i][j]=x[i];          out[i][k] +=in[i][j]*b[j][k];
     }  
   }    return out;
   }
   printf("\n#Hessian matrix#\n");  
   for (i=1;i<=npar;i++) {  
     for (j=1;j<=npar;j++) {  /************* Higher Matrix Product ***************/
       printf("%.3e ",hess[i][j]);  
     }  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
     printf("\n");  {
   }    /* Computes the transition matrix starting at age 'age' over 
        'nhstepm*hstepm*stepm' months (i.e. until
   /* Recompute Inverse */       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
   for (i=1;i<=npar;i++)       nhstepm*hstepm matrices. 
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
   ludcmp(a,npar,indx,&pd);       (typically every 2 years instead of every month which is too big 
        for the memory).
   /*  printf("\n#Hessian matrix recomputed#\n");       Model is determined by parameters x and covariates have to be 
        included manually here. 
   for (j=1;j<=npar;j++) {  
     for (i=1;i<=npar;i++) x[i]=0;       */
     x[j]=1;  
     lubksb(a,npar,indx,x);    int i, j, d, h, k;
     for (i=1;i<=npar;i++){    double **out, cov[NCOVMAX];
       y[i][j]=x[i];    double **newm;
       printf("%.3e ",y[i][j]);  
     }    /* Hstepm could be zero and should return the unit matrix */
     printf("\n");    for (i=1;i<=nlstate+ndeath;i++)
   }      for (j=1;j<=nlstate+ndeath;j++){
   */        oldm[i][j]=(i==j ? 1.0 : 0.0);
         po[i][j][0]=(i==j ? 1.0 : 0.0);
   free_matrix(a,1,npar,1,npar);      }
   free_matrix(y,1,npar,1,npar);    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   free_vector(x,1,npar);    for(h=1; h <=nhstepm; h++){
   free_ivector(indx,1,npar);      for(d=1; d <=hstepm; d++){
   free_matrix(hess,1,npar,1,npar);        newm=savm;
         /* Covariates have to be included here again */
         cov[1]=1.;
 }        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
         for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
 /*************** hessian matrix ****************/        for (k=1; k<=cptcovage;k++)
 double hessii( double x[], double delta, int theta, double delti[])          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
 {        for (k=1; k<=cptcovprod;k++)
   int i;          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   int l=1, lmax=20;  
   double k1,k2;  
   double p2[NPARMAX+1];        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
   double res;        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
   double fx;                     pmij(pmmij,cov,ncovmodel,x,nlstate));
   int k=0,kmax=10;        savm=oldm;
   double l1;        oldm=newm;
       }
   fx=func(x);      for(i=1; i<=nlstate+ndeath; i++)
   for (i=1;i<=npar;i++) p2[i]=x[i];        for(j=1;j<=nlstate+ndeath;j++) {
   for(l=0 ; l <=lmax; l++){          po[i][j][h]=newm[i][j];
     l1=pow(10,l);          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
     delts=delt;           */
     for(k=1 ; k <kmax; k=k+1){        }
       delt = delta*(l1*k);    } /* end h */
       p2[theta]=x[theta] +delt;    return po;
       k1=func(p2)-fx;  }
       p2[theta]=x[theta]-delt;  
       k2=func(p2)-fx;  
       /*res= (k1-2.0*fx+k2)/delt/delt; */  /*************** log-likelihood *************/
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */  double func( double *x)
        {
 #ifdef DEBUG    int i, ii, j, k, mi, d, kk;
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);    double l, ll[NLSTATEMAX], cov[NCOVMAX];
 #endif    double **out;
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */    double sw; /* Sum of weights */
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){    double lli; /* Individual log likelihood */
         k=kmax;    int s1, s2;
       }    double bbh, survp;
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */    long ipmx;
         k=kmax; l=lmax*10.;    /*extern weight */
       }    /* We are differentiating ll according to initial status */
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
         delts=delt;    /*for(i=1;i<imx;i++) 
       }      printf(" %d\n",s[4][i]);
     }    */
   }    cov[1]=1.;
   delti[theta]=delts;  
   return res;    for(k=1; k<=nlstate; k++) ll[k]=0.;
    
 }    if(mle==1){
       for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 double hessij( double x[], double delti[], int thetai,int thetaj)        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 {        for(mi=1; mi<= wav[i]-1; mi++){
   int i;          for (ii=1;ii<=nlstate+ndeath;ii++)
   int l=1, l1, lmax=20;            for (j=1;j<=nlstate+ndeath;j++){
   double k1,k2,k3,k4,res,fx;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   double p2[NPARMAX+1];              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   int k;            }
           for(d=0; d<dh[mi][i]; d++){
   fx=func(x);            newm=savm;
   for (k=1; k<=2; k++) {            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     for (i=1;i<=npar;i++) p2[i]=x[i];            for (kk=1; kk<=cptcovage;kk++) {
     p2[thetai]=x[thetai]+delti[thetai]/k;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;            }
     k1=func(p2)-fx;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     p2[thetai]=x[thetai]+delti[thetai]/k;            savm=oldm;
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;            oldm=newm;
     k2=func(p2)-fx;          } /* end mult */
          
     p2[thetai]=x[thetai]-delti[thetai]/k;          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;          /* But now since version 0.9 we anticipate for bias and large stepm.
     k3=func(p2)-fx;           * If stepm is larger than one month (smallest stepm) and if the exact delay 
             * (in months) between two waves is not a multiple of stepm, we rounded to 
     p2[thetai]=x[thetai]-delti[thetai]/k;           * the nearest (and in case of equal distance, to the lowest) interval but now
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;           * we keep into memory the bias bh[mi][i] and also the previous matrix product
     k4=func(p2)-fx;           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */           * probability in order to take into account the bias as a fraction of the way
 #ifdef DEBUG           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);           * -stepm/2 to stepm/2 .
 #endif           * For stepm=1 the results are the same as for previous versions of Imach.
   }           * For stepm > 1 the results are less biased than in previous versions. 
   return res;           */
 }          s1=s[mw[mi][i]][i];
           s2=s[mw[mi+1][i]][i];
 /************** Inverse of matrix **************/          bbh=(double)bh[mi][i]/(double)stepm; 
 void ludcmp(double **a, int n, int *indx, double *d)          /* bias is positive if real duration
 {           * is higher than the multiple of stepm and negative otherwise.
   int i,imax,j,k;           */
   double big,dum,sum,temp;          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
   double *vv;          if( s2 > nlstate){ 
              /* i.e. if s2 is a death state and if the date of death is known then the contribution
   vv=vector(1,n);               to the likelihood is the probability to die between last step unit time and current 
   *d=1.0;               step unit time, which is also the differences between probability to die before dh 
   for (i=1;i<=n;i++) {               and probability to die before dh-stepm . 
     big=0.0;               In version up to 0.92 likelihood was computed
     for (j=1;j<=n;j++)          as if date of death was unknown. Death was treated as any other
       if ((temp=fabs(a[i][j])) > big) big=temp;          health state: the date of the interview describes the actual state
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");          and not the date of a change in health state. The former idea was
     vv[i]=1.0/big;          to consider that at each interview the state was recorded
   }          (healthy, disable or death) and IMaCh was corrected; but when we
   for (j=1;j<=n;j++) {          introduced the exact date of death then we should have modified
     for (i=1;i<j;i++) {          the contribution of an exact death to the likelihood. This new
       sum=a[i][j];          contribution is smaller and very dependent of the step unit
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];          stepm. It is no more the probability to die between last interview
       a[i][j]=sum;          and month of death but the probability to survive from last
     }          interview up to one month before death multiplied by the
     big=0.0;          probability to die within a month. Thanks to Chris
     for (i=j;i<=n;i++) {          Jackson for correcting this bug.  Former versions increased
       sum=a[i][j];          mortality artificially. The bad side is that we add another loop
       for (k=1;k<j;k++)          which slows down the processing. The difference can be up to 10%
         sum -= a[i][k]*a[k][j];          lower mortality.
       a[i][j]=sum;            */
       if ( (dum=vv[i]*fabs(sum)) >= big) {            lli=log(out[s1][s2] - savm[s1][s2]);
         big=dum;          }else{
         imax=i;            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
       }            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
     }          } 
     if (j != imax) {          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
       for (k=1;k<=n;k++) {          /*if(lli ==000.0)*/
         dum=a[imax][k];          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
         a[imax][k]=a[j][k];          ipmx +=1;
         a[j][k]=dum;          sw += weight[i];
       }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       *d = -(*d);        } /* end of wave */
       vv[imax]=vv[j];      } /* end of individual */
     }    }  else if(mle==2){
     indx[j]=imax;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     if (a[j][j] == 0.0) a[j][j]=TINY;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     if (j != n) {        for(mi=1; mi<= wav[i]-1; mi++){
       dum=1.0/(a[j][j]);          for (ii=1;ii<=nlstate+ndeath;ii++)
       for (i=j+1;i<=n;i++) a[i][j] *= dum;            for (j=1;j<=nlstate+ndeath;j++){
     }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   free_vector(vv,1,n);  /* Doesn't work */            }
 ;          for(d=0; d<=dh[mi][i]; d++){
 }            newm=savm;
             cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 void lubksb(double **a, int n, int *indx, double b[])            for (kk=1; kk<=cptcovage;kk++) {
 {              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   int i,ii=0,ip,j;            }
   double sum;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   for (i=1;i<=n;i++) {            savm=oldm;
     ip=indx[i];            oldm=newm;
     sum=b[ip];          } /* end mult */
     b[ip]=b[i];        
     if (ii)          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];          /* But now since version 0.9 we anticipate for bias and large stepm.
     else if (sum) ii=i;           * If stepm is larger than one month (smallest stepm) and if the exact delay 
     b[i]=sum;           * (in months) between two waves is not a multiple of stepm, we rounded to 
   }           * the nearest (and in case of equal distance, to the lowest) interval but now
   for (i=n;i>=1;i--) {           * we keep into memory the bias bh[mi][i] and also the previous matrix product
     sum=b[i];           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];           * probability in order to take into account the bias as a fraction of the way
     b[i]=sum/a[i][i];           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
   }           * -stepm/2 to stepm/2 .
 }           * For stepm=1 the results are the same as for previous versions of Imach.
            * For stepm > 1 the results are less biased than in previous versions. 
 /************ Frequencies ********************/           */
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2)          s1=s[mw[mi][i]][i];
 {  /* Some frequencies */          s2=s[mw[mi+1][i]][i];
            bbh=(double)bh[mi][i]/(double)stepm; 
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;          /* bias is positive if real duration
   double ***freq; /* Frequencies */           * is higher than the multiple of stepm and negative otherwise.
   double *pp;           */
   double pos, k2, dateintsum=0,k2cpt=0;          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
   FILE *ficresp;          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
   char fileresp[FILENAMELENGTH];          /*lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.-+bh)*out[s1][s2])); */ /* exponential interpolation */
           /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
   pp=vector(1,nlstate);          /*if(lli ==000.0)*/
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
   strcpy(fileresp,"p");          ipmx +=1;
   strcat(fileresp,fileres);          sw += weight[i];
   if((ficresp=fopen(fileresp,"w"))==NULL) {          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     printf("Problem with prevalence resultfile: %s\n", fileresp);        } /* end of wave */
     exit(0);      } /* end of individual */
   }    }  else if(mle==3){  /* exponential inter-extrapolation */
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   j1=0;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(mi=1; mi<= wav[i]-1; mi++){
   j=cptcoveff;          for (ii=1;ii<=nlstate+ndeath;ii++)
   if (cptcovn<1) {j=1;ncodemax[1]=1;}            for (j=1;j<=nlstate+ndeath;j++){
               oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   for(k1=1; k1<=j;k1++){              savm[ii][j]=(ii==j ? 1.0 : 0.0);
    for(i1=1; i1<=ncodemax[k1];i1++){            }
        j1++;          for(d=0; d<dh[mi][i]; d++){
        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);            newm=savm;
          scanf("%d", i);*/            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         for (i=-1; i<=nlstate+ndeath; i++)              for (kk=1; kk<=cptcovage;kk++) {
          for (jk=-1; jk<=nlstate+ndeath; jk++)                cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
            for(m=agemin; m <= agemax+3; m++)            }
              freq[i][jk][m]=0;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                          1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         dateintsum=0;            savm=oldm;
         k2cpt=0;            oldm=newm;
        for (i=1; i<=imx; i++) {          } /* end mult */
          bool=1;        
          if  (cptcovn>0) {          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
            for (z1=1; z1<=cptcoveff; z1++)          /* But now since version 0.9 we anticipate for bias and large stepm.
              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])           * If stepm is larger than one month (smallest stepm) and if the exact delay 
                bool=0;           * (in months) between two waves is not a multiple of stepm, we rounded to 
          }           * the nearest (and in case of equal distance, to the lowest) interval but now
          if (bool==1) {           * we keep into memory the bias bh[mi][i] and also the previous matrix product
            for(m=firstpass; m<=lastpass; m++){           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
              k2=anint[m][i]+(mint[m][i]/12.);           * probability in order to take into account the bias as a fraction of the way
              if ((k2>=dateprev1) && (k2<=dateprev2)) {           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
                if(agev[m][i]==0) agev[m][i]=agemax+1;           * -stepm/2 to stepm/2 .
                if(agev[m][i]==1) agev[m][i]=agemax+2;           * For stepm=1 the results are the same as for previous versions of Imach.
                freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];           * For stepm > 1 the results are less biased than in previous versions. 
                freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];           */
                if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {          s1=s[mw[mi][i]][i];
                  dateintsum=dateintsum+k2;          s2=s[mw[mi+1][i]][i];
                  k2cpt++;          bbh=(double)bh[mi][i]/(double)stepm; 
                }          /* bias is positive if real duration
            * is higher than the multiple of stepm and negative otherwise.
              }           */
            }          /* lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); */ /* linear interpolation */
          }          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
        }          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
         if  (cptcovn>0) {          /*if(lli ==000.0)*/
          fprintf(ficresp, "\n#********** Variable ");          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          ipmx +=1;
        fprintf(ficresp, "**********\n#");          sw += weight[i];
         }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
        for(i=1; i<=nlstate;i++)        } /* end of wave */
          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);      } /* end of individual */
        fprintf(ficresp, "\n");    }else if (mle==4){  /* ml=4 no inter-extrapolation */
              for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   for(i=(int)agemin; i <= (int)agemax+3; i++){        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     if(i==(int)agemax+3)        for(mi=1; mi<= wav[i]-1; mi++){
       printf("Total");          for (ii=1;ii<=nlstate+ndeath;ii++)
     else            for (j=1;j<=nlstate+ndeath;j++){
       printf("Age %d", i);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     for(jk=1; jk <=nlstate ; jk++){              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)            }
         pp[jk] += freq[jk][m][i];          for(d=0; d<dh[mi][i]; d++){
     }            newm=savm;
     for(jk=1; jk <=nlstate ; jk++){            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       for(m=-1, pos=0; m <=0 ; m++)            for (kk=1; kk<=cptcovage;kk++) {
         pos += freq[jk][m][i];              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       if(pp[jk]>=1.e-10)            }
         printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);          
       else            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     }            savm=oldm;
             oldm=newm;
      for(jk=1; jk <=nlstate ; jk++){          } /* end mult */
       for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)        
         pp[jk] += freq[jk][m][i];          s1=s[mw[mi][i]][i];
      }          s2=s[mw[mi+1][i]][i];
           if( s2 > nlstate){ 
     for(jk=1,pos=0; jk <=nlstate ; jk++)            lli=log(out[s1][s2] - savm[s1][s2]);
       pos += pp[jk];          }else{
     for(jk=1; jk <=nlstate ; jk++){            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
       if(pos>=1.e-5)          }
         printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);          ipmx +=1;
       else          sw += weight[i];
         printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       if( i <= (int) agemax){  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
         if(pos>=1.e-5){        } /* end of wave */
           fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);      } /* end of individual */
           probs[i][jk][j1]= pp[jk]/pos;    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
           /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       else        for(mi=1; mi<= wav[i]-1; mi++){
           fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);          for (ii=1;ii<=nlstate+ndeath;ii++)
       }            for (j=1;j<=nlstate+ndeath;j++){
     }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     for(jk=-1; jk <=nlstate+ndeath; jk++)              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       for(m=-1; m <=nlstate+ndeath; m++)            }
         if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);          for(d=0; d<dh[mi][i]; d++){
     if(i <= (int) agemax)            newm=savm;
       fprintf(ficresp,"\n");            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     printf("\n");            for (kk=1; kk<=cptcovage;kk++) {
     }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     }            }
  }          
   dateintmean=dateintsum/k2cpt;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   fclose(ficresp);            savm=oldm;
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);            oldm=newm;
   free_vector(pp,1,nlstate);          } /* end mult */
         
   /* End of Freq */          s1=s[mw[mi][i]][i];
 }          s2=s[mw[mi+1][i]][i];
           lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
 /************ Prevalence ********************/          ipmx +=1;
 void prevalence(int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)          sw += weight[i];
 {  /* Some frequencies */          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
            /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;        } /* end of wave */
   double ***freq; /* Frequencies */      } /* end of individual */
   double *pp;    } /* End of if */
   double pos, k2;    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
     /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   pp=vector(1,nlstate);    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);    return -l;
    }
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);  
   j1=0;  /*************** log-likelihood *************/
    double funcone( double *x)
   j=cptcoveff;  {
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    /* Same as likeli but slower because of a lot of printf and if */
      int i, ii, j, k, mi, d, kk;
  for(k1=1; k1<=j;k1++){    double l, ll[NLSTATEMAX], cov[NCOVMAX];
     for(i1=1; i1<=ncodemax[k1];i1++){    double **out;
       j1++;    double lli; /* Individual log likelihood */
      double llt;
       for (i=-1; i<=nlstate+ndeath; i++)      int s1, s2;
         for (jk=-1; jk<=nlstate+ndeath; jk++)      double bbh, survp;
           for(m=agemin; m <= agemax+3; m++)    /*extern weight */
             freq[i][jk][m]=0;    /* We are differentiating ll according to initial status */
          /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
       for (i=1; i<=imx; i++) {    /*for(i=1;i<imx;i++) 
         bool=1;      printf(" %d\n",s[4][i]);
         if  (cptcovn>0) {    */
           for (z1=1; z1<=cptcoveff; z1++)    cov[1]=1.;
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])  
               bool=0;    for(k=1; k<=nlstate; k++) ll[k]=0.;
         }  
         if (bool==1) {    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           for(m=firstpass; m<=lastpass; m++){      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
             k2=anint[m][i]+(mint[m][i]/12.);      for(mi=1; mi<= wav[i]-1; mi++){
             if ((k2>=dateprev1) && (k2<=dateprev2)) {        for (ii=1;ii<=nlstate+ndeath;ii++)
               if(agev[m][i]==0) agev[m][i]=agemax+1;          for (j=1;j<=nlstate+ndeath;j++){
               if(agev[m][i]==1) agev[m][i]=agemax+2;            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];            savm[ii][j]=(ii==j ? 1.0 : 0.0);
               freq[s[m][i]][s[m+1][i]][(int)(agemax+3+1)] += weight[i];            }
             }        for(d=0; d<dh[mi][i]; d++){
           }          newm=savm;
         }          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       }          for (kk=1; kk<=cptcovage;kk++) {
                  cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         for(i=(int)agemin; i <= (int)agemax+3; i++){          }
           for(jk=1; jk <=nlstate ; jk++){          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
             for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
               pp[jk] += freq[jk][m][i];          savm=oldm;
           }          oldm=newm;
           for(jk=1; jk <=nlstate ; jk++){        } /* end mult */
             for(m=-1, pos=0; m <=0 ; m++)        
             pos += freq[jk][m][i];        s1=s[mw[mi][i]][i];
         }        s2=s[mw[mi+1][i]][i];
                bbh=(double)bh[mi][i]/(double)stepm; 
          for(jk=1; jk <=nlstate ; jk++){        /* bias is positive if real duration
            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)         * is higher than the multiple of stepm and negative otherwise.
              pp[jk] += freq[jk][m][i];         */
          }        if( s2 > nlstate && (mle <5) ){  /* Jackson */
                    lli=log(out[s1][s2] - savm[s1][s2]);
          for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];        } else if (mle==1){
           lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
          for(jk=1; jk <=nlstate ; jk++){                  } else if(mle==2){
            if( i <= (int) agemax){          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
              if(pos>=1.e-5){        } else if(mle==3){  /* exponential inter-extrapolation */
                probs[i][jk][j1]= pp[jk]/pos;          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
              }        } else if (mle==4){  /* mle=4 no inter-extrapolation */
            }          lli=log(out[s1][s2]); /* Original formula */
          }        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
                    lli=log(out[s1][s2]); /* Original formula */
         }        } /* End of if */
     }        ipmx +=1;
   }        sw += weight[i];
          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
    /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);        if(globpr){
   free_vector(pp,1,nlstate);          fprintf(ficresilk,"%ld %6d %1d %1d %1d %1d %3d %10.6f %6.4f\
     %10.6f %10.6f %10.6f ", \
 }  /* End of Freq */                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
                   2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
 /************* Waves Concatenation ***************/          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
             llt +=ll[k]*gipmx/gsw;
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
 {          }
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.          fprintf(ficresilk," %10.6f\n", -llt);
      Death is a valid wave (if date is known).        }
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i      } /* end of wave */
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]    } /* end of individual */
      and mw[mi+1][i]. dh depends on stepm.    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
      */    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
     l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   int i, mi, m;    if(globpr==0){ /* First time we count the contributions and weights */
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;      gipmx=ipmx;
      double sum=0., jmean=0.;*/      gsw=sw;
     }
   int j, k=0,jk, ju, jl;    return -l;
   double sum=0.;  }
   jmin=1e+5;  
   jmax=-1;  
   jmean=0.;  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
   for(i=1; i<=imx; i++){  {
     mi=0;    /* This routine should help understanding what is done with 
     m=firstpass;       the selection of individuals/waves and
     while(s[m][i] <= nlstate){       to check the exact contribution to the likelihood.
       if(s[m][i]>=1)       Plotting could be done.
         mw[++mi][i]=m;     */
       if(m >=lastpass)    int k;
         break;  
       else    if(*globpri !=0){ /* Just counts and sums no printings */
         m++;      strcpy(fileresilk,"ilk"); 
     }/* end while */      strcat(fileresilk,fileres);
     if (s[m][i] > nlstate){      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
       mi++;     /* Death is another wave */        printf("Problem with resultfile: %s\n", fileresilk);
       /* if(mi==0)  never been interviewed correctly before death */        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
          /* Only death is a correct wave */      }
       mw[mi][i]=m;      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
     }      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight out sav ");
       /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
     wav[i]=mi;      for(k=1; k<=nlstate; k++) 
     if(mi==0)        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
   }    }
   
   for(i=1; i<=imx; i++){    *fretone=(*funcone)(p);
     for(mi=1; mi<wav[i];mi++){    if(*globpri !=0){
       if (stepm <=0)      fclose(ficresilk);
         dh[mi][i]=1;      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",fileresilk,fileresilk);
       else{      fflush(fichtm); 
         if (s[mw[mi+1][i]][i] > nlstate) {    } 
           if (agedc[i] < 2*AGESUP) {    return;
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);  }
           if(j==0) j=1;  /* Survives at least one month after exam */  
           k=k+1;  /*********** Maximum Likelihood Estimation ***************/
           if (j >= jmax) jmax=j;  
           if (j <= jmin) jmin=j;  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
           sum=sum+j;  {
           /* if (j<10) printf("j=%d num=%d ",j,i); */    int i,j, iter;
           }    double **xi;
         }    double fret;
         else{    double fretone; /* Only one call to likelihood */
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));    char filerespow[FILENAMELENGTH];
           k=k+1;    xi=matrix(1,npar,1,npar);
           if (j >= jmax) jmax=j;    for (i=1;i<=npar;i++)
           else if (j <= jmin)jmin=j;      for (j=1;j<=npar;j++)
           /*   if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */        xi[i][j]=(i==j ? 1.0 : 0.0);
           sum=sum+j;    printf("Powell\n");  fprintf(ficlog,"Powell\n");
         }    strcpy(filerespow,"pow"); 
         jk= j/stepm;    strcat(filerespow,fileres);
         jl= j -jk*stepm;    if((ficrespow=fopen(filerespow,"w"))==NULL) {
         ju= j -(jk+1)*stepm;      printf("Problem with resultfile: %s\n", filerespow);
         if(jl <= -ju)      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
           dh[mi][i]=jk;    }
         else    fprintf(ficrespow,"# Powell\n# iter -2*LL");
           dh[mi][i]=jk+1;    for (i=1;i<=nlstate;i++)
         if(dh[mi][i]==0)      for(j=1;j<=nlstate+ndeath;j++)
           dh[mi][i]=1; /* At least one step */        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       }    fprintf(ficrespow,"\n");
     }  
   }    powell(p,xi,npar,ftol,&iter,&fret,func);
   jmean=sum/k;  
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);    fclose(ficrespow);
  }    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
 /*********** Tricode ****************************/    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
 void tricode(int *Tvar, int **nbcode, int imx)    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
 {  
   int Ndum[20],ij=1, k, j, i;  }
   int cptcode=0;  
   cptcoveff=0;  /**** Computes Hessian and covariance matrix ***/
    void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
   for (k=0; k<19; k++) Ndum[k]=0;  {
   for (k=1; k<=7; k++) ncodemax[k]=0;    double  **a,**y,*x,pd;
     double **hess;
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {    int i, j,jk;
     for (i=1; i<=imx; i++) {    int *indx;
       ij=(int)(covar[Tvar[j]][i]);  
       Ndum[ij]++;    double hessii(double p[], double delta, int theta, double delti[]);
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/    double hessij(double p[], double delti[], int i, int j);
       if (ij > cptcode) cptcode=ij;    void lubksb(double **a, int npar, int *indx, double b[]) ;
     }    void ludcmp(double **a, int npar, int *indx, double *d) ;
   
     for (i=0; i<=cptcode; i++) {    hess=matrix(1,npar,1,npar);
       if(Ndum[i]!=0) ncodemax[j]++;  
     }    printf("\nCalculation of the hessian matrix. Wait...\n");
     ij=1;    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
     for (i=1;i<=npar;i++){
       printf("%d",i);fflush(stdout);
     for (i=1; i<=ncodemax[j]; i++) {      fprintf(ficlog,"%d",i);fflush(ficlog);
       for (k=0; k<=19; k++) {      hess[i][i]=hessii(p,ftolhess,i,delti);
         if (Ndum[k] != 0) {      /*printf(" %f ",p[i]);*/
           nbcode[Tvar[j]][ij]=k;      /*printf(" %lf ",hess[i][i]);*/
           ij++;    }
         }    
         if (ij > ncodemax[j]) break;    for (i=1;i<=npar;i++) {
       }        for (j=1;j<=npar;j++)  {
     }        if (j>i) { 
   }            printf(".%d%d",i,j);fflush(stdout);
           fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
  for (k=0; k<19; k++) Ndum[k]=0;          hess[i][j]=hessij(p,delti,i,j);
           hess[j][i]=hess[i][j];    
  for (i=1; i<=ncovmodel-2; i++) {          /*printf(" %lf ",hess[i][j]);*/
       ij=Tvar[i];        }
       Ndum[ij]++;      }
     }    }
     printf("\n");
  ij=1;    fprintf(ficlog,"\n");
  for (i=1; i<=10; i++) {  
    if((Ndum[i]!=0) && (i<=ncov)){    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
      Tvaraff[ij]=i;    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
      ij++;    
    }    a=matrix(1,npar,1,npar);
  }    y=matrix(1,npar,1,npar);
      x=vector(1,npar);
     cptcoveff=ij-1;    indx=ivector(1,npar);
 }    for (i=1;i<=npar;i++)
       for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
 /*********** Health Expectancies ****************/    ludcmp(a,npar,indx,&pd);
   
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij)    for (j=1;j<=npar;j++) {
 {      for (i=1;i<=npar;i++) x[i]=0;
   /* Health expectancies */      x[j]=1;
   int i, j, nhstepm, hstepm, h;      lubksb(a,npar,indx,x);
   double age, agelim,hf;      for (i=1;i<=npar;i++){ 
   double ***p3mat;        matcov[i][j]=x[i];
        }
   fprintf(ficreseij,"# Health expectancies\n");    }
   fprintf(ficreseij,"# Age");  
   for(i=1; i<=nlstate;i++)    printf("\n#Hessian matrix#\n");
     for(j=1; j<=nlstate;j++)    fprintf(ficlog,"\n#Hessian matrix#\n");
       fprintf(ficreseij," %1d-%1d",i,j);    for (i=1;i<=npar;i++) { 
   fprintf(ficreseij,"\n");      for (j=1;j<=npar;j++) { 
         printf("%.3e ",hess[i][j]);
   hstepm=1*YEARM; /*  Every j years of age (in month) */        fprintf(ficlog,"%.3e ",hess[i][j]);
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */      }
       printf("\n");
   agelim=AGESUP;      fprintf(ficlog,"\n");
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    }
     /* nhstepm age range expressed in number of stepm */  
     nhstepm=(int) rint((agelim-age)*YEARM/stepm);    /* Recompute Inverse */
     /* Typically if 20 years = 20*12/6=40 stepm */    for (i=1;i<=npar;i++)
     if (stepm >= YEARM) hstepm=1;      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
     nhstepm = nhstepm/hstepm;/* Expressed in hstepm, typically 40/4=10 */    ludcmp(a,npar,indx,&pd);
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
     /* Computed by stepm unit matrices, product of hstepm matrices, stored    /*  printf("\n#Hessian matrix recomputed#\n");
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */  
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);      for (j=1;j<=npar;j++) {
       for (i=1;i<=npar;i++) x[i]=0;
       x[j]=1;
     for(i=1; i<=nlstate;i++)      lubksb(a,npar,indx,x);
       for(j=1; j<=nlstate;j++)      for (i=1;i<=npar;i++){ 
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm; h++){        y[i][j]=x[i];
           eij[i][j][(int)age] +=p3mat[i][j][h];        printf("%.3e ",y[i][j]);
         }        fprintf(ficlog,"%.3e ",y[i][j]);
          }
     hf=1;      printf("\n");
     if (stepm >= YEARM) hf=stepm/YEARM;      fprintf(ficlog,"\n");
     fprintf(ficreseij,"%.0f",age );    }
     for(i=1; i<=nlstate;i++)    */
       for(j=1; j<=nlstate;j++){  
         fprintf(ficreseij," %.4f", hf*eij[i][j][(int)age]);    free_matrix(a,1,npar,1,npar);
       }    free_matrix(y,1,npar,1,npar);
     fprintf(ficreseij,"\n");    free_vector(x,1,npar);
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    free_ivector(indx,1,npar);
   }    free_matrix(hess,1,npar,1,npar);
 }  
   
 /************ Variance ******************/  }
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)  
 {  /*************** hessian matrix ****************/
   /* Variance of health expectancies */  double hessii( double x[], double delta, int theta, double delti[])
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/  {
   double **newm;    int i;
   double **dnewm,**doldm;    int l=1, lmax=20;
   int i, j, nhstepm, hstepm, h;    double k1,k2;
   int k, cptcode;    double p2[NPARMAX+1];
   double *xp;    double res;
   double **gp, **gm;    double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;
   double ***gradg, ***trgradg;    double fx;
   double ***p3mat;    int k=0,kmax=10;
   double age,agelim;    double l1;
   int theta;  
     fx=func(x);
    fprintf(ficresvij,"# Covariances of life expectancies\n");    for (i=1;i<=npar;i++) p2[i]=x[i];
   fprintf(ficresvij,"# Age");    for(l=0 ; l <=lmax; l++){
   for(i=1; i<=nlstate;i++)      l1=pow(10,l);
     for(j=1; j<=nlstate;j++)      delts=delt;
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);      for(k=1 ; k <kmax; k=k+1){
   fprintf(ficresvij,"\n");        delt = delta*(l1*k);
         p2[theta]=x[theta] +delt;
   xp=vector(1,npar);        k1=func(p2)-fx;
   dnewm=matrix(1,nlstate,1,npar);        p2[theta]=x[theta]-delt;
   doldm=matrix(1,nlstate,1,nlstate);        k2=func(p2)-fx;
          /*res= (k1-2.0*fx+k2)/delt/delt; */
   hstepm=1*YEARM; /* Every year of age */        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */        
   agelim = AGESUP;  #ifdef DEBUG
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
     if (stepm >= YEARM) hstepm=1;  #endif
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);          k=kmax;
     gp=matrix(0,nhstepm,1,nlstate);        }
     gm=matrix(0,nhstepm,1,nlstate);        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
           k=kmax; l=lmax*10.;
     for(theta=1; theta <=npar; theta++){        }
       for(i=1; i<=npar; i++){ /* Computes gradient */        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
         xp[i] = x[i] + (i==theta ?delti[theta]:0);          delts=delt;
       }        }
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        }
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    }
     delti[theta]=delts;
       if (popbased==1) {    return res; 
         for(i=1; i<=nlstate;i++)    
           prlim[i][i]=probs[(int)age][i][ij];  }
       }  
        double hessij( double x[], double delti[], int thetai,int thetaj)
       for(j=1; j<= nlstate; j++){  {
         for(h=0; h<=nhstepm; h++){    int i;
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)    int l=1, l1, lmax=20;
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];    double k1,k2,k3,k4,res,fx;
         }    double p2[NPARMAX+1];
       }    int k;
      
       for(i=1; i<=npar; i++) /* Computes gradient */    fx=func(x);
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    for (k=1; k<=2; k++) {
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        for (i=1;i<=npar;i++) p2[i]=x[i];
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      p2[thetai]=x[thetai]+delti[thetai]/k;
       p2[thetaj]=x[thetaj]+delti[thetaj]/k;
       if (popbased==1) {      k1=func(p2)-fx;
         for(i=1; i<=nlstate;i++)    
           prlim[i][i]=probs[(int)age][i][ij];      p2[thetai]=x[thetai]+delti[thetai]/k;
       }      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
       k2=func(p2)-fx;
       for(j=1; j<= nlstate; j++){    
         for(h=0; h<=nhstepm; h++){      p2[thetai]=x[thetai]-delti[thetai]/k;
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];      k3=func(p2)-fx;
         }    
       }      p2[thetai]=x[thetai]-delti[thetai]/k;
       p2[thetaj]=x[thetaj]-delti[thetaj]/k;
       for(j=1; j<= nlstate; j++)      k4=func(p2)-fx;
         for(h=0; h<=nhstepm; h++){      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];  #ifdef DEBUG
         }      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
     } /* End theta */      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   #endif
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);    }
     return res;
     for(h=0; h<=nhstepm; h++)  }
       for(j=1; j<=nlstate;j++)  
         for(theta=1; theta <=npar; theta++)  /************** Inverse of matrix **************/
           trgradg[h][j][theta]=gradg[h][theta][j];  void ludcmp(double **a, int n, int *indx, double *d) 
   { 
     for(i=1;i<=nlstate;i++)    int i,imax,j,k; 
       for(j=1;j<=nlstate;j++)    double big,dum,sum,temp; 
         vareij[i][j][(int)age] =0.;    double *vv; 
     for(h=0;h<=nhstepm;h++){   
       for(k=0;k<=nhstepm;k++){    vv=vector(1,n); 
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);    *d=1.0; 
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);    for (i=1;i<=n;i++) { 
         for(i=1;i<=nlstate;i++)      big=0.0; 
           for(j=1;j<=nlstate;j++)      for (j=1;j<=n;j++) 
             vareij[i][j][(int)age] += doldm[i][j];        if ((temp=fabs(a[i][j])) > big) big=temp; 
       }      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
     }      vv[i]=1.0/big; 
     h=1;    } 
     if (stepm >= YEARM) h=stepm/YEARM;    for (j=1;j<=n;j++) { 
     fprintf(ficresvij,"%.0f ",age );      for (i=1;i<j;i++) { 
     for(i=1; i<=nlstate;i++)        sum=a[i][j]; 
       for(j=1; j<=nlstate;j++){        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
         fprintf(ficresvij," %.4f", h*vareij[i][j][(int)age]);        a[i][j]=sum; 
       }      } 
     fprintf(ficresvij,"\n");      big=0.0; 
     free_matrix(gp,0,nhstepm,1,nlstate);      for (i=j;i<=n;i++) { 
     free_matrix(gm,0,nhstepm,1,nlstate);        sum=a[i][j]; 
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);        for (k=1;k<j;k++) 
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);          sum -= a[i][k]*a[k][j]; 
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        a[i][j]=sum; 
   } /* End age */        if ( (dum=vv[i]*fabs(sum)) >= big) { 
            big=dum; 
   free_vector(xp,1,npar);          imax=i; 
   free_matrix(doldm,1,nlstate,1,npar);        } 
   free_matrix(dnewm,1,nlstate,1,nlstate);      } 
       if (j != imax) { 
 }        for (k=1;k<=n;k++) { 
           dum=a[imax][k]; 
 /************ Variance of prevlim ******************/          a[imax][k]=a[j][k]; 
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)          a[j][k]=dum; 
 {        } 
   /* Variance of prevalence limit */        *d = -(*d); 
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/        vv[imax]=vv[j]; 
   double **newm;      } 
   double **dnewm,**doldm;      indx[j]=imax; 
   int i, j, nhstepm, hstepm;      if (a[j][j] == 0.0) a[j][j]=TINY; 
   int k, cptcode;      if (j != n) { 
   double *xp;        dum=1.0/(a[j][j]); 
   double *gp, *gm;        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
   double **gradg, **trgradg;      } 
   double age,agelim;    } 
   int theta;    free_vector(vv,1,n);  /* Doesn't work */
      ;
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");  } 
   fprintf(ficresvpl,"# Age");  
   for(i=1; i<=nlstate;i++)  void lubksb(double **a, int n, int *indx, double b[]) 
       fprintf(ficresvpl," %1d-%1d",i,i);  { 
   fprintf(ficresvpl,"\n");    int i,ii=0,ip,j; 
     double sum; 
   xp=vector(1,npar);   
   dnewm=matrix(1,nlstate,1,npar);    for (i=1;i<=n;i++) { 
   doldm=matrix(1,nlstate,1,nlstate);      ip=indx[i]; 
        sum=b[ip]; 
   hstepm=1*YEARM; /* Every year of age */      b[ip]=b[i]; 
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */      if (ii) 
   agelim = AGESUP;        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */      else if (sum) ii=i; 
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */      b[i]=sum; 
     if (stepm >= YEARM) hstepm=1;    } 
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    for (i=n;i>=1;i--) { 
     gradg=matrix(1,npar,1,nlstate);      sum=b[i]; 
     gp=vector(1,nlstate);      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
     gm=vector(1,nlstate);      b[i]=sum/a[i][i]; 
     } 
     for(theta=1; theta <=npar; theta++){  } 
       for(i=1; i<=npar; i++){ /* Computes gradient */  
         xp[i] = x[i] + (i==theta ?delti[theta]:0);  /************ Frequencies ********************/
       }  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint)
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  {  /* Some frequencies */
       for(i=1;i<=nlstate;i++)    
         gp[i] = prlim[i][i];    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
        int first;
       for(i=1; i<=npar; i++) /* Computes gradient */    double ***freq; /* Frequencies */
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    double *pp, **prop;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    double pos,posprop, k2, dateintsum=0,k2cpt=0;
       for(i=1;i<=nlstate;i++)    FILE *ficresp;
         gm[i] = prlim[i][i];    char fileresp[FILENAMELENGTH];
     
       for(i=1;i<=nlstate;i++)    pp=vector(1,nlstate);
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];    prop=matrix(1,nlstate,iagemin,iagemax+3);
     } /* End theta */    strcpy(fileresp,"p");
     strcat(fileresp,fileres);
     trgradg =matrix(1,nlstate,1,npar);    if((ficresp=fopen(fileresp,"w"))==NULL) {
       printf("Problem with prevalence resultfile: %s\n", fileresp);
     for(j=1; j<=nlstate;j++)      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
       for(theta=1; theta <=npar; theta++)      exit(0);
         trgradg[j][theta]=gradg[theta][j];    }
     freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);
     for(i=1;i<=nlstate;i++)    j1=0;
       varpl[i][(int)age] =0.;    
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);    j=cptcoveff;
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);    if (cptcovn<1) {j=1;ncodemax[1]=1;}
     for(i=1;i<=nlstate;i++)  
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */    first=1;
   
     fprintf(ficresvpl,"%.0f ",age );    for(k1=1; k1<=j;k1++){
     for(i=1; i<=nlstate;i++)      for(i1=1; i1<=ncodemax[k1];i1++){
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));        j1++;
     fprintf(ficresvpl,"\n");        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
     free_vector(gp,1,nlstate);          scanf("%d", i);*/
     free_vector(gm,1,nlstate);        for (i=-1; i<=nlstate+ndeath; i++)  
     free_matrix(gradg,1,npar,1,nlstate);          for (jk=-1; jk<=nlstate+ndeath; jk++)  
     free_matrix(trgradg,1,nlstate,1,npar);            for(m=iagemin; m <= iagemax+3; m++)
   } /* End age */              freq[i][jk][m]=0;
   
   free_vector(xp,1,npar);      for (i=1; i<=nlstate; i++)  
   free_matrix(doldm,1,nlstate,1,npar);        for(m=iagemin; m <= iagemax+3; m++)
   free_matrix(dnewm,1,nlstate,1,nlstate);          prop[i][m]=0;
         
 }        dateintsum=0;
         k2cpt=0;
 /************ Variance of one-step probabilities  ******************/        for (i=1; i<=imx; i++) {
 void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij)          bool=1;
 {          if  (cptcovn>0) {
   int i, j;            for (z1=1; z1<=cptcoveff; z1++) 
   int k=0, cptcode;              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
   double **dnewm,**doldm;                bool=0;
   double *xp;          }
   double *gp, *gm;          if (bool==1){
   double **gradg, **trgradg;            for(m=firstpass; m<=lastpass; m++){
   double age,agelim, cov[NCOVMAX];              k2=anint[m][i]+(mint[m][i]/12.);
   int theta;              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
   char fileresprob[FILENAMELENGTH];                if(agev[m][i]==0) agev[m][i]=iagemax+1;
                 if(agev[m][i]==1) agev[m][i]=iagemax+2;
   strcpy(fileresprob,"prob");                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
   strcat(fileresprob,fileres);                if (m<lastpass) {
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
     printf("Problem with resultfile: %s\n", fileresprob);                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
   }                }
   printf("Computing variance of one-step probabilities: result on file '%s' \n",fileresprob);                
                  if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
                   dateintsum=dateintsum+k2;
   xp=vector(1,npar);                  k2cpt++;
   dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);                }
   doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));                /*}*/
              }
   cov[1]=1;          }
   for (age=bage; age<=fage; age ++){        }
     cov[2]=age;         
     gradg=matrix(1,npar,1,9);        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
     trgradg=matrix(1,9,1,npar);  
     gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));        if  (cptcovn>0) {
     gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));          fprintf(ficresp, "\n#********** Variable "); 
              for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     for(theta=1; theta <=npar; theta++){          fprintf(ficresp, "**********\n#");
       for(i=1; i<=npar; i++)        }
         xp[i] = x[i] + (i==theta ?delti[theta]:0);        for(i=1; i<=nlstate;i++) 
                fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
       pmij(pmmij,cov,ncovmodel,xp,nlstate);        fprintf(ficresp, "\n");
            
       k=0;        for(i=iagemin; i <= iagemax+3; i++){
       for(i=1; i<= (nlstate+ndeath); i++){          if(i==iagemax+3){
         for(j=1; j<=(nlstate+ndeath);j++){            fprintf(ficlog,"Total");
            k=k+1;          }else{
           gp[k]=pmmij[i][j];            if(first==1){
         }              first=0;
       }              printf("See log file for details...\n");
             }
       for(i=1; i<=npar; i++)            fprintf(ficlog,"Age %d", i);
         xp[i] = x[i] - (i==theta ?delti[theta]:0);          }
              for(jk=1; jk <=nlstate ; jk++){
             for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
       pmij(pmmij,cov,ncovmodel,xp,nlstate);              pp[jk] += freq[jk][m][i]; 
       k=0;          }
       for(i=1; i<=(nlstate+ndeath); i++){          for(jk=1; jk <=nlstate ; jk++){
         for(j=1; j<=(nlstate+ndeath);j++){            for(m=-1, pos=0; m <=0 ; m++)
           k=k+1;              pos += freq[jk][m][i];
           gm[k]=pmmij[i][j];            if(pp[jk]>=1.e-10){
         }              if(first==1){
       }              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
                    }
        for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
            gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];              }else{
     }              if(first==1)
                 printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
      for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
       for(theta=1; theta <=npar; theta++)            }
       trgradg[j][theta]=gradg[theta][j];          }
    
      matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);          for(jk=1; jk <=nlstate ; jk++){
      matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
               pp[jk] += freq[jk][m][i];
      pmij(pmmij,cov,ncovmodel,x,nlstate);          }       
           for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
      k=0;            pos += pp[jk];
      for(i=1; i<=(nlstate+ndeath); i++){            posprop += prop[jk][i];
        for(j=1; j<=(nlstate+ndeath);j++){          }
          k=k+1;          for(jk=1; jk <=nlstate ; jk++){
          gm[k]=pmmij[i][j];            if(pos>=1.e-5){
         }              if(first==1)
      }                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
                    fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
      /*printf("\n%d ",(int)age);            }else{
      for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){              if(first==1)
                        printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
               fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));            }
      }*/            if( i <= iagemax){
               if(pos>=1.e-5){
   fprintf(ficresprob,"\n%d ",(int)age);                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
                 /*probs[i][jk][j1]= pp[jk]/pos;*/
   for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
     if (i== 2) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);              }
 if (i== 4) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);              else
   }                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
             }
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));          }
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));          
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);          for(jk=-1; jk <=nlstate+ndeath; jk++)
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);            for(m=-1; m <=nlstate+ndeath; m++)
 }              if(freq[jk][m][i] !=0 ) {
  free_vector(xp,1,npar);              if(first==1)
 fclose(ficresprob);                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
  exit(0);                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
 }              }
           if(i <= iagemax)
 /***********************************************/            fprintf(ficresp,"\n");
 /**************** Main Program *****************/          if(first==1)
 /***********************************************/            printf("Others in log...\n");
           fprintf(ficlog,"\n");
 /*int main(int argc, char *argv[])*/        }
 int main()      }
 {    }
     dateintmean=dateintsum/k2cpt; 
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;   
   double agedeb, agefin,hf;    fclose(ficresp);
   double agemin=1.e20, agemax=-1.e20;    free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);
     free_vector(pp,1,nlstate);
   double fret;    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
   double **xi,tmp,delta;    /* End of Freq */
   }
   double dum; /* Dummy variable */  
   double ***p3mat;  /************ Prevalence ********************/
   int *indx;  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
   char line[MAXLINE], linepar[MAXLINE];  {  
   char title[MAXLINE];    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];       in each health status at the date of interview (if between dateprev1 and dateprev2).
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], fileresf[FILENAMELENGTH];       We still use firstpass and lastpass as another selection.
   char filerest[FILENAMELENGTH];    */
   char fileregp[FILENAMELENGTH];   
   char popfile[FILENAMELENGTH];    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];    double ***freq; /* Frequencies */
   int firstobs=1, lastobs=10;    double *pp, **prop;
   int sdeb, sfin; /* Status at beginning and end */    double pos,posprop; 
   int c,  h , cpt,l;    double  y2; /* in fractional years */
   int ju,jl, mi;    int iagemin, iagemax;
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;  
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;    iagemin= (int) agemin;
   int mobilav=0,popforecast=0;    iagemax= (int) agemax;
   int hstepm, nhstepm;    /*pp=vector(1,nlstate);*/
   int *popage;/*boolprev=0 if date and zero if wave*/    prop=matrix(1,nlstate,iagemin,iagemax+3); 
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2;    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
     j1=0;
   double bage, fage, age, agelim, agebase;    
   double ftolpl=FTOL;    j=cptcoveff;
   double **prlim;    if (cptcovn<1) {j=1;ncodemax[1]=1;}
   double *severity;    
   double ***param; /* Matrix of parameters */    for(k1=1; k1<=j;k1++){
   double  *p;      for(i1=1; i1<=ncodemax[k1];i1++){
   double **matcov; /* Matrix of covariance */        j1++;
   double ***delti3; /* Scale */        
   double *delti; /* Scale */        for (i=1; i<=nlstate; i++)  
   double ***eij, ***vareij;          for(m=iagemin; m <= iagemax+3; m++)
   double **varpl; /* Variances of prevalence limits by age */            prop[i][m]=0.0;
   double *epj, vepp;       
   double kk1, kk2;        for (i=1; i<=imx; i++) { /* Each individual */
   double *popeffectif,*popcount;          bool=1;
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,jprojmean,mprojmean,anprojmean, calagedate;          if  (cptcovn>0) {
   double yp,yp1,yp2;            for (z1=1; z1<=cptcoveff; z1++) 
               if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
   char version[80]="Imach version 64b, May 2001, INED-EUROREVES ";                bool=0;
   char *alph[]={"a","a","b","c","d","e"}, str[4];          } 
           if (bool==1) { 
             for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
   char z[1]="c", occ;              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
 #include <sys/time.h>              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
 #include <time.h>                if(agev[m][i]==0) agev[m][i]=iagemax+1;
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];                if(agev[m][i]==1) agev[m][i]=iagemax+2;
                  if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
   /* long total_usecs;                if (s[m][i]>0 && s[m][i]<=nlstate) { 
   struct timeval start_time, end_time;                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
                    prop[s[m][i]][(int)agev[m][i]] += weight[i];
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */                  prop[s[m][i]][iagemax+3] += weight[i]; 
                 } 
               }
   printf("\nIMACH, Version 0.7");            } /* end selection of waves */
   printf("\nEnter the parameter file name: ");          }
         }
 #ifdef windows        for(i=iagemin; i <= iagemax+3; i++){  
   scanf("%s",pathtot);          
   getcwd(pathcd, size);          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
   /*cygwin_split_path(pathtot,path,optionfile);            posprop += prop[jk][i]; 
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/          } 
   /* cutv(path,optionfile,pathtot,'\\');*/  
           for(jk=1; jk <=nlstate ; jk++){     
 split(pathtot, path,optionfile);            if( i <=  iagemax){ 
   chdir(path);              if(posprop>=1.e-5){ 
   replace(pathc,path);                probs[i][jk][j1]= prop[jk][i]/posprop;
 #endif              } 
 #ifdef unix            } 
   scanf("%s",optionfile);          }/* end jk */ 
 #endif        }/* end i */ 
       } /* end i1 */
 /*-------- arguments in the command line --------*/    } /* end k1 */
     
   strcpy(fileres,"r");    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
   strcat(fileres, optionfile);    /*free_vector(pp,1,nlstate);*/
     free_matrix(prop,1,nlstate, iagemin,iagemax+3);
   /*---------arguments file --------*/  }  /* End of prevalence */
   
   if((ficpar=fopen(optionfile,"r"))==NULL)    {  /************* Waves Concatenation ***************/
     printf("Problem with optionfile %s\n",optionfile);  
     goto end;  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
   }  {
     /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
   strcpy(filereso,"o");       Death is a valid wave (if date is known).
   strcat(filereso,fileres);       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
   if((ficparo=fopen(filereso,"w"))==NULL) {       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
     printf("Problem with Output resultfile: %s\n", filereso);goto end;       and mw[mi+1][i]. dh depends on stepm.
   }       */
   
   /* Reads comments: lines beginning with '#' */    int i, mi, m;
   while((c=getc(ficpar))=='#' && c!= EOF){    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
     ungetc(c,ficpar);       double sum=0., jmean=0.;*/
     fgets(line, MAXLINE, ficpar);    int first;
     puts(line);    int j, k=0,jk, ju, jl;
     fputs(line,ficparo);    double sum=0.;
   }    first=0;
   ungetc(c,ficpar);    jmin=1e+5;
     jmax=-1;
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncov, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);    jmean=0.;
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate,ndeath, maxwav, mle, weightopt,model);    for(i=1; i<=imx; i++){
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncov,nlstate,ndeath,maxwav, mle, weightopt,model);      mi=0;
 while((c=getc(ficpar))=='#' && c!= EOF){      m=firstpass;
     ungetc(c,ficpar);      while(s[m][i] <= nlstate){
     fgets(line, MAXLINE, ficpar);        if(s[m][i]>=1)
     puts(line);          mw[++mi][i]=m;
     fputs(line,ficparo);        if(m >=lastpass)
   }          break;
   ungetc(c,ficpar);        else
            m++;
          }/* end while */
   covar=matrix(0,NCOVMAX,1,n);      if (s[m][i] > nlstate){
   cptcovn=0;        mi++;     /* Death is another wave */
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;        /* if(mi==0)  never been interviewed correctly before death */
            /* Only death is a correct wave */
   ncovmodel=2+cptcovn;        mw[mi][i]=m;
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */      }
    
   /* Read guess parameters */      wav[i]=mi;
   /* Reads comments: lines beginning with '#' */      if(mi==0){
   while((c=getc(ficpar))=='#' && c!= EOF){        if(first==0){
     ungetc(c,ficpar);          printf("Warning! None valid information for:%ld line=%d (skipped) and may be others, see log file\n",num[i],i);
     fgets(line, MAXLINE, ficpar);          first=1;
     puts(line);        }
     fputs(line,ficparo);        if(first==1){
   }          fprintf(ficlog,"Warning! None valid information for:%ld line=%d (skipped)\n",num[i],i);
   ungetc(c,ficpar);        }
        } /* end mi==0 */
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    } /* End individuals */
     for(i=1; i <=nlstate; i++)  
     for(j=1; j <=nlstate+ndeath-1; j++){    for(i=1; i<=imx; i++){
       fscanf(ficpar,"%1d%1d",&i1,&j1);      for(mi=1; mi<wav[i];mi++){
       fprintf(ficparo,"%1d%1d",i1,j1);        if (stepm <=0)
       printf("%1d%1d",i,j);          dh[mi][i]=1;
       for(k=1; k<=ncovmodel;k++){        else{
         fscanf(ficpar," %lf",&param[i][j][k]);          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
         printf(" %lf",param[i][j][k]);            if (agedc[i] < 2*AGESUP) {
         fprintf(ficparo," %lf",param[i][j][k]);              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
       }              if(j==0) j=1;  /* Survives at least one month after exam */
       fscanf(ficpar,"\n");              else if(j<0){
       printf("\n");                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
       fprintf(ficparo,"\n");                j=1; /* Careful Patch */
     }                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
                  printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
               }
   p=param[1][1];              k=k+1;
                if (j >= jmax) jmax=j;
   /* Reads comments: lines beginning with '#' */              if (j <= jmin) jmin=j;
   while((c=getc(ficpar))=='#' && c!= EOF){              sum=sum+j;
     ungetc(c,ficpar);              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
     fgets(line, MAXLINE, ficpar);              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
     puts(line);            }
     fputs(line,ficparo);          }
   }          else{
   ungetc(c,ficpar);            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
             /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);            k=k+1;
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */            if (j >= jmax) jmax=j;
   for(i=1; i <=nlstate; i++){            else if (j <= jmin)jmin=j;
     for(j=1; j <=nlstate+ndeath-1; j++){            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
       fscanf(ficpar,"%1d%1d",&i1,&j1);            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
       printf("%1d%1d",i,j);            if(j<0){
       fprintf(ficparo,"%1d%1d",i1,j1);              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
       for(k=1; k<=ncovmodel;k++){              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
         fscanf(ficpar,"%le",&delti3[i][j][k]);            }
         printf(" %le",delti3[i][j][k]);            sum=sum+j;
         fprintf(ficparo," %le",delti3[i][j][k]);          }
       }          jk= j/stepm;
       fscanf(ficpar,"\n");          jl= j -jk*stepm;
       printf("\n");          ju= j -(jk+1)*stepm;
       fprintf(ficparo,"\n");          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
     }            if(jl==0){
   }              dh[mi][i]=jk;
   delti=delti3[1][1];              bh[mi][i]=0;
              }else{ /* We want a negative bias in order to only have interpolation ie
   /* Reads comments: lines beginning with '#' */                    * at the price of an extra matrix product in likelihood */
   while((c=getc(ficpar))=='#' && c!= EOF){              dh[mi][i]=jk+1;
     ungetc(c,ficpar);              bh[mi][i]=ju;
     fgets(line, MAXLINE, ficpar);            }
     puts(line);          }else{
     fputs(line,ficparo);            if(jl <= -ju){
   }              dh[mi][i]=jk;
   ungetc(c,ficpar);              bh[mi][i]=jl;       /* bias is positive if real duration
                                     * is higher than the multiple of stepm and negative otherwise.
   matcov=matrix(1,npar,1,npar);                                   */
   for(i=1; i <=npar; i++){            }
     fscanf(ficpar,"%s",&str);            else{
     printf("%s",str);              dh[mi][i]=jk+1;
     fprintf(ficparo,"%s",str);              bh[mi][i]=ju;
     for(j=1; j <=i; j++){            }
       fscanf(ficpar," %le",&matcov[i][j]);            if(dh[mi][i]==0){
       printf(" %.5le",matcov[i][j]);              dh[mi][i]=1; /* At least one step */
       fprintf(ficparo," %.5le",matcov[i][j]);              bh[mi][i]=ju; /* At least one step */
     }              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
     fscanf(ficpar,"\n");            }
     printf("\n");          } /* end if mle */
     fprintf(ficparo,"\n");        }
   }      } /* end wave */
   for(i=1; i <=npar; i++)    }
     for(j=i+1;j<=npar;j++)    jmean=sum/k;
       matcov[i][j]=matcov[j][i];    printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
        fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
   printf("\n");   }
   
   /*********** Tricode ****************************/
     /*-------- data file ----------*/  void tricode(int *Tvar, int **nbcode, int imx)
     if((ficres =fopen(fileres,"w"))==NULL) {  {
       printf("Problem with resultfile: %s\n", fileres);goto end;    
     }    int Ndum[20],ij=1, k, j, i, maxncov=19;
     fprintf(ficres,"#%s\n",version);    int cptcode=0;
        cptcoveff=0; 
     if((fic=fopen(datafile,"r"))==NULL)    {   
       printf("Problem with datafile: %s\n", datafile);goto end;    for (k=0; k<maxncov; k++) Ndum[k]=0;
     }    for (k=1; k<=7; k++) ncodemax[k]=0;
   
     n= lastobs;    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
     severity = vector(1,maxwav);      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
     outcome=imatrix(1,maxwav+1,1,n);                                 modality*/ 
     num=ivector(1,n);        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
     moisnais=vector(1,n);        Ndum[ij]++; /*store the modality */
     annais=vector(1,n);        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
     moisdc=vector(1,n);        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
     andc=vector(1,n);                                         Tvar[j]. If V=sex and male is 0 and 
     agedc=vector(1,n);                                         female is 1, then  cptcode=1.*/
     cod=ivector(1,n);      }
     weight=vector(1,n);  
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */      for (i=0; i<=cptcode; i++) {
     mint=matrix(1,maxwav,1,n);        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
     anint=matrix(1,maxwav,1,n);      }
     s=imatrix(1,maxwav+1,1,n);  
     adl=imatrix(1,maxwav+1,1,n);          ij=1; 
     tab=ivector(1,NCOVMAX);      for (i=1; i<=ncodemax[j]; i++) {
     ncodemax=ivector(1,8);        for (k=0; k<= maxncov; k++) {
           if (Ndum[k] != 0) {
     i=1;            nbcode[Tvar[j]][ij]=k; 
     while (fgets(line, MAXLINE, fic) != NULL)    {            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
       if ((i >= firstobs) && (i <=lastobs)) {            
                    ij++;
         for (j=maxwav;j>=1;j--){          }
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);          if (ij > ncodemax[j]) break; 
           strcpy(line,stra);        }  
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);      } 
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);    }  
         }  
           for (k=0; k< maxncov; k++) Ndum[k]=0;
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);  
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);   for (i=1; i<=ncovmodel-2; i++) { 
      /* Listing of all covariables in staement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);     ij=Tvar[i];
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);     Ndum[ij]++;
    }
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);  
         for (j=ncov;j>=1;j--){   ij=1;
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);   for (i=1; i<= maxncov; i++) {
         }     if((Ndum[i]!=0) && (i<=ncovcol)){
         num[i]=atol(stra);       Tvaraff[ij]=i; /*For printing */
               ij++;
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){     }
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/   }
    
         i=i+1;   cptcoveff=ij-1; /*Number of simple covariates*/
       }  }
     }  
     /* printf("ii=%d", ij);  /*********** Health Expectancies ****************/
        scanf("%d",i);*/  
   imx=i-1; /* Number of individuals */  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )
   
   /* for (i=1; i<=imx; i++){  {
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;    /* Health expectancies */
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;    int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;    double age, agelim, hf;
     }    double ***p3mat,***varhe;
     double **dnewm,**doldm;
     for (i=1; i<=imx; i++)    double *xp;
     if (covar[1][i]==0) printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));*/    double **gp, **gm;
     double ***gradg, ***trgradg;
   /* Calculation of the number of parameter from char model*/    int theta;
   Tvar=ivector(1,15);  
   Tprod=ivector(1,15);    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
   Tvaraff=ivector(1,15);    xp=vector(1,npar);
   Tvard=imatrix(1,15,1,2);    dnewm=matrix(1,nlstate*nlstate,1,npar);
   Tage=ivector(1,15);          doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
        
   if (strlen(model) >1){    fprintf(ficreseij,"# Health expectancies\n");
     j=0, j1=0, k1=1, k2=1;    fprintf(ficreseij,"# Age");
     j=nbocc(model,'+');    for(i=1; i<=nlstate;i++)
     j1=nbocc(model,'*');      for(j=1; j<=nlstate;j++)
     cptcovn=j+1;        fprintf(ficreseij," %1d-%1d (SE)",i,j);
     cptcovprod=j1;    fprintf(ficreseij,"\n");
      
        if(estepm < stepm){
     strcpy(modelsav,model);      printf ("Problem %d lower than %d\n",estepm, stepm);
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){    }
       printf("Error. Non available option model=%s ",model);    else  hstepm=estepm;   
       goto end;    /* We compute the life expectancy from trapezoids spaced every estepm months
     }     * This is mainly to measure the difference between two models: for example
         * if stepm=24 months pijx are given only every 2 years and by summing them
     for(i=(j+1); i>=1;i--){     * we are calculating an estimate of the Life Expectancy assuming a linear 
       cutv(stra,strb,modelsav,'+');     * progression in between and thus overestimating or underestimating according
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);     * to the curvature of the survival function. If, for the same date, we 
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/     * estimate the model with stepm=1 month, we can keep estepm to 24 months
       /*scanf("%d",i);*/     * to compare the new estimate of Life expectancy with the same linear 
       if (strchr(strb,'*')) {     * hypothesis. A more precise result, taking into account a more precise
         cutv(strd,strc,strb,'*');     * curvature will be obtained if estepm is as small as stepm. */
         if (strcmp(strc,"age")==0) {  
           cptcovprod--;    /* For example we decided to compute the life expectancy with the smallest unit */
           cutv(strb,stre,strd,'V');    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
           Tvar[i]=atoi(stre);       nhstepm is the number of hstepm from age to agelim 
           cptcovage++;       nstepm is the number of stepm from age to agelin. 
             Tage[cptcovage]=i;       Look at hpijx to understand the reason of that which relies in memory size
             /*printf("stre=%s ", stre);*/       and note for a fixed period like estepm months */
         }    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
         else if (strcmp(strd,"age")==0) {       survival function given by stepm (the optimization length). Unfortunately it
           cptcovprod--;       means that if the survival funtion is printed only each two years of age and if
           cutv(strb,stre,strc,'V');       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
           Tvar[i]=atoi(stre);       results. So we changed our mind and took the option of the best precision.
           cptcovage++;    */
           Tage[cptcovage]=i;    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
         }  
         else {    agelim=AGESUP;
           cutv(strb,stre,strc,'V');    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
           Tvar[i]=ncov+k1;      /* nhstepm age range expressed in number of stepm */
           cutv(strb,strc,strd,'V');      nstepm=(int) rint((agelim-age)*YEARM/stepm); 
           Tprod[k1]=i;      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
           Tvard[k1][1]=atoi(strc);      /* if (stepm >= YEARM) hstepm=1;*/
           Tvard[k1][2]=atoi(stre);      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
           Tvar[cptcovn+k2]=Tvard[k1][1];      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           Tvar[cptcovn+k2+1]=Tvard[k1][2];      gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
           for (k=1; k<=lastobs;k++)      gp=matrix(0,nhstepm,1,nlstate*nlstate);
             covar[ncov+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];      gm=matrix(0,nhstepm,1,nlstate*nlstate);
           k1++;  
           k2=k2+2;      /* Computed by stepm unit matrices, product of hstepm matrices, stored
         }         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
       }      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
       else {   
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/  
        /*  scanf("%d",i);*/      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       cutv(strd,strc,strb,'V');  
       Tvar[i]=atoi(strc);      /* Computing Variances of health expectancies */
       }  
       strcpy(modelsav,stra);         for(theta=1; theta <=npar; theta++){
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);        for(i=1; i<=npar; i++){ 
         scanf("%d",i);*/          xp[i] = x[i] + (i==theta ?delti[theta]:0);
     }        }
 }        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
      
   /*printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);        cptj=0;
   printf("cptcovprod=%d ", cptcovprod);        for(j=1; j<= nlstate; j++){
   scanf("%d ",i);*/          for(i=1; i<=nlstate; i++){
     fclose(fic);            cptj=cptj+1;
             for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
     /*  if(mle==1){*/              gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
     if (weightopt != 1) { /* Maximisation without weights*/            }
       for(i=1;i<=n;i++) weight[i]=1.0;          }
     }        }
     /*-calculation of age at interview from date of interview and age at death -*/       
     agev=matrix(1,maxwav,1,imx);       
         for(i=1; i<=npar; i++) 
    for (i=1; i<=imx; i++)          xp[i] = x[i] - (i==theta ?delti[theta]:0);
      for(m=2; (m<= maxwav); m++)        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){        
          anint[m][i]=9999;        cptj=0;
          s[m][i]=-1;        for(j=1; j<= nlstate; j++){
        }          for(i=1;i<=nlstate;i++){
                cptj=cptj+1;
     for (i=1; i<=imx; i++)  {            for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);  
       for(m=1; (m<= maxwav); m++){              gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
         if(s[m][i] >0){            }
           if (s[m][i] == nlstate+1) {          }
             if(agedc[i]>0)        }
               if(moisdc[i]!=99 && andc[i]!=9999)        for(j=1; j<= nlstate*nlstate; j++)
               agev[m][i]=agedc[i];          for(h=0; h<=nhstepm-1; h++){
             else {            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
               if (andc[i]!=9999){          }
               printf("Warning negative age at death: %d line:%d\n",num[i],i);       } 
               agev[m][i]=-1;     
               }  /* End theta */
             }  
           }       trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
           else if(s[m][i] !=9){ /* Should no more exist */  
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);       for(h=0; h<=nhstepm-1; h++)
             if(mint[m][i]==99 || anint[m][i]==9999)        for(j=1; j<=nlstate*nlstate;j++)
               agev[m][i]=1;          for(theta=1; theta <=npar; theta++)
             else if(agev[m][i] <agemin){            trgradg[h][j][theta]=gradg[h][theta][j];
               agemin=agev[m][i];       
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/  
             }       for(i=1;i<=nlstate*nlstate;i++)
             else if(agev[m][i] >agemax){        for(j=1;j<=nlstate*nlstate;j++)
               agemax=agev[m][i];          varhe[i][j][(int)age] =0.;
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/  
             }       printf("%d|",(int)age);fflush(stdout);
             /*agev[m][i]=anint[m][i]-annais[i];*/       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
             /*   agev[m][i] = age[i]+2*m;*/       for(h=0;h<=nhstepm-1;h++){
           }        for(k=0;k<=nhstepm-1;k++){
           else { /* =9 */          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
             agev[m][i]=1;          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
             s[m][i]=-1;          for(i=1;i<=nlstate*nlstate;i++)
           }            for(j=1;j<=nlstate*nlstate;j++)
         }              varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
         else /*= 0 Unknown */        }
           agev[m][i]=1;      }
       }      /* Computing expectancies */
          for(i=1; i<=nlstate;i++)
     }        for(j=1; j<=nlstate;j++)
     for (i=1; i<=imx; i++)  {          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
       for(m=1; (m<= maxwav); m++){            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
         if (s[m][i] > (nlstate+ndeath)) {            
           printf("Error: Wrong value in nlstate or ndeath\n");    /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
           goto end;  
         }          }
       }  
     }      fprintf(ficreseij,"%3.0f",age );
       cptj=0;
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);      for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++){
     free_vector(severity,1,maxwav);          cptj++;
     free_imatrix(outcome,1,maxwav+1,1,n);          fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
     free_vector(moisnais,1,n);        }
     free_vector(annais,1,n);      fprintf(ficreseij,"\n");
     /* free_matrix(mint,1,maxwav,1,n);     
        free_matrix(anint,1,maxwav,1,n);*/      free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
     free_vector(moisdc,1,n);      free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
     free_vector(andc,1,n);      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
       free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
          free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     wav=ivector(1,imx);    }
     dh=imatrix(1,lastpass-firstpass+1,1,imx);    printf("\n");
     mw=imatrix(1,lastpass-firstpass+1,1,imx);    fprintf(ficlog,"\n");
      
     /* Concatenates waves */    free_vector(xp,1,npar);
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
     free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
     free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
       Tcode=ivector(1,100);  }
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);  
       ncodemax[1]=1;  /************ Variance ******************/
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav)
        {
    codtab=imatrix(1,100,1,10);    /* Variance of health expectancies */
    h=0;    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
    m=pow(2,cptcoveff);    /* double **newm;*/
      double **dnewm,**doldm;
    for(k=1;k<=cptcoveff; k++){    double **dnewmp,**doldmp;
      for(i=1; i <=(m/pow(2,k));i++){    int i, j, nhstepm, hstepm, h, nstepm ;
        for(j=1; j <= ncodemax[k]; j++){    int k, cptcode;
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){    double *xp;
            h++;    double **gp, **gm;  /* for var eij */
            if (h>m) h=1;codtab[h][k]=j;    double ***gradg, ***trgradg; /*for var eij */
          }    double **gradgp, **trgradgp; /* for var p point j */
        }    double *gpp, *gmp; /* for var p point j */
      }    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
    }    double ***p3mat;
        double age,agelim, hf;
    /* Calculates basic frequencies. Computes observed prevalence at single age    double ***mobaverage;
        and prints on file fileres'p'. */    int theta;
     char digit[4];
        char digitp[25];
      
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    char fileresprobmorprev[FILENAMELENGTH];
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    if(popbased==1){
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      if(mobilav!=0)
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */        strcpy(digitp,"-populbased-mobilav-");
            else strcpy(digitp,"-populbased-nomobil-");
     /* For Powell, parameters are in a vector p[] starting at p[1]    }
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */    else 
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */      strcpy(digitp,"-stablbased-");
   
     if(mle==1){    if (mobilav!=0) {
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     }      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
            fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
     /*--------- results files --------------*/        printf(" Error in movingaverage mobilav=%d\n",mobilav);
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate, ndeath, maxwav, mle,weightopt,model);      }
      }
   
    jk=1;    strcpy(fileresprobmorprev,"prmorprev"); 
    fprintf(ficres,"# Parameters\n");    sprintf(digit,"%-d",ij);
    printf("# Parameters\n");    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
    for(i=1,jk=1; i <=nlstate; i++){    strcat(fileresprobmorprev,digit); /* Tvar to be done */
      for(k=1; k <=(nlstate+ndeath); k++){    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
        if (k != i)    strcat(fileresprobmorprev,fileres);
          {    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
            printf("%d%d ",i,k);      printf("Problem with resultfile: %s\n", fileresprobmorprev);
            fprintf(ficres,"%1d%1d ",i,k);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
            for(j=1; j <=ncovmodel; j++){    }
              printf("%f ",p[jk]);    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
              fprintf(ficres,"%f ",p[jk]);    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
              jk++;    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
            }    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
            printf("\n");    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
            fprintf(ficres,"\n");      fprintf(ficresprobmorprev," p.%-d SE",j);
          }      for(i=1; i<=nlstate;i++)
      }        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
    }    }  
  if(mle==1){    fprintf(ficresprobmorprev,"\n");
     /* Computing hessian and covariance matrix */    if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {
     ftolhess=ftol; /* Usually correct */      printf("Problem with gnuplot file: %s\n", optionfilegnuplot);
     hesscov(matcov, p, npar, delti, ftolhess, func);      fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);
  }      exit(0);
     fprintf(ficres,"# Scales\n");    }
     printf("# Scales\n");    else{
      for(i=1,jk=1; i <=nlstate; i++){      fprintf(ficgp,"\n# Routine varevsij");
       for(j=1; j <=nlstate+ndeath; j++){    }
         if (j!=i) {  /*   if((fichtm=fopen(optionfilehtm,"a"))==NULL) { */
           fprintf(ficres,"%1d%1d",i,j);  /*     printf("Problem with html file: %s\n", optionfilehtm); */
           printf("%1d%1d",i,j);  /*     fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm); */
           for(k=1; k<=ncovmodel;k++){  /*     exit(0); */
             printf(" %.5e",delti[jk]);  /*   } */
             fprintf(ficres," %.5e",delti[jk]);  /*   else{ */
             jk++;    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
           }    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
           printf("\n");  /*   } */
           fprintf(ficres,"\n");    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
         }  
       }    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
      }    fprintf(ficresvij,"# Age");
        for(i=1; i<=nlstate;i++)
     k=1;      for(j=1; j<=nlstate;j++)
     fprintf(ficres,"# Covariance\n");        fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
     printf("# Covariance\n");    fprintf(ficresvij,"\n");
     for(i=1;i<=npar;i++){  
       /*  if (k>nlstate) k=1;    xp=vector(1,npar);
       i1=(i-1)/(ncovmodel*nlstate)+1;    dnewm=matrix(1,nlstate,1,npar);
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);    doldm=matrix(1,nlstate,1,nlstate);
       printf("%s%d%d",alph[k],i1,tab[i]);*/    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
       fprintf(ficres,"%3d",i);    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
       printf("%3d",i);  
       for(j=1; j<=i;j++){    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
         fprintf(ficres," %.5e",matcov[i][j]);    gpp=vector(nlstate+1,nlstate+ndeath);
         printf(" %.5e",matcov[i][j]);    gmp=vector(nlstate+1,nlstate+ndeath);
       }    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
       fprintf(ficres,"\n");    
       printf("\n");    if(estepm < stepm){
       k++;      printf ("Problem %d lower than %d\n",estepm, stepm);
     }    }
        else  hstepm=estepm;   
     while((c=getc(ficpar))=='#' && c!= EOF){    /* For example we decided to compute the life expectancy with the smallest unit */
       ungetc(c,ficpar);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
       fgets(line, MAXLINE, ficpar);       nhstepm is the number of hstepm from age to agelim 
       puts(line);       nstepm is the number of stepm from age to agelin. 
       fputs(line,ficparo);       Look at hpijx to understand the reason of that which relies in memory size
     }       and note for a fixed period like k years */
     ungetc(c,ficpar);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
         survival function given by stepm (the optimization length). Unfortunately it
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);       means that if the survival funtion is printed every two years of age and if
           you sum them up and add 1 year (area under the trapezoids) you won't get the same 
     if (fage <= 2) {       results. So we changed our mind and took the option of the best precision.
       bage = agemin;    */
       fage = agemax;    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     }    agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
     fprintf(ficres,"# agemin agemax for life expectancy.\n");      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
        gp=matrix(0,nhstepm,1,nlstate);
     while((c=getc(ficpar))=='#' && c!= EOF){      gm=matrix(0,nhstepm,1,nlstate);
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);  
     puts(line);      for(theta=1; theta <=npar; theta++){
     fputs(line,ficparo);        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
   }          xp[i] = x[i] + (i==theta ?delti[theta]:0);
   ungetc(c,ficpar);        }
          hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mob_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mob_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);  
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mob_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);        if (popbased==1) {
                if(mobilav ==0){
   while((c=getc(ficpar))=='#' && c!= EOF){            for(i=1; i<=nlstate;i++)
     ungetc(c,ficpar);              prlim[i][i]=probs[(int)age][i][ij];
     fgets(line, MAXLINE, ficpar);          }else{ /* mobilav */ 
     puts(line);            for(i=1; i<=nlstate;i++)
     fputs(line,ficparo);              prlim[i][i]=mobaverage[(int)age][i][ij];
   }          }
   ungetc(c,ficpar);        }
      
         for(j=1; j<= nlstate; j++){
    dateprev1=anprev1+mprev1/12.+jprev1/365.;          for(h=0; h<=nhstepm; h++){
    dateprev2=anprev2+mprev2/12.+jprev2/365.;            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
               gp[h][j] += prlim[i][i]*p3mat[i][j][h];
   fscanf(ficpar,"pop_based=%d\n",&popbased);          }
    fprintf(ficparo,"pop_based=%d\n",popbased);          }
    fprintf(ficres,"pop_based=%d\n",popbased);          /* This for computing probability of death (h=1 means
            computed over hstepm matrices product = hstepm*stepm months) 
   while((c=getc(ficpar))=='#' && c!= EOF){           as a weighted average of prlim.
     ungetc(c,ficpar);        */
     fgets(line, MAXLINE, ficpar);        for(j=nlstate+1;j<=nlstate+ndeath;j++){
     puts(line);          for(i=1,gpp[j]=0.; i<= nlstate; i++)
     fputs(line,ficparo);            gpp[j] += prlim[i][i]*p3mat[i][j][1];
   }        }    
   ungetc(c,ficpar);        /* end probability of death */
   fscanf(ficpar,"popforecast=%d popfile=%s starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf\n",&popforecast,popfile,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2);  
 fprintf(ficparo,"popforecast=%d popfile=%s starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf\n",popforecast,popfile,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2);        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
 fprintf(ficres,"popforecast=%d popfile=%s starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf\n",popforecast,popfile,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
    
  /*------------ gnuplot -------------*/        if (popbased==1) {
 chdir(pathcd);          if(mobilav ==0){
   if((ficgp=fopen("graph.plt","w"))==NULL) {            for(i=1; i<=nlstate;i++)
     printf("Problem with file graph.gp");goto end;              prlim[i][i]=probs[(int)age][i][ij];
   }          }else{ /* mobilav */ 
 #ifdef windows            for(i=1; i<=nlstate;i++)
   fprintf(ficgp,"cd \"%s\" \n",pathc);              prlim[i][i]=mobaverage[(int)age][i][ij];
 #endif          }
 m=pow(2,cptcoveff);        }
    
  /* 1eme*/        for(j=1; j<= nlstate; j++){
   for (cpt=1; cpt<= nlstate ; cpt ++) {          for(h=0; h<=nhstepm; h++){
    for (k1=1; k1<= m ; k1 ++) {            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
               gm[h][j] += prlim[i][i]*p3mat[i][j][h];
 #ifdef windows          }
     fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",agemin,fage,fileres,k1-1,k1-1);        }
 #endif        /* This for computing probability of death (h=1 means
 #ifdef unix           computed over hstepm matrices product = hstepm*stepm months) 
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",agemin,fage,fileres);           as a weighted average of prlim.
 #endif        */
         for(j=nlstate+1;j<=nlstate+ndeath;j++){
 for (i=1; i<= nlstate ; i ++) {          for(i=1,gmp[j]=0.; i<= nlstate; i++)
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");           gmp[j] += prlim[i][i]*p3mat[i][j][1];
   else fprintf(ficgp," \%%*lf (\%%*lf)");        }    
 }        /* end probability of death */
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);  
     for (i=1; i<= nlstate ; i ++) {        for(j=1; j<= nlstate; j++) /* vareij */
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");          for(h=0; h<=nhstepm; h++){
   else fprintf(ficgp," \%%*lf (\%%*lf)");            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
 }          }
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);  
      for (i=1; i<= nlstate ; i ++) {        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
   else fprintf(ficgp," \%%*lf (\%%*lf)");        }
 }    
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));      } /* End theta */
 #ifdef unix  
 fprintf(ficgp,"\nset ter gif small size 400,300");      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
 #endif  
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);      for(h=0; h<=nhstepm; h++) /* veij */
    }        for(j=1; j<=nlstate;j++)
   }          for(theta=1; theta <=npar; theta++)
   /*2 eme*/            trgradg[h][j][theta]=gradg[h][theta][j];
   
   for (k1=1; k1<= m ; k1 ++) {      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",agemin,fage);        for(theta=1; theta <=npar; theta++)
              trgradgp[j][theta]=gradgp[theta][j];
     for (i=1; i<= nlstate+1 ; i ++) {    
       k=2*i;  
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       for (j=1; j<= nlstate+1 ; j ++) {      for(i=1;i<=nlstate;i++)
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");        for(j=1;j<=nlstate;j++)
   else fprintf(ficgp," \%%*lf (\%%*lf)");          vareij[i][j][(int)age] =0.;
 }    
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");      for(h=0;h<=nhstepm;h++){
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);        for(k=0;k<=nhstepm;k++){
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
       for (j=1; j<= nlstate+1 ; j ++) {          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");          for(i=1;i<=nlstate;i++)
         else fprintf(ficgp," \%%*lf (\%%*lf)");            for(j=1;j<=nlstate;j++)
 }                vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
       fprintf(ficgp,"\" t\"\" w l 0,");        }
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);      }
       for (j=1; j<= nlstate+1 ; j ++) {    
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");      /* pptj */
   else fprintf(ficgp," \%%*lf (\%%*lf)");      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
 }        matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");      for(j=nlstate+1;j<=nlstate+ndeath;j++)
       else fprintf(ficgp,"\" t\"\" w l 0,");        for(i=nlstate+1;i<=nlstate+ndeath;i++)
     }          varppt[j][i]=doldmp[j][i];
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);      /* end ppptj */
   }      /*  x centered again */
        hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
   /*3eme*/      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
    
   for (k1=1; k1<= m ; k1 ++) {      if (popbased==1) {
     for (cpt=1; cpt<= nlstate ; cpt ++) {        if(mobilav ==0){
       k=2+nlstate*(cpt-1);          for(i=1; i<=nlstate;i++)
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",agemin,fage,fileres,k1-1,k1-1,k,cpt);            prlim[i][i]=probs[(int)age][i][ij];
       for (i=1; i< nlstate ; i ++) {        }else{ /* mobilav */ 
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+i,cpt,i+1);          for(i=1; i<=nlstate;i++)
       }            prlim[i][i]=mobaverage[(int)age][i][ij];
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);        }
     }      }
   }               
        /* This for computing probability of death (h=1 means
   /* CV preval stat */         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
   for (k1=1; k1<= m ; k1 ++) {         as a weighted average of prlim.
     for (cpt=1; cpt<nlstate ; cpt ++) {      */
       k=3;      for(j=nlstate+1;j<=nlstate+ndeath;j++){
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",agemin,agemax,fileres,k1,k+cpt+1,k+1);        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
       for (i=1; i< nlstate ; i ++)          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
         fprintf(ficgp,"+$%d",k+i+1);      }    
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);      /* end probability of death */
        
       l=3+(nlstate+ndeath)*cpt;      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
       for (i=1; i< nlstate ; i ++) {        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
         l=3+(nlstate+ndeath)*cpt;        for(i=1; i<=nlstate;i++){
         fprintf(ficgp,"+$%d",l+i+1);          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
       }        }
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);        } 
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);      fprintf(ficresprobmorprev,"\n");
     }  
   }        fprintf(ficresvij,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
   /* proba elementaires */        for(j=1; j<=nlstate;j++){
    for(i=1,jk=1; i <=nlstate; i++){          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
     for(k=1; k <=(nlstate+ndeath); k++){        }
       if (k != i) {      fprintf(ficresvij,"\n");
         for(j=1; j <=ncovmodel; j++){      free_matrix(gp,0,nhstepm,1,nlstate);
           /*fprintf(ficgp,"%s%1d%1d=%f ",alph[j],i,k,p[jk]);*/      free_matrix(gm,0,nhstepm,1,nlstate);
           /*fprintf(ficgp,"%s",alph[1]);*/      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
           jk++;      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           fprintf(ficgp,"\n");    } /* End age */
         }    free_vector(gpp,nlstate+1,nlstate+ndeath);
       }    free_vector(gmp,nlstate+1,nlstate+ndeath);
     }    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
     }    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
   for(jk=1; jk <=m; jk++) {    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",agemin,agemax);    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
    i=1;  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
    for(k2=1; k2<=nlstate; k2++) {  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
      k3=i;  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
      for(k=1; k<=(nlstate+ndeath); k++) {    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",fileresprobmorprev);
        if (k != k2){    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",fileresprobmorprev);
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",fileresprobmorprev);
 ij=1;    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",fileresprobmorprev,fileresprobmorprev);
         for(j=3; j <=ncovmodel; j++) {    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"varmuptjgr%s%s%s.png\"> <br>\n", estepm,digitp,optionfilefiname,digit);
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
             fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);  */
             ij++;    fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit);
           }  
           else    free_vector(xp,1,npar);
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    free_matrix(doldm,1,nlstate,1,nlstate);
         }    free_matrix(dnewm,1,nlstate,1,npar);
           fprintf(ficgp,")/(1");    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
            free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
         for(k1=1; k1 <=nlstate; k1++){      free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 ij=1;    fclose(ficresprobmorprev);
           for(j=3; j <=ncovmodel; j++){    fclose(ficgp);
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {  /*   fclose(fichtm); */
             fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);  }  /* end varevsij */
             ij++;  
           }  /************ Variance of prevlim ******************/
           else  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);  {
           }    /* Variance of prevalence limit */
           fprintf(ficgp,")");    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
         }    double **newm;
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);    double **dnewm,**doldm;
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");    int i, j, nhstepm, hstepm;
         i=i+ncovmodel;    int k, cptcode;
        }    double *xp;
      }    double *gp, *gm;
    }    double **gradg, **trgradg;
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);    double age,agelim;
   }    int theta;
         
   fclose(ficgp);    fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
   /* end gnuplot */    fprintf(ficresvpl,"# Age");
        for(i=1; i<=nlstate;i++)
 chdir(path);        fprintf(ficresvpl," %1d-%1d",i,i);
        fprintf(ficresvpl,"\n");
     free_ivector(wav,1,imx);  
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);    xp=vector(1,npar);
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);      dnewm=matrix(1,nlstate,1,npar);
     free_ivector(num,1,n);    doldm=matrix(1,nlstate,1,nlstate);
     free_vector(agedc,1,n);    
     /*free_matrix(covar,1,NCOVMAX,1,n);*/    hstepm=1*YEARM; /* Every year of age */
     fclose(ficparo);    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
     fclose(ficres);    agelim = AGESUP;
     /*  }*/    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
          nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
    /*________fin mle=1_________*/      if (stepm >= YEARM) hstepm=1;
          nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
       gradg=matrix(1,npar,1,nlstate);
        gp=vector(1,nlstate);
     /* No more information from the sample is required now */      gm=vector(1,nlstate);
   /* Reads comments: lines beginning with '#' */  
   while((c=getc(ficpar))=='#' && c!= EOF){      for(theta=1; theta <=npar; theta++){
     ungetc(c,ficpar);        for(i=1; i<=npar; i++){ /* Computes gradient */
     fgets(line, MAXLINE, ficpar);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
     puts(line);        }
     fputs(line,ficparo);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   }        for(i=1;i<=nlstate;i++)
   ungetc(c,ficpar);          gp[i] = prlim[i][i];
        
   fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);        for(i=1; i<=npar; i++) /* Computes gradient */
   printf("agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax, bage, fage);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
   fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
 /*--------- index.htm --------*/        for(i=1;i<=nlstate;i++)
           gm[i] = prlim[i][i];
   strcpy(optionfilehtm,optionfile);  
   strcat(optionfilehtm,".htm");        for(i=1;i<=nlstate;i++)
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
     printf("Problem with %s \n",optionfilehtm);goto end;      } /* End theta */
   }  
       trgradg =matrix(1,nlstate,1,npar);
  fprintf(fichtm,"<body><ul> <font size=\"6\">Imach, Version 0.7 </font> <hr size=\"2\" color=\"#EC5E5E\">  
 Titre=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>      for(j=1; j<=nlstate;j++)
 Total number of observations=%d <br>        for(theta=1; theta <=npar; theta++)
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>          trgradg[j][theta]=gradg[theta][j];
 <hr  size=\"2\" color=\"#EC5E5E\">  
 <li>Outputs files<br><br>\n      for(i=1;i<=nlstate;i++)
         - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n        varpl[i][(int)age] =0.;
 - Estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
         - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
         - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>      for(i=1;i<=nlstate;i++)
         - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
         - Life expectancies by age and initial health status: <a href=\"e%s\">e%s</a> <br>  
         - Variances of life expectancies by age and initial health status: <a href=\"v%s\">v%s</a><br>      fprintf(ficresvpl,"%.0f ",age );
         - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>      for(i=1; i<=nlstate;i++)
         - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br>        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
         - Prevalences and population forecasting: <a href=\"f%s\">f%s</a> <br>      fprintf(ficresvpl,"\n");
 <br>",title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres);      free_vector(gp,1,nlstate);
       free_vector(gm,1,nlstate);
  fprintf(fichtm," <li>Graphs</li><p>");      free_matrix(gradg,1,npar,1,nlstate);
       free_matrix(trgradg,1,nlstate,1,npar);
  m=cptcoveff;    } /* End age */
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}  
     free_vector(xp,1,npar);
  j1=0;    free_matrix(doldm,1,nlstate,1,npar);
  for(k1=1; k1<=m;k1++){    free_matrix(dnewm,1,nlstate,1,nlstate);
    for(i1=1; i1<=ncodemax[k1];i1++){  
        j1++;  }
        if (cptcovn > 0) {  
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");  /************ Variance of one-step probabilities  ******************/
          for (cpt=1; cpt<=cptcoveff;cpt++)  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[j1][cpt]]);  {
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");    int i, j=0,  i1, k1, l1, t, tj;
        }    int k2, l2, j1,  z1;
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>    int k=0,l, cptcode;
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);        int first=1, first1;
        for(cpt=1; cpt<nlstate;cpt++){    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>    double **dnewm,**doldm;
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);    double *xp;
        }    double *gp, *gm;
     for(cpt=1; cpt<=nlstate;cpt++) {    double **gradg, **trgradg;
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident    double **mu;
 interval) in state (%d): v%s%d%d.gif <br>    double age,agelim, cov[NCOVMAX];
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);      double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
      }    int theta;
      for(cpt=1; cpt<=nlstate;cpt++) {    char fileresprob[FILENAMELENGTH];
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>    char fileresprobcov[FILENAMELENGTH];
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);    char fileresprobcor[FILENAMELENGTH];
      }  
      fprintf(fichtm,"\n<br>- Total life expectancy by age and    double ***varpij;
 health expectancies in states (1) and (2): e%s%d.gif<br>  
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);    strcpy(fileresprob,"prob"); 
 fprintf(fichtm,"\n</body>");    strcat(fileresprob,fileres);
    }    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
  }      printf("Problem with resultfile: %s\n", fileresprob);
 fclose(fichtm);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     }
   /*--------------- Prevalence limit --------------*/    strcpy(fileresprobcov,"probcov"); 
      strcat(fileresprobcov,fileres);
   strcpy(filerespl,"pl");    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
   strcat(filerespl,fileres);      printf("Problem with resultfile: %s\n", fileresprobcov);
   if((ficrespl=fopen(filerespl,"w"))==NULL) {      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;    }
   }    strcpy(fileresprobcor,"probcor"); 
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);    strcat(fileresprobcor,fileres);
   fprintf(ficrespl,"#Prevalence limit\n");    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
   fprintf(ficrespl,"#Age ");      printf("Problem with resultfile: %s\n", fileresprobcor);
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
   fprintf(ficrespl,"\n");    }
      printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
   prlim=matrix(1,nlstate,1,nlstate);    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    
   k=0;    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
   agebase=agemin;    fprintf(ficresprob,"# Age");
   agelim=agemax;    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
   ftolpl=1.e-10;    fprintf(ficresprobcov,"# Age");
   i1=cptcoveff;    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
   if (cptcovn < 1){i1=1;}    fprintf(ficresprobcov,"# Age");
   
   for(cptcov=1;cptcov<=i1;cptcov++){  
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    for(i=1; i<=nlstate;i++)
         k=k+1;      for(j=1; j<=(nlstate+ndeath);j++){
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
         fprintf(ficrespl,"\n#******");        fprintf(ficresprobcov," p%1d-%1d ",i,j);
         for(j=1;j<=cptcoveff;j++)        fprintf(ficresprobcor," p%1d-%1d ",i,j);
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      }  
         fprintf(ficrespl,"******\n");   /* fprintf(ficresprob,"\n");
            fprintf(ficresprobcov,"\n");
         for (age=agebase; age<=agelim; age++){    fprintf(ficresprobcor,"\n");
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);   */
           fprintf(ficrespl,"%.0f",age );   xp=vector(1,npar);
           for(i=1; i<=nlstate;i++)    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
           fprintf(ficrespl," %.5f", prlim[i][i]);    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
           fprintf(ficrespl,"\n");    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
         }    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
       }    first=1;
     }    if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {
   fclose(ficrespl);      printf("Problem with gnuplot file: %s\n", optionfilegnuplot);
       fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);
   /*------------- h Pij x at various ages ------------*/      exit(0);
      }
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);    else{
   if((ficrespij=fopen(filerespij,"w"))==NULL) {      fprintf(ficgp,"\n# Routine varprob");
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;    }
   }  /*   if((fichtm=fopen(optionfilehtm,"a"))==NULL) { */
   printf("Computing pij: result on file '%s' \n", filerespij);  /*     printf("Problem with html file: %s\n", optionfilehtm); */
    /*     fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm); */
   stepsize=(int) (stepm+YEARM-1)/YEARM;  /*     exit(0); */
   /*if (stepm<=24) stepsize=2;*/  /*   } */
   /*   else{ */
   agelim=AGESUP;      fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
   hstepm=stepsize*YEARM; /* Every year of age */      fprintf(fichtm,"\n");
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */  
        fprintf(fichtm,"\n<li><h4> Computing matrix of variance-covariance of step probabilities</h4></li>\n");
   k=0;      fprintf(fichtm,"\nWe have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
   for(cptcov=1;cptcov<=i1;cptcov++){      fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  
       k=k+1;  /*   } */
         fprintf(ficrespij,"\n#****** ");  
         for(j=1;j<=cptcoveff;j++)    cov[1]=1;
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    tj=cptcoveff;
         fprintf(ficrespij,"******\n");    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
            j1=0;
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */    for(t=1; t<=tj;t++){
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */      for(i1=1; i1<=ncodemax[t];i1++){ 
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */        j1++;
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        if  (cptcovn>0) {
           oldm=oldms;savm=savms;          fprintf(ficresprob, "\n#********** Variable "); 
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);            for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficrespij,"# Age");          fprintf(ficresprob, "**********\n#\n");
           for(i=1; i<=nlstate;i++)          fprintf(ficresprobcov, "\n#********** Variable "); 
             for(j=1; j<=nlstate+ndeath;j++)          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
               fprintf(ficrespij," %1d-%1d",i,j);          fprintf(ficresprobcov, "**********\n#\n");
           fprintf(ficrespij,"\n");          
           for (h=0; h<=nhstepm; h++){          fprintf(ficgp, "\n#********** Variable "); 
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
             for(i=1; i<=nlstate;i++)          fprintf(ficgp, "**********\n#\n");
               for(j=1; j<=nlstate+ndeath;j++)          
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);          
             fprintf(ficrespij,"\n");          fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
           }          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
           fprintf(ficrespij,"\n");          
         }          fprintf(ficresprobcor, "\n#********** Variable ");    
     }          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   }          fprintf(ficresprobcor, "**********\n#");    
         }
   /* varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k);*/        
         for (age=bage; age<=fage; age ++){ 
   fclose(ficrespij);          cov[2]=age;
           for (k=1; k<=cptcovn;k++) {
   if(stepm == 1) {            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
   /*---------- Forecasting ------------------*/          }
   calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           for (k=1; k<=cptcovprod;k++)
   /*printf("calage= %f", calagedate);*/            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
            
   prevalence(agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
           trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
           gp=vector(1,(nlstate)*(nlstate+ndeath));
   strcpy(fileresf,"f");          gm=vector(1,(nlstate)*(nlstate+ndeath));
   strcat(fileresf,fileres);      
   if((ficresf=fopen(fileresf,"w"))==NULL) {          for(theta=1; theta <=npar; theta++){
     printf("Problem with forecast resultfile: %s\n", fileresf);goto end;            for(i=1; i<=npar; i++)
   }              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
   printf("Computing forecasting: result on file '%s' \n", fileresf);            
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
   free_matrix(mint,1,maxwav,1,n);            
   free_matrix(anint,1,maxwav,1,n);            k=0;
   free_matrix(agev,1,maxwav,1,imx);            for(i=1; i<= (nlstate); i++){
   /* Mobile average */              for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
   if (cptcoveff==0) ncodemax[cptcoveff]=1;                gp[k]=pmmij[i][j];
               }
   if (mobilav==1) {            }
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);            
     for (agedeb=bage+3; agedeb<=fage-2; agedeb++)            for(i=1; i<=npar; i++)
       for (i=1; i<=nlstate;i++)              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)      
           mobaverage[(int)agedeb][i][cptcod]=0.;            pmij(pmmij,cov,ncovmodel,xp,nlstate);
                k=0;
     for (agedeb=bage+4; agedeb<=fage; agedeb++){            for(i=1; i<=(nlstate); i++){
       for (i=1; i<=nlstate;i++){              for(j=1; j<=(nlstate+ndeath);j++){
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){                k=k+1;
           for (cpt=0;cpt<=4;cpt++){                gm[k]=pmmij[i][j];
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];              }
           }            }
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;       
         }            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
       }              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
     }            }
   }  
           for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
   stepsize=(int) (stepm+YEARM-1)/YEARM;            for(theta=1; theta <=npar; theta++)
   if (stepm<=12) stepsize=1;              trgradg[j][theta]=gradg[theta][j];
           
   agelim=AGESUP;          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
   /*hstepm=stepsize*YEARM; *//* Every year of age */          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
   hstepm=1;          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
   hstepm=hstepm/stepm; /* Typically 2 years, = 2 years/6 months = 4 */          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
   yp1=modf(dateintmean,&yp);          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   anprojmean=yp;          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   yp2=modf((yp1*12),&yp);  
   mprojmean=yp;          pmij(pmmij,cov,ncovmodel,x,nlstate);
   yp1=modf((yp2*30.5),&yp);          
   jprojmean=yp;          k=0;
   if(jprojmean==0) jprojmean=1;          for(i=1; i<=(nlstate); i++){
   if(mprojmean==0) jprojmean=1;            for(j=1; j<=(nlstate+ndeath);j++){
               k=k+1;
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);              mu[k][(int) age]=pmmij[i][j];
             }
   if (popforecast==1) {          }
     if((ficpop=fopen(popfile,"r"))==NULL)    {          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
       printf("Problem with population file : %s\n",popfile);goto end;            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
     }              varpij[i][j][(int)age] = doldm[i][j];
     popage=ivector(0,AGESUP);  
     popeffectif=vector(0,AGESUP);          /*printf("\n%d ",(int)age);
     popcount=vector(0,AGESUP);            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
     i=1;              fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF)            }*/
       {  
         i=i+1;          fprintf(ficresprob,"\n%d ",(int)age);
       }          fprintf(ficresprobcov,"\n%d ",(int)age);
     imx=i;          fprintf(ficresprobcor,"\n%d ",(int)age);
      
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
   }            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
   for(cptcov=1;cptcov<=i1;cptcov++){            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
       k=k+1;          }
       fprintf(ficresf,"\n#******");          i=0;
       for(j=1;j<=cptcoveff;j++) {          for (k=1; k<=(nlstate);k++){
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            for (l=1; l<=(nlstate+ndeath);l++){ 
       }              i=i++;
       fprintf(ficresf,"******\n");              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
       fprintf(ficresf,"# StartingAge FinalAge");              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);              for (j=1; j<=i;j++){
       if (popforecast==1)  fprintf(ficresf," [Population]");                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                    fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
       for (cpt=0; cpt<4;cpt++) {              }
         fprintf(ficresf,"\n");            }
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);            }/* end of loop for state */
         } /* end of loop for age */
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(bage-((int)calagedate %12)/12.); agedeb--){ /* If stepm=6 months */  
         nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);        /* Confidence intervalle of pij  */
         nhstepm = nhstepm/hstepm;        /*
         /*printf("agedeb=%.lf stepm=%d hstepm=%d nhstepm=%d \n",agedeb,stepm,hstepm,nhstepm);*/          fprintf(ficgp,"\nset noparametric;unset label");
           fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
         p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
         oldm=oldms;savm=savms;          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
         hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);            fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
                  fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
         for (h=0; h<=nhstepm; h++){          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
           if (h==(int) (calagedate+YEARM*cpt)) {        */
             fprintf(ficresf,"\n %.f ",agedeb+h*hstepm/YEARM*stepm);  
           }        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
           for(j=1; j<=nlstate+ndeath;j++) {        first1=1;
             kk1=0.;kk2=0;        for (k2=1; k2<=(nlstate);k2++){
             for(i=1; i<=nlstate;i++) {                  for (l2=1; l2<=(nlstate+ndeath);l2++){ 
               if (mobilav==1)            if(l2==k2) continue;
                 kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];            j=(k2-1)*(nlstate+ndeath)+l2;
               else {            for (k1=1; k1<=(nlstate);k1++){
                 kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                 /* fprintf(ficresf," p3=%.3f p=%.3f ", p3mat[i][j][h], probs[(int)(agedeb)+1][i][cptcod]);*/                if(l1==k1) continue;
               }                i=(k1-1)*(nlstate+ndeath)+l1;
                 if(i<=j) continue;
               if (popforecast==1) kk2=kk1*popeffectif[(int)agedeb];                for (age=bage; age<=fage; age ++){ 
             }                  if ((int)age %5==0){
                              v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
             if (h==(int)(calagedate+12*cpt)){                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
               fprintf(ficresf," %.3f", kk1);                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                                  mu1=mu[i][(int) age]/stepm*YEARM ;
               if (popforecast==1) fprintf(ficresf," [%.f]", kk2);                    mu2=mu[j][(int) age]/stepm*YEARM;
             }                    c12=cv12/sqrt(v1*v2);
           }                    /* Computing eigen value of matrix of covariance */
         }                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
         free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
       }                    /* Eigen vectors */
       }                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
     }                    /*v21=sqrt(1.-v11*v11); *//* error */
   }                    v21=(lc1-v1)/cv12*v11;
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);                    v12=-v21;
   if (popforecast==1) {                    v22=v11;
     free_ivector(popage,0,AGESUP);                    tnalp=v21/v11;
     free_vector(popeffectif,0,AGESUP);                    if(first1==1){
     free_vector(popcount,0,AGESUP);                      first1=0;
   }                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
   free_imatrix(s,1,maxwav+1,1,n);                    }
   free_vector(weight,1,n);                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
   fclose(ficresf);                    /*printf(fignu*/
   }/* End forecasting */                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
   else{                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
     erreur=108;                    if(first==1){
     printf("Error %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d\n", erreur, stepm);                      first=0;
   }                      fprintf(ficgp,"\nset parametric;unset label");
                       fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
   /*---------- Health expectancies and variances ------------*/                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
                       fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%d%1d%1d-%1d%1d.png\">varpijgr%s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2);
   strcpy(filerest,"t");                      fprintf(fichtm,"\n<br><img src=\"varpijgr%s%d%1d%1d-%1d%1d.png\"> ",optionfilefiname, j1,k1,l1,k2,l2);
   strcat(filerest,fileres);                      fprintf(fichtm,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
   if((ficrest=fopen(filerest,"w"))==NULL) {                      fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\"",optionfilefiname, j1,k1,l1,k2,l2);
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
   }                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
   printf("Computing Total LEs with variances: file '%s' \n", filerest);                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
   strcpy(filerese,"e");                    }else{
   strcat(filerese,fileres);                      first=0;
   if((ficreseij=fopen(filerese,"w"))==NULL) {                      fprintf(fichtm," %d (%.3f),",(int) age, c12);
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
   }                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
  strcpy(fileresv,"v");                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
   strcat(fileresv,fileres);                    }/* if first */
   if((ficresvij=fopen(fileresv,"w"))==NULL) {                  } /* age mod 5 */
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);                } /* end loop age */
   }                fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\";replot;",optionfilefiname, j1,k1,l1,k2,l2);
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);                first=1;
               } /*l12 */
   k=0;            } /* k12 */
   for(cptcov=1;cptcov<=i1;cptcov++){          } /*l1 */
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        }/* k1 */
       k=k+1;      } /* loop covariates */
       fprintf(ficrest,"\n#****** ");    }
       for(j=1;j<=cptcoveff;j++)    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
       fprintf(ficrest,"******\n");    free_vector(xp,1,npar);
     fclose(ficresprob);
       fprintf(ficreseij,"\n#****** ");    fclose(ficresprobcov);
       for(j=1;j<=cptcoveff;j++)    fclose(ficresprobcor);
         fprintf(ficreseij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);    fclose(ficgp);
       fprintf(ficreseij,"******\n");  }
   
       fprintf(ficresvij,"\n#****** ");  
       for(j=1;j<=cptcoveff;j++)  /******************* Printing html file ***********/
         fprintf(ficresvij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
       fprintf(ficresvij,"******\n");                    int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);                    int popforecast, int estepm ,\
       oldm=oldms;savm=savms;                    double jprev1, double mprev1,double anprev1, \
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k);                      double jprev2, double mprev2,double anprev2){
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    int jj1, k1, i1, cpt;
       oldm=oldms;savm=savms;    /*char optionfilehtm[FILENAMELENGTH];*/
       varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);  /*   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    { */
        /*     printf("Problem with %s \n",optionfilehtm), exit(0); */
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");  /*     fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0); */
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);  /*   } */
       fprintf(ficrest,"\n");  
             fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n \
       hf=1;   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n \
       if (stepm >= YEARM) hf=stepm/YEARM;   - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n \
       epj=vector(1,nlstate+1);   - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n \
       for(age=bage; age <=fage ;age++){   - Life expectancies by age and initial health status (estepm=%2d months): \
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);     <a href=\"e%s\">e%s</a> <br>\n</li>", \
         if (popbased==1) {    jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);
           for(i=1; i<=nlstate;i++)  
             prlim[i][i]=probs[(int)age][i][k];  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
         }  
           m=cptcoveff;
         fprintf(ficrest," %.0f",age);   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){  
           for(i=1, epj[j]=0.;i <=nlstate;i++) {   jj1=0;
             epj[j] += prlim[i][i]*hf*eij[i][j][(int)age];   for(k1=1; k1<=m;k1++){
           }     for(i1=1; i1<=ncodemax[k1];i1++){
           epj[nlstate+1] +=epj[j];       jj1++;
         }       if (cptcovn > 0) {
         for(i=1, vepp=0.;i <=nlstate;i++)         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
           for(j=1;j <=nlstate;j++)         for (cpt=1; cpt<=cptcoveff;cpt++) 
             vepp += vareij[i][j][(int)age];           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
         fprintf(ficrest," %.2f (%.2f)", epj[nlstate+1],hf*sqrt(vepp));         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
         for(j=1;j <=nlstate;j++){       }
           fprintf(ficrest," %.2f (%.2f)", epj[j],hf*sqrt(vareij[j][j][(int)age]));       /* Pij */
         }       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: pe%s%d1.png<br> \
         fprintf(ficrest,"\n");  <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);     
       }       /* Quasi-incidences */
     }       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
   }   before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br> \
          <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1); 
                 /* Stable prevalence in each health state */
          for(cpt=1; cpt<nlstate;cpt++){
            fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \
  fclose(ficreseij);  <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);
  fclose(ficresvij);         }
   fclose(ficrest);       for(cpt=1; cpt<=nlstate;cpt++) {
   fclose(ficpar);          fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br> \
   free_vector(epj,1,nlstate+1);  <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);
   /*  scanf("%d ",i); */       }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   /*------- Variance limit prevalence------*/    health expectancies in states (1) and (2): e%s%d.png<br>\
   <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);
 strcpy(fileresvpl,"vpl");     } /* end i1 */
   strcat(fileresvpl,fileres);   }/* End k1 */
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {   fprintf(fichtm,"</ul>");
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);  
     exit(0);  
   }   fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n\
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n\
    - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n\
  k=0;   - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n\
  for(cptcov=1;cptcov<=i1;cptcov++){   - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n\
    for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){   - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n\
      k=k+1;   - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n\
      fprintf(ficresvpl,"\n#****** ");   - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);
      for(j=1;j<=cptcoveff;j++)  
        fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  /*  if(popforecast==1) fprintf(fichtm,"\n */
      fprintf(ficresvpl,"******\n");  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
        /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
      varpl=matrix(1,nlstate,(int) bage, (int) fage);  /*      <br>",fileres,fileres,fileres,fileres); */
      oldm=oldms;savm=savms;  /*  else  */
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    }  fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
  }  
    m=cptcoveff;
   fclose(ficresvpl);   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
   /*---------- End : free ----------------*/   jj1=0;
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);   for(k1=1; k1<=m;k1++){
       for(i1=1; i1<=ncodemax[k1];i1++){
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);       jj1++;
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);       if (cptcovn > 0) {
           fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
           for (cpt=1; cpt<=cptcoveff;cpt++) 
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);       }
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);       for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"<br>- Observed and period prevalence (with confident\
   free_matrix(matcov,1,npar,1,npar);  interval) in state (%d): v%s%d%d.png <br>\
   free_vector(delti,1,npar);  <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);  
         }
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);     } /* end i1 */
    }/* End k1 */
   if(erreur >0)   fprintf(fichtm,"</ul>");
     printf("End of Imach with error %d\n",erreur);   fflush(fichtm);
   else   printf("End of Imach\n");  }
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */  
    /******************* Gnuplot file **************/
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/  void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   /*printf("Total time was %d uSec.\n", total_usecs);*/  
   /*------ End -----------*/    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
     if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {
  end:      printf("Problem with file %s",optionfilegnuplot);
 #ifdef windows      fprintf(ficlog,"Problem with file %s",optionfilegnuplot);
  chdir(pathcd);    }
 #endif  
      /*#ifdef windows */
  system("..\\gp37mgw\\wgnuplot graph.plt");      fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
 #ifdef windows  m=pow(2,cptcoveff);
   while (z[0] != 'q') {    
     chdir(pathcd);   /* 1eme*/
     printf("\nType e to edit output files, c to start again, and q for exiting: ");    for (cpt=1; cpt<= nlstate ; cpt ++) {
     scanf("%s",z);     for (k1=1; k1<= m ; k1 ++) {
     if (z[0] == 'c') system("./imach");       fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);
     else if (z[0] == 'e') {       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);
       chdir(path);  
       system(optionfilehtm);       for (i=1; i<= nlstate ; i ++) {
     }         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
     else if (z[0] == 'q') exit(0);         else fprintf(ficgp," \%%*lf (\%%*lf)");
   }       }
 #endif       fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",fileres,k1-1,k1-1);
 }       for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",fileres,k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l 0,");
         fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
         else fprintf(ficgp,"\" t\"\" w l 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         k=2+nlstate*(2*cpt-2);
         fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);
         fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);
           
         } 
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<=nlstate ; cpt ++) {
         k=3;
         fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);
         
         for (i=1; i< nlstate ; i ++)
           fprintf(ficgp,"+$%d",k+i+1);
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         
         l=3+(nlstate+ndeath)*cpt;
         fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);
         for (i=1; i< nlstate ; i ++) {
           l=3+(nlstate+ndeath)*cpt;
           fprintf(ficgp,"+$%d",l+i+1);
         }
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       } 
     }  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
   
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;
                for(j=3; j <=ncovmodel; j++) {
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                    ij++;
                  }
                  else
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                      ij++;
                    }
                    else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
      fclose(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int jj;
     int numlinepar=0; /* Current linenumber of parameter file */
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[132],pathc[132],pathcd[132],pathtot[132],model[132];
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
   
     char *alph[]={"a","a","b","c","d","e"}, str[4];
   
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char *strt, *strtend;
     char *stratrunc;
     int lstra;
   
     long total_usecs;
     struct timeval start_time, end_time, curr_time;
     struct timezone tzp;
     extern int gettimeofday();
     struct tm tmg, tm, *gmtime(), *localtime();
     long time_value;
     extern long time();
    
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strt=asctime(&tm);
   
   /*  printf("Localtime (at start)=%s",strt); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strt);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strt=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strt); 
   */
   
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       scanf("%s",pathtot);
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, 132)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("pathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path);
     replace(pathc,path);
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: ");
     fprintf(ficlog,"pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Localtime (at start)=%s",strt);
     fprintf(ficlog,"Localtime (at start)=%s",strt);
     fflush(ficlog);
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) {
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     
     /* Read guess parameters */
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     for(i=1; i <=nlstate; i++){
       j=0;
       for(jj=1; jj <=nlstate+ndeath; jj++){
         if(jj==i) continue;
         j++;
         fscanf(ficpar,"%1d%1d",&i1,&j1);
         if ((i1 != i) && (j1 != j)){
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
           exit(1);
         }
         fprintf(ficparo,"%1d%1d",i1,j1);
         if(mle==1)
           printf("%1d%1d",i,j);
         fprintf(ficlog,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           fscanf(ficpar," %lf",&param[i][j][k]);
           if(mle==1){
             printf(" %lf",param[i][j][k]);
             fprintf(ficlog," %lf",param[i][j][k]);
           }
           else
             fprintf(ficlog," %lf",param[i][j][k]);
           fprintf(ficparo," %lf",param[i][j][k]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
     }  
     fflush(ficlog);
   
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     p=param[1][1];
     
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     /* delti=vector(1,npar); *//* Scale of each paramater (output from hesscov) */
     for(i=1; i <=nlstate; i++){
       for(j=1; j <=nlstate+ndeath-1; j++){
         fscanf(ficpar,"%1d%1d",&i1,&j1);
         if ((i1-i)*(j1-j)!=0){
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
           exit(1);
         }
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i1,j1);
         fprintf(ficlog,"%1d%1d",i1,j1);
         for(k=1; k<=ncovmodel;k++){
           fscanf(ficpar,"%le",&delti3[i][j][k]);
           printf(" %le",delti3[i][j][k]);
           fprintf(ficparo," %le",delti3[i][j][k]);
           fprintf(ficlog," %le",delti3[i][j][k]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
         fprintf(ficlog,"\n");
       }
     }
     fflush(ficlog);
   
     delti=delti3[1][1];
   
   
     /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
     
     matcov=matrix(1,npar,1,npar);
     for(i=1; i <=npar; i++){
       fscanf(ficpar,"%s",&str);
       if(mle==1)
         printf("%s",str);
       fprintf(ficlog,"%s",str);
       fprintf(ficparo,"%s",str);
       for(j=1; j <=i; j++){
         fscanf(ficpar," %le",&matcov[i][j]);
         if(mle==1){
           printf(" %.5le",matcov[i][j]);
         }
         fprintf(ficlog," %.5le",matcov[i][j]);
         fprintf(ficparo," %.5le",matcov[i][j]);
       }
       fscanf(ficpar,"\n");
       numlinepar++;
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       fprintf(ficparo,"\n");
     }
     for(i=1; i <=npar; i++)
       for(j=i+1;j<=npar;j++)
         matcov[i][j]=matcov[j][i];
      
     if(mle==1)
       printf("\n");
     fprintf(ficlog,"\n");
   
     fflush(ficlog);
   
     /*-------- Rewriting paramater file ----------*/
     strcpy(rfileres,"r");    /* "Rparameterfile */
     strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
     strcat(rfileres,".");    /* */
     strcat(rfileres,optionfilext);    /* Other files have txt extension */
     if((ficres =fopen(rfileres,"w"))==NULL) {
       printf("Problem writing new parameter file: %s\n", fileres);goto end;
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
     }
     fprintf(ficres,"#%s\n",version);
       
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem with datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     while (fgets(line, MAXLINE, fic) != NULL)    {
       if ((i >= firstobs) && (i <=lastobs)) {
           
         for (j=maxwav;j>=1;j--){
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb); 
           strcpy(line,stra);
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         }
           
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);
         for (j=ncovcol;j>=1;j--){
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         } 
         lstra=strlen(stra);
         if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
           stratrunc = &(stra[lstra-9]);
           num[i]=atol(stratrunc);
         }
         else
           num[i]=atol(stra);
           
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
           printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
   
         i=i+1;
       }
     }
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
    for (i=1; i<=imx; i++)
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameter from char model*/
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);
     fclose(fic);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a
                                    month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     strcat(optionfilegnuplot,".gp");
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     fclose(ficgp);
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname);
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt,\
             model,fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strt);
     /*fclose(fichtm);*/
     fflush(fichtm);
   
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);
   
   /*   if((fichtm=fopen(optionfilehtm,"a"))==NULL) { */
   /*     printf("Problem with file: %s\n", optionfilehtm); */
   /*     fprintf(ficlog,"Problem with file: %s\n", optionfilehtm); */
   /*   } */
   
   
   /*   if(fileappend(fichtm, optionfilehtm)){ */
       fprintf(fichtm,"\n");
       fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
           imx,agemin,agemax,jmin,jmax,jmean);
   /*     fclose(fichtm); */
   /*   } */
   
       pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
     printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
     for (k=1; k<=npar;k++)
       printf(" %d %8.5f",k,p[k]);
     printf("\n");
     globpr=1; /* to print the contributions */
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
     printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
     for (k=1; k<=npar;k++)
       printf(" %d %8.5f",k,p[k]);
     printf("\n");
     if(mle>=1){ /* Could be 1 or 2 */
       mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
     }
       
     /*--------- results files --------------*/
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
     
   
     jk=1;
     fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) 
           {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
       }
     }
     if(mle!=0){
       /* Computing hessian and covariance matrix */
       ftolhess=ftol; /* Usually correct */
       hesscov(matcov, p, npar, delti, ftolhess, func);
     }
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(j=1; j <=nlstate+ndeath; j++){
         if (j!=i) {
           fprintf(ficres,"%1d%1d",i,j);
           printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             printf(" %.5e",delti[jk]);
             fprintf(ficlog," %.5e",delti[jk]);
             fprintf(ficres," %.5e",delti[jk]);
             jk++;
           }
           printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficres,"\n");
         }
       }
     }
      
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     if(mle==1)
       printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     for(i=1,k=1;i<=npar;i++){
       /*  if (k>nlstate) k=1;
           i1=(i-1)/(ncovmodel*nlstate)+1; 
           fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);
           printf("%s%d%d",alph[k],i1,tab[i]);
       */
       fprintf(ficres,"%3d",i);
       if(mle==1)
         printf("%3d",i);
       fprintf(ficlog,"%3d",i);
       for(j=1; j<=i;j++){
         fprintf(ficres," %.5e",matcov[i][j]);
         if(mle==1)
           printf(" %.5e",matcov[i][j]);
         fprintf(ficlog," %.5e",matcov[i][j]);
       }
       fprintf(ficres,"\n");
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       k++;
     }
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     estepm=0;
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
     if (estepm==0 || estepm < stepm) estepm=stepm;
     if (fage <= 2) {
       bage = ageminpar;
       fage = agemaxpar;
     }
      
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
     
     fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
     fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
    
   
     dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
     dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
   
     fscanf(ficpar,"pop_based=%d\n",&popbased);
     fprintf(ficparo,"pop_based=%d\n",popbased);   
     fprintf(ficres,"pop_based=%d\n",popbased);   
     
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
     fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     /* day and month of proj2 are not used but only year anproj2.*/
   
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);
     fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
     fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
   
     /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
     /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
   
     printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);
   
     printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                  model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                  jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
    
     /*------------ free_vector  -------------*/
     chdir(path);
    
     free_ivector(wav,1,imx);
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
     free_lvector(num,1,n);
     free_vector(agedc,1,n);
     /*free_matrix(covar,0,NCOVMAX,1,n);*/
     /*free_matrix(covar,1,NCOVMAX,1,n);*/
     fclose(ficparo);
     fclose(ficres);
   
   
     /*--------------- Prevalence limit  (stable prevalence) --------------*/
     
     strcpy(filerespl,"pl");
     strcat(filerespl,fileres);
     if((ficrespl=fopen(filerespl,"w"))==NULL) {
       printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
     }
     printf("Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficrespl,"#Stable prevalence \n");
     fprintf(ficrespl,"#Age ");
     for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
     fprintf(ficrespl,"\n");
     
     prlim=matrix(1,nlstate,1,nlstate);
   
     agebase=ageminpar;
     agelim=agemaxpar;
     ftolpl=1.e-10;
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
         fprintf(ficrespl,"\n#******");
         printf("\n#******");
         fprintf(ficlog,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespl,"******\n");
         printf("******\n");
         fprintf(ficlog,"******\n");
           
         for (age=agebase; age<=agelim; age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           fprintf(ficrespl,"%.0f ",age );
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           for(i=1; i<=nlstate;i++)
             fprintf(ficrespl," %.5f", prlim[i][i]);
           fprintf(ficrespl,"\n");
         }
       }
     }
     fclose(ficrespl);
   
     /*------------- h Pij x at various ages ------------*/
     
     strcpy(filerespij,"pij");  strcat(filerespij,fileres);
     if((ficrespij=fopen(filerespij,"w"))==NULL) {
       printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
       fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
     }
     printf("Computing pij: result on file '%s' \n", filerespij);
     fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     /*if (stepm<=24) stepsize=2;*/
   
     agelim=AGESUP;
     hstepm=stepsize*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
     /* hstepm=1;   aff par mois*/
   
     fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficrespij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrespij,"******\n");
           
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
           /*        nhstepm=nhstepm*YEARM; aff par mois*/
   
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           oldm=oldms;savm=savms;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
           for(i=1; i<=nlstate;i++)
             for(j=1; j<=nlstate+ndeath;j++)
               fprintf(ficrespij," %1d-%1d",i,j);
           fprintf(ficrespij,"\n");
           for (h=0; h<=nhstepm; h++){
             fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);
             fprintf(ficrespij,"\n");
           }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           fprintf(ficrespij,"\n");
         }
       }
     }
   
     varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax);
   
     fclose(ficrespij);
   
     probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     /*---------- Forecasting ------------------*/
     /*if((stepm == 1) && (strcmp(model,".")==0)){*/
     if(prevfcast==1){
       /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
   /*      }  */
   /*      else{ */
   /*        erreur=108; */
   /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*      } */
     }
     
   
     /*---------- Health expectancies and variances ------------*/
   
     strcpy(filerest,"t");
     strcat(filerest,fileres);
     if((ficrest=fopen(filerest,"w"))==NULL) {
       printf("Problem with total LE resultfile: %s\n", filerest);goto end;
       fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
     }
     printf("Computing Total LEs with variances: file '%s' \n", filerest); 
     fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
     strcpy(filerese,"e");
     strcat(filerese,fileres);
     if((ficreseij=fopen(filerese,"w"))==NULL) {
       printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
     }
     printf("Computing Health Expectancies: result on file '%s' \n", filerese);
     fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
     strcpy(fileresv,"v");
     strcat(fileresv,fileres);
     if((ficresvij=fopen(fileresv,"w"))==NULL) {
       printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
       fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
     }
     printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
     fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
     /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
     prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
   ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
     */
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1; 
         fprintf(ficrest,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrest,"******\n");
   
         fprintf(ficreseij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficreseij,"******\n");
   
         fprintf(ficresvij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvij,"******\n");
   
         eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);  
    
         vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav);
         if(popbased==1){
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav);
         }
   
    
         fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
         for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
         fprintf(ficrest,"\n");
   
         epj=vector(1,nlstate+1);
         for(age=bage; age <=fage ;age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           if (popbased==1) {
             if(mobilav ==0){
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=probs[(int)age][i][k];
             }else{ /* mobilav */ 
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=mobaverage[(int)age][i][k];
             }
           }
           
           fprintf(ficrest," %4.0f",age);
           for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
             for(i=1, epj[j]=0.;i <=nlstate;i++) {
               epj[j] += prlim[i][i]*eij[i][j][(int)age];
               /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
             }
             epj[nlstate+1] +=epj[j];
           }
   
           for(i=1, vepp=0.;i <=nlstate;i++)
             for(j=1;j <=nlstate;j++)
               vepp += vareij[i][j][(int)age];
           fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
           for(j=1;j <=nlstate;j++){
             fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
           }
           fprintf(ficrest,"\n");
         }
         free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_vector(epj,1,nlstate+1);
       }
     }
     free_vector(weight,1,n);
     free_imatrix(Tvard,1,15,1,2);
     free_imatrix(s,1,maxwav+1,1,n);
     free_matrix(anint,1,maxwav,1,n); 
     free_matrix(mint,1,maxwav,1,n);
     free_ivector(cod,1,n);
     free_ivector(tab,1,NCOVMAX);
     fclose(ficreseij);
     fclose(ficresvij);
     fclose(ficrest);
     fclose(ficpar);
     
     /*------- Variance of stable prevalence------*/   
   
     strcpy(fileresvpl,"vpl");
     strcat(fileresvpl,fileres);
     if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
       printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
       exit(0);
     }
     printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficresvpl,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvpl,"******\n");
         
         varpl=matrix(1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);
         free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
       }
     }
   
     fclose(ficresvpl);
   
     /*---------- End : free ----------------*/
     free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
     
     free_matrix(covar,0,NCOVMAX,1,n);
     free_matrix(matcov,1,npar,1,npar);
     /*free_vector(delti,1,npar);*/
     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
     free_matrix(agev,1,maxwav,1,imx);
     free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     free_ivector(ncodemax,1,8);
     free_ivector(Tvar,1,15);
     free_ivector(Tprod,1,15);
     free_ivector(Tvaraff,1,15);
     free_ivector(Tage,1,15);
     free_ivector(Tcode,1,100);
   
     /*  fclose(fichtm);*/
     /*  fclose(ficgp);*/ /* ALready done */
     
   
     if(erreur >0){
       printf("End of Imach with error or warning %d\n",erreur);
       fprintf(ficlog,"End of Imach with error or warning %d\n",erreur);
     }else{
      printf("End of Imach\n");
      fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     fclose(ficlog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strtend=asctime(&tm);
     printf("Localtime at start %s and at end=%s",strt, strtend); 
     fprintf(ficlog,"Localtime at start %s and at end=%s",strt, strtend); 
     /*  printf("Total time used %d Sec\n", asc_time(end_time.tv_sec -start_time.tv_sec);*/
   
     printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);
     fprintf(ficlog,"Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Localtime at start %s and at end=%s<br>",strt, strtend);
     fclose(fichtm);
     /*------ End -----------*/
   
     end:
   #ifdef windows
     /* chdir(pathcd);*/
   #endif 
    /*system("wgnuplot graph.plt");*/
    /*system("../gp37mgw/wgnuplot graph.plt");*/
    /*system("cd ../gp37mgw");*/
    /* system("..\\gp37mgw\\wgnuplot graph.plt");*/
     strcpy(plotcmd,GNUPLOTPROGRAM);
     strcat(plotcmd," ");
     strcat(plotcmd,optionfilegnuplot);
     printf("Starting graphs with: %s",plotcmd);fflush(stdout);
     system(plotcmd);
     printf(" Wait...");
   
    /*#ifdef windows*/
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");
       scanf("%s",z);
       if (z[0] == 'c') system("./imach");
       else if (z[0] == 'e') system(optionfilehtm);
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     /*#endif */
   }
   
   

Removed from v.1.21  
changed lines
  Added in v.1.87


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>