Diff for /imach/src/imach.c between versions 1.6 and 1.87

version 1.6, 2001/05/02 17:47:10 version 1.87, 2003/06/18 12:26:01
Line 1 Line 1
      /* $Id$
 /*********************** Imach **************************************            $State$
   This program computes Healthy Life Expectancies from cross-longitudinal    $Log$
   data. Cross-longitudinal consist in a first survey ("cross") where    Revision 1.87  2003/06/18 12:26:01  brouard
   individuals from different ages are interviewed on their health status    Version 0.96
   or degree of  disability. At least a second wave of interviews  
   ("longitudinal") should  measure each new individual health status.    Revision 1.86  2003/06/17 20:04:08  brouard
   Health expectancies are computed from the transistions observed between    (Module): Change position of html and gnuplot routines and added
   waves and are computed for each degree of severity of disability (number    routine fileappend.
   of life states). More degrees you consider, more time is necessary to  
   reach the Maximum Likelihood of the parameters involved in the model.    Revision 1.85  2003/06/17 13:12:43  brouard
   The simplest model is the multinomial logistic model where pij is    * imach.c (Repository): Check when date of death was earlier that
   the probabibility to be observed in state j at the second wave conditional    current date of interview. It may happen when the death was just
   to be observed in state i at the first wave. Therefore the model is:    prior to the death. In this case, dh was negative and likelihood
   log(pij/pii)= aij + bij*age+ cij*sex + etc , where 'age' is age and 'sex'    was wrong (infinity). We still send an "Error" but patch by
   is a covariate. If you want to have a more complex model than "constant and    assuming that the date of death was just one stepm after the
   age", you should modify the program where the markup    interview.
     *Covariates have to be included here again* invites you to do it.    (Repository): Because some people have very long ID (first column)
   More covariates you add, less is the speed of the convergence.    we changed int to long in num[] and we added a new lvector for
     memory allocation. But we also truncated to 8 characters (left
   The advantage that this computer programme claims, comes from that if the    truncation)
   delay between waves is not identical for each individual, or if some    (Repository): No more line truncation errors.
   individual missed an interview, the information is not rounded or lost, but  
   taken into account using an interpolation or extrapolation.    Revision 1.84  2003/06/13 21:44:43  brouard
   hPijx is the probability to be    * imach.c (Repository): Replace "freqsummary" at a correct
   observed in state i at age x+h conditional to the observed state i at age    place. It differs from routine "prevalence" which may be called
   x. The delay 'h' can be split into an exact number (nh*stepm) of    many times. Probs is memory consuming and must be used with
   unobserved intermediate  states. This elementary transition (by month or    parcimony.
   quarter trimester, semester or year) is model as a multinomial logistic.    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
   The hPx matrix is simply the matrix product of nh*stepm elementary matrices  
   and the contribution of each individual to the likelihood is simply hPijx.    Revision 1.83  2003/06/10 13:39:11  lievre
     *** empty log message ***
   Also this programme outputs the covariance matrix of the parameters but also  
   of the life expectancies. It also computes the prevalence limits.    Revision 1.82  2003/06/05 15:57:20  brouard
      Add log in  imach.c and  fullversion number is now printed.
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).  
            Institut national d'études démographiques, Paris.  */
   This software have been partly granted by Euro-REVES, a concerted action  /*
   from the European Union.     Interpolated Markov Chain
   It is copyrighted identically to a GNU software product, ie programme and  
   software can be distributed freely for non commercial use. Latest version    Short summary of the programme:
   can be accessed at http://euroreves.ined.fr/imach .    
   **********************************************************************/    This program computes Healthy Life Expectancies from
      cross-longitudinal data. Cross-longitudinal data consist in: -1- a
 #include <math.h>    first survey ("cross") where individuals from different ages are
 #include <stdio.h>    interviewed on their health status or degree of disability (in the
 #include <stdlib.h>    case of a health survey which is our main interest) -2- at least a
 #include <unistd.h>    second wave of interviews ("longitudinal") which measure each change
     (if any) in individual health status.  Health expectancies are
 #define MAXLINE 256    computed from the time spent in each health state according to a
 #define FILENAMELENGTH 80    model. More health states you consider, more time is necessary to reach the
 /*#define DEBUG*/    Maximum Likelihood of the parameters involved in the model.  The
 #define windows    simplest model is the multinomial logistic model where pij is the
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    probability to be observed in state j at the second wave
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    conditional to be observed in state i at the first wave. Therefore
     the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    'age' is age and 'sex' is a covariate. If you want to have a more
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    complex model than "constant and age", you should modify the program
     where the markup *Covariates have to be included here again* invites
 #define NINTERVMAX 8    you to do it.  More covariates you add, slower the
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    convergence.
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */  
 #define NCOVMAX 8 /* Maximum number of covariates */    The advantage of this computer programme, compared to a simple
 #define MAXN 20000    multinomial logistic model, is clear when the delay between waves is not
 #define YEARM 12. /* Number of months per year */    identical for each individual. Also, if a individual missed an
 #define AGESUP 130    intermediate interview, the information is lost, but taken into
 #define AGEBASE 40    account using an interpolation or extrapolation.  
   
     hPijx is the probability to be observed in state i at age x+h
 int nvar;    conditional to the observed state i at age x. The delay 'h' can be
 static int cptcov;    split into an exact number (nh*stepm) of unobserved intermediate
 int cptcovn, cptcovage=0;    states. This elementary transition (by month, quarter,
 int npar=NPARMAX;    semester or year) is modelled as a multinomial logistic.  The hPx
 int nlstate=2; /* Number of live states */    matrix is simply the matrix product of nh*stepm elementary matrices
 int ndeath=1; /* Number of dead states */    and the contribution of each individual to the likelihood is simply
 int ncovmodel, ncov;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    hPijx.
   
 int *wav; /* Number of waves for this individuual 0 is possible */    Also this programme outputs the covariance matrix of the parameters but also
 int maxwav; /* Maxim number of waves */    of the life expectancies. It also computes the stable prevalence. 
 int mle, weightopt;    
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */             Institut national d'études démographiques, Paris.
 double **oldm, **newm, **savm; /* Working pointers to matrices */    This software have been partly granted by Euro-REVES, a concerted action
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    from the European Union.
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest;    It is copyrighted identically to a GNU software product, ie programme and
 FILE *ficgp, *fichtm;    software can be distributed freely for non commercial use. Latest version
 FILE *ficreseij;    can be accessed at http://euroreves.ined.fr/imach .
   char filerese[FILENAMELENGTH];  
  FILE  *ficresvij;    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
   char fileresv[FILENAMELENGTH];    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
  FILE  *ficresvpl;    
   char fileresvpl[FILENAMELENGTH];    **********************************************************************/
   /*
 #define NR_END 1    main
 #define FREE_ARG char*    read parameterfile
 #define FTOL 1.0e-10    read datafile
     concatwav
 #define NRANSI    freqsummary
 #define ITMAX 200    if (mle >= 1)
       mlikeli
 #define TOL 2.0e-4    print results files
     if mle==1 
 #define CGOLD 0.3819660       computes hessian
 #define ZEPS 1.0e-10    read end of parameter file: agemin, agemax, bage, fage, estepm
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);        begin-prev-date,...
     open gnuplot file
 #define GOLD 1.618034    open html file
 #define GLIMIT 100.0    stable prevalence
 #define TINY 1.0e-20     for age prevalim()
     h Pij x
 static double maxarg1,maxarg2;    variance of p varprob
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    forecasting if prevfcast==1 prevforecast call prevalence()
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    health expectancies
      Variance-covariance of DFLE
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    prevalence()
 #define rint(a) floor(a+0.5)     movingaverage()
     varevsij() 
 static double sqrarg;    if popbased==1 varevsij(,popbased)
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    total life expectancies
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    Variance of stable prevalence
    end
 int imx;  */
 int stepm;  
 /* Stepm, step in month: minimum step interpolation*/  
   
 int m,nb;   
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;  #include <math.h>
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;  #include <stdio.h>
 double **pmmij;  #include <stdlib.h>
   #include <unistd.h>
 double *weight;  
 int **s; /* Status */  #include <sys/time.h>
 double *agedc, **covar, idx;  #include <time.h>
 int **nbcode, *Tcode, *Tvar, **codtab;  #include "timeval.h"
   
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */  #define MAXLINE 256
 double ftolhess; /* Tolerance for computing hessian */  #define GNUPLOTPROGRAM "gnuplot"
   /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
   #define FILENAMELENGTH 132
 static  int split( char *path, char *dirc, char *name )  /*#define DEBUG*/
 {  /*#define windows*/
    char *s;                             /* pointer */  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
    int  l1, l2;                         /* length counters */  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
   
    l1 = strlen( path );                 /* length of path */  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
    s = strrchr( path, '\\' );           /* find last / */  
    if ( s == NULL ) {                   /* no directory, so use current */  #define NINTERVMAX 8
 #if     defined(__bsd__)                /* get current working directory */  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
       extern char       *getwd( );  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
   #define NCOVMAX 8 /* Maximum number of covariates */
       if ( getwd( dirc ) == NULL ) {  #define MAXN 20000
 #else  #define YEARM 12. /* Number of months per year */
       extern char       *getcwd( );  #define AGESUP 130
   #define AGEBASE 40
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {  #ifdef unix
 #endif  #define DIRSEPARATOR '/'
          return( GLOCK_ERROR_GETCWD );  #define ODIRSEPARATOR '\\'
       }  #else
       strcpy( name, path );             /* we've got it */  #define DIRSEPARATOR '\\'
    } else {                             /* strip direcotry from path */  #define ODIRSEPARATOR '/'
       s++;                              /* after this, the filename */  #endif
       l2 = strlen( s );                 /* length of filename */  
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );  /* $Id$ */
       strcpy( name, s );                /* save file name */  /* $State$ */
       strncpy( dirc, path, l1 - l2 );   /* now the directory */  
       dirc[l1-l2] = 0;                  /* add zero */  char version[]="Imach version 0.96, June 2003, INED-EUROREVES ";
    }  char fullversion[]="$Revision$ $Date$"; 
    l1 = strlen( dirc );                 /* length of directory */  int erreur; /* Error number */
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }  int nvar;
    return( 0 );                         /* we're done */  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
 }  int npar=NPARMAX;
   int nlstate=2; /* Number of live states */
   int ndeath=1; /* Number of dead states */
 /******************************************/  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
   int popbased=0;
 void replace(char *s, char*t)  
 {  int *wav; /* Number of waves for this individuual 0 is possible */
   int i;  int maxwav; /* Maxim number of waves */
   int lg=20;  int jmin, jmax; /* min, max spacing between 2 waves */
   i=0;  int gipmx, gsw; /* Global variables on the number of contributions 
   lg=strlen(t);                     to the likelihood and the sum of weights (done by funcone)*/
   for(i=0; i<= lg; i++) {  int mle, weightopt;
     (s[i] = t[i]);  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
     if (t[i]== '\\') s[i]='/';  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
   }  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
 }             * wave mi and wave mi+1 is not an exact multiple of stepm. */
   double jmean; /* Mean space between 2 waves */
 int nbocc(char *s, char occ)  double **oldm, **newm, **savm; /* Working pointers to matrices */
 {  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
   int i,j=0;  FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
   int lg=20;  FILE *ficlog, *ficrespow;
   i=0;  int globpr; /* Global variable for printing or not */
   lg=strlen(s);  double fretone; /* Only one call to likelihood */
   for(i=0; i<= lg; i++) {  long ipmx; /* Number of contributions */
   if  (s[i] == occ ) j++;  double sw; /* Sum of weights */
   }  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
   return j;  FILE *ficresilk;
 }  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
   FILE *ficresprobmorprev;
 void cutv(char *u,char *v, char*t, char occ)  FILE *fichtm; /* Html File */
 {  FILE *ficreseij;
   int i,lg,j,p=0;  char filerese[FILENAMELENGTH];
   i=0;  FILE  *ficresvij;
   for(j=0; j<=strlen(t)-1; j++) {  char fileresv[FILENAMELENGTH];
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  FILE  *ficresvpl;
   }  char fileresvpl[FILENAMELENGTH];
   char title[MAXLINE];
   lg=strlen(t);  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
   for(j=0; j<p; j++) {  char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];
     (u[j] = t[j]);  
   }  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
      u[p]='\0';  char filelog[FILENAMELENGTH]; /* Log file */
   char filerest[FILENAMELENGTH];
    for(j=0; j<= lg; j++) {  char fileregp[FILENAMELENGTH];
     if (j>=(p+1))(v[j-p-1] = t[j]);  char popfile[FILENAMELENGTH];
   }  
 }  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];
   
 /********************** nrerror ********************/  #define NR_END 1
   #define FREE_ARG char*
 void nrerror(char error_text[])  #define FTOL 1.0e-10
 {  
   fprintf(stderr,"ERREUR ...\n");  #define NRANSI 
   fprintf(stderr,"%s\n",error_text);  #define ITMAX 200 
   exit(1);  
 }  #define TOL 2.0e-4 
 /*********************** vector *******************/  
 double *vector(int nl, int nh)  #define CGOLD 0.3819660 
 {  #define ZEPS 1.0e-10 
   double *v;  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  
   if (!v) nrerror("allocation failure in vector");  #define GOLD 1.618034 
   return v-nl+NR_END;  #define GLIMIT 100.0 
 }  #define TINY 1.0e-20 
   
 /************************ free vector ******************/  static double maxarg1,maxarg2;
 void free_vector(double*v, int nl, int nh)  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
 {  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
   free((FREE_ARG)(v+nl-NR_END));    
 }  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
   #define rint(a) floor(a+0.5)
 /************************ivector *******************************/  
 int *ivector(long nl,long nh)  static double sqrarg;
 {  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   int *v;  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  
   if (!v) nrerror("allocation failure in ivector");  int imx; 
   return v-nl+NR_END;  int stepm;
 }  /* Stepm, step in month: minimum step interpolation*/
   
 /******************free ivector **************************/  int estepm;
 void free_ivector(int *v, long nl, long nh)  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
 {  
   free((FREE_ARG)(v+nl-NR_END));  int m,nb;
 }  long *num;
   int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;
 /******************* imatrix *******************************/  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
 int **imatrix(long nrl, long nrh, long ncl, long nch)  double **pmmij, ***probs;
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  double dateintmean=0;
 {  
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  double *weight;
   int **m;  int **s; /* Status */
    double *agedc, **covar, idx;
   /* allocate pointers to rows */  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  
   if (!m) nrerror("allocation failure 1 in matrix()");  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
   m += NR_END;  double ftolhess; /* Tolerance for computing hessian */
   m -= nrl;  
    /**************** split *************************/
    static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   /* allocate rows and set pointers to them */  {
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));    char  *ss;                            /* pointer */
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    int   l1, l2;                         /* length counters */
   m[nrl] += NR_END;  
   m[nrl] -= ncl;    l1 = strlen(path );                   /* length of path */
      if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
      if ( ss == NULL ) {                   /* no directory, so use current */
   /* return pointer to array of pointers to rows */      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
   return m;        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
 }      /* get current working directory */
       /*    extern  char* getcwd ( char *buf , int len);*/
 /****************** free_imatrix *************************/      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
 void free_imatrix(m,nrl,nrh,ncl,nch)        return( GLOCK_ERROR_GETCWD );
       int **m;      }
       long nch,ncl,nrh,nrl;      strcpy( name, path );               /* we've got it */
      /* free an int matrix allocated by imatrix() */    } else {                              /* strip direcotry from path */
 {      ss++;                               /* after this, the filename */
   free((FREE_ARG) (m[nrl]+ncl-NR_END));      l2 = strlen( ss );                  /* length of filename */
   free((FREE_ARG) (m+nrl-NR_END));      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
 }      strcpy( name, ss );         /* save file name */
       strncpy( dirc, path, l1 - l2 );     /* now the directory */
 /******************* matrix *******************************/      dirc[l1-l2] = 0;                    /* add zero */
 double **matrix(long nrl, long nrh, long ncl, long nch)    }
 {    l1 = strlen( dirc );                  /* length of directory */
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;    /*#ifdef windows
   double **m;    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }
   #else
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }
   if (!m) nrerror("allocation failure 1 in matrix()");  #endif
   m += NR_END;    */
   m -= nrl;    ss = strrchr( name, '.' );            /* find last / */
     ss++;
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    strcpy(ext,ss);                       /* save extension */
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    l1= strlen( name);
   m[nrl] += NR_END;    l2= strlen(ss)+1;
   m[nrl] -= ncl;    strncpy( finame, name, l1-l2);
     finame[l1-l2]= 0;
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    return( 0 );                          /* we're done */
   return m;  }
 }  
   
 /*************************free matrix ************************/  /******************************************/
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  
 {  void replace(char *s, char*t)
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  {
   free((FREE_ARG)(m+nrl-NR_END));    int i;
 }    int lg=20;
     i=0;
 /******************* ma3x *******************************/    lg=strlen(t);
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)    for(i=0; i<= lg; i++) {
 {      (s[i] = t[i]);
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;      if (t[i]== '\\') s[i]='/';
   double ***m;    }
   }
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  
   if (!m) nrerror("allocation failure 1 in matrix()");  int nbocc(char *s, char occ)
   m += NR_END;  {
   m -= nrl;    int i,j=0;
     int lg=20;
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    i=0;
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    lg=strlen(s);
   m[nrl] += NR_END;    for(i=0; i<= lg; i++) {
   m[nrl] -= ncl;    if  (s[i] == occ ) j++;
     }
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    return j;
   }
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  void cutv(char *u,char *v, char*t, char occ)
   m[nrl][ncl] += NR_END;  {
   m[nrl][ncl] -= nll;    /* cuts string t into u and v where u is ended by char occ excluding it
   for (j=ncl+1; j<=nch; j++)       and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)
     m[nrl][j]=m[nrl][j-1]+nlay;       gives u="abcedf" and v="ghi2j" */
      int i,lg,j,p=0;
   for (i=nrl+1; i<=nrh; i++) {    i=0;
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;    for(j=0; j<=strlen(t)-1; j++) {
     for (j=ncl+1; j<=nch; j++)      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
       m[i][j]=m[i][j-1]+nlay;    }
   }  
   return m;    lg=strlen(t);
 }    for(j=0; j<p; j++) {
       (u[j] = t[j]);
 /*************************free ma3x ************************/    }
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)       u[p]='\0';
 {  
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));     for(j=0; j<= lg; j++) {
   free((FREE_ARG)(m[nrl]+ncl-NR_END));      if (j>=(p+1))(v[j-p-1] = t[j]);
   free((FREE_ARG)(m+nrl-NR_END));    }
 }  }
   
 /***************** f1dim *************************/  /********************** nrerror ********************/
 extern int ncom;  
 extern double *pcom,*xicom;  void nrerror(char error_text[])
 extern double (*nrfunc)(double []);  {
      fprintf(stderr,"ERREUR ...\n");
 double f1dim(double x)    fprintf(stderr,"%s\n",error_text);
 {    exit(EXIT_FAILURE);
   int j;  }
   double f;  /*********************** vector *******************/
   double *xt;  double *vector(int nl, int nh)
    {
   xt=vector(1,ncom);    double *v;
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
   f=(*nrfunc)(xt);    if (!v) nrerror("allocation failure in vector");
   free_vector(xt,1,ncom);    return v-nl+NR_END;
   return f;  }
 }  
   /************************ free vector ******************/
 /*****************brent *************************/  void free_vector(double*v, int nl, int nh)
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  {
 {    free((FREE_ARG)(v+nl-NR_END));
   int iter;  }
   double a,b,d,etemp;  
   double fu,fv,fw,fx;  /************************ivector *******************************/
   double ftemp;  int *ivector(long nl,long nh)
   double p,q,r,tol1,tol2,u,v,w,x,xm;  {
   double e=0.0;    int *v;
      v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
   a=(ax < cx ? ax : cx);    if (!v) nrerror("allocation failure in ivector");
   b=(ax > cx ? ax : cx);    return v-nl+NR_END;
   x=w=v=bx;  }
   fw=fv=fx=(*f)(x);  
   for (iter=1;iter<=ITMAX;iter++) {  /******************free ivector **************************/
     xm=0.5*(a+b);  void free_ivector(int *v, long nl, long nh)
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  {
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/    free((FREE_ARG)(v+nl-NR_END));
     printf(".");fflush(stdout);  }
 #ifdef DEBUG  
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  /************************lvector *******************************/
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  long *lvector(long nl,long nh)
 #endif  {
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){    long *v;
       *xmin=x;    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
       return fx;    if (!v) nrerror("allocation failure in ivector");
     }    return v-nl+NR_END;
     ftemp=fu;  }
     if (fabs(e) > tol1) {  
       r=(x-w)*(fx-fv);  /******************free lvector **************************/
       q=(x-v)*(fx-fw);  void free_lvector(long *v, long nl, long nh)
       p=(x-v)*q-(x-w)*r;  {
       q=2.0*(q-r);    free((FREE_ARG)(v+nl-NR_END));
       if (q > 0.0) p = -p;  }
       q=fabs(q);  
       etemp=e;  /******************* imatrix *******************************/
       e=d;  int **imatrix(long nrl, long nrh, long ncl, long nch) 
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  { 
       else {    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
         d=p/q;    int **m; 
         u=x+d;    
         if (u-a < tol2 || b-u < tol2)    /* allocate pointers to rows */ 
           d=SIGN(tol1,xm-x);    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
       }    if (!m) nrerror("allocation failure 1 in matrix()"); 
     } else {    m += NR_END; 
       d=CGOLD*(e=(x >= xm ? a-x : b-x));    m -= nrl; 
     }    
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));    
     fu=(*f)(u);    /* allocate rows and set pointers to them */ 
     if (fu <= fx) {    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
       if (u >= x) a=x; else b=x;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
       SHFT(v,w,x,u)    m[nrl] += NR_END; 
         SHFT(fv,fw,fx,fu)    m[nrl] -= ncl; 
         } else {    
           if (u < x) a=u; else b=u;    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
           if (fu <= fw || w == x) {    
             v=w;    /* return pointer to array of pointers to rows */ 
             w=u;    return m; 
             fv=fw;  } 
             fw=fu;  
           } else if (fu <= fv || v == x || v == w) {  /****************** free_imatrix *************************/
             v=u;  void free_imatrix(m,nrl,nrh,ncl,nch)
             fv=fu;        int **m;
           }        long nch,ncl,nrh,nrl; 
         }       /* free an int matrix allocated by imatrix() */ 
   }  { 
   nrerror("Too many iterations in brent");    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
   *xmin=x;    free((FREE_ARG) (m+nrl-NR_END)); 
   return fx;  } 
 }  
   /******************* matrix *******************************/
 /****************** mnbrak ***********************/  double **matrix(long nrl, long nrh, long ncl, long nch)
   {
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
             double (*func)(double))    double **m;
 {  
   double ulim,u,r,q, dum;    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   double fu;    if (!m) nrerror("allocation failure 1 in matrix()");
      m += NR_END;
   *fa=(*func)(*ax);    m -= nrl;
   *fb=(*func)(*bx);  
   if (*fb > *fa) {    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     SHFT(dum,*ax,*bx,dum)    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       SHFT(dum,*fb,*fa,dum)    m[nrl] += NR_END;
       }    m[nrl] -= ncl;
   *cx=(*bx)+GOLD*(*bx-*ax);  
   *fc=(*func)(*cx);    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   while (*fb > *fc) {    return m;
     r=(*bx-*ax)*(*fb-*fc);    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
     q=(*bx-*cx)*(*fb-*fa);     */
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/  }
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  
     ulim=(*bx)+GLIMIT*(*cx-*bx);  /*************************free matrix ************************/
     if ((*bx-u)*(u-*cx) > 0.0) {  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
       fu=(*func)(u);  {
     } else if ((*cx-u)*(u-ulim) > 0.0) {    free((FREE_ARG)(m[nrl]+ncl-NR_END));
       fu=(*func)(u);    free((FREE_ARG)(m+nrl-NR_END));
       if (fu < *fc) {  }
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))  
           SHFT(*fb,*fc,fu,(*func)(u))  /******************* ma3x *******************************/
           }  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  {
       u=ulim;    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
       fu=(*func)(u);    double ***m;
     } else {  
       u=(*cx)+GOLD*(*cx-*bx);    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
       fu=(*func)(u);    if (!m) nrerror("allocation failure 1 in matrix()");
     }    m += NR_END;
     SHFT(*ax,*bx,*cx,u)    m -= nrl;
       SHFT(*fa,*fb,*fc,fu)  
       }    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
 }    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     m[nrl] += NR_END;
 /*************** linmin ************************/    m[nrl] -= ncl;
   
 int ncom;    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
 double *pcom,*xicom;  
 double (*nrfunc)(double []);    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
      if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))    m[nrl][ncl] += NR_END;
 {    m[nrl][ncl] -= nll;
   double brent(double ax, double bx, double cx,    for (j=ncl+1; j<=nch; j++) 
                double (*f)(double), double tol, double *xmin);      m[nrl][j]=m[nrl][j-1]+nlay;
   double f1dim(double x);    
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,    for (i=nrl+1; i<=nrh; i++) {
               double *fc, double (*func)(double));      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
   int j;      for (j=ncl+1; j<=nch; j++) 
   double xx,xmin,bx,ax;        m[i][j]=m[i][j-1]+nlay;
   double fx,fb,fa;    }
      return m; 
   ncom=n;    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
   pcom=vector(1,n);             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
   xicom=vector(1,n);    */
   nrfunc=func;  }
   for (j=1;j<=n;j++) {  
     pcom[j]=p[j];  /*************************free ma3x ************************/
     xicom[j]=xi[j];  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
   }  {
   ax=0.0;    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
   xx=1.0;    free((FREE_ARG)(m[nrl]+ncl-NR_END));
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);    free((FREE_ARG)(m+nrl-NR_END));
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);  }
 #ifdef DEBUG  
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  /***************** f1dim *************************/
 #endif  extern int ncom; 
   for (j=1;j<=n;j++) {  extern double *pcom,*xicom;
     xi[j] *= xmin;  extern double (*nrfunc)(double []); 
     p[j] += xi[j];   
   }  double f1dim(double x) 
   free_vector(xicom,1,n);  { 
   free_vector(pcom,1,n);    int j; 
 }    double f;
     double *xt; 
 /*************** powell ************************/   
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,    xt=vector(1,ncom); 
             double (*func)(double []))    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
 {    f=(*nrfunc)(xt); 
   void linmin(double p[], double xi[], int n, double *fret,    free_vector(xt,1,ncom); 
               double (*func)(double []));    return f; 
   int i,ibig,j;  } 
   double del,t,*pt,*ptt,*xit;  
   double fp,fptt;  /*****************brent *************************/
   double *xits;  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
   pt=vector(1,n);  { 
   ptt=vector(1,n);    int iter; 
   xit=vector(1,n);    double a,b,d,etemp;
   xits=vector(1,n);    double fu,fv,fw,fx;
   *fret=(*func)(p);    double ftemp;
   for (j=1;j<=n;j++) pt[j]=p[j];    double p,q,r,tol1,tol2,u,v,w,x,xm; 
   for (*iter=1;;++(*iter)) {    double e=0.0; 
     fp=(*fret);   
     ibig=0;    a=(ax < cx ? ax : cx); 
     del=0.0;    b=(ax > cx ? ax : cx); 
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);    x=w=v=bx; 
     for (i=1;i<=n;i++)    fw=fv=fx=(*f)(x); 
       printf(" %d %.12f",i, p[i]);    for (iter=1;iter<=ITMAX;iter++) { 
     printf("\n");      xm=0.5*(a+b); 
     for (i=1;i<=n;i++) {      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
       for (j=1;j<=n;j++) xit[j]=xi[j][i];      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
       fptt=(*fret);      printf(".");fflush(stdout);
 #ifdef DEBUG      fprintf(ficlog,".");fflush(ficlog);
       printf("fret=%lf \n",*fret);  #ifdef DEBUG
 #endif      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       printf("%d",i);fflush(stdout);      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       linmin(p,xit,n,fret,func);      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
       if (fabs(fptt-(*fret)) > del) {  #endif
         del=fabs(fptt-(*fret));      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
         ibig=i;        *xmin=x; 
       }        return fx; 
 #ifdef DEBUG      } 
       printf("%d %.12e",i,(*fret));      ftemp=fu;
       for (j=1;j<=n;j++) {      if (fabs(e) > tol1) { 
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);        r=(x-w)*(fx-fv); 
         printf(" x(%d)=%.12e",j,xit[j]);        q=(x-v)*(fx-fw); 
       }        p=(x-v)*q-(x-w)*r; 
       for(j=1;j<=n;j++)        q=2.0*(q-r); 
         printf(" p=%.12e",p[j]);        if (q > 0.0) p = -p; 
       printf("\n");        q=fabs(q); 
 #endif        etemp=e; 
     }        e=d; 
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
 #ifdef DEBUG          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
       int k[2],l;        else { 
       k[0]=1;          d=p/q; 
       k[1]=-1;          u=x+d; 
       printf("Max: %.12e",(*func)(p));          if (u-a < tol2 || b-u < tol2) 
       for (j=1;j<=n;j++)            d=SIGN(tol1,xm-x); 
         printf(" %.12e",p[j]);        } 
       printf("\n");      } else { 
       for(l=0;l<=1;l++) {        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
         for (j=1;j<=n;j++) {      } 
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);      fu=(*f)(u); 
         }      if (fu <= fx) { 
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));        if (u >= x) a=x; else b=x; 
       }        SHFT(v,w,x,u) 
 #endif          SHFT(fv,fw,fx,fu) 
           } else { 
             if (u < x) a=u; else b=u; 
       free_vector(xit,1,n);            if (fu <= fw || w == x) { 
       free_vector(xits,1,n);              v=w; 
       free_vector(ptt,1,n);              w=u; 
       free_vector(pt,1,n);              fv=fw; 
       return;              fw=fu; 
     }            } else if (fu <= fv || v == x || v == w) { 
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");              v=u; 
     for (j=1;j<=n;j++) {              fv=fu; 
       ptt[j]=2.0*p[j]-pt[j];            } 
       xit[j]=p[j]-pt[j];          } 
       pt[j]=p[j];    } 
     }    nrerror("Too many iterations in brent"); 
     fptt=(*func)(ptt);    *xmin=x; 
     if (fptt < fp) {    return fx; 
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);  } 
       if (t < 0.0) {  
         linmin(p,xit,n,fret,func);  /****************** mnbrak ***********************/
         for (j=1;j<=n;j++) {  
           xi[j][ibig]=xi[j][n];  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
           xi[j][n]=xit[j];              double (*func)(double)) 
         }  { 
 #ifdef DEBUG    double ulim,u,r,q, dum;
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);    double fu; 
         for(j=1;j<=n;j++)   
           printf(" %.12e",xit[j]);    *fa=(*func)(*ax); 
         printf("\n");    *fb=(*func)(*bx); 
 #endif    if (*fb > *fa) { 
       }      SHFT(dum,*ax,*bx,dum) 
     }        SHFT(dum,*fb,*fa,dum) 
   }        } 
 }    *cx=(*bx)+GOLD*(*bx-*ax); 
     *fc=(*func)(*cx); 
 /**** Prevalence limit ****************/    while (*fb > *fc) { 
       r=(*bx-*ax)*(*fb-*fc); 
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)      q=(*bx-*cx)*(*fb-*fa); 
 {      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
      matrix by transitions matrix until convergence is reached */      ulim=(*bx)+GLIMIT*(*cx-*bx); 
       if ((*bx-u)*(u-*cx) > 0.0) { 
   int i, ii,j,k;        fu=(*func)(u); 
   double min, max, maxmin, maxmax,sumnew=0.;      } else if ((*cx-u)*(u-ulim) > 0.0) { 
   double **matprod2();        fu=(*func)(u); 
   double **out, cov[NCOVMAX], **pmij();        if (fu < *fc) { 
   double **newm;          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
   double agefin, delaymax=50 ; /* Max number of years to converge */            SHFT(*fb,*fc,fu,(*func)(u)) 
             } 
   for (ii=1;ii<=nlstate+ndeath;ii++)      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
     for (j=1;j<=nlstate+ndeath;j++){        u=ulim; 
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);        fu=(*func)(u); 
     }      } else { 
         u=(*cx)+GOLD*(*cx-*bx); 
    cov[1]=1.;        fu=(*func)(u); 
        } 
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */      SHFT(*ax,*bx,*cx,u) 
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){        SHFT(*fa,*fb,*fc,fu) 
     newm=savm;        } 
     /* Covariates have to be included here again */  } 
      cov[2]=agefin;  
    /*************** linmin ************************/
       for (k=1; k<=cptcovn;k++) {  
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][k]];  int ncom; 
   double *pcom,*xicom;
 /*printf("Tcode[ij]=%d nbcode=%d\n",Tcode[ij],nbcode[k][Tcode[ij]]);*/  double (*nrfunc)(double []); 
       }   
       for (k=1; k<=cptcovage;k++)  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  { 
        double brent(double ax, double bx, double cx, 
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);                 double (*f)(double), double tol, double *xmin); 
     double f1dim(double x); 
     savm=oldm;    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
     oldm=newm;                double *fc, double (*func)(double)); 
     maxmax=0.;    int j; 
     for(j=1;j<=nlstate;j++){    double xx,xmin,bx,ax; 
       min=1.;    double fx,fb,fa;
       max=0.;   
       for(i=1; i<=nlstate; i++) {    ncom=n; 
         sumnew=0;    pcom=vector(1,n); 
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];    xicom=vector(1,n); 
         prlim[i][j]= newm[i][j]/(1-sumnew);    nrfunc=func; 
         max=FMAX(max,prlim[i][j]);    for (j=1;j<=n;j++) { 
         min=FMIN(min,prlim[i][j]);      pcom[j]=p[j]; 
       }      xicom[j]=xi[j]; 
       maxmin=max-min;    } 
       maxmax=FMAX(maxmax,maxmin);    ax=0.0; 
     }    xx=1.0; 
     if(maxmax < ftolpl){    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
       return prlim;    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
     }  #ifdef DEBUG
   }    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
 }    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   #endif
 /*************** transition probabilities **********/    for (j=1;j<=n;j++) { 
       xi[j] *= xmin; 
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )      p[j] += xi[j]; 
 {    } 
   double s1, s2;    free_vector(xicom,1,n); 
   /*double t34;*/    free_vector(pcom,1,n); 
   int i,j,j1, nc, ii, jj;  } 
   
     for(i=1; i<= nlstate; i++){  /*************** powell ************************/
     for(j=1; j<i;j++){  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){              double (*func)(double [])) 
         /*s2 += param[i][j][nc]*cov[nc];*/  { 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    void linmin(double p[], double xi[], int n, double *fret, 
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/                double (*func)(double [])); 
       }    int i,ibig,j; 
       ps[i][j]=s2;    double del,t,*pt,*ptt,*xit;
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/    double fp,fptt;
     }    double *xits;
     for(j=i+1; j<=nlstate+ndeath;j++){    pt=vector(1,n); 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    ptt=vector(1,n); 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    xit=vector(1,n); 
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/    xits=vector(1,n); 
       }    *fret=(*func)(p); 
       ps[i][j]=s2;    for (j=1;j<=n;j++) pt[j]=p[j]; 
     }    for (*iter=1;;++(*iter)) { 
   }      fp=(*fret); 
   for(i=1; i<= nlstate; i++){      ibig=0; 
      s1=0;      del=0.0; 
     for(j=1; j<i; j++)      printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);
       s1+=exp(ps[i][j]);      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f",*iter,*fret);
     for(j=i+1; j<=nlstate+ndeath; j++)      fprintf(ficrespow,"%d %.12f",*iter,*fret);
       s1+=exp(ps[i][j]);      for (i=1;i<=n;i++) {
     ps[i][i]=1./(s1+1.);        printf(" %d %.12f",i, p[i]);
     for(j=1; j<i; j++)        fprintf(ficlog," %d %.12lf",i, p[i]);
       ps[i][j]= exp(ps[i][j])*ps[i][i];        fprintf(ficrespow," %.12lf", p[i]);
     for(j=i+1; j<=nlstate+ndeath; j++)      }
       ps[i][j]= exp(ps[i][j])*ps[i][i];      printf("\n");
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */      fprintf(ficlog,"\n");
   } /* end i */      fprintf(ficrespow,"\n");
       for (i=1;i<=n;i++) { 
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
     for(jj=1; jj<= nlstate+ndeath; jj++){        fptt=(*fret); 
       ps[ii][jj]=0;  #ifdef DEBUG
       ps[ii][ii]=1;        printf("fret=%lf \n",*fret);
     }        fprintf(ficlog,"fret=%lf \n",*fret);
   }  #endif
         printf("%d",i);fflush(stdout);
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){        fprintf(ficlog,"%d",i);fflush(ficlog);
     for(jj=1; jj<= nlstate+ndeath; jj++){        linmin(p,xit,n,fret,func); 
      printf("%lf ",ps[ii][jj]);        if (fabs(fptt-(*fret)) > del) { 
    }          del=fabs(fptt-(*fret)); 
     printf("\n ");          ibig=i; 
     }        } 
     printf("\n ");printf("%lf ",cov[2]);*/  #ifdef DEBUG
 /*        printf("%d %.12e",i,(*fret));
   for(i=1; i<= npar; i++) printf("%f ",x[i]);        fprintf(ficlog,"%d %.12e",i,(*fret));
   goto end;*/        for (j=1;j<=n;j++) {
     return ps;          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
 }          printf(" x(%d)=%.12e",j,xit[j]);
           fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
 /**************** Product of 2 matrices ******************/        }
         for(j=1;j<=n;j++) {
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)          printf(" p=%.12e",p[j]);
 {          fprintf(ficlog," p=%.12e",p[j]);
   /* Computes the matric product of in(1,nrh-nrl+1)(1,nch-ncl+1) times        }
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */        printf("\n");
   /* in, b, out are matrice of pointers which should have been initialized        fprintf(ficlog,"\n");
      before: only the contents of out is modified. The function returns  #endif
      a pointer to pointers identical to out */      } 
   long i, j, k;      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
   for(i=nrl; i<= nrh; i++)  #ifdef DEBUG
     for(k=ncolol; k<=ncoloh; k++)        int k[2],l;
       for(j=ncl,out[i][k]=0.; j<=nch; j++)        k[0]=1;
         out[i][k] +=in[i][j]*b[j][k];        k[1]=-1;
         printf("Max: %.12e",(*func)(p));
   return out;        fprintf(ficlog,"Max: %.12e",(*func)(p));
 }        for (j=1;j<=n;j++) {
           printf(" %.12e",p[j]);
           fprintf(ficlog," %.12e",p[j]);
 /************* Higher Matrix Product ***************/        }
         printf("\n");
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )        fprintf(ficlog,"\n");
 {        for(l=0;l<=1;l++) {
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month          for (j=1;j<=n;j++) {
      duration (i.e. until            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
      (typically every 2 years instead of every month which is too big).          }
      Model is determined by parameters x and covariates have to be          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
      included manually here.          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
         }
      */  #endif
   
   int i, j, d, h, k;  
   double **out, cov[NCOVMAX];        free_vector(xit,1,n); 
   double **newm;        free_vector(xits,1,n); 
         free_vector(ptt,1,n); 
   /* Hstepm could be zero and should return the unit matrix */        free_vector(pt,1,n); 
   for (i=1;i<=nlstate+ndeath;i++)        return; 
     for (j=1;j<=nlstate+ndeath;j++){      } 
       oldm[i][j]=(i==j ? 1.0 : 0.0);      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
       po[i][j][0]=(i==j ? 1.0 : 0.0);      for (j=1;j<=n;j++) { 
     }        ptt[j]=2.0*p[j]-pt[j]; 
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */        xit[j]=p[j]-pt[j]; 
   for(h=1; h <=nhstepm; h++){        pt[j]=p[j]; 
     for(d=1; d <=hstepm; d++){      } 
       newm=savm;      fptt=(*func)(ptt); 
       /* Covariates have to be included here again */      if (fptt < fp) { 
       cov[1]=1.;        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;        if (t < 0.0) { 
       if (cptcovn>0){          linmin(p,xit,n,fret,func); 
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][k]];          for (j=1;j<=n;j++) { 
     }            xi[j][ibig]=xi[j][n]; 
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/            xi[j][n]=xit[j]; 
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/          }
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,  #ifdef DEBUG
                    pmij(pmmij,cov,ncovmodel,x,nlstate));          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
       savm=oldm;          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
       oldm=newm;          for(j=1;j<=n;j++){
     }            printf(" %.12e",xit[j]);
     for(i=1; i<=nlstate+ndeath; i++)            fprintf(ficlog," %.12e",xit[j]);
       for(j=1;j<=nlstate+ndeath;j++) {          }
         po[i][j][h]=newm[i][j];          printf("\n");
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);          fprintf(ficlog,"\n");
          */  #endif
       }        }
   } /* end h */      } 
   return po;    } 
 }  } 
   
   /**** Prevalence limit (stable prevalence)  ****************/
 /*************** log-likelihood *************/  
 double func( double *x)  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
 {  {
   int i, ii, j, k, mi, d, kk;    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
   double l, ll[NLSTATEMAX], cov[NCOVMAX];       matrix by transitions matrix until convergence is reached */
   double **out;  
   double sw; /* Sum of weights */    int i, ii,j,k;
   double lli; /* Individual log likelihood */    double min, max, maxmin, maxmax,sumnew=0.;
   long ipmx;    double **matprod2();
   /*extern weight */    double **out, cov[NCOVMAX], **pmij();
   /* We are differentiating ll according to initial status */    double **newm;
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/    double agefin, delaymax=50 ; /* Max number of years to converge */
   /*for(i=1;i<imx;i++)  
 printf(" %d\n",s[4][i]);    for (ii=1;ii<=nlstate+ndeath;ii++)
   */      for (j=1;j<=nlstate+ndeath;j++){
   cov[1]=1.;        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       }
   for(k=1; k<=nlstate; k++) ll[k]=0.;  
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){     cov[1]=1.;
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];   
        for(mi=1; mi<= wav[i]-1; mi++){   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
       for (ii=1;ii<=nlstate+ndeath;ii++)    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);      newm=savm;
             for(d=0; d<dh[mi][i]; d++){      /* Covariates have to be included here again */
               newm=savm;       cov[2]=agefin;
               cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;    
               for (kk=1; kk<=cptcovage;kk++) {        for (k=1; k<=cptcovn;k++) {
                  cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
                  /*printf("%d %d",kk,Tage[kk]);*/          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
               }        }
               /*cov[4]=covar[1][i]*cov[2];scanf("%d", i);*/        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
               /*cov[3]=pow(cov[2],2)/1000.;*/        for (k=1; k<=cptcovprod;k++)
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,  
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
           savm=oldm;        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
           oldm=newm;        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
       out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
   
       } /* end mult */      savm=oldm;
          oldm=newm;
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);      maxmax=0.;
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/      for(j=1;j<=nlstate;j++){
       ipmx +=1;        min=1.;
       sw += weight[i];        max=0.;
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;        for(i=1; i<=nlstate; i++) {
     } /* end of wave */          sumnew=0;
   } /* end of individual */          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
           prlim[i][j]= newm[i][j]/(1-sumnew);
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];          max=FMAX(max,prlim[i][j]);
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */          min=FMIN(min,prlim[i][j]);
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */        }
   return -l;        maxmin=max-min;
 }        maxmax=FMAX(maxmax,maxmin);
       }
       if(maxmax < ftolpl){
 /*********** Maximum Likelihood Estimation ***************/        return prlim;
       }
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))    }
 {  }
   int i,j, iter;  
   double **xi,*delti;  /*************** transition probabilities ***************/ 
   double fret;  
   xi=matrix(1,npar,1,npar);  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
   for (i=1;i<=npar;i++)  {
     for (j=1;j<=npar;j++)    double s1, s2;
       xi[i][j]=(i==j ? 1.0 : 0.0);    /*double t34;*/
   printf("Powell\n");    int i,j,j1, nc, ii, jj;
   powell(p,xi,npar,ftol,&iter,&fret,func);  
       for(i=1; i<= nlstate; i++){
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));      for(j=1; j<i;j++){
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f ",iter,func(p));        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
           /*s2 += param[i][j][nc]*cov[nc];*/
 }          s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
           /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/
 /**** Computes Hessian and covariance matrix ***/        }
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))        ps[i][j]=s2;
 {        /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/
   double  **a,**y,*x,pd;      }
   double **hess;      for(j=i+1; j<=nlstate+ndeath;j++){
   int i, j,jk;        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
   int *indx;          s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
           /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/
   double hessii(double p[], double delta, int theta, double delti[]);        }
   double hessij(double p[], double delti[], int i, int j);        ps[i][j]=s2;
   void lubksb(double **a, int npar, int *indx, double b[]) ;      }
   void ludcmp(double **a, int npar, int *indx, double *d) ;    }
       /*ps[3][2]=1;*/
   
   hess=matrix(1,npar,1,npar);    for(i=1; i<= nlstate; i++){
        s1=0;
   printf("\nCalculation of the hessian matrix. Wait...\n");      for(j=1; j<i; j++)
   for (i=1;i<=npar;i++){        s1+=exp(ps[i][j]);
     printf("%d",i);fflush(stdout);      for(j=i+1; j<=nlstate+ndeath; j++)
     hess[i][i]=hessii(p,ftolhess,i,delti);        s1+=exp(ps[i][j]);
     /*printf(" %f ",p[i]);*/      ps[i][i]=1./(s1+1.);
   }      for(j=1; j<i; j++)
         ps[i][j]= exp(ps[i][j])*ps[i][i];
   for (i=1;i<=npar;i++) {      for(j=i+1; j<=nlstate+ndeath; j++)
     for (j=1;j<=npar;j++)  {        ps[i][j]= exp(ps[i][j])*ps[i][i];
       if (j>i) {      /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
         printf(".%d%d",i,j);fflush(stdout);    } /* end i */
         hess[i][j]=hessij(p,delti,i,j);  
         hess[j][i]=hess[i][j];    for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
       }      for(jj=1; jj<= nlstate+ndeath; jj++){
     }        ps[ii][jj]=0;
   }        ps[ii][ii]=1;
   printf("\n");      }
     }
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");  
    
   a=matrix(1,npar,1,npar);    /*   for(ii=1; ii<= nlstate+ndeath; ii++){
   y=matrix(1,npar,1,npar);      for(jj=1; jj<= nlstate+ndeath; jj++){
   x=vector(1,npar);       printf("%lf ",ps[ii][jj]);
   indx=ivector(1,npar);     }
   for (i=1;i<=npar;i++)      printf("\n ");
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];      }
   ludcmp(a,npar,indx,&pd);      printf("\n ");printf("%lf ",cov[2]);*/
   /*
   for (j=1;j<=npar;j++) {    for(i=1; i<= npar; i++) printf("%f ",x[i]);
     for (i=1;i<=npar;i++) x[i]=0;    goto end;*/
     x[j]=1;      return ps;
     lubksb(a,npar,indx,x);  }
     for (i=1;i<=npar;i++){  
       matcov[i][j]=x[i];  /**************** Product of 2 matrices ******************/
     }  
   }  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
   {
   printf("\n#Hessian matrix#\n");    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
   for (i=1;i<=npar;i++) {       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
     for (j=1;j<=npar;j++) {    /* in, b, out are matrice of pointers which should have been initialized 
       printf("%.3e ",hess[i][j]);       before: only the contents of out is modified. The function returns
     }       a pointer to pointers identical to out */
     printf("\n");    long i, j, k;
   }    for(i=nrl; i<= nrh; i++)
       for(k=ncolol; k<=ncoloh; k++)
   /* Recompute Inverse */        for(j=ncl,out[i][k]=0.; j<=nch; j++)
   for (i=1;i<=npar;i++)          out[i][k] +=in[i][j]*b[j][k];
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];  
   ludcmp(a,npar,indx,&pd);    return out;
   }
   /*  printf("\n#Hessian matrix recomputed#\n");  
   
   for (j=1;j<=npar;j++) {  /************* Higher Matrix Product ***************/
     for (i=1;i<=npar;i++) x[i]=0;  
     x[j]=1;  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
     lubksb(a,npar,indx,x);  {
     for (i=1;i<=npar;i++){    /* Computes the transition matrix starting at age 'age' over 
       y[i][j]=x[i];       'nhstepm*hstepm*stepm' months (i.e. until
       printf("%.3e ",y[i][j]);       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
     }       nhstepm*hstepm matrices. 
     printf("\n");       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
   }       (typically every 2 years instead of every month which is too big 
   */       for the memory).
        Model is determined by parameters x and covariates have to be 
   free_matrix(a,1,npar,1,npar);       included manually here. 
   free_matrix(y,1,npar,1,npar);  
   free_vector(x,1,npar);       */
   free_ivector(indx,1,npar);  
   free_matrix(hess,1,npar,1,npar);    int i, j, d, h, k;
     double **out, cov[NCOVMAX];
     double **newm;
 }  
     /* Hstepm could be zero and should return the unit matrix */
 /*************** hessian matrix ****************/    for (i=1;i<=nlstate+ndeath;i++)
 double hessii( double x[], double delta, int theta, double delti[])      for (j=1;j<=nlstate+ndeath;j++){
 {        oldm[i][j]=(i==j ? 1.0 : 0.0);
   int i;        po[i][j][0]=(i==j ? 1.0 : 0.0);
   int l=1, lmax=20;      }
   double k1,k2;    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   double p2[NPARMAX+1];    for(h=1; h <=nhstepm; h++){
   double res;      for(d=1; d <=hstepm; d++){
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;        newm=savm;
   double fx;        /* Covariates have to be included here again */
   int k=0,kmax=10;        cov[1]=1.;
   double l1;        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
         for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   fx=func(x);        for (k=1; k<=cptcovage;k++)
   for (i=1;i<=npar;i++) p2[i]=x[i];          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   for(l=0 ; l <=lmax; l++){        for (k=1; k<=cptcovprod;k++)
     l1=pow(10,l);          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
     delts=delt;  
     for(k=1 ; k <kmax; k=k+1){  
       delt = delta*(l1*k);        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
       p2[theta]=x[theta] +delt;        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
       k1=func(p2)-fx;        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
       p2[theta]=x[theta]-delt;                     pmij(pmmij,cov,ncovmodel,x,nlstate));
       k2=func(p2)-fx;        savm=oldm;
       /*res= (k1-2.0*fx+k2)/delt/delt; */        oldm=newm;
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */      }
            for(i=1; i<=nlstate+ndeath; i++)
 #ifdef DEBUG        for(j=1;j<=nlstate+ndeath;j++) {
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);          po[i][j][h]=newm[i][j];
 #endif          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */           */
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){        }
         k=kmax;    } /* end h */
       }    return po;
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */  }
         k=kmax; l=lmax*10.;  
       }  
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){  /*************** log-likelihood *************/
         delts=delt;  double func( double *x)
       }  {
     }    int i, ii, j, k, mi, d, kk;
   }    double l, ll[NLSTATEMAX], cov[NCOVMAX];
   delti[theta]=delts;    double **out;
   return res;    double sw; /* Sum of weights */
      double lli; /* Individual log likelihood */
 }    int s1, s2;
     double bbh, survp;
 double hessij( double x[], double delti[], int thetai,int thetaj)    long ipmx;
 {    /*extern weight */
   int i;    /* We are differentiating ll according to initial status */
   int l=1, l1, lmax=20;    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   double k1,k2,k3,k4,res,fx;    /*for(i=1;i<imx;i++) 
   double p2[NPARMAX+1];      printf(" %d\n",s[4][i]);
   int k;    */
     cov[1]=1.;
   fx=func(x);  
   for (k=1; k<=2; k++) {    for(k=1; k<=nlstate; k++) ll[k]=0.;
     for (i=1;i<=npar;i++) p2[i]=x[i];  
     p2[thetai]=x[thetai]+delti[thetai]/k;    if(mle==1){
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     k1=func(p2)-fx;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
          for(mi=1; mi<= wav[i]-1; mi++){
     p2[thetai]=x[thetai]+delti[thetai]/k;          for (ii=1;ii<=nlstate+ndeath;ii++)
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;            for (j=1;j<=nlstate+ndeath;j++){
     k2=func(p2)-fx;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                savm[ii][j]=(ii==j ? 1.0 : 0.0);
     p2[thetai]=x[thetai]-delti[thetai]/k;            }
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;          for(d=0; d<dh[mi][i]; d++){
     k3=func(p2)-fx;            newm=savm;
              cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     p2[thetai]=x[thetai]-delti[thetai]/k;            for (kk=1; kk<=cptcovage;kk++) {
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     k4=func(p2)-fx;            }
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 #ifdef DEBUG                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);            savm=oldm;
 #endif            oldm=newm;
   }          } /* end mult */
   return res;        
 }          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
           /* But now since version 0.9 we anticipate for bias and large stepm.
 /************** Inverse of matrix **************/           * If stepm is larger than one month (smallest stepm) and if the exact delay 
 void ludcmp(double **a, int n, int *indx, double *d)           * (in months) between two waves is not a multiple of stepm, we rounded to 
 {           * the nearest (and in case of equal distance, to the lowest) interval but now
   int i,imax,j,k;           * we keep into memory the bias bh[mi][i] and also the previous matrix product
   double big,dum,sum,temp;           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
   double *vv;           * probability in order to take into account the bias as a fraction of the way
             * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
   vv=vector(1,n);           * -stepm/2 to stepm/2 .
   *d=1.0;           * For stepm=1 the results are the same as for previous versions of Imach.
   for (i=1;i<=n;i++) {           * For stepm > 1 the results are less biased than in previous versions. 
     big=0.0;           */
     for (j=1;j<=n;j++)          s1=s[mw[mi][i]][i];
       if ((temp=fabs(a[i][j])) > big) big=temp;          s2=s[mw[mi+1][i]][i];
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");          bbh=(double)bh[mi][i]/(double)stepm; 
     vv[i]=1.0/big;          /* bias is positive if real duration
   }           * is higher than the multiple of stepm and negative otherwise.
   for (j=1;j<=n;j++) {           */
     for (i=1;i<j;i++) {          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
       sum=a[i][j];          if( s2 > nlstate){ 
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];            /* i.e. if s2 is a death state and if the date of death is known then the contribution
       a[i][j]=sum;               to the likelihood is the probability to die between last step unit time and current 
     }               step unit time, which is also the differences between probability to die before dh 
     big=0.0;               and probability to die before dh-stepm . 
     for (i=j;i<=n;i++) {               In version up to 0.92 likelihood was computed
       sum=a[i][j];          as if date of death was unknown. Death was treated as any other
       for (k=1;k<j;k++)          health state: the date of the interview describes the actual state
         sum -= a[i][k]*a[k][j];          and not the date of a change in health state. The former idea was
       a[i][j]=sum;          to consider that at each interview the state was recorded
       if ( (dum=vv[i]*fabs(sum)) >= big) {          (healthy, disable or death) and IMaCh was corrected; but when we
         big=dum;          introduced the exact date of death then we should have modified
         imax=i;          the contribution of an exact death to the likelihood. This new
       }          contribution is smaller and very dependent of the step unit
     }          stepm. It is no more the probability to die between last interview
     if (j != imax) {          and month of death but the probability to survive from last
       for (k=1;k<=n;k++) {          interview up to one month before death multiplied by the
         dum=a[imax][k];          probability to die within a month. Thanks to Chris
         a[imax][k]=a[j][k];          Jackson for correcting this bug.  Former versions increased
         a[j][k]=dum;          mortality artificially. The bad side is that we add another loop
       }          which slows down the processing. The difference can be up to 10%
       *d = -(*d);          lower mortality.
       vv[imax]=vv[j];            */
     }            lli=log(out[s1][s2] - savm[s1][s2]);
     indx[j]=imax;          }else{
     if (a[j][j] == 0.0) a[j][j]=TINY;            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
     if (j != n) {            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
       dum=1.0/(a[j][j]);          } 
       for (i=j+1;i<=n;i++) a[i][j] *= dum;          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
     }          /*if(lli ==000.0)*/
   }          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
   free_vector(vv,1,n);  /* Doesn't work */          ipmx +=1;
 ;          sw += weight[i];
 }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         } /* end of wave */
 void lubksb(double **a, int n, int *indx, double b[])      } /* end of individual */
 {    }  else if(mle==2){
   int i,ii=0,ip,j;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   double sum;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
          for(mi=1; mi<= wav[i]-1; mi++){
   for (i=1;i<=n;i++) {          for (ii=1;ii<=nlstate+ndeath;ii++)
     ip=indx[i];            for (j=1;j<=nlstate+ndeath;j++){
     sum=b[ip];              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     b[ip]=b[i];              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     if (ii)            }
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];          for(d=0; d<=dh[mi][i]; d++){
     else if (sum) ii=i;            newm=savm;
     b[i]=sum;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   }            for (kk=1; kk<=cptcovage;kk++) {
   for (i=n;i>=1;i--) {              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     sum=b[i];            }
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     b[i]=sum/a[i][i];                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   }            savm=oldm;
 }            oldm=newm;
           } /* end mult */
 /************ Frequencies ********************/        
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax)          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
 {  /* Some frequencies */          /* But now since version 0.9 we anticipate for bias and large stepm.
             * If stepm is larger than one month (smallest stepm) and if the exact delay 
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;           * (in months) between two waves is not a multiple of stepm, we rounded to 
   double ***freq; /* Frequencies */           * the nearest (and in case of equal distance, to the lowest) interval but now
   double *pp;           * we keep into memory the bias bh[mi][i] and also the previous matrix product
   double pos;           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
   FILE *ficresp;           * probability in order to take into account the bias as a fraction of the way
   char fileresp[FILENAMELENGTH];           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
            * -stepm/2 to stepm/2 .
   pp=vector(1,nlstate);           * For stepm=1 the results are the same as for previous versions of Imach.
            * For stepm > 1 the results are less biased than in previous versions. 
   strcpy(fileresp,"p");           */
   strcat(fileresp,fileres);          s1=s[mw[mi][i]][i];
   if((ficresp=fopen(fileresp,"w"))==NULL) {          s2=s[mw[mi+1][i]][i];
     printf("Problem with prevalence resultfile: %s\n", fileresp);          bbh=(double)bh[mi][i]/(double)stepm; 
     exit(0);          /* bias is positive if real duration
   }           * is higher than the multiple of stepm and negative otherwise.
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);           */
   j1=0;          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
           /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
   j=cptcovn;          /*lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.-+bh)*out[s1][s2])); */ /* exponential interpolation */
   if (cptcovn<1) {j=1;ncodemax[1]=1;}          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
           /*if(lli ==000.0)*/
   for(k1=1; k1<=j;k1++){          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
    for(i1=1; i1<=ncodemax[k1];i1++){          ipmx +=1;
        j1++;          sw += weight[i];
           ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         for (i=-1; i<=nlstate+ndeath; i++)          } /* end of wave */
          for (jk=-1; jk<=nlstate+ndeath; jk++)        } /* end of individual */
            for(m=agemin; m <= agemax+3; m++)    }  else if(mle==3){  /* exponential inter-extrapolation */
              freq[i][jk][m]=0;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
                for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
        for (i=1; i<=imx; i++) {        for(mi=1; mi<= wav[i]-1; mi++){
          bool=1;          for (ii=1;ii<=nlstate+ndeath;ii++)
          if  (cptcovn>0) {            for (j=1;j<=nlstate+ndeath;j++){
            for (z1=1; z1<=cptcovn; z1++)              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
              if (covar[Tvar[z1]][i]!= nbcode[Tvar[z1]][codtab[j1][z1]]) bool=0;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
          }            }
           if (bool==1) {          for(d=0; d<dh[mi][i]; d++){
            for(m=firstpass; m<=lastpass-1; m++){            newm=savm;
              if(agev[m][i]==0) agev[m][i]=agemax+1;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
              if(agev[m][i]==1) agev[m][i]=agemax+2;            for (kk=1; kk<=cptcovage;kk++) {
              freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
              freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];            }
            }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
          }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
        }            savm=oldm;
         if  (cptcovn>0) {            oldm=newm;
          fprintf(ficresp, "\n#Variable");          } /* end mult */
          for (z1=1; z1<=cptcovn; z1++) fprintf(ficresp, " V%d=%d",Tvar[z1],nbcode[Tvar[z1]][codtab[j1][z1]]);        
        }          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
        fprintf(ficresp, "\n#");          /* But now since version 0.9 we anticipate for bias and large stepm.
        for(i=1; i<=nlstate;i++)           * If stepm is larger than one month (smallest stepm) and if the exact delay 
          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);           * (in months) between two waves is not a multiple of stepm, we rounded to 
        fprintf(ficresp, "\n");           * the nearest (and in case of equal distance, to the lowest) interval but now
                   * we keep into memory the bias bh[mi][i] and also the previous matrix product
   for(i=(int)agemin; i <= (int)agemax+3; i++){           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
     if(i==(int)agemax+3)           * probability in order to take into account the bias as a fraction of the way
       printf("Total");           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
     else           * -stepm/2 to stepm/2 .
       printf("Age %d", i);           * For stepm=1 the results are the same as for previous versions of Imach.
     for(jk=1; jk <=nlstate ; jk++){           * For stepm > 1 the results are less biased than in previous versions. 
       for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)           */
         pp[jk] += freq[jk][m][i];          s1=s[mw[mi][i]][i];
     }          s2=s[mw[mi+1][i]][i];
     for(jk=1; jk <=nlstate ; jk++){          bbh=(double)bh[mi][i]/(double)stepm; 
       for(m=-1, pos=0; m <=0 ; m++)          /* bias is positive if real duration
         pos += freq[jk][m][i];           * is higher than the multiple of stepm and negative otherwise.
       if(pp[jk]>=1.e-10)           */
         printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);          /* lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); */ /* linear interpolation */
       else          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
         printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
     }          /*if(lli ==000.0)*/
     for(jk=1; jk <=nlstate ; jk++){          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
       for(m=1, pp[jk]=0; m <=nlstate+ndeath; m++)          ipmx +=1;
         pp[jk] += freq[jk][m][i];          sw += weight[i];
     }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     for(jk=1,pos=0; jk <=nlstate ; jk++)        } /* end of wave */
       pos += pp[jk];      } /* end of individual */
     for(jk=1; jk <=nlstate ; jk++){    }else if (mle==4){  /* ml=4 no inter-extrapolation */
       if(pos>=1.e-5)      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       else        for(mi=1; mi<= wav[i]-1; mi++){
         printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);          for (ii=1;ii<=nlstate+ndeath;ii++)
       if( i <= (int) agemax){            for (j=1;j<=nlstate+ndeath;j++){
         if(pos>=1.e-5)              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       else            }
           fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);          for(d=0; d<dh[mi][i]; d++){
       }            newm=savm;
     }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     for(jk=-1; jk <=nlstate+ndeath; jk++)            for (kk=1; kk<=cptcovage;kk++) {
       for(m=-1; m <=nlstate+ndeath; m++)              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);            }
     if(i <= (int) agemax)          
       fprintf(ficresp,"\n");            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     printf("\n");                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     }            savm=oldm;
     }            oldm=newm;
  }          } /* end mult */
          
   fclose(ficresp);          s1=s[mw[mi][i]][i];
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);          s2=s[mw[mi+1][i]][i];
   free_vector(pp,1,nlstate);          if( s2 > nlstate){ 
             lli=log(out[s1][s2] - savm[s1][s2]);
 }  /* End of Freq */          }else{
             lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
 /************* Waves Concatenation ***************/          }
           ipmx +=1;
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)          sw += weight[i];
 {          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
      Death is a valid wave (if date is known).        } /* end of wave */
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i      } /* end of individual */
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
      and mw[mi+1][i]. dh depends on stepm.      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
      */        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(mi=1; mi<= wav[i]-1; mi++){
   int i, mi, m;          for (ii=1;ii<=nlstate+ndeath;ii++)
   int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;            for (j=1;j<=nlstate+ndeath;j++){
 float sum=0.;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               savm[ii][j]=(ii==j ? 1.0 : 0.0);
   for(i=1; i<=imx; i++){            }
     mi=0;          for(d=0; d<dh[mi][i]; d++){
     m=firstpass;            newm=savm;
     while(s[m][i] <= nlstate){            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       if(s[m][i]>=1)            for (kk=1; kk<=cptcovage;kk++) {
         mw[++mi][i]=m;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       if(m >=lastpass)            }
         break;          
       else            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         m++;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     }/* end while */            savm=oldm;
     if (s[m][i] > nlstate){            oldm=newm;
       mi++;     /* Death is another wave */          } /* end mult */
       /* if(mi==0)  never been interviewed correctly before death */        
          /* Only death is a correct wave */          s1=s[mw[mi][i]][i];
       mw[mi][i]=m;          s2=s[mw[mi+1][i]][i];
     }          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
           ipmx +=1;
     wav[i]=mi;          sw += weight[i];
     if(mi==0)          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
   }        } /* end of wave */
       } /* end of individual */
   for(i=1; i<=imx; i++){    } /* End of if */
     for(mi=1; mi<wav[i];mi++){    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
       if (stepm <=0)    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
         dh[mi][i]=1;    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
       else{    return -l;
         if (s[mw[mi+1][i]][i] > nlstate) {  }
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);  
           if(j=0) j=1;  /* Survives at least one month after exam */  /*************** log-likelihood *************/
         }  double funcone( double *x)
         else{  {
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));    /* Same as likeli but slower because of a lot of printf and if */
           k=k+1;    int i, ii, j, k, mi, d, kk;
           if (j >= jmax) jmax=j;    double l, ll[NLSTATEMAX], cov[NCOVMAX];
           else if (j <= jmin)jmin=j;    double **out;
           sum=sum+j;    double lli; /* Individual log likelihood */
         }    double llt;
         jk= j/stepm;    int s1, s2;
         jl= j -jk*stepm;    double bbh, survp;
         ju= j -(jk+1)*stepm;    /*extern weight */
         if(jl <= -ju)    /* We are differentiating ll according to initial status */
           dh[mi][i]=jk;    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
         else    /*for(i=1;i<imx;i++) 
           dh[mi][i]=jk+1;      printf(" %d\n",s[4][i]);
         if(dh[mi][i]==0)    */
           dh[mi][i]=1; /* At least one step */    cov[1]=1.;
       }  
     }    for(k=1; k<=nlstate; k++) ll[k]=0.;
   }  
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,sum/k);    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 }      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 /*********** Tricode ****************************/      for(mi=1; mi<= wav[i]-1; mi++){
 void tricode(int *Tvar, int **nbcode, int imx)        for (ii=1;ii<=nlstate+ndeath;ii++)
 {          for (j=1;j<=nlstate+ndeath;j++){
   int Ndum[80],ij=1, k, j, i, Ntvar[20];            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   int cptcode=0;            savm[ii][j]=(ii==j ? 1.0 : 0.0);
   for (k=0; k<79; k++) Ndum[k]=0;          }
   for (k=1; k<=7; k++) ncodemax[k]=0;        for(d=0; d<dh[mi][i]; d++){
           newm=savm;
   for (j=1; j<=cptcovn; j++) {          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     for (i=1; i<=imx; i++) {          for (kk=1; kk<=cptcovage;kk++) {
       ij=(int)(covar[Tvar[j]][i]);            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       Ndum[ij]++;          }
       if (ij > cptcode) cptcode=ij;          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     }                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     /*printf("cptcode=%d cptcovn=%d ",cptcode,cptcovn);*/          savm=oldm;
     for (i=0; i<=cptcode; i++) {          oldm=newm;
       if(Ndum[i]!=0) ncodemax[j]++;        } /* end mult */
     }        
          s1=s[mw[mi][i]][i];
     ij=1;        s2=s[mw[mi+1][i]][i];
     for (i=1; i<=ncodemax[j]; i++) {        bbh=(double)bh[mi][i]/(double)stepm; 
       for (k=0; k<=79; k++) {        /* bias is positive if real duration
         if (Ndum[k] != 0) {         * is higher than the multiple of stepm and negative otherwise.
           nbcode[Tvar[j]][ij]=k;         */
           ij++;        if( s2 > nlstate && (mle <5) ){  /* Jackson */
         }          lli=log(out[s1][s2] - savm[s1][s2]);
         if (ij > ncodemax[j]) break;        } else if (mle==1){
       }            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
     }        } else if(mle==2){
   }            lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
          } else if(mle==3){  /* exponential inter-extrapolation */
 }          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
         } else if (mle==4){  /* mle=4 no inter-extrapolation */
 /*********** Health Expectancies ****************/          lli=log(out[s1][s2]); /* Original formula */
         } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij)          lli=log(out[s1][s2]); /* Original formula */
 {        } /* End of if */
   /* Health expectancies */        ipmx +=1;
   int i, j, nhstepm, hstepm, h;        sw += weight[i];
   double age, agelim,hf;        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   double ***p3mat;  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
          if(globpr){
   fprintf(ficreseij,"# Health expectancies\n");          fprintf(ficresilk,"%ld %6d %1d %1d %1d %1d %3d %10.6f %6.4f\
   fprintf(ficreseij,"# Age");   %10.6f %10.6f %10.6f ", \
   for(i=1; i<=nlstate;i++)                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
     for(j=1; j<=nlstate;j++)                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
       fprintf(ficreseij," %1d-%1d",i,j);          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
   fprintf(ficreseij,"\n");            llt +=ll[k]*gipmx/gsw;
             fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
   hstepm=1*YEARM; /*  Every j years of age (in month) */          }
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */          fprintf(ficresilk," %10.6f\n", -llt);
         }
   agelim=AGESUP;      } /* end of wave */
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    } /* end of individual */
     /* nhstepm age range expressed in number of stepm */    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
     nhstepm=(int) rint((agelim-age)*YEARM/stepm);    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
     /* Typically if 20 years = 20*12/6=40 stepm */    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
     if (stepm >= YEARM) hstepm=1;    if(globpr==0){ /* First time we count the contributions and weights */
     nhstepm = nhstepm/hstepm;/* Expressed in hstepm, typically 40/4=10 */      gipmx=ipmx;
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      gsw=sw;
     /* Computed by stepm unit matrices, product of hstepm matrices, stored    }
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */    return -l;
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);    }
   
   
     for(i=1; i<=nlstate;i++)  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
       for(j=1; j<=nlstate;j++)  {
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm; h++){    /* This routine should help understanding what is done with 
           eij[i][j][(int)age] +=p3mat[i][j][h];       the selection of individuals/waves and
         }       to check the exact contribution to the likelihood.
           Plotting could be done.
     hf=1;     */
     if (stepm >= YEARM) hf=stepm/YEARM;    int k;
     fprintf(ficreseij,"%.0f",age );  
     for(i=1; i<=nlstate;i++)    if(*globpri !=0){ /* Just counts and sums no printings */
       for(j=1; j<=nlstate;j++){      strcpy(fileresilk,"ilk"); 
         fprintf(ficreseij," %.4f", hf*eij[i][j][(int)age]);      strcat(fileresilk,fileres);
       }      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
     fprintf(ficreseij,"\n");        printf("Problem with resultfile: %s\n", fileresilk);
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
   }      }
 }      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
       fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight out sav ");
 /************ Variance ******************/      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)      for(k=1; k<=nlstate; k++) 
 {        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
   /* Variance of health expectancies */      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    }
   double **newm;  
   double **dnewm,**doldm;    *fretone=(*funcone)(p);
   int i, j, nhstepm, hstepm, h;    if(*globpri !=0){
   int k, cptcode;      fclose(ficresilk);
    double *xp;      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",fileresilk,fileresilk);
   double **gp, **gm;      fflush(fichtm); 
   double ***gradg, ***trgradg;    } 
   double ***p3mat;    return;
   double age,agelim;  }
   int theta;  
   /*********** Maximum Likelihood Estimation ***************/
    fprintf(ficresvij,"# Covariances of life expectancies\n");  
   fprintf(ficresvij,"# Age");  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
   for(i=1; i<=nlstate;i++)  {
     for(j=1; j<=nlstate;j++)    int i,j, iter;
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);    double **xi;
   fprintf(ficresvij,"\n");    double fret;
     double fretone; /* Only one call to likelihood */
   xp=vector(1,npar);    char filerespow[FILENAMELENGTH];
   dnewm=matrix(1,nlstate,1,npar);    xi=matrix(1,npar,1,npar);
   doldm=matrix(1,nlstate,1,nlstate);    for (i=1;i<=npar;i++)
        for (j=1;j<=npar;j++)
   hstepm=1*YEARM; /* Every year of age */        xi[i][j]=(i==j ? 1.0 : 0.0);
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */    printf("Powell\n");  fprintf(ficlog,"Powell\n");
   agelim = AGESUP;    strcpy(filerespow,"pow"); 
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    strcat(filerespow,fileres);
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    if((ficrespow=fopen(filerespow,"w"))==NULL) {
     if (stepm >= YEARM) hstepm=1;      printf("Problem with resultfile: %s\n", filerespow);
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    }
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);    fprintf(ficrespow,"# Powell\n# iter -2*LL");
     gp=matrix(0,nhstepm,1,nlstate);    for (i=1;i<=nlstate;i++)
     gm=matrix(0,nhstepm,1,nlstate);      for(j=1;j<=nlstate+ndeath;j++)
         if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
     for(theta=1; theta <=npar; theta++){    fprintf(ficrespow,"\n");
       for(i=1; i<=npar; i++){ /* Computes gradient */  
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    powell(p,xi,npar,ftol,&iter,&fret,func);
       }  
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      fclose(ficrespow);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
       for(j=1; j<= nlstate; j++){    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
         for(h=0; h<=nhstepm; h++){    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)  
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];  }
         }  
       }  /**** Computes Hessian and covariance matrix ***/
      void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
       for(i=1; i<=npar; i++) /* Computes gradient */  {
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    double  **a,**y,*x,pd;
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      double **hess;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    int i, j,jk;
       for(j=1; j<= nlstate; j++){    int *indx;
         for(h=0; h<=nhstepm; h++){  
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)    double hessii(double p[], double delta, int theta, double delti[]);
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];    double hessij(double p[], double delti[], int i, int j);
         }    void lubksb(double **a, int npar, int *indx, double b[]) ;
       }    void ludcmp(double **a, int npar, int *indx, double *d) ;
       for(j=1; j<= nlstate; j++)  
         for(h=0; h<=nhstepm; h++){    hess=matrix(1,npar,1,npar);
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];  
         }    printf("\nCalculation of the hessian matrix. Wait...\n");
     } /* End theta */    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
     for (i=1;i<=npar;i++){
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);      printf("%d",i);fflush(stdout);
       fprintf(ficlog,"%d",i);fflush(ficlog);
     for(h=0; h<=nhstepm; h++)      hess[i][i]=hessii(p,ftolhess,i,delti);
       for(j=1; j<=nlstate;j++)      /*printf(" %f ",p[i]);*/
         for(theta=1; theta <=npar; theta++)      /*printf(" %lf ",hess[i][i]);*/
           trgradg[h][j][theta]=gradg[h][theta][j];    }
     
     for(i=1;i<=nlstate;i++)    for (i=1;i<=npar;i++) {
       for(j=1;j<=nlstate;j++)      for (j=1;j<=npar;j++)  {
         vareij[i][j][(int)age] =0.;        if (j>i) { 
     for(h=0;h<=nhstepm;h++){          printf(".%d%d",i,j);fflush(stdout);
       for(k=0;k<=nhstepm;k++){          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);          hess[i][j]=hessij(p,delti,i,j);
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);          hess[j][i]=hess[i][j];    
         for(i=1;i<=nlstate;i++)          /*printf(" %lf ",hess[i][j]);*/
           for(j=1;j<=nlstate;j++)        }
             vareij[i][j][(int)age] += doldm[i][j];      }
       }    }
     }    printf("\n");
     h=1;    fprintf(ficlog,"\n");
     if (stepm >= YEARM) h=stepm/YEARM;  
     fprintf(ficresvij,"%.0f ",age );    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
     for(i=1; i<=nlstate;i++)    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
       for(j=1; j<=nlstate;j++){    
         fprintf(ficresvij," %.4f", h*vareij[i][j][(int)age]);    a=matrix(1,npar,1,npar);
       }    y=matrix(1,npar,1,npar);
     fprintf(ficresvij,"\n");    x=vector(1,npar);
     free_matrix(gp,0,nhstepm,1,nlstate);    indx=ivector(1,npar);
     free_matrix(gm,0,nhstepm,1,nlstate);    for (i=1;i<=npar;i++)
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);    ludcmp(a,npar,indx,&pd);
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
   } /* End age */    for (j=1;j<=npar;j++) {
        for (i=1;i<=npar;i++) x[i]=0;
   free_vector(xp,1,npar);      x[j]=1;
   free_matrix(doldm,1,nlstate,1,npar);      lubksb(a,npar,indx,x);
   free_matrix(dnewm,1,nlstate,1,nlstate);      for (i=1;i<=npar;i++){ 
         matcov[i][j]=x[i];
 }      }
     }
 /************ Variance of prevlim ******************/  
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)    printf("\n#Hessian matrix#\n");
 {    fprintf(ficlog,"\n#Hessian matrix#\n");
   /* Variance of prevalence limit */    for (i=1;i<=npar;i++) { 
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/      for (j=1;j<=npar;j++) { 
   double **newm;        printf("%.3e ",hess[i][j]);
   double **dnewm,**doldm;        fprintf(ficlog,"%.3e ",hess[i][j]);
   int i, j, nhstepm, hstepm;      }
   int k, cptcode;      printf("\n");
   double *xp;      fprintf(ficlog,"\n");
   double *gp, *gm;    }
   double **gradg, **trgradg;  
   double age,agelim;    /* Recompute Inverse */
   int theta;    for (i=1;i<=npar;i++)
          for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");    ludcmp(a,npar,indx,&pd);
   fprintf(ficresvpl,"# Age");  
   for(i=1; i<=nlstate;i++)    /*  printf("\n#Hessian matrix recomputed#\n");
       fprintf(ficresvpl," %1d-%1d",i,i);  
   fprintf(ficresvpl,"\n");    for (j=1;j<=npar;j++) {
       for (i=1;i<=npar;i++) x[i]=0;
   xp=vector(1,npar);      x[j]=1;
   dnewm=matrix(1,nlstate,1,npar);      lubksb(a,npar,indx,x);
   doldm=matrix(1,nlstate,1,nlstate);      for (i=1;i<=npar;i++){ 
          y[i][j]=x[i];
   hstepm=1*YEARM; /* Every year of age */        printf("%.3e ",y[i][j]);
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */        fprintf(ficlog,"%.3e ",y[i][j]);
   agelim = AGESUP;      }
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */      printf("\n");
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */      fprintf(ficlog,"\n");
     if (stepm >= YEARM) hstepm=1;    }
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    */
     gradg=matrix(1,npar,1,nlstate);  
     gp=vector(1,nlstate);    free_matrix(a,1,npar,1,npar);
     gm=vector(1,nlstate);    free_matrix(y,1,npar,1,npar);
     free_vector(x,1,npar);
     for(theta=1; theta <=npar; theta++){    free_ivector(indx,1,npar);
       for(i=1; i<=npar; i++){ /* Computes gradient */    free_matrix(hess,1,npar,1,npar);
         xp[i] = x[i] + (i==theta ?delti[theta]:0);  
       }  
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  }
       for(i=1;i<=nlstate;i++)  
         gp[i] = prlim[i][i];  /*************** hessian matrix ****************/
      double hessii( double x[], double delta, int theta, double delti[])
       for(i=1; i<=npar; i++) /* Computes gradient */  {
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    int i;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    int l=1, lmax=20;
       for(i=1;i<=nlstate;i++)    double k1,k2;
         gm[i] = prlim[i][i];    double p2[NPARMAX+1];
     double res;
       for(i=1;i<=nlstate;i++)    double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];    double fx;
     } /* End theta */    int k=0,kmax=10;
     double l1;
     trgradg =matrix(1,nlstate,1,npar);  
     fx=func(x);
     for(j=1; j<=nlstate;j++)    for (i=1;i<=npar;i++) p2[i]=x[i];
       for(theta=1; theta <=npar; theta++)    for(l=0 ; l <=lmax; l++){
         trgradg[j][theta]=gradg[theta][j];      l1=pow(10,l);
       delts=delt;
     for(i=1;i<=nlstate;i++)      for(k=1 ; k <kmax; k=k+1){
       varpl[i][(int)age] =0.;        delt = delta*(l1*k);
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);        p2[theta]=x[theta] +delt;
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);        k1=func(p2)-fx;
     for(i=1;i<=nlstate;i++)        p2[theta]=x[theta]-delt;
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */        k2=func(p2)-fx;
         /*res= (k1-2.0*fx+k2)/delt/delt; */
     fprintf(ficresvpl,"%.0f ",age );        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
     for(i=1; i<=nlstate;i++)        
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));  #ifdef DEBUG
     fprintf(ficresvpl,"\n");        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
     free_vector(gp,1,nlstate);        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
     free_vector(gm,1,nlstate);  #endif
     free_matrix(gradg,1,npar,1,nlstate);        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
     free_matrix(trgradg,1,nlstate,1,npar);        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
   } /* End age */          k=kmax;
         }
   free_vector(xp,1,npar);        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
   free_matrix(doldm,1,nlstate,1,npar);          k=kmax; l=lmax*10.;
   free_matrix(dnewm,1,nlstate,1,nlstate);        }
         else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
 }          delts=delt;
         }
       }
     }
 /***********************************************/    delti[theta]=delts;
 /**************** Main Program *****************/    return res; 
 /***********************************************/    
   }
 /*int main(int argc, char *argv[])*/  
 int main()  double hessij( double x[], double delti[], int thetai,int thetaj)
 {  {
     int i;
   int i,j, k, n=MAXN,iter,m,size,cptcode, aaa, cptcod;    int l=1, l1, lmax=20;
   double agedeb, agefin,hf;    double k1,k2,k3,k4,res,fx;
   double agemin=1.e20, agemax=-1.e20;    double p2[NPARMAX+1];
     int k;
   double fret;  
   double **xi,tmp,delta;    fx=func(x);
     for (k=1; k<=2; k++) {
   double dum; /* Dummy variable */      for (i=1;i<=npar;i++) p2[i]=x[i];
   double ***p3mat;      p2[thetai]=x[thetai]+delti[thetai]/k;
   int *indx;      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   char line[MAXLINE], linepar[MAXLINE];      k1=func(p2)-fx;
   char title[MAXLINE];    
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];      p2[thetai]=x[thetai]+delti[thetai]/k;
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH];      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   char filerest[FILENAMELENGTH];      k2=func(p2)-fx;
   char fileregp[FILENAMELENGTH];    
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];      p2[thetai]=x[thetai]-delti[thetai]/k;
   int firstobs=1, lastobs=10;      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   int sdeb, sfin; /* Status at beginning and end */      k3=func(p2)-fx;
   int c,  h , cpt,l;    
   int ju,jl, mi;      p2[thetai]=x[thetai]-delti[thetai]/k;
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize;      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;      k4=func(p2)-fx;
        res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
   int hstepm, nhstepm;  #ifdef DEBUG
   double bage, fage, age, agelim, agebase;      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   double ftolpl=FTOL;      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   double **prlim;  #endif
   double *severity;    }
   double ***param; /* Matrix of parameters */    return res;
   double  *p;  }
   double **matcov; /* Matrix of covariance */  
   double ***delti3; /* Scale */  /************** Inverse of matrix **************/
   double *delti; /* Scale */  void ludcmp(double **a, int n, int *indx, double *d) 
   double ***eij, ***vareij;  { 
   double **varpl; /* Variances of prevalence limits by age */    int i,imax,j,k; 
   double *epj, vepp;    double big,dum,sum,temp; 
   char version[80]="Imach version 62c, May 1999, INED-EUROREVES ";    double *vv; 
   char *alph[]={"a","a","b","c","d","e"}, str[4];   
     vv=vector(1,n); 
   char z[1]="c", occ;    *d=1.0; 
 #include <sys/time.h>    for (i=1;i<=n;i++) { 
 #include <time.h>      big=0.0; 
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];      for (j=1;j<=n;j++) 
   /* long total_usecs;        if ((temp=fabs(a[i][j])) > big) big=temp; 
   struct timeval start_time, end_time;      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
        vv[i]=1.0/big; 
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */    } 
     for (j=1;j<=n;j++) { 
       for (i=1;i<j;i++) { 
   printf("\nIMACH, Version 0.64a");        sum=a[i][j]; 
   printf("\nEnter the parameter file name: ");        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
         a[i][j]=sum; 
 #ifdef windows      } 
   scanf("%s",pathtot);      big=0.0; 
   getcwd(pathcd, size);      for (i=j;i<=n;i++) { 
   /*cygwin_split_path(pathtot,path,optionfile);        sum=a[i][j]; 
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/        for (k=1;k<j;k++) 
   /* cutv(path,optionfile,pathtot,'\\');*/          sum -= a[i][k]*a[k][j]; 
         a[i][j]=sum; 
 split(pathtot, path,optionfile);        if ( (dum=vv[i]*fabs(sum)) >= big) { 
   chdir(path);          big=dum; 
   replace(pathc,path);          imax=i; 
 #endif        } 
 #ifdef unix      } 
   scanf("%s",optionfile);      if (j != imax) { 
 #endif        for (k=1;k<=n;k++) { 
           dum=a[imax][k]; 
 /*-------- arguments in the command line --------*/          a[imax][k]=a[j][k]; 
           a[j][k]=dum; 
   strcpy(fileres,"r");        } 
   strcat(fileres, optionfile);        *d = -(*d); 
         vv[imax]=vv[j]; 
   /*---------arguments file --------*/      } 
       indx[j]=imax; 
   if((ficpar=fopen(optionfile,"r"))==NULL)    {      if (a[j][j] == 0.0) a[j][j]=TINY; 
     printf("Problem with optionfile %s\n",optionfile);      if (j != n) { 
     goto end;        dum=1.0/(a[j][j]); 
   }        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
       } 
   strcpy(filereso,"o");    } 
   strcat(filereso,fileres);    free_vector(vv,1,n);  /* Doesn't work */
   if((ficparo=fopen(filereso,"w"))==NULL) {  ;
     printf("Problem with Output resultfile: %s\n", filereso);goto end;  } 
   }  
   void lubksb(double **a, int n, int *indx, double b[]) 
   /* Reads comments: lines beginning with '#' */  { 
   while((c=getc(ficpar))=='#' && c!= EOF){    int i,ii=0,ip,j; 
     ungetc(c,ficpar);    double sum; 
     fgets(line, MAXLINE, ficpar);   
     puts(line);    for (i=1;i<=n;i++) { 
     fputs(line,ficparo);      ip=indx[i]; 
   }      sum=b[ip]; 
   ungetc(c,ficpar);      b[ip]=b[i]; 
       if (ii) 
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncov, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate,ndeath, maxwav, mle, weightopt,model);      else if (sum) ii=i; 
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncov,nlstate,ndeath,maxwav, mle, weightopt,model);      b[i]=sum; 
     } 
   covar=matrix(0,NCOVMAX,1,n);        for (i=n;i>=1;i--) { 
   if (strlen(model)<=1) cptcovn=0;      sum=b[i]; 
   else {      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
     j=0;      b[i]=sum/a[i][i]; 
     j=nbocc(model,'+');    } 
     cptcovn=j+1;  } 
   }  
   /************ Frequencies ********************/
   ncovmodel=2+cptcovn;  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint)
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */  {  /* Some frequencies */
      
   /* Read guess parameters */    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
   /* Reads comments: lines beginning with '#' */    int first;
   while((c=getc(ficpar))=='#' && c!= EOF){    double ***freq; /* Frequencies */
     ungetc(c,ficpar);    double *pp, **prop;
     fgets(line, MAXLINE, ficpar);    double pos,posprop, k2, dateintsum=0,k2cpt=0;
     puts(line);    FILE *ficresp;
     fputs(line,ficparo);    char fileresp[FILENAMELENGTH];
   }    
   ungetc(c,ficpar);    pp=vector(1,nlstate);
      prop=matrix(1,nlstate,iagemin,iagemax+3);
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    strcpy(fileresp,"p");
     for(i=1; i <=nlstate; i++)    strcat(fileresp,fileres);
     for(j=1; j <=nlstate+ndeath-1; j++){    if((ficresp=fopen(fileresp,"w"))==NULL) {
       fscanf(ficpar,"%1d%1d",&i1,&j1);      printf("Problem with prevalence resultfile: %s\n", fileresp);
       fprintf(ficparo,"%1d%1d",i1,j1);      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
       printf("%1d%1d",i,j);      exit(0);
       for(k=1; k<=ncovmodel;k++){    }
         fscanf(ficpar," %lf",&param[i][j][k]);    freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);
         printf(" %lf",param[i][j][k]);    j1=0;
         fprintf(ficparo," %lf",param[i][j][k]);    
       }    j=cptcoveff;
       fscanf(ficpar,"\n");    if (cptcovn<1) {j=1;ncodemax[1]=1;}
       printf("\n");  
       fprintf(ficparo,"\n");    first=1;
     }  
      for(k1=1; k1<=j;k1++){
   npar= (nlstate+ndeath-1)*nlstate*ncovmodel;      for(i1=1; i1<=ncodemax[k1];i1++){
   p=param[1][1];        j1++;
          /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
   /* Reads comments: lines beginning with '#' */          scanf("%d", i);*/
   while((c=getc(ficpar))=='#' && c!= EOF){        for (i=-1; i<=nlstate+ndeath; i++)  
     ungetc(c,ficpar);          for (jk=-1; jk<=nlstate+ndeath; jk++)  
     fgets(line, MAXLINE, ficpar);            for(m=iagemin; m <= iagemax+3; m++)
     puts(line);              freq[i][jk][m]=0;
     fputs(line,ficparo);  
   }      for (i=1; i<=nlstate; i++)  
   ungetc(c,ficpar);        for(m=iagemin; m <= iagemax+3; m++)
           prop[i][m]=0;
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);        
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */        dateintsum=0;
   for(i=1; i <=nlstate; i++){        k2cpt=0;
     for(j=1; j <=nlstate+ndeath-1; j++){        for (i=1; i<=imx; i++) {
       fscanf(ficpar,"%1d%1d",&i1,&j1);          bool=1;
       printf("%1d%1d",i,j);          if  (cptcovn>0) {
       fprintf(ficparo,"%1d%1d",i1,j1);            for (z1=1; z1<=cptcoveff; z1++) 
       for(k=1; k<=ncovmodel;k++){              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
         fscanf(ficpar,"%le",&delti3[i][j][k]);                bool=0;
         printf(" %le",delti3[i][j][k]);          }
         fprintf(ficparo," %le",delti3[i][j][k]);          if (bool==1){
       }            for(m=firstpass; m<=lastpass; m++){
       fscanf(ficpar,"\n");              k2=anint[m][i]+(mint[m][i]/12.);
       printf("\n");              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
       fprintf(ficparo,"\n");                if(agev[m][i]==0) agev[m][i]=iagemax+1;
     }                if(agev[m][i]==1) agev[m][i]=iagemax+2;
   }                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
   delti=delti3[1][1];                if (m<lastpass) {
                    freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
   /* Reads comments: lines beginning with '#' */                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
   while((c=getc(ficpar))=='#' && c!= EOF){                }
     ungetc(c,ficpar);                
     fgets(line, MAXLINE, ficpar);                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
     puts(line);                  dateintsum=dateintsum+k2;
     fputs(line,ficparo);                  k2cpt++;
   }                }
   ungetc(c,ficpar);                /*}*/
              }
   matcov=matrix(1,npar,1,npar);          }
   for(i=1; i <=npar; i++){        }
     fscanf(ficpar,"%s",&str);         
     printf("%s",str);        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
     fprintf(ficparo,"%s",str);  
     for(j=1; j <=i; j++){        if  (cptcovn>0) {
       fscanf(ficpar," %le",&matcov[i][j]);          fprintf(ficresp, "\n#********** Variable "); 
       printf(" %.5le",matcov[i][j]);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       fprintf(ficparo," %.5le",matcov[i][j]);          fprintf(ficresp, "**********\n#");
     }        }
     fscanf(ficpar,"\n");        for(i=1; i<=nlstate;i++) 
     printf("\n");          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
     fprintf(ficparo,"\n");        fprintf(ficresp, "\n");
   }        
   for(i=1; i <=npar; i++)        for(i=iagemin; i <= iagemax+3; i++){
     for(j=i+1;j<=npar;j++)          if(i==iagemax+3){
       matcov[i][j]=matcov[j][i];            fprintf(ficlog,"Total");
              }else{
   printf("\n");            if(first==1){
               first=0;
               printf("See log file for details...\n");
     /*-------- data file ----------*/            }
     if((ficres =fopen(fileres,"w"))==NULL) {            fprintf(ficlog,"Age %d", i);
       printf("Problem with resultfile: %s\n", fileres);goto end;          }
     }          for(jk=1; jk <=nlstate ; jk++){
     fprintf(ficres,"#%s\n",version);            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
                  pp[jk] += freq[jk][m][i]; 
     if((fic=fopen(datafile,"r"))==NULL)    {          }
       printf("Problem with datafile: %s\n", datafile);goto end;          for(jk=1; jk <=nlstate ; jk++){
     }            for(m=-1, pos=0; m <=0 ; m++)
               pos += freq[jk][m][i];
     n= lastobs;            if(pp[jk]>=1.e-10){
     severity = vector(1,maxwav);              if(first==1){
     outcome=imatrix(1,maxwav+1,1,n);              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
     num=ivector(1,n);              }
     moisnais=vector(1,n);              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
     annais=vector(1,n);            }else{
     moisdc=vector(1,n);              if(first==1)
     andc=vector(1,n);                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
     agedc=vector(1,n);              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
     cod=ivector(1,n);            }
     weight=vector(1,n);          }
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */  
     mint=matrix(1,maxwav,1,n);          for(jk=1; jk <=nlstate ; jk++){
     anint=matrix(1,maxwav,1,n);            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
     s=imatrix(1,maxwav+1,1,n);              pp[jk] += freq[jk][m][i];
     adl=imatrix(1,maxwav+1,1,n);              }       
     tab=ivector(1,NCOVMAX);          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
     ncodemax=ivector(1,8);            pos += pp[jk];
             posprop += prop[jk][i];
     i=1;          }
     while (fgets(line, MAXLINE, fic) != NULL)    {          for(jk=1; jk <=nlstate ; jk++){
       if ((i >= firstobs) && (i <=lastobs)) {            if(pos>=1.e-5){
                      if(first==1)
         for (j=maxwav;j>=1;j--){                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
           strcpy(line,stra);            }else{
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);              if(first==1)
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
         }              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
                    }
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);            if( i <= iagemax){
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);              if(pos>=1.e-5){
                 fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);                /*probs[i][jk][j1]= pp[jk]/pos;*/
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
               }
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);              else
         for (j=ncov;j>=1;j--){                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);            }
         }          }
         num[i]=atol(stra);          
           for(jk=-1; jk <=nlstate+ndeath; jk++)
         /*printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));*/            for(m=-1; m <=nlstate+ndeath; m++)
               if(freq[jk][m][i] !=0 ) {
         i=i+1;              if(first==1)
       }                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
     }                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
               }
     /*scanf("%d",i);*/          if(i <= iagemax)
   imx=i-1; /* Number of individuals */            fprintf(ficresp,"\n");
           if(first==1)
   /* Calculation of the number of parameter from char model*/            printf("Others in log...\n");
   Tvar=ivector(1,15);              fprintf(ficlog,"\n");
   Tage=ivector(1,15);              }
          }
   if (strlen(model) >1){    }
     j=0, j1=0;    dateintmean=dateintsum/k2cpt; 
     j=nbocc(model,'+');   
     j1=nbocc(model,'*');    fclose(ficresp);
     cptcovn=j+1;    free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);
        free_vector(pp,1,nlstate);
     strcpy(modelsav,model);    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
     if (j==0) {    /* End of Freq */
       if (j1==0){  }
        cutv(stra,strb,modelsav,'V');  
        Tvar[1]=atoi(strb);  /************ Prevalence ********************/
       }  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
       else if (j1==1) {  {  
        cutv(stra,strb,modelsav,'*');    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
        /*      printf("stra=%s strb=%s modelsav=%s ",stra,strb,modelsav);*/       in each health status at the date of interview (if between dateprev1 and dateprev2).
        Tage[1]=1; cptcovage++;       We still use firstpass and lastpass as another selection.
        if (strcmp(stra,"age")==0) {    */
          cutv(strd,strc,strb,'V');   
          Tvar[1]=atoi(strc);    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
        }    double ***freq; /* Frequencies */
        else if (strcmp(strb,"age")==0) {    double *pp, **prop;
          cutv(strd,strc,stra,'V');    double pos,posprop; 
          Tvar[1]=atoi(strc);    double  y2; /* in fractional years */
        }    int iagemin, iagemax;
        else {printf("Error"); exit(0);}  
       }    iagemin= (int) agemin;
     }    iagemax= (int) agemax;
     else {    /*pp=vector(1,nlstate);*/
       for(i=j; i>=1;i--){    prop=matrix(1,nlstate,iagemin,iagemax+3); 
         cutv(stra,strb,modelsav,'+');    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
         /*printf("%s %s %s\n", stra,strb,modelsav);*/    j1=0;
         if (strchr(strb,'*')) {    
           cutv(strd,strc,strb,'*');    j=cptcoveff;
           if (strcmp(strc,"age")==0) {    if (cptcovn<1) {j=1;ncodemax[1]=1;}
             cutv(strb,stre,strd,'V');    
             Tvar[i+1]=atoi(stre);    for(k1=1; k1<=j;k1++){
             cptcovage++;      for(i1=1; i1<=ncodemax[k1];i1++){
             Tage[cptcovage]=i+1;        j1++;
             printf("stre=%s ", stre);        
           }        for (i=1; i<=nlstate; i++)  
           else if (strcmp(strd,"age")==0) {          for(m=iagemin; m <= iagemax+3; m++)
             cutv(strb,stre,strc,'V');            prop[i][m]=0.0;
             Tvar[i+1]=atoi(stre);       
             cptcovage++;        for (i=1; i<=imx; i++) { /* Each individual */
             Tage[cptcovage]=i+1;          bool=1;
           }          if  (cptcovn>0) {
           else {            for (z1=1; z1<=cptcoveff; z1++) 
             cutv(strb,stre,strc,'V');              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
             Tvar[i+1]=ncov+1;                bool=0;
             cutv(strb,strc,strd,'V');          } 
             for (k=1; k<=lastobs;k++)          if (bool==1) { 
               covar[ncov+1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
           }              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
         }              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
         else {                if(agev[m][i]==0) agev[m][i]=iagemax+1;
           cutv(strd,strc,strb,'V');                if(agev[m][i]==1) agev[m][i]=iagemax+2;
           /* printf("%s %s %s", strd,strc,strb);*/                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
                 if (s[m][i]>0 && s[m][i]<=nlstate) { 
         Tvar[i+1]=atoi(strc);                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
         }                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
         strcpy(modelsav,stra);                    prop[s[m][i]][iagemax+3] += weight[i]; 
       }                } 
       cutv(strd,strc,stra,'V');              }
       Tvar[1]=atoi(strc);            } /* end selection of waves */
     }          }
   }        }
         for(i=iagemin; i <= iagemax+3; i++){  
   /* printf("tvar=%d %d cptcovage=%d %d",Tvar[1],Tvar[2],cptcovage,Tage[1]);          
      scanf("%d ",i);*/          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
     fclose(fic);            posprop += prop[jk][i]; 
           } 
    if(mle==1){  
     if (weightopt != 1) { /* Maximisation without weights*/          for(jk=1; jk <=nlstate ; jk++){     
       for(i=1;i<=n;i++) weight[i]=1.0;            if( i <=  iagemax){ 
     }              if(posprop>=1.e-5){ 
     /*-calculation of age at interview from date of interview and age at death -*/                probs[i][jk][j1]= prop[jk][i]/posprop;
     agev=matrix(1,maxwav,1,imx);              } 
                } 
     for (i=1; i<=imx; i++)  {          }/* end jk */ 
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);        }/* end i */ 
       for(m=1; (m<= maxwav); m++){      } /* end i1 */
         if(s[m][i] >0){    } /* end k1 */
           if (s[m][i] == nlstate+1) {    
             if(agedc[i]>0)    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
               if(moisdc[i]!=99 && andc[i]!=9999)    /*free_vector(pp,1,nlstate);*/
               agev[m][i]=agedc[i];    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
             else{  }  /* End of prevalence */
               printf("Warning negative age at death: %d line:%d\n",num[i],i);  
               agev[m][i]=-1;  /************* Waves Concatenation ***************/
             }  
           }  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
           else if(s[m][i] !=9){ /* Should no more exist */  {
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
             if(mint[m][i]==99 || anint[m][i]==9999)       Death is a valid wave (if date is known).
               agev[m][i]=1;       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
             else if(agev[m][i] <agemin){       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
               agemin=agev[m][i];       and mw[mi+1][i]. dh depends on stepm.
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/       */
             }  
             else if(agev[m][i] >agemax){    int i, mi, m;
               agemax=agev[m][i];    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/       double sum=0., jmean=0.;*/
             }    int first;
             /*agev[m][i]=anint[m][i]-annais[i];*/    int j, k=0,jk, ju, jl;
             /*   agev[m][i] = age[i]+2*m;*/    double sum=0.;
           }    first=0;
           else { /* =9 */    jmin=1e+5;
             agev[m][i]=1;    jmax=-1;
             s[m][i]=-1;    jmean=0.;
           }    for(i=1; i<=imx; i++){
         }      mi=0;
         else /*= 0 Unknown */      m=firstpass;
           agev[m][i]=1;      while(s[m][i] <= nlstate){
       }        if(s[m][i]>=1)
              mw[++mi][i]=m;
     }        if(m >=lastpass)
     for (i=1; i<=imx; i++)  {          break;
       for(m=1; (m<= maxwav); m++){        else
         if (s[m][i] > (nlstate+ndeath)) {          m++;
           printf("Error: Wrong value in nlstate or ndeath\n");        }/* end while */
           goto end;      if (s[m][i] > nlstate){
         }        mi++;     /* Death is another wave */
       }        /* if(mi==0)  never been interviewed correctly before death */
     }           /* Only death is a correct wave */
         mw[mi][i]=m;
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);      }
   
     free_vector(severity,1,maxwav);      wav[i]=mi;
     free_imatrix(outcome,1,maxwav+1,1,n);      if(mi==0){
     free_vector(moisnais,1,n);        if(first==0){
     free_vector(annais,1,n);          printf("Warning! None valid information for:%ld line=%d (skipped) and may be others, see log file\n",num[i],i);
     free_matrix(mint,1,maxwav,1,n);          first=1;
     free_matrix(anint,1,maxwav,1,n);        }
     free_vector(moisdc,1,n);        if(first==1){
     free_vector(andc,1,n);          fprintf(ficlog,"Warning! None valid information for:%ld line=%d (skipped)\n",num[i],i);
         }
          } /* end mi==0 */
     wav=ivector(1,imx);    } /* End individuals */
     dh=imatrix(1,lastpass-firstpass+1,1,imx);  
     mw=imatrix(1,lastpass-firstpass+1,1,imx);    for(i=1; i<=imx; i++){
          for(mi=1; mi<wav[i];mi++){
     /* Concatenates waves */        if (stepm <=0)
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);          dh[mi][i]=1;
         else{
           if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
       Tcode=ivector(1,100);            if (agedc[i] < 2*AGESUP) {
    nbcode=imatrix(1,nvar,1,8);                j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
    ncodemax[1]=1;              if(j==0) j=1;  /* Survives at least one month after exam */
    if (cptcovn > 0) tricode(Tvar,nbcode,imx);              else if(j<0){
                  printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
    codtab=imatrix(1,100,1,10);                j=1; /* Careful Patch */
    h=0;                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
    m=pow(2,cptcovn);                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                  fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
    for(k=1;k<=cptcovn; k++){              }
      for(i=1; i <=(m/pow(2,k));i++){              k=k+1;
        for(j=1; j <= ncodemax[k]; j++){              if (j >= jmax) jmax=j;
          for(cpt=1; cpt <=(m/pow(2,cptcovn+1-k)); cpt++){              if (j <= jmin) jmin=j;
            h++;              sum=sum+j;
            if (h>m) h=1;codtab[h][k]=j;              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
          }              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
        }            }
      }          }
    }          else{
             j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
    /* for(i=1; i <=m ;i++){            /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
      for(k=1; k <=cptcovn; k++){            k=k+1;
        printf("i=%d k=%d %d ",i,k,codtab[i][k]);            if (j >= jmax) jmax=j;
      }            else if (j <= jmin)jmin=j;
      printf("\n");            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
    }            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
    scanf("%d",i);*/            if(j<0){
                  printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
    /* Calculates basic frequencies. Computes observed prevalence at single age              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
        and prints on file fileres'p'. */            }
    freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax);            sum=sum+j;
           }
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          jk= j/stepm;
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          jl= j -jk*stepm;
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          ju= j -(jk+1)*stepm;
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */            if(jl==0){
                  dh[mi][i]=jk;
     /* For Powell, parameters are in a vector p[] starting at p[1]              bh[mi][i]=0;
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */            }else{ /* We want a negative bias in order to only have interpolation ie
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */                    * at the price of an extra matrix product in likelihood */
                  dh[mi][i]=jk+1;
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);              bh[mi][i]=ju;
             }
              }else{
     /*--------- results files --------------*/            if(jl <= -ju){
     fprintf(ficres,"\ntitle=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate, ndeath, maxwav, mle,weightopt,model);              dh[mi][i]=jk;
                  bh[mi][i]=jl;       /* bias is positive if real duration
    jk=1;                                   * is higher than the multiple of stepm and negative otherwise.
    fprintf(ficres,"# Parameters\n");                                   */
    printf("# Parameters\n");            }
    for(i=1,jk=1; i <=nlstate; i++){            else{
      for(k=1; k <=(nlstate+ndeath); k++){              dh[mi][i]=jk+1;
        if (k != i)              bh[mi][i]=ju;
          {            }
            printf("%d%d ",i,k);            if(dh[mi][i]==0){
            fprintf(ficres,"%1d%1d ",i,k);              dh[mi][i]=1; /* At least one step */
            for(j=1; j <=ncovmodel; j++){              bh[mi][i]=ju; /* At least one step */
              printf("%f ",p[jk]);              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
              fprintf(ficres,"%f ",p[jk]);            }
              jk++;          } /* end if mle */
            }        }
            printf("\n");      } /* end wave */
            fprintf(ficres,"\n");    }
          }    jmean=sum/k;
      }    printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
    }    fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
    }
     /* Computing hessian and covariance matrix */  
     ftolhess=ftol; /* Usually correct */  /*********** Tricode ****************************/
     hesscov(matcov, p, npar, delti, ftolhess, func);  void tricode(int *Tvar, int **nbcode, int imx)
     fprintf(ficres,"# Scales\n");  {
     printf("# Scales\n");    
      for(i=1,jk=1; i <=nlstate; i++){    int Ndum[20],ij=1, k, j, i, maxncov=19;
       for(j=1; j <=nlstate+ndeath; j++){    int cptcode=0;
         if (j!=i) {    cptcoveff=0; 
           fprintf(ficres,"%1d%1d",i,j);   
           printf("%1d%1d",i,j);    for (k=0; k<maxncov; k++) Ndum[k]=0;
           for(k=1; k<=ncovmodel;k++){    for (k=1; k<=7; k++) ncodemax[k]=0;
             printf(" %.5e",delti[jk]);  
             fprintf(ficres," %.5e",delti[jk]);    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
             jk++;      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
           }                                 modality*/ 
           printf("\n");        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
           fprintf(ficres,"\n");        Ndum[ij]++; /*store the modality */
         }        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
       }        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
       }                                         Tvar[j]. If V=sex and male is 0 and 
                                             female is 1, then  cptcode=1.*/
     k=1;      }
     fprintf(ficres,"# Covariance\n");  
     printf("# Covariance\n");      for (i=0; i<=cptcode; i++) {
     for(i=1;i<=npar;i++){        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
       /*  if (k>nlstate) k=1;      }
       i1=(i-1)/(ncovmodel*nlstate)+1;  
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);      ij=1; 
       printf("%s%d%d",alph[k],i1,tab[i]);*/      for (i=1; i<=ncodemax[j]; i++) {
       fprintf(ficres,"%3d",i);        for (k=0; k<= maxncov; k++) {
       printf("%3d",i);          if (Ndum[k] != 0) {
       for(j=1; j<=i;j++){            nbcode[Tvar[j]][ij]=k; 
         fprintf(ficres," %.5e",matcov[i][j]);            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
         printf(" %.5e",matcov[i][j]);            
       }            ij++;
       fprintf(ficres,"\n");          }
       printf("\n");          if (ij > ncodemax[j]) break; 
       k++;        }  
     }      } 
        }  
     while((c=getc(ficpar))=='#' && c!= EOF){  
       ungetc(c,ficpar);   for (k=0; k< maxncov; k++) Ndum[k]=0;
       fgets(line, MAXLINE, ficpar);  
       puts(line);   for (i=1; i<=ncovmodel-2; i++) { 
       fputs(line,ficparo);     /* Listing of all covariables in staement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
     }     ij=Tvar[i];
     ungetc(c,ficpar);     Ndum[ij]++;
     }
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);  
       ij=1;
     if (fage <= 2) {   for (i=1; i<= maxncov; i++) {
       bage = agemin;     if((Ndum[i]!=0) && (i<=ncovcol)){
       fage = agemax;       Tvaraff[ij]=i; /*For printing */
     }       ij++;
      }
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");   }
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);   
 /*------------ gnuplot -------------*/   cptcoveff=ij-1; /*Number of simple covariates*/
 chdir(pathcd);  }
   if((ficgp=fopen("graph.plt","w"))==NULL) {  
     printf("Problem with file graph.gp");goto end;  /*********** Health Expectancies ****************/
   }  
 #ifdef windows  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )
   fprintf(ficgp,"cd \"%s\" \n",pathc);  
 #endif  {
 m=pow(2,cptcovn);    /* Health expectancies */
      int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
  /* 1eme*/    double age, agelim, hf;
   for (cpt=1; cpt<= nlstate ; cpt ++) {    double ***p3mat,***varhe;
    for (k1=1; k1<= m ; k1 ++) {    double **dnewm,**doldm;
     double *xp;
 #ifdef windows    double **gp, **gm;
     fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",agemin,fage,fileres,k1-1,k1-1);    double ***gradg, ***trgradg;
 #endif    int theta;
 #ifdef unix  
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",agemin,fage,fileres);    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
 #endif    xp=vector(1,npar);
     dnewm=matrix(1,nlstate*nlstate,1,npar);
 for (i=1; i<= nlstate ; i ++) {    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    
   else fprintf(ficgp," \%%*lf (\%%*lf)");    fprintf(ficreseij,"# Health expectancies\n");
 }    fprintf(ficreseij,"# Age");
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);    for(i=1; i<=nlstate;i++)
     for (i=1; i<= nlstate ; i ++) {      for(j=1; j<=nlstate;j++)
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");        fprintf(ficreseij," %1d-%1d (SE)",i,j);
   else fprintf(ficgp," \%%*lf (\%%*lf)");    fprintf(ficreseij,"\n");
 }  
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);    if(estepm < stepm){
      for (i=1; i<= nlstate ; i ++) {      printf ("Problem %d lower than %d\n",estepm, stepm);
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    }
   else fprintf(ficgp," \%%*lf (\%%*lf)");    else  hstepm=estepm;   
 }      /* We compute the life expectancy from trapezoids spaced every estepm months
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));     * This is mainly to measure the difference between two models: for example
 #ifdef unix     * if stepm=24 months pijx are given only every 2 years and by summing them
 fprintf(ficgp,"\nset ter gif small size 400,300");     * we are calculating an estimate of the Life Expectancy assuming a linear 
 #endif     * progression in between and thus overestimating or underestimating according
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);     * to the curvature of the survival function. If, for the same date, we 
    }     * estimate the model with stepm=1 month, we can keep estepm to 24 months
   }     * to compare the new estimate of Life expectancy with the same linear 
   /*2 eme*/     * hypothesis. A more precise result, taking into account a more precise
      * curvature will be obtained if estepm is as small as stepm. */
   for (k1=1; k1<= m ; k1 ++) {  
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",agemin,fage);    /* For example we decided to compute the life expectancy with the smallest unit */
        /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
     for (i=1; i<= nlstate+1 ; i ++) {       nhstepm is the number of hstepm from age to agelim 
       k=2*i;       nstepm is the number of stepm from age to agelin. 
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);       Look at hpijx to understand the reason of that which relies in memory size
       for (j=1; j<= nlstate+1 ; j ++) {       and note for a fixed period like estepm months */
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   else fprintf(ficgp," \%%*lf (\%%*lf)");       survival function given by stepm (the optimization length). Unfortunately it
 }         means that if the survival funtion is printed only each two years of age and if
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);       results. So we changed our mind and took the option of the best precision.
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);    */
       for (j=1; j<= nlstate+1 ; j ++) {    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");  
         else fprintf(ficgp," \%%*lf (\%%*lf)");    agelim=AGESUP;
 }      for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       fprintf(ficgp,"\" t\"\" w l 0,");      /* nhstepm age range expressed in number of stepm */
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);      nstepm=(int) rint((agelim-age)*YEARM/stepm); 
       for (j=1; j<= nlstate+1 ; j ++) {      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");      /* if (stepm >= YEARM) hstepm=1;*/
   else fprintf(ficgp," \%%*lf (\%%*lf)");      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
 }        p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");      gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
       else fprintf(ficgp,"\" t\"\" w l 0,");      gp=matrix(0,nhstepm,1,nlstate*nlstate);
     }      gm=matrix(0,nhstepm,1,nlstate*nlstate);
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);  
   }      /* Computed by stepm unit matrices, product of hstepm matrices, stored
           in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
   /*3eme*/      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
    
   for (k1=1; k1<= m ; k1 ++) {  
     for (cpt=1; cpt<= nlstate ; cpt ++) {      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       k=2+nlstate*(cpt-1);  
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",agemin,fage,fileres,k1-1,k1-1,k,cpt);      /* Computing Variances of health expectancies */
       for (i=1; i< nlstate ; i ++) {  
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+i,cpt,i+1);       for(theta=1; theta <=npar; theta++){
       }        for(i=1; i<=npar; i++){ 
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
     }        }
   }        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
      
   /* CV preval stat */        cptj=0;
   for (k1=1; k1<= m ; k1 ++) {        for(j=1; j<= nlstate; j++){
     for (cpt=1; cpt<nlstate ; cpt ++) {          for(i=1; i<=nlstate; i++){
       k=3;            cptj=cptj+1;
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",agemin,agemax,fileres,k1,k+cpt+1,k+1);            for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
       for (i=1; i< nlstate ; i ++)              gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
         fprintf(ficgp,"+$%d",k+i+1);            }
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);          }
              }
       l=3+(nlstate+ndeath)*cpt;       
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);       
       for (i=1; i< nlstate ; i ++) {        for(i=1; i<=npar; i++) 
         l=3+(nlstate+ndeath)*cpt;          xp[i] = x[i] - (i==theta ?delti[theta]:0);
         fprintf(ficgp,"+$%d",l+i+1);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
       }        
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);          cptj=0;
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);        for(j=1; j<= nlstate; j++){
     }          for(i=1;i<=nlstate;i++){
   }            cptj=cptj+1;
             for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
   /* proba elementaires */  
    for(i=1,jk=1; i <=nlstate; i++){              gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
     for(k=1; k <=(nlstate+ndeath); k++){            }
       if (k != i) {          }
         for(j=1; j <=ncovmodel; j++){        }
           /*fprintf(ficgp,"%s%1d%1d=%f ",alph[j],i,k,p[jk]);*/        for(j=1; j<= nlstate*nlstate; j++)
           /*fprintf(ficgp,"%s",alph[1]);*/          for(h=0; h<=nhstepm-1; h++){
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
           jk++;          }
           fprintf(ficgp,"\n");       } 
         }     
       }  /* End theta */
     }  
     }       trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
   
   for(jk=1; jk <=m; jk++) {       for(h=0; h<=nhstepm-1; h++)
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",agemin,agemax);        for(j=1; j<=nlstate*nlstate;j++)
    i=1;          for(theta=1; theta <=npar; theta++)
    for(k2=1; k2<=nlstate; k2++) {            trgradg[h][j][theta]=gradg[h][theta][j];
      k3=i;       
      for(k=1; k<=(nlstate+ndeath); k++) {  
        if (k != k2){       for(i=1;i<=nlstate*nlstate;i++)
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);        for(j=1;j<=nlstate*nlstate;j++)
           varhe[i][j][(int)age] =0.;
         for(j=3; j <=ncovmodel; j++)  
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);       printf("%d|",(int)age);fflush(stdout);
         fprintf(ficgp,")/(1");       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
               for(h=0;h<=nhstepm-1;h++){
         for(k1=1; k1 <=nlstate; k1++){          for(k=0;k<=nhstepm-1;k++){
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
           for(j=3; j <=ncovmodel; j++)          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);          for(i=1;i<=nlstate*nlstate;i++)
           fprintf(ficgp,")");            for(j=1;j<=nlstate*nlstate;j++)
         }              varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);        }
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");      }
         i=i+ncovmodel;      /* Computing expectancies */
        }      for(i=1; i<=nlstate;i++)
      }        for(j=1; j<=nlstate;j++)
    }          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
   }            
      /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   fclose(ficgp);  
              }
 chdir(path);  
     free_matrix(agev,1,maxwav,1,imx);      fprintf(ficreseij,"%3.0f",age );
     free_ivector(wav,1,imx);      cptj=0;
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);      for(i=1; i<=nlstate;i++)
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);        for(j=1; j<=nlstate;j++){
              cptj++;
     free_imatrix(s,1,maxwav+1,1,n);          fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
            }
          fprintf(ficreseij,"\n");
     free_ivector(num,1,n);     
     free_vector(agedc,1,n);      free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
     free_vector(weight,1,n);      free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
     /*free_matrix(covar,1,NCOVMAX,1,n);*/      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
     fclose(ficparo);      free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
     fclose(ficres);      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
    }    }
        printf("\n");
    /*________fin mle=1_________*/    fprintf(ficlog,"\n");
      
     free_vector(xp,1,npar);
      free_matrix(dnewm,1,nlstate*nlstate,1,npar);
     /* No more information from the sample is required now */    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
   /* Reads comments: lines beginning with '#' */    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
   while((c=getc(ficpar))=='#' && c!= EOF){  }
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);  /************ Variance ******************/
     puts(line);  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav)
     fputs(line,ficparo);  {
   }    /* Variance of health expectancies */
   ungetc(c,ficpar);    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
      /* double **newm;*/
   fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);    double **dnewm,**doldm;
   printf("agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax, bage, fage);    double **dnewmp,**doldmp;
   fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);    int i, j, nhstepm, hstepm, h, nstepm ;
 /*--------- index.htm --------*/    int k, cptcode;
     double *xp;
   if((fichtm=fopen("index.htm","w"))==NULL)    {    double **gp, **gm;  /* for var eij */
     printf("Problem with index.htm \n");goto end;    double ***gradg, ***trgradg; /*for var eij */
   }    double **gradgp, **trgradgp; /* for var p point j */
     double *gpp, *gmp; /* for var p point j */
  fprintf(fichtm,"<body><ul> Imach, Version 0.64a<hr> <li>Outputs files<br><br>\n    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
         - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n    double ***p3mat;
 - Estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>    double age,agelim, hf;
         - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>    double ***mobaverage;
         - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>    int theta;
         - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>    char digit[4];
         - Life expectancies by age and initial health status: <a href=\"e%s\">e%s</a> <br>    char digitp[25];
         - Variances of life expectancies by age and initial health status: <a href=\"v%s\">v%s</a><br>  
         - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>    char fileresprobmorprev[FILENAMELENGTH];
         - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br><br>",fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres);  
     if(popbased==1){
  fprintf(fichtm," <li>Graphs</li>\n<p>");      if(mobilav!=0)
         strcpy(digitp,"-populbased-mobilav-");
  m=cptcovn;      else strcpy(digitp,"-populbased-nomobil-");
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}    }
     else 
  j1=0;      strcpy(digitp,"-stablbased-");
  for(k1=1; k1<=m;k1++){  
    for(i1=1; i1<=ncodemax[k1];i1++){    if (mobilav!=0) {
        j1++;      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
        if (cptcovn > 0) {      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
          fprintf(fichtm,"<hr>************ Results for covariates");        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
          for (cpt=1; cpt<=cptcovn;cpt++)        printf(" Error in movingaverage mobilav=%d\n",mobilav);
            fprintf(fichtm," V%d=%d ",Tvar[cpt],nbcode[Tvar[cpt]][codtab[j1][cpt]]);      }
          fprintf(fichtm," ************\n<hr>");    }
        }  
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>    strcpy(fileresprobmorprev,"prmorprev"); 
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);        sprintf(digit,"%-d",ij);
        for(cpt=1; cpt<nlstate;cpt++){    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>    strcat(fileresprobmorprev,digit); /* Tvar to be done */
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
        }    strcat(fileresprobmorprev,fileres);
     for(cpt=1; cpt<=nlstate;cpt++) {    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident      printf("Problem with resultfile: %s\n", fileresprobmorprev);
 interval) in state (%d): v%s%d%d.gif <br>      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);      }
      }    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
      for(cpt=1; cpt<=nlstate;cpt++) {    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
      }    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
      fprintf(fichtm,"\n<br>- Total life expectancy by age and      fprintf(ficresprobmorprev," p.%-d SE",j);
 health expectancies in states (1) and (2): e%s%d.gif<br>      for(i=1; i<=nlstate;i++)
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
 fprintf(fichtm,"\n</body>");    }  
    }    fprintf(ficresprobmorprev,"\n");
  }    if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {
 fclose(fichtm);      printf("Problem with gnuplot file: %s\n", optionfilegnuplot);
       fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);
   /*--------------- Prevalence limit --------------*/      exit(0);
      }
   strcpy(filerespl,"pl");    else{
   strcat(filerespl,fileres);      fprintf(ficgp,"\n# Routine varevsij");
   if((ficrespl=fopen(filerespl,"w"))==NULL) {    }
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;  /*   if((fichtm=fopen(optionfilehtm,"a"))==NULL) { */
   }  /*     printf("Problem with html file: %s\n", optionfilehtm); */
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);  /*     fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm); */
   fprintf(ficrespl,"#Prevalence limit\n");  /*     exit(0); */
   fprintf(ficrespl,"#Age ");  /*   } */
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);  /*   else{ */
   fprintf(ficrespl,"\n");    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
      fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
   prlim=matrix(1,nlstate,1,nlstate);  /*   } */
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    fprintf(ficresvij,"# Age");
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    for(i=1; i<=nlstate;i++)
   k=0;      for(j=1; j<=nlstate;j++)
   agebase=agemin;        fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
   agelim=agemax;    fprintf(ficresvij,"\n");
   ftolpl=1.e-10;  
   i1=cptcovn;    xp=vector(1,npar);
   if (cptcovn < 1){i1=1;}    dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
   for(cptcov=1;cptcov<=i1;cptcov++){    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
         k=k+1;  
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
         fprintf(ficrespl,"\n#******");    gpp=vector(nlstate+1,nlstate+ndeath);
         for(j=1;j<=cptcovn;j++)    gmp=vector(nlstate+1,nlstate+ndeath);
           fprintf(ficrespl," V%d=%d ",Tvar[j],nbcode[Tvar[j]][codtab[k][j]]);    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
         fprintf(ficrespl,"******\n");    
            if(estepm < stepm){
         for (age=agebase; age<=agelim; age++){      printf ("Problem %d lower than %d\n",estepm, stepm);
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    }
           fprintf(ficrespl,"%.0f",age );    else  hstepm=estepm;   
           for(i=1; i<=nlstate;i++)    /* For example we decided to compute the life expectancy with the smallest unit */
           fprintf(ficrespl," %.5f", prlim[i][i]);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
           fprintf(ficrespl,"\n");       nhstepm is the number of hstepm from age to agelim 
         }       nstepm is the number of stepm from age to agelin. 
       }       Look at hpijx to understand the reason of that which relies in memory size
     }       and note for a fixed period like k years */
   fclose(ficrespl);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   /*------------- h Pij x at various ages ------------*/       survival function given by stepm (the optimization length). Unfortunately it
         means that if the survival funtion is printed every two years of age and if
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   if((ficrespij=fopen(filerespij,"w"))==NULL) {       results. So we changed our mind and took the option of the best precision.
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;    */
   }    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   printf("Computing pij: result on file '%s' \n", filerespij);    agelim = AGESUP;
      for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   stepsize=(int) (stepm+YEARM-1)/YEARM;      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
   if (stepm<=24) stepsize=2;      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   agelim=AGESUP;      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
   hstepm=stepsize*YEARM; /* Every year of age */      gp=matrix(0,nhstepm,1,nlstate);
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */      gm=matrix(0,nhstepm,1,nlstate);
    
   k=0;  
   for(cptcov=1;cptcov<=i1;cptcov++){      for(theta=1; theta <=npar; theta++){
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
       k=k+1;          xp[i] = x[i] + (i==theta ?delti[theta]:0);
         fprintf(ficrespij,"\n#****** ");        }
         for(j=1;j<=cptcovn;j++)        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
           fprintf(ficrespij,"V%d=%d ",Tvar[j],nbcode[Tvar[j]][codtab[k][j]]);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         fprintf(ficrespij,"******\n");  
                if (popbased==1) {
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */          if(mobilav ==0){
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */            for(i=1; i<=nlstate;i++)
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */              prlim[i][i]=probs[(int)age][i][ij];
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          }else{ /* mobilav */ 
           oldm=oldms;savm=savms;            for(i=1; i<=nlstate;i++)
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);                prlim[i][i]=mobaverage[(int)age][i][ij];
           fprintf(ficrespij,"# Age");          }
           for(i=1; i<=nlstate;i++)        }
             for(j=1; j<=nlstate+ndeath;j++)    
               fprintf(ficrespij," %1d-%1d",i,j);        for(j=1; j<= nlstate; j++){
           fprintf(ficrespij,"\n");          for(h=0; h<=nhstepm; h++){
           for (h=0; h<=nhstepm; h++){            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
             for(i=1; i<=nlstate;i++)          }
               for(j=1; j<=nlstate+ndeath;j++)        }
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);        /* This for computing probability of death (h=1 means
             fprintf(ficrespij,"\n");           computed over hstepm matrices product = hstepm*stepm months) 
           }           as a weighted average of prlim.
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        */
           fprintf(ficrespij,"\n");        for(j=nlstate+1;j<=nlstate+ndeath;j++){
         }          for(i=1,gpp[j]=0.; i<= nlstate; i++)
     }            gpp[j] += prlim[i][i]*p3mat[i][j][1];
   }        }    
         /* end probability of death */
   fclose(ficrespij);  
         for(i=1; i<=npar; i++) /* Computes gradient x - delta */
   /*---------- Health expectancies and variances ------------*/          xp[i] = x[i] - (i==theta ?delti[theta]:0);
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   strcpy(filerest,"t");        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   strcat(filerest,fileres);   
   if((ficrest=fopen(filerest,"w"))==NULL) {        if (popbased==1) {
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;          if(mobilav ==0){
   }            for(i=1; i<=nlstate;i++)
   printf("Computing Total LEs with variances: file '%s' \n", filerest);              prlim[i][i]=probs[(int)age][i][ij];
           }else{ /* mobilav */ 
             for(i=1; i<=nlstate;i++)
   strcpy(filerese,"e");              prlim[i][i]=mobaverage[(int)age][i][ij];
   strcat(filerese,fileres);          }
   if((ficreseij=fopen(filerese,"w"))==NULL) {        }
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);  
   }        for(j=1; j<= nlstate; j++){
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);          for(h=0; h<=nhstepm; h++){
             for(i=1, gm[h][j]=0.;i<=nlstate;i++)
  strcpy(fileresv,"v");              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
   strcat(fileresv,fileres);          }
   if((ficresvij=fopen(fileresv,"w"))==NULL) {        }
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);        /* This for computing probability of death (h=1 means
   }           computed over hstepm matrices product = hstepm*stepm months) 
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);           as a weighted average of prlim.
         */
   k=0;        for(j=nlstate+1;j<=nlstate+ndeath;j++){
   for(cptcov=1;cptcov<=i1;cptcov++){          for(i=1,gmp[j]=0.; i<= nlstate; i++)
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){           gmp[j] += prlim[i][i]*p3mat[i][j][1];
       k=k+1;        }    
       fprintf(ficrest,"\n#****** ");        /* end probability of death */
       for(j=1;j<=cptcovn;j++)  
         fprintf(ficrest,"V%d=%d ",Tvar[j],nbcode[Tvar[j]][codtab[k][j]]);        for(j=1; j<= nlstate; j++) /* vareij */
       fprintf(ficrest,"******\n");          for(h=0; h<=nhstepm; h++){
             gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
       fprintf(ficreseij,"\n#****** ");          }
       for(j=1;j<=cptcovn;j++)  
         fprintf(ficreseij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
       fprintf(ficreseij,"******\n");          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
         }
       fprintf(ficresvij,"\n#****** ");  
       for(j=1;j<=cptcovn;j++)      } /* End theta */
         fprintf(ficresvij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);  
       fprintf(ficresvij,"******\n");      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
   
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);      for(h=0; h<=nhstepm; h++) /* veij */
       oldm=oldms;savm=savms;        for(j=1; j<=nlstate;j++)
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k);            for(theta=1; theta <=npar; theta++)
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);            trgradg[h][j][theta]=gradg[h][theta][j];
       oldm=oldms;savm=savms;  
       varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
              for(theta=1; theta <=npar; theta++)
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");          trgradgp[j][theta]=gradgp[theta][j];
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);    
       fprintf(ficrest,"\n");  
              hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       hf=1;      for(i=1;i<=nlstate;i++)
       if (stepm >= YEARM) hf=stepm/YEARM;        for(j=1;j<=nlstate;j++)
       epj=vector(1,nlstate+1);          vareij[i][j][(int)age] =0.;
       for(age=bage; age <=fage ;age++){  
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);      for(h=0;h<=nhstepm;h++){
         fprintf(ficrest," %.0f",age);        for(k=0;k<=nhstepm;k++){
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
           for(i=1, epj[j]=0.;i <=nlstate;i++) {          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
             epj[j] += prlim[i][i]*hf*eij[i][j][(int)age];          for(i=1;i<=nlstate;i++)
           }            for(j=1;j<=nlstate;j++)
           epj[nlstate+1] +=epj[j];              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
         }        }
         for(i=1, vepp=0.;i <=nlstate;i++)      }
           for(j=1;j <=nlstate;j++)    
             vepp += vareij[i][j][(int)age];      /* pptj */
         fprintf(ficrest," %.2f (%.2f)", epj[nlstate+1],hf*sqrt(vepp));      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
         for(j=1;j <=nlstate;j++){      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
           fprintf(ficrest," %.2f (%.2f)", epj[j],hf*sqrt(vareij[j][j][(int)age]));      for(j=nlstate+1;j<=nlstate+ndeath;j++)
         }        for(i=nlstate+1;i<=nlstate+ndeath;i++)
         fprintf(ficrest,"\n");          varppt[j][i]=doldmp[j][i];
       }      /* end ppptj */
     }      /*  x centered again */
   }      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
              prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
  fclose(ficreseij);   
  fclose(ficresvij);      if (popbased==1) {
   fclose(ficrest);        if(mobilav ==0){
   fclose(ficpar);          for(i=1; i<=nlstate;i++)
   free_vector(epj,1,nlstate+1);            prlim[i][i]=probs[(int)age][i][ij];
   /*  scanf("%d ",i); */        }else{ /* mobilav */ 
           for(i=1; i<=nlstate;i++)
   /*------- Variance limit prevalence------*/              prlim[i][i]=mobaverage[(int)age][i][ij];
         }
 strcpy(fileresvpl,"vpl");      }
   strcat(fileresvpl,fileres);               
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {      /* This for computing probability of death (h=1 means
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
     exit(0);         as a weighted average of prlim.
   }      */
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);      for(j=nlstate+1;j<=nlstate+ndeath;j++){
         for(i=1,gmp[j]=0.;i<= nlstate; i++) 
  k=0;          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
  for(cptcov=1;cptcov<=i1;cptcov++){      }    
    for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      /* end probability of death */
      k=k+1;  
      fprintf(ficresvpl,"\n#****** ");      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
      for(j=1;j<=cptcovn;j++)      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
        fprintf(ficresvpl,"V%d=%d ",Tvar[j],nbcode[Tvar[j]][codtab[k][j]]);        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
      fprintf(ficresvpl,"******\n");        for(i=1; i<=nlstate;i++){
                fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
      varpl=matrix(1,nlstate,(int) bage, (int) fage);        }
      oldm=oldms;savm=savms;      } 
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);      fprintf(ficresprobmorprev,"\n");
    }  
  }      fprintf(ficresvij,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
   fclose(ficresvpl);        for(j=1; j<=nlstate;j++){
           fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
   /*---------- End : free ----------------*/        }
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);      fprintf(ficresvij,"\n");
        free_matrix(gp,0,nhstepm,1,nlstate);
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);      free_matrix(gm,0,nhstepm,1,nlstate);
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
        free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
        free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);    } /* End age */
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);    free_vector(gpp,nlstate+1,nlstate+ndeath);
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);    free_vector(gmp,nlstate+1,nlstate+ndeath);
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
      free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
   free_matrix(matcov,1,npar,1,npar);    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
   free_vector(delti,1,npar);    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
      fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
   printf("End of Imach\n");  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",fileresprobmorprev);
      fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",fileresprobmorprev);
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",fileresprobmorprev);
   /*printf("Total time was %d uSec.\n", total_usecs);*/    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",fileresprobmorprev,fileresprobmorprev);
   /*------ End -----------*/    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"varmuptjgr%s%s%s.png\"> <br>\n", estepm,digitp,optionfilefiname,digit);
     /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
  end:  */
 #ifdef windows    fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit);
  chdir(pathcd);  
 #endif    free_vector(xp,1,npar);
  system("wgnuplot graph.plt");    free_matrix(doldm,1,nlstate,1,nlstate);
     free_matrix(dnewm,1,nlstate,1,npar);
 #ifdef windows    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   while (z[0] != 'q') {    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
     chdir(pathcd);    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     printf("\nType e to edit output files, c to start again, and q for exiting: ");    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     scanf("%s",z);    fclose(ficresprobmorprev);
     if (z[0] == 'c') system("./imach");    fclose(ficgp);
     else if (z[0] == 'e') {  /*   fclose(fichtm); */
       chdir(path);  }  /* end varevsij */
       system("index.htm");  
     }  /************ Variance of prevlim ******************/
     else if (z[0] == 'q') exit(0);  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)
   }  {
 #endif    /* Variance of prevalence limit */
 }    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
     double **newm;
     double **dnewm,**doldm;
     int i, j, nhstepm, hstepm;
     int k, cptcode;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double age,agelim;
     int theta;
      
     fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
     fprintf(ficresvpl,"# Age");
     for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %1d-%1d",i,i);
     fprintf(ficresvpl,"\n");
   
     xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
     
     hstepm=1*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
     agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       if (stepm >= YEARM) hstepm=1;
       nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
       gradg=matrix(1,npar,1,nlstate);
       gp=vector(1,nlstate);
       gm=vector(1,nlstate);
   
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient */
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
           gp[i] = prlim[i][i];
       
         for(i=1; i<=npar; i++) /* Computes gradient */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
           gm[i] = prlim[i][i];
   
         for(i=1;i<=nlstate;i++)
           gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
       } /* End theta */
   
       trgradg =matrix(1,nlstate,1,npar);
   
       for(j=1; j<=nlstate;j++)
         for(theta=1; theta <=npar; theta++)
           trgradg[j][theta]=gradg[theta][j];
   
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] =0.;
       matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
       matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   
       fprintf(ficresvpl,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
       fprintf(ficresvpl,"\n");
       free_vector(gp,1,nlstate);
       free_vector(gm,1,nlstate);
       free_matrix(gradg,1,npar,1,nlstate);
       free_matrix(trgradg,1,nlstate,1,npar);
     } /* End age */
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,npar);
     free_matrix(dnewm,1,nlstate,1,nlstate);
   
   }
   
   /************ Variance of one-step probabilities  ******************/
   void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)
   {
     int i, j=0,  i1, k1, l1, t, tj;
     int k2, l2, j1,  z1;
     int k=0,l, cptcode;
     int first=1, first1;
     double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
     double **dnewm,**doldm;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double **mu;
     double age,agelim, cov[NCOVMAX];
     double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     int theta;
     char fileresprob[FILENAMELENGTH];
     char fileresprobcov[FILENAMELENGTH];
     char fileresprobcor[FILENAMELENGTH];
   
     double ***varpij;
   
     strcpy(fileresprob,"prob"); 
     strcat(fileresprob,fileres);
     if((ficresprob=fopen(fileresprob,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprob);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     }
     strcpy(fileresprobcov,"probcov"); 
     strcat(fileresprobcov,fileres);
     if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcov);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     }
     strcpy(fileresprobcor,"probcor"); 
     strcat(fileresprobcor,fileres);
     if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcor);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     }
     printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     
     fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     fprintf(ficresprob,"# Age");
     fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
     fprintf(ficresprobcov,"# Age");
     fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
     fprintf(ficresprobcov,"# Age");
   
   
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprob," p%1d-%1d (SE)",i,j);
         fprintf(ficresprobcov," p%1d-%1d ",i,j);
         fprintf(ficresprobcor," p%1d-%1d ",i,j);
       }  
    /* fprintf(ficresprob,"\n");
     fprintf(ficresprobcov,"\n");
     fprintf(ficresprobcor,"\n");
    */
    xp=vector(1,npar);
     dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
     varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     first=1;
     if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {
       printf("Problem with gnuplot file: %s\n", optionfilegnuplot);
       fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);
       exit(0);
     }
     else{
       fprintf(ficgp,"\n# Routine varprob");
     }
   /*   if((fichtm=fopen(optionfilehtm,"a"))==NULL) { */
   /*     printf("Problem with html file: %s\n", optionfilehtm); */
   /*     fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm); */
   /*     exit(0); */
   /*   } */
   /*   else{ */
       fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
       fprintf(fichtm,"\n");
   
       fprintf(fichtm,"\n<li><h4> Computing matrix of variance-covariance of step probabilities</h4></li>\n");
       fprintf(fichtm,"\nWe have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
       fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");
   
   /*   } */
   
     cov[1]=1;
     tj=cptcoveff;
     if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     j1=0;
     for(t=1; t<=tj;t++){
       for(i1=1; i1<=ncodemax[t];i1++){ 
         j1++;
         if  (cptcovn>0) {
           fprintf(ficresprob, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprob, "**********\n#\n");
           fprintf(ficresprobcov, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcov, "**********\n#\n");
           
           fprintf(ficgp, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficgp, "**********\n#\n");
           
           
           fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
           
           fprintf(ficresprobcor, "\n#********** Variable ");    
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcor, "**********\n#");    
         }
         
         for (age=bage; age<=fage; age ++){ 
           cov[2]=age;
           for (k=1; k<=cptcovn;k++) {
             cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
           }
           for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           for (k=1; k<=cptcovprod;k++)
             cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           
           gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
           trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
           gp=vector(1,(nlstate)*(nlstate+ndeath));
           gm=vector(1,(nlstate)*(nlstate+ndeath));
       
           for(theta=1; theta <=npar; theta++){
             for(i=1; i<=npar; i++)
               xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
             
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             
             k=0;
             for(i=1; i<= (nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gp[k]=pmmij[i][j];
               }
             }
             
             for(i=1; i<=npar; i++)
               xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
       
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             k=0;
             for(i=1; i<=(nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gm[k]=pmmij[i][j];
               }
             }
        
             for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
               gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
           }
   
           for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
             for(theta=1; theta <=npar; theta++)
               trgradg[j][theta]=gradg[theta][j];
           
           matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
           matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
           free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
           free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   
           pmij(pmmij,cov,ncovmodel,x,nlstate);
           
           k=0;
           for(i=1; i<=(nlstate); i++){
             for(j=1; j<=(nlstate+ndeath);j++){
               k=k+1;
               mu[k][(int) age]=pmmij[i][j];
             }
           }
           for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
             for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
               varpij[i][j][(int)age] = doldm[i][j];
   
           /*printf("\n%d ",(int)age);
             for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             }*/
   
           fprintf(ficresprob,"\n%d ",(int)age);
           fprintf(ficresprobcov,"\n%d ",(int)age);
           fprintf(ficresprobcor,"\n%d ",(int)age);
   
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
             fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
             fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
           }
           i=0;
           for (k=1; k<=(nlstate);k++){
             for (l=1; l<=(nlstate+ndeath);l++){ 
               i=i++;
               fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
               fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
               for (j=1; j<=i;j++){
                 fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                 fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
               }
             }
           }/* end of loop for state */
         } /* end of loop for age */
   
         /* Confidence intervalle of pij  */
         /*
           fprintf(ficgp,"\nset noparametric;unset label");
           fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
           fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
           fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
           fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
         */
   
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
         first1=1;
         for (k2=1; k2<=(nlstate);k2++){
           for (l2=1; l2<=(nlstate+ndeath);l2++){ 
             if(l2==k2) continue;
             j=(k2-1)*(nlstate+ndeath)+l2;
             for (k1=1; k1<=(nlstate);k1++){
               for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                 if(l1==k1) continue;
                 i=(k1-1)*(nlstate+ndeath)+l1;
                 if(i<=j) continue;
                 for (age=bage; age<=fage; age ++){ 
                   if ((int)age %5==0){
                     v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                     v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     mu1=mu[i][(int) age]/stepm*YEARM ;
                     mu2=mu[j][(int) age]/stepm*YEARM;
                     c12=cv12/sqrt(v1*v2);
                     /* Computing eigen value of matrix of covariance */
                     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     /* Eigen vectors */
                     v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                     /*v21=sqrt(1.-v11*v11); *//* error */
                     v21=(lc1-v1)/cv12*v11;
                     v12=-v21;
                     v22=v11;
                     tnalp=v21/v11;
                     if(first1==1){
                       first1=0;
                       printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     }
                     fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     /*printf(fignu*/
                     /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                     /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                     if(first==1){
                       first=0;
                       fprintf(ficgp,"\nset parametric;unset label");
                       fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                       fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
                       fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%d%1d%1d-%1d%1d.png\">varpijgr%s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2);
                       fprintf(fichtm,"\n<br><img src=\"varpijgr%s%d%1d%1d-%1d%1d.png\"> ",optionfilefiname, j1,k1,l1,k2,l2);
                       fprintf(fichtm,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\"",optionfilefiname, j1,k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }else{
                       first=0;
                       fprintf(fichtm," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }/* if first */
                   } /* age mod 5 */
                 } /* end loop age */
                 fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\";replot;",optionfilefiname, j1,k1,l1,k2,l2);
                 first=1;
               } /*l12 */
             } /* k12 */
           } /*l1 */
         }/* k1 */
       } /* loop covariates */
     }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_vector(xp,1,npar);
     fclose(ficresprob);
     fclose(ficresprobcov);
     fclose(ficresprobcor);
     fclose(ficgp);
   }
   
   
   /******************* Printing html file ***********/
   void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int estepm ,\
                     double jprev1, double mprev1,double anprev1, \
                     double jprev2, double mprev2,double anprev2){
     int jj1, k1, i1, cpt;
     /*char optionfilehtm[FILENAMELENGTH];*/
   /*   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    { */
   /*     printf("Problem with %s \n",optionfilehtm), exit(0); */
   /*     fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0); */
   /*   } */
   
      fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n \
    - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n \
    - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n \
    - Life expectancies by age and initial health status (estepm=%2d months): \
      <a href=\"e%s\">e%s</a> <br>\n</li>", \
     jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);
   
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        /* Pij */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: pe%s%d1.png<br> \
   <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);     
        /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br> \
   <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1); 
          /* Stable prevalence in each health state */
          for(cpt=1; cpt<nlstate;cpt++){
            fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \
   <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);
          }
        for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br> \
   <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2): e%s%d.png<br>\
   <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   
   
    fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n\
    - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n\
    - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n\
    - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n\
    - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n\
    - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n\
    - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
   fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed and period prevalence (with confident\
   interval) in state (%d): v%s%d%d.png <br>\
   <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);  
        }
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
    fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
     if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
       fprintf(ficlog,"Problem with file %s",optionfilegnuplot);
     }
   
     /*#ifdef windows */
       fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   m=pow(2,cptcoveff);
     
    /* 1eme*/
     for (cpt=1; cpt<= nlstate ; cpt ++) {
      for (k1=1; k1<= m ; k1 ++) {
        fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }
        fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",fileres,k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",fileres,k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l 0,");
         fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
         else fprintf(ficgp,"\" t\"\" w l 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         k=2+nlstate*(2*cpt-2);
         fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);
         fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);
           
         } 
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<=nlstate ; cpt ++) {
         k=3;
         fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);
         
         for (i=1; i< nlstate ; i ++)
           fprintf(ficgp,"+$%d",k+i+1);
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         
         l=3+(nlstate+ndeath)*cpt;
         fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);
         for (i=1; i< nlstate ; i ++) {
           l=3+(nlstate+ndeath)*cpt;
           fprintf(ficgp,"+$%d",l+i+1);
         }
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       } 
     }  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
   
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;
                for(j=3; j <=ncovmodel; j++) {
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                    ij++;
                  }
                  else
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                      ij++;
                    }
                    else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
      fclose(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int jj;
     int numlinepar=0; /* Current linenumber of parameter file */
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[132],pathc[132],pathcd[132],pathtot[132],model[132];
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
   
     char *alph[]={"a","a","b","c","d","e"}, str[4];
   
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char *strt, *strtend;
     char *stratrunc;
     int lstra;
   
     long total_usecs;
     struct timeval start_time, end_time, curr_time;
     struct timezone tzp;
     extern int gettimeofday();
     struct tm tmg, tm, *gmtime(), *localtime();
     long time_value;
     extern long time();
    
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strt=asctime(&tm);
   
   /*  printf("Localtime (at start)=%s",strt); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strt);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strt=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strt); 
   */
   
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       scanf("%s",pathtot);
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, 132)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("pathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path);
     replace(pathc,path);
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: ");
     fprintf(ficlog,"pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Localtime (at start)=%s",strt);
     fprintf(ficlog,"Localtime (at start)=%s",strt);
     fflush(ficlog);
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) {
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     
     /* Read guess parameters */
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     for(i=1; i <=nlstate; i++){
       j=0;
       for(jj=1; jj <=nlstate+ndeath; jj++){
         if(jj==i) continue;
         j++;
         fscanf(ficpar,"%1d%1d",&i1,&j1);
         if ((i1 != i) && (j1 != j)){
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
           exit(1);
         }
         fprintf(ficparo,"%1d%1d",i1,j1);
         if(mle==1)
           printf("%1d%1d",i,j);
         fprintf(ficlog,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           fscanf(ficpar," %lf",&param[i][j][k]);
           if(mle==1){
             printf(" %lf",param[i][j][k]);
             fprintf(ficlog," %lf",param[i][j][k]);
           }
           else
             fprintf(ficlog," %lf",param[i][j][k]);
           fprintf(ficparo," %lf",param[i][j][k]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
     }  
     fflush(ficlog);
   
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     p=param[1][1];
     
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     /* delti=vector(1,npar); *//* Scale of each paramater (output from hesscov) */
     for(i=1; i <=nlstate; i++){
       for(j=1; j <=nlstate+ndeath-1; j++){
         fscanf(ficpar,"%1d%1d",&i1,&j1);
         if ((i1-i)*(j1-j)!=0){
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
           exit(1);
         }
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i1,j1);
         fprintf(ficlog,"%1d%1d",i1,j1);
         for(k=1; k<=ncovmodel;k++){
           fscanf(ficpar,"%le",&delti3[i][j][k]);
           printf(" %le",delti3[i][j][k]);
           fprintf(ficparo," %le",delti3[i][j][k]);
           fprintf(ficlog," %le",delti3[i][j][k]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
         fprintf(ficlog,"\n");
       }
     }
     fflush(ficlog);
   
     delti=delti3[1][1];
   
   
     /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
     
     matcov=matrix(1,npar,1,npar);
     for(i=1; i <=npar; i++){
       fscanf(ficpar,"%s",&str);
       if(mle==1)
         printf("%s",str);
       fprintf(ficlog,"%s",str);
       fprintf(ficparo,"%s",str);
       for(j=1; j <=i; j++){
         fscanf(ficpar," %le",&matcov[i][j]);
         if(mle==1){
           printf(" %.5le",matcov[i][j]);
         }
         fprintf(ficlog," %.5le",matcov[i][j]);
         fprintf(ficparo," %.5le",matcov[i][j]);
       }
       fscanf(ficpar,"\n");
       numlinepar++;
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       fprintf(ficparo,"\n");
     }
     for(i=1; i <=npar; i++)
       for(j=i+1;j<=npar;j++)
         matcov[i][j]=matcov[j][i];
      
     if(mle==1)
       printf("\n");
     fprintf(ficlog,"\n");
   
     fflush(ficlog);
   
     /*-------- Rewriting paramater file ----------*/
     strcpy(rfileres,"r");    /* "Rparameterfile */
     strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
     strcat(rfileres,".");    /* */
     strcat(rfileres,optionfilext);    /* Other files have txt extension */
     if((ficres =fopen(rfileres,"w"))==NULL) {
       printf("Problem writing new parameter file: %s\n", fileres);goto end;
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
     }
     fprintf(ficres,"#%s\n",version);
       
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem with datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     while (fgets(line, MAXLINE, fic) != NULL)    {
       if ((i >= firstobs) && (i <=lastobs)) {
           
         for (j=maxwav;j>=1;j--){
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb); 
           strcpy(line,stra);
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         }
           
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);
         for (j=ncovcol;j>=1;j--){
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         } 
         lstra=strlen(stra);
         if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
           stratrunc = &(stra[lstra-9]);
           num[i]=atol(stratrunc);
         }
         else
           num[i]=atol(stra);
           
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
           printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
   
         i=i+1;
       }
     }
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
    for (i=1; i<=imx; i++)
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameter from char model*/
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);
     fclose(fic);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a
                                    month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     strcat(optionfilegnuplot,".gp");
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     fclose(ficgp);
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname);
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt,\
             model,fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strt);
     /*fclose(fichtm);*/
     fflush(fichtm);
   
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);
   
   /*   if((fichtm=fopen(optionfilehtm,"a"))==NULL) { */
   /*     printf("Problem with file: %s\n", optionfilehtm); */
   /*     fprintf(ficlog,"Problem with file: %s\n", optionfilehtm); */
   /*   } */
   
   
   /*   if(fileappend(fichtm, optionfilehtm)){ */
       fprintf(fichtm,"\n");
       fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
           imx,agemin,agemax,jmin,jmax,jmean);
   /*     fclose(fichtm); */
   /*   } */
   
       pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
     printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
     for (k=1; k<=npar;k++)
       printf(" %d %8.5f",k,p[k]);
     printf("\n");
     globpr=1; /* to print the contributions */
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
     printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
     for (k=1; k<=npar;k++)
       printf(" %d %8.5f",k,p[k]);
     printf("\n");
     if(mle>=1){ /* Could be 1 or 2 */
       mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
     }
       
     /*--------- results files --------------*/
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
     
   
     jk=1;
     fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) 
           {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
       }
     }
     if(mle!=0){
       /* Computing hessian and covariance matrix */
       ftolhess=ftol; /* Usually correct */
       hesscov(matcov, p, npar, delti, ftolhess, func);
     }
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(j=1; j <=nlstate+ndeath; j++){
         if (j!=i) {
           fprintf(ficres,"%1d%1d",i,j);
           printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             printf(" %.5e",delti[jk]);
             fprintf(ficlog," %.5e",delti[jk]);
             fprintf(ficres," %.5e",delti[jk]);
             jk++;
           }
           printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficres,"\n");
         }
       }
     }
      
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     if(mle==1)
       printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     for(i=1,k=1;i<=npar;i++){
       /*  if (k>nlstate) k=1;
           i1=(i-1)/(ncovmodel*nlstate)+1; 
           fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);
           printf("%s%d%d",alph[k],i1,tab[i]);
       */
       fprintf(ficres,"%3d",i);
       if(mle==1)
         printf("%3d",i);
       fprintf(ficlog,"%3d",i);
       for(j=1; j<=i;j++){
         fprintf(ficres," %.5e",matcov[i][j]);
         if(mle==1)
           printf(" %.5e",matcov[i][j]);
         fprintf(ficlog," %.5e",matcov[i][j]);
       }
       fprintf(ficres,"\n");
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       k++;
     }
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     estepm=0;
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
     if (estepm==0 || estepm < stepm) estepm=stepm;
     if (fage <= 2) {
       bage = ageminpar;
       fage = agemaxpar;
     }
      
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
     
     fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
     fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
    
   
     dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
     dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
   
     fscanf(ficpar,"pop_based=%d\n",&popbased);
     fprintf(ficparo,"pop_based=%d\n",popbased);   
     fprintf(ficres,"pop_based=%d\n",popbased);   
     
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
     fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     /* day and month of proj2 are not used but only year anproj2.*/
   
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);
     fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
     fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
   
     /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
     /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
   
     printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);
   
     printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                  model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                  jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
    
     /*------------ free_vector  -------------*/
     chdir(path);
    
     free_ivector(wav,1,imx);
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
     free_lvector(num,1,n);
     free_vector(agedc,1,n);
     /*free_matrix(covar,0,NCOVMAX,1,n);*/
     /*free_matrix(covar,1,NCOVMAX,1,n);*/
     fclose(ficparo);
     fclose(ficres);
   
   
     /*--------------- Prevalence limit  (stable prevalence) --------------*/
     
     strcpy(filerespl,"pl");
     strcat(filerespl,fileres);
     if((ficrespl=fopen(filerespl,"w"))==NULL) {
       printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
     }
     printf("Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficrespl,"#Stable prevalence \n");
     fprintf(ficrespl,"#Age ");
     for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
     fprintf(ficrespl,"\n");
     
     prlim=matrix(1,nlstate,1,nlstate);
   
     agebase=ageminpar;
     agelim=agemaxpar;
     ftolpl=1.e-10;
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
         fprintf(ficrespl,"\n#******");
         printf("\n#******");
         fprintf(ficlog,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespl,"******\n");
         printf("******\n");
         fprintf(ficlog,"******\n");
           
         for (age=agebase; age<=agelim; age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           fprintf(ficrespl,"%.0f ",age );
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           for(i=1; i<=nlstate;i++)
             fprintf(ficrespl," %.5f", prlim[i][i]);
           fprintf(ficrespl,"\n");
         }
       }
     }
     fclose(ficrespl);
   
     /*------------- h Pij x at various ages ------------*/
     
     strcpy(filerespij,"pij");  strcat(filerespij,fileres);
     if((ficrespij=fopen(filerespij,"w"))==NULL) {
       printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
       fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
     }
     printf("Computing pij: result on file '%s' \n", filerespij);
     fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     /*if (stepm<=24) stepsize=2;*/
   
     agelim=AGESUP;
     hstepm=stepsize*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
     /* hstepm=1;   aff par mois*/
   
     fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficrespij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrespij,"******\n");
           
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
           /*        nhstepm=nhstepm*YEARM; aff par mois*/
   
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           oldm=oldms;savm=savms;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
           for(i=1; i<=nlstate;i++)
             for(j=1; j<=nlstate+ndeath;j++)
               fprintf(ficrespij," %1d-%1d",i,j);
           fprintf(ficrespij,"\n");
           for (h=0; h<=nhstepm; h++){
             fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);
             fprintf(ficrespij,"\n");
           }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           fprintf(ficrespij,"\n");
         }
       }
     }
   
     varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax);
   
     fclose(ficrespij);
   
     probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     /*---------- Forecasting ------------------*/
     /*if((stepm == 1) && (strcmp(model,".")==0)){*/
     if(prevfcast==1){
       /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
   /*      }  */
   /*      else{ */
   /*        erreur=108; */
   /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*      } */
     }
     
   
     /*---------- Health expectancies and variances ------------*/
   
     strcpy(filerest,"t");
     strcat(filerest,fileres);
     if((ficrest=fopen(filerest,"w"))==NULL) {
       printf("Problem with total LE resultfile: %s\n", filerest);goto end;
       fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
     }
     printf("Computing Total LEs with variances: file '%s' \n", filerest); 
     fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
     strcpy(filerese,"e");
     strcat(filerese,fileres);
     if((ficreseij=fopen(filerese,"w"))==NULL) {
       printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
     }
     printf("Computing Health Expectancies: result on file '%s' \n", filerese);
     fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
     strcpy(fileresv,"v");
     strcat(fileresv,fileres);
     if((ficresvij=fopen(fileresv,"w"))==NULL) {
       printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
       fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
     }
     printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
     fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
     /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
     prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
   ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
     */
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1; 
         fprintf(ficrest,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrest,"******\n");
   
         fprintf(ficreseij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficreseij,"******\n");
   
         fprintf(ficresvij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvij,"******\n");
   
         eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);  
    
         vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav);
         if(popbased==1){
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav);
         }
   
    
         fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
         for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
         fprintf(ficrest,"\n");
   
         epj=vector(1,nlstate+1);
         for(age=bage; age <=fage ;age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           if (popbased==1) {
             if(mobilav ==0){
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=probs[(int)age][i][k];
             }else{ /* mobilav */ 
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=mobaverage[(int)age][i][k];
             }
           }
           
           fprintf(ficrest," %4.0f",age);
           for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
             for(i=1, epj[j]=0.;i <=nlstate;i++) {
               epj[j] += prlim[i][i]*eij[i][j][(int)age];
               /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
             }
             epj[nlstate+1] +=epj[j];
           }
   
           for(i=1, vepp=0.;i <=nlstate;i++)
             for(j=1;j <=nlstate;j++)
               vepp += vareij[i][j][(int)age];
           fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
           for(j=1;j <=nlstate;j++){
             fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
           }
           fprintf(ficrest,"\n");
         }
         free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_vector(epj,1,nlstate+1);
       }
     }
     free_vector(weight,1,n);
     free_imatrix(Tvard,1,15,1,2);
     free_imatrix(s,1,maxwav+1,1,n);
     free_matrix(anint,1,maxwav,1,n); 
     free_matrix(mint,1,maxwav,1,n);
     free_ivector(cod,1,n);
     free_ivector(tab,1,NCOVMAX);
     fclose(ficreseij);
     fclose(ficresvij);
     fclose(ficrest);
     fclose(ficpar);
     
     /*------- Variance of stable prevalence------*/   
   
     strcpy(fileresvpl,"vpl");
     strcat(fileresvpl,fileres);
     if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
       printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
       exit(0);
     }
     printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficresvpl,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvpl,"******\n");
         
         varpl=matrix(1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);
         free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
       }
     }
   
     fclose(ficresvpl);
   
     /*---------- End : free ----------------*/
     free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
     
     free_matrix(covar,0,NCOVMAX,1,n);
     free_matrix(matcov,1,npar,1,npar);
     /*free_vector(delti,1,npar);*/
     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
     free_matrix(agev,1,maxwav,1,imx);
     free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     free_ivector(ncodemax,1,8);
     free_ivector(Tvar,1,15);
     free_ivector(Tprod,1,15);
     free_ivector(Tvaraff,1,15);
     free_ivector(Tage,1,15);
     free_ivector(Tcode,1,100);
   
     /*  fclose(fichtm);*/
     /*  fclose(ficgp);*/ /* ALready done */
     
   
     if(erreur >0){
       printf("End of Imach with error or warning %d\n",erreur);
       fprintf(ficlog,"End of Imach with error or warning %d\n",erreur);
     }else{
      printf("End of Imach\n");
      fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     fclose(ficlog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strtend=asctime(&tm);
     printf("Localtime at start %s and at end=%s",strt, strtend); 
     fprintf(ficlog,"Localtime at start %s and at end=%s",strt, strtend); 
     /*  printf("Total time used %d Sec\n", asc_time(end_time.tv_sec -start_time.tv_sec);*/
   
     printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);
     fprintf(ficlog,"Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Localtime at start %s and at end=%s<br>",strt, strtend);
     fclose(fichtm);
     /*------ End -----------*/
   
     end:
   #ifdef windows
     /* chdir(pathcd);*/
   #endif 
    /*system("wgnuplot graph.plt");*/
    /*system("../gp37mgw/wgnuplot graph.plt");*/
    /*system("cd ../gp37mgw");*/
    /* system("..\\gp37mgw\\wgnuplot graph.plt");*/
     strcpy(plotcmd,GNUPLOTPROGRAM);
     strcat(plotcmd," ");
     strcat(plotcmd,optionfilegnuplot);
     printf("Starting graphs with: %s",plotcmd);fflush(stdout);
     system(plotcmd);
     printf(" Wait...");
   
    /*#ifdef windows*/
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");
       scanf("%s",z);
       if (z[0] == 'c') system("./imach");
       else if (z[0] == 'e') system(optionfilehtm);
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     /*#endif */
   }
   
   

Removed from v.1.6  
changed lines
  Added in v.1.87


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>