Diff for /imach/src/imach.c between versions 1.14 and 1.106

version 1.14, 2002/02/20 17:05:44 version 1.106, 2006/01/19 13:24:36
Line 1 Line 1
      /* $Id$
 /*********************** Imach **************************************            $State$
   This program computes Healthy Life Expectancies from cross-longitudinal    $Log$
   data. Cross-longitudinal consist in a first survey ("cross") where    Revision 1.106  2006/01/19 13:24:36  brouard
   individuals from different ages are interviewed on their health status    Some cleaning and links added in html output
   or degree of  disability. At least a second wave of interviews  
   ("longitudinal") should  measure each new individual health status.    Revision 1.105  2006/01/05 20:23:19  lievre
   Health expectancies are computed from the transistions observed between    *** empty log message ***
   waves and are computed for each degree of severity of disability (number  
   of life states). More degrees you consider, more time is necessary to    Revision 1.104  2005/09/30 16:11:43  lievre
   reach the Maximum Likelihood of the parameters involved in the model.    (Module): sump fixed, loop imx fixed, and simplifications.
   The simplest model is the multinomial logistic model where pij is    (Module): If the status is missing at the last wave but we know
   the probabibility to be observed in state j at the second wave conditional    that the person is alive, then we can code his/her status as -2
   to be observed in state i at the first wave. Therefore the model is:    (instead of missing=-1 in earlier versions) and his/her
   log(pij/pii)= aij + bij*age+ cij*sex + etc , where 'age' is age and 'sex'    contributions to the likelihood is 1 - Prob of dying from last
   is a covariate. If you want to have a more complex model than "constant and    health status (= 1-p13= p11+p12 in the easiest case of somebody in
   age", you should modify the program where the markup    the healthy state at last known wave). Version is 0.98
     *Covariates have to be included here again* invites you to do it.  
   More covariates you add, less is the speed of the convergence.    Revision 1.103  2005/09/30 15:54:49  lievre
     (Module): sump fixed, loop imx fixed, and simplifications.
   The advantage that this computer programme claims, comes from that if the  
   delay between waves is not identical for each individual, or if some    Revision 1.102  2004/09/15 17:31:30  brouard
   individual missed an interview, the information is not rounded or lost, but    Add the possibility to read data file including tab characters.
   taken into account using an interpolation or extrapolation.  
   hPijx is the probability to be    Revision 1.101  2004/09/15 10:38:38  brouard
   observed in state i at age x+h conditional to the observed state i at age    Fix on curr_time
   x. The delay 'h' can be split into an exact number (nh*stepm) of  
   unobserved intermediate  states. This elementary transition (by month or    Revision 1.100  2004/07/12 18:29:06  brouard
   quarter trimester, semester or year) is model as a multinomial logistic.    Add version for Mac OS X. Just define UNIX in Makefile
   The hPx matrix is simply the matrix product of nh*stepm elementary matrices  
   and the contribution of each individual to the likelihood is simply hPijx.    Revision 1.99  2004/06/05 08:57:40  brouard
     *** empty log message ***
   Also this programme outputs the covariance matrix of the parameters but also  
   of the life expectancies. It also computes the prevalence limits.    Revision 1.98  2004/05/16 15:05:56  brouard
      New version 0.97 . First attempt to estimate force of mortality
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    directly from the data i.e. without the need of knowing the health
            Institut national d'études démographiques, Paris.    state at each age, but using a Gompertz model: log u =a + b*age .
   This software have been partly granted by Euro-REVES, a concerted action    This is the basic analysis of mortality and should be done before any
   from the European Union.    other analysis, in order to test if the mortality estimated from the
   It is copyrighted identically to a GNU software product, ie programme and    cross-longitudinal survey is different from the mortality estimated
   software can be distributed freely for non commercial use. Latest version    from other sources like vital statistic data.
   can be accessed at http://euroreves.ined.fr/imach .  
   **********************************************************************/    The same imach parameter file can be used but the option for mle should be -3.
    
 #include <math.h>    Agnès, who wrote this part of the code, tried to keep most of the
 #include <stdio.h>    former routines in order to include the new code within the former code.
 #include <stdlib.h>  
 #include <unistd.h>    The output is very simple: only an estimate of the intercept and of
     the slope with 95% confident intervals.
 #define MAXLINE 256  
 #define FILENAMELENGTH 80    Current limitations:
 /*#define DEBUG*/    A) Even if you enter covariates, i.e. with the
 #define windows    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    B) There is no computation of Life Expectancy nor Life Table.
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */  
     Revision 1.97  2004/02/20 13:25:42  lievre
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    Version 0.96d. Population forecasting command line is (temporarily)
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    suppressed.
   
 #define NINTERVMAX 8    Revision 1.96  2003/07/15 15:38:55  brouard
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    rewritten within the same printf. Workaround: many printfs.
 #define NCOVMAX 8 /* Maximum number of covariates */  
 #define MAXN 20000    Revision 1.95  2003/07/08 07:54:34  brouard
 #define YEARM 12. /* Number of months per year */    * imach.c (Repository):
 #define AGESUP 130    (Repository): Using imachwizard code to output a more meaningful covariance
 #define AGEBASE 40    matrix (cov(a12,c31) instead of numbers.
   
     Revision 1.94  2003/06/27 13:00:02  brouard
 int nvar;    Just cleaning
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;  
 int npar=NPARMAX;    Revision 1.93  2003/06/25 16:33:55  brouard
 int nlstate=2; /* Number of live states */    (Module): On windows (cygwin) function asctime_r doesn't
 int ndeath=1; /* Number of dead states */    exist so I changed back to asctime which exists.
 int ncovmodel, ncov;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    (Module): Version 0.96b
 int popbased=0, fprev,lprev;  
     Revision 1.92  2003/06/25 16:30:45  brouard
 int *wav; /* Number of waves for this individuual 0 is possible */    (Module): On windows (cygwin) function asctime_r doesn't
 int maxwav; /* Maxim number of waves */    exist so I changed back to asctime which exists.
 int jmin, jmax; /* min, max spacing between 2 waves */  
 int mle, weightopt;    Revision 1.91  2003/06/25 15:30:29  brouard
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    * imach.c (Repository): Duplicated warning errors corrected.
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    (Repository): Elapsed time after each iteration is now output. It
 double jmean; /* Mean space between 2 waves */    helps to forecast when convergence will be reached. Elapsed time
 double **oldm, **newm, **savm; /* Working pointers to matrices */    is stamped in powell.  We created a new html file for the graphs
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    concerning matrix of covariance. It has extension -cov.htm.
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf;  
 FILE *ficgp, *fichtm,*ficresprob;    Revision 1.90  2003/06/24 12:34:15  brouard
 FILE *ficreseij;    (Module): Some bugs corrected for windows. Also, when
   char filerese[FILENAMELENGTH];    mle=-1 a template is output in file "or"mypar.txt with the design
  FILE  *ficresvij;    of the covariance matrix to be input.
   char fileresv[FILENAMELENGTH];  
  FILE  *ficresvpl;    Revision 1.89  2003/06/24 12:30:52  brouard
   char fileresvpl[FILENAMELENGTH];    (Module): Some bugs corrected for windows. Also, when
     mle=-1 a template is output in file "or"mypar.txt with the design
 #define NR_END 1    of the covariance matrix to be input.
 #define FREE_ARG char*  
 #define FTOL 1.0e-10    Revision 1.88  2003/06/23 17:54:56  brouard
     * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
 #define NRANSI  
 #define ITMAX 200    Revision 1.87  2003/06/18 12:26:01  brouard
     Version 0.96
 #define TOL 2.0e-4  
     Revision 1.86  2003/06/17 20:04:08  brouard
 #define CGOLD 0.3819660    (Module): Change position of html and gnuplot routines and added
 #define ZEPS 1.0e-10    routine fileappend.
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);  
     Revision 1.85  2003/06/17 13:12:43  brouard
 #define GOLD 1.618034    * imach.c (Repository): Check when date of death was earlier that
 #define GLIMIT 100.0    current date of interview. It may happen when the death was just
 #define TINY 1.0e-20    prior to the death. In this case, dh was negative and likelihood
     was wrong (infinity). We still send an "Error" but patch by
 static double maxarg1,maxarg2;    assuming that the date of death was just one stepm after the
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    interview.
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    (Repository): Because some people have very long ID (first column)
      we changed int to long in num[] and we added a new lvector for
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    memory allocation. But we also truncated to 8 characters (left
 #define rint(a) floor(a+0.5)    truncation)
     (Repository): No more line truncation errors.
 static double sqrarg;  
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    Revision 1.84  2003/06/13 21:44:43  brouard
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    * imach.c (Repository): Replace "freqsummary" at a correct
     place. It differs from routine "prevalence" which may be called
 int imx;    many times. Probs is memory consuming and must be used with
 int stepm;    parcimony.
 /* Stepm, step in month: minimum step interpolation*/    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
   
 int m,nb;    Revision 1.83  2003/06/10 13:39:11  lievre
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    *** empty log message ***
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;  
 double **pmmij, ***probs, ***mobaverage;    Revision 1.82  2003/06/05 15:57:20  brouard
     Add log in  imach.c and  fullversion number is now printed.
 double *weight;  
 int **s; /* Status */  */
 double *agedc, **covar, idx;  /*
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;     Interpolated Markov Chain
   
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    Short summary of the programme:
 double ftolhess; /* Tolerance for computing hessian */    
     This program computes Healthy Life Expectancies from
 /**************** split *************************/    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
 static  int split( char *path, char *dirc, char *name )    first survey ("cross") where individuals from different ages are
 {    interviewed on their health status or degree of disability (in the
    char *s;                             /* pointer */    case of a health survey which is our main interest) -2- at least a
    int  l1, l2;                         /* length counters */    second wave of interviews ("longitudinal") which measure each change
     (if any) in individual health status.  Health expectancies are
    l1 = strlen( path );                 /* length of path */    computed from the time spent in each health state according to a
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    model. More health states you consider, more time is necessary to reach the
    s = strrchr( path, '\\' );           /* find last / */    Maximum Likelihood of the parameters involved in the model.  The
    if ( s == NULL ) {                   /* no directory, so use current */    simplest model is the multinomial logistic model where pij is the
 #if     defined(__bsd__)                /* get current working directory */    probability to be observed in state j at the second wave
       extern char       *getwd( );    conditional to be observed in state i at the first wave. Therefore
     the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
       if ( getwd( dirc ) == NULL ) {    'age' is age and 'sex' is a covariate. If you want to have a more
 #else    complex model than "constant and age", you should modify the program
       extern char       *getcwd( );    where the markup *Covariates have to be included here again* invites
     you to do it.  More covariates you add, slower the
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    convergence.
 #endif  
          return( GLOCK_ERROR_GETCWD );    The advantage of this computer programme, compared to a simple
       }    multinomial logistic model, is clear when the delay between waves is not
       strcpy( name, path );             /* we've got it */    identical for each individual. Also, if a individual missed an
    } else {                             /* strip direcotry from path */    intermediate interview, the information is lost, but taken into
       s++;                              /* after this, the filename */    account using an interpolation or extrapolation.  
       l2 = strlen( s );                 /* length of filename */  
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    hPijx is the probability to be observed in state i at age x+h
       strcpy( name, s );                /* save file name */    conditional to the observed state i at age x. The delay 'h' can be
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    split into an exact number (nh*stepm) of unobserved intermediate
       dirc[l1-l2] = 0;                  /* add zero */    states. This elementary transition (by month, quarter,
    }    semester or year) is modelled as a multinomial logistic.  The hPx
    l1 = strlen( dirc );                 /* length of directory */    matrix is simply the matrix product of nh*stepm elementary matrices
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    and the contribution of each individual to the likelihood is simply
    return( 0 );                         /* we're done */    hPijx.
 }  
     Also this programme outputs the covariance matrix of the parameters but also
     of the life expectancies. It also computes the stable prevalence. 
 /******************************************/    
     Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
 void replace(char *s, char*t)             Institut national d'études démographiques, Paris.
 {    This software have been partly granted by Euro-REVES, a concerted action
   int i;    from the European Union.
   int lg=20;    It is copyrighted identically to a GNU software product, ie programme and
   i=0;    software can be distributed freely for non commercial use. Latest version
   lg=strlen(t);    can be accessed at http://euroreves.ined.fr/imach .
   for(i=0; i<= lg; i++) {  
     (s[i] = t[i]);    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
     if (t[i]== '\\') s[i]='/';    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
   }    
 }    **********************************************************************/
   /*
 int nbocc(char *s, char occ)    main
 {    read parameterfile
   int i,j=0;    read datafile
   int lg=20;    concatwav
   i=0;    freqsummary
   lg=strlen(s);    if (mle >= 1)
   for(i=0; i<= lg; i++) {      mlikeli
   if  (s[i] == occ ) j++;    print results files
   }    if mle==1 
   return j;       computes hessian
 }    read end of parameter file: agemin, agemax, bage, fage, estepm
         begin-prev-date,...
 void cutv(char *u,char *v, char*t, char occ)    open gnuplot file
 {    open html file
   int i,lg,j,p=0;    stable prevalence
   i=0;     for age prevalim()
   for(j=0; j<=strlen(t)-1; j++) {    h Pij x
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;    variance of p varprob
   }    forecasting if prevfcast==1 prevforecast call prevalence()
     health expectancies
   lg=strlen(t);    Variance-covariance of DFLE
   for(j=0; j<p; j++) {    prevalence()
     (u[j] = t[j]);     movingaverage()
   }    varevsij() 
      u[p]='\0';    if popbased==1 varevsij(,popbased)
     total life expectancies
    for(j=0; j<= lg; j++) {    Variance of stable prevalence
     if (j>=(p+1))(v[j-p-1] = t[j]);   end
   }  */
 }  
   
 /********************** nrerror ********************/  
    
 void nrerror(char error_text[])  #include <math.h>
 {  #include <stdio.h>
   fprintf(stderr,"ERREUR ...\n");  #include <stdlib.h>
   fprintf(stderr,"%s\n",error_text);  #include <string.h>
   exit(1);  #include <unistd.h>
 }  
 /*********************** vector *******************/  /* #include <sys/time.h> */
 double *vector(int nl, int nh)  #include <time.h>
 {  #include "timeval.h"
   double *v;  
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  /* #include <libintl.h> */
   if (!v) nrerror("allocation failure in vector");  /* #define _(String) gettext (String) */
   return v-nl+NR_END;  
 }  #define MAXLINE 256
   #define GNUPLOTPROGRAM "gnuplot"
 /************************ free vector ******************/  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
 void free_vector(double*v, int nl, int nh)  #define FILENAMELENGTH 132
 {  /*#define DEBUG*/
   free((FREE_ARG)(v+nl-NR_END));  /*#define windows*/
 }  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
   #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
 /************************ivector *******************************/  
 int *ivector(long nl,long nh)  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
 {  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
   int *v;  
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  #define NINTERVMAX 8
   if (!v) nrerror("allocation failure in ivector");  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
   return v-nl+NR_END;  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
 }  #define NCOVMAX 8 /* Maximum number of covariates */
   #define MAXN 20000
 /******************free ivector **************************/  #define YEARM 12. /* Number of months per year */
 void free_ivector(int *v, long nl, long nh)  #define AGESUP 130
 {  #define AGEBASE 40
   free((FREE_ARG)(v+nl-NR_END));  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
 }  #ifdef UNIX
   #define DIRSEPARATOR '/'
 /******************* imatrix *******************************/  #define ODIRSEPARATOR '\\'
 int **imatrix(long nrl, long nrh, long ncl, long nch)  #else
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  #define DIRSEPARATOR '\\'
 {  #define ODIRSEPARATOR '/'
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  #endif
   int **m;  
    /* $Id$ */
   /* allocate pointers to rows */  /* $State$ */
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  
   if (!m) nrerror("allocation failure 1 in matrix()");  char version[]="Imach version 0.98a, January 2006, INED-EUROREVES ";
   m += NR_END;  char fullversion[]="$Revision$ $Date$"; 
   m -= nrl;  int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
    int nvar;
    int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
   /* allocate rows and set pointers to them */  int npar=NPARMAX;
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  int nlstate=2; /* Number of live states */
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  int ndeath=1; /* Number of dead states */
   m[nrl] += NR_END;  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
   m[nrl] -= ncl;  int popbased=0;
    
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  int *wav; /* Number of waves for this individuual 0 is possible */
    int maxwav; /* Maxim number of waves */
   /* return pointer to array of pointers to rows */  int jmin, jmax; /* min, max spacing between 2 waves */
   return m;  int gipmx, gsw; /* Global variables on the number of contributions 
 }                     to the likelihood and the sum of weights (done by funcone)*/
   int mle, weightopt;
 /****************** free_imatrix *************************/  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
 void free_imatrix(m,nrl,nrh,ncl,nch)  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
       int **m;  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
       long nch,ncl,nrh,nrl;             * wave mi and wave mi+1 is not an exact multiple of stepm. */
      /* free an int matrix allocated by imatrix() */  double jmean; /* Mean space between 2 waves */
 {  double **oldm, **newm, **savm; /* Working pointers to matrices */
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
   free((FREE_ARG) (m+nrl-NR_END));  FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
 }  FILE *ficlog, *ficrespow;
   int globpr; /* Global variable for printing or not */
 /******************* matrix *******************************/  double fretone; /* Only one call to likelihood */
 double **matrix(long nrl, long nrh, long ncl, long nch)  long ipmx; /* Number of contributions */
 {  double sw; /* Sum of weights */
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  char filerespow[FILENAMELENGTH];
   double **m;  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
   FILE *ficresilk;
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
   if (!m) nrerror("allocation failure 1 in matrix()");  FILE *ficresprobmorprev;
   m += NR_END;  FILE *fichtm, *fichtmcov; /* Html File */
   m -= nrl;  FILE *ficreseij;
   char filerese[FILENAMELENGTH];
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  FILE  *ficresvij;
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  char fileresv[FILENAMELENGTH];
   m[nrl] += NR_END;  FILE  *ficresvpl;
   m[nrl] -= ncl;  char fileresvpl[FILENAMELENGTH];
   char title[MAXLINE];
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
   return m;  char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];
 }  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
   char command[FILENAMELENGTH];
 /*************************free matrix ************************/  int  outcmd=0;
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  
 {  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  
   free((FREE_ARG)(m+nrl-NR_END));  char filelog[FILENAMELENGTH]; /* Log file */
 }  char filerest[FILENAMELENGTH];
   char fileregp[FILENAMELENGTH];
 /******************* ma3x *******************************/  char popfile[FILENAMELENGTH];
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  
 {  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  
   double ***m;  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
   struct timezone tzp;
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  extern int gettimeofday();
   if (!m) nrerror("allocation failure 1 in matrix()");  struct tm tmg, tm, tmf, *gmtime(), *localtime();
   m += NR_END;  long time_value;
   m -= nrl;  extern long time();
   char strcurr[80], strfor[80];
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  #define NR_END 1
   m[nrl] += NR_END;  #define FREE_ARG char*
   m[nrl] -= ncl;  #define FTOL 1.0e-10
   
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  #define NRANSI 
   #define ITMAX 200 
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  #define TOL 2.0e-4 
   m[nrl][ncl] += NR_END;  
   m[nrl][ncl] -= nll;  #define CGOLD 0.3819660 
   for (j=ncl+1; j<=nch; j++)  #define ZEPS 1.0e-10 
     m[nrl][j]=m[nrl][j-1]+nlay;  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
    
   for (i=nrl+1; i<=nrh; i++) {  #define GOLD 1.618034 
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  #define GLIMIT 100.0 
     for (j=ncl+1; j<=nch; j++)  #define TINY 1.0e-20 
       m[i][j]=m[i][j-1]+nlay;  
   }  static double maxarg1,maxarg2;
   return m;  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
 }  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
     
 /*************************free ma3x ************************/  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  #define rint(a) floor(a+0.5)
 {  
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  static double sqrarg;
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   free((FREE_ARG)(m+nrl-NR_END));  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
 }  int agegomp= AGEGOMP;
   
 /***************** f1dim *************************/  int imx; 
 extern int ncom;  int stepm=1;
 extern double *pcom,*xicom;  /* Stepm, step in month: minimum step interpolation*/
 extern double (*nrfunc)(double []);  
    int estepm;
 double f1dim(double x)  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
 {  
   int j;  int m,nb;
   double f;  long *num;
   double *xt;  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
    double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
   xt=vector(1,ncom);  double **pmmij, ***probs;
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  double *ageexmed,*agecens;
   f=(*nrfunc)(xt);  double dateintmean=0;
   free_vector(xt,1,ncom);  
   return f;  double *weight;
 }  int **s; /* Status */
   double *agedc, **covar, idx;
 /*****************brent *************************/  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  double *lsurv, *lpop, *tpop;
 {  
   int iter;  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
   double a,b,d,etemp;  double ftolhess; /* Tolerance for computing hessian */
   double fu,fv,fw,fx;  
   double ftemp;  /**************** split *************************/
   double p,q,r,tol1,tol2,u,v,w,x,xm;  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   double e=0.0;  {
      /* From a file name with full path (either Unix or Windows) we extract the directory (dirc)
   a=(ax < cx ? ax : cx);       the name of the file (name), its extension only (ext) and its first part of the name (finame)
   b=(ax > cx ? ax : cx);    */ 
   x=w=v=bx;    char  *ss;                            /* pointer */
   fw=fv=fx=(*f)(x);    int   l1, l2;                         /* length counters */
   for (iter=1;iter<=ITMAX;iter++) {  
     xm=0.5*(a+b);    l1 = strlen(path );                   /* length of path */
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
     printf(".");fflush(stdout);    if ( ss == NULL ) {                   /* no directory, so use current */
 #ifdef DEBUG      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */      /* get current working directory */
 #endif      /*    extern  char* getcwd ( char *buf , int len);*/
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
       *xmin=x;        return( GLOCK_ERROR_GETCWD );
       return fx;      }
     }      strcpy( name, path );               /* we've got it */
     ftemp=fu;    } else {                              /* strip direcotry from path */
     if (fabs(e) > tol1) {      ss++;                               /* after this, the filename */
       r=(x-w)*(fx-fv);      l2 = strlen( ss );                  /* length of filename */
       q=(x-v)*(fx-fw);      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
       p=(x-v)*q-(x-w)*r;      strcpy( name, ss );         /* save file name */
       q=2.0*(q-r);      strncpy( dirc, path, l1 - l2 );     /* now the directory */
       if (q > 0.0) p = -p;      dirc[l1-l2] = 0;                    /* add zero */
       q=fabs(q);    }
       etemp=e;    l1 = strlen( dirc );                  /* length of directory */
       e=d;    /*#ifdef windows
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  #else
       else {    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }
         d=p/q;  #endif
         u=x+d;    */
         if (u-a < tol2 || b-u < tol2)    ss = strrchr( name, '.' );            /* find last / */
           d=SIGN(tol1,xm-x);    if (ss >0){
       }      ss++;
     } else {      strcpy(ext,ss);                     /* save extension */
       d=CGOLD*(e=(x >= xm ? a-x : b-x));      l1= strlen( name);
     }      l2= strlen(ss)+1;
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));      strncpy( finame, name, l1-l2);
     fu=(*f)(u);      finame[l1-l2]= 0;
     if (fu <= fx) {    }
       if (u >= x) a=x; else b=x;    return( 0 );                          /* we're done */
       SHFT(v,w,x,u)  }
         SHFT(fv,fw,fx,fu)  
         } else {  
           if (u < x) a=u; else b=u;  /******************************************/
           if (fu <= fw || w == x) {  
             v=w;  void replace_back_to_slash(char *s, char*t)
             w=u;  {
             fv=fw;    int i;
             fw=fu;    int lg=0;
           } else if (fu <= fv || v == x || v == w) {    i=0;
             v=u;    lg=strlen(t);
             fv=fu;    for(i=0; i<= lg; i++) {
           }      (s[i] = t[i]);
         }      if (t[i]== '\\') s[i]='/';
   }    }
   nrerror("Too many iterations in brent");  }
   *xmin=x;  
   return fx;  int nbocc(char *s, char occ)
 }  {
     int i,j=0;
 /****************** mnbrak ***********************/    int lg=20;
     i=0;
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,    lg=strlen(s);
             double (*func)(double))    for(i=0; i<= lg; i++) {
 {    if  (s[i] == occ ) j++;
   double ulim,u,r,q, dum;    }
   double fu;    return j;
    }
   *fa=(*func)(*ax);  
   *fb=(*func)(*bx);  void cutv(char *u,char *v, char*t, char occ)
   if (*fb > *fa) {  {
     SHFT(dum,*ax,*bx,dum)    /* cuts string t into u and v where u ends before first occurence of char 'occ' 
       SHFT(dum,*fb,*fa,dum)       and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
       }       gives u="abcedf" and v="ghi2j" */
   *cx=(*bx)+GOLD*(*bx-*ax);    int i,lg,j,p=0;
   *fc=(*func)(*cx);    i=0;
   while (*fb > *fc) {    for(j=0; j<=strlen(t)-1; j++) {
     r=(*bx-*ax)*(*fb-*fc);      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
     q=(*bx-*cx)*(*fb-*fa);    }
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/  
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));    lg=strlen(t);
     ulim=(*bx)+GLIMIT*(*cx-*bx);    for(j=0; j<p; j++) {
     if ((*bx-u)*(u-*cx) > 0.0) {      (u[j] = t[j]);
       fu=(*func)(u);    }
     } else if ((*cx-u)*(u-ulim) > 0.0) {       u[p]='\0';
       fu=(*func)(u);  
       if (fu < *fc) {     for(j=0; j<= lg; j++) {
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))      if (j>=(p+1))(v[j-p-1] = t[j]);
           SHFT(*fb,*fc,fu,(*func)(u))    }
           }  }
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  
       u=ulim;  /********************** nrerror ********************/
       fu=(*func)(u);  
     } else {  void nrerror(char error_text[])
       u=(*cx)+GOLD*(*cx-*bx);  {
       fu=(*func)(u);    fprintf(stderr,"ERREUR ...\n");
     }    fprintf(stderr,"%s\n",error_text);
     SHFT(*ax,*bx,*cx,u)    exit(EXIT_FAILURE);
       SHFT(*fa,*fb,*fc,fu)  }
       }  /*********************** vector *******************/
 }  double *vector(int nl, int nh)
   {
 /*************** linmin ************************/    double *v;
     v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
 int ncom;    if (!v) nrerror("allocation failure in vector");
 double *pcom,*xicom;    return v-nl+NR_END;
 double (*nrfunc)(double []);  }
    
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))  /************************ free vector ******************/
 {  void free_vector(double*v, int nl, int nh)
   double brent(double ax, double bx, double cx,  {
                double (*f)(double), double tol, double *xmin);    free((FREE_ARG)(v+nl-NR_END));
   double f1dim(double x);  }
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,  
               double *fc, double (*func)(double));  /************************ivector *******************************/
   int j;  int *ivector(long nl,long nh)
   double xx,xmin,bx,ax;  {
   double fx,fb,fa;    int *v;
      v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
   ncom=n;    if (!v) nrerror("allocation failure in ivector");
   pcom=vector(1,n);    return v-nl+NR_END;
   xicom=vector(1,n);  }
   nrfunc=func;  
   for (j=1;j<=n;j++) {  /******************free ivector **************************/
     pcom[j]=p[j];  void free_ivector(int *v, long nl, long nh)
     xicom[j]=xi[j];  {
   }    free((FREE_ARG)(v+nl-NR_END));
   ax=0.0;  }
   xx=1.0;  
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  /************************lvector *******************************/
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);  long *lvector(long nl,long nh)
 #ifdef DEBUG  {
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    long *v;
 #endif    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
   for (j=1;j<=n;j++) {    if (!v) nrerror("allocation failure in ivector");
     xi[j] *= xmin;    return v-nl+NR_END;
     p[j] += xi[j];  }
   }  
   free_vector(xicom,1,n);  /******************free lvector **************************/
   free_vector(pcom,1,n);  void free_lvector(long *v, long nl, long nh)
 }  {
     free((FREE_ARG)(v+nl-NR_END));
 /*************** powell ************************/  }
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,  
             double (*func)(double []))  /******************* imatrix *******************************/
 {  int **imatrix(long nrl, long nrh, long ncl, long nch) 
   void linmin(double p[], double xi[], int n, double *fret,       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
               double (*func)(double []));  { 
   int i,ibig,j;    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
   double del,t,*pt,*ptt,*xit;    int **m; 
   double fp,fptt;    
   double *xits;    /* allocate pointers to rows */ 
   pt=vector(1,n);    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
   ptt=vector(1,n);    if (!m) nrerror("allocation failure 1 in matrix()"); 
   xit=vector(1,n);    m += NR_END; 
   xits=vector(1,n);    m -= nrl; 
   *fret=(*func)(p);    
   for (j=1;j<=n;j++) pt[j]=p[j];    
   for (*iter=1;;++(*iter)) {    /* allocate rows and set pointers to them */ 
     fp=(*fret);    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
     ibig=0;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
     del=0.0;    m[nrl] += NR_END; 
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);    m[nrl] -= ncl; 
     for (i=1;i<=n;i++)    
       printf(" %d %.12f",i, p[i]);    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
     printf("\n");    
     for (i=1;i<=n;i++) {    /* return pointer to array of pointers to rows */ 
       for (j=1;j<=n;j++) xit[j]=xi[j][i];    return m; 
       fptt=(*fret);  } 
 #ifdef DEBUG  
       printf("fret=%lf \n",*fret);  /****************** free_imatrix *************************/
 #endif  void free_imatrix(m,nrl,nrh,ncl,nch)
       printf("%d",i);fflush(stdout);        int **m;
       linmin(p,xit,n,fret,func);        long nch,ncl,nrh,nrl; 
       if (fabs(fptt-(*fret)) > del) {       /* free an int matrix allocated by imatrix() */ 
         del=fabs(fptt-(*fret));  { 
         ibig=i;    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
       }    free((FREE_ARG) (m+nrl-NR_END)); 
 #ifdef DEBUG  } 
       printf("%d %.12e",i,(*fret));  
       for (j=1;j<=n;j++) {  /******************* matrix *******************************/
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);  double **matrix(long nrl, long nrh, long ncl, long nch)
         printf(" x(%d)=%.12e",j,xit[j]);  {
       }    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
       for(j=1;j<=n;j++)    double **m;
         printf(" p=%.12e",p[j]);  
       printf("\n");    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
 #endif    if (!m) nrerror("allocation failure 1 in matrix()");
     }    m += NR_END;
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {    m -= nrl;
 #ifdef DEBUG  
       int k[2],l;    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
       k[0]=1;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       k[1]=-1;    m[nrl] += NR_END;
       printf("Max: %.12e",(*func)(p));    m[nrl] -= ncl;
       for (j=1;j<=n;j++)  
         printf(" %.12e",p[j]);    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
       printf("\n");    return m;
       for(l=0;l<=1;l++) {    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
         for (j=1;j<=n;j++) {     */
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];  }
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  
         }  /*************************free matrix ************************/
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
       }  {
 #endif    free((FREE_ARG)(m[nrl]+ncl-NR_END));
     free((FREE_ARG)(m+nrl-NR_END));
   }
       free_vector(xit,1,n);  
       free_vector(xits,1,n);  /******************* ma3x *******************************/
       free_vector(ptt,1,n);  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
       free_vector(pt,1,n);  {
       return;    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
     }    double ***m;
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");  
     for (j=1;j<=n;j++) {    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
       ptt[j]=2.0*p[j]-pt[j];    if (!m) nrerror("allocation failure 1 in matrix()");
       xit[j]=p[j]-pt[j];    m += NR_END;
       pt[j]=p[j];    m -= nrl;
     }  
     fptt=(*func)(ptt);    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     if (fptt < fp) {    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);    m[nrl] += NR_END;
       if (t < 0.0) {    m[nrl] -= ncl;
         linmin(p,xit,n,fret,func);  
         for (j=1;j<=n;j++) {    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
           xi[j][ibig]=xi[j][n];  
           xi[j][n]=xit[j];    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
         }    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
 #ifdef DEBUG    m[nrl][ncl] += NR_END;
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);    m[nrl][ncl] -= nll;
         for(j=1;j<=n;j++)    for (j=ncl+1; j<=nch; j++) 
           printf(" %.12e",xit[j]);      m[nrl][j]=m[nrl][j-1]+nlay;
         printf("\n");    
 #endif    for (i=nrl+1; i<=nrh; i++) {
       }      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
     }      for (j=ncl+1; j<=nch; j++) 
   }        m[i][j]=m[i][j-1]+nlay;
 }    }
     return m; 
 /**** Prevalence limit ****************/    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
              &(m[i][j][k]) <=> *((*(m+i) + j)+k)
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)    */
 {  }
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit  
      matrix by transitions matrix until convergence is reached */  /*************************free ma3x ************************/
   void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
   int i, ii,j,k;  {
   double min, max, maxmin, maxmax,sumnew=0.;    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
   double **matprod2();    free((FREE_ARG)(m[nrl]+ncl-NR_END));
   double **out, cov[NCOVMAX], **pmij();    free((FREE_ARG)(m+nrl-NR_END));
   double **newm;  }
   double agefin, delaymax=50 ; /* Max number of years to converge */  
   /*************** function subdirf ***********/
   for (ii=1;ii<=nlstate+ndeath;ii++)  char *subdirf(char fileres[])
     for (j=1;j<=nlstate+ndeath;j++){  {
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);    /* Caution optionfilefiname is hidden */
     }    strcpy(tmpout,optionfilefiname);
     strcat(tmpout,"/"); /* Add to the right */
    cov[1]=1.;    strcat(tmpout,fileres);
      return tmpout;
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */  }
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){  
     newm=savm;  /*************** function subdirf2 ***********/
     /* Covariates have to be included here again */  char *subdirf2(char fileres[], char *preop)
      cov[2]=agefin;  {
      
       for (k=1; k<=cptcovn;k++) {    /* Caution optionfilefiname is hidden */
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    strcpy(tmpout,optionfilefiname);
         /*printf("ij=%d Tvar[k]=%d nbcode=%d cov=%lf\n",ij, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k]);*/    strcat(tmpout,"/");
       }    strcat(tmpout,preop);
       for (k=1; k<=cptcovage;k++)    strcat(tmpout,fileres);
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    return tmpout;
       for (k=1; k<=cptcovprod;k++)  }
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  
   /*************** function subdirf3 ***********/
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/  char *subdirf3(char fileres[], char *preop, char *preop2)
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/  {
     
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);    /* Caution optionfilefiname is hidden */
     strcpy(tmpout,optionfilefiname);
     savm=oldm;    strcat(tmpout,"/");
     oldm=newm;    strcat(tmpout,preop);
     maxmax=0.;    strcat(tmpout,preop2);
     for(j=1;j<=nlstate;j++){    strcat(tmpout,fileres);
       min=1.;    return tmpout;
       max=0.;  }
       for(i=1; i<=nlstate; i++) {  
         sumnew=0;  /***************** f1dim *************************/
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];  extern int ncom; 
         prlim[i][j]= newm[i][j]/(1-sumnew);  extern double *pcom,*xicom;
         max=FMAX(max,prlim[i][j]);  extern double (*nrfunc)(double []); 
         min=FMIN(min,prlim[i][j]);   
       }  double f1dim(double x) 
       maxmin=max-min;  { 
       maxmax=FMAX(maxmax,maxmin);    int j; 
     }    double f;
     if(maxmax < ftolpl){    double *xt; 
       return prlim;   
     }    xt=vector(1,ncom); 
   }    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
 }    f=(*nrfunc)(xt); 
     free_vector(xt,1,ncom); 
 /*************** transition probabilities ***************/    return f; 
   } 
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )  
 {  /*****************brent *************************/
   double s1, s2;  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
   /*double t34;*/  { 
   int i,j,j1, nc, ii, jj;    int iter; 
     double a,b,d,etemp;
     for(i=1; i<= nlstate; i++){    double fu,fv,fw,fx;
     for(j=1; j<i;j++){    double ftemp;
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    double p,q,r,tol1,tol2,u,v,w,x,xm; 
         /*s2 += param[i][j][nc]*cov[nc];*/    double e=0.0; 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];   
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/    a=(ax < cx ? ax : cx); 
       }    b=(ax > cx ? ax : cx); 
       ps[i][j]=s2;    x=w=v=bx; 
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/    fw=fv=fx=(*f)(x); 
     }    for (iter=1;iter<=ITMAX;iter++) { 
     for(j=i+1; j<=nlstate+ndeath;j++){      xm=0.5*(a+b); 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/      printf(".");fflush(stdout);
       }      fprintf(ficlog,".");fflush(ficlog);
       ps[i][j]=(s2);  #ifdef DEBUG
     }      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   }      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
     /*ps[3][2]=1;*/      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
   #endif
   for(i=1; i<= nlstate; i++){      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
      s1=0;        *xmin=x; 
     for(j=1; j<i; j++)        return fx; 
       s1+=exp(ps[i][j]);      } 
     for(j=i+1; j<=nlstate+ndeath; j++)      ftemp=fu;
       s1+=exp(ps[i][j]);      if (fabs(e) > tol1) { 
     ps[i][i]=1./(s1+1.);        r=(x-w)*(fx-fv); 
     for(j=1; j<i; j++)        q=(x-v)*(fx-fw); 
       ps[i][j]= exp(ps[i][j])*ps[i][i];        p=(x-v)*q-(x-w)*r; 
     for(j=i+1; j<=nlstate+ndeath; j++)        q=2.0*(q-r); 
       ps[i][j]= exp(ps[i][j])*ps[i][i];        if (q > 0.0) p = -p; 
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */        q=fabs(q); 
   } /* end i */        etemp=e; 
         e=d; 
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
     for(jj=1; jj<= nlstate+ndeath; jj++){          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
       ps[ii][jj]=0;        else { 
       ps[ii][ii]=1;          d=p/q; 
     }          u=x+d; 
   }          if (u-a < tol2 || b-u < tol2) 
             d=SIGN(tol1,xm-x); 
         } 
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){      } else { 
     for(jj=1; jj<= nlstate+ndeath; jj++){        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
      printf("%lf ",ps[ii][jj]);      } 
    }      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
     printf("\n ");      fu=(*f)(u); 
     }      if (fu <= fx) { 
     printf("\n ");printf("%lf ",cov[2]);*/        if (u >= x) a=x; else b=x; 
 /*        SHFT(v,w,x,u) 
   for(i=1; i<= npar; i++) printf("%f ",x[i]);          SHFT(fv,fw,fx,fu) 
   goto end;*/          } else { 
     return ps;            if (u < x) a=u; else b=u; 
 }            if (fu <= fw || w == x) { 
               v=w; 
 /**************** Product of 2 matrices ******************/              w=u; 
               fv=fw; 
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)              fw=fu; 
 {            } else if (fu <= fv || v == x || v == w) { 
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times              v=u; 
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */              fv=fu; 
   /* in, b, out are matrice of pointers which should have been initialized            } 
      before: only the contents of out is modified. The function returns          } 
      a pointer to pointers identical to out */    } 
   long i, j, k;    nrerror("Too many iterations in brent"); 
   for(i=nrl; i<= nrh; i++)    *xmin=x; 
     for(k=ncolol; k<=ncoloh; k++)    return fx; 
       for(j=ncl,out[i][k]=0.; j<=nch; j++)  } 
         out[i][k] +=in[i][j]*b[j][k];  
   /****************** mnbrak ***********************/
   return out;  
 }  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
               double (*func)(double)) 
   { 
 /************* Higher Matrix Product ***************/    double ulim,u,r,q, dum;
     double fu; 
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )   
 {    *fa=(*func)(*ax); 
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month    *fb=(*func)(*bx); 
      duration (i.e. until    if (*fb > *fa) { 
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.      SHFT(dum,*ax,*bx,dum) 
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step        SHFT(dum,*fb,*fa,dum) 
      (typically every 2 years instead of every month which is too big).        } 
      Model is determined by parameters x and covariates have to be    *cx=(*bx)+GOLD*(*bx-*ax); 
      included manually here.    *fc=(*func)(*cx); 
     while (*fb > *fc) { 
      */      r=(*bx-*ax)*(*fb-*fc); 
       q=(*bx-*cx)*(*fb-*fa); 
   int i, j, d, h, k;      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
   double **out, cov[NCOVMAX];        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
   double **newm;      ulim=(*bx)+GLIMIT*(*cx-*bx); 
       if ((*bx-u)*(u-*cx) > 0.0) { 
   /* Hstepm could be zero and should return the unit matrix */        fu=(*func)(u); 
   for (i=1;i<=nlstate+ndeath;i++)      } else if ((*cx-u)*(u-ulim) > 0.0) { 
     for (j=1;j<=nlstate+ndeath;j++){        fu=(*func)(u); 
       oldm[i][j]=(i==j ? 1.0 : 0.0);        if (fu < *fc) { 
       po[i][j][0]=(i==j ? 1.0 : 0.0);          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
     }            SHFT(*fb,*fc,fu,(*func)(u)) 
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */            } 
   for(h=1; h <=nhstepm; h++){      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
     for(d=1; d <=hstepm; d++){        u=ulim; 
       newm=savm;        fu=(*func)(u); 
       /* Covariates have to be included here again */      } else { 
       cov[1]=1.;        u=(*cx)+GOLD*(*cx-*bx); 
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;        fu=(*func)(u); 
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];      } 
       for (k=1; k<=cptcovage;k++)      SHFT(*ax,*bx,*cx,u) 
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];        SHFT(*fa,*fb,*fc,fu) 
       for (k=1; k<=cptcovprod;k++)        } 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  } 
   
   /*************** linmin ************************/
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/  
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/  int ncom; 
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,  double *pcom,*xicom;
                    pmij(pmmij,cov,ncovmodel,x,nlstate));  double (*nrfunc)(double []); 
       savm=oldm;   
       oldm=newm;  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
     }  { 
     for(i=1; i<=nlstate+ndeath; i++)    double brent(double ax, double bx, double cx, 
       for(j=1;j<=nlstate+ndeath;j++) {                 double (*f)(double), double tol, double *xmin); 
         po[i][j][h]=newm[i][j];    double f1dim(double x); 
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
          */                double *fc, double (*func)(double)); 
       }    int j; 
   } /* end h */    double xx,xmin,bx,ax; 
   return po;    double fx,fb,fa;
 }   
     ncom=n; 
     pcom=vector(1,n); 
 /*************** log-likelihood *************/    xicom=vector(1,n); 
 double func( double *x)    nrfunc=func; 
 {    for (j=1;j<=n;j++) { 
   int i, ii, j, k, mi, d, kk;      pcom[j]=p[j]; 
   double l, ll[NLSTATEMAX], cov[NCOVMAX];      xicom[j]=xi[j]; 
   double **out;    } 
   double sw; /* Sum of weights */    ax=0.0; 
   double lli; /* Individual log likelihood */    xx=1.0; 
   long ipmx;    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
   /*extern weight */    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
   /* We are differentiating ll according to initial status */  #ifdef DEBUG
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   /*for(i=1;i<imx;i++)    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
     printf(" %d\n",s[4][i]);  #endif
   */    for (j=1;j<=n;j++) { 
   cov[1]=1.;      xi[j] *= xmin; 
       p[j] += xi[j]; 
   for(k=1; k<=nlstate; k++) ll[k]=0.;    } 
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){    free_vector(xicom,1,n); 
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];    free_vector(pcom,1,n); 
     for(mi=1; mi<= wav[i]-1; mi++){  } 
       for (ii=1;ii<=nlstate+ndeath;ii++)  
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);  char *asc_diff_time(long time_sec, char ascdiff[])
       for(d=0; d<dh[mi][i]; d++){  {
         newm=savm;    long sec_left, days, hours, minutes;
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;    days = (time_sec) / (60*60*24);
         for (kk=1; kk<=cptcovage;kk++) {    sec_left = (time_sec) % (60*60*24);
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];    hours = (sec_left) / (60*60) ;
         }    sec_left = (sec_left) %(60*60);
            minutes = (sec_left) /60;
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,    sec_left = (sec_left) % (60);
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
         savm=oldm;    return ascdiff;
         oldm=newm;  }
          
          /*************** powell ************************/
       } /* end mult */  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
                    double (*func)(double [])) 
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);  { 
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/    void linmin(double p[], double xi[], int n, double *fret, 
       ipmx +=1;                double (*func)(double [])); 
       sw += weight[i];    int i,ibig,j; 
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;    double del,t,*pt,*ptt,*xit;
     } /* end of wave */    double fp,fptt;
   } /* end of individual */    double *xits;
     int niterf, itmp;
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];  
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */    pt=vector(1,n); 
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */    ptt=vector(1,n); 
   return -l;    xit=vector(1,n); 
 }    xits=vector(1,n); 
     *fret=(*func)(p); 
     for (j=1;j<=n;j++) pt[j]=p[j]; 
 /*********** Maximum Likelihood Estimation ***************/    for (*iter=1;;++(*iter)) { 
       fp=(*fret); 
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))      ibig=0; 
 {      del=0.0; 
   int i,j, iter;      last_time=curr_time;
   double **xi,*delti;      (void) gettimeofday(&curr_time,&tzp);
   double fret;      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
   xi=matrix(1,npar,1,npar);      /*    fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);
   for (i=1;i<=npar;i++)      fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);
     for (j=1;j<=npar;j++)      */
       xi[i][j]=(i==j ? 1.0 : 0.0);     for (i=1;i<=n;i++) {
   printf("Powell\n");        printf(" %d %.12f",i, p[i]);
   powell(p,xi,npar,ftol,&iter,&fret,func);        fprintf(ficlog," %d %.12lf",i, p[i]);
         fprintf(ficrespow," %.12lf", p[i]);
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));      }
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f ",iter,func(p));      printf("\n");
       fprintf(ficlog,"\n");
 }      fprintf(ficrespow,"\n");fflush(ficrespow);
       if(*iter <=3){
 /**** Computes Hessian and covariance matrix ***/        tm = *localtime(&curr_time.tv_sec);
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))        strcpy(strcurr,asctime(&tm));
 {  /*       asctime_r(&tm,strcurr); */
   double  **a,**y,*x,pd;        forecast_time=curr_time; 
   double **hess;        itmp = strlen(strcurr);
   int i, j,jk;        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
   int *indx;          strcurr[itmp-1]='\0';
         printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
   double hessii(double p[], double delta, int theta, double delti[]);        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
   double hessij(double p[], double delti[], int i, int j);        for(niterf=10;niterf<=30;niterf+=10){
   void lubksb(double **a, int npar, int *indx, double b[]) ;          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
   void ludcmp(double **a, int npar, int *indx, double *d) ;          tmf = *localtime(&forecast_time.tv_sec);
   /*      asctime_r(&tmf,strfor); */
   hess=matrix(1,npar,1,npar);          strcpy(strfor,asctime(&tmf));
           itmp = strlen(strfor);
   printf("\nCalculation of the hessian matrix. Wait...\n");          if(strfor[itmp-1]=='\n')
   for (i=1;i<=npar;i++){          strfor[itmp-1]='\0';
     printf("%d",i);fflush(stdout);          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
     hess[i][i]=hessii(p,ftolhess,i,delti);          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
     /*printf(" %f ",p[i]);*/        }
     /*printf(" %lf ",hess[i][i]);*/      }
   }      for (i=1;i<=n;i++) { 
          for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
   for (i=1;i<=npar;i++) {        fptt=(*fret); 
     for (j=1;j<=npar;j++)  {  #ifdef DEBUG
       if (j>i) {        printf("fret=%lf \n",*fret);
         printf(".%d%d",i,j);fflush(stdout);        fprintf(ficlog,"fret=%lf \n",*fret);
         hess[i][j]=hessij(p,delti,i,j);  #endif
         hess[j][i]=hess[i][j];            printf("%d",i);fflush(stdout);
         /*printf(" %lf ",hess[i][j]);*/        fprintf(ficlog,"%d",i);fflush(ficlog);
       }        linmin(p,xit,n,fret,func); 
     }        if (fabs(fptt-(*fret)) > del) { 
   }          del=fabs(fptt-(*fret)); 
   printf("\n");          ibig=i; 
         } 
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");  #ifdef DEBUG
          printf("%d %.12e",i,(*fret));
   a=matrix(1,npar,1,npar);        fprintf(ficlog,"%d %.12e",i,(*fret));
   y=matrix(1,npar,1,npar);        for (j=1;j<=n;j++) {
   x=vector(1,npar);          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
   indx=ivector(1,npar);          printf(" x(%d)=%.12e",j,xit[j]);
   for (i=1;i<=npar;i++)          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];        }
   ludcmp(a,npar,indx,&pd);        for(j=1;j<=n;j++) {
           printf(" p=%.12e",p[j]);
   for (j=1;j<=npar;j++) {          fprintf(ficlog," p=%.12e",p[j]);
     for (i=1;i<=npar;i++) x[i]=0;        }
     x[j]=1;        printf("\n");
     lubksb(a,npar,indx,x);        fprintf(ficlog,"\n");
     for (i=1;i<=npar;i++){  #endif
       matcov[i][j]=x[i];      } 
     }      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
   }  #ifdef DEBUG
         int k[2],l;
   printf("\n#Hessian matrix#\n");        k[0]=1;
   for (i=1;i<=npar;i++) {        k[1]=-1;
     for (j=1;j<=npar;j++) {        printf("Max: %.12e",(*func)(p));
       printf("%.3e ",hess[i][j]);        fprintf(ficlog,"Max: %.12e",(*func)(p));
     }        for (j=1;j<=n;j++) {
     printf("\n");          printf(" %.12e",p[j]);
   }          fprintf(ficlog," %.12e",p[j]);
         }
   /* Recompute Inverse */        printf("\n");
   for (i=1;i<=npar;i++)        fprintf(ficlog,"\n");
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];        for(l=0;l<=1;l++) {
   ludcmp(a,npar,indx,&pd);          for (j=1;j<=n;j++) {
             ptt[j]=p[j]+(p[j]-pt[j])*k[l];
   /*  printf("\n#Hessian matrix recomputed#\n");            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
             fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   for (j=1;j<=npar;j++) {          }
     for (i=1;i<=npar;i++) x[i]=0;          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
     x[j]=1;          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
     lubksb(a,npar,indx,x);        }
     for (i=1;i<=npar;i++){  #endif
       y[i][j]=x[i];  
       printf("%.3e ",y[i][j]);  
     }        free_vector(xit,1,n); 
     printf("\n");        free_vector(xits,1,n); 
   }        free_vector(ptt,1,n); 
   */        free_vector(pt,1,n); 
         return; 
   free_matrix(a,1,npar,1,npar);      } 
   free_matrix(y,1,npar,1,npar);      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
   free_vector(x,1,npar);      for (j=1;j<=n;j++) { 
   free_ivector(indx,1,npar);        ptt[j]=2.0*p[j]-pt[j]; 
   free_matrix(hess,1,npar,1,npar);        xit[j]=p[j]-pt[j]; 
         pt[j]=p[j]; 
       } 
 }      fptt=(*func)(ptt); 
       if (fptt < fp) { 
 /*************** hessian matrix ****************/        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
 double hessii( double x[], double delta, int theta, double delti[])        if (t < 0.0) { 
 {          linmin(p,xit,n,fret,func); 
   int i;          for (j=1;j<=n;j++) { 
   int l=1, lmax=20;            xi[j][ibig]=xi[j][n]; 
   double k1,k2;            xi[j][n]=xit[j]; 
   double p2[NPARMAX+1];          }
   double res;  #ifdef DEBUG
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   double fx;          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   int k=0,kmax=10;          for(j=1;j<=n;j++){
   double l1;            printf(" %.12e",xit[j]);
             fprintf(ficlog," %.12e",xit[j]);
   fx=func(x);          }
   for (i=1;i<=npar;i++) p2[i]=x[i];          printf("\n");
   for(l=0 ; l <=lmax; l++){          fprintf(ficlog,"\n");
     l1=pow(10,l);  #endif
     delts=delt;        }
     for(k=1 ; k <kmax; k=k+1){      } 
       delt = delta*(l1*k);    } 
       p2[theta]=x[theta] +delt;  } 
       k1=func(p2)-fx;  
       p2[theta]=x[theta]-delt;  /**** Prevalence limit (stable prevalence)  ****************/
       k2=func(p2)-fx;  
       /*res= (k1-2.0*fx+k2)/delt/delt; */  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */  {
          /* Computes the prevalence limit in each live state at age x by left multiplying the unit
 #ifdef DEBUG       matrix by transitions matrix until convergence is reached */
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);  
 #endif    int i, ii,j,k;
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */    double min, max, maxmin, maxmax,sumnew=0.;
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){    double **matprod2();
         k=kmax;    double **out, cov[NCOVMAX], **pmij();
       }    double **newm;
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */    double agefin, delaymax=50 ; /* Max number of years to converge */
         k=kmax; l=lmax*10.;  
       }    for (ii=1;ii<=nlstate+ndeath;ii++)
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){      for (j=1;j<=nlstate+ndeath;j++){
         delts=delt;        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       }      }
     }  
   }     cov[1]=1.;
   delti[theta]=delts;   
   return res;   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
      for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
 }      newm=savm;
       /* Covariates have to be included here again */
 double hessij( double x[], double delti[], int thetai,int thetaj)       cov[2]=agefin;
 {    
   int i;        for (k=1; k<=cptcovn;k++) {
   int l=1, l1, lmax=20;          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   double k1,k2,k3,k4,res,fx;          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
   double p2[NPARMAX+1];        }
   int k;        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
         for (k=1; k<=cptcovprod;k++)
   fx=func(x);          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   for (k=1; k<=2; k++) {  
     for (i=1;i<=npar;i++) p2[i]=x[i];        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
     p2[thetai]=x[thetai]+delti[thetai]/k;        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
     k1=func(p2)-fx;      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
    
     p2[thetai]=x[thetai]+delti[thetai]/k;      savm=oldm;
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;      oldm=newm;
     k2=func(p2)-fx;      maxmax=0.;
        for(j=1;j<=nlstate;j++){
     p2[thetai]=x[thetai]-delti[thetai]/k;        min=1.;
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;        max=0.;
     k3=func(p2)-fx;        for(i=1; i<=nlstate; i++) {
            sumnew=0;
     p2[thetai]=x[thetai]-delti[thetai]/k;          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;          prlim[i][j]= newm[i][j]/(1-sumnew);
     k4=func(p2)-fx;          max=FMAX(max,prlim[i][j]);
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */          min=FMIN(min,prlim[i][j]);
 #ifdef DEBUG        }
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);        maxmin=max-min;
 #endif        maxmax=FMAX(maxmax,maxmin);
   }      }
   return res;      if(maxmax < ftolpl){
 }        return prlim;
       }
 /************** Inverse of matrix **************/    }
 void ludcmp(double **a, int n, int *indx, double *d)  }
 {  
   int i,imax,j,k;  /*************** transition probabilities ***************/ 
   double big,dum,sum,temp;  
   double *vv;  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
    {
   vv=vector(1,n);    double s1, s2;
   *d=1.0;    /*double t34;*/
   for (i=1;i<=n;i++) {    int i,j,j1, nc, ii, jj;
     big=0.0;  
     for (j=1;j<=n;j++)      for(i=1; i<= nlstate; i++){
       if ((temp=fabs(a[i][j])) > big) big=temp;        for(j=1; j<i;j++){
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
     vv[i]=1.0/big;            /*s2 += param[i][j][nc]*cov[nc];*/
   }            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
   for (j=1;j<=n;j++) {  /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
     for (i=1;i<j;i++) {          }
       sum=a[i][j];          ps[i][j]=s2;
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
       a[i][j]=sum;        }
     }        for(j=i+1; j<=nlstate+ndeath;j++){
     big=0.0;          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
     for (i=j;i<=n;i++) {            s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
       sum=a[i][j];  /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
       for (k=1;k<j;k++)          }
         sum -= a[i][k]*a[k][j];          ps[i][j]=s2;
       a[i][j]=sum;        }
       if ( (dum=vv[i]*fabs(sum)) >= big) {      }
         big=dum;      /*ps[3][2]=1;*/
         imax=i;      
       }      for(i=1; i<= nlstate; i++){
     }        s1=0;
     if (j != imax) {        for(j=1; j<i; j++)
       for (k=1;k<=n;k++) {          s1+=exp(ps[i][j]);
         dum=a[imax][k];        for(j=i+1; j<=nlstate+ndeath; j++)
         a[imax][k]=a[j][k];          s1+=exp(ps[i][j]);
         a[j][k]=dum;        ps[i][i]=1./(s1+1.);
       }        for(j=1; j<i; j++)
       *d = -(*d);          ps[i][j]= exp(ps[i][j])*ps[i][i];
       vv[imax]=vv[j];        for(j=i+1; j<=nlstate+ndeath; j++)
     }          ps[i][j]= exp(ps[i][j])*ps[i][i];
     indx[j]=imax;        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
     if (a[j][j] == 0.0) a[j][j]=TINY;      } /* end i */
     if (j != n) {      
       dum=1.0/(a[j][j]);      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
       for (i=j+1;i<=n;i++) a[i][j] *= dum;        for(jj=1; jj<= nlstate+ndeath; jj++){
     }          ps[ii][jj]=0;
   }          ps[ii][ii]=1;
   free_vector(vv,1,n);  /* Doesn't work */        }
 ;      }
 }      
   
 void lubksb(double **a, int n, int *indx, double b[])  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
 {  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
   int i,ii=0,ip,j;  /*         printf("ddd %lf ",ps[ii][jj]); */
   double sum;  /*       } */
    /*       printf("\n "); */
   for (i=1;i<=n;i++) {  /*        } */
     ip=indx[i];  /*        printf("\n ");printf("%lf ",cov[2]); */
     sum=b[ip];         /*
     b[ip]=b[i];        for(i=1; i<= npar; i++) printf("%f ",x[i]);
     if (ii)        goto end;*/
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];      return ps;
     else if (sum) ii=i;  }
     b[i]=sum;  
   }  /**************** Product of 2 matrices ******************/
   for (i=n;i>=1;i--) {  
     sum=b[i];  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];  {
     b[i]=sum/a[i][i];    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
   }       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
 }    /* in, b, out are matrice of pointers which should have been initialized 
        before: only the contents of out is modified. The function returns
 /************ Frequencies ********************/       a pointer to pointers identical to out */
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax)    long i, j, k;
 {  /* Some frequencies */    for(i=nrl; i<= nrh; i++)
        for(k=ncolol; k<=ncoloh; k++)
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;        for(j=ncl,out[i][k]=0.; j<=nch; j++)
   double ***freq; /* Frequencies */          out[i][k] +=in[i][j]*b[j][k];
   double *pp;  
   double pos;    return out;
   FILE *ficresp;  }
   char fileresp[FILENAMELENGTH];  
   
   pp=vector(1,nlstate);  /************* Higher Matrix Product ***************/
  probs= ma3x(1,130 ,1,8, 1,8);  
   strcpy(fileresp,"p");  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
   strcat(fileresp,fileres);  {
   if((ficresp=fopen(fileresp,"w"))==NULL) {    /* Computes the transition matrix starting at age 'age' over 
     printf("Problem with prevalence resultfile: %s\n", fileresp);       'nhstepm*hstepm*stepm' months (i.e. until
     exit(0);       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
   }       nhstepm*hstepm matrices. 
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
   j1=0;       (typically every 2 years instead of every month which is too big 
        for the memory).
   j=cptcoveff;       Model is determined by parameters x and covariates have to be 
   if (cptcovn<1) {j=1;ncodemax[1]=1;}       included manually here. 
   
   for(k1=1; k1<=j;k1++){       */
    for(i1=1; i1<=ncodemax[k1];i1++){  
        j1++;    int i, j, d, h, k;
        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);    double **out, cov[NCOVMAX];
          scanf("%d", i);*/    double **newm;
         for (i=-1; i<=nlstate+ndeath; i++)    
          for (jk=-1; jk<=nlstate+ndeath; jk++)      /* Hstepm could be zero and should return the unit matrix */
            for(m=agemin; m <= agemax+3; m++)    for (i=1;i<=nlstate+ndeath;i++)
              freq[i][jk][m]=0;      for (j=1;j<=nlstate+ndeath;j++){
                oldm[i][j]=(i==j ? 1.0 : 0.0);
        for (i=1; i<=imx; i++) {        po[i][j][0]=(i==j ? 1.0 : 0.0);
          bool=1;      }
          if  (cptcovn>0) {    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
            for (z1=1; z1<=cptcoveff; z1++)    for(h=1; h <=nhstepm; h++){
              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])      for(d=1; d <=hstepm; d++){
                bool=0;        newm=savm;
          }        /* Covariates have to be included here again */
           if (bool==1) {        cov[1]=1.;
            for(m=fprev; m<=lprev; m++){        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
              if(agev[m][i]==0) agev[m][i]=agemax+1;        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
              if(agev[m][i]==1) agev[m][i]=agemax+2;        for (k=1; k<=cptcovage;k++)
              freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
              freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];        for (k=1; k<=cptcovprod;k++)
            }          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
          }  
        }  
         if  (cptcovn>0) {        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
          fprintf(ficresp, "\n#********** Variable ");        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
        fprintf(ficresp, "**********\n#");                     pmij(pmmij,cov,ncovmodel,x,nlstate));
         }        savm=oldm;
        for(i=1; i<=nlstate;i++)        oldm=newm;
          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);      }
        fprintf(ficresp, "\n");      for(i=1; i<=nlstate+ndeath; i++)
                for(j=1;j<=nlstate+ndeath;j++) {
   for(i=(int)agemin; i <= (int)agemax+3; i++){          po[i][j][h]=newm[i][j];
     if(i==(int)agemax+3)          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
       printf("Total");           */
     else        }
       printf("Age %d", i);    } /* end h */
     for(jk=1; jk <=nlstate ; jk++){    return po;
       for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)  }
         pp[jk] += freq[jk][m][i];  
     }  
     for(jk=1; jk <=nlstate ; jk++){  /*************** log-likelihood *************/
       for(m=-1, pos=0; m <=0 ; m++)  double func( double *x)
         pos += freq[jk][m][i];  {
       if(pp[jk]>=1.e-10)    int i, ii, j, k, mi, d, kk;
         printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);    double l, ll[NLSTATEMAX], cov[NCOVMAX];
       else    double **out;
         printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);    double sw; /* Sum of weights */
     }    double lli; /* Individual log likelihood */
     int s1, s2;
      for(jk=1; jk <=nlstate ; jk++){    double bbh, survp;
       for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)    long ipmx;
         pp[jk] += freq[jk][m][i];    /*extern weight */
      }    /* We are differentiating ll according to initial status */
     /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     for(jk=1,pos=0; jk <=nlstate ; jk++)    /*for(i=1;i<imx;i++) 
       pos += pp[jk];      printf(" %d\n",s[4][i]);
     for(jk=1; jk <=nlstate ; jk++){    */
       if(pos>=1.e-5)    cov[1]=1.;
         printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);  
       else    for(k=1; k<=nlstate; k++) ll[k]=0.;
         printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);  
       if( i <= (int) agemax){    if(mle==1){
         if(pos>=1.e-5){      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
           probs[i][jk][j1]= pp[jk]/pos;        for(mi=1; mi<= wav[i]-1; mi++){
           /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/          for (ii=1;ii<=nlstate+ndeath;ii++)
         }            for (j=1;j<=nlstate+ndeath;j++){
       else              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       }            }
     }          for(d=0; d<dh[mi][i]; d++){
     for(jk=-1; jk <=nlstate+ndeath; jk++)            newm=savm;
       for(m=-1; m <=nlstate+ndeath; m++)            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);            for (kk=1; kk<=cptcovage;kk++) {
     if(i <= (int) agemax)              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       fprintf(ficresp,"\n");            }
     printf("\n");            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     }            savm=oldm;
  }            oldm=newm;
            } /* end mult */
   fclose(ficresp);        
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
   free_vector(pp,1,nlstate);          /* But now since version 0.9 we anticipate for bias at large stepm.
            * If stepm is larger than one month (smallest stepm) and if the exact delay 
 }  /* End of Freq */           * (in months) between two waves is not a multiple of stepm, we rounded to 
            * the nearest (and in case of equal distance, to the lowest) interval but now
 /************* Waves Concatenation ***************/           * we keep into memory the bias bh[mi][i] and also the previous matrix product
            * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)           * probability in order to take into account the bias as a fraction of the way
 {           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.           * -stepm/2 to stepm/2 .
      Death is a valid wave (if date is known).           * For stepm=1 the results are the same as for previous versions of Imach.
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i           * For stepm > 1 the results are less biased than in previous versions. 
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]           */
      and mw[mi+1][i]. dh depends on stepm.          s1=s[mw[mi][i]][i];
      */          s2=s[mw[mi+1][i]][i];
           bbh=(double)bh[mi][i]/(double)stepm; 
   int i, mi, m;          /* bias bh is positive if real duration
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;           * is higher than the multiple of stepm and negative otherwise.
      double sum=0., jmean=0.;*/           */
           /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
   int j, k=0,jk, ju, jl;          if( s2 > nlstate){ 
   double sum=0.;            /* i.e. if s2 is a death state and if the date of death is known 
   jmin=1e+5;               then the contribution to the likelihood is the probability to 
   jmax=-1;               die between last step unit time and current  step unit time, 
   jmean=0.;               which is also equal to probability to die before dh 
   for(i=1; i<=imx; i++){               minus probability to die before dh-stepm . 
     mi=0;               In version up to 0.92 likelihood was computed
     m=firstpass;          as if date of death was unknown. Death was treated as any other
     while(s[m][i] <= nlstate){          health state: the date of the interview describes the actual state
       if(s[m][i]>=1)          and not the date of a change in health state. The former idea was
         mw[++mi][i]=m;          to consider that at each interview the state was recorded
       if(m >=lastpass)          (healthy, disable or death) and IMaCh was corrected; but when we
         break;          introduced the exact date of death then we should have modified
       else          the contribution of an exact death to the likelihood. This new
         m++;          contribution is smaller and very dependent of the step unit
     }/* end while */          stepm. It is no more the probability to die between last interview
     if (s[m][i] > nlstate){          and month of death but the probability to survive from last
       mi++;     /* Death is another wave */          interview up to one month before death multiplied by the
       /* if(mi==0)  never been interviewed correctly before death */          probability to die within a month. Thanks to Chris
          /* Only death is a correct wave */          Jackson for correcting this bug.  Former versions increased
       mw[mi][i]=m;          mortality artificially. The bad side is that we add another loop
     }          which slows down the processing. The difference can be up to 10%
           lower mortality.
     wav[i]=mi;            */
     if(mi==0)            lli=log(out[s1][s2] - savm[s1][s2]);
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);  
   }  
           } else if  (s2==-2) {
   for(i=1; i<=imx; i++){            for (j=1,survp=0. ; j<=nlstate; j++) 
     for(mi=1; mi<wav[i];mi++){              survp += out[s1][j];
       if (stepm <=0)            lli= survp;
         dh[mi][i]=1;          }
       else{          
         if (s[mw[mi+1][i]][i] > nlstate) {          else if  (s2==-4) {
           if (agedc[i] < 2*AGESUP) {            for (j=3,survp=0. ; j<=nlstate; j++) 
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);              survp += out[s1][j];
           if(j==0) j=1;  /* Survives at least one month after exam */            lli= survp;
           k=k+1;          }
           if (j >= jmax) jmax=j;          
           if (j <= jmin) jmin=j;          else if  (s2==-5) {
           sum=sum+j;            for (j=1,survp=0. ; j<=2; j++) 
           /* if (j<10) printf("j=%d num=%d ",j,i); */              survp += out[s1][j];
           }            lli= survp;
         }          }
         else{  
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));  
           k=k+1;          else{
           if (j >= jmax) jmax=j;            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
           else if (j <= jmin)jmin=j;            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
           /*   if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */          } 
           sum=sum+j;          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
         }          /*if(lli ==000.0)*/
         jk= j/stepm;          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
         jl= j -jk*stepm;          ipmx +=1;
         ju= j -(jk+1)*stepm;          sw += weight[i];
         if(jl <= -ju)          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           dh[mi][i]=jk;        } /* end of wave */
         else      } /* end of individual */
           dh[mi][i]=jk+1;    }  else if(mle==2){
         if(dh[mi][i]==0)      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           dh[mi][i]=1; /* At least one step */        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       }        for(mi=1; mi<= wav[i]-1; mi++){
     }          for (ii=1;ii<=nlstate+ndeath;ii++)
   }            for (j=1;j<=nlstate+ndeath;j++){
   jmean=sum/k;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
  }            }
 /*********** Tricode ****************************/          for(d=0; d<=dh[mi][i]; d++){
 void tricode(int *Tvar, int **nbcode, int imx)            newm=savm;
 {            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   int Ndum[20],ij=1, k, j, i;            for (kk=1; kk<=cptcovage;kk++) {
   int cptcode=0;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   cptcoveff=0;            }
              out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   for (k=0; k<19; k++) Ndum[k]=0;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   for (k=1; k<=7; k++) ncodemax[k]=0;            savm=oldm;
             oldm=newm;
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {          } /* end mult */
     for (i=1; i<=imx; i++) {        
       ij=(int)(covar[Tvar[j]][i]);          s1=s[mw[mi][i]][i];
       Ndum[ij]++;          s2=s[mw[mi+1][i]][i];
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/          bbh=(double)bh[mi][i]/(double)stepm; 
       if (ij > cptcode) cptcode=ij;          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
     }          ipmx +=1;
           sw += weight[i];
     for (i=0; i<=cptcode; i++) {          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       if(Ndum[i]!=0) ncodemax[j]++;        } /* end of wave */
     }      } /* end of individual */
     ij=1;    }  else if(mle==3){  /* exponential inter-extrapolation */
       for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     for (i=1; i<=ncodemax[j]; i++) {        for(mi=1; mi<= wav[i]-1; mi++){
       for (k=0; k<=19; k++) {          for (ii=1;ii<=nlstate+ndeath;ii++)
         if (Ndum[k] != 0) {            for (j=1;j<=nlstate+ndeath;j++){
           nbcode[Tvar[j]][ij]=k;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           ij++;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         }            }
         if (ij > ncodemax[j]) break;          for(d=0; d<dh[mi][i]; d++){
       }              newm=savm;
     }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   }              for (kk=1; kk<=cptcovage;kk++) {
               cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
  for (k=0; k<19; k++) Ndum[k]=0;            }
             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
  for (i=1; i<=ncovmodel-2; i++) {                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       ij=Tvar[i];            savm=oldm;
       Ndum[ij]++;            oldm=newm;
     }          } /* end mult */
         
  ij=1;          s1=s[mw[mi][i]][i];
  for (i=1; i<=10; i++) {          s2=s[mw[mi+1][i]][i];
    if((Ndum[i]!=0) && (i<=ncov)){          bbh=(double)bh[mi][i]/(double)stepm; 
      Tvaraff[ij]=i;          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
      ij++;          ipmx +=1;
    }          sw += weight[i];
  }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
          } /* end of wave */
     cptcoveff=ij-1;      } /* end of individual */
 }    }else if (mle==4){  /* ml=4 no inter-extrapolation */
       for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 /*********** Health Expectancies ****************/        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(mi=1; mi<= wav[i]-1; mi++){
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij)          for (ii=1;ii<=nlstate+ndeath;ii++)
 {            for (j=1;j<=nlstate+ndeath;j++){
   /* Health expectancies */              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   int i, j, nhstepm, hstepm, h;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   double age, agelim,hf;            }
   double ***p3mat;          for(d=0; d<dh[mi][i]; d++){
              newm=savm;
   fprintf(ficreseij,"# Health expectancies\n");            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   fprintf(ficreseij,"# Age");            for (kk=1; kk<=cptcovage;kk++) {
   for(i=1; i<=nlstate;i++)              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     for(j=1; j<=nlstate;j++)            }
       fprintf(ficreseij," %1d-%1d",i,j);          
   fprintf(ficreseij,"\n");            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                          1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   hstepm=1*YEARM; /*  Every j years of age (in month) */            savm=oldm;
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */            oldm=newm;
           } /* end mult */
   agelim=AGESUP;        
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */          s1=s[mw[mi][i]][i];
     /* nhstepm age range expressed in number of stepm */          s2=s[mw[mi+1][i]][i];
     nhstepm=(int) rint((agelim-age)*YEARM/stepm);          if( s2 > nlstate){ 
     /* Typically if 20 years = 20*12/6=40 stepm */            lli=log(out[s1][s2] - savm[s1][s2]);
     if (stepm >= YEARM) hstepm=1;          }else{
     nhstepm = nhstepm/hstepm;/* Expressed in hstepm, typically 40/4=10 */            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          }
     /* Computed by stepm unit matrices, product of hstepm matrices, stored          ipmx +=1;
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */          sw += weight[i];
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);            ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
         } /* end of wave */
     for(i=1; i<=nlstate;i++)      } /* end of individual */
       for(j=1; j<=nlstate;j++)    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm; h++){      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           eij[i][j][(int)age] +=p3mat[i][j][h];        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         }        for(mi=1; mi<= wav[i]-1; mi++){
              for (ii=1;ii<=nlstate+ndeath;ii++)
     hf=1;            for (j=1;j<=nlstate+ndeath;j++){
     if (stepm >= YEARM) hf=stepm/YEARM;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     fprintf(ficreseij,"%.0f",age );              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     for(i=1; i<=nlstate;i++)            }
       for(j=1; j<=nlstate;j++){          for(d=0; d<dh[mi][i]; d++){
         fprintf(ficreseij," %.4f", hf*eij[i][j][(int)age]);            newm=savm;
       }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     fprintf(ficreseij,"\n");            for (kk=1; kk<=cptcovage;kk++) {
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   }            }
 }          
             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 /************ Variance ******************/                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)            savm=oldm;
 {            oldm=newm;
   /* Variance of health expectancies */          } /* end mult */
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/        
   double **newm;          s1=s[mw[mi][i]][i];
   double **dnewm,**doldm;          s2=s[mw[mi+1][i]][i];
   int i, j, nhstepm, hstepm, h;          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
   int k, cptcode;          ipmx +=1;
   double *xp;          sw += weight[i];
   double **gp, **gm;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   double ***gradg, ***trgradg;          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
   double ***p3mat;        } /* end of wave */
   double age,agelim;      } /* end of individual */
   int theta;    } /* End of if */
     for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
    fprintf(ficresvij,"# Covariances of life expectancies\n");    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   fprintf(ficresvij,"# Age");    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   for(i=1; i<=nlstate;i++)    return -l;
     for(j=1; j<=nlstate;j++)  }
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);  
   fprintf(ficresvij,"\n");  /*************** log-likelihood *************/
   double funcone( double *x)
   xp=vector(1,npar);  {
   dnewm=matrix(1,nlstate,1,npar);    /* Same as likeli but slower because of a lot of printf and if */
   doldm=matrix(1,nlstate,1,nlstate);    int i, ii, j, k, mi, d, kk;
      double l, ll[NLSTATEMAX], cov[NCOVMAX];
   hstepm=1*YEARM; /* Every year of age */    double **out;
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */    double lli; /* Individual log likelihood */
   agelim = AGESUP;    double llt;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    int s1, s2;
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    double bbh, survp;
     if (stepm >= YEARM) hstepm=1;    /*extern weight */
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    /* We are differentiating ll according to initial status */
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);    /*for(i=1;i<imx;i++) 
     gp=matrix(0,nhstepm,1,nlstate);      printf(" %d\n",s[4][i]);
     gm=matrix(0,nhstepm,1,nlstate);    */
     cov[1]=1.;
     for(theta=1; theta <=npar; theta++){  
       for(i=1; i<=npar; i++){ /* Computes gradient */    for(k=1; k<=nlstate; k++) ll[k]=0.;
         xp[i] = x[i] + (i==theta ?delti[theta]:0);  
       }    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      for(mi=1; mi<= wav[i]-1; mi++){
         for (ii=1;ii<=nlstate+ndeath;ii++)
       if (popbased==1) {          for (j=1;j<=nlstate+ndeath;j++){
         for(i=1; i<=nlstate;i++)            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           prlim[i][i]=probs[(int)age][i][ij];            savm[ii][j]=(ii==j ? 1.0 : 0.0);
       }          }
              for(d=0; d<dh[mi][i]; d++){
       for(j=1; j<= nlstate; j++){          newm=savm;
         for(h=0; h<=nhstepm; h++){          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)          for (kk=1; kk<=cptcovage;kk++) {
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         }          }
       }          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       for(i=1; i<=npar; i++) /* Computes gradient */          savm=oldm;
         xp[i] = x[i] - (i==theta ?delti[theta]:0);          oldm=newm;
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);          } /* end mult */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        
         s1=s[mw[mi][i]][i];
       if (popbased==1) {        s2=s[mw[mi+1][i]][i];
         for(i=1; i<=nlstate;i++)        bbh=(double)bh[mi][i]/(double)stepm; 
           prlim[i][i]=probs[(int)age][i][ij];        /* bias is positive if real duration
       }         * is higher than the multiple of stepm and negative otherwise.
          */
       for(j=1; j<= nlstate; j++){        if( s2 > nlstate && (mle <5) ){  /* Jackson */
         for(h=0; h<=nhstepm; h++){          lli=log(out[s1][s2] - savm[s1][s2]);
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)        } else if (mle==1){
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
         }        } else if(mle==2){
       }          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
         } else if(mle==3){  /* exponential inter-extrapolation */
       for(j=1; j<= nlstate; j++)          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
         for(h=0; h<=nhstepm; h++){        } else if (mle==4){  /* mle=4 no inter-extrapolation */
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];          lli=log(out[s1][s2]); /* Original formula */
         }        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
     } /* End theta */          lli=log(out[s1][s2]); /* Original formula */
         } /* End of if */
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);        ipmx +=1;
         sw += weight[i];
     for(h=0; h<=nhstepm; h++)        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       for(j=1; j<=nlstate;j++)  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
         for(theta=1; theta <=npar; theta++)        if(globpr){
           trgradg[h][j][theta]=gradg[h][theta][j];          fprintf(ficresilk,"%9d %6d %1d %1d %1d %1d %3d %10.6f %6.4f\
    %10.6f %10.6f %10.6f ", \
     for(i=1;i<=nlstate;i++)                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
       for(j=1;j<=nlstate;j++)                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
         vareij[i][j][(int)age] =0.;          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
     for(h=0;h<=nhstepm;h++){            llt +=ll[k]*gipmx/gsw;
       for(k=0;k<=nhstepm;k++){            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);          }
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);          fprintf(ficresilk," %10.6f\n", -llt);
         for(i=1;i<=nlstate;i++)        }
           for(j=1;j<=nlstate;j++)      } /* end of wave */
             vareij[i][j][(int)age] += doldm[i][j];    } /* end of individual */
       }    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
     }    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
     h=1;    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
     if (stepm >= YEARM) h=stepm/YEARM;    if(globpr==0){ /* First time we count the contributions and weights */
     fprintf(ficresvij,"%.0f ",age );      gipmx=ipmx;
     for(i=1; i<=nlstate;i++)      gsw=sw;
       for(j=1; j<=nlstate;j++){    }
         fprintf(ficresvij," %.4f", h*vareij[i][j][(int)age]);    return -l;
       }  }
     fprintf(ficresvij,"\n");  
     free_matrix(gp,0,nhstepm,1,nlstate);  
     free_matrix(gm,0,nhstepm,1,nlstate);  /*************** function likelione ***********/
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);  {
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    /* This routine should help understanding what is done with 
   } /* End age */       the selection of individuals/waves and
         to check the exact contribution to the likelihood.
   free_vector(xp,1,npar);       Plotting could be done.
   free_matrix(doldm,1,nlstate,1,npar);     */
   free_matrix(dnewm,1,nlstate,1,nlstate);    int k;
   
 }    if(*globpri !=0){ /* Just counts and sums, no printings */
       strcpy(fileresilk,"ilk"); 
 /************ Variance of prevlim ******************/      strcat(fileresilk,fileres);
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
 {        printf("Problem with resultfile: %s\n", fileresilk);
   /* Variance of prevalence limit */        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/      }
   double **newm;      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
   double **dnewm,**doldm;      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
   int i, j, nhstepm, hstepm;      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
   int k, cptcode;      for(k=1; k<=nlstate; k++) 
   double *xp;        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
   double *gp, *gm;      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
   double **gradg, **trgradg;    }
   double age,agelim;  
   int theta;    *fretone=(*funcone)(p);
        if(*globpri !=0){
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");      fclose(ficresilk);
   fprintf(ficresvpl,"# Age");      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
   for(i=1; i<=nlstate;i++)      fflush(fichtm); 
       fprintf(ficresvpl," %1d-%1d",i,i);    } 
   fprintf(ficresvpl,"\n");    return;
   }
   xp=vector(1,npar);  
   dnewm=matrix(1,nlstate,1,npar);  
   doldm=matrix(1,nlstate,1,nlstate);  /*********** Maximum Likelihood Estimation ***************/
    
   hstepm=1*YEARM; /* Every year of age */  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */  {
   agelim = AGESUP;    int i,j, iter;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    double **xi;
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    double fret;
     if (stepm >= YEARM) hstepm=1;    double fretone; /* Only one call to likelihood */
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    /*  char filerespow[FILENAMELENGTH];*/
     gradg=matrix(1,npar,1,nlstate);    xi=matrix(1,npar,1,npar);
     gp=vector(1,nlstate);    for (i=1;i<=npar;i++)
     gm=vector(1,nlstate);      for (j=1;j<=npar;j++)
         xi[i][j]=(i==j ? 1.0 : 0.0);
     for(theta=1; theta <=npar; theta++){    printf("Powell\n");  fprintf(ficlog,"Powell\n");
       for(i=1; i<=npar; i++){ /* Computes gradient */    strcpy(filerespow,"pow"); 
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    strcat(filerespow,fileres);
       }    if((ficrespow=fopen(filerespow,"w"))==NULL) {
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      printf("Problem with resultfile: %s\n", filerespow);
       for(i=1;i<=nlstate;i++)      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
         gp[i] = prlim[i][i];    }
        fprintf(ficrespow,"# Powell\n# iter -2*LL");
       for(i=1; i<=npar; i++) /* Computes gradient */    for (i=1;i<=nlstate;i++)
         xp[i] = x[i] - (i==theta ?delti[theta]:0);      for(j=1;j<=nlstate+ndeath;j++)
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       for(i=1;i<=nlstate;i++)    fprintf(ficrespow,"\n");
         gm[i] = prlim[i][i];  
     powell(p,xi,npar,ftol,&iter,&fret,func);
       for(i=1;i<=nlstate;i++)  
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];    fclose(ficrespow);
     } /* End theta */    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
     fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
     trgradg =matrix(1,nlstate,1,npar);    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   
     for(j=1; j<=nlstate;j++)  }
       for(theta=1; theta <=npar; theta++)  
         trgradg[j][theta]=gradg[theta][j];  /**** Computes Hessian and covariance matrix ***/
   void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
     for(i=1;i<=nlstate;i++)  {
       varpl[i][(int)age] =0.;    double  **a,**y,*x,pd;
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);    double **hess;
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);    int i, j,jk;
     for(i=1;i<=nlstate;i++)    int *indx;
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */  
     double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
     fprintf(ficresvpl,"%.0f ",age );    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
     for(i=1; i<=nlstate;i++)    void lubksb(double **a, int npar, int *indx, double b[]) ;
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));    void ludcmp(double **a, int npar, int *indx, double *d) ;
     fprintf(ficresvpl,"\n");    double gompertz(double p[]);
     free_vector(gp,1,nlstate);    hess=matrix(1,npar,1,npar);
     free_vector(gm,1,nlstate);  
     free_matrix(gradg,1,npar,1,nlstate);    printf("\nCalculation of the hessian matrix. Wait...\n");
     free_matrix(trgradg,1,nlstate,1,npar);    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
   } /* End age */    for (i=1;i<=npar;i++){
       printf("%d",i);fflush(stdout);
   free_vector(xp,1,npar);      fprintf(ficlog,"%d",i);fflush(ficlog);
   free_matrix(doldm,1,nlstate,1,npar);     
   free_matrix(dnewm,1,nlstate,1,nlstate);       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
       
 }      /*  printf(" %f ",p[i]);
           printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
 /************ Variance of one-step probabilities  ******************/    }
 void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij)    
 {    for (i=1;i<=npar;i++) {
   int i, j;      for (j=1;j<=npar;j++)  {
   int k=0, cptcode;        if (j>i) { 
   double **dnewm,**doldm;          printf(".%d%d",i,j);fflush(stdout);
   double *xp;          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
   double *gp, *gm;          hess[i][j]=hessij(p,delti,i,j,func,npar);
   double **gradg, **trgradg;          
   double age,agelim, cov[NCOVMAX];          hess[j][i]=hess[i][j];    
   int theta;          /*printf(" %lf ",hess[i][j]);*/
   char fileresprob[FILENAMELENGTH];        }
       }
   strcpy(fileresprob,"prob");    }
   strcat(fileresprob,fileres);    printf("\n");
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {    fprintf(ficlog,"\n");
     printf("Problem with resultfile: %s\n", fileresprob);  
   }    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
   printf("Computing variance of one-step probabilities: result on file '%s' \n",fileresprob);    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
      
     a=matrix(1,npar,1,npar);
   xp=vector(1,npar);    y=matrix(1,npar,1,npar);
   dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    x=vector(1,npar);
   doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));    indx=ivector(1,npar);
      for (i=1;i<=npar;i++)
   cov[1]=1;      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
   for (age=bage; age<=fage; age ++){    ludcmp(a,npar,indx,&pd);
     cov[2]=age;  
     gradg=matrix(1,npar,1,9);    for (j=1;j<=npar;j++) {
     trgradg=matrix(1,9,1,npar);      for (i=1;i<=npar;i++) x[i]=0;
     gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));      x[j]=1;
     gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));      lubksb(a,npar,indx,x);
          for (i=1;i<=npar;i++){ 
     for(theta=1; theta <=npar; theta++){        matcov[i][j]=x[i];
       for(i=1; i<=npar; i++)      }
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    }
        
       pmij(pmmij,cov,ncovmodel,xp,nlstate);    printf("\n#Hessian matrix#\n");
        fprintf(ficlog,"\n#Hessian matrix#\n");
       k=0;    for (i=1;i<=npar;i++) { 
       for(i=1; i<= (nlstate+ndeath); i++){      for (j=1;j<=npar;j++) { 
         for(j=1; j<=(nlstate+ndeath);j++){        printf("%.3e ",hess[i][j]);
            k=k+1;        fprintf(ficlog,"%.3e ",hess[i][j]);
           gp[k]=pmmij[i][j];      }
         }      printf("\n");
       }      fprintf(ficlog,"\n");
     }
       for(i=1; i<=npar; i++)  
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    /* Recompute Inverse */
        for (i=1;i<=npar;i++)
       for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
       pmij(pmmij,cov,ncovmodel,xp,nlstate);    ludcmp(a,npar,indx,&pd);
       k=0;  
       for(i=1; i<=(nlstate+ndeath); i++){    /*  printf("\n#Hessian matrix recomputed#\n");
         for(j=1; j<=(nlstate+ndeath);j++){  
           k=k+1;    for (j=1;j<=npar;j++) {
           gm[k]=pmmij[i][j];      for (i=1;i<=npar;i++) x[i]=0;
         }      x[j]=1;
       }      lubksb(a,npar,indx,x);
            for (i=1;i<=npar;i++){ 
        for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)        y[i][j]=x[i];
            gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];          printf("%.3e ",y[i][j]);
     }        fprintf(ficlog,"%.3e ",y[i][j]);
       }
      for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)      printf("\n");
       for(theta=1; theta <=npar; theta++)      fprintf(ficlog,"\n");
       trgradg[j][theta]=gradg[theta][j];    }
      */
      matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);  
      matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);    free_matrix(a,1,npar,1,npar);
     free_matrix(y,1,npar,1,npar);
      pmij(pmmij,cov,ncovmodel,x,nlstate);    free_vector(x,1,npar);
     free_ivector(indx,1,npar);
      k=0;    free_matrix(hess,1,npar,1,npar);
      for(i=1; i<=(nlstate+ndeath); i++){  
        for(j=1; j<=(nlstate+ndeath);j++){  
          k=k+1;  }
          gm[k]=pmmij[i][j];  
         }  /*************** hessian matrix ****************/
      }  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
        {
      /*printf("\n%d ",(int)age);    int i;
      for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){    int l=1, lmax=20;
            double k1,k2;
     double p2[NPARMAX+1];
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));    double res;
      }*/    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
     double fx;
   fprintf(ficresprob,"\n%d ",(int)age);    int k=0,kmax=10;
     double l1;
   for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){  
     if (i== 2) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);    fx=func(x);
 if (i== 4) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);    for (i=1;i<=npar;i++) p2[i]=x[i];
   }    for(l=0 ; l <=lmax; l++){
       l1=pow(10,l);
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));      delts=delt;
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));      for(k=1 ; k <kmax; k=k+1){
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);        delt = delta*(l1*k);
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);        p2[theta]=x[theta] +delt;
 }        k1=func(p2)-fx;
  free_vector(xp,1,npar);        p2[theta]=x[theta]-delt;
 fclose(ficresprob);        k2=func(p2)-fx;
  exit(0);        /*res= (k1-2.0*fx+k2)/delt/delt; */
 }        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
         
 /***********************************************/  #ifdef DEBUG
 /**************** Main Program *****************/        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
 /***********************************************/        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   #endif
 /*int main(int argc, char *argv[])*/        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
 int main()        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
 {          k=kmax;
         }
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
   double agedeb, agefin,hf;          k=kmax; l=lmax*10.;
   double agemin=1.e20, agemax=-1.e20;        }
         else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
   double fret;          delts=delt;
   double **xi,tmp,delta;        }
       }
   double dum; /* Dummy variable */    }
   double ***p3mat;    delti[theta]=delts;
   int *indx;    return res; 
   char line[MAXLINE], linepar[MAXLINE];    
   char title[MAXLINE];  }
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];  
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], fileresf[FILENAMELENGTH];  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
   char filerest[FILENAMELENGTH];  {
   char fileregp[FILENAMELENGTH];    int i;
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];    int l=1, l1, lmax=20;
   int firstobs=1, lastobs=10;    double k1,k2,k3,k4,res,fx;
   int sdeb, sfin; /* Status at beginning and end */    double p2[NPARMAX+1];
   int c,  h , cpt,l;    int k;
   int ju,jl, mi;  
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;    fx=func(x);
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;    for (k=1; k<=2; k++) {
   int mobilav=0, fprevfore=1, lprevfore=1;      for (i=1;i<=npar;i++) p2[i]=x[i];
   int hstepm, nhstepm;      p2[thetai]=x[thetai]+delti[thetai]/k;
       p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   double bage, fage, age, agelim, agebase;      k1=func(p2)-fx;
   double ftolpl=FTOL;    
   double **prlim;      p2[thetai]=x[thetai]+delti[thetai]/k;
   double *severity;      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   double ***param; /* Matrix of parameters */      k2=func(p2)-fx;
   double  *p;    
   double **matcov; /* Matrix of covariance */      p2[thetai]=x[thetai]-delti[thetai]/k;
   double ***delti3; /* Scale */      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   double *delti; /* Scale */      k3=func(p2)-fx;
   double ***eij, ***vareij;    
   double **varpl; /* Variances of prevalence limits by age */      p2[thetai]=x[thetai]-delti[thetai]/k;
   double *epj, vepp;      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   double kk1;      k4=func(p2)-fx;
       res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
   char version[80]="Imach version 64b, May 2001, INED-EUROREVES ";  #ifdef DEBUG
   char *alph[]={"a","a","b","c","d","e"}, str[4];      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
       fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   #endif
   char z[1]="c", occ;    }
 #include <sys/time.h>    return res;
 #include <time.h>  }
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];  
   /* long total_usecs;  /************** Inverse of matrix **************/
   struct timeval start_time, end_time;  void ludcmp(double **a, int n, int *indx, double *d) 
    { 
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */    int i,imax,j,k; 
     double big,dum,sum,temp; 
     double *vv; 
   printf("\nIMACH, Version 0.64b");   
   printf("\nEnter the parameter file name: ");    vv=vector(1,n); 
     *d=1.0; 
 #ifdef windows    for (i=1;i<=n;i++) { 
   scanf("%s",pathtot);      big=0.0; 
   getcwd(pathcd, size);      for (j=1;j<=n;j++) 
   /*cygwin_split_path(pathtot,path,optionfile);        if ((temp=fabs(a[i][j])) > big) big=temp; 
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
   /* cutv(path,optionfile,pathtot,'\\');*/      vv[i]=1.0/big; 
     } 
 split(pathtot, path,optionfile);    for (j=1;j<=n;j++) { 
   chdir(path);      for (i=1;i<j;i++) { 
   replace(pathc,path);        sum=a[i][j]; 
 #endif        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
 #ifdef unix        a[i][j]=sum; 
   scanf("%s",optionfile);      } 
 #endif      big=0.0; 
       for (i=j;i<=n;i++) { 
 /*-------- arguments in the command line --------*/        sum=a[i][j]; 
         for (k=1;k<j;k++) 
   strcpy(fileres,"r");          sum -= a[i][k]*a[k][j]; 
   strcat(fileres, optionfile);        a[i][j]=sum; 
         if ( (dum=vv[i]*fabs(sum)) >= big) { 
   /*---------arguments file --------*/          big=dum; 
           imax=i; 
   if((ficpar=fopen(optionfile,"r"))==NULL)    {        } 
     printf("Problem with optionfile %s\n",optionfile);      } 
     goto end;      if (j != imax) { 
   }        for (k=1;k<=n;k++) { 
           dum=a[imax][k]; 
   strcpy(filereso,"o");          a[imax][k]=a[j][k]; 
   strcat(filereso,fileres);          a[j][k]=dum; 
   if((ficparo=fopen(filereso,"w"))==NULL) {        } 
     printf("Problem with Output resultfile: %s\n", filereso);goto end;        *d = -(*d); 
   }        vv[imax]=vv[j]; 
       } 
   /* Reads comments: lines beginning with '#' */      indx[j]=imax; 
   while((c=getc(ficpar))=='#' && c!= EOF){      if (a[j][j] == 0.0) a[j][j]=TINY; 
     ungetc(c,ficpar);      if (j != n) { 
     fgets(line, MAXLINE, ficpar);        dum=1.0/(a[j][j]); 
     puts(line);        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
     fputs(line,ficparo);      } 
   }    } 
   ungetc(c,ficpar);    free_vector(vv,1,n);  /* Doesn't work */
   ;
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncov, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);  } 
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate,ndeath, maxwav, mle, weightopt,model);  
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncov,nlstate,ndeath,maxwav, mle, weightopt,model);  void lubksb(double **a, int n, int *indx, double b[]) 
 while((c=getc(ficpar))=='#' && c!= EOF){  { 
     ungetc(c,ficpar);    int i,ii=0,ip,j; 
     fgets(line, MAXLINE, ficpar);    double sum; 
     puts(line);   
     fputs(line,ficparo);    for (i=1;i<=n;i++) { 
   }      ip=indx[i]; 
   ungetc(c,ficpar);      sum=b[ip]; 
        b[ip]=b[i]; 
   fscanf(ficpar,"fprevalence=%d lprevalence=%d pop_based=%d\n",&fprev,&lprev,&popbased);      if (ii) 
  while((c=getc(ficpar))=='#' && c!= EOF){        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
     ungetc(c,ficpar);      else if (sum) ii=i; 
     fgets(line, MAXLINE, ficpar);      b[i]=sum; 
     puts(line);    } 
     fputs(line,ficparo);    for (i=n;i>=1;i--) { 
   }      sum=b[i]; 
   ungetc(c,ficpar);      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
        b[i]=sum/a[i][i]; 
   fscanf(ficpar,"fprevalence=%d lprevalence=%d mob_average=%d\n",&fprevfore,&lprevfore,&mobilav);    } 
    } 
   covar=matrix(0,NCOVMAX,1,n);  
   cptcovn=0;  /************ Frequencies ********************/
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
   {  /* Some frequencies */
   ncovmodel=2+cptcovn;    
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
      int first;
   /* Read guess parameters */    double ***freq; /* Frequencies */
   /* Reads comments: lines beginning with '#' */    double *pp, **prop;
   while((c=getc(ficpar))=='#' && c!= EOF){    double pos,posprop, k2, dateintsum=0,k2cpt=0;
     ungetc(c,ficpar);    FILE *ficresp;
     fgets(line, MAXLINE, ficpar);    char fileresp[FILENAMELENGTH];
     puts(line);    
     fputs(line,ficparo);    pp=vector(1,nlstate);
   }    prop=matrix(1,nlstate,iagemin,iagemax+3);
   ungetc(c,ficpar);    strcpy(fileresp,"p");
      strcat(fileresp,fileres);
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    if((ficresp=fopen(fileresp,"w"))==NULL) {
     for(i=1; i <=nlstate; i++)      printf("Problem with prevalence resultfile: %s\n", fileresp);
     for(j=1; j <=nlstate+ndeath-1; j++){      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
       fscanf(ficpar,"%1d%1d",&i1,&j1);      exit(0);
       fprintf(ficparo,"%1d%1d",i1,j1);    }
       printf("%1d%1d",i,j);    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
       for(k=1; k<=ncovmodel;k++){    j1=0;
         fscanf(ficpar," %lf",&param[i][j][k]);    
         printf(" %lf",param[i][j][k]);    j=cptcoveff;
         fprintf(ficparo," %lf",param[i][j][k]);    if (cptcovn<1) {j=1;ncodemax[1]=1;}
       }  
       fscanf(ficpar,"\n");    first=1;
       printf("\n");  
       fprintf(ficparo,"\n");    for(k1=1; k1<=j;k1++){
     }      for(i1=1; i1<=ncodemax[k1];i1++){
          j1++;
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
           scanf("%d", i);*/
   p=param[1][1];        for (i=-5; i<=nlstate+ndeath; i++)  
            for (jk=-5; jk<=nlstate+ndeath; jk++)  
   /* Reads comments: lines beginning with '#' */            for(m=iagemin; m <= iagemax+3; m++)
   while((c=getc(ficpar))=='#' && c!= EOF){              freq[i][jk][m]=0;
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);      for (i=1; i<=nlstate; i++)  
     puts(line);        for(m=iagemin; m <= iagemax+3; m++)
     fputs(line,ficparo);          prop[i][m]=0;
   }        
   ungetc(c,ficpar);        dateintsum=0;
         k2cpt=0;
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);        for (i=1; i<=imx; i++) {
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */          bool=1;
   for(i=1; i <=nlstate; i++){          if  (cptcovn>0) {
     for(j=1; j <=nlstate+ndeath-1; j++){            for (z1=1; z1<=cptcoveff; z1++) 
       fscanf(ficpar,"%1d%1d",&i1,&j1);              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
       printf("%1d%1d",i,j);                bool=0;
       fprintf(ficparo,"%1d%1d",i1,j1);          }
       for(k=1; k<=ncovmodel;k++){          if (bool==1){
         fscanf(ficpar,"%le",&delti3[i][j][k]);            for(m=firstpass; m<=lastpass; m++){
         printf(" %le",delti3[i][j][k]);              k2=anint[m][i]+(mint[m][i]/12.);
         fprintf(ficparo," %le",delti3[i][j][k]);              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
       }                if(agev[m][i]==0) agev[m][i]=iagemax+1;
       fscanf(ficpar,"\n");                if(agev[m][i]==1) agev[m][i]=iagemax+2;
       printf("\n");                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
       fprintf(ficparo,"\n");                if (m<lastpass) {
     }                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
   }                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
   delti=delti3[1][1];                }
                  
   /* Reads comments: lines beginning with '#' */                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
   while((c=getc(ficpar))=='#' && c!= EOF){                  dateintsum=dateintsum+k2;
     ungetc(c,ficpar);                  k2cpt++;
     fgets(line, MAXLINE, ficpar);                }
     puts(line);                /*}*/
     fputs(line,ficparo);            }
   }          }
   ungetc(c,ficpar);        }
           
   matcov=matrix(1,npar,1,npar);        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
   for(i=1; i <=npar; i++){  fprintf(ficresp, "#Local time at start: %s", strstart);
     fscanf(ficpar,"%s",&str);        if  (cptcovn>0) {
     printf("%s",str);          fprintf(ficresp, "\n#********** Variable "); 
     fprintf(ficparo,"%s",str);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     for(j=1; j <=i; j++){          fprintf(ficresp, "**********\n#");
       fscanf(ficpar," %le",&matcov[i][j]);        }
       printf(" %.5le",matcov[i][j]);        for(i=1; i<=nlstate;i++) 
       fprintf(ficparo," %.5le",matcov[i][j]);          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
     }        fprintf(ficresp, "\n");
     fscanf(ficpar,"\n");        
     printf("\n");        for(i=iagemin; i <= iagemax+3; i++){
     fprintf(ficparo,"\n");          if(i==iagemax+3){
   }            fprintf(ficlog,"Total");
   for(i=1; i <=npar; i++)          }else{
     for(j=i+1;j<=npar;j++)            if(first==1){
       matcov[i][j]=matcov[j][i];              first=0;
                  printf("See log file for details...\n");
   printf("\n");            }
             fprintf(ficlog,"Age %d", i);
           }
     /*-------- data file ----------*/          for(jk=1; jk <=nlstate ; jk++){
     if((ficres =fopen(fileres,"w"))==NULL) {            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
       printf("Problem with resultfile: %s\n", fileres);goto end;              pp[jk] += freq[jk][m][i]; 
     }          }
     fprintf(ficres,"#%s\n",version);          for(jk=1; jk <=nlstate ; jk++){
                for(m=-1, pos=0; m <=0 ; m++)
     if((fic=fopen(datafile,"r"))==NULL)    {              pos += freq[jk][m][i];
       printf("Problem with datafile: %s\n", datafile);goto end;            if(pp[jk]>=1.e-10){
     }              if(first==1){
               printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
     n= lastobs;              }
     severity = vector(1,maxwav);              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
     outcome=imatrix(1,maxwav+1,1,n);            }else{
     num=ivector(1,n);              if(first==1)
     moisnais=vector(1,n);                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
     annais=vector(1,n);              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
     moisdc=vector(1,n);            }
     andc=vector(1,n);          }
     agedc=vector(1,n);  
     cod=ivector(1,n);          for(jk=1; jk <=nlstate ; jk++){
     weight=vector(1,n);            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */              pp[jk] += freq[jk][m][i];
     mint=matrix(1,maxwav,1,n);          }       
     anint=matrix(1,maxwav,1,n);          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
     s=imatrix(1,maxwav+1,1,n);            pos += pp[jk];
     adl=imatrix(1,maxwav+1,1,n);                posprop += prop[jk][i];
     tab=ivector(1,NCOVMAX);          }
     ncodemax=ivector(1,8);          for(jk=1; jk <=nlstate ; jk++){
             if(pos>=1.e-5){
     i=1;              if(first==1)
     while (fgets(line, MAXLINE, fic) != NULL)    {                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
       if ((i >= firstobs) && (i <=lastobs)) {              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
                    }else{
         for (j=maxwav;j>=1;j--){              if(first==1)
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
           strcpy(line,stra);              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);            }
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);            if( i <= iagemax){
         }              if(pos>=1.e-5){
                        fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);                /*probs[i][jk][j1]= pp[jk]/pos;*/
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
               }
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);              else
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
             }
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);          }
         for (j=ncov;j>=1;j--){          
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);          for(jk=-1; jk <=nlstate+ndeath; jk++)
         }            for(m=-1; m <=nlstate+ndeath; m++)
         num[i]=atol(stra);              if(freq[jk][m][i] !=0 ) {
                      if(first==1)
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
               }
         i=i+1;          if(i <= iagemax)
       }            fprintf(ficresp,"\n");
     }          if(first==1)
     /* printf("ii=%d", ij);            printf("Others in log...\n");
        scanf("%d",i);*/          fprintf(ficlog,"\n");
   imx=i-1; /* Number of individuals */        }
       }
   /* for (i=1; i<=imx; i++){    }
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;    dateintmean=dateintsum/k2cpt; 
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;   
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;    fclose(ficresp);
     }    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
     for (i=1; i<=imx; i++) printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));*/    free_vector(pp,1,nlstate);
     free_matrix(prop,1,nlstate,iagemin, iagemax+3);
   /* Calculation of the number of parameter from char model*/    /* End of Freq */
   Tvar=ivector(1,15);  }
   Tprod=ivector(1,15);  
   Tvaraff=ivector(1,15);  /************ Prevalence ********************/
   Tvard=imatrix(1,15,1,2);  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
   Tage=ivector(1,15);        {  
        /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
   if (strlen(model) >1){       in each health status at the date of interview (if between dateprev1 and dateprev2).
     j=0, j1=0, k1=1, k2=1;       We still use firstpass and lastpass as another selection.
     j=nbocc(model,'+');    */
     j1=nbocc(model,'*');   
     cptcovn=j+1;    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
     cptcovprod=j1;    double ***freq; /* Frequencies */
        double *pp, **prop;
        double pos,posprop; 
     strcpy(modelsav,model);    double  y2; /* in fractional years */
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){    int iagemin, iagemax;
       printf("Error. Non available option model=%s ",model);  
       goto end;    iagemin= (int) agemin;
     }    iagemax= (int) agemax;
        /*pp=vector(1,nlstate);*/
     for(i=(j+1); i>=1;i--){    prop=matrix(1,nlstate,iagemin,iagemax+3); 
       cutv(stra,strb,modelsav,'+');    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);    j1=0;
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/    
       /*scanf("%d",i);*/    j=cptcoveff;
       if (strchr(strb,'*')) {    if (cptcovn<1) {j=1;ncodemax[1]=1;}
         cutv(strd,strc,strb,'*');    
         if (strcmp(strc,"age")==0) {    for(k1=1; k1<=j;k1++){
           cptcovprod--;      for(i1=1; i1<=ncodemax[k1];i1++){
           cutv(strb,stre,strd,'V');        j1++;
           Tvar[i]=atoi(stre);        
           cptcovage++;        for (i=1; i<=nlstate; i++)  
             Tage[cptcovage]=i;          for(m=iagemin; m <= iagemax+3; m++)
             /*printf("stre=%s ", stre);*/            prop[i][m]=0.0;
         }       
         else if (strcmp(strd,"age")==0) {        for (i=1; i<=imx; i++) { /* Each individual */
           cptcovprod--;          bool=1;
           cutv(strb,stre,strc,'V');          if  (cptcovn>0) {
           Tvar[i]=atoi(stre);            for (z1=1; z1<=cptcoveff; z1++) 
           cptcovage++;              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
           Tage[cptcovage]=i;                bool=0;
         }          } 
         else {          if (bool==1) { 
           cutv(strb,stre,strc,'V');            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
           Tvar[i]=ncov+k1;              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
           cutv(strb,strc,strd,'V');              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
           Tprod[k1]=i;                if(agev[m][i]==0) agev[m][i]=iagemax+1;
           Tvard[k1][1]=atoi(strc);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
           Tvard[k1][2]=atoi(stre);                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
           Tvar[cptcovn+k2]=Tvard[k1][1];                if (s[m][i]>0 && s[m][i]<=nlstate) { 
           Tvar[cptcovn+k2+1]=Tvard[k1][2];                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
           for (k=1; k<=lastobs;k++)                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
             covar[ncov+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];                  prop[s[m][i]][iagemax+3] += weight[i]; 
           k1++;                } 
           k2=k2+2;              }
         }            } /* end selection of waves */
       }          }
       else {        }
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/        for(i=iagemin; i <= iagemax+3; i++){  
        /*  scanf("%d",i);*/          
       cutv(strd,strc,strb,'V');          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
       Tvar[i]=atoi(strc);            posprop += prop[jk][i]; 
       }          } 
       strcpy(modelsav,stra);    
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);          for(jk=1; jk <=nlstate ; jk++){     
         scanf("%d",i);*/            if( i <=  iagemax){ 
     }              if(posprop>=1.e-5){ 
 }                probs[i][jk][j1]= prop[jk][i]/posprop;
                } 
   /*printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);            } 
   printf("cptcovprod=%d ", cptcovprod);          }/* end jk */ 
   scanf("%d ",i);*/        }/* end i */ 
     fclose(fic);      } /* end i1 */
     } /* end k1 */
     /*  if(mle==1){*/    
     if (weightopt != 1) { /* Maximisation without weights*/    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
       for(i=1;i<=n;i++) weight[i]=1.0;    /*free_vector(pp,1,nlstate);*/
     }    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
     /*-calculation of age at interview from date of interview and age at death -*/  }  /* End of prevalence */
     agev=matrix(1,maxwav,1,imx);  
   /************* Waves Concatenation ***************/
    for (i=1; i<=imx; i++)  
      for(m=2; (m<= maxwav); m++)  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){  {
          anint[m][i]=9999;    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
          s[m][i]=-1;       Death is a valid wave (if date is known).
        }       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
           dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
     for (i=1; i<=imx; i++)  {       and mw[mi+1][i]. dh depends on stepm.
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);       */
       for(m=1; (m<= maxwav); m++){  
         if(s[m][i] >0){    int i, mi, m;
           if (s[m][i] == nlstate+1) {    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
             if(agedc[i]>0)       double sum=0., jmean=0.;*/
               if(moisdc[i]!=99 && andc[i]!=9999)    int first;
               agev[m][i]=agedc[i];    int j, k=0,jk, ju, jl;
             else {    double sum=0.;
               if (andc[i]!=9999){    first=0;
               printf("Warning negative age at death: %d line:%d\n",num[i],i);    jmin=1e+5;
               agev[m][i]=-1;    jmax=-1;
               }    jmean=0.;
             }    for(i=1; i<=imx; i++){
           }      mi=0;
           else if(s[m][i] !=9){ /* Should no more exist */      m=firstpass;
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);      while(s[m][i] <= nlstate){
             if(mint[m][i]==99 || anint[m][i]==9999)        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
               agev[m][i]=1;          mw[++mi][i]=m;
             else if(agev[m][i] <agemin){        if(m >=lastpass)
               agemin=agev[m][i];          break;
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/        else
             }          m++;
             else if(agev[m][i] >agemax){      }/* end while */
               agemax=agev[m][i];      if (s[m][i] > nlstate){
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/        mi++;     /* Death is another wave */
             }        /* if(mi==0)  never been interviewed correctly before death */
             /*agev[m][i]=anint[m][i]-annais[i];*/           /* Only death is a correct wave */
             /*   agev[m][i] = age[i]+2*m;*/        mw[mi][i]=m;
           }      }
           else { /* =9 */  
             agev[m][i]=1;      wav[i]=mi;
             s[m][i]=-1;      if(mi==0){
           }        nbwarn++;
         }        if(first==0){
         else /*= 0 Unknown */          printf("Warning! None valid information for:%ld line=%d (skipped) and may be others, see log file\n",num[i],i);
           agev[m][i]=1;          first=1;
       }        }
            if(first==1){
     }          fprintf(ficlog,"Warning! None valid information for:%ld line=%d (skipped)\n",num[i],i);
     for (i=1; i<=imx; i++)  {        }
       for(m=1; (m<= maxwav); m++){      } /* end mi==0 */
         if (s[m][i] > (nlstate+ndeath)) {    } /* End individuals */
           printf("Error: Wrong value in nlstate or ndeath\n");    
           goto end;    for(i=1; i<=imx; i++){
         }      for(mi=1; mi<wav[i];mi++){
       }        if (stepm <=0)
     }          dh[mi][i]=1;
         else{
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
             if (agedc[i] < 2*AGESUP) {
     free_vector(severity,1,maxwav);              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
     free_imatrix(outcome,1,maxwav+1,1,n);              if(j==0) j=1;  /* Survives at least one month after exam */
     free_vector(moisnais,1,n);              else if(j<0){
     free_vector(annais,1,n);                nberr++;
     free_matrix(mint,1,maxwav,1,n);                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     free_matrix(anint,1,maxwav,1,n);                j=1; /* Temporary Dangerous patch */
     free_vector(moisdc,1,n);                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
     free_vector(andc,1,n);                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                 fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
                  }
     wav=ivector(1,imx);              k=k+1;
     dh=imatrix(1,lastpass-firstpass+1,1,imx);              if (j >= jmax) jmax=j;
     mw=imatrix(1,lastpass-firstpass+1,1,imx);              if (j <= jmin) jmin=j;
                  sum=sum+j;
     /* Concatenates waves */              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
             }
           }
       Tcode=ivector(1,100);          else{
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
       ncodemax[1]=1;  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);  
                  k=k+1;
    codtab=imatrix(1,100,1,10);            if (j >= jmax) jmax=j;
    h=0;            else if (j <= jmin)jmin=j;
    m=pow(2,cptcoveff);            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
              /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
    for(k=1;k<=cptcoveff; k++){            if(j<0){
      for(i=1; i <=(m/pow(2,k));i++){              nberr++;
        for(j=1; j <= ncodemax[k]; j++){              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
            h++;            }
            if (h>m) h=1;codtab[h][k]=j;            sum=sum+j;
          }          }
        }          jk= j/stepm;
      }          jl= j -jk*stepm;
    }          ju= j -(jk+1)*stepm;
           if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
             if(jl==0){
    /*for(i=1; i <=m ;i++){              dh[mi][i]=jk;
      for(k=1; k <=cptcovn; k++){              bh[mi][i]=0;
        printf("i=%d k=%d %d %d",i,k,codtab[i][k], cptcoveff);            }else{ /* We want a negative bias in order to only have interpolation ie
      }                    * at the price of an extra matrix product in likelihood */
      printf("\n");              dh[mi][i]=jk+1;
    }              bh[mi][i]=ju;
    scanf("%d",i);*/            }
              }else{
    /* Calculates basic frequencies. Computes observed prevalence at single age            if(jl <= -ju){
        and prints on file fileres'p'. */              dh[mi][i]=jk;
   freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax);              bh[mi][i]=jl;       /* bias is positive if real duration
                                    * is higher than the multiple of stepm and negative otherwise.
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                                   */
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */            }
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */            else{
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */              dh[mi][i]=jk+1;
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */              bh[mi][i]=ju;
                  }
     /* For Powell, parameters are in a vector p[] starting at p[1]            if(dh[mi][i]==0){
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */              dh[mi][i]=1; /* At least one step */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */              bh[mi][i]=ju; /* At least one step */
               /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
     if(mle==1){            }
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);          } /* end if mle */
     }        }
          } /* end wave */
     /*--------- results files --------------*/    }
     fprintf(ficres,"\ntitle=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate, ndeath, maxwav, mle,weightopt,model);    jmean=sum/k;
        printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
    jk=1;    fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
    fprintf(ficres,"# Parameters\n");   }
    printf("# Parameters\n");  
    for(i=1,jk=1; i <=nlstate; i++){  /*********** Tricode ****************************/
      for(k=1; k <=(nlstate+ndeath); k++){  void tricode(int *Tvar, int **nbcode, int imx)
        if (k != i)  {
          {    
            printf("%d%d ",i,k);    int Ndum[20],ij=1, k, j, i, maxncov=19;
            fprintf(ficres,"%1d%1d ",i,k);    int cptcode=0;
            for(j=1; j <=ncovmodel; j++){    cptcoveff=0; 
              printf("%f ",p[jk]);   
              fprintf(ficres,"%f ",p[jk]);    for (k=0; k<maxncov; k++) Ndum[k]=0;
              jk++;    for (k=1; k<=7; k++) ncodemax[k]=0;
            }  
            printf("\n");    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
            fprintf(ficres,"\n");      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
          }                                 modality*/ 
      }        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
    }        Ndum[ij]++; /*store the modality */
  if(mle==1){        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
     /* Computing hessian and covariance matrix */        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
     ftolhess=ftol; /* Usually correct */                                         Tvar[j]. If V=sex and male is 0 and 
     hesscov(matcov, p, npar, delti, ftolhess, func);                                         female is 1, then  cptcode=1.*/
  }      }
     fprintf(ficres,"# Scales\n");  
     printf("# Scales\n");      for (i=0; i<=cptcode; i++) {
      for(i=1,jk=1; i <=nlstate; i++){        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
       for(j=1; j <=nlstate+ndeath; j++){      }
         if (j!=i) {  
           fprintf(ficres,"%1d%1d",i,j);      ij=1; 
           printf("%1d%1d",i,j);      for (i=1; i<=ncodemax[j]; i++) {
           for(k=1; k<=ncovmodel;k++){        for (k=0; k<= maxncov; k++) {
             printf(" %.5e",delti[jk]);          if (Ndum[k] != 0) {
             fprintf(ficres," %.5e",delti[jk]);            nbcode[Tvar[j]][ij]=k; 
             jk++;            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
           }            
           printf("\n");            ij++;
           fprintf(ficres,"\n");          }
         }          if (ij > ncodemax[j]) break; 
       }        }  
       }      } 
        }  
     k=1;  
     fprintf(ficres,"# Covariance\n");   for (k=0; k< maxncov; k++) Ndum[k]=0;
     printf("# Covariance\n");  
     for(i=1;i<=npar;i++){   for (i=1; i<=ncovmodel-2; i++) { 
       /*  if (k>nlstate) k=1;     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
       i1=(i-1)/(ncovmodel*nlstate)+1;     ij=Tvar[i];
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);     Ndum[ij]++;
       printf("%s%d%d",alph[k],i1,tab[i]);*/   }
       fprintf(ficres,"%3d",i);  
       printf("%3d",i);   ij=1;
       for(j=1; j<=i;j++){   for (i=1; i<= maxncov; i++) {
         fprintf(ficres," %.5e",matcov[i][j]);     if((Ndum[i]!=0) && (i<=ncovcol)){
         printf(" %.5e",matcov[i][j]);       Tvaraff[ij]=i; /*For printing */
       }       ij++;
       fprintf(ficres,"\n");     }
       printf("\n");   }
       k++;   
     }   cptcoveff=ij-1; /*Number of simple covariates*/
      }
     while((c=getc(ficpar))=='#' && c!= EOF){  
       ungetc(c,ficpar);  /*********** Health Expectancies ****************/
       fgets(line, MAXLINE, ficpar);  
       puts(line);  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov,char strstart[] )
       fputs(line,ficparo);  
     }  {
     ungetc(c,ficpar);    /* Health expectancies */
      int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);    double age, agelim, hf;
        double ***p3mat,***varhe;
     if (fage <= 2) {    double **dnewm,**doldm;
       bage = agemin;    double *xp;
       fage = agemax;    double **gp, **gm;
     }    double ***gradg, ***trgradg;
     int theta;
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");  
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
     xp=vector(1,npar);
        dnewm=matrix(1,nlstate*nlstate,1,npar);
 /*------------ gnuplot -------------*/    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
 chdir(pathcd);    
   if((ficgp=fopen("graph.plt","w"))==NULL) {    fprintf(ficreseij,"# Local time at start: %s", strstart);
     printf("Problem with file graph.gp");goto end;    fprintf(ficreseij,"# Health expectancies\n");
   }    fprintf(ficreseij,"# Age");
 #ifdef windows    for(i=1; i<=nlstate;i++)
   fprintf(ficgp,"cd \"%s\" \n",pathc);      for(j=1; j<=nlstate;j++)
 #endif        fprintf(ficreseij," %1d-%1d (SE)",i,j);
 m=pow(2,cptcoveff);    fprintf(ficreseij,"\n");
    
  /* 1eme*/    if(estepm < stepm){
   for (cpt=1; cpt<= nlstate ; cpt ++) {      printf ("Problem %d lower than %d\n",estepm, stepm);
    for (k1=1; k1<= m ; k1 ++) {    }
     else  hstepm=estepm;   
 #ifdef windows    /* We compute the life expectancy from trapezoids spaced every estepm months
     fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",agemin,fage,fileres,k1-1,k1-1);     * This is mainly to measure the difference between two models: for example
 #endif     * if stepm=24 months pijx are given only every 2 years and by summing them
 #ifdef unix     * we are calculating an estimate of the Life Expectancy assuming a linear 
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",agemin,fage,fileres);     * progression in between and thus overestimating or underestimating according
 #endif     * to the curvature of the survival function. If, for the same date, we 
      * estimate the model with stepm=1 month, we can keep estepm to 24 months
 for (i=1; i<= nlstate ; i ++) {     * to compare the new estimate of Life expectancy with the same linear 
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");     * hypothesis. A more precise result, taking into account a more precise
   else fprintf(ficgp," \%%*lf (\%%*lf)");     * curvature will be obtained if estepm is as small as stepm. */
 }  
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);    /* For example we decided to compute the life expectancy with the smallest unit */
     for (i=1; i<= nlstate ; i ++) {    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");       nhstepm is the number of hstepm from age to agelim 
   else fprintf(ficgp," \%%*lf (\%%*lf)");       nstepm is the number of stepm from age to agelin. 
 }       Look at hpijx to understand the reason of that which relies in memory size
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);       and note for a fixed period like estepm months */
      for (i=1; i<= nlstate ; i ++) {    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");       survival function given by stepm (the optimization length). Unfortunately it
   else fprintf(ficgp," \%%*lf (\%%*lf)");       means that if the survival funtion is printed only each two years of age and if
 }         you sum them up and add 1 year (area under the trapezoids) you won't get the same 
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));       results. So we changed our mind and took the option of the best precision.
 #ifdef unix    */
 fprintf(ficgp,"\nset ter gif small size 400,300");    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
 #endif  
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);    agelim=AGESUP;
    }    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   }      /* nhstepm age range expressed in number of stepm */
   /*2 eme*/      nstepm=(int) rint((agelim-age)*YEARM/stepm); 
       /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
   for (k1=1; k1<= m ; k1 ++) {      /* if (stepm >= YEARM) hstepm=1;*/
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",agemin,fage);      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
          p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     for (i=1; i<= nlstate+1 ; i ++) {      gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
       k=2*i;      gp=matrix(0,nhstepm,1,nlstate*nlstate);
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);      gm=matrix(0,nhstepm,1,nlstate*nlstate);
       for (j=1; j<= nlstate+1 ; j ++) {  
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");      /* Computed by stepm unit matrices, product of hstepm matrices, stored
   else fprintf(ficgp," \%%*lf (\%%*lf)");         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
 }        hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");   
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);  
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       for (j=1; j<= nlstate+1 ; j ++) {  
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");      /* Computing  Variances of health expectancies */
         else fprintf(ficgp," \%%*lf (\%%*lf)");  
 }         for(theta=1; theta <=npar; theta++){
       fprintf(ficgp,"\" t\"\" w l 0,");        for(i=1; i<=npar; i++){ 
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
       for (j=1; j<= nlstate+1 ; j ++) {        }
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   else fprintf(ficgp," \%%*lf (\%%*lf)");    
 }          cptj=0;
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");        for(j=1; j<= nlstate; j++){
       else fprintf(ficgp,"\" t\"\" w l 0,");          for(i=1; i<=nlstate; i++){
     }            cptj=cptj+1;
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);            for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
   }              gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
              }
   /*3eme*/          }
         }
   for (k1=1; k1<= m ; k1 ++) {       
     for (cpt=1; cpt<= nlstate ; cpt ++) {       
       k=2+nlstate*(cpt-1);        for(i=1; i<=npar; i++) 
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",agemin,fage,fileres,k1-1,k1-1,k,cpt);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
       for (i=1; i< nlstate ; i ++) {        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+i,cpt,i+1);        
       }        cptj=0;
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);        for(j=1; j<= nlstate; j++){
     }          for(i=1;i<=nlstate;i++){
   }            cptj=cptj+1;
              for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
   /* CV preval stat */  
   for (k1=1; k1<= m ; k1 ++) {              gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
     for (cpt=1; cpt<nlstate ; cpt ++) {            }
       k=3;          }
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",agemin,agemax,fileres,k1,k+cpt+1,k+1);        }
       for (i=1; i< nlstate ; i ++)        for(j=1; j<= nlstate*nlstate; j++)
         fprintf(ficgp,"+$%d",k+i+1);          for(h=0; h<=nhstepm-1; h++){
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
                }
       l=3+(nlstate+ndeath)*cpt;       } 
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);     
       for (i=1; i< nlstate ; i ++) {  /* End theta */
         l=3+(nlstate+ndeath)*cpt;  
         fprintf(ficgp,"+$%d",l+i+1);       trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
       }  
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);         for(h=0; h<=nhstepm-1; h++)
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);        for(j=1; j<=nlstate*nlstate;j++)
     }          for(theta=1; theta <=npar; theta++)
   }              trgradg[h][j][theta]=gradg[h][theta][j];
        
   /* proba elementaires */  
    for(i=1,jk=1; i <=nlstate; i++){       for(i=1;i<=nlstate*nlstate;i++)
     for(k=1; k <=(nlstate+ndeath); k++){        for(j=1;j<=nlstate*nlstate;j++)
       if (k != i) {          varhe[i][j][(int)age] =0.;
         for(j=1; j <=ncovmodel; j++){  
           /*fprintf(ficgp,"%s%1d%1d=%f ",alph[j],i,k,p[jk]);*/       printf("%d|",(int)age);fflush(stdout);
           /*fprintf(ficgp,"%s",alph[1]);*/       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);       for(h=0;h<=nhstepm-1;h++){
           jk++;        for(k=0;k<=nhstepm-1;k++){
           fprintf(ficgp,"\n");          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
         }          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
       }          for(i=1;i<=nlstate*nlstate;i++)
     }            for(j=1;j<=nlstate*nlstate;j++)
     }              varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
         }
   for(jk=1; jk <=m; jk++) {      }
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",agemin,agemax);      /* Computing expectancies */
    i=1;      for(i=1; i<=nlstate;i++)
    for(k2=1; k2<=nlstate; k2++) {        for(j=1; j<=nlstate;j++)
      k3=i;          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
      for(k=1; k<=(nlstate+ndeath); k++) {            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
        if (k != k2){            
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
 ij=1;  
         for(j=3; j <=ncovmodel; j++) {          }
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {  
             fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);      fprintf(ficreseij,"%3.0f",age );
             ij++;      cptj=0;
           }      for(i=1; i<=nlstate;i++)
           else        for(j=1; j<=nlstate;j++){
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);          cptj++;
         }          fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
           fprintf(ficgp,")/(1");        }
              fprintf(ficreseij,"\n");
         for(k1=1; k1 <=nlstate; k1++){       
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);      free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
 ij=1;      free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
           for(j=3; j <=ncovmodel; j++){      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {      free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
             fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             ij++;    }
           }    printf("\n");
           else    fprintf(ficlog,"\n");
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);  
           }    free_vector(xp,1,npar);
           fprintf(ficgp,")");    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
         }    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");  }
         i=i+ncovmodel;  
        }  /************ Variance ******************/
      }  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
    }  {
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);    /* Variance of health expectancies */
   }    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
        /* double **newm;*/
   fclose(ficgp);    double **dnewm,**doldm;
        double **dnewmp,**doldmp;
 chdir(path);    int i, j, nhstepm, hstepm, h, nstepm ;
     free_matrix(agev,1,maxwav,1,imx);    int k, cptcode;
     free_ivector(wav,1,imx);    double *xp;
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);    double **gp, **gm;  /* for var eij */
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);    double ***gradg, ***trgradg; /*for var eij */
        double **gradgp, **trgradgp; /* for var p point j */
     free_imatrix(s,1,maxwav+1,1,n);    double *gpp, *gmp; /* for var p point j */
        double **varppt; /* for var p point j nlstate to nlstate+ndeath */
        double ***p3mat;
     free_ivector(num,1,n);    double age,agelim, hf;
     free_vector(agedc,1,n);    double ***mobaverage;
     free_vector(weight,1,n);    int theta;
     /*free_matrix(covar,1,NCOVMAX,1,n);*/    char digit[4];
     fclose(ficparo);    char digitp[25];
     fclose(ficres);  
     /*  }*/    char fileresprobmorprev[FILENAMELENGTH];
      
    /*________fin mle=1_________*/    if(popbased==1){
          if(mobilav!=0)
         strcpy(digitp,"-populbased-mobilav-");
        else strcpy(digitp,"-populbased-nomobil-");
     /* No more information from the sample is required now */    }
   /* Reads comments: lines beginning with '#' */    else 
   while((c=getc(ficpar))=='#' && c!= EOF){      strcpy(digitp,"-stablbased-");
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);    if (mobilav!=0) {
     puts(line);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fputs(line,ficparo);      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
   }        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
   ungetc(c,ficpar);        printf(" Error in movingaverage mobilav=%d\n",mobilav);
        }
   fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);    }
   printf("agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax, bage, fage);  
   fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);    strcpy(fileresprobmorprev,"prmorprev"); 
 /*--------- index.htm --------*/    sprintf(digit,"%-d",ij);
     /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
   strcpy(optionfilehtm,optionfile);    strcat(fileresprobmorprev,digit); /* Tvar to be done */
   strcat(optionfilehtm,".htm");    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {    strcat(fileresprobmorprev,fileres);
     printf("Problem with %s \n",optionfilehtm);goto end;    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
   }      printf("Problem with resultfile: %s\n", fileresprobmorprev);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
  fprintf(fichtm,"<body><ul> <font size=\"6\">Imach, Version 0.64b </font> <hr size=\"2\" color=\"#EC5E5E\">    }
 Titre=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
 Total number of observations=%d <br>   
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
 <hr  size=\"2\" color=\"#EC5E5E\">    fprintf(ficresprobmorprev, "#Local time at start: %s", strstart);
 <li>Outputs files<br><br>\n    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
         - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
 - Estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
         - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>      fprintf(ficresprobmorprev," p.%-d SE",j);
         - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>      for(i=1; i<=nlstate;i++)
         - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
         - Life expectancies by age and initial health status: <a href=\"e%s\">e%s</a> <br>    }  
         - Variances of life expectancies by age and initial health status: <a href=\"v%s\">v%s</a><br>    fprintf(ficresprobmorprev,"\n");
         - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>    fprintf(ficgp,"\n# Routine varevsij");
         - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br>    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
         - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
 <br>",title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres);    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
   /*   } */
  fprintf(fichtm," <li>Graphs</li><p>");    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
    fprintf(ficresvij, "#Local time at start: %s", strstart);
  m=cptcoveff;    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}    fprintf(ficresvij,"# Age");
     for(i=1; i<=nlstate;i++)
  j1=0;      for(j=1; j<=nlstate;j++)
  for(k1=1; k1<=m;k1++){        fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
    for(i1=1; i1<=ncodemax[k1];i1++){    fprintf(ficresvij,"\n");
        j1++;  
        if (cptcovn > 0) {    xp=vector(1,npar);
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");    dnewm=matrix(1,nlstate,1,npar);
          for (cpt=1; cpt<=cptcoveff;cpt++)    doldm=matrix(1,nlstate,1,nlstate);
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[j1][cpt]]);    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
        }  
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);        gpp=vector(nlstate+1,nlstate+ndeath);
        for(cpt=1; cpt<nlstate;cpt++){    gmp=vector(nlstate+1,nlstate+ndeath);
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);    
        }    if(estepm < stepm){
     for(cpt=1; cpt<=nlstate;cpt++) {      printf ("Problem %d lower than %d\n",estepm, stepm);
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident    }
 interval) in state (%d): v%s%d%d.gif <br>    else  hstepm=estepm;   
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);      /* For example we decided to compute the life expectancy with the smallest unit */
      }    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
      for(cpt=1; cpt<=nlstate;cpt++) {       nhstepm is the number of hstepm from age to agelim 
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>       nstepm is the number of stepm from age to agelin. 
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);       Look at hpijx to understand the reason of that which relies in memory size
      }       and note for a fixed period like k years */
      fprintf(fichtm,"\n<br>- Total life expectancy by age and    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
 health expectancies in states (1) and (2): e%s%d.gif<br>       survival function given by stepm (the optimization length). Unfortunately it
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);       means that if the survival funtion is printed every two years of age and if
 fprintf(fichtm,"\n</body>");       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
    }       results. So we changed our mind and took the option of the best precision.
  }    */
 fclose(fichtm);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     agelim = AGESUP;
   /*--------------- Prevalence limit --------------*/    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
        nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
   strcpy(filerespl,"pl");      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   strcat(filerespl,fileres);      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   if((ficrespl=fopen(filerespl,"w"))==NULL) {      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;      gp=matrix(0,nhstepm,1,nlstate);
   }      gm=matrix(0,nhstepm,1,nlstate);
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);  
   fprintf(ficrespl,"#Prevalence limit\n");  
   fprintf(ficrespl,"#Age ");      for(theta=1; theta <=npar; theta++){
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
   fprintf(ficrespl,"\n");          xp[i] = x[i] + (i==theta ?delti[theta]:0);
          }
   prlim=matrix(1,nlstate,1,nlstate);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        if (popbased==1) {
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          if(mobilav ==0){
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */            for(i=1; i<=nlstate;i++)
   k=0;              prlim[i][i]=probs[(int)age][i][ij];
   agebase=agemin;          }else{ /* mobilav */ 
   agelim=agemax;            for(i=1; i<=nlstate;i++)
   ftolpl=1.e-10;              prlim[i][i]=mobaverage[(int)age][i][ij];
   i1=cptcoveff;          }
   if (cptcovn < 1){i1=1;}        }
     
   for(cptcov=1;cptcov<=i1;cptcov++){        for(j=1; j<= nlstate; j++){
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){          for(h=0; h<=nhstepm; h++){
         k=k+1;            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
         fprintf(ficrespl,"\n#******");          }
         for(j=1;j<=cptcoveff;j++)        }
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        /* This for computing probability of death (h=1 means
         fprintf(ficrespl,"******\n");           computed over hstepm matrices product = hstepm*stepm months) 
                   as a weighted average of prlim.
         for (age=agebase; age<=agelim; age++){        */
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);        for(j=nlstate+1;j<=nlstate+ndeath;j++){
           fprintf(ficrespl,"%.0f",age );          for(i=1,gpp[j]=0.; i<= nlstate; i++)
           for(i=1; i<=nlstate;i++)            gpp[j] += prlim[i][i]*p3mat[i][j][1];
           fprintf(ficrespl," %.5f", prlim[i][i]);        }    
           fprintf(ficrespl,"\n");        /* end probability of death */
         }  
       }        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
     }          xp[i] = x[i] - (i==theta ?delti[theta]:0);
   fclose(ficrespl);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   /*------------- h Pij x at various ages ------------*/   
          if (popbased==1) {
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);          if(mobilav ==0){
   if((ficrespij=fopen(filerespij,"w"))==NULL) {            for(i=1; i<=nlstate;i++)
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;              prlim[i][i]=probs[(int)age][i][ij];
   }          }else{ /* mobilav */ 
   printf("Computing pij: result on file '%s' \n", filerespij);            for(i=1; i<=nlstate;i++)
                prlim[i][i]=mobaverage[(int)age][i][ij];
   stepsize=(int) (stepm+YEARM-1)/YEARM;          }
   /*if (stepm<=24) stepsize=2;*/        }
   
   agelim=AGESUP;        for(j=1; j<= nlstate; j++){
   hstepm=stepsize*YEARM; /* Every year of age */          for(h=0; h<=nhstepm; h++){
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
                gm[h][j] += prlim[i][i]*p3mat[i][j][h];
   k=0;          }
   for(cptcov=1;cptcov<=i1;cptcov++){        }
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        /* This for computing probability of death (h=1 means
       k=k+1;           computed over hstepm matrices product = hstepm*stepm months) 
         fprintf(ficrespij,"\n#****** ");           as a weighted average of prlim.
         for(j=1;j<=cptcoveff;j++)        */
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        for(j=nlstate+1;j<=nlstate+ndeath;j++){
         fprintf(ficrespij,"******\n");          for(i=1,gmp[j]=0.; i<= nlstate; i++)
                   gmp[j] += prlim[i][i]*p3mat[i][j][1];
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */        }    
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */        /* end probability of death */
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */  
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        for(j=1; j<= nlstate; j++) /* vareij */
           oldm=oldms;savm=savms;          for(h=0; h<=nhstepm; h++){
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);              gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
           fprintf(ficrespij,"# Age");          }
           for(i=1; i<=nlstate;i++)  
             for(j=1; j<=nlstate+ndeath;j++)        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
               fprintf(ficrespij," %1d-%1d",i,j);          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
           fprintf(ficrespij,"\n");        }
           for (h=0; h<=nhstepm; h++){  
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );      } /* End theta */
             for(i=1; i<=nlstate;i++)  
               for(j=1; j<=nlstate+ndeath;j++)      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);  
             fprintf(ficrespij,"\n");      for(h=0; h<=nhstepm; h++) /* veij */
           }        for(j=1; j<=nlstate;j++)
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          for(theta=1; theta <=npar; theta++)
           fprintf(ficrespij,"\n");            trgradg[h][j][theta]=gradg[h][theta][j];
         }  
     }      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
   }        for(theta=1; theta <=npar; theta++)
           trgradgp[j][theta]=gradgp[theta][j];
   /* varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k);*/    
   
   fclose(ficrespij);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       for(i=1;i<=nlstate;i++)
   /*---------- Forecasting ------------------*/        for(j=1;j<=nlstate;j++)
           vareij[i][j][(int)age] =0.;
   strcpy(fileresf,"f");  
   strcat(fileresf,fileres);      for(h=0;h<=nhstepm;h++){
   if((ficresf=fopen(fileresf,"w"))==NULL) {        for(k=0;k<=nhstepm;k++){
     printf("Problem with forecast resultfile: %s\n", fileresf);goto end;          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
   }          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
   printf("Computing forecasting: result on file '%s' \n", fileresf);          for(i=1;i<=nlstate;i++)
             for(j=1;j<=nlstate;j++)
   /* Mobile average */              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
         }
   /* for (agedeb=bage; agedeb<=fage; agedeb++)      }
     for (i=1; i<=nlstate;i++)    
       for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++)      /* pptj */
       printf("%f %d i=%d j1=%d\n", probs[(int)agedeb][i][cptcod],(int) agedeb,i,cptcod);*/      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
       matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
   if (cptcoveff==0) ncodemax[cptcoveff]=1;      for(j=nlstate+1;j<=nlstate+ndeath;j++)
         for(i=nlstate+1;i<=nlstate+ndeath;i++)
   if (mobilav==1) {          varppt[j][i]=doldmp[j][i];
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      /* end ppptj */
     for (agedeb=bage+3; agedeb<=fage-2; agedeb++)      /*  x centered again */
       for (i=1; i<=nlstate;i++)      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
           mobaverage[(int)agedeb][i][cptcod]=0.;   
          if (popbased==1) {
     for (agedeb=bage+4; agedeb<=fage; agedeb++){        if(mobilav ==0){
       for (i=1; i<=nlstate;i++){          for(i=1; i<=nlstate;i++)
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){            prlim[i][i]=probs[(int)age][i][ij];
           for (cpt=0;cpt<=4;cpt++){        }else{ /* mobilav */ 
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];          for(i=1; i<=nlstate;i++)
           }            prlim[i][i]=mobaverage[(int)age][i][ij];
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;        }
         }      }
       }               
     }        /* This for computing probability of death (h=1 means
   }         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
          as a weighted average of prlim.
   stepsize=(int) (stepm+YEARM-1)/YEARM;      */
   if (stepm<=24) stepsize=2;      for(j=nlstate+1;j<=nlstate+ndeath;j++){
         for(i=1,gmp[j]=0.;i<= nlstate; i++) 
   agelim=AGESUP;          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
   hstepm=stepsize*YEARM; /* Every year of age */      }    
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */      /* end probability of death */
   hstepm=12;  
    k=0;      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
   for(cptcov=1;cptcov<=i1;cptcov++){      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
       k=k+1;        for(i=1; i<=nlstate;i++){
       fprintf(ficresf,"\n#****** ");          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
       for(j=1;j<=cptcoveff;j++) {        }
         fprintf(ficresf,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      } 
       }      fprintf(ficresprobmorprev,"\n");
        
       fprintf(ficresf,"******\n");      fprintf(ficresvij,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
       fprintf(ficresf,"# StartingAge FinalAge Horizon(in years)");        for(j=1; j<=nlstate;j++){
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
         }
       for (agedeb=fage; agedeb>=bage; agedeb--){      fprintf(ficresvij,"\n");
         fprintf(ficresf,"\n%d %.f %.f 0 ",k,agedeb, agedeb);      free_matrix(gp,0,nhstepm,1,nlstate);
        if (mobilav==1) {      free_matrix(gm,0,nhstepm,1,nlstate);
         for(j=1; j<=nlstate;j++)      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
           fprintf(ficresf,"%.5f ",mobaverage[(int)agedeb][j][cptcod]);      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
         }      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         else {    } /* End age */
           for(j=1; j<=nlstate;j++)    free_vector(gpp,nlstate+1,nlstate+ndeath);
           fprintf(ficresf,"%.5f ",probs[(int)agedeb][j][cptcod]);    free_vector(gmp,nlstate+1,nlstate+ndeath);
         }    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
            free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
       for(j=1; j<=ndeath;j++) fprintf(ficresf,"0.");    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
       }    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
       for (cpt=1; cpt<=NCOVMAX;cpt++)      fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
       for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
          /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
         nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
         nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
         /*printf("stepm=%d hstepm=%d nhstepm=%d \n",stepm,hstepm,nhstepm);*/    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
         p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
         oldm=oldms;savm=savms;    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
         hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
                  */
         for (h=0; h<=nhstepm; h++){  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
            fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
           if (h*hstepm/YEARM*stepm==cpt)  
  fprintf(ficresf,"\n%d %.f %.f %.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm, h*hstepm/YEARM*stepm);    free_vector(xp,1,npar);
              free_matrix(doldm,1,nlstate,1,nlstate);
           for(j=1; j<=nlstate+ndeath;j++) {    free_matrix(dnewm,1,nlstate,1,npar);
             kk1=0.;    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
             for(i=1; i<=nlstate;i++) {            free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
               if (mobilav==1)    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
               kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb][i][cptcod];    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
               else kk1=kk1+p3mat[i][j][h]*probs[(int)agedeb][i][cptcod];    fclose(ficresprobmorprev);
             }        fflush(ficgp);
             if (h*hstepm/YEARM*stepm==cpt) fprintf(ficresf," %.5f ", kk1);    fflush(fichtm); 
           }  }  /* end varevsij */
         }  
         free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  /************ Variance of prevlim ******************/
       }  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
     }  {
   }    /* Variance of prevalence limit */
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
   fclose(ficresf);    double **newm;
   /*---------- Health expectancies and variances ------------*/    double **dnewm,**doldm;
     int i, j, nhstepm, hstepm;
   strcpy(filerest,"t");    int k, cptcode;
   strcat(filerest,fileres);    double *xp;
   if((ficrest=fopen(filerest,"w"))==NULL) {    double *gp, *gm;
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;    double **gradg, **trgradg;
   }    double age,agelim;
   printf("Computing Total LEs with variances: file '%s' \n", filerest);    int theta;
     fprintf(ficresvpl, "#Local time at start: %s", strstart); 
     fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
   strcpy(filerese,"e");    fprintf(ficresvpl,"# Age");
   strcat(filerese,fileres);    for(i=1; i<=nlstate;i++)
   if((ficreseij=fopen(filerese,"w"))==NULL) {        fprintf(ficresvpl," %1d-%1d",i,i);
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);    fprintf(ficresvpl,"\n");
   }  
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);    xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
  strcpy(fileresv,"v");    doldm=matrix(1,nlstate,1,nlstate);
   strcat(fileresv,fileres);    
   if((ficresvij=fopen(fileresv,"w"))==NULL) {    hstepm=1*YEARM; /* Every year of age */
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
   }    agelim = AGESUP;
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
   k=0;      if (stepm >= YEARM) hstepm=1;
   for(cptcov=1;cptcov<=i1;cptcov++){      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      gradg=matrix(1,npar,1,nlstate);
       k=k+1;      gp=vector(1,nlstate);
       fprintf(ficrest,"\n#****** ");      gm=vector(1,nlstate);
       for(j=1;j<=cptcoveff;j++)  
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      for(theta=1; theta <=npar; theta++){
       fprintf(ficrest,"******\n");        for(i=1; i<=npar; i++){ /* Computes gradient */
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
       fprintf(ficreseij,"\n#****** ");        }
       for(j=1;j<=cptcoveff;j++)        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         fprintf(ficreseij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);        for(i=1;i<=nlstate;i++)
       fprintf(ficreseij,"******\n");          gp[i] = prlim[i][i];
       
       fprintf(ficresvij,"\n#****** ");        for(i=1; i<=npar; i++) /* Computes gradient */
       for(j=1;j<=cptcoveff;j++)          xp[i] = x[i] - (i==theta ?delti[theta]:0);
         fprintf(ficresvij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
       fprintf(ficresvij,"******\n");        for(i=1;i<=nlstate;i++)
           gm[i] = prlim[i][i];
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);  
       oldm=oldms;savm=savms;        for(i=1;i<=nlstate;i++)
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k);            gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);      } /* End theta */
       oldm=oldms;savm=savms;  
       varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);      trgradg =matrix(1,nlstate,1,npar);
        
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");      for(j=1; j<=nlstate;j++)
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);        for(theta=1; theta <=npar; theta++)
       fprintf(ficrest,"\n");          trgradg[j][theta]=gradg[theta][j];
          
       hf=1;      for(i=1;i<=nlstate;i++)
       if (stepm >= YEARM) hf=stepm/YEARM;        varpl[i][(int)age] =0.;
       epj=vector(1,nlstate+1);      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
       for(age=bage; age <=fage ;age++){      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);      for(i=1;i<=nlstate;i++)
         if (popbased==1) {        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
           for(i=1; i<=nlstate;i++)  
             prlim[i][i]=probs[(int)age][i][k];      fprintf(ficresvpl,"%.0f ",age );
         }      for(i=1; i<=nlstate;i++)
                fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
         fprintf(ficrest," %.0f",age);      fprintf(ficresvpl,"\n");
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){      free_vector(gp,1,nlstate);
           for(i=1, epj[j]=0.;i <=nlstate;i++) {      free_vector(gm,1,nlstate);
             epj[j] += prlim[i][i]*hf*eij[i][j][(int)age];      free_matrix(gradg,1,npar,1,nlstate);
           }      free_matrix(trgradg,1,nlstate,1,npar);
           epj[nlstate+1] +=epj[j];    } /* End age */
         }  
         for(i=1, vepp=0.;i <=nlstate;i++)    free_vector(xp,1,npar);
           for(j=1;j <=nlstate;j++)    free_matrix(doldm,1,nlstate,1,npar);
             vepp += vareij[i][j][(int)age];    free_matrix(dnewm,1,nlstate,1,nlstate);
         fprintf(ficrest," %.2f (%.2f)", epj[nlstate+1],hf*sqrt(vepp));  
         for(j=1;j <=nlstate;j++){  }
           fprintf(ficrest," %.2f (%.2f)", epj[j],hf*sqrt(vareij[j][j][(int)age]));  
         }  /************ Variance of one-step probabilities  ******************/
         fprintf(ficrest,"\n");  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
       }  {
     }    int i, j=0,  i1, k1, l1, t, tj;
   }    int k2, l2, j1,  z1;
            int k=0,l, cptcode;
            int first=1, first1;
     double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
     double **dnewm,**doldm;
  fclose(ficreseij);    double *xp;
  fclose(ficresvij);    double *gp, *gm;
   fclose(ficrest);    double **gradg, **trgradg;
   fclose(ficpar);    double **mu;
   free_vector(epj,1,nlstate+1);    double age,agelim, cov[NCOVMAX];
   /*  scanf("%d ",i); */    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     int theta;
   /*------- Variance limit prevalence------*/      char fileresprob[FILENAMELENGTH];
     char fileresprobcov[FILENAMELENGTH];
 strcpy(fileresvpl,"vpl");    char fileresprobcor[FILENAMELENGTH];
   strcat(fileresvpl,fileres);  
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {    double ***varpij;
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);  
     exit(0);    strcpy(fileresprob,"prob"); 
   }    strcat(fileresprob,fileres);
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprob);
  k=0;      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
  for(cptcov=1;cptcov<=i1;cptcov++){    }
    for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    strcpy(fileresprobcov,"probcov"); 
      k=k+1;    strcat(fileresprobcov,fileres);
      fprintf(ficresvpl,"\n#****** ");    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
      for(j=1;j<=cptcoveff;j++)      printf("Problem with resultfile: %s\n", fileresprobcov);
        fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
      fprintf(ficresvpl,"******\n");    }
          strcpy(fileresprobcor,"probcor"); 
      varpl=matrix(1,nlstate,(int) bage, (int) fage);    strcat(fileresprobcor,fileres);
      oldm=oldms;savm=savms;    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);      printf("Problem with resultfile: %s\n", fileresprobcor);
    }      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
  }    }
     printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
   fclose(ficresvpl);    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
   /*---------- End : free ----------------*/    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
      fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);    fprintf(ficresprob, "#Local time at start: %s", strstart);
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
      fprintf(ficresprob,"# Age");
      fprintf(ficresprobcov, "#Local time at start: %s", strstart);
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);    fprintf(ficresprobcov,"# Age");
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);    fprintf(ficresprobcor, "#Local time at start: %s", strstart);
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
      fprintf(ficresprobcov,"# Age");
   free_matrix(matcov,1,npar,1,npar);  
   free_vector(delti,1,npar);  
      for(i=1; i<=nlstate;i++)
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);      for(j=1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprob," p%1d-%1d (SE)",i,j);
   printf("End of Imach\n");        fprintf(ficresprobcov," p%1d-%1d ",i,j);
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */        fprintf(ficresprobcor," p%1d-%1d ",i,j);
        }  
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/   /* fprintf(ficresprob,"\n");
   /*printf("Total time was %d uSec.\n", total_usecs);*/    fprintf(ficresprobcov,"\n");
   /*------ End -----------*/    fprintf(ficresprobcor,"\n");
    */
    xp=vector(1,npar);
  end:    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
 #ifdef windows    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
  chdir(pathcd);    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
 #endif    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
      first=1;
  system("..\\gp37mgw\\wgnuplot graph.plt");    fprintf(ficgp,"\n# Routine varprob");
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
 #ifdef windows    fprintf(fichtm,"\n");
   while (z[0] != 'q') {  
     chdir(pathcd);    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
     printf("\nType e to edit output files, c to start again, and q for exiting: ");    fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
     scanf("%s",z);    file %s<br>\n",optionfilehtmcov);
     if (z[0] == 'c') system("./imach");    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
     else if (z[0] == 'e') {  and drawn. It helps understanding how is the covariance between two incidences.\
       chdir(path);   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
       system(optionfilehtm);    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
     }  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
     else if (z[0] == 'q') exit(0);  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
   }  standard deviations wide on each axis. <br>\
 #endif   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
 }   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
   To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
   
     cov[1]=1;
     tj=cptcoveff;
     if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     j1=0;
     for(t=1; t<=tj;t++){
       for(i1=1; i1<=ncodemax[t];i1++){ 
         j1++;
         if  (cptcovn>0) {
           fprintf(ficresprob, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprob, "**********\n#\n");
           fprintf(ficresprobcov, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcov, "**********\n#\n");
           
           fprintf(ficgp, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficgp, "**********\n#\n");
           
           
           fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
           
           fprintf(ficresprobcor, "\n#********** Variable ");    
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcor, "**********\n#");    
         }
         
         for (age=bage; age<=fage; age ++){ 
           cov[2]=age;
           for (k=1; k<=cptcovn;k++) {
             cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
           }
           for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           for (k=1; k<=cptcovprod;k++)
             cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           
           gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
           trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
           gp=vector(1,(nlstate)*(nlstate+ndeath));
           gm=vector(1,(nlstate)*(nlstate+ndeath));
       
           for(theta=1; theta <=npar; theta++){
             for(i=1; i<=npar; i++)
               xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
             
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             
             k=0;
             for(i=1; i<= (nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gp[k]=pmmij[i][j];
               }
             }
             
             for(i=1; i<=npar; i++)
               xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
       
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             k=0;
             for(i=1; i<=(nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gm[k]=pmmij[i][j];
               }
             }
        
             for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
               gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
           }
   
           for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
             for(theta=1; theta <=npar; theta++)
               trgradg[j][theta]=gradg[theta][j];
           
           matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
           matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
           free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
           free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   
           pmij(pmmij,cov,ncovmodel,x,nlstate);
           
           k=0;
           for(i=1; i<=(nlstate); i++){
             for(j=1; j<=(nlstate+ndeath);j++){
               k=k+1;
               mu[k][(int) age]=pmmij[i][j];
             }
           }
           for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
             for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
               varpij[i][j][(int)age] = doldm[i][j];
   
           /*printf("\n%d ",(int)age);
             for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             }*/
   
           fprintf(ficresprob,"\n%d ",(int)age);
           fprintf(ficresprobcov,"\n%d ",(int)age);
           fprintf(ficresprobcor,"\n%d ",(int)age);
   
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
             fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
             fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
           }
           i=0;
           for (k=1; k<=(nlstate);k++){
             for (l=1; l<=(nlstate+ndeath);l++){ 
               i=i++;
               fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
               fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
               for (j=1; j<=i;j++){
                 fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                 fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
               }
             }
           }/* end of loop for state */
         } /* end of loop for age */
   
         /* Confidence intervalle of pij  */
         /*
           fprintf(ficgp,"\nset noparametric;unset label");
           fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
           fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
           fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
           fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
         */
   
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
         first1=1;
         for (k2=1; k2<=(nlstate);k2++){
           for (l2=1; l2<=(nlstate+ndeath);l2++){ 
             if(l2==k2) continue;
             j=(k2-1)*(nlstate+ndeath)+l2;
             for (k1=1; k1<=(nlstate);k1++){
               for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                 if(l1==k1) continue;
                 i=(k1-1)*(nlstate+ndeath)+l1;
                 if(i<=j) continue;
                 for (age=bage; age<=fage; age ++){ 
                   if ((int)age %5==0){
                     v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                     v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     mu1=mu[i][(int) age]/stepm*YEARM ;
                     mu2=mu[j][(int) age]/stepm*YEARM;
                     c12=cv12/sqrt(v1*v2);
                     /* Computing eigen value of matrix of covariance */
                     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     /* Eigen vectors */
                     v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                     /*v21=sqrt(1.-v11*v11); *//* error */
                     v21=(lc1-v1)/cv12*v11;
                     v12=-v21;
                     v22=v11;
                     tnalp=v21/v11;
                     if(first1==1){
                       first1=0;
                       printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     }
                     fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     /*printf(fignu*/
                     /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                     /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                     if(first==1){
                       first=0;
                       fprintf(ficgp,"\nset parametric;unset label");
                       fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                       fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
                       fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
    :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }else{
                       first=0;
                       fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }/* if first */
                   } /* age mod 5 */
                 } /* end loop age */
                 fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                 first=1;
               } /*l12 */
             } /* k12 */
           } /*l1 */
         }/* k1 */
       } /* loop covariates */
     }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_vector(xp,1,npar);
     fclose(ficresprob);
     fclose(ficresprobcov);
     fclose(ficresprobcor);
     fflush(ficgp);
     fflush(fichtmcov);
   }
   
   
   /******************* Printing html file ***********/
   void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int estepm ,\
                     double jprev1, double mprev1,double anprev1, \
                     double jprev2, double mprev2,double anprev2){
     int jj1, k1, i1, cpt;
   
      fprintf(fichtm,"<ul><li><a> href="#firstorder">Result files (first order: no variance)</a>\n \
      <li><a> href="#secondorder">Result files (second order (variance)</a>\n \
   </ul>");
      fprintf(fichtm,"<ul><li><h4><a name="firstorder">Result files (first order: no variance)</a></h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
      fprintf(fichtm,"\
    - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
              stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
      fprintf(fichtm,"\
    - Stable prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
      fprintf(fichtm,"\
    - Life expectancies by age and initial health status (estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
   
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        /* Pij */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: %s%d1.png<br> \
   <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
        /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: %s%d2.png<br> \
   <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
          /* Stable prevalence in each health state */
          for(cpt=1; cpt<nlstate;cpt++){
            fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \
   <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
          }
        for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): %s%d%d.png <br> \
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
        }
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   
   
    fprintf(fichtm,"\
   \n<br><li><h4> <a name="secondorder">Result files (second order: variances)</a></h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
   
    fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
    fprintf(fichtm,"\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   
    fprintf(fichtm,"\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
    fprintf(fichtm,"\
    - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
            estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
    fprintf(fichtm,"\
    - Health expectancies with their variances (no covariance): <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"t"),subdirf2(fileres,"t"));
    fprintf(fichtm,"\
    - Standard deviation of stable prevalences: <a href=\"%s\">%s</a> <br>\n",\
            subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    fflush(fichtm);
    fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2): %s%d.png<br>\
   <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
    fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
     m=pow(2,cptcoveff);
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
    /* 1eme*/
     for (cpt=1; cpt<= nlstate ; cpt ++) {
      for (k1=1; k1<= m ; k1 ++) {
        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }
        fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l 0,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
         else fprintf(ficgp,"\" t\"\" w l 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         k=2+nlstate*(2*cpt-2);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);
           
         } 
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<=nlstate ; cpt ++) {
         k=3;
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small\nset size 0.65,0.65\n\
   unset log y\n\
   plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
         
         for (i=1; i< nlstate ; i ++)
           fprintf(ficgp,"+$%d",k+i+1);
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         
         l=3+(nlstate+ndeath)*cpt;
         fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
         for (i=1; i< nlstate ; i ++) {
           l=3+(nlstate+ndeath)*cpt;
           fprintf(ficgp,"+$%d",l+i+1);
         }
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       } 
     }  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
   
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;
                for(j=3; j <=ncovmodel; j++) {
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                    ij++;
                  }
                  else
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                      ij++;
                    }
                    else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i]==1 & wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i]==0 & wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         if (wav[i]>1 & agecens[i]>15) {
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small\n set log y\n"); 
     fprintf(ficgp, "set size 0.65,0.65\n");
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
   
     char ca[32], cb[32], cc[32];
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char strstart[80], *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       scanf("%s",pathtot);
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("pathimach=%s, pathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem with datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     while (fgets(line, MAXLINE, fic) != NULL)    {
       if ((i >= firstobs) && (i <=lastobs)) {
         for(j=0; line[j] != '\n';j++){  /* Untabifies line */
           if(line[j] == '\t')
             line[j] = ' ';
         }
         for (j=maxwav;j>=1;j--){
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb); 
           strcpy(line,stra);
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         }
           
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);
         for (j=ncovcol;j>=1;j--){
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         } 
         lstra=strlen(stra);
         if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
           stratrunc = &(stra[lstra-9]);
           num[i]=atol(stratrunc);
         }
         else
           num[i]=atol(stra);
           
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
           printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
   
         i=i+1;
       }
     }
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
     /* for (i=1; i<=imx; i++) */
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameters from char model */
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);
     fclose(fic);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a
                                    month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     agegomp=(int)agemin;
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<body>\n<title>IMaCh Cov %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (j=1; j<=lastpass; j++)
           if (s[j][i]>nlstate) {
             dcwave[i]=j;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];agecens[i]=1.; 
           if (ageexmed[i]>1 & wav[i]>0) agecens[i]=agev[mw[j][i]][i];
           cens[i]=1;
           
           if (ageexmed[i]<1) cens[i]=-1;
           if (agedc[i]< AGESUP & agedc[i]>1 & dcwave[i]>firstpass & dcwave[i]<=lastpass) cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
   
       p[1]=0.1; p[2]=0.1;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
     printf("Powell\n");  fprintf(ficlog,"Powell\n");
     strcpy(filerespow,"pow-mort"); 
     strcat(filerespow,fileres);
     if((ficrespow=fopen(filerespow,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", filerespow);
       fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
     }
     fprintf(ficrespow,"# Powell\n# iter -2*LL");
     /*  for (i=1;i<=nlstate;i++)
       for(j=1;j<=nlstate+ndeath;j++)
         if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
     */
     fprintf(ficrespow,"\n");
   
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM,delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
   lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
      
        for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
      
         for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
   
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
   
    tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
          }
      
      
          printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
   
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
   
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
     } /* Endof if mle==-3 */
   
     else{ /* For mle >=1 */
     
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing stable prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
       fprintf(ficrespl, "#Local time at start: %s", strstart);
       fprintf(ficrespl,"#Stable prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       fprintf(ficrespij, "#Local time at start: %s", strstart);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /*---------- Health expectancies and variances ------------*/
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total LEs with variances: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficreseij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav, strstart);
           if(popbased==1){
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav, strstart);
           }
   
           fprintf(ficrest, "#Local time at start: %s", strstart);
           fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
           for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
           fprintf(ficrest,"\n");
   
           epj=vector(1,nlstate+1);
           for(age=bage; age <=fage ;age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             if (popbased==1) {
               if(mobilav ==0){
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=probs[(int)age][i][k];
               }else{ /* mobilav */ 
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=mobaverage[(int)age][i][k];
               }
             }
           
             fprintf(ficrest," %4.0f",age);
             for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
               for(i=1, epj[j]=0.;i <=nlstate;i++) {
                 epj[j] += prlim[i][i]*eij[i][j][(int)age];
                 /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
               }
               epj[nlstate+1] +=epj[j];
             }
   
             for(i=1, vepp=0.;i <=nlstate;i++)
               for(j=1;j <=nlstate;j++)
                 vepp += vareij[i][j][(int)age];
             fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
             for(j=1;j <=nlstate;j++){
               fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
             }
             fprintf(ficrest,"\n");
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficreseij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of stable prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
     
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
       free_ivector(Tcode,1,100);
   
   
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);
     fclose(fichtm);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
     chdir(path);
     strcpy(plotcmd,"\"");
     strcat(plotcmd,pathimach);
     strcat(plotcmd,GNUPLOTPROGRAM);
     strcat(plotcmd,"\"");
     strcat(plotcmd," ");
     strcat(plotcmd,optionfilegnuplot);
     printf("Starting graphs with: %s",plotcmd);fflush(stdout);
     if((outcmd=system(plotcmd)) != 0){
       printf(" Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.14  
changed lines
  Added in v.1.106


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>