Diff for /imach/src/imach.c between versions 1.41.2.2 and 1.113

version 1.41.2.2, 2003/06/13 07:45:28 version 1.113, 2006/02/24 14:20:24
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.113  2006/02/24 14:20:24  brouard
      (Module): Memory leaks checks with valgrind and:
   This program computes Healthy Life Expectancies from    datafile was not closed, some imatrix were not freed and on matrix
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    allocation too.
   first survey ("cross") where individuals from different ages are  
   interviewed on their health status or degree of disability (in the    Revision 1.112  2006/01/30 09:55:26  brouard
   case of a health survey which is our main interest) -2- at least a    (Module): Back to gnuplot.exe instead of wgnuplot.exe
   second wave of interviews ("longitudinal") which measure each change  
   (if any) in individual health status.  Health expectancies are    Revision 1.111  2006/01/25 20:38:18  brouard
   computed from the time spent in each health state according to a    (Module): Lots of cleaning and bugs added (Gompertz)
   model. More health states you consider, more time is necessary to reach the    (Module): Comments can be added in data file. Missing date values
   Maximum Likelihood of the parameters involved in the model.  The    can be a simple dot '.'.
   simplest model is the multinomial logistic model where pij is the  
   probability to be observed in state j at the second wave    Revision 1.110  2006/01/25 00:51:50  brouard
   conditional to be observed in state i at the first wave. Therefore    (Module): Lots of cleaning and bugs added (Gompertz)
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where  
   'age' is age and 'sex' is a covariate. If you want to have a more    Revision 1.109  2006/01/24 19:37:15  brouard
   complex model than "constant and age", you should modify the program    (Module): Comments (lines starting with a #) are allowed in data.
   where the markup *Covariates have to be included here again* invites  
   you to do it.  More covariates you add, slower the    Revision 1.108  2006/01/19 18:05:42  lievre
   convergence.    Gnuplot problem appeared...
     To be fixed
   The advantage of this computer programme, compared to a simple  
   multinomial logistic model, is clear when the delay between waves is not    Revision 1.107  2006/01/19 16:20:37  brouard
   identical for each individual. Also, if a individual missed an    Test existence of gnuplot in imach path
   intermediate interview, the information is lost, but taken into  
   account using an interpolation or extrapolation.      Revision 1.106  2006/01/19 13:24:36  brouard
     Some cleaning and links added in html output
   hPijx is the probability to be observed in state i at age x+h  
   conditional to the observed state i at age x. The delay 'h' can be    Revision 1.105  2006/01/05 20:23:19  lievre
   split into an exact number (nh*stepm) of unobserved intermediate    *** empty log message ***
   states. This elementary transition (by month or quarter trimester,  
   semester or year) is model as a multinomial logistic.  The hPx    Revision 1.104  2005/09/30 16:11:43  lievre
   matrix is simply the matrix product of nh*stepm elementary matrices    (Module): sump fixed, loop imx fixed, and simplifications.
   and the contribution of each individual to the likelihood is simply    (Module): If the status is missing at the last wave but we know
   hPijx.    that the person is alive, then we can code his/her status as -2
     (instead of missing=-1 in earlier versions) and his/her
   Also this programme outputs the covariance matrix of the parameters but also    contributions to the likelihood is 1 - Prob of dying from last
   of the life expectancies. It also computes the prevalence limits.    health status (= 1-p13= p11+p12 in the easiest case of somebody in
      the healthy state at last known wave). Version is 0.98
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).  
            Institut national d'études démographiques, Paris.    Revision 1.103  2005/09/30 15:54:49  lievre
   This software have been partly granted by Euro-REVES, a concerted action    (Module): sump fixed, loop imx fixed, and simplifications.
   from the European Union.  
   It is copyrighted identically to a GNU software product, ie programme and    Revision 1.102  2004/09/15 17:31:30  brouard
   software can be distributed freely for non commercial use. Latest version    Add the possibility to read data file including tab characters.
   can be accessed at http://euroreves.ined.fr/imach .  
   **********************************************************************/    Revision 1.101  2004/09/15 10:38:38  brouard
      Fix on curr_time
 #include <math.h>  
 #include <stdio.h>    Revision 1.100  2004/07/12 18:29:06  brouard
 #include <stdlib.h>    Add version for Mac OS X. Just define UNIX in Makefile
 #include <unistd.h>  
     Revision 1.99  2004/06/05 08:57:40  brouard
 #define MAXLINE 256    *** empty log message ***
 #define GNUPLOTPROGRAM "wgnuplot"  
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    Revision 1.98  2004/05/16 15:05:56  brouard
 #define FILENAMELENGTH 80    New version 0.97 . First attempt to estimate force of mortality
 /*#define DEBUG*/    directly from the data i.e. without the need of knowing the health
     state at each age, but using a Gompertz model: log u =a + b*age .
 /*#define windows*/    This is the basic analysis of mortality and should be done before any
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    other analysis, in order to test if the mortality estimated from the
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    cross-longitudinal survey is different from the mortality estimated
     from other sources like vital statistic data.
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */  
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    The same imach parameter file can be used but the option for mle should be -3.
   
 #define NINTERVMAX 8    Agnès, who wrote this part of the code, tried to keep most of the
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    former routines in order to include the new code within the former code.
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */  
 #define NCOVMAX 8 /* Maximum number of covariates */    The output is very simple: only an estimate of the intercept and of
 #define MAXN 20000    the slope with 95% confident intervals.
 #define YEARM 12. /* Number of months per year */  
 #define AGESUP 130    Current limitations:
 #define AGEBASE 40    A) Even if you enter covariates, i.e. with the
     model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
     B) There is no computation of Life Expectancy nor Life Table.
 int erreur; /* Error number */  
 int nvar;    Revision 1.97  2004/02/20 13:25:42  lievre
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    Version 0.96d. Population forecasting command line is (temporarily)
 int npar=NPARMAX;    suppressed.
 int nlstate=2; /* Number of live states */  
 int ndeath=1; /* Number of dead states */    Revision 1.96  2003/07/15 15:38:55  brouard
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
 int popbased=0;    rewritten within the same printf. Workaround: many printfs.
   
 int *wav; /* Number of waves for this individuual 0 is possible */    Revision 1.95  2003/07/08 07:54:34  brouard
 int maxwav; /* Maxim number of waves */    * imach.c (Repository):
 int jmin, jmax; /* min, max spacing between 2 waves */    (Repository): Using imachwizard code to output a more meaningful covariance
 int mle, weightopt;    matrix (cov(a12,c31) instead of numbers.
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */  
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    Revision 1.94  2003/06/27 13:00:02  brouard
 double jmean; /* Mean space between 2 waves */    Just cleaning
 double **oldm, **newm, **savm; /* Working pointers to matrices */  
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    Revision 1.93  2003/06/25 16:33:55  brouard
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    (Module): On windows (cygwin) function asctime_r doesn't
 FILE *ficgp,*ficresprob,*ficpop;    exist so I changed back to asctime which exists.
 FILE *ficreseij;    (Module): Version 0.96b
   char filerese[FILENAMELENGTH];  
  FILE  *ficresvij;    Revision 1.92  2003/06/25 16:30:45  brouard
   char fileresv[FILENAMELENGTH];    (Module): On windows (cygwin) function asctime_r doesn't
  FILE  *ficresvpl;    exist so I changed back to asctime which exists.
   char fileresvpl[FILENAMELENGTH];  
     Revision 1.91  2003/06/25 15:30:29  brouard
 #define NR_END 1    * imach.c (Repository): Duplicated warning errors corrected.
 #define FREE_ARG char*    (Repository): Elapsed time after each iteration is now output. It
 #define FTOL 1.0e-10    helps to forecast when convergence will be reached. Elapsed time
     is stamped in powell.  We created a new html file for the graphs
 #define NRANSI    concerning matrix of covariance. It has extension -cov.htm.
 #define ITMAX 200  
     Revision 1.90  2003/06/24 12:34:15  brouard
 #define TOL 2.0e-4    (Module): Some bugs corrected for windows. Also, when
     mle=-1 a template is output in file "or"mypar.txt with the design
 #define CGOLD 0.3819660    of the covariance matrix to be input.
 #define ZEPS 1.0e-10  
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    Revision 1.89  2003/06/24 12:30:52  brouard
     (Module): Some bugs corrected for windows. Also, when
 #define GOLD 1.618034    mle=-1 a template is output in file "or"mypar.txt with the design
 #define GLIMIT 100.0    of the covariance matrix to be input.
 #define TINY 1.0e-20  
     Revision 1.88  2003/06/23 17:54:56  brouard
 static double maxarg1,maxarg2;    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))  
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    Revision 1.87  2003/06/18 12:26:01  brouard
      Version 0.96
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))  
 #define rint(a) floor(a+0.5)    Revision 1.86  2003/06/17 20:04:08  brouard
     (Module): Change position of html and gnuplot routines and added
 static double sqrarg;    routine fileappend.
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)  
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    Revision 1.85  2003/06/17 13:12:43  brouard
     * imach.c (Repository): Check when date of death was earlier that
 int imx;    current date of interview. It may happen when the death was just
 int stepm;    prior to the death. In this case, dh was negative and likelihood
 /* Stepm, step in month: minimum step interpolation*/    was wrong (infinity). We still send an "Error" but patch by
     assuming that the date of death was just one stepm after the
 int estepm;    interview.
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/    (Repository): Because some people have very long ID (first column)
     we changed int to long in num[] and we added a new lvector for
 int m,nb;    memory allocation. But we also truncated to 8 characters (left
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    truncation)
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    (Repository): No more line truncation errors.
 double **pmmij, ***probs, ***mobaverage;  
 double dateintmean=0;    Revision 1.84  2003/06/13 21:44:43  brouard
     * imach.c (Repository): Replace "freqsummary" at a correct
 double *weight;    place. It differs from routine "prevalence" which may be called
 int **s; /* Status */    many times. Probs is memory consuming and must be used with
 double *agedc, **covar, idx;    parcimony.
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
   
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    Revision 1.83  2003/06/10 13:39:11  lievre
 double ftolhess; /* Tolerance for computing hessian */    *** empty log message ***
   
 /**************** split *************************/    Revision 1.82  2003/06/05 15:57:20  brouard
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    Add log in  imach.c and  fullversion number is now printed.
 {  
    char *s;                             /* pointer */  */
    int  l1, l2;                         /* length counters */  /*
      Interpolated Markov Chain
    l1 = strlen( path );                 /* length of path */  
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    Short summary of the programme:
 #ifdef windows    
    s = strrchr( path, '\\' );           /* find last / */    This program computes Healthy Life Expectancies from
 #else    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
    s = strrchr( path, '/' );            /* find last / */    first survey ("cross") where individuals from different ages are
 #endif    interviewed on their health status or degree of disability (in the
    if ( s == NULL ) {                   /* no directory, so use current */    case of a health survey which is our main interest) -2- at least a
 #if     defined(__bsd__)                /* get current working directory */    second wave of interviews ("longitudinal") which measure each change
       extern char       *getwd( );    (if any) in individual health status.  Health expectancies are
     computed from the time spent in each health state according to a
       if ( getwd( dirc ) == NULL ) {    model. More health states you consider, more time is necessary to reach the
 #else    Maximum Likelihood of the parameters involved in the model.  The
       extern char       *getcwd( );    simplest model is the multinomial logistic model where pij is the
     probability to be observed in state j at the second wave
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    conditional to be observed in state i at the first wave. Therefore
 #endif    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
          return( GLOCK_ERROR_GETCWD );    'age' is age and 'sex' is a covariate. If you want to have a more
       }    complex model than "constant and age", you should modify the program
       strcpy( name, path );             /* we've got it */    where the markup *Covariates have to be included here again* invites
    } else {                             /* strip direcotry from path */    you to do it.  More covariates you add, slower the
       s++;                              /* after this, the filename */    convergence.
       l2 = strlen( s );                 /* length of filename */  
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    The advantage of this computer programme, compared to a simple
       strcpy( name, s );                /* save file name */    multinomial logistic model, is clear when the delay between waves is not
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    identical for each individual. Also, if a individual missed an
       dirc[l1-l2] = 0;                  /* add zero */    intermediate interview, the information is lost, but taken into
    }    account using an interpolation or extrapolation.  
    l1 = strlen( dirc );                 /* length of directory */  
 #ifdef windows    hPijx is the probability to be observed in state i at age x+h
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    conditional to the observed state i at age x. The delay 'h' can be
 #else    split into an exact number (nh*stepm) of unobserved intermediate
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }    states. This elementary transition (by month, quarter,
 #endif    semester or year) is modelled as a multinomial logistic.  The hPx
    s = strrchr( name, '.' );            /* find last / */    matrix is simply the matrix product of nh*stepm elementary matrices
    s++;    and the contribution of each individual to the likelihood is simply
    strcpy(ext,s);                       /* save extension */    hPijx.
    l1= strlen( name);  
    l2= strlen( s)+1;    Also this programme outputs the covariance matrix of the parameters but also
    strncpy( finame, name, l1-l2);    of the life expectancies. It also computes the stable prevalence. 
    finame[l1-l2]= 0;    
    return( 0 );                         /* we're done */    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
 }             Institut national d'études démographiques, Paris.
     This software have been partly granted by Euro-REVES, a concerted action
     from the European Union.
 /******************************************/    It is copyrighted identically to a GNU software product, ie programme and
     software can be distributed freely for non commercial use. Latest version
 void replace(char *s, char*t)    can be accessed at http://euroreves.ined.fr/imach .
 {  
   int i;    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
   int lg=20;    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
   i=0;    
   lg=strlen(t);    **********************************************************************/
   for(i=0; i<= lg; i++) {  /*
     (s[i] = t[i]);    main
     if (t[i]== '\\') s[i]='/';    read parameterfile
   }    read datafile
 }    concatwav
     freqsummary
 int nbocc(char *s, char occ)    if (mle >= 1)
 {      mlikeli
   int i,j=0;    print results files
   int lg=20;    if mle==1 
   i=0;       computes hessian
   lg=strlen(s);    read end of parameter file: agemin, agemax, bage, fage, estepm
   for(i=0; i<= lg; i++) {        begin-prev-date,...
   if  (s[i] == occ ) j++;    open gnuplot file
   }    open html file
   return j;    stable prevalence
 }     for age prevalim()
     h Pij x
 void cutv(char *u,char *v, char*t, char occ)    variance of p varprob
 {    forecasting if prevfcast==1 prevforecast call prevalence()
   int i,lg,j,p=0;    health expectancies
   i=0;    Variance-covariance of DFLE
   for(j=0; j<=strlen(t)-1; j++) {    prevalence()
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;     movingaverage()
   }    varevsij() 
     if popbased==1 varevsij(,popbased)
   lg=strlen(t);    total life expectancies
   for(j=0; j<p; j++) {    Variance of stable prevalence
     (u[j] = t[j]);   end
   }  */
      u[p]='\0';  
   
    for(j=0; j<= lg; j++) {  
     if (j>=(p+1))(v[j-p-1] = t[j]);   
   }  #include <math.h>
 }  #include <stdio.h>
   #include <stdlib.h>
 /********************** nrerror ********************/  #include <string.h>
   #include <unistd.h>
 void nrerror(char error_text[])  
 {  #include <limits.h>
   fprintf(stderr,"ERREUR ...\n");  #include <sys/types.h>
   fprintf(stderr,"%s\n",error_text);  #include <sys/stat.h>
   exit(1);  #include <errno.h>
 }  extern int errno;
 /*********************** vector *******************/  
 double *vector(int nl, int nh)  /* #include <sys/time.h> */
 {  #include <time.h>
   double *v;  #include "timeval.h"
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  
   if (!v) nrerror("allocation failure in vector");  /* #include <libintl.h> */
   return v-nl+NR_END;  /* #define _(String) gettext (String) */
 }  
   #define MAXLINE 256
 /************************ free vector ******************/  
 void free_vector(double*v, int nl, int nh)  #define GNUPLOTPROGRAM "gnuplot"
 {  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
   free((FREE_ARG)(v+nl-NR_END));  #define FILENAMELENGTH 132
 }  
   #define GLOCK_ERROR_NOPATH              -1      /* empty path */
 /************************ivector *******************************/  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
 int *ivector(long nl,long nh)  
 {  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
   int *v;  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  
   if (!v) nrerror("allocation failure in ivector");  #define NINTERVMAX 8
   return v-nl+NR_END;  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
 }  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
   #define NCOVMAX 8 /* Maximum number of covariates */
 /******************free ivector **************************/  #define MAXN 20000
 void free_ivector(int *v, long nl, long nh)  #define YEARM 12. /* Number of months per year */
 {  #define AGESUP 130
   free((FREE_ARG)(v+nl-NR_END));  #define AGEBASE 40
 }  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
   #ifdef UNIX
 /******************* imatrix *******************************/  #define DIRSEPARATOR '/'
 int **imatrix(long nrl, long nrh, long ncl, long nch)  #define CHARSEPARATOR "/"
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  #define ODIRSEPARATOR '\\'
 {  #else
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  #define DIRSEPARATOR '\\'
   int **m;  #define CHARSEPARATOR "\\"
    #define ODIRSEPARATOR '/'
   /* allocate pointers to rows */  #endif
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  
   if (!m) nrerror("allocation failure 1 in matrix()");  /* $Id$ */
   m += NR_END;  /* $State$ */
   m -= nrl;  
    char version[]="Imach version 0.98b, January 2006, INED-EUROREVES ";
    char fullversion[]="$Revision$ $Date$"; 
   /* allocate rows and set pointers to them */  int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  int nvar;
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
   m[nrl] += NR_END;  int npar=NPARMAX;
   m[nrl] -= ncl;  int nlstate=2; /* Number of live states */
    int ndeath=1; /* Number of dead states */
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
    int popbased=0;
   /* return pointer to array of pointers to rows */  
   return m;  int *wav; /* Number of waves for this individuual 0 is possible */
 }  int maxwav; /* Maxim number of waves */
   int jmin, jmax; /* min, max spacing between 2 waves */
 /****************** free_imatrix *************************/  int ijmin, ijmax; /* Individuals having jmin and jmax */ 
 void free_imatrix(m,nrl,nrh,ncl,nch)  int gipmx, gsw; /* Global variables on the number of contributions 
       int **m;                     to the likelihood and the sum of weights (done by funcone)*/
       long nch,ncl,nrh,nrl;  int mle, weightopt;
      /* free an int matrix allocated by imatrix() */  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
 {  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
   free((FREE_ARG) (m+nrl-NR_END));             * wave mi and wave mi+1 is not an exact multiple of stepm. */
 }  double jmean; /* Mean space between 2 waves */
   double **oldm, **newm, **savm; /* Working pointers to matrices */
 /******************* matrix *******************************/  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
 double **matrix(long nrl, long nrh, long ncl, long nch)  FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
 {  FILE *ficlog, *ficrespow;
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  int globpr; /* Global variable for printing or not */
   double **m;  double fretone; /* Only one call to likelihood */
   long ipmx; /* Number of contributions */
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  double sw; /* Sum of weights */
   if (!m) nrerror("allocation failure 1 in matrix()");  char filerespow[FILENAMELENGTH];
   m += NR_END;  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
   m -= nrl;  FILE *ficresilk;
   FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  FILE *ficresprobmorprev;
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  FILE *fichtm, *fichtmcov; /* Html File */
   m[nrl] += NR_END;  FILE *ficreseij;
   m[nrl] -= ncl;  char filerese[FILENAMELENGTH];
   FILE  *ficresvij;
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  char fileresv[FILENAMELENGTH];
   return m;  FILE  *ficresvpl;
 }  char fileresvpl[FILENAMELENGTH];
   char title[MAXLINE];
 /*************************free matrix ************************/  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
 {  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  char command[FILENAMELENGTH];
   free((FREE_ARG)(m+nrl-NR_END));  int  outcmd=0;
 }  
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
 /******************* ma3x *******************************/  
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  char filelog[FILENAMELENGTH]; /* Log file */
 {  char filerest[FILENAMELENGTH];
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  char fileregp[FILENAMELENGTH];
   double ***m;  char popfile[FILENAMELENGTH];
   
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
   if (!m) nrerror("allocation failure 1 in matrix()");  
   m += NR_END;  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
   m -= nrl;  struct timezone tzp;
   extern int gettimeofday();
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  struct tm tmg, tm, tmf, *gmtime(), *localtime();
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  long time_value;
   m[nrl] += NR_END;  extern long time();
   m[nrl] -= ncl;  char strcurr[80], strfor[80];
   
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  char *endptr;
   long lval;
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  #define NR_END 1
   m[nrl][ncl] += NR_END;  #define FREE_ARG char*
   m[nrl][ncl] -= nll;  #define FTOL 1.0e-10
   for (j=ncl+1; j<=nch; j++)  
     m[nrl][j]=m[nrl][j-1]+nlay;  #define NRANSI 
    #define ITMAX 200 
   for (i=nrl+1; i<=nrh; i++) {  
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  #define TOL 2.0e-4 
     for (j=ncl+1; j<=nch; j++)  
       m[i][j]=m[i][j-1]+nlay;  #define CGOLD 0.3819660 
   }  #define ZEPS 1.0e-10 
   return m;  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
 }  
   #define GOLD 1.618034 
 /*************************free ma3x ************************/  #define GLIMIT 100.0 
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  #define TINY 1.0e-20 
 {  
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  static double maxarg1,maxarg2;
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
   free((FREE_ARG)(m+nrl-NR_END));  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
 }    
   #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
 /***************** f1dim *************************/  #define rint(a) floor(a+0.5)
 extern int ncom;  
 extern double *pcom,*xicom;  static double sqrarg;
 extern double (*nrfunc)(double []);  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
    #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
 double f1dim(double x)  int agegomp= AGEGOMP;
 {  
   int j;  int imx; 
   double f;  int stepm=1;
   double *xt;  /* Stepm, step in month: minimum step interpolation*/
    
   xt=vector(1,ncom);  int estepm;
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
   f=(*nrfunc)(xt);  
   free_vector(xt,1,ncom);  int m,nb;
   return f;  long *num;
 }  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
   double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
 /*****************brent *************************/  double **pmmij, ***probs;
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  double *ageexmed,*agecens;
 {  double dateintmean=0;
   int iter;  
   double a,b,d,etemp;  double *weight;
   double fu,fv,fw,fx;  int **s; /* Status */
   double ftemp;  double *agedc, **covar, idx;
   double p,q,r,tol1,tol2,u,v,w,x,xm;  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
   double e=0.0;  double *lsurv, *lpop, *tpop;
    
   a=(ax < cx ? ax : cx);  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
   b=(ax > cx ? ax : cx);  double ftolhess; /* Tolerance for computing hessian */
   x=w=v=bx;  
   fw=fv=fx=(*f)(x);  /**************** split *************************/
   for (iter=1;iter<=ITMAX;iter++) {  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
     xm=0.5*(a+b);  {
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/       the name of the file (name), its extension only (ext) and its first part of the name (finame)
     printf(".");fflush(stdout);    */ 
 #ifdef DEBUG    char  *ss;                            /* pointer */
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    int   l1, l2;                         /* length counters */
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  
 #endif    l1 = strlen(path );                   /* length of path */
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
       *xmin=x;    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
       return fx;    if ( ss == NULL ) {                   /* no directory, so determine current directory */
     }      strcpy( name, path );               /* we got the fullname name because no directory */
     ftemp=fu;      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
     if (fabs(e) > tol1) {        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
       r=(x-w)*(fx-fv);      /* get current working directory */
       q=(x-v)*(fx-fw);      /*    extern  char* getcwd ( char *buf , int len);*/
       p=(x-v)*q-(x-w)*r;      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
       q=2.0*(q-r);        return( GLOCK_ERROR_GETCWD );
       if (q > 0.0) p = -p;      }
       q=fabs(q);      /* got dirc from getcwd*/
       etemp=e;      printf(" DIRC = %s \n",dirc);
       e=d;    } else {                              /* strip direcotry from path */
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))      ss++;                               /* after this, the filename */
         d=CGOLD*(e=(x >= xm ? a-x : b-x));      l2 = strlen( ss );                  /* length of filename */
       else {      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
         d=p/q;      strcpy( name, ss );         /* save file name */
         u=x+d;      strncpy( dirc, path, l1 - l2 );     /* now the directory */
         if (u-a < tol2 || b-u < tol2)      dirc[l1-l2] = 0;                    /* add zero */
           d=SIGN(tol1,xm-x);      printf(" DIRC2 = %s \n",dirc);
       }    }
     } else {    /* We add a separator at the end of dirc if not exists */
       d=CGOLD*(e=(x >= xm ? a-x : b-x));    l1 = strlen( dirc );                  /* length of directory */
     }    if( dirc[l1-1] != DIRSEPARATOR ){
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));      dirc[l1] =  DIRSEPARATOR;
     fu=(*f)(u);      dirc[l1+1] = 0; 
     if (fu <= fx) {      printf(" DIRC3 = %s \n",dirc);
       if (u >= x) a=x; else b=x;    }
       SHFT(v,w,x,u)    ss = strrchr( name, '.' );            /* find last / */
         SHFT(fv,fw,fx,fu)    if (ss >0){
         } else {      ss++;
           if (u < x) a=u; else b=u;      strcpy(ext,ss);                     /* save extension */
           if (fu <= fw || w == x) {      l1= strlen( name);
             v=w;      l2= strlen(ss)+1;
             w=u;      strncpy( finame, name, l1-l2);
             fv=fw;      finame[l1-l2]= 0;
             fw=fu;    }
           } else if (fu <= fv || v == x || v == w) {  
             v=u;    return( 0 );                          /* we're done */
             fv=fu;  }
           }  
         }  
   }  /******************************************/
   nrerror("Too many iterations in brent");  
   *xmin=x;  void replace_back_to_slash(char *s, char*t)
   return fx;  {
 }    int i;
     int lg=0;
 /****************** mnbrak ***********************/    i=0;
     lg=strlen(t);
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,    for(i=0; i<= lg; i++) {
             double (*func)(double))      (s[i] = t[i]);
 {      if (t[i]== '\\') s[i]='/';
   double ulim,u,r,q, dum;    }
   double fu;  }
    
   *fa=(*func)(*ax);  int nbocc(char *s, char occ)
   *fb=(*func)(*bx);  {
   if (*fb > *fa) {    int i,j=0;
     SHFT(dum,*ax,*bx,dum)    int lg=20;
       SHFT(dum,*fb,*fa,dum)    i=0;
       }    lg=strlen(s);
   *cx=(*bx)+GOLD*(*bx-*ax);    for(i=0; i<= lg; i++) {
   *fc=(*func)(*cx);    if  (s[i] == occ ) j++;
   while (*fb > *fc) {    }
     r=(*bx-*ax)*(*fb-*fc);    return j;
     q=(*bx-*cx)*(*fb-*fa);  }
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/  
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  void cutv(char *u,char *v, char*t, char occ)
     ulim=(*bx)+GLIMIT*(*cx-*bx);  {
     if ((*bx-u)*(u-*cx) > 0.0) {    /* cuts string t into u and v where u ends before first occurence of char 'occ' 
       fu=(*func)(u);       and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
     } else if ((*cx-u)*(u-ulim) > 0.0) {       gives u="abcedf" and v="ghi2j" */
       fu=(*func)(u);    int i,lg,j,p=0;
       if (fu < *fc) {    i=0;
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))    for(j=0; j<=strlen(t)-1; j++) {
           SHFT(*fb,*fc,fu,(*func)(u))      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
           }    }
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  
       u=ulim;    lg=strlen(t);
       fu=(*func)(u);    for(j=0; j<p; j++) {
     } else {      (u[j] = t[j]);
       u=(*cx)+GOLD*(*cx-*bx);    }
       fu=(*func)(u);       u[p]='\0';
     }  
     SHFT(*ax,*bx,*cx,u)     for(j=0; j<= lg; j++) {
       SHFT(*fa,*fb,*fc,fu)      if (j>=(p+1))(v[j-p-1] = t[j]);
       }    }
 }  }
   
 /*************** linmin ************************/  /********************** nrerror ********************/
   
 int ncom;  void nrerror(char error_text[])
 double *pcom,*xicom;  {
 double (*nrfunc)(double []);    fprintf(stderr,"ERREUR ...\n");
      fprintf(stderr,"%s\n",error_text);
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))    exit(EXIT_FAILURE);
 {  }
   double brent(double ax, double bx, double cx,  /*********************** vector *******************/
                double (*f)(double), double tol, double *xmin);  double *vector(int nl, int nh)
   double f1dim(double x);  {
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,    double *v;
               double *fc, double (*func)(double));    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
   int j;    if (!v) nrerror("allocation failure in vector");
   double xx,xmin,bx,ax;    return v-nl+NR_END;
   double fx,fb,fa;  }
    
   ncom=n;  /************************ free vector ******************/
   pcom=vector(1,n);  void free_vector(double*v, int nl, int nh)
   xicom=vector(1,n);  {
   nrfunc=func;    free((FREE_ARG)(v+nl-NR_END));
   for (j=1;j<=n;j++) {  }
     pcom[j]=p[j];  
     xicom[j]=xi[j];  /************************ivector *******************************/
   }  int *ivector(long nl,long nh)
   ax=0.0;  {
   xx=1.0;    int *v;
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);    if (!v) nrerror("allocation failure in ivector");
 #ifdef DEBUG    return v-nl+NR_END;
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  }
 #endif  
   for (j=1;j<=n;j++) {  /******************free ivector **************************/
     xi[j] *= xmin;  void free_ivector(int *v, long nl, long nh)
     p[j] += xi[j];  {
   }    free((FREE_ARG)(v+nl-NR_END));
   free_vector(xicom,1,n);  }
   free_vector(pcom,1,n);  
 }  /************************lvector *******************************/
   long *lvector(long nl,long nh)
 /*************** powell ************************/  {
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,    long *v;
             double (*func)(double []))    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
 {    if (!v) nrerror("allocation failure in ivector");
   void linmin(double p[], double xi[], int n, double *fret,    return v-nl+NR_END;
               double (*func)(double []));  }
   int i,ibig,j;  
   double del,t,*pt,*ptt,*xit;  /******************free lvector **************************/
   double fp,fptt;  void free_lvector(long *v, long nl, long nh)
   double *xits;  {
   pt=vector(1,n);    free((FREE_ARG)(v+nl-NR_END));
   ptt=vector(1,n);  }
   xit=vector(1,n);  
   xits=vector(1,n);  /******************* imatrix *******************************/
   *fret=(*func)(p);  int **imatrix(long nrl, long nrh, long ncl, long nch) 
   for (j=1;j<=n;j++) pt[j]=p[j];       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
   for (*iter=1;;++(*iter)) {  { 
     fp=(*fret);    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
     ibig=0;    int **m; 
     del=0.0;    
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);    /* allocate pointers to rows */ 
     for (i=1;i<=n;i++)    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
       printf(" %d %.12f",i, p[i]);    if (!m) nrerror("allocation failure 1 in matrix()"); 
     printf("\n");    m += NR_END; 
     for (i=1;i<=n;i++) {    m -= nrl; 
       for (j=1;j<=n;j++) xit[j]=xi[j][i];    
       fptt=(*fret);    
 #ifdef DEBUG    /* allocate rows and set pointers to them */ 
       printf("fret=%lf \n",*fret);    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
 #endif    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
       printf("%d",i);fflush(stdout);    m[nrl] += NR_END; 
       linmin(p,xit,n,fret,func);    m[nrl] -= ncl; 
       if (fabs(fptt-(*fret)) > del) {    
         del=fabs(fptt-(*fret));    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
         ibig=i;    
       }    /* return pointer to array of pointers to rows */ 
 #ifdef DEBUG    return m; 
       printf("%d %.12e",i,(*fret));  } 
       for (j=1;j<=n;j++) {  
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);  /****************** free_imatrix *************************/
         printf(" x(%d)=%.12e",j,xit[j]);  void free_imatrix(m,nrl,nrh,ncl,nch)
       }        int **m;
       for(j=1;j<=n;j++)        long nch,ncl,nrh,nrl; 
         printf(" p=%.12e",p[j]);       /* free an int matrix allocated by imatrix() */ 
       printf("\n");  { 
 #endif    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
     }    free((FREE_ARG) (m+nrl-NR_END)); 
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {  } 
 #ifdef DEBUG  
       int k[2],l;  /******************* matrix *******************************/
       k[0]=1;  double **matrix(long nrl, long nrh, long ncl, long nch)
       k[1]=-1;  {
       printf("Max: %.12e",(*func)(p));    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
       for (j=1;j<=n;j++)    double **m;
         printf(" %.12e",p[j]);  
       printf("\n");    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
       for(l=0;l<=1;l++) {    if (!m) nrerror("allocation failure 1 in matrix()");
         for (j=1;j<=n;j++) {    m += NR_END;
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];    m -= nrl;
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  
         }    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       }    m[nrl] += NR_END;
 #endif    m[nrl] -= ncl;
   
     for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
       free_vector(xit,1,n);    return m;
       free_vector(xits,1,n);    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
       free_vector(ptt,1,n);     */
       free_vector(pt,1,n);  }
       return;  
     }  /*************************free matrix ************************/
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
     for (j=1;j<=n;j++) {  {
       ptt[j]=2.0*p[j]-pt[j];    free((FREE_ARG)(m[nrl]+ncl-NR_END));
       xit[j]=p[j]-pt[j];    free((FREE_ARG)(m+nrl-NR_END));
       pt[j]=p[j];  }
     }  
     fptt=(*func)(ptt);  /******************* ma3x *******************************/
     if (fptt < fp) {  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);  {
       if (t < 0.0) {    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
         linmin(p,xit,n,fret,func);    double ***m;
         for (j=1;j<=n;j++) {  
           xi[j][ibig]=xi[j][n];    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
           xi[j][n]=xit[j];    if (!m) nrerror("allocation failure 1 in matrix()");
         }    m += NR_END;
 #ifdef DEBUG    m -= nrl;
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  
         for(j=1;j<=n;j++)    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
           printf(" %.12e",xit[j]);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
         printf("\n");    m[nrl] += NR_END;
 #endif    m[nrl] -= ncl;
       }  
     }    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   }  
 }    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
     if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
 /**** Prevalence limit ****************/    m[nrl][ncl] += NR_END;
     m[nrl][ncl] -= nll;
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)    for (j=ncl+1; j<=nch; j++) 
 {      m[nrl][j]=m[nrl][j-1]+nlay;
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit    
      matrix by transitions matrix until convergence is reached */    for (i=nrl+1; i<=nrh; i++) {
       m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
   int i, ii,j,k;      for (j=ncl+1; j<=nch; j++) 
   double min, max, maxmin, maxmax,sumnew=0.;        m[i][j]=m[i][j-1]+nlay;
   double **matprod2();    }
   double **out, cov[NCOVMAX], **pmij();    return m; 
   double **newm;    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
   double agefin, delaymax=50 ; /* Max number of years to converge */             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
     */
   for (ii=1;ii<=nlstate+ndeath;ii++)  }
     for (j=1;j<=nlstate+ndeath;j++){  
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);  /*************************free ma3x ************************/
     }  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
   {
    cov[1]=1.;    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
      free((FREE_ARG)(m[nrl]+ncl-NR_END));
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */    free((FREE_ARG)(m+nrl-NR_END));
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){  }
     newm=savm;  
     /* Covariates have to be included here again */  /*************** function subdirf ***********/
      cov[2]=agefin;  char *subdirf(char fileres[])
    {
       for (k=1; k<=cptcovn;k++) {    /* Caution optionfilefiname is hidden */
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    strcpy(tmpout,optionfilefiname);
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/    strcat(tmpout,"/"); /* Add to the right */
       }    strcat(tmpout,fileres);
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    return tmpout;
       for (k=1; k<=cptcovprod;k++)  }
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  
   /*************** function subdirf2 ***********/
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/  char *subdirf2(char fileres[], char *preop)
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/  {
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/    
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);    /* Caution optionfilefiname is hidden */
     strcpy(tmpout,optionfilefiname);
     savm=oldm;    strcat(tmpout,"/");
     oldm=newm;    strcat(tmpout,preop);
     maxmax=0.;    strcat(tmpout,fileres);
     for(j=1;j<=nlstate;j++){    return tmpout;
       min=1.;  }
       max=0.;  
       for(i=1; i<=nlstate; i++) {  /*************** function subdirf3 ***********/
         sumnew=0;  char *subdirf3(char fileres[], char *preop, char *preop2)
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];  {
         prlim[i][j]= newm[i][j]/(1-sumnew);    
         max=FMAX(max,prlim[i][j]);    /* Caution optionfilefiname is hidden */
         min=FMIN(min,prlim[i][j]);    strcpy(tmpout,optionfilefiname);
       }    strcat(tmpout,"/");
       maxmin=max-min;    strcat(tmpout,preop);
       maxmax=FMAX(maxmax,maxmin);    strcat(tmpout,preop2);
     }    strcat(tmpout,fileres);
     if(maxmax < ftolpl){    return tmpout;
       return prlim;  }
     }  
   }  /***************** f1dim *************************/
 }  extern int ncom; 
   extern double *pcom,*xicom;
 /*************** transition probabilities ***************/  extern double (*nrfunc)(double []); 
    
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )  double f1dim(double x) 
 {  { 
   double s1, s2;    int j; 
   /*double t34;*/    double f;
   int i,j,j1, nc, ii, jj;    double *xt; 
    
     for(i=1; i<= nlstate; i++){    xt=vector(1,ncom); 
     for(j=1; j<i;j++){    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    f=(*nrfunc)(xt); 
         /*s2 += param[i][j][nc]*cov[nc];*/    free_vector(xt,1,ncom); 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    return f; 
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/  } 
       }  
       ps[i][j]=s2;  /*****************brent *************************/
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
     }  { 
     for(j=i+1; j<=nlstate+ndeath;j++){    int iter; 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    double a,b,d,etemp;
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    double fu,fv,fw,fx;
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/    double ftemp;
       }    double p,q,r,tol1,tol2,u,v,w,x,xm; 
       ps[i][j]=s2;    double e=0.0; 
     }   
   }    a=(ax < cx ? ax : cx); 
     /*ps[3][2]=1;*/    b=(ax > cx ? ax : cx); 
     x=w=v=bx; 
   for(i=1; i<= nlstate; i++){    fw=fv=fx=(*f)(x); 
      s1=0;    for (iter=1;iter<=ITMAX;iter++) { 
     for(j=1; j<i; j++)      xm=0.5*(a+b); 
       s1+=exp(ps[i][j]);      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
     for(j=i+1; j<=nlstate+ndeath; j++)      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
       s1+=exp(ps[i][j]);      printf(".");fflush(stdout);
     ps[i][i]=1./(s1+1.);      fprintf(ficlog,".");fflush(ficlog);
     for(j=1; j<i; j++)  #ifdef DEBUG
       ps[i][j]= exp(ps[i][j])*ps[i][i];      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
     for(j=i+1; j<=nlstate+ndeath; j++)      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       ps[i][j]= exp(ps[i][j])*ps[i][i];      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */  #endif
   } /* end i */      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
         *xmin=x; 
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){        return fx; 
     for(jj=1; jj<= nlstate+ndeath; jj++){      } 
       ps[ii][jj]=0;      ftemp=fu;
       ps[ii][ii]=1;      if (fabs(e) > tol1) { 
     }        r=(x-w)*(fx-fv); 
   }        q=(x-v)*(fx-fw); 
         p=(x-v)*q-(x-w)*r; 
         q=2.0*(q-r); 
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){        if (q > 0.0) p = -p; 
     for(jj=1; jj<= nlstate+ndeath; jj++){        q=fabs(q); 
      printf("%lf ",ps[ii][jj]);        etemp=e; 
    }        e=d; 
     printf("\n ");        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
     }          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
     printf("\n ");printf("%lf ",cov[2]);*/        else { 
 /*          d=p/q; 
   for(i=1; i<= npar; i++) printf("%f ",x[i]);          u=x+d; 
   goto end;*/          if (u-a < tol2 || b-u < tol2) 
     return ps;            d=SIGN(tol1,xm-x); 
 }        } 
       } else { 
 /**************** Product of 2 matrices ******************/        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
       } 
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
 {      fu=(*f)(u); 
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times      if (fu <= fx) { 
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */        if (u >= x) a=x; else b=x; 
   /* in, b, out are matrice of pointers which should have been initialized        SHFT(v,w,x,u) 
      before: only the contents of out is modified. The function returns          SHFT(fv,fw,fx,fu) 
      a pointer to pointers identical to out */          } else { 
   long i, j, k;            if (u < x) a=u; else b=u; 
   for(i=nrl; i<= nrh; i++)            if (fu <= fw || w == x) { 
     for(k=ncolol; k<=ncoloh; k++)              v=w; 
       for(j=ncl,out[i][k]=0.; j<=nch; j++)              w=u; 
         out[i][k] +=in[i][j]*b[j][k];              fv=fw; 
               fw=fu; 
   return out;            } else if (fu <= fv || v == x || v == w) { 
 }              v=u; 
               fv=fu; 
             } 
 /************* Higher Matrix Product ***************/          } 
     } 
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )    nrerror("Too many iterations in brent"); 
 {    *xmin=x; 
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month    return fx; 
      duration (i.e. until  } 
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.  
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step  /****************** mnbrak ***********************/
      (typically every 2 years instead of every month which is too big).  
      Model is determined by parameters x and covariates have to be  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
      included manually here.              double (*func)(double)) 
   { 
      */    double ulim,u,r,q, dum;
     double fu; 
   int i, j, d, h, k;   
   double **out, cov[NCOVMAX];    *fa=(*func)(*ax); 
   double **newm;    *fb=(*func)(*bx); 
     if (*fb > *fa) { 
   /* Hstepm could be zero and should return the unit matrix */      SHFT(dum,*ax,*bx,dum) 
   for (i=1;i<=nlstate+ndeath;i++)        SHFT(dum,*fb,*fa,dum) 
     for (j=1;j<=nlstate+ndeath;j++){        } 
       oldm[i][j]=(i==j ? 1.0 : 0.0);    *cx=(*bx)+GOLD*(*bx-*ax); 
       po[i][j][0]=(i==j ? 1.0 : 0.0);    *fc=(*func)(*cx); 
     }    while (*fb > *fc) { 
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */      r=(*bx-*ax)*(*fb-*fc); 
   for(h=1; h <=nhstepm; h++){      q=(*bx-*cx)*(*fb-*fa); 
     for(d=1; d <=hstepm; d++){      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
       newm=savm;        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
       /* Covariates have to be included here again */      ulim=(*bx)+GLIMIT*(*cx-*bx); 
       cov[1]=1.;      if ((*bx-u)*(u-*cx) > 0.0) { 
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;        fu=(*func)(u); 
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];      } else if ((*cx-u)*(u-ulim) > 0.0) { 
       for (k=1; k<=cptcovage;k++)        fu=(*func)(u); 
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];        if (fu < *fc) { 
       for (k=1; k<=cptcovprod;k++)          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];            SHFT(*fb,*fc,fu,(*func)(u)) 
             } 
       } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/        u=ulim; 
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/        fu=(*func)(u); 
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,      } else { 
                    pmij(pmmij,cov,ncovmodel,x,nlstate));        u=(*cx)+GOLD*(*cx-*bx); 
       savm=oldm;        fu=(*func)(u); 
       oldm=newm;      } 
     }      SHFT(*ax,*bx,*cx,u) 
     for(i=1; i<=nlstate+ndeath; i++)        SHFT(*fa,*fb,*fc,fu) 
       for(j=1;j<=nlstate+ndeath;j++) {        } 
         po[i][j][h]=newm[i][j];  } 
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);  
          */  /*************** linmin ************************/
       }  
   } /* end h */  int ncom; 
   return po;  double *pcom,*xicom;
 }  double (*nrfunc)(double []); 
    
   void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
 /*************** log-likelihood *************/  { 
 double func( double *x)    double brent(double ax, double bx, double cx, 
 {                 double (*f)(double), double tol, double *xmin); 
   int i, ii, j, k, mi, d, kk;    double f1dim(double x); 
   double l, ll[NLSTATEMAX], cov[NCOVMAX];    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
   double **out;                double *fc, double (*func)(double)); 
   double sw; /* Sum of weights */    int j; 
   double lli; /* Individual log likelihood */    double xx,xmin,bx,ax; 
   int s1, s2;    double fx,fb,fa;
   long ipmx;   
   /*extern weight */    ncom=n; 
   /* We are differentiating ll according to initial status */    pcom=vector(1,n); 
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/    xicom=vector(1,n); 
   /*for(i=1;i<imx;i++)    nrfunc=func; 
     printf(" %d\n",s[4][i]);    for (j=1;j<=n;j++) { 
   */      pcom[j]=p[j]; 
   cov[1]=1.;      xicom[j]=xi[j]; 
     } 
   for(k=1; k<=nlstate; k++) ll[k]=0.;    ax=0.0; 
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){    xx=1.0; 
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
     for(mi=1; mi<= wav[i]-1; mi++){    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
       for (ii=1;ii<=nlstate+ndeath;ii++)  #ifdef DEBUG
         for (j=1;j<=nlstate+ndeath;j++){    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
           oldm[ii][j]=(ii==j ? 1.0 : 0.0);    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
           savm[ii][j]=(ii==j ? 1.0 : 0.0);  #endif
         }    for (j=1;j<=n;j++) { 
       for(d=0; d<dh[mi][i]; d++){      xi[j] *= xmin; 
         newm=savm;      p[j] += xi[j]; 
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;    } 
         for (kk=1; kk<=cptcovage;kk++) {    free_vector(xicom,1,n); 
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];    free_vector(pcom,1,n); 
         }  } 
          
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,  char *asc_diff_time(long time_sec, char ascdiff[])
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));  {
         savm=oldm;    long sec_left, days, hours, minutes;
         oldm=newm;    days = (time_sec) / (60*60*24);
            sec_left = (time_sec) % (60*60*24);
            hours = (sec_left) / (60*60) ;
       } /* end mult */    sec_left = (sec_left) %(60*60);
          minutes = (sec_left) /60;
       s1=s[mw[mi][i]][i];    sec_left = (sec_left) % (60);
       s2=s[mw[mi+1][i]][i];    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
       if( s2 > nlstate){    return ascdiff;
         /* i.e. if s2 is a death state and if the date of death is known then the contribution  }
            to the likelihood is the probability to die between last step unit time and current  
            step unit time, which is also the differences between probability to die before dh  /*************** powell ************************/
            and probability to die before dh-stepm .  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
            In version up to 0.92 likelihood was computed              double (*func)(double [])) 
            as if date of death was unknown. Death was treated as any other  { 
            health state: the date of the interview describes the actual state    void linmin(double p[], double xi[], int n, double *fret, 
            and not the date of a change in health state. The former idea was                double (*func)(double [])); 
            to consider that at each interview the state was recorded    int i,ibig,j; 
            (healthy, disable or death) and IMaCh was corrected; but when we    double del,t,*pt,*ptt,*xit;
            introduced the exact date of death then we should have modified    double fp,fptt;
            the contribution of an exact death to the likelihood. This new    double *xits;
            contribution is smaller and very dependent of the step unit    int niterf, itmp;
            stepm. It is no more the probability to die between last interview  
            and month of death but the probability to survive from last    pt=vector(1,n); 
            interview up to one month before death multiplied by the    ptt=vector(1,n); 
            probability to die within a month. Thanks to Chris    xit=vector(1,n); 
            Jackson for correcting this bug.  Former versions increased    xits=vector(1,n); 
            mortality artificially. The bad side is that we add another loop    *fret=(*func)(p); 
            which slows down the processing. The difference can be up to 10%    for (j=1;j<=n;j++) pt[j]=p[j]; 
            lower mortality.    for (*iter=1;;++(*iter)) { 
         */      fp=(*fret); 
         lli=log(out[s1][s2] - savm[s1][s2]);      ibig=0; 
       }else{      del=0.0; 
         lli=log(out[s1][s2]); /* or     lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); */      last_time=curr_time;
         /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/      (void) gettimeofday(&curr_time,&tzp);
       }      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
       ipmx +=1;      /*    fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);
       sw += weight[i];      fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;      */
       /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d lli=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],lli,weight[i],out[s1][s2],savm[s1][s2]);*/     for (i=1;i<=n;i++) {
     } /* end of wave */        printf(" %d %.12f",i, p[i]);
   } /* end of individual */        fprintf(ficlog," %d %.12lf",i, p[i]);
         fprintf(ficrespow," %.12lf", p[i]);
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];      }
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */      printf("\n");
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */      fprintf(ficlog,"\n");
   /*exit(0);*/      fprintf(ficrespow,"\n");fflush(ficrespow);
   return -l;      if(*iter <=3){
 }        tm = *localtime(&curr_time.tv_sec);
         strcpy(strcurr,asctime(&tm));
   /*       asctime_r(&tm,strcurr); */
 /*********** Maximum Likelihood Estimation ***************/        forecast_time=curr_time; 
         itmp = strlen(strcurr);
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
 {          strcurr[itmp-1]='\0';
   int i,j, iter;        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
   double **xi,*delti;        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
   double fret;        for(niterf=10;niterf<=30;niterf+=10){
   xi=matrix(1,npar,1,npar);          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
   for (i=1;i<=npar;i++)          tmf = *localtime(&forecast_time.tv_sec);
     for (j=1;j<=npar;j++)  /*      asctime_r(&tmf,strfor); */
       xi[i][j]=(i==j ? 1.0 : 0.0);          strcpy(strfor,asctime(&tmf));
   printf("Powell\n");          itmp = strlen(strfor);
   powell(p,xi,npar,ftol,&iter,&fret,func);          if(strfor[itmp-1]=='\n')
           strfor[itmp-1]='\0';
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
         }
 }      }
       for (i=1;i<=n;i++) { 
 /**** Computes Hessian and covariance matrix ***/        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))        fptt=(*fret); 
 {  #ifdef DEBUG
   double  **a,**y,*x,pd;        printf("fret=%lf \n",*fret);
   double **hess;        fprintf(ficlog,"fret=%lf \n",*fret);
   int i, j,jk;  #endif
   int *indx;        printf("%d",i);fflush(stdout);
         fprintf(ficlog,"%d",i);fflush(ficlog);
   double hessii(double p[], double delta, int theta, double delti[]);        linmin(p,xit,n,fret,func); 
   double hessij(double p[], double delti[], int i, int j);        if (fabs(fptt-(*fret)) > del) { 
   void lubksb(double **a, int npar, int *indx, double b[]) ;          del=fabs(fptt-(*fret)); 
   void ludcmp(double **a, int npar, int *indx, double *d) ;          ibig=i; 
         } 
   hess=matrix(1,npar,1,npar);  #ifdef DEBUG
         printf("%d %.12e",i,(*fret));
   printf("\nCalculation of the hessian matrix. Wait...\n");        fprintf(ficlog,"%d %.12e",i,(*fret));
   for (i=1;i<=npar;i++){        for (j=1;j<=n;j++) {
     printf("%d",i);fflush(stdout);          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
     hess[i][i]=hessii(p,ftolhess,i,delti);          printf(" x(%d)=%.12e",j,xit[j]);
     /*printf(" %f ",p[i]);*/          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
     /*printf(" %lf ",hess[i][i]);*/        }
   }        for(j=1;j<=n;j++) {
            printf(" p=%.12e",p[j]);
   for (i=1;i<=npar;i++) {          fprintf(ficlog," p=%.12e",p[j]);
     for (j=1;j<=npar;j++)  {        }
       if (j>i) {        printf("\n");
         printf(".%d%d",i,j);fflush(stdout);        fprintf(ficlog,"\n");
         hess[i][j]=hessij(p,delti,i,j);  #endif
         hess[j][i]=hess[i][j];          } 
         /*printf(" %lf ",hess[i][j]);*/      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
       }  #ifdef DEBUG
     }        int k[2],l;
   }        k[0]=1;
   printf("\n");        k[1]=-1;
         printf("Max: %.12e",(*func)(p));
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");        fprintf(ficlog,"Max: %.12e",(*func)(p));
          for (j=1;j<=n;j++) {
   a=matrix(1,npar,1,npar);          printf(" %.12e",p[j]);
   y=matrix(1,npar,1,npar);          fprintf(ficlog," %.12e",p[j]);
   x=vector(1,npar);        }
   indx=ivector(1,npar);        printf("\n");
   for (i=1;i<=npar;i++)        fprintf(ficlog,"\n");
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];        for(l=0;l<=1;l++) {
   ludcmp(a,npar,indx,&pd);          for (j=1;j<=n;j++) {
             ptt[j]=p[j]+(p[j]-pt[j])*k[l];
   for (j=1;j<=npar;j++) {            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
     for (i=1;i<=npar;i++) x[i]=0;            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
     x[j]=1;          }
     lubksb(a,npar,indx,x);          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
     for (i=1;i<=npar;i++){          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
       matcov[i][j]=x[i];        }
     }  #endif
   }  
   
   printf("\n#Hessian matrix#\n");        free_vector(xit,1,n); 
   for (i=1;i<=npar;i++) {        free_vector(xits,1,n); 
     for (j=1;j<=npar;j++) {        free_vector(ptt,1,n); 
       printf("%.3e ",hess[i][j]);        free_vector(pt,1,n); 
     }        return; 
     printf("\n");      } 
   }      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
       for (j=1;j<=n;j++) { 
   /* Recompute Inverse */        ptt[j]=2.0*p[j]-pt[j]; 
   for (i=1;i<=npar;i++)        xit[j]=p[j]-pt[j]; 
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];        pt[j]=p[j]; 
   ludcmp(a,npar,indx,&pd);      } 
       fptt=(*func)(ptt); 
   /*  printf("\n#Hessian matrix recomputed#\n");      if (fptt < fp) { 
         t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
   for (j=1;j<=npar;j++) {        if (t < 0.0) { 
     for (i=1;i<=npar;i++) x[i]=0;          linmin(p,xit,n,fret,func); 
     x[j]=1;          for (j=1;j<=n;j++) { 
     lubksb(a,npar,indx,x);            xi[j][ibig]=xi[j][n]; 
     for (i=1;i<=npar;i++){            xi[j][n]=xit[j]; 
       y[i][j]=x[i];          }
       printf("%.3e ",y[i][j]);  #ifdef DEBUG
     }          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
     printf("\n");          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   }          for(j=1;j<=n;j++){
   */            printf(" %.12e",xit[j]);
             fprintf(ficlog," %.12e",xit[j]);
   free_matrix(a,1,npar,1,npar);          }
   free_matrix(y,1,npar,1,npar);          printf("\n");
   free_vector(x,1,npar);          fprintf(ficlog,"\n");
   free_ivector(indx,1,npar);  #endif
   free_matrix(hess,1,npar,1,npar);        }
       } 
     } 
 }  } 
   
 /*************** hessian matrix ****************/  /**** Prevalence limit (stable prevalence)  ****************/
 double hessii( double x[], double delta, int theta, double delti[])  
 {  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
   int i;  {
   int l=1, lmax=20;    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
   double k1,k2;       matrix by transitions matrix until convergence is reached */
   double p2[NPARMAX+1];  
   double res;    int i, ii,j,k;
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;    double min, max, maxmin, maxmax,sumnew=0.;
   double fx;    double **matprod2();
   int k=0,kmax=10;    double **out, cov[NCOVMAX], **pmij();
   double l1;    double **newm;
     double agefin, delaymax=50 ; /* Max number of years to converge */
   fx=func(x);  
   for (i=1;i<=npar;i++) p2[i]=x[i];    for (ii=1;ii<=nlstate+ndeath;ii++)
   for(l=0 ; l <=lmax; l++){      for (j=1;j<=nlstate+ndeath;j++){
     l1=pow(10,l);        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     delts=delt;      }
     for(k=1 ; k <kmax; k=k+1){  
       delt = delta*(l1*k);     cov[1]=1.;
       p2[theta]=x[theta] +delt;   
       k1=func(p2)-fx;   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
       p2[theta]=x[theta]-delt;    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
       k2=func(p2)-fx;      newm=savm;
       /*res= (k1-2.0*fx+k2)/delt/delt; */      /* Covariates have to be included here again */
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */       cov[2]=agefin;
          
 #ifdef DEBUG        for (k=1; k<=cptcovn;k++) {
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
 #endif          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */        }
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
         k=kmax;        for (k=1; k<=cptcovprod;k++)
       }          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */  
         k=kmax; l=lmax*10.;        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
       }        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
         delts=delt;      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
       }  
     }      savm=oldm;
   }      oldm=newm;
   delti[theta]=delts;      maxmax=0.;
   return res;      for(j=1;j<=nlstate;j++){
          min=1.;
 }        max=0.;
         for(i=1; i<=nlstate; i++) {
 double hessij( double x[], double delti[], int thetai,int thetaj)          sumnew=0;
 {          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
   int i;          prlim[i][j]= newm[i][j]/(1-sumnew);
   int l=1, l1, lmax=20;          max=FMAX(max,prlim[i][j]);
   double k1,k2,k3,k4,res,fx;          min=FMIN(min,prlim[i][j]);
   double p2[NPARMAX+1];        }
   int k;        maxmin=max-min;
         maxmax=FMAX(maxmax,maxmin);
   fx=func(x);      }
   for (k=1; k<=2; k++) {      if(maxmax < ftolpl){
     for (i=1;i<=npar;i++) p2[i]=x[i];        return prlim;
     p2[thetai]=x[thetai]+delti[thetai]/k;      }
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;    }
     k1=func(p2)-fx;  }
    
     p2[thetai]=x[thetai]+delti[thetai]/k;  /*************** transition probabilities ***************/ 
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;  
     k2=func(p2)-fx;  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
    {
     p2[thetai]=x[thetai]-delti[thetai]/k;    double s1, s2;
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;    /*double t34;*/
     k3=func(p2)-fx;    int i,j,j1, nc, ii, jj;
    
     p2[thetai]=x[thetai]-delti[thetai]/k;      for(i=1; i<= nlstate; i++){
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;        for(j=1; j<i;j++){
     k4=func(p2)-fx;          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */            /*s2 += param[i][j][nc]*cov[nc];*/
 #ifdef DEBUG            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);  /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
 #endif          }
   }          ps[i][j]=s2;
   return res;  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
 }        }
         for(j=i+1; j<=nlstate+ndeath;j++){
 /************** Inverse of matrix **************/          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
 void ludcmp(double **a, int n, int *indx, double *d)            s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
 {  /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
   int i,imax,j,k;          }
   double big,dum,sum,temp;          ps[i][j]=s2;
   double *vv;        }
        }
   vv=vector(1,n);      /*ps[3][2]=1;*/
   *d=1.0;      
   for (i=1;i<=n;i++) {      for(i=1; i<= nlstate; i++){
     big=0.0;        s1=0;
     for (j=1;j<=n;j++)        for(j=1; j<i; j++)
       if ((temp=fabs(a[i][j])) > big) big=temp;          s1+=exp(ps[i][j]);
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");        for(j=i+1; j<=nlstate+ndeath; j++)
     vv[i]=1.0/big;          s1+=exp(ps[i][j]);
   }        ps[i][i]=1./(s1+1.);
   for (j=1;j<=n;j++) {        for(j=1; j<i; j++)
     for (i=1;i<j;i++) {          ps[i][j]= exp(ps[i][j])*ps[i][i];
       sum=a[i][j];        for(j=i+1; j<=nlstate+ndeath; j++)
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];          ps[i][j]= exp(ps[i][j])*ps[i][i];
       a[i][j]=sum;        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
     }      } /* end i */
     big=0.0;      
     for (i=j;i<=n;i++) {      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
       sum=a[i][j];        for(jj=1; jj<= nlstate+ndeath; jj++){
       for (k=1;k<j;k++)          ps[ii][jj]=0;
         sum -= a[i][k]*a[k][j];          ps[ii][ii]=1;
       a[i][j]=sum;        }
       if ( (dum=vv[i]*fabs(sum)) >= big) {      }
         big=dum;      
         imax=i;  
       }  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
     }  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
     if (j != imax) {  /*         printf("ddd %lf ",ps[ii][jj]); */
       for (k=1;k<=n;k++) {  /*       } */
         dum=a[imax][k];  /*       printf("\n "); */
         a[imax][k]=a[j][k];  /*        } */
         a[j][k]=dum;  /*        printf("\n ");printf("%lf ",cov[2]); */
       }         /*
       *d = -(*d);        for(i=1; i<= npar; i++) printf("%f ",x[i]);
       vv[imax]=vv[j];        goto end;*/
     }      return ps;
     indx[j]=imax;  }
     if (a[j][j] == 0.0) a[j][j]=TINY;  
     if (j != n) {  /**************** Product of 2 matrices ******************/
       dum=1.0/(a[j][j]);  
       for (i=j+1;i<=n;i++) a[i][j] *= dum;  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
     }  {
   }    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
   free_vector(vv,1,n);  /* Doesn't work */       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
 ;    /* in, b, out are matrice of pointers which should have been initialized 
 }       before: only the contents of out is modified. The function returns
        a pointer to pointers identical to out */
 void lubksb(double **a, int n, int *indx, double b[])    long i, j, k;
 {    for(i=nrl; i<= nrh; i++)
   int i,ii=0,ip,j;      for(k=ncolol; k<=ncoloh; k++)
   double sum;        for(j=ncl,out[i][k]=0.; j<=nch; j++)
            out[i][k] +=in[i][j]*b[j][k];
   for (i=1;i<=n;i++) {  
     ip=indx[i];    return out;
     sum=b[ip];  }
     b[ip]=b[i];  
     if (ii)  
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];  /************* Higher Matrix Product ***************/
     else if (sum) ii=i;  
     b[i]=sum;  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
   }  {
   for (i=n;i>=1;i--) {    /* Computes the transition matrix starting at age 'age' over 
     sum=b[i];       'nhstepm*hstepm*stepm' months (i.e. until
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
     b[i]=sum/a[i][i];       nhstepm*hstepm matrices. 
   }       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
 }       (typically every 2 years instead of every month which is too big 
        for the memory).
 /************ Frequencies ********************/       Model is determined by parameters x and covariates have to be 
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)       included manually here. 
 {  /* Some frequencies */  
         */
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;  
   double ***freq; /* Frequencies */    int i, j, d, h, k;
   double *pp;    double **out, cov[NCOVMAX];
   double pos, k2, dateintsum=0,k2cpt=0;    double **newm;
   FILE *ficresp;  
   char fileresp[FILENAMELENGTH];    /* Hstepm could be zero and should return the unit matrix */
      for (i=1;i<=nlstate+ndeath;i++)
   pp=vector(1,nlstate);      for (j=1;j<=nlstate+ndeath;j++){
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);        oldm[i][j]=(i==j ? 1.0 : 0.0);
   strcpy(fileresp,"p");        po[i][j][0]=(i==j ? 1.0 : 0.0);
   strcat(fileresp,fileres);      }
   if((ficresp=fopen(fileresp,"w"))==NULL) {    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     printf("Problem with prevalence resultfile: %s\n", fileresp);    for(h=1; h <=nhstepm; h++){
     exit(0);      for(d=1; d <=hstepm; d++){
   }        newm=savm;
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);        /* Covariates have to be included here again */
   j1=0;        cov[1]=1.;
          cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
   j=cptcoveff;        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   if (cptcovn<1) {j=1;ncodemax[1]=1;}        for (k=1; k<=cptcovage;k++)
            cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   for(k1=1; k1<=j;k1++){        for (k=1; k<=cptcovprod;k++)
     for(i1=1; i1<=ncodemax[k1];i1++){          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
       j1++;  
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);  
         scanf("%d", i);*/        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
       for (i=-1; i<=nlstate+ndeath; i++)          /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
         for (jk=-1; jk<=nlstate+ndeath; jk++)          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
           for(m=agemin; m <= agemax+3; m++)                     pmij(pmmij,cov,ncovmodel,x,nlstate));
             freq[i][jk][m]=0;        savm=oldm;
              oldm=newm;
       dateintsum=0;      }
       k2cpt=0;      for(i=1; i<=nlstate+ndeath; i++)
       for (i=1; i<=imx; i++) {        for(j=1;j<=nlstate+ndeath;j++) {
         bool=1;          po[i][j][h]=newm[i][j];
         if  (cptcovn>0) {          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
           for (z1=1; z1<=cptcoveff; z1++)           */
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])        }
               bool=0;    } /* end h */
         }    return po;
         if (bool==1) {  }
           for(m=firstpass; m<=lastpass; m++){  
             k2=anint[m][i]+(mint[m][i]/12.);  
             if ((k2>=dateprev1) && (k2<=dateprev2)) {  /*************** log-likelihood *************/
               if(agev[m][i]==0) agev[m][i]=agemax+1;  double func( double *x)
               if(agev[m][i]==1) agev[m][i]=agemax+2;  {
               if (m<lastpass) {    int i, ii, j, k, mi, d, kk;
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];    double l, ll[NLSTATEMAX], cov[NCOVMAX];
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];    double **out;
               }    double sw; /* Sum of weights */
                  double lli; /* Individual log likelihood */
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {    int s1, s2;
                 dateintsum=dateintsum+k2;    double bbh, survp;
                 k2cpt++;    long ipmx;
               }    /*extern weight */
             }    /* We are differentiating ll according to initial status */
           }    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
         }    /*for(i=1;i<imx;i++) 
       }      printf(" %d\n",s[4][i]);
            */
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    cov[1]=1.;
   
       if  (cptcovn>0) {    for(k=1; k<=nlstate; k++) ll[k]=0.;
         fprintf(ficresp, "\n#********** Variable ");  
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    if(mle==1){
         fprintf(ficresp, "**********\n#");      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       for(i=1; i<=nlstate;i++)        for(mi=1; mi<= wav[i]-1; mi++){
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);          for (ii=1;ii<=nlstate+ndeath;ii++)
       fprintf(ficresp, "\n");            for (j=1;j<=nlstate+ndeath;j++){
                    oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       for(i=(int)agemin; i <= (int)agemax+3; i++){              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         if(i==(int)agemax+3)            }
           printf("Total");          for(d=0; d<dh[mi][i]; d++){
         else            newm=savm;
           printf("Age %d", i);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         for(jk=1; jk <=nlstate ; jk++){            for (kk=1; kk<=cptcovage;kk++) {
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             pp[jk] += freq[jk][m][i];            }
         }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         for(jk=1; jk <=nlstate ; jk++){                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           for(m=-1, pos=0; m <=0 ; m++)            savm=oldm;
             pos += freq[jk][m][i];            oldm=newm;
           if(pp[jk]>=1.e-10)          } /* end mult */
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);        
           else          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
             printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);          /* But now since version 0.9 we anticipate for bias at large stepm.
         }           * If stepm is larger than one month (smallest stepm) and if the exact delay 
            * (in months) between two waves is not a multiple of stepm, we rounded to 
         for(jk=1; jk <=nlstate ; jk++){           * the nearest (and in case of equal distance, to the lowest) interval but now
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)           * we keep into memory the bias bh[mi][i] and also the previous matrix product
             pp[jk] += freq[jk][m][i];           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
         }           * probability in order to take into account the bias as a fraction of the way
            * from savm to out if bh is negative or even beyond if bh is positive. bh varies
         for(jk=1,pos=0; jk <=nlstate ; jk++)           * -stepm/2 to stepm/2 .
           pos += pp[jk];           * For stepm=1 the results are the same as for previous versions of Imach.
         for(jk=1; jk <=nlstate ; jk++){           * For stepm > 1 the results are less biased than in previous versions. 
           if(pos>=1.e-5)           */
             printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);          s1=s[mw[mi][i]][i];
           else          s2=s[mw[mi+1][i]][i];
             printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);          bbh=(double)bh[mi][i]/(double)stepm; 
           if( i <= (int) agemax){          /* bias bh is positive if real duration
             if(pos>=1.e-5){           * is higher than the multiple of stepm and negative otherwise.
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);           */
               probs[i][jk][j1]= pp[jk]/pos;          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/          if( s2 > nlstate){ 
             }            /* i.e. if s2 is a death state and if the date of death is known 
             else               then the contribution to the likelihood is the probability to 
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);               die between last step unit time and current  step unit time, 
           }               which is also equal to probability to die before dh 
         }               minus probability to die before dh-stepm . 
                       In version up to 0.92 likelihood was computed
         for(jk=-1; jk <=nlstate+ndeath; jk++)          as if date of death was unknown. Death was treated as any other
           for(m=-1; m <=nlstate+ndeath; m++)          health state: the date of the interview describes the actual state
             if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);          and not the date of a change in health state. The former idea was
         if(i <= (int) agemax)          to consider that at each interview the state was recorded
           fprintf(ficresp,"\n");          (healthy, disable or death) and IMaCh was corrected; but when we
         printf("\n");          introduced the exact date of death then we should have modified
       }          the contribution of an exact death to the likelihood. This new
     }          contribution is smaller and very dependent of the step unit
   }          stepm. It is no more the probability to die between last interview
   dateintmean=dateintsum/k2cpt;          and month of death but the probability to survive from last
            interview up to one month before death multiplied by the
   fclose(ficresp);          probability to die within a month. Thanks to Chris
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);          Jackson for correcting this bug.  Former versions increased
   free_vector(pp,1,nlstate);          mortality artificially. The bad side is that we add another loop
            which slows down the processing. The difference can be up to 10%
   /* End of Freq */          lower mortality.
 }            */
             lli=log(out[s1][s2] - savm[s1][s2]);
 /************ Prevalence ********************/  
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)  
 {  /* Some frequencies */          } else if  (s2==-2) {
              for (j=1,survp=0. ; j<=nlstate; j++) 
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;              survp += out[s1][j];
   double ***freq; /* Frequencies */            lli= survp;
   double *pp;          }
   double pos, k2;          
           else if  (s2==-4) {
   pp=vector(1,nlstate);            for (j=3,survp=0. ; j<=nlstate; j++) 
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);              survp += out[s1][j];
              lli= survp;
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);          }
   j1=0;          
            else if  (s2==-5) {
   j=cptcoveff;            for (j=1,survp=0. ; j<=2; j++) 
   if (cptcovn<1) {j=1;ncodemax[1]=1;}              survp += out[s1][j];
              lli= survp;
  for(k1=1; k1<=j;k1++){          }
     for(i1=1; i1<=ncodemax[k1];i1++){  
       j1++;  
            else{
       for (i=-1; i<=nlstate+ndeath; i++)              lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
         for (jk=-1; jk<=nlstate+ndeath; jk++)              /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
           for(m=agemin; m <= agemax+3; m++)          } 
             freq[i][jk][m]=0;          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
                /*if(lli ==000.0)*/
       for (i=1; i<=imx; i++) {          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
         bool=1;          ipmx +=1;
         if  (cptcovn>0) {          sw += weight[i];
           for (z1=1; z1<=cptcoveff; z1++)          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])        } /* end of wave */
               bool=0;      } /* end of individual */
         }    }  else if(mle==2){
         if (bool==1) {      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           for(m=firstpass; m<=lastpass; m++){        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
             k2=anint[m][i]+(mint[m][i]/12.);        for(mi=1; mi<= wav[i]-1; mi++){
             if ((k2>=dateprev1) && (k2<=dateprev2)) {          for (ii=1;ii<=nlstate+ndeath;ii++)
               if(agev[m][i]==0) agev[m][i]=agemax+1;            for (j=1;j<=nlstate+ndeath;j++){
               if(agev[m][i]==1) agev[m][i]=agemax+2;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               if (m<lastpass)              savm[ii][j]=(ii==j ? 1.0 : 0.0);
                 if (calagedate>0) freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];            }
               else          for(d=0; d<=dh[mi][i]; d++){
                freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];            newm=savm;
                freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             }            for (kk=1; kk<=cptcovage;kk++) {
           }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         }            }
       }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         for(i=(int)agemin; i <= (int)agemax+3; i++){                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           for(jk=1; jk <=nlstate ; jk++){            savm=oldm;
             for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)            oldm=newm;
               pp[jk] += freq[jk][m][i];          } /* end mult */
           }        
           for(jk=1; jk <=nlstate ; jk++){          s1=s[mw[mi][i]][i];
             for(m=-1, pos=0; m <=0 ; m++)          s2=s[mw[mi+1][i]][i];
             pos += freq[jk][m][i];          bbh=(double)bh[mi][i]/(double)stepm; 
         }          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
                  ipmx +=1;
          for(jk=1; jk <=nlstate ; jk++){          sw += weight[i];
            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
              pp[jk] += freq[jk][m][i];        } /* end of wave */
          }      } /* end of individual */
              }  else if(mle==3){  /* exponential inter-extrapolation */
          for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
          for(jk=1; jk <=nlstate ; jk++){                  for(mi=1; mi<= wav[i]-1; mi++){
            if( i <= (int) agemax){          for (ii=1;ii<=nlstate+ndeath;ii++)
              if(pos>=1.e-5){            for (j=1;j<=nlstate+ndeath;j++){
                probs[i][jk][j1]= pp[jk]/pos;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
              }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
            }            }
          }          for(d=0; d<dh[mi][i]; d++){
                      newm=savm;
         }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     }            for (kk=1; kk<=cptcovage;kk++) {
   }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             }
              out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   free_vector(pp,1,nlstate);            savm=oldm;
              oldm=newm;
 }  /* End of Freq */          } /* end mult */
         
 /************* Waves Concatenation ***************/          s1=s[mw[mi][i]][i];
           s2=s[mw[mi+1][i]][i];
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)          bbh=(double)bh[mi][i]/(double)stepm; 
 {          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.          ipmx +=1;
      Death is a valid wave (if date is known).          sw += weight[i];
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]        } /* end of wave */
      and mw[mi+1][i]. dh depends on stepm.      } /* end of individual */
      */    }else if (mle==4){  /* ml=4 no inter-extrapolation */
       for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   int i, mi, m;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;        for(mi=1; mi<= wav[i]-1; mi++){
      double sum=0., jmean=0.;*/          for (ii=1;ii<=nlstate+ndeath;ii++)
             for (j=1;j<=nlstate+ndeath;j++){
   int j, k=0,jk, ju, jl;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   double sum=0.;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   jmin=1e+5;            }
   jmax=-1;          for(d=0; d<dh[mi][i]; d++){
   jmean=0.;            newm=savm;
   for(i=1; i<=imx; i++){            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     mi=0;            for (kk=1; kk<=cptcovage;kk++) {
     m=firstpass;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     while(s[m][i] <= nlstate){            }
       if(s[m][i]>=1)          
         mw[++mi][i]=m;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       if(m >=lastpass)                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         break;            savm=oldm;
       else            oldm=newm;
         m++;          } /* end mult */
     }/* end while */        
     if (s[m][i] > nlstate){          s1=s[mw[mi][i]][i];
       mi++;     /* Death is another wave */          s2=s[mw[mi+1][i]][i];
       /* if(mi==0)  never been interviewed correctly before death */          if( s2 > nlstate){ 
          /* Only death is a correct wave */            lli=log(out[s1][s2] - savm[s1][s2]);
       mw[mi][i]=m;          }else{
     }            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
           }
     wav[i]=mi;          ipmx +=1;
     if(mi==0)          sw += weight[i];
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   }  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
         } /* end of wave */
   for(i=1; i<=imx; i++){      } /* end of individual */
     for(mi=1; mi<wav[i];mi++){    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
       if (stepm <=0)      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         dh[mi][i]=1;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       else{        for(mi=1; mi<= wav[i]-1; mi++){
         if (s[mw[mi+1][i]][i] > nlstate) {          for (ii=1;ii<=nlstate+ndeath;ii++)
           if (agedc[i] < 2*AGESUP) {            for (j=1;j<=nlstate+ndeath;j++){
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           if(j==0) j=1;  /* Survives at least one month after exam */              savm[ii][j]=(ii==j ? 1.0 : 0.0);
           k=k+1;            }
           if (j >= jmax) jmax=j;          for(d=0; d<dh[mi][i]; d++){
           if (j <= jmin) jmin=j;            newm=savm;
           sum=sum+j;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           /*if (j<0) printf("j=%d num=%d \n",j,i); */            for (kk=1; kk<=cptcovage;kk++) {
           }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         }            }
         else{          
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
           k=k+1;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           if (j >= jmax) jmax=j;            savm=oldm;
           else if (j <= jmin)jmin=j;            oldm=newm;
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */          } /* end mult */
           sum=sum+j;        
         }          s1=s[mw[mi][i]][i];
         jk= j/stepm;          s2=s[mw[mi+1][i]][i];
         jl= j -jk*stepm;          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
         ju= j -(jk+1)*stepm;          ipmx +=1;
         if(jl <= -ju)          sw += weight[i];
           dh[mi][i]=jk;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         else          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
           dh[mi][i]=jk+1;        } /* end of wave */
         if(dh[mi][i]==0)      } /* end of individual */
           dh[mi][i]=1; /* At least one step */    } /* End of if */
       }    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
     }    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   }    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   jmean=sum/k;    return -l;
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);  }
  }  
 /*********** Tricode ****************************/  /*************** log-likelihood *************/
 void tricode(int *Tvar, int **nbcode, int imx)  double funcone( double *x)
 {  {
   int Ndum[20],ij=1, k, j, i;    /* Same as likeli but slower because of a lot of printf and if */
   int cptcode=0;    int i, ii, j, k, mi, d, kk;
   cptcoveff=0;    double l, ll[NLSTATEMAX], cov[NCOVMAX];
      double **out;
   for (k=0; k<19; k++) Ndum[k]=0;    double lli; /* Individual log likelihood */
   for (k=1; k<=7; k++) ncodemax[k]=0;    double llt;
     int s1, s2;
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {    double bbh, survp;
     for (i=1; i<=imx; i++) {    /*extern weight */
       ij=(int)(covar[Tvar[j]][i]);    /* We are differentiating ll according to initial status */
       Ndum[ij]++;    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/    /*for(i=1;i<imx;i++) 
       if (ij > cptcode) cptcode=ij;      printf(" %d\n",s[4][i]);
     }    */
     cov[1]=1.;
     for (i=0; i<=cptcode; i++) {  
       if(Ndum[i]!=0) ncodemax[j]++;    for(k=1; k<=nlstate; k++) ll[k]=0.;
     }  
     ij=1;    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       for(mi=1; mi<= wav[i]-1; mi++){
     for (i=1; i<=ncodemax[j]; i++) {        for (ii=1;ii<=nlstate+ndeath;ii++)
       for (k=0; k<=19; k++) {          for (j=1;j<=nlstate+ndeath;j++){
         if (Ndum[k] != 0) {            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           nbcode[Tvar[j]][ij]=k;            savm[ii][j]=(ii==j ? 1.0 : 0.0);
                    }
           ij++;        for(d=0; d<dh[mi][i]; d++){
         }          newm=savm;
         if (ij > ncodemax[j]) break;          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       }            for (kk=1; kk<=cptcovage;kk++) {
     }            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   }            }
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
  for (k=0; k<19; k++) Ndum[k]=0;                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           savm=oldm;
  for (i=1; i<=ncovmodel-2; i++) {          oldm=newm;
       ij=Tvar[i];        } /* end mult */
       Ndum[ij]++;        
     }        s1=s[mw[mi][i]][i];
         s2=s[mw[mi+1][i]][i];
  ij=1;        bbh=(double)bh[mi][i]/(double)stepm; 
  for (i=1; i<=10; i++) {        /* bias is positive if real duration
    if((Ndum[i]!=0) && (i<=ncovcol)){         * is higher than the multiple of stepm and negative otherwise.
      Tvaraff[ij]=i;         */
      ij++;        if( s2 > nlstate && (mle <5) ){  /* Jackson */
    }          lli=log(out[s1][s2] - savm[s1][s2]);
  }        } else if (mle==1){
            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
     cptcoveff=ij-1;        } else if(mle==2){
 }          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
         } else if(mle==3){  /* exponential inter-extrapolation */
 /*********** Health Expectancies ****************/          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
         } else if (mle==4){  /* mle=4 no inter-extrapolation */
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )          lli=log(out[s1][s2]); /* Original formula */
         } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
 {          lli=log(out[s1][s2]); /* Original formula */
   /* Health expectancies */        } /* End of if */
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;        ipmx +=1;
   double age, agelim, hf;        sw += weight[i];
   double ***p3mat,***varhe;        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   double **dnewm,**doldm;  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
   double *xp;        if(globpr){
   double **gp, **gm;          fprintf(ficresilk,"%9d %6d %1d %1d %1d %1d %3d %10.6f %6.4f\
   double ***gradg, ***trgradg;   %10.6f %10.6f %10.6f ", \
   int theta;                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
                   2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
   xp=vector(1,npar);            llt +=ll[k]*gipmx/gsw;
   dnewm=matrix(1,nlstate*2,1,npar);            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
   doldm=matrix(1,nlstate*2,1,nlstate*2);          }
            fprintf(ficresilk," %10.6f\n", -llt);
   fprintf(ficreseij,"# Health expectancies\n");        }
   fprintf(ficreseij,"# Age");      } /* end of wave */
   for(i=1; i<=nlstate;i++)    } /* end of individual */
     for(j=1; j<=nlstate;j++)    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
       fprintf(ficreseij," %1d-%1d (SE)",i,j);    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   fprintf(ficreseij,"\n");    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
     if(globpr==0){ /* First time we count the contributions and weights */
   if(estepm < stepm){      gipmx=ipmx;
     printf ("Problem %d lower than %d\n",estepm, stepm);      gsw=sw;
   }    }
   else  hstepm=estepm;      return -l;
   /* We compute the life expectancy from trapezoids spaced every estepm months  }
    * This is mainly to measure the difference between two models: for example  
    * if stepm=24 months pijx are given only every 2 years and by summing them  
    * we are calculating an estimate of the Life Expectancy assuming a linear  /*************** function likelione ***********/
    * progression inbetween and thus overestimating or underestimating according  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
    * to the curvature of the survival function. If, for the same date, we  {
    * estimate the model with stepm=1 month, we can keep estepm to 24 months    /* This routine should help understanding what is done with 
    * to compare the new estimate of Life expectancy with the same linear       the selection of individuals/waves and
    * hypothesis. A more precise result, taking into account a more precise       to check the exact contribution to the likelihood.
    * curvature will be obtained if estepm is as small as stepm. */       Plotting could be done.
      */
   /* For example we decided to compute the life expectancy with the smallest unit */    int k;
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.  
      nhstepm is the number of hstepm from age to agelim    if(*globpri !=0){ /* Just counts and sums, no printings */
      nstepm is the number of stepm from age to agelin.      strcpy(fileresilk,"ilk"); 
      Look at hpijx to understand the reason of that which relies in memory size      strcat(fileresilk,fileres);
      and note for a fixed period like estepm months */      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the        printf("Problem with resultfile: %s\n", fileresilk);
      survival function given by stepm (the optimization length). Unfortunately it        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
      means that if the survival funtion is printed only each two years of age and if      }
      you sum them up and add 1 year (area under the trapezoids) you won't get the same      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
      results. So we changed our mind and took the option of the best precision.      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
   */      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */      for(k=1; k<=nlstate; k++) 
         fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
   agelim=AGESUP;      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    }
     /* nhstepm age range expressed in number of stepm */  
     nstepm=(int) rint((agelim-age)*YEARM/stepm);    *fretone=(*funcone)(p);
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */    if(*globpri !=0){
     /* if (stepm >= YEARM) hstepm=1;*/      fclose(ficresilk);
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      fflush(fichtm); 
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);    } 
     gp=matrix(0,nhstepm,1,nlstate*2);    return;
     gm=matrix(0,nhstepm,1,nlstate*2);  }
   
     /* Computed by stepm unit matrices, product of hstepm matrices, stored  
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */  /*********** Maximum Likelihood Estimation ***************/
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);    
    void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
   {
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */    int i,j, iter;
     double **xi;
     /* Computing Variances of health expectancies */    double fret;
     double fretone; /* Only one call to likelihood */
      for(theta=1; theta <=npar; theta++){    /*  char filerespow[FILENAMELENGTH];*/
       for(i=1; i<=npar; i++){    xi=matrix(1,npar,1,npar);
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    for (i=1;i<=npar;i++)
       }      for (j=1;j<=npar;j++)
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);          xi[i][j]=(i==j ? 1.0 : 0.0);
      printf("Powell\n");  fprintf(ficlog,"Powell\n");
       cptj=0;    strcpy(filerespow,"pow"); 
       for(j=1; j<= nlstate; j++){    strcat(filerespow,fileres);
         for(i=1; i<=nlstate; i++){    if((ficrespow=fopen(filerespow,"w"))==NULL) {
           cptj=cptj+1;      printf("Problem with resultfile: %s\n", filerespow);
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;    }
           }    fprintf(ficrespow,"# Powell\n# iter -2*LL");
         }    for (i=1;i<=nlstate;i++)
       }      for(j=1;j<=nlstate+ndeath;j++)
              if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
          fprintf(ficrespow,"\n");
       for(i=1; i<=npar; i++)  
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    powell(p,xi,npar,ftol,&iter,&fret,func);
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);    
          fclose(ficrespow);
       cptj=0;    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
       for(j=1; j<= nlstate; j++){    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
         for(i=1;i<=nlstate;i++){    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
           cptj=cptj+1;  
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){  }
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;  
           }  /**** Computes Hessian and covariance matrix ***/
         }  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
       }  {
          double  **a,**y,*x,pd;
        double **hess;
     int i, j,jk;
       for(j=1; j<= nlstate*2; j++)    int *indx;
         for(h=0; h<=nhstepm-1; h++){  
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
         }    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
     void lubksb(double **a, int npar, int *indx, double b[]) ;
      }    void ludcmp(double **a, int npar, int *indx, double *d) ;
        double gompertz(double p[]);
 /* End theta */    hess=matrix(1,npar,1,npar);
   
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);    printf("\nCalculation of the hessian matrix. Wait...\n");
     fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
      for(h=0; h<=nhstepm-1; h++)    for (i=1;i<=npar;i++){
       for(j=1; j<=nlstate*2;j++)      printf("%d",i);fflush(stdout);
         for(theta=1; theta <=npar; theta++)      fprintf(ficlog,"%d",i);fflush(ficlog);
         trgradg[h][j][theta]=gradg[h][theta][j];     
        hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
       
      for(i=1;i<=nlstate*2;i++)      /*  printf(" %f ",p[i]);
       for(j=1;j<=nlstate*2;j++)          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
         varhe[i][j][(int)age] =0.;    }
     
     for(h=0;h<=nhstepm-1;h++){    for (i=1;i<=npar;i++) {
       for(k=0;k<=nhstepm-1;k++){      for (j=1;j<=npar;j++)  {
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);        if (j>i) { 
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);          printf(".%d%d",i,j);fflush(stdout);
         for(i=1;i<=nlstate*2;i++)          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
           for(j=1;j<=nlstate*2;j++)          hess[i][j]=hessij(p,delti,i,j,func,npar);
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;          
       }          hess[j][i]=hess[i][j];    
     }          /*printf(" %lf ",hess[i][j]);*/
         }
            }
     /* Computing expectancies */    }
     for(i=1; i<=nlstate;i++)    printf("\n");
       for(j=1; j<=nlstate;j++)    fprintf(ficlog,"\n");
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){  
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
              fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/    
     a=matrix(1,npar,1,npar);
         }    y=matrix(1,npar,1,npar);
     x=vector(1,npar);
     fprintf(ficreseij,"%3.0f",age );    indx=ivector(1,npar);
     cptj=0;    for (i=1;i<=npar;i++)
     for(i=1; i<=nlstate;i++)      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
       for(j=1; j<=nlstate;j++){    ludcmp(a,npar,indx,&pd);
         cptj++;  
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );    for (j=1;j<=npar;j++) {
       }      for (i=1;i<=npar;i++) x[i]=0;
     fprintf(ficreseij,"\n");      x[j]=1;
          lubksb(a,npar,indx,x);
     free_matrix(gm,0,nhstepm,1,nlstate*2);      for (i=1;i<=npar;i++){ 
     free_matrix(gp,0,nhstepm,1,nlstate*2);        matcov[i][j]=x[i];
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);      }
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);    }
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
   }    printf("\n#Hessian matrix#\n");
   free_vector(xp,1,npar);    fprintf(ficlog,"\n#Hessian matrix#\n");
   free_matrix(dnewm,1,nlstate*2,1,npar);    for (i=1;i<=npar;i++) { 
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);      for (j=1;j<=npar;j++) { 
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);        printf("%.3e ",hess[i][j]);
 }        fprintf(ficlog,"%.3e ",hess[i][j]);
       }
 /************ Variance ******************/      printf("\n");
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm)      fprintf(ficlog,"\n");
 {    }
   /* Variance of health expectancies */  
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    /* Recompute Inverse */
   double **newm;    for (i=1;i<=npar;i++)
   double **dnewm,**doldm;      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
   int i, j, nhstepm, hstepm, h, nstepm ;    ludcmp(a,npar,indx,&pd);
   int k, cptcode;  
   double *xp;    /*  printf("\n#Hessian matrix recomputed#\n");
   double **gp, **gm;  
   double ***gradg, ***trgradg;    for (j=1;j<=npar;j++) {
   double ***p3mat;      for (i=1;i<=npar;i++) x[i]=0;
   double age,agelim, hf;      x[j]=1;
   int theta;      lubksb(a,npar,indx,x);
       for (i=1;i<=npar;i++){ 
    fprintf(ficresvij,"# Covariances of life expectancies\n");        y[i][j]=x[i];
   fprintf(ficresvij,"# Age");        printf("%.3e ",y[i][j]);
   for(i=1; i<=nlstate;i++)        fprintf(ficlog,"%.3e ",y[i][j]);
     for(j=1; j<=nlstate;j++)      }
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);      printf("\n");
   fprintf(ficresvij,"\n");      fprintf(ficlog,"\n");
     }
   xp=vector(1,npar);    */
   dnewm=matrix(1,nlstate,1,npar);  
   doldm=matrix(1,nlstate,1,nlstate);    free_matrix(a,1,npar,1,npar);
      free_matrix(y,1,npar,1,npar);
   if(estepm < stepm){    free_vector(x,1,npar);
     printf ("Problem %d lower than %d\n",estepm, stepm);    free_ivector(indx,1,npar);
   }    free_matrix(hess,1,npar,1,npar);
   else  hstepm=estepm;    
   /* For example we decided to compute the life expectancy with the smallest unit */  
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.  }
      nhstepm is the number of hstepm from age to agelim  
      nstepm is the number of stepm from age to agelin.  /*************** hessian matrix ****************/
      Look at hpijx to understand the reason of that which relies in memory size  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
      and note for a fixed period like k years */  {
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the    int i;
      survival function given by stepm (the optimization length). Unfortunately it    int l=1, lmax=20;
      means that if the survival funtion is printed only each two years of age and if    double k1,k2;
      you sum them up and add 1 year (area under the trapezoids) you won't get the same    double p2[NPARMAX+1];
      results. So we changed our mind and took the option of the best precision.    double res;
   */    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */    double fx;
   agelim = AGESUP;    int k=0,kmax=10;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    double l1;
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */  
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */    fx=func(x);
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    for (i=1;i<=npar;i++) p2[i]=x[i];
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);    for(l=0 ; l <=lmax; l++){
     gp=matrix(0,nhstepm,1,nlstate);      l1=pow(10,l);
     gm=matrix(0,nhstepm,1,nlstate);      delts=delt;
       for(k=1 ; k <kmax; k=k+1){
     for(theta=1; theta <=npar; theta++){        delt = delta*(l1*k);
       for(i=1; i<=npar; i++){ /* Computes gradient */        p2[theta]=x[theta] +delt;
         xp[i] = x[i] + (i==theta ?delti[theta]:0);        k1=func(p2)-fx;
       }        p2[theta]=x[theta]-delt;
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);          k2=func(p2)-fx;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        /*res= (k1-2.0*fx+k2)/delt/delt; */
         res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
       if (popbased==1) {        
         for(i=1; i<=nlstate;i++)  #ifdef DEBUG
           prlim[i][i]=probs[(int)age][i][ij];        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
       }        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
    #endif
       for(j=1; j<= nlstate; j++){        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
         for(h=0; h<=nhstepm; h++){        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)          k=kmax;
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];        }
         }        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
       }          k=kmax; l=lmax*10.;
            }
       for(i=1; i<=npar; i++) /* Computes gradient */        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
         xp[i] = x[i] - (i==theta ?delti[theta]:0);          delts=delt;
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);          }
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      }
      }
       if (popbased==1) {    delti[theta]=delts;
         for(i=1; i<=nlstate;i++)    return res; 
           prlim[i][i]=probs[(int)age][i][ij];    
       }  }
   
       for(j=1; j<= nlstate; j++){  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
         for(h=0; h<=nhstepm; h++){  {
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)    int i;
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];    int l=1, l1, lmax=20;
         }    double k1,k2,k3,k4,res,fx;
       }    double p2[NPARMAX+1];
     int k;
       for(j=1; j<= nlstate; j++)  
         for(h=0; h<=nhstepm; h++){    fx=func(x);
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];    for (k=1; k<=2; k++) {
         }      for (i=1;i<=npar;i++) p2[i]=x[i];
     } /* End theta */      p2[thetai]=x[thetai]+delti[thetai]/k;
       p2[thetaj]=x[thetaj]+delti[thetaj]/k;
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);      k1=func(p2)-fx;
     
     for(h=0; h<=nhstepm; h++)      p2[thetai]=x[thetai]+delti[thetai]/k;
       for(j=1; j<=nlstate;j++)      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
         for(theta=1; theta <=npar; theta++)      k2=func(p2)-fx;
           trgradg[h][j][theta]=gradg[h][theta][j];    
       p2[thetai]=x[thetai]-delti[thetai]/k;
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
     for(i=1;i<=nlstate;i++)      k3=func(p2)-fx;
       for(j=1;j<=nlstate;j++)    
         vareij[i][j][(int)age] =0.;      p2[thetai]=x[thetai]-delti[thetai]/k;
       p2[thetaj]=x[thetaj]-delti[thetaj]/k;
     for(h=0;h<=nhstepm;h++){      k4=func(p2)-fx;
       for(k=0;k<=nhstepm;k++){      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);  #ifdef DEBUG
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
         for(i=1;i<=nlstate;i++)      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
           for(j=1;j<=nlstate;j++)  #endif
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;    }
       }    return res;
     }  }
   
     fprintf(ficresvij,"%.0f ",age );  /************** Inverse of matrix **************/
     for(i=1; i<=nlstate;i++)  void ludcmp(double **a, int n, int *indx, double *d) 
       for(j=1; j<=nlstate;j++){  { 
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);    int i,imax,j,k; 
       }    double big,dum,sum,temp; 
     fprintf(ficresvij,"\n");    double *vv; 
     free_matrix(gp,0,nhstepm,1,nlstate);   
     free_matrix(gm,0,nhstepm,1,nlstate);    vv=vector(1,n); 
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);    *d=1.0; 
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);    for (i=1;i<=n;i++) { 
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      big=0.0; 
   } /* End age */      for (j=1;j<=n;j++) 
          if ((temp=fabs(a[i][j])) > big) big=temp; 
   free_vector(xp,1,npar);      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
   free_matrix(doldm,1,nlstate,1,npar);      vv[i]=1.0/big; 
   free_matrix(dnewm,1,nlstate,1,nlstate);    } 
     for (j=1;j<=n;j++) { 
 }      for (i=1;i<j;i++) { 
         sum=a[i][j]; 
 /************ Variance of prevlim ******************/        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)        a[i][j]=sum; 
 {      } 
   /* Variance of prevalence limit */      big=0.0; 
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/      for (i=j;i<=n;i++) { 
   double **newm;        sum=a[i][j]; 
   double **dnewm,**doldm;        for (k=1;k<j;k++) 
   int i, j, nhstepm, hstepm;          sum -= a[i][k]*a[k][j]; 
   int k, cptcode;        a[i][j]=sum; 
   double *xp;        if ( (dum=vv[i]*fabs(sum)) >= big) { 
   double *gp, *gm;          big=dum; 
   double **gradg, **trgradg;          imax=i; 
   double age,agelim;        } 
   int theta;      } 
          if (j != imax) { 
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");        for (k=1;k<=n;k++) { 
   fprintf(ficresvpl,"# Age");          dum=a[imax][k]; 
   for(i=1; i<=nlstate;i++)          a[imax][k]=a[j][k]; 
       fprintf(ficresvpl," %1d-%1d",i,i);          a[j][k]=dum; 
   fprintf(ficresvpl,"\n");        } 
         *d = -(*d); 
   xp=vector(1,npar);        vv[imax]=vv[j]; 
   dnewm=matrix(1,nlstate,1,npar);      } 
   doldm=matrix(1,nlstate,1,nlstate);      indx[j]=imax; 
        if (a[j][j] == 0.0) a[j][j]=TINY; 
   hstepm=1*YEARM; /* Every year of age */      if (j != n) { 
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */        dum=1.0/(a[j][j]); 
   agelim = AGESUP;        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */      } 
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    } 
     if (stepm >= YEARM) hstepm=1;    free_vector(vv,1,n);  /* Doesn't work */
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */  ;
     gradg=matrix(1,npar,1,nlstate);  } 
     gp=vector(1,nlstate);  
     gm=vector(1,nlstate);  void lubksb(double **a, int n, int *indx, double b[]) 
   { 
     for(theta=1; theta <=npar; theta++){    int i,ii=0,ip,j; 
       for(i=1; i<=npar; i++){ /* Computes gradient */    double sum; 
         xp[i] = x[i] + (i==theta ?delti[theta]:0);   
       }    for (i=1;i<=n;i++) { 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      ip=indx[i]; 
       for(i=1;i<=nlstate;i++)      sum=b[ip]; 
         gp[i] = prlim[i][i];      b[ip]=b[i]; 
          if (ii) 
       for(i=1; i<=npar; i++) /* Computes gradient */        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
         xp[i] = x[i] - (i==theta ?delti[theta]:0);      else if (sum) ii=i; 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      b[i]=sum; 
       for(i=1;i<=nlstate;i++)    } 
         gm[i] = prlim[i][i];    for (i=n;i>=1;i--) { 
       sum=b[i]; 
       for(i=1;i<=nlstate;i++)      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];      b[i]=sum/a[i][i]; 
     } /* End theta */    } 
   } 
     trgradg =matrix(1,nlstate,1,npar);  
   /************ Frequencies ********************/
     for(j=1; j<=nlstate;j++)  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
       for(theta=1; theta <=npar; theta++)  {  /* Some frequencies */
         trgradg[j][theta]=gradg[theta][j];    
     int i, m, jk, k1,i1, j1, bool, z1,z2,j;
     for(i=1;i<=nlstate;i++)    int first;
       varpl[i][(int)age] =0.;    double ***freq; /* Frequencies */
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);    double *pp, **prop;
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);    double pos,posprop, k2, dateintsum=0,k2cpt=0;
     for(i=1;i<=nlstate;i++)    FILE *ficresp;
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */    char fileresp[FILENAMELENGTH];
     
     fprintf(ficresvpl,"%.0f ",age );    pp=vector(1,nlstate);
     for(i=1; i<=nlstate;i++)    prop=matrix(1,nlstate,iagemin,iagemax+3);
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));    strcpy(fileresp,"p");
     fprintf(ficresvpl,"\n");    strcat(fileresp,fileres);
     free_vector(gp,1,nlstate);    if((ficresp=fopen(fileresp,"w"))==NULL) {
     free_vector(gm,1,nlstate);      printf("Problem with prevalence resultfile: %s\n", fileresp);
     free_matrix(gradg,1,npar,1,nlstate);      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
     free_matrix(trgradg,1,nlstate,1,npar);      exit(0);
   } /* End age */    }
     freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
   free_vector(xp,1,npar);    j1=0;
   free_matrix(doldm,1,nlstate,1,npar);    
   free_matrix(dnewm,1,nlstate,1,nlstate);    j=cptcoveff;
     if (cptcovn<1) {j=1;ncodemax[1]=1;}
 }  
     first=1;
 /************ Variance of one-step probabilities  ******************/  
 void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)    for(k1=1; k1<=j;k1++){
 {      for(i1=1; i1<=ncodemax[k1];i1++){
   int i, j, i1, k1, j1, z1;        j1++;
   int k=0, cptcode;        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
   double **dnewm,**doldm;          scanf("%d", i);*/
   double *xp;        for (i=-5; i<=nlstate+ndeath; i++)  
   double *gp, *gm;          for (jk=-5; jk<=nlstate+ndeath; jk++)  
   double **gradg, **trgradg;            for(m=iagemin; m <= iagemax+3; m++)
   double age,agelim, cov[NCOVMAX];              freq[i][jk][m]=0;
   int theta;  
   char fileresprob[FILENAMELENGTH];      for (i=1; i<=nlstate; i++)  
         for(m=iagemin; m <= iagemax+3; m++)
   strcpy(fileresprob,"prob");          prop[i][m]=0;
   strcat(fileresprob,fileres);        
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {        dateintsum=0;
     printf("Problem with resultfile: %s\n", fileresprob);        k2cpt=0;
   }        for (i=1; i<=imx; i++) {
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);          bool=1;
            if  (cptcovn>0) {
 fprintf(ficresprob,"#One-step probabilities and standard deviation in parentheses\n");            for (z1=1; z1<=cptcoveff; z1++) 
   fprintf(ficresprob,"# Age");              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
   for(i=1; i<=nlstate;i++)                bool=0;
     for(j=1; j<=(nlstate+ndeath);j++)          }
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);          if (bool==1){
             for(m=firstpass; m<=lastpass; m++){
               k2=anint[m][i]+(mint[m][i]/12.);
   fprintf(ficresprob,"\n");              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
                 if(agev[m][i]==0) agev[m][i]=iagemax+1;
                 if(agev[m][i]==1) agev[m][i]=iagemax+2;
   xp=vector(1,npar);                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
   dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);                if (m<lastpass) {
   doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
                    freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
   cov[1]=1;                }
   j=cptcoveff;                
   if (cptcovn<1) {j=1;ncodemax[1]=1;}                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
   j1=0;                  dateintsum=dateintsum+k2;
   for(k1=1; k1<=1;k1++){                  k2cpt++;
     for(i1=1; i1<=ncodemax[k1];i1++){                }
     j1++;                /*}*/
             }
     if  (cptcovn>0) {          }
       fprintf(ficresprob, "\n#********** Variable ");        }
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);         
       fprintf(ficresprob, "**********\n#");        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
     }  fprintf(ficresp, "#Local time at start: %s", strstart);
            if  (cptcovn>0) {
       for (age=bage; age<=fage; age ++){          fprintf(ficresp, "\n#********** Variable "); 
         cov[2]=age;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
         for (k=1; k<=cptcovn;k++) {          fprintf(ficresp, "**********\n#");
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];        }
                  for(i=1; i<=nlstate;i++) 
         }          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];        fprintf(ficresp, "\n");
         for (k=1; k<=cptcovprod;k++)        
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];        for(i=iagemin; i <= iagemax+3; i++){
                  if(i==iagemax+3){
         gradg=matrix(1,npar,1,9);            fprintf(ficlog,"Total");
         trgradg=matrix(1,9,1,npar);          }else{
         gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));            if(first==1){
         gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));              first=0;
                  printf("See log file for details...\n");
         for(theta=1; theta <=npar; theta++){            }
           for(i=1; i<=npar; i++)            fprintf(ficlog,"Age %d", i);
             xp[i] = x[i] + (i==theta ?delti[theta]:0);          }
                    for(jk=1; jk <=nlstate ; jk++){
           pmij(pmmij,cov,ncovmodel,xp,nlstate);            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
                        pp[jk] += freq[jk][m][i]; 
           k=0;          }
           for(i=1; i<= (nlstate+ndeath); i++){          for(jk=1; jk <=nlstate ; jk++){
             for(j=1; j<=(nlstate+ndeath);j++){            for(m=-1, pos=0; m <=0 ; m++)
               k=k+1;              pos += freq[jk][m][i];
               gp[k]=pmmij[i][j];            if(pp[jk]>=1.e-10){
             }              if(first==1){
           }              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
                        }
           for(i=1; i<=npar; i++)              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
             xp[i] = x[i] - (i==theta ?delti[theta]:0);            }else{
                  if(first==1)
           pmij(pmmij,cov,ncovmodel,xp,nlstate);                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
           k=0;              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
           for(i=1; i<=(nlstate+ndeath); i++){            }
             for(j=1; j<=(nlstate+ndeath);j++){          }
               k=k+1;  
               gm[k]=pmmij[i][j];          for(jk=1; jk <=nlstate ; jk++){
             }            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
           }              pp[jk] += freq[jk][m][i];
                }       
           for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];              pos += pp[jk];
         }            posprop += prop[jk][i];
           }
         for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)          for(jk=1; jk <=nlstate ; jk++){
           for(theta=1; theta <=npar; theta++)            if(pos>=1.e-5){
             trgradg[j][theta]=gradg[theta][j];              if(first==1)
                        printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
         matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
         matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);            }else{
                      if(first==1)
         pmij(pmmij,cov,ncovmodel,x,nlstate);                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
                      fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
         k=0;            }
         for(i=1; i<=(nlstate+ndeath); i++){            if( i <= iagemax){
           for(j=1; j<=(nlstate+ndeath);j++){              if(pos>=1.e-5){
             k=k+1;                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
             gm[k]=pmmij[i][j];                /*probs[i][jk][j1]= pp[jk]/pos;*/
           }                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
         }              }
                    else
      /*printf("\n%d ",(int)age);                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
      for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){            }
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));          }
      }*/          
           for(jk=-1; jk <=nlstate+ndeath; jk++)
         fprintf(ficresprob,"\n%d ",(int)age);            for(m=-1; m <=nlstate+ndeath; m++)
               if(freq[jk][m][i] !=0 ) {
         for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++)              if(first==1)
           fprintf(ficresprob,"%.3e (%.3e) ",gm[i],sqrt(doldm[i][i]));                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
                  fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
       }              }
     }          if(i <= iagemax)
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));            fprintf(ficresp,"\n");
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));          if(first==1)
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);            printf("Others in log...\n");
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);          fprintf(ficlog,"\n");
   }        }
   free_vector(xp,1,npar);      }
   fclose(ficresprob);    }
      dateintmean=dateintsum/k2cpt; 
 }   
     fclose(ficresp);
 /******************* Printing html file ***********/    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \    free_vector(pp,1,nlstate);
  int lastpass, int stepm, int weightopt, char model[],\    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
  int imx,int jmin, int jmax, double jmeanint,char optionfile[], \    /* End of Freq */
  char optionfilehtm[],char rfileres[], char optionfilegnuplot[],\  }
  char version[], int popforecast, int estepm ){  
   int jj1, k1, i1, cpt;  /************ Prevalence ********************/
   FILE *fichtm;  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
   /*char optionfilehtm[FILENAMELENGTH];*/  {  
     /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
   strcpy(optionfilehtm,optionfile);       in each health status at the date of interview (if between dateprev1 and dateprev2).
   strcat(optionfilehtm,".htm");       We still use firstpass and lastpass as another selection.
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {    */
     printf("Problem with %s \n",optionfilehtm), exit(0);   
   }    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
     double ***freq; /* Frequencies */
  fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n    double *pp, **prop;
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n    double pos,posprop; 
 \n    double  y2; /* in fractional years */
 Total number of observations=%d <br>\n    int iagemin, iagemax;
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n  
 <hr  size=\"2\" color=\"#EC5E5E\">    iagemin= (int) agemin;
  <ul><li>Outputs files<br>\n    iagemax= (int) agemax;
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n    /*pp=vector(1,nlstate);*/
  - Gnuplot file name: <a href=\"%s\">%s</a><br>\n    prop=matrix(1,nlstate,iagemin,iagemax+3); 
  - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
  - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>\n    j1=0;
  - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>\n    
  - Life expectancies by age and initial health status (estepm=%2d months): <a href=\"e%s\">e%s</a> <br>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot,fileres,fileres,fileres,fileres,fileres,fileres,estepm,fileres,fileres);    j=cptcoveff;
     if (cptcovn<1) {j=1;ncodemax[1]=1;}
  fprintf(fichtm,"\n    
  - Parameter file with estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>\n    for(k1=1; k1<=j;k1++){
   - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n      for(i1=1; i1<=ncodemax[k1];i1++){
  - Variances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n        j1++;
  - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>\n        
  - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);        for (i=1; i<=nlstate; i++)  
           for(m=iagemin; m <= iagemax+3; m++)
  if(popforecast==1) fprintf(fichtm,"\n            prop[i][m]=0.0;
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n       
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n        for (i=1; i<=imx; i++) { /* Each individual */
         <br>",fileres,fileres,fileres,fileres);          bool=1;
  else          if  (cptcovn>0) {
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);            for (z1=1; z1<=cptcoveff; z1++) 
 fprintf(fichtm," <li>Graphs</li><p>");              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
                 bool=0;
  m=cptcoveff;          } 
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}          if (bool==1) { 
             for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
  jj1=0;              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
  for(k1=1; k1<=m;k1++){              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
    for(i1=1; i1<=ncodemax[k1];i1++){                if(agev[m][i]==0) agev[m][i]=iagemax+1;
        jj1++;                if(agev[m][i]==1) agev[m][i]=iagemax+2;
        if (cptcovn > 0) {                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");                if (s[m][i]>0 && s[m][i]<=nlstate) { 
          for (cpt=1; cpt<=cptcoveff;cpt++)                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");                  prop[s[m][i]][iagemax+3] += weight[i]; 
        }                } 
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>              }
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);                } /* end selection of waves */
        for(cpt=1; cpt<nlstate;cpt++){          }
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>        }
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);        for(i=iagemin; i <= iagemax+3; i++){  
        }          
     for(cpt=1; cpt<=nlstate;cpt++) {          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident            posprop += prop[jk][i]; 
 interval) in state (%d): v%s%d%d.gif <br>          } 
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);    
      }          for(jk=1; jk <=nlstate ; jk++){     
      for(cpt=1; cpt<=nlstate;cpt++) {            if( i <=  iagemax){ 
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>              if(posprop>=1.e-5){ 
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);                probs[i][jk][j1]= prop[jk][i]/posprop;
      }              } 
      fprintf(fichtm,"\n<br>- Total life expectancy by age and            } 
 health expectancies in states (1) and (2): e%s%d.gif<br>          }/* end jk */ 
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);        }/* end i */ 
 fprintf(fichtm,"\n</body>");      } /* end i1 */
    }    } /* end k1 */
    }    
 fclose(fichtm);    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
 }    /*free_vector(pp,1,nlstate);*/
     free_matrix(prop,1,nlstate, iagemin,iagemax+3);
 /******************* Gnuplot file **************/  }  /* End of prevalence */
 void printinggnuplot(char fileres[],char optionfilefiname[],char optionfile[],char optionfilegnuplot[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){  
   /************* Waves Concatenation ***************/
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;  
   void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
   strcpy(optionfilegnuplot,optionfilefiname);  {
   strcat(optionfilegnuplot,".gp.txt");    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {       Death is a valid wave (if date is known).
     printf("Problem with file %s",optionfilegnuplot);       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
   }       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
        and mw[mi+1][i]. dh depends on stepm.
 #ifdef windows       */
     fprintf(ficgp,"cd \"%s\" \n",pathc);  
 #endif    int i, mi, m;
 m=pow(2,cptcoveff);    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
         double sum=0., jmean=0.;*/
  /* 1eme*/    int first;
   for (cpt=1; cpt<= nlstate ; cpt ++) {    int j, k=0,jk, ju, jl;
    for (k1=1; k1<= m ; k1 ++) {    double sum=0.;
     first=0;
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);    jmin=1e+5;
     jmax=-1;
 for (i=1; i<= nlstate ; i ++) {    jmean=0.;
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    for(i=1; i<=imx; i++){
   else fprintf(ficgp," \%%*lf (\%%*lf)");      mi=0;
 }      m=firstpass;
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);      while(s[m][i] <= nlstate){
     for (i=1; i<= nlstate ; i ++) {        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");          mw[++mi][i]=m;
   else fprintf(ficgp," \%%*lf (\%%*lf)");        if(m >=lastpass)
 }          break;
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);        else
      for (i=1; i<= nlstate ; i ++) {          m++;
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");      }/* end while */
   else fprintf(ficgp," \%%*lf (\%%*lf)");      if (s[m][i] > nlstate){
 }          mi++;     /* Death is another wave */
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));        /* if(mi==0)  never been interviewed correctly before death */
            /* Only death is a correct wave */
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);        mw[mi][i]=m;
    }      }
   }  
   /*2 eme*/      wav[i]=mi;
       if(mi==0){
   for (k1=1; k1<= m ; k1 ++) {        nbwarn++;
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",ageminpar,fage);        if(first==0){
              printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
     for (i=1; i<= nlstate+1 ; i ++) {          first=1;
       k=2*i;        }
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);        if(first==1){
       for (j=1; j<= nlstate+1 ; j ++) {          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");        }
   else fprintf(ficgp," \%%*lf (\%%*lf)");      } /* end mi==0 */
 }      } /* End individuals */
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");  
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);    for(i=1; i<=imx; i++){
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);      for(mi=1; mi<wav[i];mi++){
       for (j=1; j<= nlstate+1 ; j ++) {        if (stepm <=0)
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");          dh[mi][i]=1;
         else fprintf(ficgp," \%%*lf (\%%*lf)");        else{
 }            if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
       fprintf(ficgp,"\" t\"\" w l 0,");            if (agedc[i] < 2*AGESUP) {
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
       for (j=1; j<= nlstate+1 ; j ++) {              if(j==0) j=1;  /* Survives at least one month after exam */
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");              else if(j<0){
   else fprintf(ficgp," \%%*lf (\%%*lf)");                nberr++;
 }                  printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");                j=1; /* Temporary Dangerous patch */
       else fprintf(ficgp,"\" t\"\" w l 0,");                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
     }                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
   }              }
                k=k+1;
   /*3eme*/              if (j >= jmax){
                 jmax=j;
   for (k1=1; k1<= m ; k1 ++) {                ijmax=i;
     for (cpt=1; cpt<= nlstate ; cpt ++) {              }
       k=2+nlstate*(2*cpt-2);              if (j <= jmin){
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);                jmin=j;
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);                ijmin=i;
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");              }
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);              sum=sum+j;
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);            }
           }
 */          else{
       for (i=1; i< nlstate ; i ++) {            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
   
       }            k=k+1;
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);            if (j >= jmax) {
     }              jmax=j;
     }              ijmax=i;
              }
   /* CV preval stat */            else if (j <= jmin){
     for (k1=1; k1<= m ; k1 ++) {              jmin=j;
     for (cpt=1; cpt<nlstate ; cpt ++) {              ijmin=i;
       k=3;            }
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
             /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
       for (i=1; i< nlstate ; i ++)            if(j<0){
         fprintf(ficgp,"+$%d",k+i+1);              nberr++;
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                    fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
       l=3+(nlstate+ndeath)*cpt;            }
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);            sum=sum+j;
       for (i=1; i< nlstate ; i ++) {          }
         l=3+(nlstate+ndeath)*cpt;          jk= j/stepm;
         fprintf(ficgp,"+$%d",l+i+1);          jl= j -jk*stepm;
       }          ju= j -(jk+1)*stepm;
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);            if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);            if(jl==0){
     }              dh[mi][i]=jk;
   }                bh[mi][i]=0;
              }else{ /* We want a negative bias in order to only have interpolation ie
   /* proba elementaires */                    * at the price of an extra matrix product in likelihood */
    for(i=1,jk=1; i <=nlstate; i++){              dh[mi][i]=jk+1;
     for(k=1; k <=(nlstate+ndeath); k++){              bh[mi][i]=ju;
       if (k != i) {            }
         for(j=1; j <=ncovmodel; j++){          }else{
                    if(jl <= -ju){
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);              dh[mi][i]=jk;
           jk++;              bh[mi][i]=jl;       /* bias is positive if real duration
           fprintf(ficgp,"\n");                                   * is higher than the multiple of stepm and negative otherwise.
         }                                   */
       }            }
     }            else{
     }              dh[mi][i]=jk+1;
               bh[mi][i]=ju;
     for(jk=1; jk <=m; jk++) {            }
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);            if(dh[mi][i]==0){
    i=1;              dh[mi][i]=1; /* At least one step */
    for(k2=1; k2<=nlstate; k2++) {              bh[mi][i]=ju; /* At least one step */
      k3=i;              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
      for(k=1; k<=(nlstate+ndeath); k++) {            }
        if (k != k2){          } /* end if mle */
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);        }
 ij=1;      } /* end wave */
         for(j=3; j <=ncovmodel; j++) {    }
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {    jmean=sum/k;
             fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
             ij++;    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
           }   }
           else  
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);  /*********** Tricode ****************************/
         }  void tricode(int *Tvar, int **nbcode, int imx)
           fprintf(ficgp,")/(1");  {
            
         for(k1=1; k1 <=nlstate; k1++){      int Ndum[20],ij=1, k, j, i, maxncov=19;
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);    int cptcode=0;
 ij=1;    cptcoveff=0; 
           for(j=3; j <=ncovmodel; j++){   
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {    for (k=0; k<maxncov; k++) Ndum[k]=0;
             fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);    for (k=1; k<=7; k++) ncodemax[k]=0;
             ij++;  
           }    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
           else      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);                                 modality*/ 
           }        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
           fprintf(ficgp,")");        Ndum[ij]++; /*store the modality */
         }        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");                                         Tvar[j]. If V=sex and male is 0 and 
         i=i+ncovmodel;                                         female is 1, then  cptcode=1.*/
        }      }
      }  
    }      for (i=0; i<=cptcode; i++) {
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
    }      }
      
   fclose(ficgp);      ij=1; 
 }  /* end gnuplot */      for (i=1; i<=ncodemax[j]; i++) {
         for (k=0; k<= maxncov; k++) {
           if (Ndum[k] != 0) {
 /*************** Moving average **************/            nbcode[Tvar[j]][ij]=k; 
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
             
   int i, cpt, cptcod;            ij++;
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)          }
       for (i=1; i<=nlstate;i++)          if (ij > ncodemax[j]) break; 
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)        }  
           mobaverage[(int)agedeb][i][cptcod]=0.;      } 
        }  
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){  
       for (i=1; i<=nlstate;i++){   for (k=0; k< maxncov; k++) Ndum[k]=0;
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){  
           for (cpt=0;cpt<=4;cpt++){   for (i=1; i<=ncovmodel-2; i++) { 
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
           }     ij=Tvar[i];
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;     Ndum[ij]++;
         }   }
       }  
     }   ij=1;
       for (i=1; i<= maxncov; i++) {
 }     if((Ndum[i]!=0) && (i<=ncovcol)){
        Tvaraff[ij]=i; /*For printing */
        ij++;
 /************** Forecasting ******************/     }
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){   }
     
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;   cptcoveff=ij-1; /*Number of simple covariates*/
   int *popage;  }
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;  
   double *popeffectif,*popcount;  /*********** Health Expectancies ****************/
   double ***p3mat;  
   char fileresf[FILENAMELENGTH];  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov,char strstart[] )
   
  agelim=AGESUP;  {
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;    /* Health expectancies */
     int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    double age, agelim, hf;
      double ***p3mat,***varhe;
      double **dnewm,**doldm;
   strcpy(fileresf,"f");    double *xp;
   strcat(fileresf,fileres);    double **gp, **gm;
   if((ficresf=fopen(fileresf,"w"))==NULL) {    double ***gradg, ***trgradg;
     printf("Problem with forecast resultfile: %s\n", fileresf);    int theta;
   }  
   printf("Computing forecasting: result on file '%s' \n", fileresf);    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
     xp=vector(1,npar);
   if (cptcoveff==0) ncodemax[cptcoveff]=1;    dnewm=matrix(1,nlstate*nlstate,1,npar);
     doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
   if (mobilav==1) {    
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    fprintf(ficreseij,"# Local time at start: %s", strstart);
     movingaverage(agedeb, fage, ageminpar, mobaverage);    fprintf(ficreseij,"# Health expectancies\n");
   }    fprintf(ficreseij,"# Age");
     for(i=1; i<=nlstate;i++)
   stepsize=(int) (stepm+YEARM-1)/YEARM;      for(j=1; j<=nlstate;j++)
   if (stepm<=12) stepsize=1;        fprintf(ficreseij," %1d-%1d (SE)",i,j);
      fprintf(ficreseij,"\n");
   agelim=AGESUP;  
      if(estepm < stepm){
   hstepm=1;      printf ("Problem %d lower than %d\n",estepm, stepm);
   hstepm=hstepm/stepm;    }
   yp1=modf(dateintmean,&yp);    else  hstepm=estepm;   
   anprojmean=yp;    /* We compute the life expectancy from trapezoids spaced every estepm months
   yp2=modf((yp1*12),&yp);     * This is mainly to measure the difference between two models: for example
   mprojmean=yp;     * if stepm=24 months pijx are given only every 2 years and by summing them
   yp1=modf((yp2*30.5),&yp);     * we are calculating an estimate of the Life Expectancy assuming a linear 
   jprojmean=yp;     * progression in between and thus overestimating or underestimating according
   if(jprojmean==0) jprojmean=1;     * to the curvature of the survival function. If, for the same date, we 
   if(mprojmean==0) jprojmean=1;     * estimate the model with stepm=1 month, we can keep estepm to 24 months
       * to compare the new estimate of Life expectancy with the same linear 
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);     * hypothesis. A more precise result, taking into account a more precise
       * curvature will be obtained if estepm is as small as stepm. */
   for(cptcov=1;cptcov<=i2;cptcov++){  
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    /* For example we decided to compute the life expectancy with the smallest unit */
       k=k+1;    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
       fprintf(ficresf,"\n#******");       nhstepm is the number of hstepm from age to agelim 
       for(j=1;j<=cptcoveff;j++) {       nstepm is the number of stepm from age to agelin. 
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);       Look at hpijx to understand the reason of that which relies in memory size
       }       and note for a fixed period like estepm months */
       fprintf(ficresf,"******\n");    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
       fprintf(ficresf,"# StartingAge FinalAge");       survival function given by stepm (the optimization length). Unfortunately it
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);       means that if the survival funtion is printed only each two years of age and if
             you sum them up and add 1 year (area under the trapezoids) you won't get the same 
             results. So we changed our mind and took the option of the best precision.
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {    */
         fprintf(ficresf,"\n");    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);    
     agelim=AGESUP;
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);      /* nhstepm age range expressed in number of stepm */
           nhstepm = nhstepm/hstepm;      nstepm=(int) rint((agelim-age)*YEARM/stepm); 
                /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      /* if (stepm >= YEARM) hstepm=1;*/
           oldm=oldms;savm=savms;      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
              gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
           for (h=0; h<=nhstepm; h++){      gp=matrix(0,nhstepm,1,nlstate*nlstate);
             if (h==(int) (calagedate+YEARM*cpt)) {      gm=matrix(0,nhstepm,1,nlstate*nlstate);
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);  
             }      /* Computed by stepm unit matrices, product of hstepm matrices, stored
             for(j=1; j<=nlstate+ndeath;j++) {         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
               kk1=0.;kk2=0;      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
               for(i=1; i<=nlstate;i++) {                 
                 if (mobilav==1)  
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
                 else {  
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];      /* Computing  Variances of health expectancies */
                 }  
                       for(theta=1; theta <=npar; theta++){
               }        for(i=1; i<=npar; i++){ 
               if (h==(int)(calagedate+12*cpt)){          xp[i] = x[i] + (i==theta ?delti[theta]:0);
                 fprintf(ficresf," %.3f", kk1);        }
                                hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
               }    
             }        cptj=0;
           }        for(j=1; j<= nlstate; j++){
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          for(i=1; i<=nlstate; i++){
         }            cptj=cptj+1;
       }            for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
     }              gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
   }            }
                  }
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        }
        
   fclose(ficresf);       
 }        for(i=1; i<=npar; i++) 
 /************** Forecasting ******************/          xp[i] = x[i] - (i==theta ?delti[theta]:0);
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
          
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;        cptj=0;
   int *popage;        for(j=1; j<= nlstate; j++){
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;          for(i=1;i<=nlstate;i++){
   double *popeffectif,*popcount;            cptj=cptj+1;
   double ***p3mat,***tabpop,***tabpopprev;            for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
   char filerespop[FILENAMELENGTH];  
               gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);            }
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          }
   agelim=AGESUP;        }
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;        for(j=1; j<= nlstate*nlstate; j++)
            for(h=0; h<=nhstepm-1; h++){
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
            }
         } 
   strcpy(filerespop,"pop");     
   strcat(filerespop,fileres);  /* End theta */
   if((ficrespop=fopen(filerespop,"w"))==NULL) {  
     printf("Problem with forecast resultfile: %s\n", filerespop);       trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
   }  
   printf("Computing forecasting: result on file '%s' \n", filerespop);       for(h=0; h<=nhstepm-1; h++)
         for(j=1; j<=nlstate*nlstate;j++)
   if (cptcoveff==0) ncodemax[cptcoveff]=1;          for(theta=1; theta <=npar; theta++)
             trgradg[h][j][theta]=gradg[h][theta][j];
   if (mobilav==1) {       
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
     movingaverage(agedeb, fage, ageminpar, mobaverage);       for(i=1;i<=nlstate*nlstate;i++)
   }        for(j=1;j<=nlstate*nlstate;j++)
           varhe[i][j][(int)age] =0.;
   stepsize=(int) (stepm+YEARM-1)/YEARM;  
   if (stepm<=12) stepsize=1;       printf("%d|",(int)age);fflush(stdout);
         fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
   agelim=AGESUP;       for(h=0;h<=nhstepm-1;h++){
          for(k=0;k<=nhstepm-1;k++){
   hstepm=1;          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
   hstepm=hstepm/stepm;          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
            for(i=1;i<=nlstate*nlstate;i++)
   if (popforecast==1) {            for(j=1;j<=nlstate*nlstate;j++)
     if((ficpop=fopen(popfile,"r"))==NULL) {              varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
       printf("Problem with population file : %s\n",popfile);exit(0);        }
     }      }
     popage=ivector(0,AGESUP);      /* Computing expectancies */
     popeffectif=vector(0,AGESUP);      for(i=1; i<=nlstate;i++)
     popcount=vector(0,AGESUP);        for(j=1; j<=nlstate;j++)
              for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
     i=1;              eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;            
      /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
     imx=i;  
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];          }
   }  
       fprintf(ficreseij,"%3.0f",age );
   for(cptcov=1;cptcov<=i2;cptcov++){      cptj=0;
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){      for(i=1; i<=nlstate;i++)
       k=k+1;        for(j=1; j<=nlstate;j++){
       fprintf(ficrespop,"\n#******");          cptj++;
       for(j=1;j<=cptcoveff;j++) {          fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        }
       }      fprintf(ficreseij,"\n");
       fprintf(ficrespop,"******\n");     
       fprintf(ficrespop,"# Age");      free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);      free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
       if (popforecast==1)  fprintf(ficrespop," [Population]");      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
            free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
       for (cpt=0; cpt<=0;cpt++) {      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);      }
            printf("\n");
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    fprintf(ficlog,"\n");
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);  
           nhstepm = nhstepm/hstepm;    free_vector(xp,1,npar);
              free_matrix(dnewm,1,nlstate*nlstate,1,npar);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
           oldm=oldms;savm=savms;    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);    }
          
           for (h=0; h<=nhstepm; h++){  /************ Variance ******************/
             if (h==(int) (calagedate+YEARM*cpt)) {  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);  {
             }    /* Variance of health expectancies */
             for(j=1; j<=nlstate+ndeath;j++) {    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
               kk1=0.;kk2=0;    /* double **newm;*/
               for(i=1; i<=nlstate;i++) {                  double **dnewm,**doldm;
                 if (mobilav==1)    double **dnewmp,**doldmp;
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];    int i, j, nhstepm, hstepm, h, nstepm ;
                 else {    int k, cptcode;
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];    double *xp;
                 }    double **gp, **gm;  /* for var eij */
               }    double ***gradg, ***trgradg; /*for var eij */
               if (h==(int)(calagedate+12*cpt)){    double **gradgp, **trgradgp; /* for var p point j */
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;    double *gpp, *gmp; /* for var p point j */
                   /*fprintf(ficrespop," %.3f", kk1);    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/    double ***p3mat;
               }    double age,agelim, hf;
             }    double ***mobaverage;
             for(i=1; i<=nlstate;i++){    int theta;
               kk1=0.;    char digit[4];
                 for(j=1; j<=nlstate;j++){    char digitp[25];
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];  
                 }    char fileresprobmorprev[FILENAMELENGTH];
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];  
             }    if(popbased==1){
       if(mobilav!=0)
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)        strcpy(digitp,"-populbased-mobilav-");
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);      else strcpy(digitp,"-populbased-nomobil-");
           }    }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    else 
         }      strcpy(digitp,"-stablbased-");
       }  
      if (mobilav!=0) {
   /******/      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);          printf(" Error in movingaverage mobilav=%d\n",mobilav);
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){      }
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    }
           nhstepm = nhstepm/hstepm;  
              strcpy(fileresprobmorprev,"prmorprev"); 
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    sprintf(digit,"%-d",ij);
           oldm=oldms;savm=savms;    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      strcat(fileresprobmorprev,digit); /* Tvar to be done */
           for (h=0; h<=nhstepm; h++){    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
             if (h==(int) (calagedate+YEARM*cpt)) {    strcat(fileresprobmorprev,fileres);
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
             }      printf("Problem with resultfile: %s\n", fileresprobmorprev);
             for(j=1; j<=nlstate+ndeath;j++) {      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
               kk1=0.;kk2=0;    }
               for(i=1; i<=nlstate;i++) {                  printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];       
               }    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);    fprintf(ficresprobmorprev, "#Local time at start: %s", strstart);
             }    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
           }    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
         }      fprintf(ficresprobmorprev," p.%-d SE",j);
       }      for(i=1; i<=nlstate;i++)
    }        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
   }    }  
      fprintf(ficresprobmorprev,"\n");
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    fprintf(ficgp,"\n# Routine varevsij");
     /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
   if (popforecast==1) {    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
     free_ivector(popage,0,AGESUP);    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
     free_vector(popeffectif,0,AGESUP);  /*   } */
     free_vector(popcount,0,AGESUP);    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   }   fprintf(ficresvij, "#Local time at start: %s", strstart);
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    fprintf(ficresvij,"# Age");
   fclose(ficrespop);    for(i=1; i<=nlstate;i++)
 }      for(j=1; j<=nlstate;j++)
         fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
 /***********************************************/    fprintf(ficresvij,"\n");
 /**************** Main Program *****************/  
 /***********************************************/    xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
 int main(int argc, char *argv[])    doldm=matrix(1,nlstate,1,nlstate);
 {    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
     doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;  
   double agedeb, agefin,hf;    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;    gpp=vector(nlstate+1,nlstate+ndeath);
     gmp=vector(nlstate+1,nlstate+ndeath);
   double fret;    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
   double **xi,tmp,delta;    
     if(estepm < stepm){
   double dum; /* Dummy variable */      printf ("Problem %d lower than %d\n",estepm, stepm);
   double ***p3mat;    }
   int *indx;    else  hstepm=estepm;   
   char line[MAXLINE], linepar[MAXLINE];    /* For example we decided to compute the life expectancy with the smallest unit */
   char title[MAXLINE];    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];       nhstepm is the number of hstepm from age to agelim 
   char optionfilext[10], optionfilefiname[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilegnuplot[FILENAMELENGTH], plotcmd[FILENAMELENGTH];       nstepm is the number of stepm from age to agelin. 
         Look at hpijx to understand the reason of that which relies in memory size
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];       and note for a fixed period like k years */
     /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   char filerest[FILENAMELENGTH];       survival function given by stepm (the optimization length). Unfortunately it
   char fileregp[FILENAMELENGTH];       means that if the survival funtion is printed every two years of age and if
   char popfile[FILENAMELENGTH];       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];       results. So we changed our mind and took the option of the best precision.
   int firstobs=1, lastobs=10;    */
   int sdeb, sfin; /* Status at beginning and end */    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   int c,  h , cpt,l;    agelim = AGESUP;
   int ju,jl, mi;    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   int mobilav=0,popforecast=0;      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   int hstepm, nhstepm;      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;      gp=matrix(0,nhstepm,1,nlstate);
       gm=matrix(0,nhstepm,1,nlstate);
   double bage, fage, age, agelim, agebase;  
   double ftolpl=FTOL;  
   double **prlim;      for(theta=1; theta <=npar; theta++){
   double *severity;        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
   double ***param; /* Matrix of parameters */          xp[i] = x[i] + (i==theta ?delti[theta]:0);
   double  *p;        }
   double **matcov; /* Matrix of covariance */        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   double ***delti3; /* Scale */        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   double *delti; /* Scale */  
   double ***eij, ***vareij;        if (popbased==1) {
   double **varpl; /* Variances of prevalence limits by age */          if(mobilav ==0){
   double *epj, vepp;            for(i=1; i<=nlstate;i++)
   double kk1, kk2;              prlim[i][i]=probs[(int)age][i][ij];
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;          }else{ /* mobilav */ 
              for(i=1; i<=nlstate;i++)
               prlim[i][i]=mobaverage[(int)age][i][ij];
   char version[80]="Imach version 0.8a1, June 2003, INED-EUROREVES ";          }
   char *alph[]={"a","a","b","c","d","e"}, str[4];        }
     
         for(j=1; j<= nlstate; j++){
   char z[1]="c", occ;          for(h=0; h<=nhstepm; h++){
 #include <sys/time.h>            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
 #include <time.h>              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];          }
          }
   /* long total_usecs;        /* This for computing probability of death (h=1 means
   struct timeval start_time, end_time;           computed over hstepm matrices product = hstepm*stepm months) 
             as a weighted average of prlim.
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */        */
   getcwd(pathcd, size);        for(j=nlstate+1;j<=nlstate+ndeath;j++){
           for(i=1,gpp[j]=0.; i<= nlstate; i++)
   printf("\n%s",version);            gpp[j] += prlim[i][i]*p3mat[i][j][1];
   if(argc <=1){        }    
     printf("\nEnter the parameter file name: ");        /* end probability of death */
     scanf("%s",pathtot);  
   }        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
   else{          xp[i] = x[i] - (i==theta ?delti[theta]:0);
     strcpy(pathtot,argv[1]);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   }        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/   
   /*cygwin_split_path(pathtot,path,optionfile);        if (popbased==1) {
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/          if(mobilav ==0){
   /* cutv(path,optionfile,pathtot,'\\');*/            for(i=1; i<=nlstate;i++)
               prlim[i][i]=probs[(int)age][i][ij];
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);          }else{ /* mobilav */ 
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);            for(i=1; i<=nlstate;i++)
   chdir(path);              prlim[i][i]=mobaverage[(int)age][i][ij];
   replace(pathc,path);          }
         }
 /*-------- arguments in the command line --------*/  
         for(j=1; j<= nlstate; j++){
   strcpy(fileres,"r");          for(h=0; h<=nhstepm; h++){
   strcat(fileres, optionfilefiname);            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
   strcat(fileres,".txt");    /* Other files have txt extension */              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
           }
   /*---------arguments file --------*/        }
         /* This for computing probability of death (h=1 means
   if((ficpar=fopen(optionfile,"r"))==NULL)    {           computed over hstepm matrices product = hstepm*stepm months) 
     printf("Problem with optionfile %s\n",optionfile);           as a weighted average of prlim.
     goto end;        */
   }        for(j=nlstate+1;j<=nlstate+ndeath;j++){
           for(i=1,gmp[j]=0.; i<= nlstate; i++)
   strcpy(filereso,"o");           gmp[j] += prlim[i][i]*p3mat[i][j][1];
   strcat(filereso,fileres);        }    
   if((ficparo=fopen(filereso,"w"))==NULL) {        /* end probability of death */
     printf("Problem with Output resultfile: %s\n", filereso);goto end;  
   }        for(j=1; j<= nlstate; j++) /* vareij */
           for(h=0; h<=nhstepm; h++){
   /* Reads comments: lines beginning with '#' */            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
   while((c=getc(ficpar))=='#' && c!= EOF){          }
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
     puts(line);          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
     fputs(line,ficparo);        }
   }  
   ungetc(c,ficpar);      } /* End theta */
   
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);  
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);      for(h=0; h<=nhstepm; h++) /* veij */
 while((c=getc(ficpar))=='#' && c!= EOF){        for(j=1; j<=nlstate;j++)
     ungetc(c,ficpar);          for(theta=1; theta <=npar; theta++)
     fgets(line, MAXLINE, ficpar);            trgradg[h][j][theta]=gradg[h][theta][j];
     puts(line);  
     fputs(line,ficparo);      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
   }        for(theta=1; theta <=npar; theta++)
   ungetc(c,ficpar);          trgradgp[j][theta]=gradgp[theta][j];
      
      
   covar=matrix(0,NCOVMAX,1,n);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   cptcovn=0;      for(i=1;i<=nlstate;i++)
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;        for(j=1;j<=nlstate;j++)
           vareij[i][j][(int)age] =0.;
   ncovmodel=2+cptcovn;  
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */      for(h=0;h<=nhstepm;h++){
          for(k=0;k<=nhstepm;k++){
   /* Read guess parameters */          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
   /* Reads comments: lines beginning with '#' */          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
   while((c=getc(ficpar))=='#' && c!= EOF){          for(i=1;i<=nlstate;i++)
     ungetc(c,ficpar);            for(j=1;j<=nlstate;j++)
     fgets(line, MAXLINE, ficpar);              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
     puts(line);        }
     fputs(line,ficparo);      }
   }    
   ungetc(c,ficpar);      /* pptj */
        matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
     for(i=1; i <=nlstate; i++)      for(j=nlstate+1;j<=nlstate+ndeath;j++)
     for(j=1; j <=nlstate+ndeath-1; j++){        for(i=nlstate+1;i<=nlstate+ndeath;i++)
       fscanf(ficpar,"%1d%1d",&i1,&j1);          varppt[j][i]=doldmp[j][i];
       fprintf(ficparo,"%1d%1d",i1,j1);      /* end ppptj */
       printf("%1d%1d",i,j);      /*  x centered again */
       for(k=1; k<=ncovmodel;k++){      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
         fscanf(ficpar," %lf",&param[i][j][k]);      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
         printf(" %lf",param[i][j][k]);   
         fprintf(ficparo," %lf",param[i][j][k]);      if (popbased==1) {
       }        if(mobilav ==0){
       fscanf(ficpar,"\n");          for(i=1; i<=nlstate;i++)
       printf("\n");            prlim[i][i]=probs[(int)age][i][ij];
       fprintf(ficparo,"\n");        }else{ /* mobilav */ 
     }          for(i=1; i<=nlstate;i++)
              prlim[i][i]=mobaverage[(int)age][i][ij];
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;        }
       }
   p=param[1][1];               
        /* This for computing probability of death (h=1 means
   /* Reads comments: lines beginning with '#' */         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
   while((c=getc(ficpar))=='#' && c!= EOF){         as a weighted average of prlim.
     ungetc(c,ficpar);      */
     fgets(line, MAXLINE, ficpar);      for(j=nlstate+1;j<=nlstate+ndeath;j++){
     puts(line);        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
     fputs(line,ficparo);          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
   }      }    
   ungetc(c,ficpar);      /* end probability of death */
   
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
   for(i=1; i <=nlstate; i++){        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
     for(j=1; j <=nlstate+ndeath-1; j++){        for(i=1; i<=nlstate;i++){
       fscanf(ficpar,"%1d%1d",&i1,&j1);          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
       printf("%1d%1d",i,j);        }
       fprintf(ficparo,"%1d%1d",i1,j1);      } 
       for(k=1; k<=ncovmodel;k++){      fprintf(ficresprobmorprev,"\n");
         fscanf(ficpar,"%le",&delti3[i][j][k]);  
         printf(" %le",delti3[i][j][k]);      fprintf(ficresvij,"%.0f ",age );
         fprintf(ficparo," %le",delti3[i][j][k]);      for(i=1; i<=nlstate;i++)
       }        for(j=1; j<=nlstate;j++){
       fscanf(ficpar,"\n");          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
       printf("\n");        }
       fprintf(ficparo,"\n");      fprintf(ficresvij,"\n");
     }      free_matrix(gp,0,nhstepm,1,nlstate);
   }      free_matrix(gm,0,nhstepm,1,nlstate);
   delti=delti3[1][1];      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
        free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
   /* Reads comments: lines beginning with '#' */      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   while((c=getc(ficpar))=='#' && c!= EOF){    } /* End age */
     ungetc(c,ficpar);    free_vector(gpp,nlstate+1,nlstate+ndeath);
     fgets(line, MAXLINE, ficpar);    free_vector(gmp,nlstate+1,nlstate+ndeath);
     puts(line);    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
     fputs(line,ficparo);    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
   }    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
   ungetc(c,ficpar);    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
      fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
   matcov=matrix(1,npar,1,npar);  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   for(i=1; i <=npar; i++){  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
     fscanf(ficpar,"%s",&str);  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
     printf("%s",str);    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
     fprintf(ficparo,"%s",str);    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
     for(j=1; j <=i; j++){    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
       fscanf(ficpar," %le",&matcov[i][j]);    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
       printf(" %.5le",matcov[i][j]);    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
       fprintf(ficparo," %.5le",matcov[i][j]);    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
     }  */
     fscanf(ficpar,"\n");  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
     printf("\n");    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
     fprintf(ficparo,"\n");  
   }    free_vector(xp,1,npar);
   for(i=1; i <=npar; i++)    free_matrix(doldm,1,nlstate,1,nlstate);
     for(j=i+1;j<=npar;j++)    free_matrix(dnewm,1,nlstate,1,npar);
       matcov[i][j]=matcov[j][i];    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
        free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
   printf("\n");    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficresprobmorprev);
     /*-------- Rewriting paramater file ----------*/    fflush(ficgp);
      strcpy(rfileres,"r");    /* "Rparameterfile */    fflush(fichtm); 
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/  }  /* end varevsij */
      strcat(rfileres,".");    /* */  
      strcat(rfileres,optionfilext);    /* Other files have txt extension */  /************ Variance of prevlim ******************/
     if((ficres =fopen(rfileres,"w"))==NULL) {  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
       printf("Problem writing new parameter file: %s\n", fileres);goto end;  {
     }    /* Variance of prevalence limit */
     fprintf(ficres,"#%s\n",version);    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
        double **newm;
     /*-------- data file ----------*/    double **dnewm,**doldm;
     if((fic=fopen(datafile,"r"))==NULL)    {    int i, j, nhstepm, hstepm;
       printf("Problem with datafile: %s\n", datafile);goto end;    int k, cptcode;
     }    double *xp;
     double *gp, *gm;
     n= lastobs;    double **gradg, **trgradg;
     severity = vector(1,maxwav);    double age,agelim;
     outcome=imatrix(1,maxwav+1,1,n);    int theta;
     num=ivector(1,n);    fprintf(ficresvpl, "#Local time at start: %s", strstart); 
     moisnais=vector(1,n);    fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
     annais=vector(1,n);    fprintf(ficresvpl,"# Age");
     moisdc=vector(1,n);    for(i=1; i<=nlstate;i++)
     andc=vector(1,n);        fprintf(ficresvpl," %1d-%1d",i,i);
     agedc=vector(1,n);    fprintf(ficresvpl,"\n");
     cod=ivector(1,n);  
     weight=vector(1,n);    xp=vector(1,npar);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */    dnewm=matrix(1,nlstate,1,npar);
     mint=matrix(1,maxwav,1,n);    doldm=matrix(1,nlstate,1,nlstate);
     anint=matrix(1,maxwav,1,n);    
     s=imatrix(1,maxwav+1,1,n);    hstepm=1*YEARM; /* Every year of age */
     adl=imatrix(1,maxwav+1,1,n);        hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
     tab=ivector(1,NCOVMAX);    agelim = AGESUP;
     ncodemax=ivector(1,8);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
     i=1;      if (stepm >= YEARM) hstepm=1;
     while (fgets(line, MAXLINE, fic) != NULL)    {      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
       if ((i >= firstobs) && (i <=lastobs)) {      gradg=matrix(1,npar,1,nlstate);
              gp=vector(1,nlstate);
         for (j=maxwav;j>=1;j--){      gm=vector(1,nlstate);
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);  
           strcpy(line,stra);      for(theta=1; theta <=npar; theta++){
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);        for(i=1; i<=npar; i++){ /* Computes gradient */
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }        }
                prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);        for(i=1;i<=nlstate;i++)
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);          gp[i] = prlim[i][i];
       
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);        for(i=1; i<=npar; i++) /* Computes gradient */
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);        for(i=1;i<=nlstate;i++)
         for (j=ncovcol;j>=1;j--){          gm[i] = prlim[i][i];
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);  
         }        for(i=1;i<=nlstate;i++)
         num[i]=atol(stra);          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
              } /* End theta */
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){  
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/      trgradg =matrix(1,nlstate,1,npar);
   
         i=i+1;      for(j=1; j<=nlstate;j++)
       }        for(theta=1; theta <=npar; theta++)
     }          trgradg[j][theta]=gradg[theta][j];
     /* printf("ii=%d", ij);  
        scanf("%d",i);*/      for(i=1;i<=nlstate;i++)
   imx=i-1; /* Number of individuals */        varpl[i][(int)age] =0.;
       matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
   /* for (i=1; i<=imx; i++){      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;      for(i=1;i<=nlstate;i++)
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;  
     }*/      fprintf(ficresvpl,"%.0f ",age );
    /*  for (i=1; i<=imx; i++){      for(i=1; i<=nlstate;i++)
      if (s[4][i]==9)  s[4][i]=-1;        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/      fprintf(ficresvpl,"\n");
        free_vector(gp,1,nlstate);
        free_vector(gm,1,nlstate);
   /* Calculation of the number of parameter from char model*/      free_matrix(gradg,1,npar,1,nlstate);
   Tvar=ivector(1,15);      free_matrix(trgradg,1,nlstate,1,npar);
   Tprod=ivector(1,15);    } /* End age */
   Tvaraff=ivector(1,15);  
   Tvard=imatrix(1,15,1,2);    free_vector(xp,1,npar);
   Tage=ivector(1,15);          free_matrix(doldm,1,nlstate,1,npar);
        free_matrix(dnewm,1,nlstate,1,nlstate);
   if (strlen(model) >1){  
     j=0, j1=0, k1=1, k2=1;  }
     j=nbocc(model,'+');  
     j1=nbocc(model,'*');  /************ Variance of one-step probabilities  ******************/
     cptcovn=j+1;  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
     cptcovprod=j1;  {
        int i, j=0,  i1, k1, l1, t, tj;
     strcpy(modelsav,model);    int k2, l2, j1,  z1;
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){    int k=0,l, cptcode;
       printf("Error. Non available option model=%s ",model);    int first=1, first1;
       goto end;    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
     }    double **dnewm,**doldm;
        double *xp;
     for(i=(j+1); i>=1;i--){    double *gp, *gm;
       cutv(stra,strb,modelsav,'+');    double **gradg, **trgradg;
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);    double **mu;
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/    double age,agelim, cov[NCOVMAX];
       /*scanf("%d",i);*/    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
       if (strchr(strb,'*')) {    int theta;
         cutv(strd,strc,strb,'*');    char fileresprob[FILENAMELENGTH];
         if (strcmp(strc,"age")==0) {    char fileresprobcov[FILENAMELENGTH];
           cptcovprod--;    char fileresprobcor[FILENAMELENGTH];
           cutv(strb,stre,strd,'V');  
           Tvar[i]=atoi(stre);    double ***varpij;
           cptcovage++;  
             Tage[cptcovage]=i;    strcpy(fileresprob,"prob"); 
             /*printf("stre=%s ", stre);*/    strcat(fileresprob,fileres);
         }    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
         else if (strcmp(strd,"age")==0) {      printf("Problem with resultfile: %s\n", fileresprob);
           cptcovprod--;      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
           cutv(strb,stre,strc,'V');    }
           Tvar[i]=atoi(stre);    strcpy(fileresprobcov,"probcov"); 
           cptcovage++;    strcat(fileresprobcov,fileres);
           Tage[cptcovage]=i;    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
         }      printf("Problem with resultfile: %s\n", fileresprobcov);
         else {      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
           cutv(strb,stre,strc,'V');    }
           Tvar[i]=ncovcol+k1;    strcpy(fileresprobcor,"probcor"); 
           cutv(strb,strc,strd,'V');    strcat(fileresprobcor,fileres);
           Tprod[k1]=i;    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
           Tvard[k1][1]=atoi(strc);      printf("Problem with resultfile: %s\n", fileresprobcor);
           Tvard[k1][2]=atoi(stre);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
           Tvar[cptcovn+k2]=Tvard[k1][1];    }
           Tvar[cptcovn+k2+1]=Tvard[k1][2];    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
           for (k=1; k<=lastobs;k++)    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
           k1++;    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
           k2=k2+2;    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
         }    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
       }    fprintf(ficresprob, "#Local time at start: %s", strstart);
       else {    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/    fprintf(ficresprob,"# Age");
        /*  scanf("%d",i);*/    fprintf(ficresprobcov, "#Local time at start: %s", strstart);
       cutv(strd,strc,strb,'V');    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
       Tvar[i]=atoi(strc);    fprintf(ficresprobcov,"# Age");
       }    fprintf(ficresprobcor, "#Local time at start: %s", strstart);
       strcpy(modelsav,stra);      fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);    fprintf(ficresprobcov,"# Age");
         scanf("%d",i);*/  
     }  
 }    for(i=1; i<=nlstate;i++)
        for(j=1; j<=(nlstate+ndeath);j++){
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
   printf("cptcovprod=%d ", cptcovprod);        fprintf(ficresprobcov," p%1d-%1d ",i,j);
   scanf("%d ",i);*/        fprintf(ficresprobcor," p%1d-%1d ",i,j);
     fclose(fic);      }  
    /* fprintf(ficresprob,"\n");
     /*  if(mle==1){*/    fprintf(ficresprobcov,"\n");
     if (weightopt != 1) { /* Maximisation without weights*/    fprintf(ficresprobcor,"\n");
       for(i=1;i<=n;i++) weight[i]=1.0;   */
     }   xp=vector(1,npar);
     /*-calculation of age at interview from date of interview and age at death -*/    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     agev=matrix(1,maxwav,1,imx);    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
     for (i=1; i<=imx; i++) {    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
       for(m=2; (m<= maxwav); m++) {    first=1;
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){    fprintf(ficgp,"\n# Routine varprob");
          anint[m][i]=9999;    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
          s[m][i]=-1;    fprintf(fichtm,"\n");
        }  
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
       }    fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
     }    file %s<br>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
     for (i=1; i<=imx; i++)  {  and drawn. It helps understanding how is the covariance between two incidences.\
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
       for(m=1; (m<= maxwav); m++){    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
         if(s[m][i] >0){  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
           if (s[m][i] >= nlstate+1) {  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
             if(agedc[i]>0)  standard deviations wide on each axis. <br>\
               if(moisdc[i]!=99 && andc[i]!=9999)   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
                 agev[m][i]=agedc[i];   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
            else {  
               if (andc[i]!=9999){    cov[1]=1;
               printf("Warning negative age at death: %d line:%d\n",num[i],i);    tj=cptcoveff;
               agev[m][i]=-1;    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
               }    j1=0;
             }    for(t=1; t<=tj;t++){
           }      for(i1=1; i1<=ncodemax[t];i1++){ 
           else if(s[m][i] !=9){ /* Should no more exist */        j1++;
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);        if  (cptcovn>0) {
             if(mint[m][i]==99 || anint[m][i]==9999)          fprintf(ficresprob, "\n#********** Variable "); 
               agev[m][i]=1;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
             else if(agev[m][i] <agemin){          fprintf(ficresprob, "**********\n#\n");
               agemin=agev[m][i];          fprintf(ficresprobcov, "\n#********** Variable "); 
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
             }          fprintf(ficresprobcov, "**********\n#\n");
             else if(agev[m][i] >agemax){          
               agemax=agev[m][i];          fprintf(ficgp, "\n#********** Variable "); 
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
             }          fprintf(ficgp, "**********\n#\n");
             /*agev[m][i]=anint[m][i]-annais[i];*/          
             /*   agev[m][i] = age[i]+2*m;*/          
           }          fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
           else { /* =9 */          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
             agev[m][i]=1;          fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
             s[m][i]=-1;          
           }          fprintf(ficresprobcor, "\n#********** Variable ");    
         }          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
         else /*= 0 Unknown */          fprintf(ficresprobcor, "**********\n#");    
           agev[m][i]=1;        }
       }        
            for (age=bage; age<=fage; age ++){ 
     }          cov[2]=age;
     for (i=1; i<=imx; i++)  {          for (k=1; k<=cptcovn;k++) {
       for(m=1; (m<= maxwav); m++){            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
         if (s[m][i] > (nlstate+ndeath)) {          }
           printf("Error: Wrong value in nlstate or ndeath\n");            for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           goto end;          for (k=1; k<=cptcovprod;k++)
         }            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
       }          
     }          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
           trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);          gp=vector(1,(nlstate)*(nlstate+ndeath));
           gm=vector(1,(nlstate)*(nlstate+ndeath));
     free_vector(severity,1,maxwav);      
     free_imatrix(outcome,1,maxwav+1,1,n);          for(theta=1; theta <=npar; theta++){
     free_vector(moisnais,1,n);            for(i=1; i<=npar; i++)
     free_vector(annais,1,n);              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
     /* free_matrix(mint,1,maxwav,1,n);            
        free_matrix(anint,1,maxwav,1,n);*/            pmij(pmmij,cov,ncovmodel,xp,nlstate);
     free_vector(moisdc,1,n);            
     free_vector(andc,1,n);            k=0;
             for(i=1; i<= (nlstate); i++){
                  for(j=1; j<=(nlstate+ndeath);j++){
     wav=ivector(1,imx);                k=k+1;
     dh=imatrix(1,lastpass-firstpass+1,1,imx);                gp[k]=pmmij[i][j];
     mw=imatrix(1,lastpass-firstpass+1,1,imx);              }
                }
     /* Concatenates waves */            
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);            for(i=1; i<=npar; i++)
               xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
       
       Tcode=ivector(1,100);            pmij(pmmij,cov,ncovmodel,xp,nlstate);
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);            k=0;
       ncodemax[1]=1;            for(i=1; i<=(nlstate); i++){
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);              for(j=1; j<=(nlstate+ndeath);j++){
                      k=k+1;
    codtab=imatrix(1,100,1,10);                gm[k]=pmmij[i][j];
    h=0;              }
    m=pow(2,cptcoveff);            }
         
    for(k=1;k<=cptcoveff; k++){            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
      for(i=1; i <=(m/pow(2,k));i++){              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
        for(j=1; j <= ncodemax[k]; j++){          }
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){  
            h++;          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;            for(theta=1; theta <=npar; theta++)
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/              trgradg[j][theta]=gradg[theta][j];
          }          
        }          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
      }          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
    }          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
       codtab[1][2]=1;codtab[2][2]=2; */          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
    /* for(i=1; i <=m ;i++){          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
       for(k=1; k <=cptcovn; k++){  
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);          pmij(pmmij,cov,ncovmodel,x,nlstate);
       }          
       printf("\n");          k=0;
       }          for(i=1; i<=(nlstate); i++){
       scanf("%d",i);*/            for(j=1; j<=(nlstate+ndeath);j++){
                  k=k+1;
    /* Calculates basic frequencies. Computes observed prevalence at single age              mu[k][(int) age]=pmmij[i][j];
        and prints on file fileres'p'. */            }
           }
              for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
                for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */              varpij[i][j][(int)age] = doldm[i][j];
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          /*printf("\n%d ",(int)age);
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
                  fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
     /* For Powell, parameters are in a vector p[] starting at p[1]            }*/
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */  
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */          fprintf(ficresprob,"\n%d ",(int)age);
           fprintf(ficresprobcov,"\n%d ",(int)age);
     if(mle==1){          fprintf(ficresprobcor,"\n%d ",(int)age);
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);  
     }          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
                fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
     /*--------- results files --------------*/          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
              fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
           }
    jk=1;          i=0;
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");          for (k=1; k<=(nlstate);k++){
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");            for (l=1; l<=(nlstate+ndeath);l++){ 
    for(i=1,jk=1; i <=nlstate; i++){              i=i++;
      for(k=1; k <=(nlstate+ndeath); k++){              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
        if (k != i)              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
          {              for (j=1; j<=i;j++){
            printf("%d%d ",i,k);                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
            fprintf(ficres,"%1d%1d ",i,k);                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
            for(j=1; j <=ncovmodel; j++){              }
              printf("%f ",p[jk]);            }
              fprintf(ficres,"%f ",p[jk]);          }/* end of loop for state */
              jk++;        } /* end of loop for age */
            }  
            printf("\n");        /* Confidence intervalle of pij  */
            fprintf(ficres,"\n");        /*
          }          fprintf(ficgp,"\nset noparametric;unset label");
      }          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
    }          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
  if(mle==1){          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
     /* Computing hessian and covariance matrix */          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
     ftolhess=ftol; /* Usually correct */          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
     hesscov(matcov, p, npar, delti, ftolhess, func);          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
  }        */
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");  
     printf("# Scales (for hessian or gradient estimation)\n");        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
      for(i=1,jk=1; i <=nlstate; i++){        first1=1;
       for(j=1; j <=nlstate+ndeath; j++){        for (k2=1; k2<=(nlstate);k2++){
         if (j!=i) {          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
           fprintf(ficres,"%1d%1d",i,j);            if(l2==k2) continue;
           printf("%1d%1d",i,j);            j=(k2-1)*(nlstate+ndeath)+l2;
           for(k=1; k<=ncovmodel;k++){            for (k1=1; k1<=(nlstate);k1++){
             printf(" %.5e",delti[jk]);              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
             fprintf(ficres," %.5e",delti[jk]);                if(l1==k1) continue;
             jk++;                i=(k1-1)*(nlstate+ndeath)+l1;
           }                if(i<=j) continue;
           printf("\n");                for (age=bage; age<=fage; age ++){ 
           fprintf(ficres,"\n");                  if ((int)age %5==0){
         }                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
       }                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
      }                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                        mu1=mu[i][(int) age]/stepm*YEARM ;
     k=1;                    mu2=mu[j][(int) age]/stepm*YEARM;
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");                    c12=cv12/sqrt(v1*v2);
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");                    /* Computing eigen value of matrix of covariance */
     for(i=1;i<=npar;i++){                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
       /*  if (k>nlstate) k=1;                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
       i1=(i-1)/(ncovmodel*nlstate)+1;                    /* Eigen vectors */
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
       printf("%s%d%d",alph[k],i1,tab[i]);*/                    /*v21=sqrt(1.-v11*v11); *//* error */
       fprintf(ficres,"%3d",i);                    v21=(lc1-v1)/cv12*v11;
       printf("%3d",i);                    v12=-v21;
       for(j=1; j<=i;j++){                    v22=v11;
         fprintf(ficres," %.5e",matcov[i][j]);                    tnalp=v21/v11;
         printf(" %.5e",matcov[i][j]);                    if(first1==1){
       }                      first1=0;
       fprintf(ficres,"\n");                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
       printf("\n");                    }
       k++;                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
     }                    /*printf(fignu*/
                        /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
     while((c=getc(ficpar))=='#' && c!= EOF){                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
       ungetc(c,ficpar);                    if(first==1){
       fgets(line, MAXLINE, ficpar);                      first=0;
       puts(line);                      fprintf(ficgp,"\nset parametric;unset label");
       fputs(line,ficparo);                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
     }                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
     ungetc(c,ficpar);                      fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
     estepm=0;   :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);  %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
     if (estepm==0 || estepm < stepm) estepm=stepm;                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
     if (fage <= 2) {                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
       bage = ageminpar;                      fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
       fage = agemaxpar;                      fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
     }                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                          fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                                mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
     while((c=getc(ficpar))=='#' && c!= EOF){                    }else{
     ungetc(c,ficpar);                      first=0;
     fgets(line, MAXLINE, ficpar);                      fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
     puts(line);                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
     fputs(line,ficparo);                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
   }                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
   ungetc(c,ficpar);                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                                mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);                    }/* if first */
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);                  } /* age mod 5 */
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);                } /* end loop age */
                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
   while((c=getc(ficpar))=='#' && c!= EOF){                first=1;
     ungetc(c,ficpar);              } /*l12 */
     fgets(line, MAXLINE, ficpar);            } /* k12 */
     puts(line);          } /*l1 */
     fputs(line,ficparo);        }/* k1 */
   }      } /* loop covariates */
   ungetc(c,ficpar);    }
      free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
    dateprev1=anprev1+mprev1/12.+jprev1/365.;    free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
    dateprev2=anprev2+mprev2/12.+jprev2/365.;    free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
     free_vector(xp,1,npar);
   fscanf(ficpar,"pop_based=%d\n",&popbased);    fclose(ficresprob);
   fprintf(ficparo,"pop_based=%d\n",popbased);      fclose(ficresprobcov);
   fprintf(ficres,"pop_based=%d\n",popbased);      fclose(ficresprobcor);
      fflush(ficgp);
   while((c=getc(ficpar))=='#' && c!= EOF){    fflush(fichtmcov);
     ungetc(c,ficpar);  }
     fgets(line, MAXLINE, ficpar);  
     puts(line);  
     fputs(line,ficparo);  /******************* Printing html file ***********/
   }  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
   ungetc(c,ficpar);                    int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);                    int popforecast, int estepm ,\
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);                    double jprev1, double mprev1,double anprev1, \
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);                    double jprev2, double mprev2,double anprev2){
     int jj1, k1, i1, cpt;
   
 while((c=getc(ficpar))=='#' && c!= EOF){     fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
     ungetc(c,ficpar);     <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
     fgets(line, MAXLINE, ficpar);  </ul>");
     puts(line);     fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
     fputs(line,ficparo);   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
   }             jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
   ungetc(c,ficpar);     fprintf(fichtm,"\
    - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);             stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);     fprintf(fichtm,"\
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);   - Stable prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);     fprintf(fichtm,"\
    - Life expectancies by age and initial health status (estepm=%2d months): \
 /*------------ gnuplot -------------*/     <a href=\"%s\">%s</a> <br>\n</li>",
  printinggnuplot(fileres,optionfilefiname,optionfile,optionfilegnuplot, ageminpar,agemaxpar,fage, pathc,p);             estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
    
 /*------------ free_vector  -------------*/  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
  chdir(path);  
     m=cptcoveff;
  free_ivector(wav,1,imx);   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);  
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);     jj1=0;
  free_ivector(num,1,n);   for(k1=1; k1<=m;k1++){
  free_vector(agedc,1,n);     for(i1=1; i1<=ncodemax[k1];i1++){
  /*free_matrix(covar,1,NCOVMAX,1,n);*/       jj1++;
  fclose(ficparo);       if (cptcovn > 0) {
  fclose(ficres);         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
 /*--------- index.htm --------*/           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
   printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,optionfile,optionfilehtm,rfileres,optionfilegnuplot,version,popforecast,estepm);       }
        /* Pij */
         fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: %s%d1.png<br> \
   /*--------------- Prevalence limit --------------*/  <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
         /* Quasi-incidences */
   strcpy(filerespl,"pl");       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
   strcat(filerespl,fileres);   before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: %s%d2.png<br> \
   if((ficrespl=fopen(filerespl,"w"))==NULL) {  <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;         /* Stable prevalence in each health state */
   }         for(cpt=1; cpt<nlstate;cpt++){
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);           fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \
   fprintf(ficrespl,"#Prevalence limit\n");  <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
   fprintf(ficrespl,"#Age ");         }
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);       for(cpt=1; cpt<=nlstate;cpt++) {
   fprintf(ficrespl,"\n");          fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): %s%d%d.png <br> \
    <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
   prlim=matrix(1,nlstate,1,nlstate);       }
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */     } /* end i1 */
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */   }/* End k1 */
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */   fprintf(fichtm,"</ul>");
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */  
   k=0;   fprintf(fichtm,"\
   agebase=ageminpar;  \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
   agelim=agemaxpar;   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
   ftolpl=1.e-10;  
   i1=cptcoveff;   fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
   if (cptcovn < 1){i1=1;}           subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
    fprintf(fichtm,"\
   for(cptcov=1;cptcov<=i1;cptcov++){   - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){           subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
         k=k+1;  
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/   fprintf(fichtm,"\
         fprintf(ficrespl,"\n#******");   - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
         for(j=1;j<=cptcoveff;j++)           subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);   fprintf(fichtm,"\
         fprintf(ficrespl,"******\n");   - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
                   estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
         for (age=agebase; age<=agelim; age++){   fprintf(fichtm,"\
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);   - Health expectancies with their variances (no covariance): <a href=\"%s\">%s</a> <br>\n",
           fprintf(ficrespl,"%.0f",age );           subdirf2(fileres,"t"),subdirf2(fileres,"t"));
           for(i=1; i<=nlstate;i++)   fprintf(fichtm,"\
           fprintf(ficrespl," %.5f", prlim[i][i]);   - Standard deviation of stable prevalences: <a href=\"%s\">%s</a> <br>\n",\
           fprintf(ficrespl,"\n");           subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
         }  
       }  /*  if(popforecast==1) fprintf(fichtm,"\n */
     }  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   fclose(ficrespl);  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*------------- h Pij x at various ages ------------*/  /*  else  */
    /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);   fflush(fichtm);
   if((ficrespij=fopen(filerespij,"w"))==NULL) {   fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;  
   }   m=cptcoveff;
   printf("Computing pij: result on file '%s' \n", filerespij);   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
    
   stepsize=(int) (stepm+YEARM-1)/YEARM;   jj1=0;
   /*if (stepm<=24) stepsize=2;*/   for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
   agelim=AGESUP;       jj1++;
   hstepm=stepsize*YEARM; /* Every year of age */       if (cptcovn > 0) {
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
           for (cpt=1; cpt<=cptcoveff;cpt++) 
   k=0;           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
   for(cptcov=1;cptcov<=i1;cptcov++){         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){       }
       k=k+1;       for(cpt=1; cpt<=nlstate;cpt++) {
         fprintf(ficrespij,"\n#****** ");         fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
         for(j=1;j<=cptcoveff;j++)  prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
         fprintf(ficrespij,"******\n");       }
               fprintf(fichtm,"\n<br>- Total life expectancy by age and \
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */  health expectancies in states (1) and (2): %s%d.png<br>\
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */  <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */     } /* end i1 */
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);   }/* End k1 */
           oldm=oldms;savm=savms;   fprintf(fichtm,"</ul>");
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);     fflush(fichtm);
           fprintf(ficrespij,"# Age");  }
           for(i=1; i<=nlstate;i++)  
             for(j=1; j<=nlstate+ndeath;j++)  /******************* Gnuplot file **************/
               fprintf(ficrespij," %1d-%1d",i,j);  void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
           fprintf(ficrespij,"\n");  
            for (h=0; h<=nhstepm; h++){    char dirfileres[132],optfileres[132];
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
             for(i=1; i<=nlstate;i++)    int ng;
               for(j=1; j<=nlstate+ndeath;j++)  /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);  /*     printf("Problem with file %s",optionfilegnuplot); */
             fprintf(ficrespij,"\n");  /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
              }  /*   } */
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
           fprintf(ficrespij,"\n");    /*#ifdef windows */
         }    fprintf(ficgp,"cd \"%s\" \n",pathc);
     }      /*#endif */
   }    m=pow(2,cptcoveff);
   
   varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);    strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
   fclose(ficrespij);   /* 1eme*/
     for (cpt=1; cpt<= nlstate ; cpt ++) {
      for (k1=1; k1<= m ; k1 ++) {
   /*---------- Forecasting ------------------*/       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
   if((stepm == 1) && (strcmp(model,".")==0)){       fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);       fprintf(ficgp,"set xlabel \"Age\" \n\
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);  set ylabel \"Probability\" \n\
   }  set ter png small\n\
   else{  set size 0.65,0.65\n\
     erreur=108;  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);  
   }       for (i=1; i<= nlstate ; i ++) {
           if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
   /*---------- Health expectancies and variances ------------*/       }
        fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
   strcpy(filerest,"t");       for (i=1; i<= nlstate ; i ++) {
   strcat(filerest,fileres);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
   if((ficrest=fopen(filerest,"w"))==NULL) {         else fprintf(ficgp," \%%*lf (\%%*lf)");
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;       } 
   }       fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
   printf("Computing Total LEs with variances: file '%s' \n", filerest);       for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
   strcpy(filerese,"e");       }  
   strcat(filerese,fileres);       fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
   if((ficreseij=fopen(filerese,"w"))==NULL) {     }
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);    }
   }    /*2 eme*/
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);    
     for (k1=1; k1<= m ; k1 ++) { 
  strcpy(fileresv,"v");      fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
   strcat(fileresv,fileres);      fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
   if((ficresvij=fopen(fileresv,"w"))==NULL) {      
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);      for (i=1; i<= nlstate+1 ; i ++) {
   }        k=2*i;
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
   calagedate=-1;        for (j=1; j<= nlstate+1 ; j ++) {
 prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
   k=0;        }   
   for(cptcov=1;cptcov<=i1;cptcov++){        if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
       k=k+1;        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
       fprintf(ficrest,"\n#****** ");        for (j=1; j<= nlstate+1 ; j ++) {
       for(j=1;j<=cptcoveff;j++)          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          else fprintf(ficgp," \%%*lf (\%%*lf)");
       fprintf(ficrest,"******\n");        }   
         fprintf(ficgp,"\" t\"\" w l 0,");
       fprintf(ficreseij,"\n#****** ");        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
       for(j=1;j<=cptcoveff;j++)        for (j=1; j<= nlstate+1 ; j ++) {
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
       fprintf(ficreseij,"******\n");          else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
       fprintf(ficresvij,"\n#****** ");        if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
       for(j=1;j<=cptcoveff;j++)        else fprintf(ficgp,"\" t\"\" w l 0,");
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      }
       fprintf(ficresvij,"******\n");    }
     
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    /*3eme*/
       oldm=oldms;savm=savms;    
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);      for (k1=1; k1<= m ; k1 ++) { 
        for (cpt=1; cpt<= nlstate ; cpt ++) {
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);        k=2+nlstate*(2*cpt-2);
       oldm=oldms;savm=savms;        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm);        fprintf(ficgp,"set ter png small\n\
      set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
          /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
       fprintf(ficrest,"\n");          fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
       epj=vector(1,nlstate+1);          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
       for(age=bage; age <=fage ;age++){          
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);        */
         if (popbased==1) {        for (i=1; i< nlstate ; i ++) {
           for(i=1; i<=nlstate;i++)          fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);
             prlim[i][i]=probs[(int)age][i][k];          
         }        } 
              }
         fprintf(ficrest," %4.0f",age);    }
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){    
           for(i=1, epj[j]=0.;i <=nlstate;i++) {    /* CV preval stable (period) */
             epj[j] += prlim[i][i]*eij[i][j][(int)age];    for (k1=1; k1<= m ; k1 ++) { 
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/      for (cpt=1; cpt<=nlstate ; cpt ++) {
           }        k=3;
           epj[nlstate+1] +=epj[j];        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         }        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small\nset size 0.65,0.65\n\
         for(i=1, vepp=0.;i <=nlstate;i++)  unset log y\n\
           for(j=1;j <=nlstate;j++)  plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
             vepp += vareij[i][j][(int)age];        
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));        for (i=1; i< nlstate ; i ++)
         for(j=1;j <=nlstate;j++){          fprintf(ficgp,"+$%d",k+i+1);
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));        fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         }        
         fprintf(ficrest,"\n");        l=3+(nlstate+ndeath)*cpt;
       }        fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
     }        for (i=1; i< nlstate ; i ++) {
   }          l=3+(nlstate+ndeath)*cpt;
 free_matrix(mint,1,maxwav,1,n);          fprintf(ficgp,"+$%d",l+i+1);
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);        }
     free_vector(weight,1,n);        fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
   fclose(ficreseij);      } 
   fclose(ficresvij);    }  
   fclose(ficrest);    
   fclose(ficpar);    /* proba elementaires */
   free_vector(epj,1,nlstate+1);    for(i=1,jk=1; i <=nlstate; i++){
        for(k=1; k <=(nlstate+ndeath); k++){
   /*------- Variance limit prevalence------*/          if (k != i) {
           for(j=1; j <=ncovmodel; j++){
   strcpy(fileresvpl,"vpl");            fprintf(ficgp,"p%d=%f ",jk,p[jk]);
   strcat(fileresvpl,fileres);            jk++; 
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {            fprintf(ficgp,"\n");
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);          }
     exit(0);        }
   }      }
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);     }
   
   k=0;     for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
   for(cptcov=1;cptcov<=i1;cptcov++){       for(jk=1; jk <=m; jk++) {
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
       k=k+1;         if (ng==2)
       fprintf(ficresvpl,"\n#****** ");           fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
       for(j=1;j<=cptcoveff;j++)         else
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);           fprintf(ficgp,"\nset title \"Probability\"\n");
       fprintf(ficresvpl,"******\n");         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
               i=1;
       varpl=matrix(1,nlstate,(int) bage, (int) fage);         for(k2=1; k2<=nlstate; k2++) {
       oldm=oldms;savm=savms;           k3=i;
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);           for(k=1; k<=(nlstate+ndeath); k++) {
     }             if (k != k2){
  }               if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
   fclose(ficresvpl);               else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
   /*---------- End : free ----------------*/               ij=1;
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);               for(j=3; j <=ncovmodel; j++) {
                   if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);                   fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);                   ij++;
                   }
                   else
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);                   fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);               }
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);               fprintf(ficgp,")/(1");
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);               
                 for(k1=1; k1 <=nlstate; k1++){   
   free_matrix(matcov,1,npar,1,npar);                 fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
   free_vector(delti,1,npar);                 ij=1;
   free_matrix(agev,1,maxwav,1,imx);                 for(j=3; j <=ncovmodel; j++){
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);                   if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
   if(erreur >0)                     ij++;
     printf("End of Imach with error or warning %d\n",erreur);                   }
   else   printf("End of Imach\n");                   else
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */                     fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                   }
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/                 fprintf(ficgp,")");
   /*printf("Total time was %d uSec.\n", total_usecs);*/               }
   /*------ End -----------*/               fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
  end:             }
   /* chdir(pathcd);*/           } /* end k */
  /*system("wgnuplot graph.plt");*/         } /* end k2 */
  /*system("../gp37mgw/wgnuplot graph.plt");*/       } /* end jk */
  /*system("cd ../gp37mgw");*/     } /* end ng */
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/     fflush(ficgp); 
  strcpy(plotcmd,GNUPLOTPROGRAM);  }  /* end gnuplot */
  strcat(plotcmd," ");  
  strcat(plotcmd,optionfilegnuplot);  
  system(plotcmd);  /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
  /*#ifdef windows*/  
   while (z[0] != 'q') {    int i, cpt, cptcod;
     /* chdir(path); */    int modcovmax =1;
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");    int mobilavrange, mob;
     scanf("%s",z);    double age;
     if (z[0] == 'c') system("./imach");  
     else if (z[0] == 'e') system(optionfilehtm);    modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
     else if (z[0] == 'g') system(plotcmd);                             a covariate has 2 modalities */
     else if (z[0] == 'q') exit(0);    if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   }  
   /*#endif */    if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
 }      if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small\n set log y\n"); 
     fprintf(ficgp, "set size 0.65,0.65\n");
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int linei, month, year,iout;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
   
     char ca[32], cb[32], cc[32];
     char dummy[]="                         ";
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char strstart[80], *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       scanf("%s",pathtot);
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem with datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %d %s for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
           exit(1);
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }
         else  if(iout=sscanf(strb,"%s.") != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           exit(1);
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.",dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         exit(1);
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.") != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line,j);
         exit(1);
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       lval=strtol(strb,&endptr,10); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%d' at line number %ld %s for individual %d\nShould be a weight.  Exiting.\n",lval, i,line,linei);
         exit(1);
       }
       weight[i]=(double)(lval); 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a covar (meaning 0 for the reference or 1).  Exiting.\n",lval, linei,i, line);
           exit(1);
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a value of the %d covar (meaning 0 for the reference or 1. IMaCh does not build design variables, do it your self).  Exiting.\n",lval,linei, i,line,j);
           exit(1);
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       } 
       lstra=strlen(stra);
       
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
     fclose(fic);
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
     /* for (i=1; i<=imx; i++) */
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameters from char model */
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     agegomp=(int)agemin;
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<body>\n<title>IMaCh Cov %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       p[1]=0.0268; p[NDIM]=0.083;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
       
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
     
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing stable prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
       fprintf(ficrespl, "#Local time at start: %s", strstart);
       fprintf(ficrespl,"#Stable prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       fprintf(ficrespij, "#Local time at start: %s", strstart);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /*---------- Health expectancies and variances ------------*/
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total LEs with variances: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficreseij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav, strstart);
           if(popbased==1){
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav, strstart);
           }
   
           fprintf(ficrest, "#Local time at start: %s", strstart);
           fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
           for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
           fprintf(ficrest,"\n");
   
           epj=vector(1,nlstate+1);
           for(age=bage; age <=fage ;age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             if (popbased==1) {
               if(mobilav ==0){
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=probs[(int)age][i][k];
               }else{ /* mobilav */ 
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=mobaverage[(int)age][i][k];
               }
             }
           
             fprintf(ficrest," %4.0f",age);
             for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
               for(i=1, epj[j]=0.;i <=nlstate;i++) {
                 epj[j] += prlim[i][i]*eij[i][j][(int)age];
                 /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
               }
               epj[nlstate+1] +=epj[j];
             }
   
             for(i=1, vepp=0.;i <=nlstate;i++)
               for(j=1;j <=nlstate;j++)
                 vepp += vareij[i][j][(int)age];
             fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
             for(j=1;j <=nlstate;j++){
               fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
             }
             fprintf(ficrest,"\n");
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficreseij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of stable prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
     free_matrix(prlim,1,nlstate,1,nlstate);
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
       free_ivector(Tcode,1,100);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);
     fclose(fichtm);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
     chdir(path);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.41.2.2  
changed lines
  Added in v.1.113


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>