Diff for /imach/src/imach.c between versions 1.114 and 1.125

version 1.114, 2006/02/26 12:57:58 version 1.125, 2006/04/04 15:20:31
Line 1 Line 1
 /* $Id$  /* $Id$
   $State$    $State$
   $Log$    $Log$
   Revision 1.114  2006/02/26 12:57:58  brouard    Revision 1.125  2006/04/04 15:20:31  lievre
   (Module): Some improvements in processing parameter    Errors in calculation of health expectancies. Age was not initialized.
   filename with strsep.    Forecasting file added.
   
   Revision 1.113  2006/02/24 14:20:24  brouard    Revision 1.124  2006/03/22 17:13:53  lievre
   (Module): Memory leaks checks with valgrind and:    Parameters are printed with %lf instead of %f (more numbers after the comma).
   datafile was not closed, some imatrix were not freed and on matrix    The log-likelihood is printed in the log file
   allocation too.  
     Revision 1.123  2006/03/20 10:52:43  brouard
   Revision 1.112  2006/01/30 09:55:26  brouard    * imach.c (Module): <title> changed, corresponds to .htm file
   (Module): Back to gnuplot.exe instead of wgnuplot.exe    name. <head> headers where missing.
   
   Revision 1.111  2006/01/25 20:38:18  brouard    * imach.c (Module): Weights can have a decimal point as for
   (Module): Lots of cleaning and bugs added (Gompertz)    English (a comma might work with a correct LC_NUMERIC environment,
   (Module): Comments can be added in data file. Missing date values    otherwise the weight is truncated).
   can be a simple dot '.'.    Modification of warning when the covariates values are not 0 or
     1.
   Revision 1.110  2006/01/25 00:51:50  brouard    Version 0.98g
   (Module): Lots of cleaning and bugs added (Gompertz)  
     Revision 1.122  2006/03/20 09:45:41  brouard
   Revision 1.109  2006/01/24 19:37:15  brouard    (Module): Weights can have a decimal point as for
   (Module): Comments (lines starting with a #) are allowed in data.    English (a comma might work with a correct LC_NUMERIC environment,
     otherwise the weight is truncated).
   Revision 1.108  2006/01/19 18:05:42  lievre    Modification of warning when the covariates values are not 0 or
   Gnuplot problem appeared...    1.
   To be fixed    Version 0.98g
   
   Revision 1.107  2006/01/19 16:20:37  brouard    Revision 1.121  2006/03/16 17:45:01  lievre
   Test existence of gnuplot in imach path    * imach.c (Module): Comments concerning covariates added
   
   Revision 1.106  2006/01/19 13:24:36  brouard    * imach.c (Module): refinements in the computation of lli if
   Some cleaning and links added in html output    status=-2 in order to have more reliable computation if stepm is
     not 1 month. Version 0.98f
   Revision 1.105  2006/01/05 20:23:19  lievre  
   *** empty log message ***    Revision 1.120  2006/03/16 15:10:38  lievre
     (Module): refinements in the computation of lli if
   Revision 1.104  2005/09/30 16:11:43  lievre    status=-2 in order to have more reliable computation if stepm is
   (Module): sump fixed, loop imx fixed, and simplifications.    not 1 month. Version 0.98f
   (Module): If the status is missing at the last wave but we know  
   that the person is alive, then we can code his/her status as -2    Revision 1.119  2006/03/15 17:42:26  brouard
   (instead of missing=-1 in earlier versions) and his/her    (Module): Bug if status = -2, the loglikelihood was
   contributions to the likelihood is 1 - Prob of dying from last    computed as likelihood omitting the logarithm. Version O.98e
   health status (= 1-p13= p11+p12 in the easiest case of somebody in  
   the healthy state at last known wave). Version is 0.98    Revision 1.118  2006/03/14 18:20:07  brouard
     (Module): varevsij Comments added explaining the second
   Revision 1.103  2005/09/30 15:54:49  lievre    table of variances if popbased=1 .
   (Module): sump fixed, loop imx fixed, and simplifications.    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
     (Module): Function pstamp added
   Revision 1.102  2004/09/15 17:31:30  brouard    (Module): Version 0.98d
   Add the possibility to read data file including tab characters.  
     Revision 1.117  2006/03/14 17:16:22  brouard
   Revision 1.101  2004/09/15 10:38:38  brouard    (Module): varevsij Comments added explaining the second
   Fix on curr_time    table of variances if popbased=1 .
     (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   Revision 1.100  2004/07/12 18:29:06  brouard    (Module): Function pstamp added
   Add version for Mac OS X. Just define UNIX in Makefile    (Module): Version 0.98d
   
   Revision 1.99  2004/06/05 08:57:40  brouard    Revision 1.116  2006/03/06 10:29:27  brouard
   *** empty log message ***    (Module): Variance-covariance wrong links and
     varian-covariance of ej. is needed (Saito).
   Revision 1.98  2004/05/16 15:05:56  brouard  
   New version 0.97 . First attempt to estimate force of mortality    Revision 1.115  2006/02/27 12:17:45  brouard
   directly from the data i.e. without the need of knowing the health    (Module): One freematrix added in mlikeli! 0.98c
   state at each age, but using a Gompertz model: log u =a + b*age .  
   This is the basic analysis of mortality and should be done before any    Revision 1.114  2006/02/26 12:57:58  brouard
   other analysis, in order to test if the mortality estimated from the    (Module): Some improvements in processing parameter
   cross-longitudinal survey is different from the mortality estimated    filename with strsep.
   from other sources like vital statistic data.  
     Revision 1.113  2006/02/24 14:20:24  brouard
   The same imach parameter file can be used but the option for mle should be -3.    (Module): Memory leaks checks with valgrind and:
     datafile was not closed, some imatrix were not freed and on matrix
   Agnès, who wrote this part of the code, tried to keep most of the    allocation too.
   former routines in order to include the new code within the former code.  
     Revision 1.112  2006/01/30 09:55:26  brouard
   The output is very simple: only an estimate of the intercept and of    (Module): Back to gnuplot.exe instead of wgnuplot.exe
   the slope with 95% confident intervals.  
     Revision 1.111  2006/01/25 20:38:18  brouard
   Current limitations:    (Module): Lots of cleaning and bugs added (Gompertz)
   A) Even if you enter covariates, i.e. with the    (Module): Comments can be added in data file. Missing date values
   model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.    can be a simple dot '.'.
   B) There is no computation of Life Expectancy nor Life Table.  
     Revision 1.110  2006/01/25 00:51:50  brouard
   Revision 1.97  2004/02/20 13:25:42  lievre    (Module): Lots of cleaning and bugs added (Gompertz)
   Version 0.96d. Population forecasting command line is (temporarily)  
   suppressed.    Revision 1.109  2006/01/24 19:37:15  brouard
     (Module): Comments (lines starting with a #) are allowed in data.
   Revision 1.96  2003/07/15 15:38:55  brouard  
   * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is    Revision 1.108  2006/01/19 18:05:42  lievre
   rewritten within the same printf. Workaround: many printfs.    Gnuplot problem appeared...
     To be fixed
   Revision 1.95  2003/07/08 07:54:34  brouard  
   * imach.c (Repository):    Revision 1.107  2006/01/19 16:20:37  brouard
   (Repository): Using imachwizard code to output a more meaningful covariance    Test existence of gnuplot in imach path
   matrix (cov(a12,c31) instead of numbers.  
     Revision 1.106  2006/01/19 13:24:36  brouard
   Revision 1.94  2003/06/27 13:00:02  brouard    Some cleaning and links added in html output
   Just cleaning  
     Revision 1.105  2006/01/05 20:23:19  lievre
   Revision 1.93  2003/06/25 16:33:55  brouard    *** empty log message ***
   (Module): On windows (cygwin) function asctime_r doesn't  
   exist so I changed back to asctime which exists.    Revision 1.104  2005/09/30 16:11:43  lievre
   (Module): Version 0.96b    (Module): sump fixed, loop imx fixed, and simplifications.
     (Module): If the status is missing at the last wave but we know
   Revision 1.92  2003/06/25 16:30:45  brouard    that the person is alive, then we can code his/her status as -2
   (Module): On windows (cygwin) function asctime_r doesn't    (instead of missing=-1 in earlier versions) and his/her
   exist so I changed back to asctime which exists.    contributions to the likelihood is 1 - Prob of dying from last
     health status (= 1-p13= p11+p12 in the easiest case of somebody in
   Revision 1.91  2003/06/25 15:30:29  brouard    the healthy state at last known wave). Version is 0.98
   * imach.c (Repository): Duplicated warning errors corrected.  
   (Repository): Elapsed time after each iteration is now output. It    Revision 1.103  2005/09/30 15:54:49  lievre
   helps to forecast when convergence will be reached. Elapsed time    (Module): sump fixed, loop imx fixed, and simplifications.
   is stamped in powell.  We created a new html file for the graphs  
   concerning matrix of covariance. It has extension -cov.htm.    Revision 1.102  2004/09/15 17:31:30  brouard
     Add the possibility to read data file including tab characters.
   Revision 1.90  2003/06/24 12:34:15  brouard  
   (Module): Some bugs corrected for windows. Also, when    Revision 1.101  2004/09/15 10:38:38  brouard
   mle=-1 a template is output in file "or"mypar.txt with the design    Fix on curr_time
   of the covariance matrix to be input.  
     Revision 1.100  2004/07/12 18:29:06  brouard
   Revision 1.89  2003/06/24 12:30:52  brouard    Add version for Mac OS X. Just define UNIX in Makefile
   (Module): Some bugs corrected for windows. Also, when  
   mle=-1 a template is output in file "or"mypar.txt with the design    Revision 1.99  2004/06/05 08:57:40  brouard
   of the covariance matrix to be input.    *** empty log message ***
   
   Revision 1.88  2003/06/23 17:54:56  brouard    Revision 1.98  2004/05/16 15:05:56  brouard
   * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.    New version 0.97 . First attempt to estimate force of mortality
     directly from the data i.e. without the need of knowing the health
   Revision 1.87  2003/06/18 12:26:01  brouard    state at each age, but using a Gompertz model: log u =a + b*age .
   Version 0.96    This is the basic analysis of mortality and should be done before any
     other analysis, in order to test if the mortality estimated from the
   Revision 1.86  2003/06/17 20:04:08  brouard    cross-longitudinal survey is different from the mortality estimated
   (Module): Change position of html and gnuplot routines and added    from other sources like vital statistic data.
   routine fileappend.  
     The same imach parameter file can be used but the option for mle should be -3.
   Revision 1.85  2003/06/17 13:12:43  brouard  
   * imach.c (Repository): Check when date of death was earlier that    Agnès, who wrote this part of the code, tried to keep most of the
   current date of interview. It may happen when the death was just    former routines in order to include the new code within the former code.
   prior to the death. In this case, dh was negative and likelihood  
   was wrong (infinity). We still send an "Error" but patch by    The output is very simple: only an estimate of the intercept and of
   assuming that the date of death was just one stepm after the    the slope with 95% confident intervals.
   interview.  
   (Repository): Because some people have very long ID (first column)    Current limitations:
   we changed int to long in num[] and we added a new lvector for    A) Even if you enter covariates, i.e. with the
   memory allocation. But we also truncated to 8 characters (left    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
   truncation)    B) There is no computation of Life Expectancy nor Life Table.
   (Repository): No more line truncation errors.  
     Revision 1.97  2004/02/20 13:25:42  lievre
   Revision 1.84  2003/06/13 21:44:43  brouard    Version 0.96d. Population forecasting command line is (temporarily)
   * imach.c (Repository): Replace "freqsummary" at a correct    suppressed.
   place. It differs from routine "prevalence" which may be called  
   many times. Probs is memory consuming and must be used with    Revision 1.96  2003/07/15 15:38:55  brouard
   parcimony.    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
   Version 0.95a3 (should output exactly the same maximization than 0.8a2)    rewritten within the same printf. Workaround: many printfs.
   
   Revision 1.83  2003/06/10 13:39:11  lievre    Revision 1.95  2003/07/08 07:54:34  brouard
   *** empty log message ***    * imach.c (Repository):
     (Repository): Using imachwizard code to output a more meaningful covariance
   Revision 1.82  2003/06/05 15:57:20  brouard    matrix (cov(a12,c31) instead of numbers.
   Add log in  imach.c and  fullversion number is now printed.  
     Revision 1.94  2003/06/27 13:00:02  brouard
 */    Just cleaning
 /*  
    Interpolated Markov Chain    Revision 1.93  2003/06/25 16:33:55  brouard
     (Module): On windows (cygwin) function asctime_r doesn't
   Short summary of the programme:    exist so I changed back to asctime which exists.
       (Module): Version 0.96b
   This program computes Healthy Life Expectancies from  
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    Revision 1.92  2003/06/25 16:30:45  brouard
   first survey ("cross") where individuals from different ages are    (Module): On windows (cygwin) function asctime_r doesn't
   interviewed on their health status or degree of disability (in the    exist so I changed back to asctime which exists.
   case of a health survey which is our main interest) -2- at least a  
   second wave of interviews ("longitudinal") which measure each change    Revision 1.91  2003/06/25 15:30:29  brouard
   (if any) in individual health status.  Health expectancies are    * imach.c (Repository): Duplicated warning errors corrected.
   computed from the time spent in each health state according to a    (Repository): Elapsed time after each iteration is now output. It
   model. More health states you consider, more time is necessary to reach the    helps to forecast when convergence will be reached. Elapsed time
   Maximum Likelihood of the parameters involved in the model.  The    is stamped in powell.  We created a new html file for the graphs
   simplest model is the multinomial logistic model where pij is the    concerning matrix of covariance. It has extension -cov.htm.
   probability to be observed in state j at the second wave  
   conditional to be observed in state i at the first wave. Therefore    Revision 1.90  2003/06/24 12:34:15  brouard
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    (Module): Some bugs corrected for windows. Also, when
   'age' is age and 'sex' is a covariate. If you want to have a more    mle=-1 a template is output in file "or"mypar.txt with the design
   complex model than "constant and age", you should modify the program    of the covariance matrix to be input.
   where the markup *Covariates have to be included here again* invites  
   you to do it.  More covariates you add, slower the    Revision 1.89  2003/06/24 12:30:52  brouard
   convergence.    (Module): Some bugs corrected for windows. Also, when
     mle=-1 a template is output in file "or"mypar.txt with the design
   The advantage of this computer programme, compared to a simple    of the covariance matrix to be input.
   multinomial logistic model, is clear when the delay between waves is not  
   identical for each individual. Also, if a individual missed an    Revision 1.88  2003/06/23 17:54:56  brouard
   intermediate interview, the information is lost, but taken into    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
   account using an interpolation or extrapolation.    
     Revision 1.87  2003/06/18 12:26:01  brouard
   hPijx is the probability to be observed in state i at age x+h    Version 0.96
   conditional to the observed state i at age x. The delay 'h' can be  
   split into an exact number (nh*stepm) of unobserved intermediate    Revision 1.86  2003/06/17 20:04:08  brouard
   states. This elementary transition (by month, quarter,    (Module): Change position of html and gnuplot routines and added
   semester or year) is modelled as a multinomial logistic.  The hPx    routine fileappend.
   matrix is simply the matrix product of nh*stepm elementary matrices  
   and the contribution of each individual to the likelihood is simply    Revision 1.85  2003/06/17 13:12:43  brouard
   hPijx.    * imach.c (Repository): Check when date of death was earlier that
     current date of interview. It may happen when the death was just
   Also this programme outputs the covariance matrix of the parameters but also    prior to the death. In this case, dh was negative and likelihood
   of the life expectancies. It also computes the stable prevalence.     was wrong (infinity). We still send an "Error" but patch by
       assuming that the date of death was just one stepm after the
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    interview.
            Institut national d'études démographiques, Paris.    (Repository): Because some people have very long ID (first column)
   This software have been partly granted by Euro-REVES, a concerted action    we changed int to long in num[] and we added a new lvector for
   from the European Union.    memory allocation. But we also truncated to 8 characters (left
   It is copyrighted identically to a GNU software product, ie programme and    truncation)
   software can be distributed freely for non commercial use. Latest version    (Repository): No more line truncation errors.
   can be accessed at http://euroreves.ined.fr/imach .  
     Revision 1.84  2003/06/13 21:44:43  brouard
   Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach    * imach.c (Repository): Replace "freqsummary" at a correct
   or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so    place. It differs from routine "prevalence" which may be called
       many times. Probs is memory consuming and must be used with
   **********************************************************************/    parcimony.
 /*    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
   main  
   read parameterfile    Revision 1.83  2003/06/10 13:39:11  lievre
   read datafile    *** empty log message ***
   concatwav  
   freqsummary    Revision 1.82  2003/06/05 15:57:20  brouard
   if (mle >= 1)    Add log in  imach.c and  fullversion number is now printed.
     mlikeli  
   print results files  */
   if mle==1   /*
      computes hessian     Interpolated Markov Chain
   read end of parameter file: agemin, agemax, bage, fage, estepm  
       begin-prev-date,...    Short summary of the programme:
   open gnuplot file   
   open html file    This program computes Healthy Life Expectancies from
   stable prevalence    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
    for age prevalim()    first survey ("cross") where individuals from different ages are
   h Pij x    interviewed on their health status or degree of disability (in the
   variance of p varprob    case of a health survey which is our main interest) -2- at least a
   forecasting if prevfcast==1 prevforecast call prevalence()    second wave of interviews ("longitudinal") which measure each change
   health expectancies    (if any) in individual health status.  Health expectancies are
   Variance-covariance of DFLE    computed from the time spent in each health state according to a
   prevalence()    model. More health states you consider, more time is necessary to reach the
    movingaverage()    Maximum Likelihood of the parameters involved in the model.  The
   varevsij()     simplest model is the multinomial logistic model where pij is the
   if popbased==1 varevsij(,popbased)    probability to be observed in state j at the second wave
   total life expectancies    conditional to be observed in state i at the first wave. Therefore
   Variance of stable prevalence    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
  end    'age' is age and 'sex' is a covariate. If you want to have a more
 */    complex model than "constant and age", you should modify the program
     where the markup *Covariates have to be included here again* invites
     you to do it.  More covariates you add, slower the
     convergence.
    
 #include <math.h>    The advantage of this computer programme, compared to a simple
 #include <stdio.h>    multinomial logistic model, is clear when the delay between waves is not
 #include <stdlib.h>    identical for each individual. Also, if a individual missed an
 #include <string.h>    intermediate interview, the information is lost, but taken into
 #include <unistd.h>    account using an interpolation or extrapolation.  
   
 #include <limits.h>    hPijx is the probability to be observed in state i at age x+h
 #include <sys/types.h>    conditional to the observed state i at age x. The delay 'h' can be
 #include <sys/stat.h>    split into an exact number (nh*stepm) of unobserved intermediate
 #include <errno.h>    states. This elementary transition (by month, quarter,
 extern int errno;    semester or year) is modelled as a multinomial logistic.  The hPx
     matrix is simply the matrix product of nh*stepm elementary matrices
 /* #include <sys/time.h> */    and the contribution of each individual to the likelihood is simply
 #include <time.h>    hPijx.
 #include "timeval.h"  
     Also this programme outputs the covariance matrix of the parameters but also
 /* #include <libintl.h> */    of the life expectancies. It also computes the period (stable) prevalence.
 /* #define _(String) gettext (String) */   
     Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
 #define MAXLINE 256             Institut national d'études démographiques, Paris.
     This software have been partly granted by Euro-REVES, a concerted action
 #define GNUPLOTPROGRAM "gnuplot"    from the European Union.
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    It is copyrighted identically to a GNU software product, ie programme and
 #define FILENAMELENGTH 132    software can be distributed freely for non commercial use. Latest version
     can be accessed at http://euroreves.ined.fr/imach .
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */  
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
     or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */   
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    **********************************************************************/
   /*
 #define NINTERVMAX 8    main
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    read parameterfile
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    read datafile
 #define NCOVMAX 8 /* Maximum number of covariates */    concatwav
 #define MAXN 20000    freqsummary
 #define YEARM 12. /* Number of months per year */    if (mle >= 1)
 #define AGESUP 130      mlikeli
 #define AGEBASE 40    print results files
 #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */    if mle==1
 #ifdef UNIX       computes hessian
 #define DIRSEPARATOR '/'    read end of parameter file: agemin, agemax, bage, fage, estepm
 #define CHARSEPARATOR "/"        begin-prev-date,...
 #define ODIRSEPARATOR '\\'    open gnuplot file
 #else    open html file
 #define DIRSEPARATOR '\\'    period (stable) prevalence
 #define CHARSEPARATOR "\\"     for age prevalim()
 #define ODIRSEPARATOR '/'    h Pij x
 #endif    variance of p varprob
     forecasting if prevfcast==1 prevforecast call prevalence()
 /* $Id$ */    health expectancies
 /* $State$ */    Variance-covariance of DFLE
     prevalence()
 char version[]="Imach version 0.98b, January 2006, INED-EUROREVES ";     movingaverage()
 char fullversion[]="$Revision$ $Date$";     varevsij()
 int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */    if popbased==1 varevsij(,popbased)
 int nvar;    total life expectancies
 int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;    Variance of period (stable) prevalence
 int npar=NPARMAX;   end
 int nlstate=2; /* Number of live states */  */
 int ndeath=1; /* Number of dead states */  
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */  
 int popbased=0;  
    
 int *wav; /* Number of waves for this individuual 0 is possible */  #include <math.h>
 int maxwav; /* Maxim number of waves */  #include <stdio.h>
 int jmin, jmax; /* min, max spacing between 2 waves */  #include <stdlib.h>
 int ijmin, ijmax; /* Individuals having jmin and jmax */   #include <string.h>
 int gipmx, gsw; /* Global variables on the number of contributions   #include <unistd.h>
                    to the likelihood and the sum of weights (done by funcone)*/  
 int mle, weightopt;  #include <limits.h>
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */  #include <sys/types.h>
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */  #include <sys/stat.h>
 int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between  #include <errno.h>
            * wave mi and wave mi+1 is not an exact multiple of stepm. */  extern int errno;
 double jmean; /* Mean space between 2 waves */  
 double **oldm, **newm, **savm; /* Working pointers to matrices */  /* #include <sys/time.h> */
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */  #include <time.h>
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;  #include "timeval.h"
 FILE *ficlog, *ficrespow;  
 int globpr; /* Global variable for printing or not */  /* #include <libintl.h> */
 double fretone; /* Only one call to likelihood */  /* #define _(String) gettext (String) */
 long ipmx; /* Number of contributions */  
 double sw; /* Sum of weights */  #define MAXLINE 256
 char filerespow[FILENAMELENGTH];  
 char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */  #define GNUPLOTPROGRAM "gnuplot"
 FILE *ficresilk;  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;  #define FILENAMELENGTH 132
 FILE *ficresprobmorprev;  
 FILE *fichtm, *fichtmcov; /* Html File */  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
 FILE *ficreseij;  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
 char filerese[FILENAMELENGTH];  
 FILE  *ficresvij;  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
 char fileresv[FILENAMELENGTH];  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
 FILE  *ficresvpl;  
 char fileresvpl[FILENAMELENGTH];  #define NINTERVMAX 8
 char title[MAXLINE];  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
 char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];  #define NCOVMAX 8 /* Maximum number of covariates */
 char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH];   #define MAXN 20000
 char command[FILENAMELENGTH];  #define YEARM 12. /* Number of months per year */
 int  outcmd=0;  #define AGESUP 130
   #define AGEBASE 40
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
   #ifdef UNIX
 char filelog[FILENAMELENGTH]; /* Log file */  #define DIRSEPARATOR '/'
 char filerest[FILENAMELENGTH];  #define CHARSEPARATOR "/"
 char fileregp[FILENAMELENGTH];  #define ODIRSEPARATOR '\\'
 char popfile[FILENAMELENGTH];  #else
   #define DIRSEPARATOR '\\'
 char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;  #define CHARSEPARATOR "\\"
   #define ODIRSEPARATOR '/'
 struct timeval start_time, end_time, curr_time, last_time, forecast_time;  #endif
 struct timezone tzp;  
 extern int gettimeofday();  /* $Id$ */
 struct tm tmg, tm, tmf, *gmtime(), *localtime();  /* $State$ */
 long time_value;  
 extern long time();  char version[]="Imach version 0.98g, March 2006, INED-EUROREVES-Institut de longevite ";
 char strcurr[80], strfor[80];  char fullversion[]="$Revision$ $Date$";
   char strstart[80];
 char *endptr;  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
 long lval;  int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
   int nvar;
 #define NR_END 1  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
 #define FREE_ARG char*  int npar=NPARMAX;
 #define FTOL 1.0e-10  int nlstate=2; /* Number of live states */
   int ndeath=1; /* Number of dead states */
 #define NRANSI   int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
 #define ITMAX 200   int popbased=0;
   
 #define TOL 2.0e-4   int *wav; /* Number of waves for this individuual 0 is possible */
   int maxwav; /* Maxim number of waves */
 #define CGOLD 0.3819660   int jmin, jmax; /* min, max spacing between 2 waves */
 #define ZEPS 1.0e-10   int ijmin, ijmax; /* Individuals having jmin and jmax */
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);   int gipmx, gsw; /* Global variables on the number of contributions
                      to the likelihood and the sum of weights (done by funcone)*/
 #define GOLD 1.618034   int mle, weightopt;
 #define GLIMIT 100.0   int **mw; /* mw[mi][i] is number of the mi wave for this individual */
 #define TINY 1.0e-20   int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
   int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
 static double maxarg1,maxarg2;             * wave mi and wave mi+1 is not an exact multiple of stepm. */
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))  double jmean; /* Mean space between 2 waves */
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))  double **oldm, **newm, **savm; /* Working pointers to matrices */
     double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))  FILE *fic,*ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
 #define rint(a) floor(a+0.5)  FILE *ficlog, *ficrespow;
   int globpr; /* Global variable for printing or not */
 static double sqrarg;  double fretone; /* Only one call to likelihood */
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)  long ipmx; /* Number of contributions */
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}   double sw; /* Sum of weights */
 int agegomp= AGEGOMP;  char filerespow[FILENAMELENGTH];
   char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
 int imx;   FILE *ficresilk;
 int stepm=1;  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
 /* Stepm, step in month: minimum step interpolation*/  FILE *ficresprobmorprev;
   FILE *fichtm, *fichtmcov; /* Html File */
 int estepm;  FILE *ficreseij;
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/  char filerese[FILENAMELENGTH];
   FILE *ficresstdeij;
 int m,nb;  char fileresstde[FILENAMELENGTH];
 long *num;  FILE *ficrescveij;
 int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;  char filerescve[FILENAMELENGTH];
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;  FILE  *ficresvij;
 double **pmmij, ***probs;  char fileresv[FILENAMELENGTH];
 double *ageexmed,*agecens;  FILE  *ficresvpl;
 double dateintmean=0;  char fileresvpl[FILENAMELENGTH];
   char title[MAXLINE];
 double *weight;  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
 int **s; /* Status */  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
 double *agedc, **covar, idx;  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH];
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;  char command[FILENAMELENGTH];
 double *lsurv, *lpop, *tpop;  int  outcmd=0;
   
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
 double ftolhess; /* Tolerance for computing hessian */  
   char filelog[FILENAMELENGTH]; /* Log file */
 /**************** split *************************/  char filerest[FILENAMELENGTH];
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )  char fileregp[FILENAMELENGTH];
 {  char popfile[FILENAMELENGTH];
   /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)  
      the name of the file (name), its extension only (ext) and its first part of the name (finame)  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
   */   
   char  *ss;                            /* pointer */  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
   int   l1, l2;                         /* length counters */  struct timezone tzp;
   extern int gettimeofday();
   l1 = strlen(path );                   /* length of path */  struct tm tmg, tm, tmf, *gmtime(), *localtime();
   if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );  long time_value;
   ss= strrchr( path, DIRSEPARATOR );            /* find last / */  extern long time();
   if ( ss == NULL ) {                   /* no directory, so determine current directory */  char strcurr[80], strfor[80];
     strcpy( name, path );               /* we got the fullname name because no directory */  
     /*if(strrchr(path, ODIRSEPARATOR )==NULL)  char *endptr;
       printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/  long lval;
     /* get current working directory */  double dval;
     /*    extern  char* getcwd ( char *buf , int len);*/  
     if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {  #define NR_END 1
       return( GLOCK_ERROR_GETCWD );  #define FREE_ARG char*
     }  #define FTOL 1.0e-10
     /* got dirc from getcwd*/  
     printf(" DIRC = %s \n",dirc);  #define NRANSI
   } else {                              /* strip direcotry from path */  #define ITMAX 200
     ss++;                               /* after this, the filename */  
     l2 = strlen( ss );                  /* length of filename */  #define TOL 2.0e-4
     if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );  
     strcpy( name, ss );         /* save file name */  #define CGOLD 0.3819660
     strncpy( dirc, path, l1 - l2 );     /* now the directory */  #define ZEPS 1.0e-10
     dirc[l1-l2] = 0;                    /* add zero */  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);
     printf(" DIRC2 = %s \n",dirc);  
   }  #define GOLD 1.618034
   /* We add a separator at the end of dirc if not exists */  #define GLIMIT 100.0
   l1 = strlen( dirc );                  /* length of directory */  #define TINY 1.0e-20
   if( dirc[l1-1] != DIRSEPARATOR ){  
     dirc[l1] =  DIRSEPARATOR;  static double maxarg1,maxarg2;
     dirc[l1+1] = 0;   #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
     printf(" DIRC3 = %s \n",dirc);  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
   }   
   ss = strrchr( name, '.' );            /* find last / */  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
   if (ss >0){  #define rint(a) floor(a+0.5)
     ss++;  
     strcpy(ext,ss);                     /* save extension */  static double sqrarg;
     l1= strlen( name);  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
     l2= strlen(ss)+1;  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}
     strncpy( finame, name, l1-l2);  int agegomp= AGEGOMP;
     finame[l1-l2]= 0;  
   }  int imx;
   int stepm=1;
   return( 0 );                          /* we're done */  /* Stepm, step in month: minimum step interpolation*/
 }  
   int estepm;
   /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
 /******************************************/  
   int m,nb;
 void replace_back_to_slash(char *s, char*t)  long *num;
 {  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
   int i;  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
   int lg=0;  double **pmmij, ***probs;
   i=0;  double *ageexmed,*agecens;
   lg=strlen(t);  double dateintmean=0;
   for(i=0; i<= lg; i++) {  
     (s[i] = t[i]);  double *weight;
     if (t[i]== '\\') s[i]='/';  int **s; /* Status */
   }  double *agedc, **covar, idx;
 }  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
   double *lsurv, *lpop, *tpop;
 int nbocc(char *s, char occ)  
 {  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
   int i,j=0;  double ftolhess; /* Tolerance for computing hessian */
   int lg=20;  
   i=0;  /**************** split *************************/
   lg=strlen(s);  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   for(i=0; i<= lg; i++) {  {
   if  (s[i] == occ ) j++;    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
   }       the name of the file (name), its extension only (ext) and its first part of the name (finame)
   return j;    */
 }    char  *ss;                            /* pointer */
     int   l1, l2;                         /* length counters */
 void cutv(char *u,char *v, char*t, char occ)  
 {    l1 = strlen(path );                   /* length of path */
   /* cuts string t into u and v where u ends before first occurence of char 'occ'     if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
      and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
      gives u="abcedf" and v="ghi2j" */    if ( ss == NULL ) {                   /* no directory, so determine current directory */
   int i,lg,j,p=0;      strcpy( name, path );               /* we got the fullname name because no directory */
   i=0;      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
   for(j=0; j<=strlen(t)-1; j++) {        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;      /* get current working directory */
   }      /*    extern  char* getcwd ( char *buf , int len);*/
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
   lg=strlen(t);        return( GLOCK_ERROR_GETCWD );
   for(j=0; j<p; j++) {      }
     (u[j] = t[j]);      /* got dirc from getcwd*/
   }      printf(" DIRC = %s \n",dirc);
      u[p]='\0';    } else {                              /* strip direcotry from path */
       ss++;                               /* after this, the filename */
    for(j=0; j<= lg; j++) {      l2 = strlen( ss );                  /* length of filename */
     if (j>=(p+1))(v[j-p-1] = t[j]);      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
   }      strcpy( name, ss );         /* save file name */
 }      strncpy( dirc, path, l1 - l2 );     /* now the directory */
       dirc[l1-l2] = 0;                    /* add zero */
 /********************** nrerror ********************/      printf(" DIRC2 = %s \n",dirc);
     }
 void nrerror(char error_text[])    /* We add a separator at the end of dirc if not exists */
 {    l1 = strlen( dirc );                  /* length of directory */
   fprintf(stderr,"ERREUR ...\n");    if( dirc[l1-1] != DIRSEPARATOR ){
   fprintf(stderr,"%s\n",error_text);      dirc[l1] =  DIRSEPARATOR;
   exit(EXIT_FAILURE);      dirc[l1+1] = 0;
 }      printf(" DIRC3 = %s \n",dirc);
 /*********************** vector *******************/    }
 double *vector(int nl, int nh)    ss = strrchr( name, '.' );            /* find last / */
 {    if (ss >0){
   double *v;      ss++;
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));      strcpy(ext,ss);                     /* save extension */
   if (!v) nrerror("allocation failure in vector");      l1= strlen( name);
   return v-nl+NR_END;      l2= strlen(ss)+1;
 }      strncpy( finame, name, l1-l2);
       finame[l1-l2]= 0;
 /************************ free vector ******************/    }
 void free_vector(double*v, int nl, int nh)  
 {    return( 0 );                          /* we're done */
   free((FREE_ARG)(v+nl-NR_END));  }
 }  
   
 /************************ivector *******************************/  /******************************************/
 int *ivector(long nl,long nh)  
 {  void replace_back_to_slash(char *s, char*t)
   int *v;  {
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));    int i;
   if (!v) nrerror("allocation failure in ivector");    int lg=0;
   return v-nl+NR_END;    i=0;
 }    lg=strlen(t);
     for(i=0; i<= lg; i++) {
 /******************free ivector **************************/      (s[i] = t[i]);
 void free_ivector(int *v, long nl, long nh)      if (t[i]== '\\') s[i]='/';
 {    }
   free((FREE_ARG)(v+nl-NR_END));  }
 }  
   int nbocc(char *s, char occ)
 /************************lvector *******************************/  {
 long *lvector(long nl,long nh)    int i,j=0;
 {    int lg=20;
   long *v;    i=0;
   v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));    lg=strlen(s);
   if (!v) nrerror("allocation failure in ivector");    for(i=0; i<= lg; i++) {
   return v-nl+NR_END;    if  (s[i] == occ ) j++;
 }    }
     return j;
 /******************free lvector **************************/  }
 void free_lvector(long *v, long nl, long nh)  
 {  void cutv(char *u,char *v, char*t, char occ)
   free((FREE_ARG)(v+nl-NR_END));  {
 }    /* cuts string t into u and v where u ends before first occurence of char 'occ'
        and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
 /******************* imatrix *******************************/       gives u="abcedf" and v="ghi2j" */
 int **imatrix(long nrl, long nrh, long ncl, long nch)     int i,lg,j,p=0;
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */     i=0;
 {     for(j=0; j<=strlen(t)-1; j++) {
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;       if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
   int **m;     }
     
   /* allocate pointers to rows */     lg=strlen(t);
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));     for(j=0; j<p; j++) {
   if (!m) nrerror("allocation failure 1 in matrix()");       (u[j] = t[j]);
   m += NR_END;     }
   m -= nrl;        u[p]='\0';
     
        for(j=0; j<= lg; j++) {
   /* allocate rows and set pointers to them */       if (j>=(p+1))(v[j-p-1] = t[j]);
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));     }
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");   }
   m[nrl] += NR_END;   
   m[nrl] -= ncl;   /********************** nrerror ********************/
     
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;   void nrerror(char error_text[])
     {
   /* return pointer to array of pointers to rows */     fprintf(stderr,"ERREUR ...\n");
   return m;     fprintf(stderr,"%s\n",error_text);
 }     exit(EXIT_FAILURE);
   }
 /****************** free_imatrix *************************/  /*********************** vector *******************/
 void free_imatrix(m,nrl,nrh,ncl,nch)  double *vector(int nl, int nh)
       int **m;  {
       long nch,ncl,nrh,nrl;     double *v;
      /* free an int matrix allocated by imatrix() */     v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
 {     if (!v) nrerror("allocation failure in vector");
   free((FREE_ARG) (m[nrl]+ncl-NR_END));     return v-nl+NR_END;
   free((FREE_ARG) (m+nrl-NR_END));   }
 }   
   /************************ free vector ******************/
 /******************* matrix *******************************/  void free_vector(double*v, int nl, int nh)
 double **matrix(long nrl, long nrh, long ncl, long nch)  {
 {    free((FREE_ARG)(v+nl-NR_END));
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  }
   double **m;  
   /************************ivector *******************************/
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  int *ivector(long nl,long nh)
   if (!m) nrerror("allocation failure 1 in matrix()");  {
   m += NR_END;    int *v;
   m -= nrl;    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
     if (!v) nrerror("allocation failure in ivector");
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    return v-nl+NR_END;
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  }
   m[nrl] += NR_END;  
   m[nrl] -= ncl;  /******************free ivector **************************/
   void free_ivector(int *v, long nl, long nh)
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  {
   return m;    free((FREE_ARG)(v+nl-NR_END));
   /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1])   }
    */  
 }  /************************lvector *******************************/
   long *lvector(long nl,long nh)
 /*************************free matrix ************************/  {
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)    long *v;
 {    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    if (!v) nrerror("allocation failure in ivector");
   free((FREE_ARG)(m+nrl-NR_END));    return v-nl+NR_END;
 }  }
   
 /******************* ma3x *******************************/  /******************free lvector **************************/
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  void free_lvector(long *v, long nl, long nh)
 {  {
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;    free((FREE_ARG)(v+nl-NR_END));
   double ***m;  }
   
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  /******************* imatrix *******************************/
   if (!m) nrerror("allocation failure 1 in matrix()");  int **imatrix(long nrl, long nrh, long ncl, long nch)
   m += NR_END;       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */
   m -= nrl;  {
     long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    int **m;
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");   
   m[nrl] += NR_END;    /* allocate pointers to rows */
   m[nrl] -= ncl;    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));
     if (!m) nrerror("allocation failure 1 in matrix()");
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    m += NR_END;
     m -= nrl;
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));   
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");   
   m[nrl][ncl] += NR_END;    /* allocate rows and set pointers to them */
   m[nrl][ncl] -= nll;    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));
   for (j=ncl+1; j<=nch; j++)     if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     m[nrl][j]=m[nrl][j-1]+nlay;    m[nrl] += NR_END;
       m[nrl] -= ncl;
   for (i=nrl+1; i<=nrh; i++) {   
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;
     for (j=ncl+1; j<=nch; j++)    
       m[i][j]=m[i][j-1]+nlay;    /* return pointer to array of pointers to rows */
   }    return m;
   return m;   }
   /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])  
            &(m[i][j][k]) <=> *((*(m+i) + j)+k)  /****************** free_imatrix *************************/
   */  void free_imatrix(m,nrl,nrh,ncl,nch)
 }        int **m;
         long nch,ncl,nrh,nrl;
 /*************************free ma3x ************************/       /* free an int matrix allocated by imatrix() */
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  {
 {    free((FREE_ARG) (m[nrl]+ncl-NR_END));
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));    free((FREE_ARG) (m+nrl-NR_END));
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  }
   free((FREE_ARG)(m+nrl-NR_END));  
 }  /******************* matrix *******************************/
   double **matrix(long nrl, long nrh, long ncl, long nch)
 /*************** function subdirf ***********/  {
 char *subdirf(char fileres[])    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
 {    double **m;
   /* Caution optionfilefiname is hidden */  
   strcpy(tmpout,optionfilefiname);    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   strcat(tmpout,"/"); /* Add to the right */    if (!m) nrerror("allocation failure 1 in matrix()");
   strcat(tmpout,fileres);    m += NR_END;
   return tmpout;    m -= nrl;
 }  
     m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
 /*************** function subdirf2 ***********/    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
 char *subdirf2(char fileres[], char *preop)    m[nrl] += NR_END;
 {    m[nrl] -= ncl;
     
   /* Caution optionfilefiname is hidden */    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   strcpy(tmpout,optionfilefiname);    return m;
   strcat(tmpout,"/");    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1])
   strcat(tmpout,preop);     */
   strcat(tmpout,fileres);  }
   return tmpout;  
 }  /*************************free matrix ************************/
   void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
 /*************** function subdirf3 ***********/  {
 char *subdirf3(char fileres[], char *preop, char *preop2)    free((FREE_ARG)(m[nrl]+ncl-NR_END));
 {    free((FREE_ARG)(m+nrl-NR_END));
     }
   /* Caution optionfilefiname is hidden */  
   strcpy(tmpout,optionfilefiname);  /******************* ma3x *******************************/
   strcat(tmpout,"/");  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
   strcat(tmpout,preop);  {
   strcat(tmpout,preop2);    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
   strcat(tmpout,fileres);    double ***m;
   return tmpout;  
 }    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     if (!m) nrerror("allocation failure 1 in matrix()");
 /***************** f1dim *************************/    m += NR_END;
 extern int ncom;     m -= nrl;
 extern double *pcom,*xicom;  
 extern double (*nrfunc)(double []);     m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
      if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
 double f1dim(double x)     m[nrl] += NR_END;
 {     m[nrl] -= ncl;
   int j;   
   double f;    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   double *xt;   
      m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
   xt=vector(1,ncom);     if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];     m[nrl][ncl] += NR_END;
   f=(*nrfunc)(xt);     m[nrl][ncl] -= nll;
   free_vector(xt,1,ncom);     for (j=ncl+1; j<=nch; j++)
   return f;       m[nrl][j]=m[nrl][j-1]+nlay;
 }    
     for (i=nrl+1; i<=nrh; i++) {
 /*****************brent *************************/      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)       for (j=ncl+1; j<=nch; j++)
 {         m[i][j]=m[i][j-1]+nlay;
   int iter;     }
   double a,b,d,etemp;    return m;
   double fu,fv,fw,fx;    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
   double ftemp;             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
   double p,q,r,tol1,tol2,u,v,w,x,xm;     */
   double e=0.0;   }
    
   a=(ax < cx ? ax : cx);   /*************************free ma3x ************************/
   b=(ax > cx ? ax : cx);   void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
   x=w=v=bx;   {
   fw=fv=fx=(*f)(x);     free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
   for (iter=1;iter<=ITMAX;iter++) {     free((FREE_ARG)(m[nrl]+ncl-NR_END));
     xm=0.5*(a+b);     free((FREE_ARG)(m+nrl-NR_END));
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);   }
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  
     printf(".");fflush(stdout);  /*************** function subdirf ***********/
     fprintf(ficlog,".");fflush(ficlog);  char *subdirf(char fileres[])
 #ifdef DEBUG  {
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    /* Caution optionfilefiname is hidden */
     fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    strcpy(tmpout,optionfilefiname);
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */    strcat(tmpout,"/"); /* Add to the right */
 #endif    strcat(tmpout,fileres);
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){     return tmpout;
       *xmin=x;   }
       return fx;   
     }   /*************** function subdirf2 ***********/
     ftemp=fu;  char *subdirf2(char fileres[], char *preop)
     if (fabs(e) > tol1) {   {
       r=(x-w)*(fx-fv);    
       q=(x-v)*(fx-fw);     /* Caution optionfilefiname is hidden */
       p=(x-v)*q-(x-w)*r;     strcpy(tmpout,optionfilefiname);
       q=2.0*(q-r);     strcat(tmpout,"/");
       if (q > 0.0) p = -p;     strcat(tmpout,preop);
       q=fabs(q);     strcat(tmpout,fileres);
       etemp=e;     return tmpout;
       e=d;   }
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))   
         d=CGOLD*(e=(x >= xm ? a-x : b-x));   /*************** function subdirf3 ***********/
       else {   char *subdirf3(char fileres[], char *preop, char *preop2)
         d=p/q;   {
         u=x+d;    
         if (u-a < tol2 || b-u < tol2)     /* Caution optionfilefiname is hidden */
           d=SIGN(tol1,xm-x);     strcpy(tmpout,optionfilefiname);
       }     strcat(tmpout,"/");
     } else {     strcat(tmpout,preop);
       d=CGOLD*(e=(x >= xm ? a-x : b-x));     strcat(tmpout,preop2);
     }     strcat(tmpout,fileres);
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));     return tmpout;
     fu=(*f)(u);   }
     if (fu <= fx) {   
       if (u >= x) a=x; else b=x;   /***************** f1dim *************************/
       SHFT(v,w,x,u)   extern int ncom;
         SHFT(fv,fw,fx,fu)   extern double *pcom,*xicom;
         } else {   extern double (*nrfunc)(double []);
           if (u < x) a=u; else b=u;    
           if (fu <= fw || w == x) {   double f1dim(double x)
             v=w;   {
             w=u;     int j;
             fv=fw;     double f;
             fw=fu;     double *xt;
           } else if (fu <= fv || v == x || v == w) {    
             v=u;     xt=vector(1,ncom);
             fv=fu;     for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];
           }     f=(*nrfunc)(xt);
         }     free_vector(xt,1,ncom);
   }     return f;
   nrerror("Too many iterations in brent");   }
   *xmin=x;   
   return fx;   /*****************brent *************************/
 }   double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)
   {
 /****************** mnbrak ***********************/    int iter;
     double a,b,d,etemp;
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,     double fu,fv,fw,fx;
             double (*func)(double))     double ftemp;
 {     double p,q,r,tol1,tol2,u,v,w,x,xm;
   double ulim,u,r,q, dum;    double e=0.0;
   double fu;    
      a=(ax < cx ? ax : cx);
   *fa=(*func)(*ax);     b=(ax > cx ? ax : cx);
   *fb=(*func)(*bx);     x=w=v=bx;
   if (*fb > *fa) {     fw=fv=fx=(*f)(x);
     SHFT(dum,*ax,*bx,dum)     for (iter=1;iter<=ITMAX;iter++) {
       SHFT(dum,*fb,*fa,dum)       xm=0.5*(a+b);
       }       tol2=2.0*(tol1=tol*fabs(x)+ZEPS);
   *cx=(*bx)+GOLD*(*bx-*ax);       /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
   *fc=(*func)(*cx);       printf(".");fflush(stdout);
   while (*fb > *fc) {       fprintf(ficlog,".");fflush(ficlog);
     r=(*bx-*ax)*(*fb-*fc);   #ifdef DEBUG
     q=(*bx-*cx)*(*fb-*fa);       printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/       fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));       /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
     ulim=(*bx)+GLIMIT*(*cx-*bx);   #endif
     if ((*bx-u)*(u-*cx) > 0.0) {       if (fabs(x-xm) <= (tol2-0.5*(b-a))){
       fu=(*func)(u);         *xmin=x;
     } else if ((*cx-u)*(u-ulim) > 0.0) {         return fx;
       fu=(*func)(u);       }
       if (fu < *fc) {       ftemp=fu;
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))       if (fabs(e) > tol1) {
           SHFT(*fb,*fc,fu,(*func)(u))         r=(x-w)*(fx-fv);
           }         q=(x-v)*(fx-fw);
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {         p=(x-v)*q-(x-w)*r;
       u=ulim;         q=2.0*(q-r);
       fu=(*func)(u);         if (q > 0.0) p = -p;
     } else {         q=fabs(q);
       u=(*cx)+GOLD*(*cx-*bx);         etemp=e;
       fu=(*func)(u);         e=d;
     }         if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))
     SHFT(*ax,*bx,*cx,u)           d=CGOLD*(e=(x >= xm ? a-x : b-x));
       SHFT(*fa,*fb,*fc,fu)         else {
       }           d=p/q;
 }           u=x+d;
           if (u-a < tol2 || b-u < tol2)
 /*************** linmin ************************/            d=SIGN(tol1,xm-x);
         }
 int ncom;       } else {
 double *pcom,*xicom;        d=CGOLD*(e=(x >= xm ? a-x : b-x));
 double (*nrfunc)(double []);       }
        u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))       fu=(*f)(u);
 {       if (fu <= fx) {
   double brent(double ax, double bx, double cx,         if (u >= x) a=x; else b=x;
                double (*f)(double), double tol, double *xmin);         SHFT(v,w,x,u)
   double f1dim(double x);           SHFT(fv,fw,fx,fu)
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,           } else {
               double *fc, double (*func)(double));             if (u < x) a=u; else b=u;
   int j;             if (fu <= fw || w == x) {
   double xx,xmin,bx,ax;               v=w;
   double fx,fb,fa;              w=u;
                fv=fw;
   ncom=n;               fw=fu;
   pcom=vector(1,n);             } else if (fu <= fv || v == x || v == w) {
   xicom=vector(1,n);               v=u;
   nrfunc=func;               fv=fu;
   for (j=1;j<=n;j++) {             }
     pcom[j]=p[j];           }
     xicom[j]=xi[j];     }
   }     nrerror("Too many iterations in brent");
   ax=0.0;     *xmin=x;
   xx=1.0;     return fx;
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);   }
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);   
 #ifdef DEBUG  /****************** mnbrak ***********************/
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  
   fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,
 #endif              double (*func)(double))
   for (j=1;j<=n;j++) {   {
     xi[j] *= xmin;     double ulim,u,r,q, dum;
     p[j] += xi[j];     double fu;
   }    
   free_vector(xicom,1,n);     *fa=(*func)(*ax);
   free_vector(pcom,1,n);     *fb=(*func)(*bx);
 }     if (*fb > *fa) {
       SHFT(dum,*ax,*bx,dum)
 char *asc_diff_time(long time_sec, char ascdiff[])        SHFT(dum,*fb,*fa,dum)
 {        }
   long sec_left, days, hours, minutes;    *cx=(*bx)+GOLD*(*bx-*ax);
   days = (time_sec) / (60*60*24);    *fc=(*func)(*cx);
   sec_left = (time_sec) % (60*60*24);    while (*fb > *fc) {
   hours = (sec_left) / (60*60) ;      r=(*bx-*ax)*(*fb-*fc);
   sec_left = (sec_left) %(60*60);      q=(*bx-*cx)*(*fb-*fa);
   minutes = (sec_left) /60;      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/
   sec_left = (sec_left) % (60);        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));
   sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);        ulim=(*bx)+GLIMIT*(*cx-*bx);
   return ascdiff;      if ((*bx-u)*(u-*cx) > 0.0) {
 }        fu=(*func)(u);
       } else if ((*cx-u)*(u-ulim) > 0.0) {
 /*************** powell ************************/        fu=(*func)(u);
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,         if (fu < *fc) {
             double (*func)(double []))           SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))
 {             SHFT(*fb,*fc,fu,(*func)(u))
   void linmin(double p[], double xi[], int n, double *fret,             }
               double (*func)(double []));       } else if ((u-ulim)*(ulim-*cx) >= 0.0) {
   int i,ibig,j;         u=ulim;
   double del,t,*pt,*ptt,*xit;        fu=(*func)(u);
   double fp,fptt;      } else {
   double *xits;        u=(*cx)+GOLD*(*cx-*bx);
   int niterf, itmp;        fu=(*func)(u);
       }
   pt=vector(1,n);       SHFT(*ax,*bx,*cx,u)
   ptt=vector(1,n);         SHFT(*fa,*fb,*fc,fu)
   xit=vector(1,n);         }
   xits=vector(1,n);   }
   *fret=(*func)(p);   
   for (j=1;j<=n;j++) pt[j]=p[j];   /*************** linmin ************************/
   for (*iter=1;;++(*iter)) {   
     fp=(*fret);   int ncom;
     ibig=0;   double *pcom,*xicom;
     del=0.0;   double (*nrfunc)(double []);
     last_time=curr_time;   
     (void) gettimeofday(&curr_time,&tzp);  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))
     printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);  {
     /*    fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);    double brent(double ax, double bx, double cx,
     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);                 double (*f)(double), double tol, double *xmin);
     */    double f1dim(double x);
    for (i=1;i<=n;i++) {    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,
       printf(" %d %.12f",i, p[i]);                double *fc, double (*func)(double));
       fprintf(ficlog," %d %.12lf",i, p[i]);    int j;
       fprintf(ficrespow," %.12lf", p[i]);    double xx,xmin,bx,ax;
     }    double fx,fb,fa;
     printf("\n");   
     fprintf(ficlog,"\n");    ncom=n;
     fprintf(ficrespow,"\n");fflush(ficrespow);    pcom=vector(1,n);
     if(*iter <=3){    xicom=vector(1,n);
       tm = *localtime(&curr_time.tv_sec);    nrfunc=func;
       strcpy(strcurr,asctime(&tm));    for (j=1;j<=n;j++) {
 /*       asctime_r(&tm,strcurr); */      pcom[j]=p[j];
       forecast_time=curr_time;       xicom[j]=xi[j];
       itmp = strlen(strcurr);    }
       if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */    ax=0.0;
         strcurr[itmp-1]='\0';    xx=1.0;
       printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);
       fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);
       for(niterf=10;niterf<=30;niterf+=10){  #ifdef DEBUG
         forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
         tmf = *localtime(&forecast_time.tv_sec);    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
 /*      asctime_r(&tmf,strfor); */  #endif
         strcpy(strfor,asctime(&tmf));    for (j=1;j<=n;j++) {
         itmp = strlen(strfor);      xi[j] *= xmin;
         if(strfor[itmp-1]=='\n')      p[j] += xi[j];
         strfor[itmp-1]='\0';    }
         printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);    free_vector(xicom,1,n);
         fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);    free_vector(pcom,1,n);
       }  }
     }  
     for (i=1;i<=n;i++) {   char *asc_diff_time(long time_sec, char ascdiff[])
       for (j=1;j<=n;j++) xit[j]=xi[j][i];   {
       fptt=(*fret);     long sec_left, days, hours, minutes;
 #ifdef DEBUG    days = (time_sec) / (60*60*24);
       printf("fret=%lf \n",*fret);    sec_left = (time_sec) % (60*60*24);
       fprintf(ficlog,"fret=%lf \n",*fret);    hours = (sec_left) / (60*60) ;
 #endif    sec_left = (sec_left) %(60*60);
       printf("%d",i);fflush(stdout);    minutes = (sec_left) /60;
       fprintf(ficlog,"%d",i);fflush(ficlog);    sec_left = (sec_left) % (60);
       linmin(p,xit,n,fret,func);     sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
       if (fabs(fptt-(*fret)) > del) {     return ascdiff;
         del=fabs(fptt-(*fret));   }
         ibig=i;   
       }   /*************** powell ************************/
 #ifdef DEBUG  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,
       printf("%d %.12e",i,(*fret));              double (*func)(double []))
       fprintf(ficlog,"%d %.12e",i,(*fret));  {
       for (j=1;j<=n;j++) {    void linmin(double p[], double xi[], int n, double *fret,
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);                double (*func)(double []));
         printf(" x(%d)=%.12e",j,xit[j]);    int i,ibig,j;
         fprintf(ficlog," x(%d)=%.12e",j,xit[j]);    double del,t,*pt,*ptt,*xit;
       }    double fp,fptt;
       for(j=1;j<=n;j++) {    double *xits;
         printf(" p=%.12e",p[j]);    int niterf, itmp;
         fprintf(ficlog," p=%.12e",p[j]);  
       }    pt=vector(1,n);
       printf("\n");    ptt=vector(1,n);
       fprintf(ficlog,"\n");    xit=vector(1,n);
 #endif    xits=vector(1,n);
     }     *fret=(*func)(p);
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {    for (j=1;j<=n;j++) pt[j]=p[j];
 #ifdef DEBUG    for (*iter=1;;++(*iter)) {
       int k[2],l;      fp=(*fret);
       k[0]=1;      ibig=0;
       k[1]=-1;      del=0.0;
       printf("Max: %.12e",(*func)(p));      last_time=curr_time;
       fprintf(ficlog,"Max: %.12e",(*func)(p));      (void) gettimeofday(&curr_time,&tzp);
       for (j=1;j<=n;j++) {      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
         printf(" %.12e",p[j]);      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec); fflush(ficlog);
         fprintf(ficlog," %.12e",p[j]);  /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec); */
       }     for (i=1;i<=n;i++) {
       printf("\n");        printf(" %d %.12f",i, p[i]);
       fprintf(ficlog,"\n");        fprintf(ficlog," %d %.12lf",i, p[i]);
       for(l=0;l<=1;l++) {        fprintf(ficrespow," %.12lf", p[i]);
         for (j=1;j<=n;j++) {      }
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];      printf("\n");
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);      fprintf(ficlog,"\n");
           fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);      fprintf(ficrespow,"\n");fflush(ficrespow);
         }      if(*iter <=3){
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));        tm = *localtime(&curr_time.tv_sec);
         fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));        strcpy(strcurr,asctime(&tm));
       }  /*       asctime_r(&tm,strcurr); */
 #endif        forecast_time=curr_time;
         itmp = strlen(strcurr);
         if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
       free_vector(xit,1,n);           strcurr[itmp-1]='\0';
       free_vector(xits,1,n);         printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
       free_vector(ptt,1,n);         fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
       free_vector(pt,1,n);         for(niterf=10;niterf<=30;niterf+=10){
       return;           forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
     }           tmf = *localtime(&forecast_time.tv_sec);
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");   /*      asctime_r(&tmf,strfor); */
     for (j=1;j<=n;j++) {           strcpy(strfor,asctime(&tmf));
       ptt[j]=2.0*p[j]-pt[j];           itmp = strlen(strfor);
       xit[j]=p[j]-pt[j];           if(strfor[itmp-1]=='\n')
       pt[j]=p[j];           strfor[itmp-1]='\0';
     }           printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
     fptt=(*func)(ptt);           fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
     if (fptt < fp) {         }
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);       }
       if (t < 0.0) {       for (i=1;i<=n;i++) {
         linmin(p,xit,n,fret,func);         for (j=1;j<=n;j++) xit[j]=xi[j][i];
         for (j=1;j<=n;j++) {         fptt=(*fret);
           xi[j][ibig]=xi[j][n];   #ifdef DEBUG
           xi[j][n]=xit[j];         printf("fret=%lf \n",*fret);
         }        fprintf(ficlog,"fret=%lf \n",*fret);
 #ifdef DEBUG  #endif
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);        printf("%d",i);fflush(stdout);
         fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);        fprintf(ficlog,"%d",i);fflush(ficlog);
         for(j=1;j<=n;j++){        linmin(p,xit,n,fret,func);
           printf(" %.12e",xit[j]);        if (fabs(fptt-(*fret)) > del) {
           fprintf(ficlog," %.12e",xit[j]);          del=fabs(fptt-(*fret));
         }          ibig=i;
         printf("\n");        }
         fprintf(ficlog,"\n");  #ifdef DEBUG
 #endif        printf("%d %.12e",i,(*fret));
       }        fprintf(ficlog,"%d %.12e",i,(*fret));
     }         for (j=1;j<=n;j++) {
   }           xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
 }           printf(" x(%d)=%.12e",j,xit[j]);
           fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
 /**** Prevalence limit (stable prevalence)  ****************/        }
         for(j=1;j<=n;j++) {
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)          printf(" p=%.12e",p[j]);
 {          fprintf(ficlog," p=%.12e",p[j]);
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit        }
      matrix by transitions matrix until convergence is reached */        printf("\n");
         fprintf(ficlog,"\n");
   int i, ii,j,k;  #endif
   double min, max, maxmin, maxmax,sumnew=0.;      }
   double **matprod2();      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
   double **out, cov[NCOVMAX], **pmij();  #ifdef DEBUG
   double **newm;        int k[2],l;
   double agefin, delaymax=50 ; /* Max number of years to converge */        k[0]=1;
         k[1]=-1;
   for (ii=1;ii<=nlstate+ndeath;ii++)        printf("Max: %.12e",(*func)(p));
     for (j=1;j<=nlstate+ndeath;j++){        fprintf(ficlog,"Max: %.12e",(*func)(p));
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);        for (j=1;j<=n;j++) {
     }          printf(" %.12e",p[j]);
           fprintf(ficlog," %.12e",p[j]);
    cov[1]=1.;        }
          printf("\n");
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */        fprintf(ficlog,"\n");
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){        for(l=0;l<=1;l++) {
     newm=savm;          for (j=1;j<=n;j++) {
     /* Covariates have to be included here again */            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
      cov[2]=agefin;            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
               fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
       for (k=1; k<=cptcovn;k++) {          }
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
       }        }
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  #endif
       for (k=1; k<=cptcovprod;k++)  
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  
         free_vector(xit,1,n);
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/        free_vector(xits,1,n);
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/        free_vector(ptt,1,n);
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/        free_vector(pt,1,n);
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);        return;
       }
     savm=oldm;      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");
     oldm=newm;      for (j=1;j<=n;j++) {
     maxmax=0.;        ptt[j]=2.0*p[j]-pt[j];
     for(j=1;j<=nlstate;j++){        xit[j]=p[j]-pt[j];
       min=1.;        pt[j]=p[j];
       max=0.;      }
       for(i=1; i<=nlstate; i++) {      fptt=(*func)(ptt);
         sumnew=0;      if (fptt < fp) {
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);
         prlim[i][j]= newm[i][j]/(1-sumnew);        if (t < 0.0) {
         max=FMAX(max,prlim[i][j]);          linmin(p,xit,n,fret,func);
         min=FMIN(min,prlim[i][j]);          for (j=1;j<=n;j++) {
       }            xi[j][ibig]=xi[j][n];
       maxmin=max-min;            xi[j][n]=xit[j];
       maxmax=FMAX(maxmax,maxmin);          }
     }  #ifdef DEBUG
     if(maxmax < ftolpl){          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
       return prlim;          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
     }          for(j=1;j<=n;j++){
   }            printf(" %.12e",xit[j]);
 }            fprintf(ficlog," %.12e",xit[j]);
           }
 /*************** transition probabilities ***************/           printf("\n");
           fprintf(ficlog,"\n");
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )  #endif
 {        }
   double s1, s2;      }
   /*double t34;*/    }
   int i,j,j1, nc, ii, jj;  }
   
     for(i=1; i<= nlstate; i++){  /**** Prevalence limit (stable or period prevalence)  ****************/
       for(j=1; j<i;j++){  
         for (nc=1, s2=0.;nc <=ncovmodel; nc++){  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
           /*s2 += param[i][j][nc]*cov[nc];*/  {
           s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
 /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */       matrix by transitions matrix until convergence is reached */
         }  
         ps[i][j]=s2;    int i, ii,j,k;
 /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */    double min, max, maxmin, maxmax,sumnew=0.;
       }    double **matprod2();
       for(j=i+1; j<=nlstate+ndeath;j++){    double **out, cov[NCOVMAX], **pmij();
         for (nc=1, s2=0.;nc <=ncovmodel; nc++){    double **newm;
           s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    double agefin, delaymax=50 ; /* Max number of years to converge */
 /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */  
         }    for (ii=1;ii<=nlstate+ndeath;ii++)
         ps[i][j]=s2;      for (j=1;j<=nlstate+ndeath;j++){
       }        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     }      }
     /*ps[3][2]=1;*/  
          cov[1]=1.;
     for(i=1; i<= nlstate; i++){   
       s1=0;   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
       for(j=1; j<i; j++)    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
         s1+=exp(ps[i][j]);      newm=savm;
       for(j=i+1; j<=nlstate+ndeath; j++)      /* Covariates have to be included here again */
         s1+=exp(ps[i][j]);       cov[2]=agefin;
       ps[i][i]=1./(s1+1.);   
       for(j=1; j<i; j++)        for (k=1; k<=cptcovn;k++) {
         ps[i][j]= exp(ps[i][j])*ps[i][i];          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
       for(j=i+1; j<=nlstate+ndeath; j++)          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
         ps[i][j]= exp(ps[i][j])*ps[i][i];        }
       /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
     } /* end i */        for (k=1; k<=cptcovprod;k++)
               cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
     for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){  
       for(jj=1; jj<= nlstate+ndeath; jj++){        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
         ps[ii][jj]=0;        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
         ps[ii][ii]=1;        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
       }      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
     }  
           savm=oldm;
       oldm=newm;
 /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */      maxmax=0.;
 /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */      for(j=1;j<=nlstate;j++){
 /*         printf("ddd %lf ",ps[ii][jj]); */        min=1.;
 /*       } */        max=0.;
 /*       printf("\n "); */        for(i=1; i<=nlstate; i++) {
 /*        } */          sumnew=0;
 /*        printf("\n ");printf("%lf ",cov[2]); */          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
        /*          prlim[i][j]= newm[i][j]/(1-sumnew);
       for(i=1; i<= npar; i++) printf("%f ",x[i]);          max=FMAX(max,prlim[i][j]);
       goto end;*/          min=FMIN(min,prlim[i][j]);
     return ps;        }
 }        maxmin=max-min;
         maxmax=FMAX(maxmax,maxmin);
 /**************** Product of 2 matrices ******************/      }
       if(maxmax < ftolpl){
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)        return prlim;
 {      }
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times    }
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */  }
   /* in, b, out are matrice of pointers which should have been initialized   
      before: only the contents of out is modified. The function returns  /*************** transition probabilities ***************/
      a pointer to pointers identical to out */  
   long i, j, k;  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
   for(i=nrl; i<= nrh; i++)  {
     for(k=ncolol; k<=ncoloh; k++)    double s1, s2;
       for(j=ncl,out[i][k]=0.; j<=nch; j++)    /*double t34;*/
         out[i][k] +=in[i][j]*b[j][k];    int i,j,j1, nc, ii, jj;
   
   return out;      for(i=1; i<= nlstate; i++){
 }        for(j=1; j<i;j++){
           for (nc=1, s2=0.;nc <=ncovmodel; nc++){
             /*s2 += param[i][j][nc]*cov[nc];*/
 /************* Higher Matrix Product ***************/            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
   /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )          }
 {          ps[i][j]=s2;
   /* Computes the transition matrix starting at age 'age' over   /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
      'nhstepm*hstepm*stepm' months (i.e. until        }
      age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying         for(j=i+1; j<=nlstate+ndeath;j++){
      nhstepm*hstepm matrices.           for (nc=1, s2=0.;nc <=ncovmodel; nc++){
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step             s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
      (typically every 2 years instead of every month which is too big   /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
      for the memory).          }
      Model is determined by parameters x and covariates have to be           ps[i][j]=s2;
      included manually here.         }
       }
      */      /*ps[3][2]=1;*/
      
   int i, j, d, h, k;      for(i=1; i<= nlstate; i++){
   double **out, cov[NCOVMAX];        s1=0;
   double **newm;        for(j=1; j<i; j++)
           s1+=exp(ps[i][j]);
   /* Hstepm could be zero and should return the unit matrix */        for(j=i+1; j<=nlstate+ndeath; j++)
   for (i=1;i<=nlstate+ndeath;i++)          s1+=exp(ps[i][j]);
     for (j=1;j<=nlstate+ndeath;j++){        ps[i][i]=1./(s1+1.);
       oldm[i][j]=(i==j ? 1.0 : 0.0);        for(j=1; j<i; j++)
       po[i][j][0]=(i==j ? 1.0 : 0.0);          ps[i][j]= exp(ps[i][j])*ps[i][i];
     }        for(j=i+1; j<=nlstate+ndeath; j++)
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */          ps[i][j]= exp(ps[i][j])*ps[i][i];
   for(h=1; h <=nhstepm; h++){        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
     for(d=1; d <=hstepm; d++){      } /* end i */
       newm=savm;     
       /* Covariates have to be included here again */      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
       cov[1]=1.;        for(jj=1; jj<= nlstate+ndeath; jj++){
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;          ps[ii][jj]=0;
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];          ps[ii][ii]=1;
       for (k=1; k<=cptcovage;k++)        }
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];      }
       for (k=1; k<=cptcovprod;k++)     
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  
   /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
   /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/  /*         printf("ddd %lf ",ps[ii][jj]); */
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/  /*       } */
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,   /*       printf("\n "); */
                    pmij(pmmij,cov,ncovmodel,x,nlstate));  /*        } */
       savm=oldm;  /*        printf("\n ");printf("%lf ",cov[2]); */
       oldm=newm;         /*
     }        for(i=1; i<= npar; i++) printf("%f ",x[i]);
     for(i=1; i<=nlstate+ndeath; i++)        goto end;*/
       for(j=1;j<=nlstate+ndeath;j++) {      return ps;
         po[i][j][h]=newm[i][j];  }
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);  
          */  /**************** Product of 2 matrices ******************/
       }  
   } /* end h */  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
   return po;  {
 }    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
        b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
     /* in, b, out are matrice of pointers which should have been initialized
 /*************** log-likelihood *************/       before: only the contents of out is modified. The function returns
 double func( double *x)       a pointer to pointers identical to out */
 {    long i, j, k;
   int i, ii, j, k, mi, d, kk;    for(i=nrl; i<= nrh; i++)
   double l, ll[NLSTATEMAX], cov[NCOVMAX];      for(k=ncolol; k<=ncoloh; k++)
   double **out;        for(j=ncl,out[i][k]=0.; j<=nch; j++)
   double sw; /* Sum of weights */          out[i][k] +=in[i][j]*b[j][k];
   double lli; /* Individual log likelihood */  
   int s1, s2;    return out;
   double bbh, survp;  }
   long ipmx;  
   /*extern weight */  
   /* We are differentiating ll according to initial status */  /************* Higher Matrix Product ***************/
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/  
   /*for(i=1;i<imx;i++)   double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
     printf(" %d\n",s[4][i]);  {
   */    /* Computes the transition matrix starting at age 'age' over
   cov[1]=1.;       'nhstepm*hstepm*stepm' months (i.e. until
        age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying
   for(k=1; k<=nlstate; k++) ll[k]=0.;       nhstepm*hstepm matrices.
        Output is stored in matrix po[i][j][h] for h every 'hstepm' step
   if(mle==1){       (typically every 2 years instead of every month which is too big
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){       for the memory).
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];       Model is determined by parameters x and covariates have to be
       for(mi=1; mi<= wav[i]-1; mi++){       included manually here.
         for (ii=1;ii<=nlstate+ndeath;ii++)  
           for (j=1;j<=nlstate+ndeath;j++){       */
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);  
             savm[ii][j]=(ii==j ? 1.0 : 0.0);    int i, j, d, h, k;
           }    double **out, cov[NCOVMAX];
         for(d=0; d<dh[mi][i]; d++){    double **newm;
           newm=savm;  
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;    /* Hstepm could be zero and should return the unit matrix */
           for (kk=1; kk<=cptcovage;kk++) {    for (i=1;i<=nlstate+ndeath;i++)
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];      for (j=1;j<=nlstate+ndeath;j++){
           }        oldm[i][j]=(i==j ? 1.0 : 0.0);
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,        po[i][j][0]=(i==j ? 1.0 : 0.0);
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));      }
           savm=oldm;    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
           oldm=newm;    for(h=1; h <=nhstepm; h++){
         } /* end mult */      for(d=1; d <=hstepm; d++){
               newm=savm;
         /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */        /* Covariates have to be included here again */
         /* But now since version 0.9 we anticipate for bias at large stepm.        cov[1]=1.;
          * If stepm is larger than one month (smallest stepm) and if the exact delay         cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
          * (in months) between two waves is not a multiple of stepm, we rounded to         for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
          * the nearest (and in case of equal distance, to the lowest) interval but now        for (k=1; k<=cptcovage;k++)
          * we keep into memory the bias bh[mi][i] and also the previous matrix product          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
          * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the        for (k=1; k<=cptcovprod;k++)
          * probability in order to take into account the bias as a fraction of the way          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
          * from savm to out if bh is negative or even beyond if bh is positive. bh varies  
          * -stepm/2 to stepm/2 .  
          * For stepm=1 the results are the same as for previous versions of Imach.        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
          * For stepm > 1 the results are less biased than in previous versions.         /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
          */        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,
         s1=s[mw[mi][i]][i];                     pmij(pmmij,cov,ncovmodel,x,nlstate));
         s2=s[mw[mi+1][i]][i];        savm=oldm;
         bbh=(double)bh[mi][i]/(double)stepm;         oldm=newm;
         /* bias bh is positive if real duration      }
          * is higher than the multiple of stepm and negative otherwise.      for(i=1; i<=nlstate+ndeath; i++)
          */        for(j=1;j<=nlstate+ndeath;j++) {
         /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/          po[i][j][h]=newm[i][j];
         if( s2 > nlstate){           /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
           /* i.e. if s2 is a death state and if the date of death is known            */
              then the contribution to the likelihood is the probability to         }
              die between last step unit time and current  step unit time,     } /* end h */
              which is also equal to probability to die before dh     return po;
              minus probability to die before dh-stepm .   }
              In version up to 0.92 likelihood was computed  
         as if date of death was unknown. Death was treated as any other  
         health state: the date of the interview describes the actual state  /*************** log-likelihood *************/
         and not the date of a change in health state. The former idea was  double func( double *x)
         to consider that at each interview the state was recorded  {
         (healthy, disable or death) and IMaCh was corrected; but when we    int i, ii, j, k, mi, d, kk;
         introduced the exact date of death then we should have modified    double l, ll[NLSTATEMAX], cov[NCOVMAX];
         the contribution of an exact death to the likelihood. This new    double **out;
         contribution is smaller and very dependent of the step unit    double sw; /* Sum of weights */
         stepm. It is no more the probability to die between last interview    double lli; /* Individual log likelihood */
         and month of death but the probability to survive from last    int s1, s2;
         interview up to one month before death multiplied by the    double bbh, survp;
         probability to die within a month. Thanks to Chris    long ipmx;
         Jackson for correcting this bug.  Former versions increased    /*extern weight */
         mortality artificially. The bad side is that we add another loop    /* We are differentiating ll according to initial status */
         which slows down the processing. The difference can be up to 10%    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
         lower mortality.    /*for(i=1;i<imx;i++)
           */      printf(" %d\n",s[4][i]);
           lli=log(out[s1][s2] - savm[s1][s2]);    */
     cov[1]=1.;
   
         } else if  (s2==-2) {    for(k=1; k<=nlstate; k++) ll[k]=0.;
           for (j=1,survp=0. ; j<=nlstate; j++)   
             survp += out[s1][j];    if(mle==1){
           lli= survp;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
                 for(mi=1; mi<= wav[i]-1; mi++){
         else if  (s2==-4) {          for (ii=1;ii<=nlstate+ndeath;ii++)
           for (j=3,survp=0. ; j<=nlstate; j++)             for (j=1;j<=nlstate+ndeath;j++){
             survp += out[s1][j];              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           lli= survp;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         }            }
                   for(d=0; d<dh[mi][i]; d++){
         else if  (s2==-5) {            newm=savm;
           for (j=1,survp=0. ; j<=2; j++)             cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             survp += out[s1][j];            for (kk=1; kk<=cptcovage;kk++) {
           lli= survp;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         }            }
             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                          1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         else{            savm=oldm;
           lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */            oldm=newm;
           /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */          } /* end mult */
         }        
         /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
         /*if(lli ==000.0)*/          /* But now since version 0.9 we anticipate for bias at large stepm.
         /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */           * If stepm is larger than one month (smallest stepm) and if the exact delay
         ipmx +=1;           * (in months) between two waves is not a multiple of stepm, we rounded to
         sw += weight[i];           * the nearest (and in case of equal distance, to the lowest) interval but now
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;           * we keep into memory the bias bh[mi][i] and also the previous matrix product
       } /* end of wave */           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
     } /* end of individual */           * probability in order to take into account the bias as a fraction of the way
   }  else if(mle==2){           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){           * -stepm/2 to stepm/2 .
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];           * For stepm=1 the results are the same as for previous versions of Imach.
       for(mi=1; mi<= wav[i]-1; mi++){           * For stepm > 1 the results are less biased than in previous versions.
         for (ii=1;ii<=nlstate+ndeath;ii++)           */
           for (j=1;j<=nlstate+ndeath;j++){          s1=s[mw[mi][i]][i];
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);          s2=s[mw[mi+1][i]][i];
             savm[ii][j]=(ii==j ? 1.0 : 0.0);          bbh=(double)bh[mi][i]/(double)stepm;
           }          /* bias bh is positive if real duration
         for(d=0; d<=dh[mi][i]; d++){           * is higher than the multiple of stepm and negative otherwise.
           newm=savm;           */
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
           for (kk=1; kk<=cptcovage;kk++) {          if( s2 > nlstate){
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];            /* i.e. if s2 is a death state and if the date of death is known
           }               then the contribution to the likelihood is the probability to
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,               die between last step unit time and current  step unit time,
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));               which is also equal to probability to die before dh
           savm=oldm;               minus probability to die before dh-stepm .
           oldm=newm;               In version up to 0.92 likelihood was computed
         } /* end mult */          as if date of death was unknown. Death was treated as any other
                 health state: the date of the interview describes the actual state
         s1=s[mw[mi][i]][i];          and not the date of a change in health state. The former idea was
         s2=s[mw[mi+1][i]][i];          to consider that at each interview the state was recorded
         bbh=(double)bh[mi][i]/(double)stepm;           (healthy, disable or death) and IMaCh was corrected; but when we
         lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */          introduced the exact date of death then we should have modified
         ipmx +=1;          the contribution of an exact death to the likelihood. This new
         sw += weight[i];          contribution is smaller and very dependent of the step unit
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;          stepm. It is no more the probability to die between last interview
       } /* end of wave */          and month of death but the probability to survive from last
     } /* end of individual */          interview up to one month before death multiplied by the
   }  else if(mle==3){  /* exponential inter-extrapolation */          probability to die within a month. Thanks to Chris
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){          Jackson for correcting this bug.  Former versions increased
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];          mortality artificially. The bad side is that we add another loop
       for(mi=1; mi<= wav[i]-1; mi++){          which slows down the processing. The difference can be up to 10%
         for (ii=1;ii<=nlstate+ndeath;ii++)          lower mortality.
           for (j=1;j<=nlstate+ndeath;j++){            */
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);            lli=log(out[s1][s2] - savm[s1][s2]);
             savm[ii][j]=(ii==j ? 1.0 : 0.0);  
           }  
         for(d=0; d<dh[mi][i]; d++){          } else if  (s2==-2) {
           newm=savm;            for (j=1,survp=0. ; j<=nlstate; j++)
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
           for (kk=1; kk<=cptcovage;kk++) {            /*survp += out[s1][j]; */
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];            lli= log(survp);
           }          }
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,         
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));          else if  (s2==-4) {
           savm=oldm;            for (j=3,survp=0. ; j<=nlstate; j++)  
           oldm=newm;              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
         } /* end mult */            lli= log(survp);
                 }
         s1=s[mw[mi][i]][i];  
         s2=s[mw[mi+1][i]][i];          else if  (s2==-5) {
         bbh=(double)bh[mi][i]/(double)stepm;             for (j=1,survp=0. ; j<=2; j++)  
         lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
         ipmx +=1;            lli= log(survp);
         sw += weight[i];          }
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;         
       } /* end of wave */          else{
     } /* end of individual */            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   }else if (mle==4){  /* ml=4 no inter-extrapolation */            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){          }
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
       for(mi=1; mi<= wav[i]-1; mi++){          /*if(lli ==000.0)*/
         for (ii=1;ii<=nlstate+ndeath;ii++)          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
           for (j=1;j<=nlstate+ndeath;j++){          ipmx +=1;
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);          sw += weight[i];
             savm[ii][j]=(ii==j ? 1.0 : 0.0);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           }        } /* end of wave */
         for(d=0; d<dh[mi][i]; d++){      } /* end of individual */
           newm=savm;    }  else if(mle==2){
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           for (kk=1; kk<=cptcovage;kk++) {        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];        for(mi=1; mi<= wav[i]-1; mi++){
           }          for (ii=1;ii<=nlstate+ndeath;ii++)
                     for (j=1;j<=nlstate+ndeath;j++){
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));              savm[ii][j]=(ii==j ? 1.0 : 0.0);
           savm=oldm;            }
           oldm=newm;          for(d=0; d<=dh[mi][i]; d++){
         } /* end mult */            newm=savm;
                   cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         s1=s[mw[mi][i]][i];            for (kk=1; kk<=cptcovage;kk++) {
         s2=s[mw[mi+1][i]][i];              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         if( s2 > nlstate){             }
           lli=log(out[s1][s2] - savm[s1][s2]);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         }else{                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */            savm=oldm;
         }            oldm=newm;
         ipmx +=1;          } /* end mult */
         sw += weight[i];       
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;          s1=s[mw[mi][i]][i];
 /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */          s2=s[mw[mi+1][i]][i];
       } /* end of wave */          bbh=(double)bh[mi][i]/(double)stepm;
     } /* end of individual */          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
   }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */          ipmx +=1;
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){          sw += weight[i];
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       for(mi=1; mi<= wav[i]-1; mi++){        } /* end of wave */
         for (ii=1;ii<=nlstate+ndeath;ii++)      } /* end of individual */
           for (j=1;j<=nlstate+ndeath;j++){    }  else if(mle==3){  /* exponential inter-extrapolation */
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
             savm[ii][j]=(ii==j ? 1.0 : 0.0);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
           }        for(mi=1; mi<= wav[i]-1; mi++){
         for(d=0; d<dh[mi][i]; d++){          for (ii=1;ii<=nlstate+ndeath;ii++)
           newm=savm;            for (j=1;j<=nlstate+ndeath;j++){
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           for (kk=1; kk<=cptcovage;kk++) {              savm[ii][j]=(ii==j ? 1.0 : 0.0);
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];            }
           }          for(d=0; d<dh[mi][i]; d++){
                     newm=savm;
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));            for (kk=1; kk<=cptcovage;kk++) {
           savm=oldm;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           oldm=newm;            }
         } /* end mult */            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                                1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         s1=s[mw[mi][i]][i];            savm=oldm;
         s2=s[mw[mi+1][i]][i];            oldm=newm;
         lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */          } /* end mult */
         ipmx +=1;       
         sw += weight[i];          s1=s[mw[mi][i]][i];
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;          s2=s[mw[mi+1][i]][i];
         /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/          bbh=(double)bh[mi][i]/(double)stepm;
       } /* end of wave */          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
     } /* end of individual */          ipmx +=1;
   } /* End of if */          sw += weight[i];
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */        } /* end of wave */
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */      } /* end of individual */
   return -l;    }else if (mle==4){  /* ml=4 no inter-extrapolation */
 }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 /*************** log-likelihood *************/        for(mi=1; mi<= wav[i]-1; mi++){
 double funcone( double *x)          for (ii=1;ii<=nlstate+ndeath;ii++)
 {            for (j=1;j<=nlstate+ndeath;j++){
   /* Same as likeli but slower because of a lot of printf and if */              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   int i, ii, j, k, mi, d, kk;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   double l, ll[NLSTATEMAX], cov[NCOVMAX];            }
   double **out;          for(d=0; d<dh[mi][i]; d++){
   double lli; /* Individual log likelihood */            newm=savm;
   double llt;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   int s1, s2;            for (kk=1; kk<=cptcovage;kk++) {
   double bbh, survp;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   /*extern weight */            }
   /* We are differentiating ll according to initial status */         
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   /*for(i=1;i<imx;i++)                          1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     printf(" %d\n",s[4][i]);            savm=oldm;
   */            oldm=newm;
   cov[1]=1.;          } /* end mult */
        
   for(k=1; k<=nlstate; k++) ll[k]=0.;          s1=s[mw[mi][i]][i];
           s2=s[mw[mi+1][i]][i];
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){          if( s2 > nlstate){
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];            lli=log(out[s1][s2] - savm[s1][s2]);
     for(mi=1; mi<= wav[i]-1; mi++){          }else{
       for (ii=1;ii<=nlstate+ndeath;ii++)            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
         for (j=1;j<=nlstate+ndeath;j++){          }
           oldm[ii][j]=(ii==j ? 1.0 : 0.0);          ipmx +=1;
           savm[ii][j]=(ii==j ? 1.0 : 0.0);          sw += weight[i];
         }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       for(d=0; d<dh[mi][i]; d++){  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
         newm=savm;        } /* end of wave */
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;      } /* end of individual */
         for (kk=1; kk<=cptcovage;kk++) {    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,        for(mi=1; mi<= wav[i]-1; mi++){
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));          for (ii=1;ii<=nlstate+ndeath;ii++)
         savm=oldm;            for (j=1;j<=nlstate+ndeath;j++){
         oldm=newm;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       } /* end mult */              savm[ii][j]=(ii==j ? 1.0 : 0.0);
                   }
       s1=s[mw[mi][i]][i];          for(d=0; d<dh[mi][i]; d++){
       s2=s[mw[mi+1][i]][i];            newm=savm;
       bbh=(double)bh[mi][i]/(double)stepm;             cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       /* bias is positive if real duration            for (kk=1; kk<=cptcovage;kk++) {
        * is higher than the multiple of stepm and negative otherwise.              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
        */            }
       if( s2 > nlstate && (mle <5) ){  /* Jackson */         
         lli=log(out[s1][s2] - savm[s1][s2]);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       } else if (mle==1){                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */            savm=oldm;
       } else if(mle==2){            oldm=newm;
         lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */          } /* end mult */
       } else if(mle==3){  /* exponential inter-extrapolation */       
         lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */          s1=s[mw[mi][i]][i];
       } else if (mle==4){  /* mle=4 no inter-extrapolation */          s2=s[mw[mi+1][i]][i];
         lli=log(out[s1][s2]); /* Original formula */          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
       } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */          ipmx +=1;
         lli=log(out[s1][s2]); /* Original formula */          sw += weight[i];
       } /* End of if */          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       ipmx +=1;          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
       sw += weight[i];        } /* end of wave */
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;      } /* end of individual */
 /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */    } /* End of if */
       if(globpr){    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
         fprintf(ficresilk,"%9d %6d %1d %1d %1d %1d %3d %10.6f %6.4f\    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
  %10.6f %10.6f %10.6f ", \    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
                 num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],    return -l;
                 2*weight[i]*lli,out[s1][s2],savm[s1][s2]);  }
         for(k=1,llt=0.,l=0.; k<=nlstate; k++){  
           llt +=ll[k]*gipmx/gsw;  /*************** log-likelihood *************/
           fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);  double funcone( double *x)
         }  {
         fprintf(ficresilk," %10.6f\n", -llt);    /* Same as likeli but slower because of a lot of printf and if */
       }    int i, ii, j, k, mi, d, kk;
     } /* end of wave */    double l, ll[NLSTATEMAX], cov[NCOVMAX];
   } /* end of individual */    double **out;
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];    double lli; /* Individual log likelihood */
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */    double llt;
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */    int s1, s2;
   if(globpr==0){ /* First time we count the contributions and weights */    double bbh, survp;
     gipmx=ipmx;    /*extern weight */
     gsw=sw;    /* We are differentiating ll according to initial status */
   }    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   return -l;    /*for(i=1;i<imx;i++)
 }      printf(" %d\n",s[4][i]);
     */
     cov[1]=1.;
 /*************** function likelione ***********/  
 void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))    for(k=1; k<=nlstate; k++) ll[k]=0.;
 {  
   /* This routine should help understanding what is done with     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
      the selection of individuals/waves and      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
      to check the exact contribution to the likelihood.      for(mi=1; mi<= wav[i]-1; mi++){
      Plotting could be done.        for (ii=1;ii<=nlstate+ndeath;ii++)
    */          for (j=1;j<=nlstate+ndeath;j++){
   int k;            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
             savm[ii][j]=(ii==j ? 1.0 : 0.0);
   if(*globpri !=0){ /* Just counts and sums, no printings */          }
     strcpy(fileresilk,"ilk");         for(d=0; d<dh[mi][i]; d++){
     strcat(fileresilk,fileres);          newm=savm;
     if((ficresilk=fopen(fileresilk,"w"))==NULL) {          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       printf("Problem with resultfile: %s\n", fileresilk);          for (kk=1; kk<=cptcovage;kk++) {
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     }          }
     fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */          savm=oldm;
     for(k=1; k<=nlstate; k++)           oldm=newm;
       fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);        } /* end mult */
     fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");       
   }        s1=s[mw[mi][i]][i];
         s2=s[mw[mi+1][i]][i];
   *fretone=(*funcone)(p);        bbh=(double)bh[mi][i]/(double)stepm;
   if(*globpri !=0){        /* bias is positive if real duration
     fclose(ficresilk);         * is higher than the multiple of stepm and negative otherwise.
     fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));         */
     fflush(fichtm);         if( s2 > nlstate && (mle <5) ){  /* Jackson */
   }           lli=log(out[s1][s2] - savm[s1][s2]);
   return;        } else if  (s2==-2) {
 }          for (j=1,survp=0. ; j<=nlstate; j++)
             survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
           lli= log(survp);
 /*********** Maximum Likelihood Estimation ***************/        }else if (mle==1){
           lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))        } else if(mle==2){
 {          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
   int i,j, iter;        } else if(mle==3){  /* exponential inter-extrapolation */
   double **xi;          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   double fret;        } else if (mle==4){  /* mle=4 no inter-extrapolation */
   double fretone; /* Only one call to likelihood */          lli=log(out[s1][s2]); /* Original formula */
   /*  char filerespow[FILENAMELENGTH];*/        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
   xi=matrix(1,npar,1,npar);          lli=log(out[s1][s2]); /* Original formula */
   for (i=1;i<=npar;i++)        } /* End of if */
     for (j=1;j<=npar;j++)        ipmx +=1;
       xi[i][j]=(i==j ? 1.0 : 0.0);        sw += weight[i];
   printf("Powell\n");  fprintf(ficlog,"Powell\n");        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   strcpy(filerespow,"pow");   /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
   strcat(filerespow,fileres);        if(globpr){
   if((ficrespow=fopen(filerespow,"w"))==NULL) {          fprintf(ficresilk,"%9d %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
     printf("Problem with resultfile: %s\n", filerespow);   %11.6f %11.6f %11.6f ", \
     fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
   }                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
   fprintf(ficrespow,"# Powell\n# iter -2*LL");          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
   for (i=1;i<=nlstate;i++)            llt +=ll[k]*gipmx/gsw;
     for(j=1;j<=nlstate+ndeath;j++)            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
       if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);          }
   fprintf(ficrespow,"\n");          fprintf(ficresilk," %10.6f\n", -llt);
         }
   powell(p,xi,npar,ftol,&iter,&fret,func);      } /* end of wave */
     } /* end of individual */
   fclose(ficrespow);    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));    if(globpr==0){ /* First time we count the contributions and weights */
       gipmx=ipmx;
 }      gsw=sw;
     }
 /**** Computes Hessian and covariance matrix ***/    return -l;
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))  }
 {  
   double  **a,**y,*x,pd;  
   double **hess;  /*************** function likelione ***********/
   int i, j,jk;  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
   int *indx;  {
     /* This routine should help understanding what is done with
   double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);       the selection of individuals/waves and
   double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);       to check the exact contribution to the likelihood.
   void lubksb(double **a, int npar, int *indx, double b[]) ;       Plotting could be done.
   void ludcmp(double **a, int npar, int *indx, double *d) ;     */
   double gompertz(double p[]);    int k;
   hess=matrix(1,npar,1,npar);  
     if(*globpri !=0){ /* Just counts and sums, no printings */
   printf("\nCalculation of the hessian matrix. Wait...\n");      strcpy(fileresilk,"ilk");
   fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");      strcat(fileresilk,fileres);
   for (i=1;i<=npar;i++){      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
     printf("%d",i);fflush(stdout);        printf("Problem with resultfile: %s\n", fileresilk);
     fprintf(ficlog,"%d",i);fflush(ficlog);        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
          }
      hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
           fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
     /*  printf(" %f ",p[i]);      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
         printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/      for(k=1; k<=nlstate; k++)
   }        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
         fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
   for (i=1;i<=npar;i++) {    }
     for (j=1;j<=npar;j++)  {  
       if (j>i) {     *fretone=(*funcone)(p);
         printf(".%d%d",i,j);fflush(stdout);    if(*globpri !=0){
         fprintf(ficlog,".%d%d",i,j);fflush(ficlog);      fclose(ficresilk);
         hess[i][j]=hessij(p,delti,i,j,func,npar);      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
               fflush(fichtm);
         hess[j][i]=hess[i][j];        }
         /*printf(" %lf ",hess[i][j]);*/    return;
       }  }
     }  
   }  
   printf("\n");  /*********** Maximum Likelihood Estimation ***************/
   fprintf(ficlog,"\n");  
   void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");  {
   fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");    int i,j, iter;
       double **xi;
   a=matrix(1,npar,1,npar);    double fret;
   y=matrix(1,npar,1,npar);    double fretone; /* Only one call to likelihood */
   x=vector(1,npar);    /*  char filerespow[FILENAMELENGTH];*/
   indx=ivector(1,npar);    xi=matrix(1,npar,1,npar);
   for (i=1;i<=npar;i++)    for (i=1;i<=npar;i++)
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];      for (j=1;j<=npar;j++)
   ludcmp(a,npar,indx,&pd);        xi[i][j]=(i==j ? 1.0 : 0.0);
     printf("Powell\n");  fprintf(ficlog,"Powell\n");
   for (j=1;j<=npar;j++) {    strcpy(filerespow,"pow");
     for (i=1;i<=npar;i++) x[i]=0;    strcat(filerespow,fileres);
     x[j]=1;    if((ficrespow=fopen(filerespow,"w"))==NULL) {
     lubksb(a,npar,indx,x);      printf("Problem with resultfile: %s\n", filerespow);
     for (i=1;i<=npar;i++){       fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       matcov[i][j]=x[i];    }
     }    fprintf(ficrespow,"# Powell\n# iter -2*LL");
   }    for (i=1;i<=nlstate;i++)
       for(j=1;j<=nlstate+ndeath;j++)
   printf("\n#Hessian matrix#\n");        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
   fprintf(ficlog,"\n#Hessian matrix#\n");    fprintf(ficrespow,"\n");
   for (i=1;i<=npar;i++) {   
     for (j=1;j<=npar;j++) {     powell(p,xi,npar,ftol,&iter,&fret,func);
       printf("%.3e ",hess[i][j]);  
       fprintf(ficlog,"%.3e ",hess[i][j]);    free_matrix(xi,1,npar,1,npar);
     }    fclose(ficrespow);
     printf("\n");    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
     fprintf(ficlog,"\n");    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   }    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   
   /* Recompute Inverse */  }
   for (i=1;i<=npar;i++)  
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];  /**** Computes Hessian and covariance matrix ***/
   ludcmp(a,npar,indx,&pd);  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
   {
   /*  printf("\n#Hessian matrix recomputed#\n");    double  **a,**y,*x,pd;
     double **hess;
   for (j=1;j<=npar;j++) {    int i, j,jk;
     for (i=1;i<=npar;i++) x[i]=0;    int *indx;
     x[j]=1;  
     lubksb(a,npar,indx,x);    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
     for (i=1;i<=npar;i++){     double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
       y[i][j]=x[i];    void lubksb(double **a, int npar, int *indx, double b[]) ;
       printf("%.3e ",y[i][j]);    void ludcmp(double **a, int npar, int *indx, double *d) ;
       fprintf(ficlog,"%.3e ",y[i][j]);    double gompertz(double p[]);
     }    hess=matrix(1,npar,1,npar);
     printf("\n");  
     fprintf(ficlog,"\n");    printf("\nCalculation of the hessian matrix. Wait...\n");
   }    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
   */    for (i=1;i<=npar;i++){
       printf("%d",i);fflush(stdout);
   free_matrix(a,1,npar,1,npar);      fprintf(ficlog,"%d",i);fflush(ficlog);
   free_matrix(y,1,npar,1,npar);     
   free_vector(x,1,npar);       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
   free_ivector(indx,1,npar);     
   free_matrix(hess,1,npar,1,npar);      /*  printf(" %f ",p[i]);
           printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
     }
 }   
     for (i=1;i<=npar;i++) {
 /*************** hessian matrix ****************/      for (j=1;j<=npar;j++)  {
 double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)        if (j>i) {
 {          printf(".%d%d",i,j);fflush(stdout);
   int i;          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
   int l=1, lmax=20;          hess[i][j]=hessij(p,delti,i,j,func,npar);
   double k1,k2;         
   double p2[NPARMAX+1];          hess[j][i]=hess[i][j];    
   double res;          /*printf(" %lf ",hess[i][j]);*/
   double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;        }
   double fx;      }
   int k=0,kmax=10;    }
   double l1;    printf("\n");
     fprintf(ficlog,"\n");
   fx=func(x);  
   for (i=1;i<=npar;i++) p2[i]=x[i];    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
   for(l=0 ; l <=lmax; l++){    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
     l1=pow(10,l);   
     delts=delt;    a=matrix(1,npar,1,npar);
     for(k=1 ; k <kmax; k=k+1){    y=matrix(1,npar,1,npar);
       delt = delta*(l1*k);    x=vector(1,npar);
       p2[theta]=x[theta] +delt;    indx=ivector(1,npar);
       k1=func(p2)-fx;    for (i=1;i<=npar;i++)
       p2[theta]=x[theta]-delt;      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
       k2=func(p2)-fx;    ludcmp(a,npar,indx,&pd);
       /*res= (k1-2.0*fx+k2)/delt/delt; */  
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */    for (j=1;j<=npar;j++) {
             for (i=1;i<=npar;i++) x[i]=0;
 #ifdef DEBUG      x[j]=1;
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);      lubksb(a,npar,indx,x);
       fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);      for (i=1;i<=npar;i++){
 #endif        matcov[i][j]=x[i];
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */      }
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){    }
         k=kmax;  
       }    printf("\n#Hessian matrix#\n");
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */    fprintf(ficlog,"\n#Hessian matrix#\n");
         k=kmax; l=lmax*10.;    for (i=1;i<=npar;i++) {
       }      for (j=1;j<=npar;j++) {
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){         printf("%.3e ",hess[i][j]);
         delts=delt;        fprintf(ficlog,"%.3e ",hess[i][j]);
       }      }
     }      printf("\n");
   }      fprintf(ficlog,"\n");
   delti[theta]=delts;    }
   return res;   
       /* Recompute Inverse */
 }    for (i=1;i<=npar;i++)
       for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
 double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)    ludcmp(a,npar,indx,&pd);
 {  
   int i;    /*  printf("\n#Hessian matrix recomputed#\n");
   int l=1, l1, lmax=20;  
   double k1,k2,k3,k4,res,fx;    for (j=1;j<=npar;j++) {
   double p2[NPARMAX+1];      for (i=1;i<=npar;i++) x[i]=0;
   int k;      x[j]=1;
       lubksb(a,npar,indx,x);
   fx=func(x);      for (i=1;i<=npar;i++){
   for (k=1; k<=2; k++) {        y[i][j]=x[i];
     for (i=1;i<=npar;i++) p2[i]=x[i];        printf("%.3e ",y[i][j]);
     p2[thetai]=x[thetai]+delti[thetai]/k;        fprintf(ficlog,"%.3e ",y[i][j]);
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;      }
     k1=func(p2)-fx;      printf("\n");
         fprintf(ficlog,"\n");
     p2[thetai]=x[thetai]+delti[thetai]/k;    }
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;    */
     k2=func(p2)-fx;  
       free_matrix(a,1,npar,1,npar);
     p2[thetai]=x[thetai]-delti[thetai]/k;    free_matrix(y,1,npar,1,npar);
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;    free_vector(x,1,npar);
     k3=func(p2)-fx;    free_ivector(indx,1,npar);
       free_matrix(hess,1,npar,1,npar);
     p2[thetai]=x[thetai]-delti[thetai]/k;  
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;  
     k4=func(p2)-fx;  }
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */  
 #ifdef DEBUG  /*************** hessian matrix ****************/
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
     fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);  {
 #endif    int i;
   }    int l=1, lmax=20;
   return res;    double k1,k2;
 }    double p2[NPARMAX+1];
     double res;
 /************** Inverse of matrix **************/    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
 void ludcmp(double **a, int n, int *indx, double *d)     double fx;
 {     int k=0,kmax=10;
   int i,imax,j,k;     double l1;
   double big,dum,sum,temp;   
   double *vv;     fx=func(x);
      for (i=1;i<=npar;i++) p2[i]=x[i];
   vv=vector(1,n);     for(l=0 ; l <=lmax; l++){
   *d=1.0;       l1=pow(10,l);
   for (i=1;i<=n;i++) {       delts=delt;
     big=0.0;       for(k=1 ; k <kmax; k=k+1){
     for (j=1;j<=n;j++)         delt = delta*(l1*k);
       if ((temp=fabs(a[i][j])) > big) big=temp;         p2[theta]=x[theta] +delt;
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");         k1=func(p2)-fx;
     vv[i]=1.0/big;         p2[theta]=x[theta]-delt;
   }         k2=func(p2)-fx;
   for (j=1;j<=n;j++) {         /*res= (k1-2.0*fx+k2)/delt/delt; */
     for (i=1;i<j;i++) {         res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
       sum=a[i][j];        
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];   #ifdef DEBUG
       a[i][j]=sum;         printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
     }         fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
     big=0.0;   #endif
     for (i=j;i<=n;i++) {         /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
       sum=a[i][j];         if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
       for (k=1;k<j;k++)           k=kmax;
         sum -= a[i][k]*a[k][j];         }
       a[i][j]=sum;         else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
       if ( (dum=vv[i]*fabs(sum)) >= big) {           k=kmax; l=lmax*10.;
         big=dum;         }
         imax=i;         else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){
       }           delts=delt;
     }         }
     if (j != imax) {       }
       for (k=1;k<=n;k++) {     }
         dum=a[imax][k];     delti[theta]=delts;
         a[imax][k]=a[j][k];     return res;
         a[j][k]=dum;    
       }   }
       *d = -(*d);   
       vv[imax]=vv[j];   double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
     }   {
     indx[j]=imax;     int i;
     if (a[j][j] == 0.0) a[j][j]=TINY;     int l=1, l1, lmax=20;
     if (j != n) {     double k1,k2,k3,k4,res,fx;
       dum=1.0/(a[j][j]);     double p2[NPARMAX+1];
       for (i=j+1;i<=n;i++) a[i][j] *= dum;     int k;
     }   
   }     fx=func(x);
   free_vector(vv,1,n);  /* Doesn't work */    for (k=1; k<=2; k++) {
 ;      for (i=1;i<=npar;i++) p2[i]=x[i];
 }       p2[thetai]=x[thetai]+delti[thetai]/k;
       p2[thetaj]=x[thetaj]+delti[thetaj]/k;
 void lubksb(double **a, int n, int *indx, double b[])       k1=func(p2)-fx;
 {    
   int i,ii=0,ip,j;       p2[thetai]=x[thetai]+delti[thetai]/k;
   double sum;       p2[thetaj]=x[thetaj]-delti[thetaj]/k;
        k2=func(p2)-fx;
   for (i=1;i<=n;i++) {    
     ip=indx[i];       p2[thetai]=x[thetai]-delti[thetai]/k;
     sum=b[ip];       p2[thetaj]=x[thetaj]+delti[thetaj]/k;
     b[ip]=b[i];       k3=func(p2)-fx;
     if (ii)    
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];       p2[thetai]=x[thetai]-delti[thetai]/k;
     else if (sum) ii=i;       p2[thetaj]=x[thetaj]-delti[thetaj]/k;
     b[i]=sum;       k4=func(p2)-fx;
   }       res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
   for (i=n;i>=1;i--) {   #ifdef DEBUG
     sum=b[i];       printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];       fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
     b[i]=sum/a[i][i];   #endif
   }     }
 }     return res;
   }
 /************ Frequencies ********************/  
 void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])  /************** Inverse of matrix **************/
 {  /* Some frequencies */  void ludcmp(double **a, int n, int *indx, double *d)
     {
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;    int i,imax,j,k;
   int first;    double big,dum,sum,temp;
   double ***freq; /* Frequencies */    double *vv;
   double *pp, **prop;   
   double pos,posprop, k2, dateintsum=0,k2cpt=0;    vv=vector(1,n);
   FILE *ficresp;    *d=1.0;
   char fileresp[FILENAMELENGTH];    for (i=1;i<=n;i++) {
         big=0.0;
   pp=vector(1,nlstate);      for (j=1;j<=n;j++)
   prop=matrix(1,nlstate,iagemin,iagemax+3);        if ((temp=fabs(a[i][j])) > big) big=temp;
   strcpy(fileresp,"p");      if (big == 0.0) nrerror("Singular matrix in routine ludcmp");
   strcat(fileresp,fileres);      vv[i]=1.0/big;
   if((ficresp=fopen(fileresp,"w"))==NULL) {    }
     printf("Problem with prevalence resultfile: %s\n", fileresp);    for (j=1;j<=n;j++) {
     fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);      for (i=1;i<j;i++) {
     exit(0);        sum=a[i][j];
   }        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];
   freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);        a[i][j]=sum;
   j1=0;      }
         big=0.0;
   j=cptcoveff;      for (i=j;i<=n;i++) {
   if (cptcovn<1) {j=1;ncodemax[1]=1;}        sum=a[i][j];
         for (k=1;k<j;k++)
   first=1;          sum -= a[i][k]*a[k][j];
         a[i][j]=sum;
   for(k1=1; k1<=j;k1++){        if ( (dum=vv[i]*fabs(sum)) >= big) {
     for(i1=1; i1<=ncodemax[k1];i1++){          big=dum;
       j1++;          imax=i;
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);        }
         scanf("%d", i);*/      }
       for (i=-5; i<=nlstate+ndeath; i++)        if (j != imax) {
         for (jk=-5; jk<=nlstate+ndeath; jk++)          for (k=1;k<=n;k++) {
           for(m=iagemin; m <= iagemax+3; m++)          dum=a[imax][k];
             freq[i][jk][m]=0;          a[imax][k]=a[j][k];
           a[j][k]=dum;
     for (i=1; i<=nlstate; i++)          }
       for(m=iagemin; m <= iagemax+3; m++)        *d = -(*d);
         prop[i][m]=0;        vv[imax]=vv[j];
             }
       dateintsum=0;      indx[j]=imax;
       k2cpt=0;      if (a[j][j] == 0.0) a[j][j]=TINY;
       for (i=1; i<=imx; i++) {      if (j != n) {
         bool=1;        dum=1.0/(a[j][j]);
         if  (cptcovn>0) {        for (i=j+1;i<=n;i++) a[i][j] *= dum;
           for (z1=1; z1<=cptcoveff; z1++)       }
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])     }
               bool=0;    free_vector(vv,1,n);  /* Doesn't work */
         }  ;
         if (bool==1){  }
           for(m=firstpass; m<=lastpass; m++){  
             k2=anint[m][i]+(mint[m][i]/12.);  void lubksb(double **a, int n, int *indx, double b[])
             /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/  {
               if(agev[m][i]==0) agev[m][i]=iagemax+1;    int i,ii=0,ip,j;
               if(agev[m][i]==1) agev[m][i]=iagemax+2;    double sum;
               if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];   
               if (m<lastpass) {    for (i=1;i<=n;i++) {
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];      ip=indx[i];
                 freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];      sum=b[ip];
               }      b[ip]=b[i];
                     if (ii)
               if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];
                 dateintsum=dateintsum+k2;      else if (sum) ii=i;
                 k2cpt++;      b[i]=sum;
               }    }
               /*}*/    for (i=n;i>=1;i--) {
           }      sum=b[i];
         }      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];
       }      b[i]=sum/a[i][i];
            }
       /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/  }
 fprintf(ficresp, "#Local time at start: %s", strstart);  
       if  (cptcovn>0) {  void pstamp(FILE *fichier)
         fprintf(ficresp, "\n#********** Variable ");   {
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
         fprintf(ficresp, "**********\n#");  }
       }  
       for(i=1; i<=nlstate;i++)   /************ Frequencies ********************/
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
       fprintf(ficresp, "\n");  {  /* Some frequencies */
          
       for(i=iagemin; i <= iagemax+3; i++){    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
         if(i==iagemax+3){    int first;
           fprintf(ficlog,"Total");    double ***freq; /* Frequencies */
         }else{    double *pp, **prop;
           if(first==1){    double pos,posprop, k2, dateintsum=0,k2cpt=0;
             first=0;    char fileresp[FILENAMELENGTH];
             printf("See log file for details...\n");   
           }    pp=vector(1,nlstate);
           fprintf(ficlog,"Age %d", i);    prop=matrix(1,nlstate,iagemin,iagemax+3);
         }    strcpy(fileresp,"p");
         for(jk=1; jk <=nlstate ; jk++){    strcat(fileresp,fileres);
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)    if((ficresp=fopen(fileresp,"w"))==NULL) {
             pp[jk] += freq[jk][m][i];       printf("Problem with prevalence resultfile: %s\n", fileresp);
         }      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
         for(jk=1; jk <=nlstate ; jk++){      exit(0);
           for(m=-1, pos=0; m <=0 ; m++)    }
             pos += freq[jk][m][i];    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
           if(pp[jk]>=1.e-10){    j1=0;
             if(first==1){   
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);    j=cptcoveff;
             }    if (cptcovn<1) {j=1;ncodemax[1]=1;}
             fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);  
           }else{    first=1;
             if(first==1)  
               printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);    for(k1=1; k1<=j;k1++){
             fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);      for(i1=1; i1<=ncodemax[k1];i1++){
           }        j1++;
         }        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
           scanf("%d", i);*/
         for(jk=1; jk <=nlstate ; jk++){        for (i=-5; i<=nlstate+ndeath; i++)  
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)          for (jk=-5; jk<=nlstate+ndeath; jk++)  
             pp[jk] += freq[jk][m][i];            for(m=iagemin; m <= iagemax+3; m++)
         }                     freq[i][jk][m]=0;
         for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){  
           pos += pp[jk];      for (i=1; i<=nlstate; i++)  
           posprop += prop[jk][i];        for(m=iagemin; m <= iagemax+3; m++)
         }          prop[i][m]=0;
         for(jk=1; jk <=nlstate ; jk++){       
           if(pos>=1.e-5){        dateintsum=0;
             if(first==1)        k2cpt=0;
               printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);        for (i=1; i<=imx; i++) {
             fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);          bool=1;
           }else{          if  (cptcovn>0) {
             if(first==1)            for (z1=1; z1<=cptcoveff; z1++)
               printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])
             fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);                bool=0;
           }          }
           if( i <= iagemax){          if (bool==1){
             if(pos>=1.e-5){            for(m=firstpass; m<=lastpass; m++){
               fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);              k2=anint[m][i]+(mint[m][i]/12.);
               /*probs[i][jk][j1]= pp[jk]/pos;*/              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/                if(agev[m][i]==0) agev[m][i]=iagemax+1;
             }                if(agev[m][i]==1) agev[m][i]=iagemax+2;
             else                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
               fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);                if (m<lastpass) {
           }                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
         }                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
                         }
         for(jk=-1; jk <=nlstate+ndeath; jk++)               
           for(m=-1; m <=nlstate+ndeath; m++)                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
             if(freq[jk][m][i] !=0 ) {                  dateintsum=dateintsum+k2;
             if(first==1)                  k2cpt++;
               printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);                }
               fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);                /*}*/
             }            }
         if(i <= iagemax)          }
           fprintf(ficresp,"\n");        }
         if(first==1)         
           printf("Others in log...\n");        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
         fprintf(ficlog,"\n");        pstamp(ficresp);
       }        if  (cptcovn>0) {
     }          fprintf(ficresp, "\n#********** Variable ");
   }          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   dateintmean=dateintsum/k2cpt;           fprintf(ficresp, "**********\n#");
          }
   fclose(ficresp);        for(i=1; i<=nlstate;i++)
   free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
   free_vector(pp,1,nlstate);        fprintf(ficresp, "\n");
   free_matrix(prop,1,nlstate,iagemin, iagemax+3);       
   /* End of Freq */        for(i=iagemin; i <= iagemax+3; i++){
 }          if(i==iagemax+3){
             fprintf(ficlog,"Total");
 /************ Prevalence ********************/          }else{
 void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)            if(first==1){
 {                first=0;
   /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people              printf("See log file for details...\n");
      in each health status at the date of interview (if between dateprev1 and dateprev2).            }
      We still use firstpass and lastpass as another selection.            fprintf(ficlog,"Age %d", i);
   */          }
            for(jk=1; jk <=nlstate ; jk++){
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
   double ***freq; /* Frequencies */              pp[jk] += freq[jk][m][i];
   double *pp, **prop;          }
   double pos,posprop;           for(jk=1; jk <=nlstate ; jk++){
   double  y2; /* in fractional years */            for(m=-1, pos=0; m <=0 ; m++)
   int iagemin, iagemax;              pos += freq[jk][m][i];
             if(pp[jk]>=1.e-10){
   iagemin= (int) agemin;              if(first==1){
   iagemax= (int) agemax;              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
   /*pp=vector(1,nlstate);*/              }
   prop=matrix(1,nlstate,iagemin,iagemax+3);               fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
   /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/            }else{
   j1=0;              if(first==1)
                   printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
   j=cptcoveff;              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
   if (cptcovn<1) {j=1;ncodemax[1]=1;}            }
             }
   for(k1=1; k1<=j;k1++){  
     for(i1=1; i1<=ncodemax[k1];i1++){          for(jk=1; jk <=nlstate ; jk++){
       j1++;            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
                     pp[jk] += freq[jk][m][i];
       for (i=1; i<=nlstate; i++)            }      
         for(m=iagemin; m <= iagemax+3; m++)          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
           prop[i][m]=0.0;            pos += pp[jk];
                  posprop += prop[jk][i];
       for (i=1; i<=imx; i++) { /* Each individual */          }
         bool=1;          for(jk=1; jk <=nlstate ; jk++){
         if  (cptcovn>0) {            if(pos>=1.e-5){
           for (z1=1; z1<=cptcoveff; z1++)               if(first==1)
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])                 printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
               bool=0;              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
         }             }else{
         if (bool==1) {               if(first==1)
           for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
             y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
             if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */            }
               if(agev[m][i]==0) agev[m][i]=iagemax+1;            if( i <= iagemax){
               if(agev[m][i]==1) agev[m][i]=iagemax+2;              if(pos>=1.e-5){
               if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m);                 fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
               if (s[m][i]>0 && s[m][i]<=nlstate) {                 /*probs[i][jk][j1]= pp[jk]/pos;*/
                 /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
                 prop[s[m][i]][(int)agev[m][i]] += weight[i];              }
                 prop[s[m][i]][iagemax+3] += weight[i];               else
               }                 fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
             }            }
           } /* end selection of waves */          }
         }         
       }          for(jk=-1; jk <=nlstate+ndeath; jk++)
       for(i=iagemin; i <= iagemax+3; i++){              for(m=-1; m <=nlstate+ndeath; m++)
                       if(freq[jk][m][i] !=0 ) {
         for(jk=1,posprop=0; jk <=nlstate ; jk++) {               if(first==1)
           posprop += prop[jk][i];                 printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
         }                 fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
               }
         for(jk=1; jk <=nlstate ; jk++){               if(i <= iagemax)
           if( i <=  iagemax){             fprintf(ficresp,"\n");
             if(posprop>=1.e-5){           if(first==1)
               probs[i][jk][j1]= prop[jk][i]/posprop;            printf("Others in log...\n");
             }           fprintf(ficlog,"\n");
           }         }
         }/* end jk */       }
       }/* end i */     }
     } /* end i1 */    dateintmean=dateintsum/k2cpt;
   } /* end k1 */   
       fclose(ficresp);
   /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
   /*free_vector(pp,1,nlstate);*/    free_vector(pp,1,nlstate);
   free_matrix(prop,1,nlstate, iagemin,iagemax+3);    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
 }  /* End of prevalence */    /* End of Freq */
   }
 /************* Waves Concatenation ***************/  
   /************ Prevalence ********************/
 void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
 {  {  
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
      Death is a valid wave (if date is known).       in each health status at the date of interview (if between dateprev1 and dateprev2).
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i       We still use firstpass and lastpass as another selection.
      dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]    */
      and mw[mi+1][i]. dh depends on stepm.   
      */    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
     double ***freq; /* Frequencies */
   int i, mi, m;    double *pp, **prop;
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;    double pos,posprop;
      double sum=0., jmean=0.;*/    double  y2; /* in fractional years */
   int first;    int iagemin, iagemax;
   int j, k=0,jk, ju, jl;  
   double sum=0.;    iagemin= (int) agemin;
   first=0;    iagemax= (int) agemax;
   jmin=1e+5;    /*pp=vector(1,nlstate);*/
   jmax=-1;    prop=matrix(1,nlstate,iagemin,iagemax+3);
   jmean=0.;    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
   for(i=1; i<=imx; i++){    j1=0;
     mi=0;   
     m=firstpass;    j=cptcoveff;
     while(s[m][i] <= nlstate){    if (cptcovn<1) {j=1;ncodemax[1]=1;}
       if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)   
         mw[++mi][i]=m;    for(k1=1; k1<=j;k1++){
       if(m >=lastpass)      for(i1=1; i1<=ncodemax[k1];i1++){
         break;        j1++;
       else       
         m++;        for (i=1; i<=nlstate; i++)  
     }/* end while */          for(m=iagemin; m <= iagemax+3; m++)
     if (s[m][i] > nlstate){            prop[i][m]=0.0;
       mi++;     /* Death is another wave */       
       /* if(mi==0)  never been interviewed correctly before death */        for (i=1; i<=imx; i++) { /* Each individual */
          /* Only death is a correct wave */          bool=1;
       mw[mi][i]=m;          if  (cptcovn>0) {
     }            for (z1=1; z1<=cptcoveff; z1++)
               if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])
     wav[i]=mi;                bool=0;
     if(mi==0){          }
       nbwarn++;          if (bool==1) {
       if(first==0){            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
         printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
         first=1;              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
       }                if(agev[m][i]==0) agev[m][i]=iagemax+1;
       if(first==1){                if(agev[m][i]==1) agev[m][i]=iagemax+2;
         fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m);
       }                if (s[m][i]>0 && s[m][i]<=nlstate) {
     } /* end mi==0 */                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
   } /* End individuals */                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
                   prop[s[m][i]][iagemax+3] += weight[i];
   for(i=1; i<=imx; i++){                }
     for(mi=1; mi<wav[i];mi++){              }
       if (stepm <=0)            } /* end selection of waves */
         dh[mi][i]=1;          }
       else{        }
         if (s[mw[mi+1][i]][i] > nlstate) { /* A death */        for(i=iagemin; i <= iagemax+3; i++){  
           if (agedc[i] < 2*AGESUP) {         
             j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);           for(jk=1,posprop=0; jk <=nlstate ; jk++) {
             if(j==0) j=1;  /* Survives at least one month after exam */            posprop += prop[jk][i];
             else if(j<0){          }
               nberr++;  
               printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);          for(jk=1; jk <=nlstate ; jk++){    
               j=1; /* Temporary Dangerous patch */            if( i <=  iagemax){
               printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);              if(posprop>=1.e-5){
               fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);                probs[i][jk][j1]= prop[jk][i]/posprop;
               fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);              }
             }            }
             k=k+1;          }/* end jk */
             if (j >= jmax){        }/* end i */
               jmax=j;      } /* end i1 */
               ijmax=i;    } /* end k1 */
             }   
             if (j <= jmin){    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
               jmin=j;    /*free_vector(pp,1,nlstate);*/
               ijmin=i;    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
             }  }  /* End of prevalence */
             sum=sum+j;  
             /*if (j<0) printf("j=%d num=%d \n",j,i);*/  /************* Waves Concatenation ***************/
             /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/  
           }  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
         }  {
         else{    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));       Death is a valid wave (if date is known).
 /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
        dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
           k=k+1;       and mw[mi+1][i]. dh depends on stepm.
           if (j >= jmax) {       */
             jmax=j;  
             ijmax=i;    int i, mi, m;
           }    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
           else if (j <= jmin){       double sum=0., jmean=0.;*/
             jmin=j;    int first;
             ijmin=i;    int j, k=0,jk, ju, jl;
           }    double sum=0.;
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */    first=0;
           /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/    jmin=1e+5;
           if(j<0){    jmax=-1;
             nberr++;    jmean=0.;
             printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);    for(i=1; i<=imx; i++){
             fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);      mi=0;
           }      m=firstpass;
           sum=sum+j;      while(s[m][i] <= nlstate){
         }        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
         jk= j/stepm;          mw[++mi][i]=m;
         jl= j -jk*stepm;        if(m >=lastpass)
         ju= j -(jk+1)*stepm;          break;
         if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */        else
           if(jl==0){          m++;
             dh[mi][i]=jk;      }/* end while */
             bh[mi][i]=0;      if (s[m][i] > nlstate){
           }else{ /* We want a negative bias in order to only have interpolation ie        mi++;     /* Death is another wave */
                   * at the price of an extra matrix product in likelihood */        /* if(mi==0)  never been interviewed correctly before death */
             dh[mi][i]=jk+1;           /* Only death is a correct wave */
             bh[mi][i]=ju;        mw[mi][i]=m;
           }      }
         }else{  
           if(jl <= -ju){      wav[i]=mi;
             dh[mi][i]=jk;      if(mi==0){
             bh[mi][i]=jl;       /* bias is positive if real duration        nbwarn++;
                                  * is higher than the multiple of stepm and negative otherwise.        if(first==0){
                                  */          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
           }          first=1;
           else{        }
             dh[mi][i]=jk+1;        if(first==1){
             bh[mi][i]=ju;          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
           }        }
           if(dh[mi][i]==0){      } /* end mi==0 */
             dh[mi][i]=1; /* At least one step */    } /* End individuals */
             bh[mi][i]=ju; /* At least one step */  
             /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/    for(i=1; i<=imx; i++){
           }      for(mi=1; mi<wav[i];mi++){
         } /* end if mle */        if (stepm <=0)
       }          dh[mi][i]=1;
     } /* end wave */        else{
   }          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
   jmean=sum/k;            if (agedc[i] < 2*AGESUP) {
   printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);
   fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);              if(j==0) j=1;  /* Survives at least one month after exam */
  }              else if(j<0){
                 nberr++;
 /*********** Tricode ****************************/                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 void tricode(int *Tvar, int **nbcode, int imx)                j=1; /* Temporary Dangerous patch */
 {                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
                   fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   int Ndum[20],ij=1, k, j, i, maxncov=19;                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
   int cptcode=0;              }
   cptcoveff=0;               k=k+1;
                if (j >= jmax){
   for (k=0; k<maxncov; k++) Ndum[k]=0;                jmax=j;
   for (k=1; k<=7; k++) ncodemax[k]=0;                ijmax=i;
               }
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {              if (j <= jmin){
     for (i=1; i<=imx; i++) { /*reads the data file to get the maximum                 jmin=j;
                                modality*/                 ijmin=i;
       ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/              }
       Ndum[ij]++; /*store the modality */              sum=sum+j;
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
       if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable               /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
                                        Tvar[j]. If V=sex and male is 0 and             }
                                        female is 1, then  cptcode=1.*/          }
     }          else{
             j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
     for (i=0; i<=cptcode; i++) {  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
       if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */  
     }            k=k+1;
             if (j >= jmax) {
     ij=1;               jmax=j;
     for (i=1; i<=ncodemax[j]; i++) {              ijmax=i;
       for (k=0; k<= maxncov; k++) {            }
         if (Ndum[k] != 0) {            else if (j <= jmin){
           nbcode[Tvar[j]][ij]=k;               jmin=j;
           /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */              ijmin=i;
                       }
           ij++;            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
         }            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
         if (ij > ncodemax[j]) break;             if(j<0){
       }                nberr++;
     }               printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   }                fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
             }
  for (k=0; k< maxncov; k++) Ndum[k]=0;            sum=sum+j;
           }
  for (i=1; i<=ncovmodel-2; i++) {           jk= j/stepm;
    /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/          jl= j -jk*stepm;
    ij=Tvar[i];          ju= j -(jk+1)*stepm;
    Ndum[ij]++;          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
  }            if(jl==0){
               dh[mi][i]=jk;
  ij=1;              bh[mi][i]=0;
  for (i=1; i<= maxncov; i++) {            }else{ /* We want a negative bias in order to only have interpolation ie
    if((Ndum[i]!=0) && (i<=ncovcol)){                    * at the price of an extra matrix product in likelihood */
      Tvaraff[ij]=i; /*For printing */              dh[mi][i]=jk+1;
      ij++;              bh[mi][i]=ju;
    }            }
  }          }else{
              if(jl <= -ju){
  cptcoveff=ij-1; /*Number of simple covariates*/              dh[mi][i]=jk;
 }              bh[mi][i]=jl;       /* bias is positive if real duration
                                    * is higher than the multiple of stepm and negative otherwise.
 /*********** Health Expectancies ****************/                                   */
             }
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov,char strstart[] )            else{
               dh[mi][i]=jk+1;
 {              bh[mi][i]=ju;
   /* Health expectancies */            }
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;            if(dh[mi][i]==0){
   double age, agelim, hf;              dh[mi][i]=1; /* At least one step */
   double ***p3mat,***varhe;              bh[mi][i]=ju; /* At least one step */
   double **dnewm,**doldm;              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
   double *xp;            }
   double **gp, **gm;          } /* end if mle */
   double ***gradg, ***trgradg;        }
   int theta;      } /* end wave */
     }
   varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);    jmean=sum/k;
   xp=vector(1,npar);    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
   dnewm=matrix(1,nlstate*nlstate,1,npar);    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
   doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);   }
     
   fprintf(ficreseij,"# Local time at start: %s", strstart);  /*********** Tricode ****************************/
   fprintf(ficreseij,"# Health expectancies\n");  void tricode(int *Tvar, int **nbcode, int imx)
   fprintf(ficreseij,"# Age");  {
   for(i=1; i<=nlstate;i++)   
     for(j=1; j<=nlstate;j++)    int Ndum[20],ij=1, k, j, i, maxncov=19;
       fprintf(ficreseij," %1d-%1d (SE)",i,j);    int cptcode=0;
   fprintf(ficreseij,"\n");    cptcoveff=0;
    
   if(estepm < stepm){    for (k=0; k<maxncov; k++) Ndum[k]=0;
     printf ("Problem %d lower than %d\n",estepm, stepm);    for (k=1; k<=7; k++) ncodemax[k]=0;
   }  
   else  hstepm=estepm;       for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
   /* We compute the life expectancy from trapezoids spaced every estepm months      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum
    * This is mainly to measure the difference between two models: for example                                 modality*/
    * if stepm=24 months pijx are given only every 2 years and by summing them        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
    * we are calculating an estimate of the Life Expectancy assuming a linear         Ndum[ij]++; /*store the modality */
    * progression in between and thus overestimating or underestimating according        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
    * to the curvature of the survival function. If, for the same date, we         if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable
    * estimate the model with stepm=1 month, we can keep estepm to 24 months                                         Tvar[j]. If V=sex and male is 0 and
    * to compare the new estimate of Life expectancy with the same linear                                          female is 1, then  cptcode=1.*/
    * hypothesis. A more precise result, taking into account a more precise      }
    * curvature will be obtained if estepm is as small as stepm. */  
       for (i=0; i<=cptcode; i++) {
   /* For example we decided to compute the life expectancy with the smallest unit */        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.       }
      nhstepm is the number of hstepm from age to agelim   
      nstepm is the number of stepm from age to agelin.       ij=1;
      Look at hpijx to understand the reason of that which relies in memory size      for (i=1; i<=ncodemax[j]; i++) {
      and note for a fixed period like estepm months */        for (k=0; k<= maxncov; k++) {
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the          if (Ndum[k] != 0) {
      survival function given by stepm (the optimization length). Unfortunately it            nbcode[Tvar[j]][ij]=k;
      means that if the survival funtion is printed only each two years of age and if            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
      you sum them up and add 1 year (area under the trapezoids) you won't get the same            
      results. So we changed our mind and took the option of the best precision.            ij++;
   */          }
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */           if (ij > ncodemax[j]) break;
         }  
   agelim=AGESUP;      }
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    }  
     /* nhstepm age range expressed in number of stepm */  
     nstepm=(int) rint((agelim-age)*YEARM/stepm);    for (k=0; k< maxncov; k++) Ndum[k]=0;
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */   
     /* if (stepm >= YEARM) hstepm=1;*/   for (i=1; i<=ncovmodel-2; i++) {
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);     ij=Tvar[i];
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);     Ndum[ij]++;
     gp=matrix(0,nhstepm,1,nlstate*nlstate);   }
     gm=matrix(0,nhstepm,1,nlstate*nlstate);  
    ij=1;
     /* Computed by stepm unit matrices, product of hstepm matrices, stored   for (i=1; i<= maxncov; i++) {
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */     if((Ndum[i]!=0) && (i<=ncovcol)){
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);         Tvaraff[ij]=i; /*For printing */
         ij++;
      }
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */   }
    
     /* Computing  Variances of health expectancies */   cptcoveff=ij-1; /*Number of simple covariates*/
   }
      for(theta=1; theta <=npar; theta++){  
       for(i=1; i<=npar; i++){   /*********** Health Expectancies ****************/
         xp[i] = x[i] + (i==theta ?delti[theta]:0);  
       }  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);    
     {
       cptj=0;    /* Health expectancies, no variances */
       for(j=1; j<= nlstate; j++){    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;
         for(i=1; i<=nlstate; i++){    double age, agelim, hf;
           cptj=cptj+1;    double ***p3mat;
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){    double eip;
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;  
           }    pstamp(ficreseij);
         }    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
       }    fprintf(ficreseij,"# Age");
          for(i=1; i<=nlstate;i++){
            for(j=1; j<=nlstate;j++){
       for(i=1; i<=npar; i++)         fprintf(ficreseij," e%1d%1d ",i,j);
         xp[i] = x[i] - (i==theta ?delti[theta]:0);      }
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        fprintf(ficreseij," e%1d. ",i);
           }
       cptj=0;    fprintf(ficreseij,"\n");
       for(j=1; j<= nlstate; j++){  
         for(i=1;i<=nlstate;i++){   
           cptj=cptj+1;    if(estepm < stepm){
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){      printf ("Problem %d lower than %d\n",estepm, stepm);
     }
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;    else  hstepm=estepm;  
           }    /* We compute the life expectancy from trapezoids spaced every estepm months
         }     * This is mainly to measure the difference between two models: for example
       }     * if stepm=24 months pijx are given only every 2 years and by summing them
       for(j=1; j<= nlstate*nlstate; j++)     * we are calculating an estimate of the Life Expectancy assuming a linear
         for(h=0; h<=nhstepm-1; h++){     * progression in between and thus overestimating or underestimating according
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];     * to the curvature of the survival function. If, for the same date, we
         }     * estimate the model with stepm=1 month, we can keep estepm to 24 months
      }      * to compare the new estimate of Life expectancy with the same linear
         * hypothesis. A more precise result, taking into account a more precise
 /* End theta */     * curvature will be obtained if estepm is as small as stepm. */
   
      trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);    /* For example we decided to compute the life expectancy with the smallest unit */
     /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.
      for(h=0; h<=nhstepm-1; h++)       nhstepm is the number of hstepm from age to agelim
       for(j=1; j<=nlstate*nlstate;j++)       nstepm is the number of stepm from age to agelin.
         for(theta=1; theta <=npar; theta++)       Look at hpijx to understand the reason of that which relies in memory size
           trgradg[h][j][theta]=gradg[h][theta][j];       and note for a fixed period like estepm months */
          /* We decided (b) to get a life expectancy respecting the most precise curvature of the
        survival function given by stepm (the optimization length). Unfortunately it
      for(i=1;i<=nlstate*nlstate;i++)       means that if the survival funtion is printed only each two years of age and if
       for(j=1;j<=nlstate*nlstate;j++)       you sum them up and add 1 year (area under the trapezoids) you won't get the same
         varhe[i][j][(int)age] =0.;       results. So we changed our mind and took the option of the best precision.
     */
      printf("%d|",(int)age);fflush(stdout);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */
      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);  
      for(h=0;h<=nhstepm-1;h++){    agelim=AGESUP;
       for(k=0;k<=nhstepm-1;k++){    /* If stepm=6 months */
         matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);      /* Computed by stepm unit matrices, product of hstepm matrices, stored
         matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
         for(i=1;i<=nlstate*nlstate;i++)     
           for(j=1;j<=nlstate*nlstate;j++)  /* nhstepm age range expressed in number of stepm */
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;    nstepm=(int) rint((agelim-bage)*YEARM/stepm);
       }    /* Typically if 20 years nstepm = 20*12/6=40 stepm */
     }    /* if (stepm >= YEARM) hstepm=1;*/
     /* Computing expectancies */    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     for(i=1; i<=nlstate;i++)    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       for(j=1; j<=nlstate;j++)  
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){    for (age=bage; age<=fage; age ++){
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;  
             
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
      
         }      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
      
     fprintf(ficreseij,"%3.0f",age );      printf("%d|",(int)age);fflush(stdout);
     cptj=0;      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
     for(i=1; i<=nlstate;i++)     
       for(j=1; j<=nlstate;j++){  
         cptj++;      /* Computing expectancies */
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );      for(i=1; i<=nlstate;i++)
       }        for(j=1; j<=nlstate;j++)
     fprintf(ficreseij,"\n");          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
                eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
     free_matrix(gm,0,nhstepm,1,nlstate*nlstate);           
     free_matrix(gp,0,nhstepm,1,nlstate*nlstate);            /*if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);  
     free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);          }
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);     
   }      fprintf(ficreseij,"%3.0f",age );
   printf("\n");      for(i=1; i<=nlstate;i++){
   fprintf(ficlog,"\n");        eip=0;
         for(j=1; j<=nlstate;j++){
   free_vector(xp,1,npar);          eip +=eij[i][j][(int)age];
   free_matrix(dnewm,1,nlstate*nlstate,1,npar);          fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
   free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);        }
   free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);        fprintf(ficreseij,"%9.4f", eip );
 }      }
       fprintf(ficreseij,"\n");
 /************ Variance ******************/     
 void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])    }
 {    free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   /* Variance of health expectancies */    printf("\n");
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    fprintf(ficlog,"\n");
   /* double **newm;*/   
   double **dnewm,**doldm;  }
   double **dnewmp,**doldmp;  
   int i, j, nhstepm, hstepm, h, nstepm ;  void cvevsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
   int k, cptcode;  
   double *xp;  {
   double **gp, **gm;  /* for var eij */    /* Covariances of health expectancies eij and of total life expectancies according
   double ***gradg, ***trgradg; /*for var eij */     to initial status i, ei. .
   double **gradgp, **trgradgp; /* for var p point j */    */
   double *gpp, *gmp; /* for var p point j */    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
   double **varppt; /* for var p point j nlstate to nlstate+ndeath */    double age, agelim, hf;
   double ***p3mat;    double ***p3matp, ***p3matm, ***varhe;
   double age,agelim, hf;    double **dnewm,**doldm;
   double ***mobaverage;    double *xp, *xm;
   int theta;    double **gp, **gm;
   char digit[4];    double ***gradg, ***trgradg;
   char digitp[25];    int theta;
   
   char fileresprobmorprev[FILENAMELENGTH];    double eip, vip;
   
   if(popbased==1){    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
     if(mobilav!=0)    xp=vector(1,npar);
       strcpy(digitp,"-populbased-mobilav-");    xm=vector(1,npar);
     else strcpy(digitp,"-populbased-nomobil-");    dnewm=matrix(1,nlstate*nlstate,1,npar);
   }    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
   else    
     strcpy(digitp,"-stablbased-");    pstamp(ficresstdeij);
     fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
   if (mobilav!=0) {    fprintf(ficresstdeij,"# Age");
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    for(i=1; i<=nlstate;i++){
     if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){      for(j=1; j<=nlstate;j++)
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);        fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
       printf(" Error in movingaverage mobilav=%d\n",mobilav);      fprintf(ficresstdeij," e%1d. ",i);
     }    }
   }    fprintf(ficresstdeij,"\n");
   
   strcpy(fileresprobmorprev,"prmorprev");     pstamp(ficrescveij);
   sprintf(digit,"%-d",ij);    fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
   /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/    fprintf(ficrescveij,"# Age");
   strcat(fileresprobmorprev,digit); /* Tvar to be done */    for(i=1; i<=nlstate;i++)
   strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */      for(j=1; j<=nlstate;j++){
   strcat(fileresprobmorprev,fileres);        cptj= (j-1)*nlstate+i;
   if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {        for(i2=1; i2<=nlstate;i2++)
     printf("Problem with resultfile: %s\n", fileresprobmorprev);          for(j2=1; j2<=nlstate;j2++){
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);            cptj2= (j2-1)*nlstate+i2;
   }            if(cptj2 <= cptj)
   printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);              fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
            }
   fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);      }
   fprintf(ficresprobmorprev, "#Local time at start: %s", strstart);    fprintf(ficrescveij,"\n");
   fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);   
   fprintf(ficresprobmorprev,"# Age cov=%-d",ij);    if(estepm < stepm){
   for(j=nlstate+1; j<=(nlstate+ndeath);j++){      printf ("Problem %d lower than %d\n",estepm, stepm);
     fprintf(ficresprobmorprev," p.%-d SE",j);    }
     for(i=1; i<=nlstate;i++)    else  hstepm=estepm;  
       fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);    /* We compute the life expectancy from trapezoids spaced every estepm months
   }       * This is mainly to measure the difference between two models: for example
   fprintf(ficresprobmorprev,"\n");     * if stepm=24 months pijx are given only every 2 years and by summing them
   fprintf(ficgp,"\n# Routine varevsij");     * we are calculating an estimate of the Life Expectancy assuming a linear
   /* fprintf(fichtm, "#Local time at start: %s", strstart);*/     * progression in between and thus overestimating or underestimating according
   fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");     * to the curvature of the survival function. If, for the same date, we
   fprintf(fichtm,"\n<br>%s  <br>\n",digitp);     * estimate the model with stepm=1 month, we can keep estepm to 24 months
 /*   } */     * to compare the new estimate of Life expectancy with the same linear
   varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);     * hypothesis. A more precise result, taking into account a more precise
  fprintf(ficresvij, "#Local time at start: %s", strstart);     * curvature will be obtained if estepm is as small as stepm. */
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");  
   fprintf(ficresvij,"# Age");    /* For example we decided to compute the life expectancy with the smallest unit */
   for(i=1; i<=nlstate;i++)    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.
     for(j=1; j<=nlstate;j++)       nhstepm is the number of hstepm from age to agelim
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);       nstepm is the number of stepm from age to agelin.
   fprintf(ficresvij,"\n");       Look at hpijx to understand the reason of that which relies in memory size
        and note for a fixed period like estepm months */
   xp=vector(1,npar);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   dnewm=matrix(1,nlstate,1,npar);       survival function given by stepm (the optimization length). Unfortunately it
   doldm=matrix(1,nlstate,1,nlstate);       means that if the survival funtion is printed only each two years of age and if
   dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);       you sum them up and add 1 year (area under the trapezoids) you won't get the same
   doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);       results. So we changed our mind and took the option of the best precision.
     */
   gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */
   gpp=vector(nlstate+1,nlstate+ndeath);  
   gmp=vector(nlstate+1,nlstate+ndeath);    /* If stepm=6 months */
   trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/    /* nhstepm age range expressed in number of stepm */
       agelim=AGESUP;
   if(estepm < stepm){    nstepm=(int) rint((agelim-bage)*YEARM/stepm);
     printf ("Problem %d lower than %d\n",estepm, stepm);    /* Typically if 20 years nstepm = 20*12/6=40 stepm */
   }    /* if (stepm >= YEARM) hstepm=1;*/
   else  hstepm=estepm;       nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   /* For example we decided to compute the life expectancy with the smallest unit */   
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.     p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
      nhstepm is the number of hstepm from age to agelim     p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
      nstepm is the number of stepm from age to agelin.     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
      Look at hpijx to understand the reason of that which relies in memory size    trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
      and note for a fixed period like k years */    gp=matrix(0,nhstepm,1,nlstate*nlstate);
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the    gm=matrix(0,nhstepm,1,nlstate*nlstate);
      survival function given by stepm (the optimization length). Unfortunately it  
      means that if the survival funtion is printed every two years of age and if    for (age=bage; age<=fage; age ++){
      you sum them up and add 1 year (area under the trapezoids) you won't get the same   
      results. So we changed our mind and took the option of the best precision.      /* Computed by stepm unit matrices, product of hstepm matrices, stored
   */         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */    
   agelim = AGESUP;      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */  
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */       /* Computing  Variances of health expectancies */
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */      /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);         decrease memory allocation */
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);      for(theta=1; theta <=npar; theta++){
     gp=matrix(0,nhstepm,1,nlstate);        for(i=1; i<=npar; i++){
     gm=matrix(0,nhstepm,1,nlstate);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
           xm[i] = x[i] - (i==theta ?delti[theta]:0);
         }
     for(theta=1; theta <=npar; theta++){        hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
       for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/        hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
         xp[i] = x[i] + (i==theta ?delti[theta]:0);   
       }        for(j=1; j<= nlstate; j++){
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            for(i=1; i<=nlstate; i++){
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);            for(h=0; h<=nhstepm-1; h++){
               gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
       if (popbased==1) {              gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
         if(mobilav ==0){            }
           for(i=1; i<=nlstate;i++)          }
             prlim[i][i]=probs[(int)age][i][ij];        }
         }else{ /* mobilav */        
           for(i=1; i<=nlstate;i++)        for(ij=1; ij<= nlstate*nlstate; ij++)
             prlim[i][i]=mobaverage[(int)age][i][ij];          for(h=0; h<=nhstepm-1; h++){
         }            gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
       }          }
         }/* End theta */
       for(j=1; j<= nlstate; j++){     
         for(h=0; h<=nhstepm; h++){     
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)      for(h=0; h<=nhstepm-1; h++)
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];        for(j=1; j<=nlstate*nlstate;j++)
         }          for(theta=1; theta <=npar; theta++)
       }            trgradg[h][j][theta]=gradg[h][theta][j];
       /* This for computing probability of death (h=1 means     
          computed over hstepm matrices product = hstepm*stepm months)   
          as a weighted average of prlim.       for(ij=1;ij<=nlstate*nlstate;ij++)
       */        for(ji=1;ji<=nlstate*nlstate;ji++)
       for(j=nlstate+1;j<=nlstate+ndeath;j++){          varhe[ij][ji][(int)age] =0.;
         for(i=1,gpp[j]=0.; i<= nlstate; i++)  
           gpp[j] += prlim[i][i]*p3mat[i][j][1];       printf("%d|",(int)age);fflush(stdout);
       }           fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
       /* end probability of death */       for(h=0;h<=nhstepm-1;h++){
         for(k=0;k<=nhstepm-1;k++){
       for(i=1; i<=npar; i++) /* Computes gradient x - delta */          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
         xp[i] = x[i] - (i==theta ?delti[theta]:0);          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            for(ij=1;ij<=nlstate*nlstate;ij++)
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);            for(ji=1;ji<=nlstate*nlstate;ji++)
                varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
       if (popbased==1) {        }
         if(mobilav ==0){      }
           for(i=1; i<=nlstate;i++)  
             prlim[i][i]=probs[(int)age][i][ij];      /* Computing expectancies */
         }else{ /* mobilav */       hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
           for(i=1; i<=nlstate;i++)      for(i=1; i<=nlstate;i++)
             prlim[i][i]=mobaverage[(int)age][i][ij];        for(j=1; j<=nlstate;j++)
         }          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
       }            eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
            
       for(j=1; j<= nlstate; j++){            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
         for(h=0; h<=nhstepm; h++){  
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)          }
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];  
         }      fprintf(ficresstdeij,"%3.0f",age );
       }      for(i=1; i<=nlstate;i++){
       /* This for computing probability of death (h=1 means        eip=0.;
          computed over hstepm matrices product = hstepm*stepm months)         vip=0.;
          as a weighted average of prlim.        for(j=1; j<=nlstate;j++){
       */          eip += eij[i][j][(int)age];
       for(j=nlstate+1;j<=nlstate+ndeath;j++){          for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
         for(i=1,gmp[j]=0.; i<= nlstate; i++)            vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
          gmp[j] += prlim[i][i]*p3mat[i][j][1];          fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
       }            }
       /* end probability of death */        fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
       }
       for(j=1; j<= nlstate; j++) /* vareij */      fprintf(ficresstdeij,"\n");
         for(h=0; h<=nhstepm; h++){  
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];      fprintf(ficrescveij,"%3.0f",age );
         }      for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++){
       for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */          cptj= (j-1)*nlstate+i;
         gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];          for(i2=1; i2<=nlstate;i2++)
       }            for(j2=1; j2<=nlstate;j2++){
               cptj2= (j2-1)*nlstate+i2;
     } /* End theta */              if(cptj2 <= cptj)
                 fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */            }
         }
     for(h=0; h<=nhstepm; h++) /* veij */      fprintf(ficrescveij,"\n");
       for(j=1; j<=nlstate;j++)     
         for(theta=1; theta <=npar; theta++)    }
           trgradg[h][j][theta]=gradg[h][theta][j];    free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
     free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
     for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */    free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
       for(theta=1; theta <=npar; theta++)    free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
         trgradgp[j][theta]=gradgp[theta][j];    free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     printf("\n");
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */    fprintf(ficlog,"\n");
     for(i=1;i<=nlstate;i++)  
       for(j=1;j<=nlstate;j++)    free_vector(xm,1,npar);
         vareij[i][j][(int)age] =0.;    free_vector(xp,1,npar);
     free_matrix(dnewm,1,nlstate*nlstate,1,npar);
     for(h=0;h<=nhstepm;h++){    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
       for(k=0;k<=nhstepm;k++){    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);  }
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);  
         for(i=1;i<=nlstate;i++)  /************ Variance ******************/
           for(j=1;j<=nlstate;j++)  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;  {
       }    /* Variance of health expectancies */
     }    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
       /* double **newm;*/
     /* pptj */    double **dnewm,**doldm;
     matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);    double **dnewmp,**doldmp;
     matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);    int i, j, nhstepm, hstepm, h, nstepm ;
     for(j=nlstate+1;j<=nlstate+ndeath;j++)    int k, cptcode;
       for(i=nlstate+1;i<=nlstate+ndeath;i++)    double *xp;
         varppt[j][i]=doldmp[j][i];    double **gp, **gm;  /* for var eij */
     /* end ppptj */    double ***gradg, ***trgradg; /*for var eij */
     /*  x centered again */    double **gradgp, **trgradgp; /* for var p point j */
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);      double *gpp, *gmp; /* for var p point j */
     prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
      double ***p3mat;
     if (popbased==1) {    double age,agelim, hf;
       if(mobilav ==0){    double ***mobaverage;
         for(i=1; i<=nlstate;i++)    int theta;
           prlim[i][i]=probs[(int)age][i][ij];    char digit[4];
       }else{ /* mobilav */     char digitp[25];
         for(i=1; i<=nlstate;i++)  
           prlim[i][i]=mobaverage[(int)age][i][ij];    char fileresprobmorprev[FILENAMELENGTH];
       }  
     }    if(popbased==1){
                    if(mobilav!=0)
     /* This for computing probability of death (h=1 means        strcpy(digitp,"-populbased-mobilav-");
        computed over hstepm (estepm) matrices product = hstepm*stepm months)       else strcpy(digitp,"-populbased-nomobil-");
        as a weighted average of prlim.    }
     */    else
     for(j=nlstate+1;j<=nlstate+ndeath;j++){      strcpy(digitp,"-stablbased-");
       for(i=1,gmp[j]=0.;i<= nlstate; i++)   
         gmp[j] += prlim[i][i]*p3mat[i][j][1];     if (mobilav!=0) {
     }          mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     /* end probability of death */      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
     fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);        printf(" Error in movingaverage mobilav=%d\n",mobilav);
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){      }
       fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));    }
       for(i=1; i<=nlstate;i++){  
         fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);    strcpy(fileresprobmorprev,"prmorprev");
       }    sprintf(digit,"%-d",ij);
     }     /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
     fprintf(ficresprobmorprev,"\n");    strcat(fileresprobmorprev,digit); /* Tvar to be done */
     strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
     fprintf(ficresvij,"%.0f ",age );    strcat(fileresprobmorprev,fileres);
     for(i=1; i<=nlstate;i++)    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
       for(j=1; j<=nlstate;j++){      printf("Problem with resultfile: %s\n", fileresprobmorprev);
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
       }    }
     fprintf(ficresvij,"\n");    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     free_matrix(gp,0,nhstepm,1,nlstate);   
     free_matrix(gm,0,nhstepm,1,nlstate);    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);    pstamp(ficresprobmorprev);
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
   } /* End age */    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
   free_vector(gpp,nlstate+1,nlstate+ndeath);      fprintf(ficresprobmorprev," p.%-d SE",j);
   free_vector(gmp,nlstate+1,nlstate+ndeath);      for(i=1; i<=nlstate;i++)
   free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
   free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/    }  
   fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");    fprintf(ficresprobmorprev,"\n");
   /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */    fprintf(ficgp,"\n# Routine varevsij");
   fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
 /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
 /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
 /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */  /*   } */
   fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));    pstamp(ficresvij);
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
   fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));    if(popbased==1)
   fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);      fprintf(ficresvij,"the age specific prevalence observed in the population i.e cross-sectionally\n in each health state (popbased=1)");
   /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);    else
 */      fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
 /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */    fprintf(ficresvij,"# Age");
   fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);    for(i=1; i<=nlstate;i++)
       for(j=1; j<=nlstate;j++)
   free_vector(xp,1,npar);        fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
   free_matrix(doldm,1,nlstate,1,nlstate);    fprintf(ficresvij,"\n");
   free_matrix(dnewm,1,nlstate,1,npar);  
   free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);    xp=vector(1,npar);
   free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);    dnewm=matrix(1,nlstate,1,npar);
   free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);    doldm=matrix(1,nlstate,1,nlstate);
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
   fclose(ficresprobmorprev);    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   fflush(ficgp);  
   fflush(fichtm);     gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
 }  /* end varevsij */    gpp=vector(nlstate+1,nlstate+ndeath);
     gmp=vector(nlstate+1,nlstate+ndeath);
 /************ Variance of prevlim ******************/    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])   
 {    if(estepm < stepm){
   /* Variance of prevalence limit */      printf ("Problem %d lower than %d\n",estepm, stepm);
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/    }
   double **newm;    else  hstepm=estepm;  
   double **dnewm,**doldm;    /* For example we decided to compute the life expectancy with the smallest unit */
   int i, j, nhstepm, hstepm;    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.
   int k, cptcode;       nhstepm is the number of hstepm from age to agelim
   double *xp;       nstepm is the number of stepm from age to agelin.
   double *gp, *gm;       Look at hpijx to understand the reason of that which relies in memory size
   double **gradg, **trgradg;       and note for a fixed period like k years */
   double age,agelim;    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   int theta;       survival function given by stepm (the optimization length). Unfortunately it
   fprintf(ficresvpl, "#Local time at start: %s", strstart);        means that if the survival funtion is printed every two years of age and if
   fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");       you sum them up and add 1 year (area under the trapezoids) you won't get the same
   fprintf(ficresvpl,"# Age");       results. So we changed our mind and took the option of the best precision.
   for(i=1; i<=nlstate;i++)    */
       fprintf(ficresvpl," %1d-%1d",i,i);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */
   fprintf(ficresvpl,"\n");    agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   xp=vector(1,npar);      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */
   dnewm=matrix(1,nlstate,1,npar);      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   doldm=matrix(1,nlstate,1,nlstate);      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
   hstepm=1*YEARM; /* Every year of age */      gp=matrix(0,nhstepm,1,nlstate);
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */       gm=matrix(0,nhstepm,1,nlstate);
   agelim = AGESUP;  
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */  
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */       for(theta=1; theta <=npar; theta++){
     if (stepm >= YEARM) hstepm=1;        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */          xp[i] = x[i] + (i==theta ?delti[theta]:0);
     gradg=matrix(1,npar,1,nlstate);        }
     gp=vector(1,nlstate);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
     gm=vector(1,nlstate);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   
     for(theta=1; theta <=npar; theta++){        if (popbased==1) {
       for(i=1; i<=npar; i++){ /* Computes gradient */          if(mobilav ==0){
         xp[i] = x[i] + (i==theta ?delti[theta]:0);            for(i=1; i<=nlstate;i++)
       }              prlim[i][i]=probs[(int)age][i][ij];
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          }else{ /* mobilav */
       for(i=1;i<=nlstate;i++)            for(i=1; i<=nlstate;i++)
         gp[i] = prlim[i][i];              prlim[i][i]=mobaverage[(int)age][i][ij];
               }
       for(i=1; i<=npar; i++) /* Computes gradient */        }
         xp[i] = x[i] - (i==theta ?delti[theta]:0);   
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        for(j=1; j<= nlstate; j++){
       for(i=1;i<=nlstate;i++)          for(h=0; h<=nhstepm; h++){
         gm[i] = prlim[i][i];            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
               gp[h][j] += prlim[i][i]*p3mat[i][j][h];
       for(i=1;i<=nlstate;i++)          }
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];        }
     } /* End theta */        /* This for computing probability of death (h=1 means
            computed over hstepm matrices product = hstepm*stepm months)
     trgradg =matrix(1,nlstate,1,npar);           as a weighted average of prlim.
         */
     for(j=1; j<=nlstate;j++)        for(j=nlstate+1;j<=nlstate+ndeath;j++){
       for(theta=1; theta <=npar; theta++)          for(i=1,gpp[j]=0.; i<= nlstate; i++)
         trgradg[j][theta]=gradg[theta][j];            gpp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
     for(i=1;i<=nlstate;i++)        /* end probability of death */
       varpl[i][(int)age] =0.;  
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
     for(i=1;i<=nlstate;i++)        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
    
     fprintf(ficresvpl,"%.0f ",age );        if (popbased==1) {
     for(i=1; i<=nlstate;i++)          if(mobilav ==0){
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));            for(i=1; i<=nlstate;i++)
     fprintf(ficresvpl,"\n");              prlim[i][i]=probs[(int)age][i][ij];
     free_vector(gp,1,nlstate);          }else{ /* mobilav */
     free_vector(gm,1,nlstate);            for(i=1; i<=nlstate;i++)
     free_matrix(gradg,1,npar,1,nlstate);              prlim[i][i]=mobaverage[(int)age][i][ij];
     free_matrix(trgradg,1,nlstate,1,npar);          }
   } /* End age */        }
   
   free_vector(xp,1,npar);        for(j=1; j<= nlstate; j++){
   free_matrix(doldm,1,nlstate,1,npar);          for(h=0; h<=nhstepm; h++){
   free_matrix(dnewm,1,nlstate,1,nlstate);            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
               gm[h][j] += prlim[i][i]*p3mat[i][j][h];
 }          }
         }
 /************ Variance of one-step probabilities  ******************/        /* This for computing probability of death (h=1 means
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])           computed over hstepm matrices product = hstepm*stepm months)
 {           as a weighted average of prlim.
   int i, j=0,  i1, k1, l1, t, tj;        */
   int k2, l2, j1,  z1;        for(j=nlstate+1;j<=nlstate+ndeath;j++){
   int k=0,l, cptcode;          for(i=1,gmp[j]=0.; i<= nlstate; i++)
   int first=1, first1;           gmp[j] += prlim[i][i]*p3mat[i][j][1];
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;        }    
   double **dnewm,**doldm;        /* end probability of death */
   double *xp;  
   double *gp, *gm;        for(j=1; j<= nlstate; j++) /* vareij */
   double **gradg, **trgradg;          for(h=0; h<=nhstepm; h++){
   double **mu;            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
   double age,agelim, cov[NCOVMAX];          }
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */  
   int theta;        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
   char fileresprob[FILENAMELENGTH];          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
   char fileresprobcov[FILENAMELENGTH];        }
   char fileresprobcor[FILENAMELENGTH];  
       } /* End theta */
   double ***varpij;  
       trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
   strcpy(fileresprob,"prob");   
   strcat(fileresprob,fileres);      for(h=0; h<=nhstepm; h++) /* veij */
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {        for(j=1; j<=nlstate;j++)
     printf("Problem with resultfile: %s\n", fileresprob);          for(theta=1; theta <=npar; theta++)
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);            trgradg[h][j][theta]=gradg[h][theta][j];
   }  
   strcpy(fileresprobcov,"probcov");       for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
   strcat(fileresprobcov,fileres);        for(theta=1; theta <=npar; theta++)
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {          trgradgp[j][theta]=gradgp[theta][j];
     printf("Problem with resultfile: %s\n", fileresprobcov);   
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);  
   }      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   strcpy(fileresprobcor,"probcor");       for(i=1;i<=nlstate;i++)
   strcat(fileresprobcor,fileres);        for(j=1;j<=nlstate;j++)
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {          vareij[i][j][(int)age] =0.;
     printf("Problem with resultfile: %s\n", fileresprobcor);  
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);      for(h=0;h<=nhstepm;h++){
   }        for(k=0;k<=nhstepm;k++){
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
   fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);          for(i=1;i<=nlstate;i++)
   fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);            for(j=1;j<=nlstate;j++)
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
   fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);        }
   fprintf(ficresprob, "#Local time at start: %s", strstart);      }
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");   
   fprintf(ficresprob,"# Age");      /* pptj */
   fprintf(ficresprobcov, "#Local time at start: %s", strstart);      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
   fprintf(ficresprobcov,"# Age");      for(j=nlstate+1;j<=nlstate+ndeath;j++)
   fprintf(ficresprobcor, "#Local time at start: %s", strstart);        for(i=nlstate+1;i<=nlstate+ndeath;i++)
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");          varppt[j][i]=doldmp[j][i];
   fprintf(ficresprobcov,"# Age");      /* end ppptj */
       /*  x centered again */
       hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
   for(i=1; i<=nlstate;i++)      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
     for(j=1; j<=(nlstate+ndeath);j++){   
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);      if (popbased==1) {
       fprintf(ficresprobcov," p%1d-%1d ",i,j);        if(mobilav ==0){
       fprintf(ficresprobcor," p%1d-%1d ",i,j);          for(i=1; i<=nlstate;i++)
     }              prlim[i][i]=probs[(int)age][i][ij];
  /* fprintf(ficresprob,"\n");        }else{ /* mobilav */
   fprintf(ficresprobcov,"\n");          for(i=1; i<=nlstate;i++)
   fprintf(ficresprobcor,"\n");            prlim[i][i]=mobaverage[(int)age][i][ij];
  */        }
  xp=vector(1,npar);      }
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);               
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));      /* This for computing probability of death (h=1 means
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);         computed over hstepm (estepm) matrices product = hstepm*stepm months)
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);         as a weighted average of prlim.
   first=1;      */
   fprintf(ficgp,"\n# Routine varprob");      for(j=nlstate+1;j<=nlstate+ndeath;j++){
   fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");        for(i=1,gmp[j]=0.;i<= nlstate; i++)
   fprintf(fichtm,"\n");          gmp[j] += prlim[i][i]*p3mat[i][j][1];
       }    
   fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);      /* end probability of death */
   fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\  
   file %s<br>\n",optionfilehtmcov);      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
   fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
 and drawn. It helps understanding how is the covariance between two incidences.\        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
  They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");        for(i=1; i<=nlstate;i++){
   fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
 It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \        }
 would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \      }
 standard deviations wide on each axis. <br>\      fprintf(ficresprobmorprev,"\n");
  Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\  
  and made the appropriate rotation to look at the uncorrelated principal directions.<br>\      fprintf(ficresvij,"%.0f ",age );
 To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");      for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++){
   cov[1]=1;          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
   tj=cptcoveff;        }
   if (cptcovn<1) {tj=1;ncodemax[1]=1;}      fprintf(ficresvij,"\n");
   j1=0;      free_matrix(gp,0,nhstepm,1,nlstate);
   for(t=1; t<=tj;t++){      free_matrix(gm,0,nhstepm,1,nlstate);
     for(i1=1; i1<=ncodemax[t];i1++){       free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
       j1++;      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
       if  (cptcovn>0) {      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         fprintf(ficresprob, "\n#********** Variable ");     } /* End age */
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    free_vector(gpp,nlstate+1,nlstate+ndeath);
         fprintf(ficresprob, "**********\n#\n");    free_vector(gmp,nlstate+1,nlstate+ndeath);
         fprintf(ficresprobcov, "\n#********** Variable ");     free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
         fprintf(ficresprobcov, "**********\n#\n");    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
             /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
         fprintf(ficgp, "\n#********** Variable ");     fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
         fprintf(ficgp, "**********\n#\n");  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
           /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
             fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
         fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable ");     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
         for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
         fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
             fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
         fprintf(ficresprobcor, "\n#********** Variable ");        /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);  */
         fprintf(ficresprobcor, "**********\n#");      /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
       }    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
         
       for (age=bage; age<=fage; age ++){     free_vector(xp,1,npar);
         cov[2]=age;    free_matrix(doldm,1,nlstate,1,nlstate);
         for (k=1; k<=cptcovn;k++) {    free_matrix(dnewm,1,nlstate,1,npar);
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
         }    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
         for (k=1; k<=cptcovprod;k++)    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    fclose(ficresprobmorprev);
             fflush(ficgp);
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));    fflush(fichtm);
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);  }  /* end varevsij */
         gp=vector(1,(nlstate)*(nlstate+ndeath));  
         gm=vector(1,(nlstate)*(nlstate+ndeath));  /************ Variance of prevlim ******************/
       void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
         for(theta=1; theta <=npar; theta++){  {
           for(i=1; i<=npar; i++)    /* Variance of prevalence limit */
             xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
               double **newm;
           pmij(pmmij,cov,ncovmodel,xp,nlstate);    double **dnewm,**doldm;
               int i, j, nhstepm, hstepm;
           k=0;    int k, cptcode;
           for(i=1; i<= (nlstate); i++){    double *xp;
             for(j=1; j<=(nlstate+ndeath);j++){    double *gp, *gm;
               k=k+1;    double **gradg, **trgradg;
               gp[k]=pmmij[i][j];    double age,agelim;
             }    int theta;
           }   
               pstamp(ficresvpl);
           for(i=1; i<=npar; i++)    fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
             xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);    fprintf(ficresvpl,"# Age");
         for(i=1; i<=nlstate;i++)
           pmij(pmmij,cov,ncovmodel,xp,nlstate);        fprintf(ficresvpl," %1d-%1d",i,i);
           k=0;    fprintf(ficresvpl,"\n");
           for(i=1; i<=(nlstate); i++){  
             for(j=1; j<=(nlstate+ndeath);j++){    xp=vector(1,npar);
               k=k+1;    dnewm=matrix(1,nlstate,1,npar);
               gm[k]=pmmij[i][j];    doldm=matrix(1,nlstate,1,nlstate);
             }   
           }    hstepm=1*YEARM; /* Every year of age */
          hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)     agelim = AGESUP;
             gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];      for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
         }      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */
       if (stepm >= YEARM) hstepm=1;
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
           for(theta=1; theta <=npar; theta++)      gradg=matrix(1,npar,1,nlstate);
             trgradg[j][theta]=gradg[theta][j];      gp=vector(1,nlstate);
               gm=vector(1,nlstate);
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);   
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);      for(theta=1; theta <=npar; theta++){
         free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));        for(i=1; i<=npar; i++){ /* Computes gradient */
         free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));          xp[i] = x[i] + (i==theta ?delti[theta]:0);
         free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);        }
         free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
         pmij(pmmij,cov,ncovmodel,x,nlstate);          gp[i] = prlim[i][i];
              
         k=0;        for(i=1; i<=npar; i++) /* Computes gradient */
         for(i=1; i<=(nlstate); i++){          xp[i] = x[i] - (i==theta ?delti[theta]:0);
           for(j=1; j<=(nlstate+ndeath);j++){        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
             k=k+1;        for(i=1;i<=nlstate;i++)
             mu[k][(int) age]=pmmij[i][j];          gm[i] = prlim[i][i];
           }  
         }        for(i=1;i<=nlstate;i++)
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)      } /* End theta */
             varpij[i][j][(int)age] = doldm[i][j];  
       trgradg =matrix(1,nlstate,1,npar);
         /*printf("\n%d ",(int)age);  
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){      for(j=1; j<=nlstate;j++)
           printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));        for(theta=1; theta <=npar; theta++)
           fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));          trgradg[j][theta]=gradg[theta][j];
           }*/  
       for(i=1;i<=nlstate;i++)
         fprintf(ficresprob,"\n%d ",(int)age);        varpl[i][(int)age] =0.;
         fprintf(ficresprobcov,"\n%d ",(int)age);      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
         fprintf(ficresprobcor,"\n%d ",(int)age);      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
       for(i=1;i<=nlstate;i++)
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));  
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){      fprintf(ficresvpl,"%.0f ",age );
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);      for(i=1; i<=nlstate;i++)
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
         }      fprintf(ficresvpl,"\n");
         i=0;      free_vector(gp,1,nlstate);
         for (k=1; k<=(nlstate);k++){      free_vector(gm,1,nlstate);
           for (l=1; l<=(nlstate+ndeath);l++){       free_matrix(gradg,1,npar,1,nlstate);
             i=i++;      free_matrix(trgradg,1,nlstate,1,npar);
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);    } /* End age */
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);  
             for (j=1; j<=i;j++){    free_vector(xp,1,npar);
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);    free_matrix(doldm,1,nlstate,1,npar);
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));    free_matrix(dnewm,1,nlstate,1,nlstate);
             }  
           }  }
         }/* end of loop for state */  
       } /* end of loop for age */  /************ Variance of one-step probabilities  ******************/
   void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
       /* Confidence intervalle of pij  */  {
       /*    int i, j=0,  i1, k1, l1, t, tj;
         fprintf(ficgp,"\nset noparametric;unset label");    int k2, l2, j1,  z1;
         fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");    int k=0,l, cptcode;
         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");    int first=1, first1;
         fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
         fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);    double **dnewm,**doldm;
         fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);    double *xp;
         fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);    double *gp, *gm;
       */    double **gradg, **trgradg;
     double **mu;
       /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/    double age,agelim, cov[NCOVMAX];
       first1=1;    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
       for (k2=1; k2<=(nlstate);k2++){    int theta;
         for (l2=1; l2<=(nlstate+ndeath);l2++){     char fileresprob[FILENAMELENGTH];
           if(l2==k2) continue;    char fileresprobcov[FILENAMELENGTH];
           j=(k2-1)*(nlstate+ndeath)+l2;    char fileresprobcor[FILENAMELENGTH];
           for (k1=1; k1<=(nlstate);k1++){  
             for (l1=1; l1<=(nlstate+ndeath);l1++){     double ***varpij;
               if(l1==k1) continue;  
               i=(k1-1)*(nlstate+ndeath)+l1;    strcpy(fileresprob,"prob");
               if(i<=j) continue;    strcat(fileresprob,fileres);
               for (age=bage; age<=fage; age ++){     if((ficresprob=fopen(fileresprob,"w"))==NULL) {
                 if ((int)age %5==0){      printf("Problem with resultfile: %s\n", fileresprob);
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;    }
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;    strcpy(fileresprobcov,"probcov");
                   mu1=mu[i][(int) age]/stepm*YEARM ;    strcat(fileresprobcov,fileres);
                   mu2=mu[j][(int) age]/stepm*YEARM;    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
                   c12=cv12/sqrt(v1*v2);      printf("Problem with resultfile: %s\n", fileresprobcov);
                   /* Computing eigen value of matrix of covariance */      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
                   lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;    }
                   lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;    strcpy(fileresprobcor,"probcor");
                   /* Eigen vectors */    strcat(fileresprobcor,fileres);
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
                   /*v21=sqrt(1.-v11*v11); *//* error */      printf("Problem with resultfile: %s\n", fileresprobcor);
                   v21=(lc1-v1)/cv12*v11;      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
                   v12=-v21;    }
                   v22=v11;    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
                   tnalp=v21/v11;    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
                   if(first1==1){    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
                     first1=0;    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
                     printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
                   }    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
                   fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);    pstamp(ficresprob);
                   /*printf(fignu*/    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */    fprintf(ficresprob,"# Age");
                   /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */    pstamp(ficresprobcov);
                   if(first==1){    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
                     first=0;    fprintf(ficresprobcov,"# Age");
                     fprintf(ficgp,"\nset parametric;unset label");    pstamp(ficresprobcor);
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
                     fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");    fprintf(ficresprobcor,"# Age");
                     fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\  
  :<a href=\"%s%d%1d%1d-%1d%1d.png\">\  
 %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\    for(i=1; i<=nlstate;i++)
                             subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\      for(j=1; j<=(nlstate+ndeath);j++){
                             subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
                     fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);        fprintf(ficresprobcov," p%1d-%1d ",i,j);
                     fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);        fprintf(ficresprobcor," p%1d-%1d ",i,j);
                     fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);      }  
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);   /* fprintf(ficresprob,"\n");
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);    fprintf(ficresprobcov,"\n");
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\    fprintf(ficresprobcor,"\n");
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\   */
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));   xp=vector(1,npar);
                   }else{    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
                     first=0;    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
                     fprintf(fichtmcov," %d (%.3f),",(int) age, c12);    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);    first=1;
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\    fprintf(ficgp,"\n# Routine varprob");
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));    fprintf(fichtm,"\n");
                   }/* if first */  
                 } /* age mod 5 */    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
               } /* end loop age */    fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
               fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);    file %s<br>\n",optionfilehtmcov);
               first=1;    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
             } /*l12 */  and drawn. It helps understanding how is the covariance between two incidences.\
           } /* k12 */   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
         } /*l1 */    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
       }/* k1 */  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
     } /* loop covariates */  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
   }  standard deviations wide on each axis. <br>\
   free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
   free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
   free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
   free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);  
   free_vector(xp,1,npar);    cov[1]=1;
   fclose(ficresprob);    tj=cptcoveff;
   fclose(ficresprobcov);    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
   fclose(ficresprobcor);    j1=0;
   fflush(ficgp);    for(t=1; t<=tj;t++){
   fflush(fichtmcov);      for(i1=1; i1<=ncodemax[t];i1++){
 }        j1++;
         if  (cptcovn>0) {
           fprintf(ficresprob, "\n#********** Variable ");
 /******************* Printing html file ***********/          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \          fprintf(ficresprob, "**********\n#\n");
                   int lastpass, int stepm, int weightopt, char model[],\          fprintf(ficresprobcov, "\n#********** Variable ");
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
                   int popforecast, int estepm ,\          fprintf(ficresprobcov, "**********\n#\n");
                   double jprev1, double mprev1,double anprev1, \         
                   double jprev2, double mprev2,double anprev2){          fprintf(ficgp, "\n#********** Variable ");
   int jj1, k1, i1, cpt;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficgp, "**********\n#\n");
    fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \         
    <li><a href='#secondorder'>Result files (second order (variance)</a>\n \         
 </ul>");          fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable ");
    fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",          fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
            jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));         
    fprintf(fichtm,"\          fprintf(ficresprobcor, "\n#********** Variable ");    
  - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
            stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));          fprintf(ficresprobcor, "**********\n#");    
    fprintf(fichtm,"\        }
  - Stable prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",       
            subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));        for (age=bage; age<=fage; age ++){
    fprintf(fichtm,"\          cov[2]=age;
  - Life expectancies by age and initial health status (estepm=%2d months): \          for (k=1; k<=cptcovn;k++) {
    <a href=\"%s\">%s</a> <br>\n</li>",            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
            estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));          }
           for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
 fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");          for (k=1; k<=cptcovprod;k++)
             cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
  m=cptcoveff;         
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
           trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
  jj1=0;          gp=vector(1,(nlstate)*(nlstate+ndeath));
  for(k1=1; k1<=m;k1++){          gm=vector(1,(nlstate)*(nlstate+ndeath));
    for(i1=1; i1<=ncodemax[k1];i1++){     
      jj1++;          for(theta=1; theta <=npar; theta++){
      if (cptcovn > 0) {            for(i=1; i<=npar; i++)
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
        for (cpt=1; cpt<=cptcoveff;cpt++)            
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);            pmij(pmmij,cov,ncovmodel,xp,nlstate);
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");           
      }            k=0;
      /* Pij */            for(i=1; i<= (nlstate); i++){
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: %s%d1.png<br> \              for(j=1; j<=(nlstate+ndeath);j++){
 <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);                     k=k+1;
      /* Quasi-incidences */                gp[k]=pmmij[i][j];
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\              }
  before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: %s%d2.png<br> \            }
 <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);            
        /* Stable prevalence in each health state */            for(i=1; i<=npar; i++)
        for(cpt=1; cpt<nlstate;cpt++){              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
          fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \     
 <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);            pmij(pmmij,cov,ncovmodel,xp,nlstate);
        }            k=0;
      for(cpt=1; cpt<=nlstate;cpt++) {            for(i=1; i<=(nlstate); i++){
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): %s%d%d.png <br> \              for(j=1; j<=(nlstate+ndeath);j++){
 <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);                k=k+1;
      }                gm[k]=pmmij[i][j];
    } /* end i1 */              }
  }/* End k1 */            }
  fprintf(fichtm,"</ul>");       
             for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)
               gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
  fprintf(fichtm,"\          }
 \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\  
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
             for(theta=1; theta <=npar; theta++)
  fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",              trgradg[j][theta]=gradg[theta][j];
          subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));         
  fprintf(fichtm,"\          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);
  - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
          subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
  fprintf(fichtm,"\          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
  - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
          subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));  
  fprintf(fichtm,"\          pmij(pmmij,cov,ncovmodel,x,nlstate);
  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"%s\">%s</a><br>\n",         
          estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));          k=0;
  fprintf(fichtm,"\          for(i=1; i<=(nlstate); i++){
  - Health expectancies with their variances (no covariance): <a href=\"%s\">%s</a> <br>\n",            for(j=1; j<=(nlstate+ndeath);j++){
          subdirf2(fileres,"t"),subdirf2(fileres,"t"));              k=k+1;
  fprintf(fichtm,"\              mu[k][(int) age]=pmmij[i][j];
  - Standard deviation of stable prevalences: <a href=\"%s\">%s</a> <br>\n",\            }
          subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));          }
           for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
 /*  if(popforecast==1) fprintf(fichtm,"\n */            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
 /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */              varpij[i][j][(int)age] = doldm[i][j];
 /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */  
 /*      <br>",fileres,fileres,fileres,fileres); */          /*printf("\n%d ",(int)age);
 /*  else  */            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
 /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
  fflush(fichtm);            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
  fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");            }*/
   
  m=cptcoveff;          fprintf(ficresprob,"\n%d ",(int)age);
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}          fprintf(ficresprobcov,"\n%d ",(int)age);
           fprintf(ficresprobcor,"\n%d ",(int)age);
  jj1=0;  
  for(k1=1; k1<=m;k1++){          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
    for(i1=1; i1<=ncodemax[k1];i1++){            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
      jj1++;          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
      if (cptcovn > 0) {            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
        for (cpt=1; cpt<=cptcoveff;cpt++)           }
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);          i=0;
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");          for (k=1; k<=(nlstate);k++){
      }            for (l=1; l<=(nlstate+ndeath);l++){
      for(cpt=1; cpt<=nlstate;cpt++) {              i=i++;
        fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
 prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
 <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);                for (j=1; j<=i;j++){
      }                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
      fprintf(fichtm,"\n<br>- Total life expectancy by age and \                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
 health expectancies in states (1) and (2): %s%d.png<br>\              }
 <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);            }
    } /* end i1 */          }/* end of loop for state */
  }/* End k1 */        } /* end of loop for age */
  fprintf(fichtm,"</ul>");  
  fflush(fichtm);        /* Confidence intervalle of pij  */
 }        /*
           fprintf(ficgp,"\nset noparametric;unset label");
 /******************* Gnuplot file **************/          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
 void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
   char dirfileres[132],optfileres[132];          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
   int ng;          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
 /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */        */
 /*     printf("Problem with file %s",optionfilegnuplot); */  
 /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
 /*   } */        first1=1;
         for (k2=1; k2<=(nlstate);k2++){
   /*#ifdef windows */          for (l2=1; l2<=(nlstate+ndeath);l2++){
   fprintf(ficgp,"cd \"%s\" \n",pathc);            if(l2==k2) continue;
     /*#endif */            j=(k2-1)*(nlstate+ndeath)+l2;
   m=pow(2,cptcoveff);            for (k1=1; k1<=(nlstate);k1++){
               for (l1=1; l1<=(nlstate+ndeath);l1++){
   strcpy(dirfileres,optionfilefiname);                if(l1==k1) continue;
   strcpy(optfileres,"vpl");                i=(k1-1)*(nlstate+ndeath)+l1;
  /* 1eme*/                if(i<=j) continue;
   for (cpt=1; cpt<= nlstate ; cpt ++) {                for (age=bage; age<=fage; age ++){
    for (k1=1; k1<= m ; k1 ++) {                  if ((int)age %5==0){
      fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
      fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
      fprintf(ficgp,"set xlabel \"Age\" \n\                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
 set ylabel \"Probability\" \n\                    mu1=mu[i][(int) age]/stepm*YEARM ;
 set ter png small\n\                    mu2=mu[j][(int) age]/stepm*YEARM;
 set size 0.65,0.65\n\                    c12=cv12/sqrt(v1*v2);
 plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);                    /* Computing eigen value of matrix of covariance */
                     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
      for (i=1; i<= nlstate ; i ++) {                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");                    /* Eigen vectors */
        else fprintf(ficgp," \%%*lf (\%%*lf)");                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
      }                    /*v21=sqrt(1.-v11*v11); *//* error */
      fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);                    v21=(lc1-v1)/cv12*v11;
      for (i=1; i<= nlstate ; i ++) {                    v12=-v21;
        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");                    v22=v11;
        else fprintf(ficgp," \%%*lf (\%%*lf)");                    tnalp=v21/v11;
      }                     if(first1==1){
      fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);                       first1=0;
      for (i=1; i<= nlstate ; i ++) {                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");                    }
        else fprintf(ficgp," \%%*lf (\%%*lf)");                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
      }                      /*printf(fignu*/
      fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
    }                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
   }                    if(first==1){
   /*2 eme*/                      first=0;
                         fprintf(ficgp,"\nset parametric;unset label");
   for (k1=1; k1<= m ; k1 ++) {                       fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
     fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);                      fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
        :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
     for (i=1; i<= nlstate+1 ; i ++) {  %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
       k=2*i;                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
       for (j=1; j<= nlstate+1 ; j ++) {                      fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");                      fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
         else fprintf(ficgp," \%%*lf (\%%*lf)");                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
       }                         fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
       for (j=1; j<= nlstate+1 ; j ++) {                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");                    }else{
         else fprintf(ficgp," \%%*lf (\%%*lf)");                      first=0;
       }                         fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
       fprintf(ficgp,"\" t\"\" w l 0,");                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
       for (j=1; j<= nlstate+1 ; j ++) {                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
         else fprintf(ficgp," \%%*lf (\%%*lf)");                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
       }                       }/* if first */
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");                  } /* age mod 5 */
       else fprintf(ficgp,"\" t\"\" w l 0,");                } /* end loop age */
     }                fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
   }                first=1;
                 } /*l12 */
   /*3eme*/            } /* k12 */
             } /*l1 */
   for (k1=1; k1<= m ; k1 ++) {         }/* k1 */
     for (cpt=1; cpt<= nlstate ; cpt ++) {      } /* loop covariates */
       k=2+nlstate*(2*cpt-2);    }
       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
       fprintf(ficgp,"set ter png small\n\    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
 set size 0.65,0.65\n\    free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
 plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);    free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);    free_vector(xp,1,npar);
         for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");    fclose(ficresprob);
         fprintf(ficgp,"\" t \"e%d1\" w l",cpt);    fclose(ficresprobcov);
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);    fclose(ficresprobcor);
         for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");    fflush(ficgp);
         fprintf(ficgp,"\" t \"e%d1\" w l",cpt);    fflush(fichtmcov);
           }
       */  
       for (i=1; i< nlstate ; i ++) {  
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);  /******************* Printing html file ***********/
           void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
       }                     int lastpass, int stepm, int weightopt, char model[],\
     }                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
   }                    int popforecast, int estepm ,\
                       double jprev1, double mprev1,double anprev1, \
   /* CV preval stable (period) */                    double jprev2, double mprev2,double anprev2){
   for (k1=1; k1<= m ; k1 ++) {     int jj1, k1, i1, cpt;
     for (cpt=1; cpt<=nlstate ; cpt ++) {  
       k=3;     fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);     <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\  </ul>");
 set ter png small\nset size 0.65,0.65\n\     fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
 unset log y\n\   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
 plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);             jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
            fprintf(fichtm,"\
       for (i=1; i< nlstate ; i ++)   - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
         fprintf(ficgp,"+$%d",k+i+1);             stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);     fprintf(fichtm,"\
          - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
       l=3+(nlstate+ndeath)*cpt;             subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
       fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);     fprintf(fichtm,"\
       for (i=1; i< nlstate ; i ++) {   - (a) Life expectancies by health status at initial age, (b) health expectancies by health status at initial age:  ei., eij . If one or more covariate are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
         l=3+(nlstate+ndeath)*cpt;     <a href=\"%s\">%s</a> <br>\n",
         fprintf(ficgp,"+$%d",l+i+1);             estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
       }     fprintf(fichtm,"\
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);      - Population projections by age and states: \
     }      <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
   }    
     fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   /* proba elementaires */  
   for(i=1,jk=1; i <=nlstate; i++){   m=cptcoveff;
     for(k=1; k <=(nlstate+ndeath); k++){   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
       if (k != i) {  
         for(j=1; j <=ncovmodel; j++){   jj1=0;
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);   for(k1=1; k1<=m;k1++){
           jk++;      for(i1=1; i1<=ncodemax[k1];i1++){
           fprintf(ficgp,"\n");       jj1++;
         }       if (cptcovn > 0) {
       }         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
     }         for (cpt=1; cpt<=cptcoveff;cpt++)
    }           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/       }
      for(jk=1; jk <=m; jk++) {       /* Pij */
        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng);        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d1.png\">%s%d1.png</a><br> \
        if (ng==2)  <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);    
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");       /* Quasi-incidences */
        else       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
          fprintf(ficgp,"\nset title \"Probability\"\n");   before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d2.png\">%s%d2.png</a><br> \
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);  <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);
        i=1;         /* Period (stable) prevalence in each health state */
        for(k2=1; k2<=nlstate; k2++) {         for(cpt=1; cpt<nlstate;cpt++){
          k3=i;           fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d%d.png\">%s%d%d.png</a><br> \
          for(k=1; k<=(nlstate+ndeath); k++) {  <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
            if (k != k2){         }
              if(ng==2)       for(cpt=1; cpt<=nlstate;cpt++) {
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);          fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
              else  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);       }
              ij=1;     } /* end i1 */
              for(j=3; j <=ncovmodel; j++) {   }/* End k1 */
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {   fprintf(fichtm,"</ul>");
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);  
                  ij++;  
                }   fprintf(fichtm,"\
                else  \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
              }  
              fprintf(ficgp,")/(1");   fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
                         subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
              for(k1=1; k1 <=nlstate; k1++){      fprintf(fichtm,"\
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);   - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
                ij=1;           subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
                for(j=3; j <=ncovmodel; j++){  
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {   fprintf(fichtm,"\
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);   - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
                    ij++;           subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
                  }   fprintf(fichtm,"\
                  else   - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);     <a href=\"%s\">%s</a> <br>\n</li>",
                }             estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
                fprintf(ficgp,")");   fprintf(fichtm,"\
              }   - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);     <a href=\"%s\">%s</a> <br>\n</li>",
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");             estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
              i=i+ncovmodel;   fprintf(fichtm,"\
            }   - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), eij are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences (i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
          } /* end k */           estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
        } /* end k2 */   fprintf(fichtm,"\
      } /* end jk */   - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors: <a href=\"%s\">%s</a> <br>\n",
    } /* end ng */           subdirf2(fileres,"t"),subdirf2(fileres,"t"));
    fflush(ficgp);    fprintf(fichtm,"\
 }  /* end gnuplot */   - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
            subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   
 /*************** Moving average **************/  /*  if(popforecast==1) fprintf(fichtm,"\n */
 int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   int i, cpt, cptcod;  /*      <br>",fileres,fileres,fileres,fileres); */
   int modcovmax =1;  /*  else  */
   int mobilavrange, mob;  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
   double age;   fflush(fichtm);
    fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   modcovmax=2*cptcoveff;/* Max number of modalities. We suppose   
                            a covariate has 2 modalities */   m=cptcoveff;
   if (cptcovn<1) modcovmax=1; /* At least 1 pass */   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
   if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){   jj1=0;
     if(mobilav==1) mobilavrange=5; /* default */   for(k1=1; k1<=m;k1++){
     else mobilavrange=mobilav;     for(i1=1; i1<=ncodemax[k1];i1++){
     for (age=bage; age<=fage; age++)       jj1++;
       for (i=1; i<=nlstate;i++)       if (cptcovn > 0) {
         for (cptcod=1;cptcod<=modcovmax;cptcod++)         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
           mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];         for (cpt=1; cpt<=cptcoveff;cpt++)
     /* We keep the original values on the extreme ages bage, fage and for            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
        fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        we use a 5 terms etc. until the borders are no more concerned.        }
     */        for(cpt=1; cpt<=nlstate;cpt++) {
     for (mob=3;mob <=mobilavrange;mob=mob+2){         fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
       for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){  prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
         for (i=1; i<=nlstate;i++){  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
           for (cptcod=1;cptcod<=modcovmax;cptcod++){       }
             mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];       fprintf(fichtm,"\n<br>- Total life expectancy by age and \
               for (cpt=1;cpt<=(mob-1)/2;cpt++){  health expectancies in states (1) and (2): %s%d.png<br>\
                 mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];  <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
                 mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];     } /* end i1 */
               }   }/* End k1 */
             mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;   fprintf(fichtm,"</ul>");
           }   fflush(fichtm);
         }  }
       }/* end age */  
     }/* end mob */  /******************* Gnuplot file **************/
   }else return -1;  void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   return 0;  
 }/* End movingaverage */    char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
 /************** Forecasting ******************/  /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
 prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){  /*     printf("Problem with file %s",optionfilegnuplot); */
   /* proj1, year, month, day of starting projection   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
      agemin, agemax range of age  /*   } */
      dateprev1 dateprev2 range of dates during which prevalence is computed  
      anproj2 year of en of projection (same day and month as proj1).    /*#ifdef windows */
   */    fprintf(ficgp,"cd \"%s\" \n",pathc);
   int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;      /*#endif */
   int *popage;    m=pow(2,cptcoveff);
   double agec; /* generic age */  
   double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;    strcpy(dirfileres,optionfilefiname);
   double *popeffectif,*popcount;    strcpy(optfileres,"vpl");
   double ***p3mat;   /* 1eme*/
   double ***mobaverage;    for (cpt=1; cpt<= nlstate ; cpt ++) {
   char fileresf[FILENAMELENGTH];     for (k1=1; k1<= m ; k1 ++) {
        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
   agelim=AGESUP;       fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
   prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);       fprintf(ficgp,"set xlabel \"Age\" \n\
    set ylabel \"Probability\" \n\
   strcpy(fileresf,"f");   set ter png small\n\
   strcat(fileresf,fileres);  set size 0.65,0.65\n\
   if((ficresf=fopen(fileresf,"w"))==NULL) {  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
     printf("Problem with forecast resultfile: %s\n", fileresf);  
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);       for (i=1; i<= nlstate ; i ++) {
   }         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
   printf("Computing forecasting: result on file '%s' \n", fileresf);         else fprintf(ficgp," \%%*lf (\%%*lf)");
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);       }
        fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
   if (cptcoveff==0) ncodemax[cptcoveff]=1;       for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
   if (mobilav!=0) {         else fprintf(ficgp," \%%*lf (\%%*lf)");
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);       }
     if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){       fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);       for (i=1; i<= nlstate ; i ++) {
       printf(" Error in movingaverage mobilav=%d\n",mobilav);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
     }         else fprintf(ficgp," \%%*lf (\%%*lf)");
   }       }  
        fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
   stepsize=(int) (stepm+YEARM-1)/YEARM;     }
   if (stepm<=12) stepsize=1;    }
   if(estepm < stepm){    /*2 eme*/
     printf ("Problem %d lower than %d\n",estepm, stepm);   
   }    for (k1=1; k1<= m ; k1 ++) {
   else  hstepm=estepm;         fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
   hstepm=hstepm/stepm;      
   yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and      for (i=1; i<= nlstate+1 ; i ++) {
                                fractional in yp1 */        k=2*i;
   anprojmean=yp;        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
   yp2=modf((yp1*12),&yp);        for (j=1; j<= nlstate+1 ; j ++) {
   mprojmean=yp;          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
   yp1=modf((yp2*30.5),&yp);          else fprintf(ficgp," \%%*lf (\%%*lf)");
   jprojmean=yp;        }  
   if(jprojmean==0) jprojmean=1;        if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
   if(mprojmean==0) jprojmean=1;        else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
   i1=cptcoveff;        for (j=1; j<= nlstate+1 ; j ++) {
   if (cptcovn < 1){i1=1;}          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
             else fprintf(ficgp," \%%*lf (\%%*lf)");
   fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2);         }  
           fprintf(ficgp,"\" t\"\" w l 0,");
   fprintf(ficresf,"#****** Routine prevforecast **\n");        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
 /*            if (h==(int)(YEARM*yearp)){ */          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
   for(cptcov=1, k=0;cptcov<=i1;cptcov++){          else fprintf(ficgp," \%%*lf (\%%*lf)");
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){        }  
       k=k+1;        if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
       fprintf(ficresf,"\n#******");        else fprintf(ficgp,"\" t\"\" w l 0,");
       for(j=1;j<=cptcoveff;j++) {      }
         fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    }
       }   
       fprintf(ficresf,"******\n");    /*3eme*/
       fprintf(ficresf,"# Covariate valuofcovar yearproj age");   
       for(j=1; j<=nlstate+ndeath;j++){     for (k1=1; k1<= m ; k1 ++) {
         for(i=1; i<=nlstate;i++)                    for (cpt=1; cpt<= nlstate ; cpt ++) {
           fprintf(ficresf," p%d%d",i,j);        /*       k=2+nlstate*(2*cpt-2); */
         fprintf(ficresf," p.%d",j);        k=2+(nlstate+1)*(cpt-1);
       }        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
       for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) {         fprintf(ficgp,"set ter png small\n\
         fprintf(ficresf,"\n");  set size 0.65,0.65\n\
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);     plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
         for (agec=fage; agec>=(ageminpar-1); agec--){           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           nhstepm=(int) rint((agelim-agec)*YEARM/stepm);           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           nhstepm = nhstepm/hstepm;           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           oldm=oldms;savm=savms;          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);           
                 */
           for (h=0; h<=nhstepm; h++){        for (i=1; i< nlstate ; i ++) {
             if (h*hstepm/YEARM*stepm ==yearp) {          fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
               fprintf(ficresf,"\n");          /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
               for(j=1;j<=cptcoveff;j++)          
                 fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        }
               fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);        fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
             }       }
             for(j=1; j<=nlstate+ndeath;j++) {    }
               ppij=0.;   
               for(i=1; i<=nlstate;i++) {    /* CV preval stable (period) */
                 if (mobilav==1)     for (k1=1; k1<= m ; k1 ++) {
                   ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];      for (cpt=1; cpt<=nlstate ; cpt ++) {
                 else {        k=3;
                   ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
                 }        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
                 if (h*hstepm/YEARM*stepm== yearp) {  set ter png small\nset size 0.65,0.65\n\
                   fprintf(ficresf," %.3f", p3mat[i][j][h]);  unset log y\n\
                 }  plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
               } /* end i */       
               if (h*hstepm/YEARM*stepm==yearp) {        for (i=1; i< nlstate ; i ++)
                 fprintf(ficresf," %.3f", ppij);          fprintf(ficgp,"+$%d",k+i+1);
               }        fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
             }/* end j */       
           } /* end h */        l=3+(nlstate+ndeath)*cpt;
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
         } /* end agec */        for (i=1; i< nlstate ; i ++) {
       } /* end yearp */          l=3+(nlstate+ndeath)*cpt;
     } /* end cptcod */          fprintf(ficgp,"+$%d",l+i+1);
   } /* end  cptcov */        }
                fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);  
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      }
     }  
   fclose(ficresf);   
 }    /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
 /************** Forecasting *****not tested NB*************/      for(k=1; k <=(nlstate+ndeath); k++){
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){        if (k != i) {
             for(j=1; j <=ncovmodel; j++){
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;            fprintf(ficgp,"p%d=%f ",jk,p[jk]);
   int *popage;            jk++;
   double calagedatem, agelim, kk1, kk2;            fprintf(ficgp,"\n");
   double *popeffectif,*popcount;          }
   double ***p3mat,***tabpop,***tabpopprev;        }
   double ***mobaverage;      }
   char filerespop[FILENAMELENGTH];     }
   
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);     for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);       for(jk=1; jk <=m; jk++) {
   agelim=AGESUP;         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng);
   calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;         if (ng==2)
              fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
   prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);         else
              fprintf(ficgp,"\nset title \"Probability\"\n");
            fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
   strcpy(filerespop,"pop");          i=1;
   strcat(filerespop,fileres);         for(k2=1; k2<=nlstate; k2++) {
   if((ficrespop=fopen(filerespop,"w"))==NULL) {           k3=i;
     printf("Problem with forecast resultfile: %s\n", filerespop);           for(k=1; k<=(nlstate+ndeath); k++) {
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);             if (k != k2){
   }               if(ng==2)
   printf("Computing forecasting: result on file '%s' \n", filerespop);                 fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);               else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
   if (cptcoveff==0) ncodemax[cptcoveff]=1;               ij=1;
                for(j=3; j <=ncovmodel; j++) {
   if (mobilav!=0) {                 if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);                   fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
     if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){                   ij++;
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);                 }
       printf(" Error in movingaverage mobilav=%d\n",mobilav);                 else
     }                   fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
   }               }
                fprintf(ficgp,")/(1");
   stepsize=(int) (stepm+YEARM-1)/YEARM;               
   if (stepm<=12) stepsize=1;               for(k1=1; k1 <=nlstate; k1++){  
                    fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
   agelim=AGESUP;                 ij=1;
                    for(j=3; j <=ncovmodel; j++){
   hstepm=1;                   if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
   hstepm=hstepm/stepm;                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                        ij++;
   if (popforecast==1) {                   }
     if((ficpop=fopen(popfile,"r"))==NULL) {                   else
       printf("Problem with population file : %s\n",popfile);exit(0);                     fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
       fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);                 }
     }                  fprintf(ficgp,")");
     popage=ivector(0,AGESUP);               }
     popeffectif=vector(0,AGESUP);               fprintf(ficgp,") t \"p%d%d\" ", k2,k);
     popcount=vector(0,AGESUP);               if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                    i=i+ncovmodel;
     i=1;                }
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;           } /* end k */
             } /* end k2 */
     imx=i;       } /* end jk */
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];     } /* end ng */
   }     fflush(ficgp);
   }  /* end gnuplot */
   for(cptcov=1,k=0;cptcov<=i2;cptcov++){  
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){  
       k=k+1;  /*************** Moving average **************/
       fprintf(ficrespop,"\n#******");  int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
       for(j=1;j<=cptcoveff;j++) {  
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    int i, cpt, cptcod;
       }    int modcovmax =1;
       fprintf(ficrespop,"******\n");    int mobilavrange, mob;
       fprintf(ficrespop,"# Age");    double age;
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);  
       if (popforecast==1)  fprintf(ficrespop," [Population]");    modcovmax=2*cptcoveff;/* Max number of modalities. We suppose
                                    a covariate has 2 modalities */
       for (cpt=0; cpt<=0;cpt++) {     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);     
             if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
         for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){       if(mobilav==1) mobilavrange=5; /* default */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);       else mobilavrange=mobilav;
           nhstepm = nhstepm/hstepm;       for (age=bage; age<=fage; age++)
                   for (i=1; i<=nlstate;i++)
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          for (cptcod=1;cptcod<=modcovmax;cptcod++)
           oldm=oldms;savm=savms;            mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        /* We keep the original values on the extreme ages bage, fage and for
                  fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
           for (h=0; h<=nhstepm; h++){         we use a 5 terms etc. until the borders are no more concerned.
             if (h==(int) (calagedatem+YEARM*cpt)) {      */
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);      for (mob=3;mob <=mobilavrange;mob=mob+2){
             }         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
             for(j=1; j<=nlstate+ndeath;j++) {          for (i=1; i<=nlstate;i++){
               kk1=0.;kk2=0;            for (cptcod=1;cptcod<=modcovmax;cptcod++){
               for(i=1; i<=nlstate;i++) {                            mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 if (mobilav==1)                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];                  mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                 else {                  mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];                }
                 }              mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
               }            }
               if (h==(int)(calagedatem+12*cpt)){          }
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;        }/* end age */
                   /*fprintf(ficrespop," %.3f", kk1);      }/* end mob */
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/    }else return -1;
               }    return 0;
             }  }/* End movingaverage */
             for(i=1; i<=nlstate;i++){  
               kk1=0.;  
                 for(j=1; j<=nlstate;j++){  /************** Forecasting ******************/
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
                 }    /* proj1, year, month, day of starting projection
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];       agemin, agemax range of age
             }       dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
             if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++)     */
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);    int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
           }    int *popage;
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    double agec; /* generic age */
         }    double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
       }    double *popeffectif,*popcount;
      double ***p3mat;
   /******/    double ***mobaverage;
     char fileresf[FILENAMELENGTH];
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {   
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);       agelim=AGESUP;
         for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    
           nhstepm = nhstepm/hstepm;     strcpy(fileresf,"f");
               strcat(fileresf,fileres);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    if((ficresf=fopen(fileresf,"w"))==NULL) {
           oldm=oldms;savm=savms;      printf("Problem with forecast resultfile: %s\n", fileresf);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
           for (h=0; h<=nhstepm; h++){    }
             if (h==(int) (calagedatem+YEARM*cpt)) {    printf("Computing forecasting: result on file '%s' \n", fileresf);
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
             }   
             for(j=1; j<=nlstate+ndeath;j++) {    if (cptcoveff==0) ncodemax[cptcoveff]=1;
               kk1=0.;kk2=0;  
               for(i=1; i<=nlstate;i++) {                  if (mobilav!=0) {
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];          mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
               }      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
               if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);                fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
             }        printf(" Error in movingaverage mobilav=%d\n",mobilav);
           }      }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    }
         }  
       }    stepsize=(int) (stepm+YEARM-1)/YEARM;
    }     if (stepm<=12) stepsize=1;
   }    if(estepm < stepm){
        printf ("Problem %d lower than %d\n",estepm, stepm);
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    }
     else  hstepm=estepm;  
   if (popforecast==1) {  
     free_ivector(popage,0,AGESUP);    hstepm=hstepm/stepm;
     free_vector(popeffectif,0,AGESUP);    yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
     free_vector(popcount,0,AGESUP);                                 fractional in yp1 */
   }    anprojmean=yp;
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    yp2=modf((yp1*12),&yp);
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    mprojmean=yp;
   fclose(ficrespop);    yp1=modf((yp2*30.5),&yp);
 } /* End of popforecast */    jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
 int fileappend(FILE *fichier, char *optionfich)    if(mprojmean==0) jprojmean=1;
 {  
   if((fichier=fopen(optionfich,"a"))==NULL) {    i1=cptcoveff;
     printf("Problem with file: %s\n", optionfich);    if (cptcovn < 1){i1=1;}
     fprintf(ficlog,"Problem with file: %s\n", optionfich);   
     return (0);    fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2);
   }   
   fflush(fichier);    fprintf(ficresf,"#****** Routine prevforecast **\n");
   return (1);  
 }  /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
 /**************** function prwizard **********************/        k=k+1;
 void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)        fprintf(ficresf,"\n#******");
 {        for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
   /* Wizard to print covariance matrix template */        }
         fprintf(ficresf,"******\n");
   char ca[32], cb[32], cc[32];        fprintf(ficresf,"# Covariate valuofcovar yearproj age");
   int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;        for(j=1; j<=nlstate+ndeath;j++){
   int numlinepar;          for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
   printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");          fprintf(ficresf," p.%d",j);
   fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");        }
   for(i=1; i <=nlstate; i++){        for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) {
     jj=0;          fprintf(ficresf,"\n");
     for(j=1; j <=nlstate+ndeath; j++){          fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);  
       if(j==i) continue;  
       jj++;          for (agec=fage; agec>=(ageminpar-1); agec--){
       /*ca[0]= k+'a'-1;ca[1]='\0';*/            nhstepm=(int) rint((agelim-agec)*YEARM/stepm);
       printf("%1d%1d",i,j);            nhstepm = nhstepm/hstepm;
       fprintf(ficparo,"%1d%1d",i,j);            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       for(k=1; k<=ncovmodel;k++){            oldm=oldms;savm=savms;
         /*        printf(" %lf",param[i][j][k]); */            hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
         /*        fprintf(ficparo," %lf",param[i][j][k]); */         
         printf(" 0.");            for (h=0; h<=nhstepm; h++){
         fprintf(ficparo," 0.");              if (h*hstepm/YEARM*stepm ==yearp) {
       }                fprintf(ficresf,"\n");
       printf("\n");                for(j=1;j<=cptcoveff;j++)
       fprintf(ficparo,"\n");                  fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
     }                fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
   }              }
   printf("# Scales (for hessian or gradient estimation)\n");              for(j=1; j<=nlstate+ndeath;j++) {
   fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");                ppij=0.;
   npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/                 for(i=1; i<=nlstate;i++) {
   for(i=1; i <=nlstate; i++){                  if (mobilav==1)
     jj=0;                    ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
     for(j=1; j <=nlstate+ndeath; j++){                  else {
       if(j==i) continue;                    ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
       jj++;                  }
       fprintf(ficparo,"%1d%1d",i,j);                  if (h*hstepm/YEARM*stepm== yearp) {
       printf("%1d%1d",i,j);                    fprintf(ficresf," %.3f", p3mat[i][j][h]);
       fflush(stdout);                  }
       for(k=1; k<=ncovmodel;k++){                } /* end i */
         /*      printf(" %le",delti3[i][j][k]); */                if (h*hstepm/YEARM*stepm==yearp) {
         /*      fprintf(ficparo," %le",delti3[i][j][k]); */                  fprintf(ficresf," %.3f", ppij);
         printf(" 0.");                }
         fprintf(ficparo," 0.");              }/* end j */
       }            } /* end h */
       numlinepar++;            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       printf("\n");          } /* end agec */
       fprintf(ficparo,"\n");        } /* end yearp */
     }      } /* end cptcod */
   }    } /* end  cptcov */
   printf("# Covariance matrix\n");         
 /* # 121 Var(a12)\n\ */    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 /* # 122 Cov(b12,a12) Var(b12)\n\ */  
 /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */    fclose(ficresf);
 /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */  }
 /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */  
 /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */  /************** Forecasting *****not tested NB*************/
 /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */  populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
 /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */   
   fflush(stdout);    int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
   fprintf(ficparo,"# Covariance matrix\n");    int *popage;
   /* # 121 Var(a12)\n\ */    double calagedatem, agelim, kk1, kk2;
   /* # 122 Cov(b12,a12) Var(b12)\n\ */    double *popeffectif,*popcount;
   /* #   ...\n\ */    double ***p3mat,***tabpop,***tabpopprev;
   /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */    double ***mobaverage;
       char filerespop[FILENAMELENGTH];
   for(itimes=1;itimes<=2;itimes++){  
     jj=0;    tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     for(i=1; i <=nlstate; i++){    tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(j=1; j <=nlstate+ndeath; j++){    agelim=AGESUP;
         if(j==i) continue;    calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
         for(k=1; k<=ncovmodel;k++){   
           jj++;    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
           ca[0]= k+'a'-1;ca[1]='\0';   
           if(itimes==1){   
             printf("#%1d%1d%d",i,j,k);    strcpy(filerespop,"pop");
             fprintf(ficparo,"#%1d%1d%d",i,j,k);    strcat(filerespop,fileres);
           }else{    if((ficrespop=fopen(filerespop,"w"))==NULL) {
             printf("%1d%1d%d",i,j,k);      printf("Problem with forecast resultfile: %s\n", filerespop);
             fprintf(ficparo,"%1d%1d%d",i,j,k);      fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
             /*  printf(" %.5le",matcov[i][j]); */    }
           }    printf("Computing forecasting: result on file '%s' \n", filerespop);
           ll=0;    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
           for(li=1;li <=nlstate; li++){  
             for(lj=1;lj <=nlstate+ndeath; lj++){    if (cptcoveff==0) ncodemax[cptcoveff]=1;
               if(lj==li) continue;  
               for(lk=1;lk<=ncovmodel;lk++){    if (mobilav!=0) {
                 ll++;      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
                 if(ll<=jj){      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
                   cb[0]= lk +'a'-1;cb[1]='\0';        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
                   if(ll<jj){        printf(" Error in movingaverage mobilav=%d\n",mobilav);
                     if(itimes==1){      }
                       printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);    }
                       fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);  
                     }else{    stepsize=(int) (stepm+YEARM-1)/YEARM;
                       printf(" 0.");    if (stepm<=12) stepsize=1;
                       fprintf(ficparo," 0.");   
                     }    agelim=AGESUP;
                   }else{   
                     if(itimes==1){    hstepm=1;
                       printf(" Var(%s%1d%1d)",ca,i,j);    hstepm=hstepm/stepm;
                       fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);   
                     }else{    if (popforecast==1) {
                       printf(" 0.");      if((ficpop=fopen(popfile,"r"))==NULL) {
                       fprintf(ficparo," 0.");        printf("Problem with population file : %s\n",popfile);exit(0);
                     }        fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
                   }      }
                 }      popage=ivector(0,AGESUP);
               } /* end lk */      popeffectif=vector(0,AGESUP);
             } /* end lj */      popcount=vector(0,AGESUP);
           } /* end li */     
           printf("\n");      i=1;  
           fprintf(ficparo,"\n");      while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
           numlinepar++;     
         } /* end k*/      imx=i;
       } /*end j */      for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     } /* end i */    }
   } /* end itimes */  
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
 } /* end of prwizard */     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
 /******************* Gompertz Likelihood ******************************/        k=k+1;
 double gompertz(double x[])        fprintf(ficrespop,"\n#******");
 {         for(j=1;j<=cptcoveff;j++) {
   double A,B,L=0.0,sump=0.,num=0.;          fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
   int i,n=0; /* n is the size of the sample */        }
         fprintf(ficrespop,"******\n");
   for (i=0;i<=imx-1 ; i++) {        fprintf(ficrespop,"# Age");
     sump=sump+weight[i];        for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
     /*    sump=sump+1;*/        if (popforecast==1)  fprintf(ficrespop," [Population]");
     num=num+1;       
   }        for (cpt=0; cpt<=0;cpt++) {
            fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);  
           
   /* for (i=0; i<=imx; i++)           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){
      if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);
             nhstepm = nhstepm/hstepm;
   for (i=1;i<=imx ; i++)           
     {            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       if (cens[i] == 1 && wav[i]>1)            oldm=oldms;savm=savms;
         A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
                
       if (cens[i] == 0 && wav[i]>1)            for (h=0; h<=nhstepm; h++){
         A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))              if (h==(int) (calagedatem+YEARM*cpt)) {
              +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);                  fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
                     }
       /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */              for(j=1; j<=nlstate+ndeath;j++) {
       if (wav[i] > 1 ) { /* ??? */                kk1=0.;kk2=0;
         L=L+A*weight[i];                for(i=1; i<=nlstate;i++) {              
         /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/                  if (mobilav==1)
       }                    kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
     }                  else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
  /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/                  }
                  }
   return -2*L*num/sump;                if (h==(int)(calagedatem+12*cpt)){
 }                  tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
 /******************* Printing html file ***********/                      if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
 void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \                }
                   int lastpass, int stepm, int weightopt, char model[],\              }
                   int imx,  double p[],double **matcov,double agemortsup){              for(i=1; i<=nlstate;i++){
   int i,k;                kk1=0.;
                   for(j=1; j<=nlstate;j++){
   fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");                    kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];
   fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);                  }
   for (i=1;i<=2;i++)                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
     fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));              }
   fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");  
   fprintf(fichtm,"</ul>");              if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++)
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
 fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");            }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
  fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");          }
         }
  for (k=agegomp;k<(agemortsup-2);k++)    
    fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);    /******/
   
          for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {
   fflush(fichtm);          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);  
 }          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);
 /******************* Gnuplot file **************/            nhstepm = nhstepm/hstepm;
 void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){           
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   char dirfileres[132],optfileres[132];            oldm=oldms;savm=savms;
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
   int ng;            for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
   /*#ifdef windows */              }
   fprintf(ficgp,"cd \"%s\" \n",pathc);              for(j=1; j<=nlstate+ndeath;j++) {
     /*#endif */                kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
   strcpy(dirfileres,optionfilefiname);                }
   strcpy(optfileres,"vpl");                if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
   fprintf(ficgp,"set out \"graphmort.png\"\n ");               }
   fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n ");             }
   fprintf(ficgp, "set ter png small\n set log y\n");             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   fprintf(ficgp, "set size 0.65,0.65\n");          }
   fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);        }
      }
 }     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
 /***********************************************/      free_ivector(popage,0,AGESUP);
 /**************** Main Program *****************/      free_vector(popeffectif,0,AGESUP);
 /***********************************************/      free_vector(popcount,0,AGESUP);
     }
 int main(int argc, char *argv[])    free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 {    free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);    fclose(ficrespop);
   int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;  } /* End of popforecast */
   int linei, month, year,iout;  
   int jj, ll, li, lj, lk, imk;  int fileappend(FILE *fichier, char *optionfich)
   int numlinepar=0; /* Current linenumber of parameter file */  {
   int itimes;    if((fichier=fopen(optionfich,"a"))==NULL) {
   int NDIM=2;      printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
   char ca[32], cb[32], cc[32];      return (0);
   char dummy[]="                         ";    }
   /*  FILE *fichtm; *//* Html File */    fflush(fichier);
   /* FILE *ficgp;*/ /*Gnuplot File */    return (1);
   struct stat info;  }
   double agedeb, agefin,hf;  
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;  
   /**************** function prwizard **********************/
   double fret;  void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   double **xi,tmp,delta;  {
   
   double dum; /* Dummy variable */    /* Wizard to print covariance matrix template */
   double ***p3mat;  
   double ***mobaverage;    char ca[32], cb[32], cc[32];
   int *indx;    int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
   char line[MAXLINE], linepar[MAXLINE];    int numlinepar;
   char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];  
   char pathr[MAXLINE], pathimach[MAXLINE];     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
   char **bp, *tok, *val; /* pathtot */    fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
   int firstobs=1, lastobs=10;    for(i=1; i <=nlstate; i++){
   int sdeb, sfin; /* Status at beginning and end */      jj=0;
   int c,  h , cpt,l;      for(j=1; j <=nlstate+ndeath; j++){
   int ju,jl, mi;        if(j==i) continue;
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;        jj++;
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab;         /*ca[0]= k+'a'-1;ca[1]='\0';*/
   int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */        printf("%1d%1d",i,j);
   int mobilav=0,popforecast=0;        fprintf(ficparo,"%1d%1d",i,j);
   int hstepm, nhstepm;        for(k=1; k<=ncovmodel;k++){
   int agemortsup;          /*        printf(" %lf",param[i][j][k]); */
   float  sumlpop=0.;          /*        fprintf(ficparo," %lf",param[i][j][k]); */
   double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;          printf(" 0.");
   double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;          fprintf(ficparo," 0.");
         }
   double bage, fage, age, agelim, agebase;        printf("\n");
   double ftolpl=FTOL;        fprintf(ficparo,"\n");
   double **prlim;      }
   double *severity;    }
   double ***param; /* Matrix of parameters */    printf("# Scales (for hessian or gradient estimation)\n");
   double  *p;    fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
   double **matcov; /* Matrix of covariance */    npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   double ***delti3; /* Scale */    for(i=1; i <=nlstate; i++){
   double *delti; /* Scale */      jj=0;
   double ***eij, ***vareij;      for(j=1; j <=nlstate+ndeath; j++){
   double **varpl; /* Variances of prevalence limits by age */        if(j==i) continue;
   double *epj, vepp;        jj++;
   double kk1, kk2;        fprintf(ficparo,"%1d%1d",i,j);
   double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;        printf("%1d%1d",i,j);
   double **ximort;        fflush(stdout);
   char *alph[]={"a","a","b","c","d","e"}, str[4];        for(k=1; k<=ncovmodel;k++){
   int *dcwave;          /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
   char z[1]="c", occ;          printf(" 0.");
           fprintf(ficparo," 0.");
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];        }
   char strstart[80], *strt, strtend[80];        numlinepar++;
   char *stratrunc;        printf("\n");
   int lstra;        fprintf(ficparo,"\n");
       }
   long total_usecs;    }
      printf("# Covariance matrix\n");
 /*   setlocale (LC_ALL, ""); */  /* # 121 Var(a12)\n\ */
 /*   bindtextdomain (PACKAGE, LOCALEDIR); */  /* # 122 Cov(b12,a12) Var(b12)\n\ */
 /*   textdomain (PACKAGE); */  /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
 /*   setlocale (LC_CTYPE, ""); */  /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
 /*   setlocale (LC_MESSAGES, ""); */  /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */  /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   (void) gettimeofday(&start_time,&tzp);  /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
   curr_time=start_time;    fflush(stdout);
   tm = *localtime(&start_time.tv_sec);    fprintf(ficparo,"# Covariance matrix\n");
   tmg = *gmtime(&start_time.tv_sec);    /* # 121 Var(a12)\n\ */
   strcpy(strstart,asctime(&tm));    /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
 /*  printf("Localtime (at start)=%s",strstart); */    /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
 /*  tp.tv_sec = tp.tv_sec +86400; */   
 /*  tm = *localtime(&start_time.tv_sec); */    for(itimes=1;itimes<=2;itimes++){
 /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */      jj=0;
 /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */      for(i=1; i <=nlstate; i++){
 /*   tmg.tm_hour=tmg.tm_hour + 1; */        for(j=1; j <=nlstate+ndeath; j++){
 /*   tp.tv_sec = mktime(&tmg); */          if(j==i) continue;
 /*   strt=asctime(&tmg); */          for(k=1; k<=ncovmodel;k++){
 /*   printf("Time(after) =%s",strstart);  */            jj++;
 /*  (void) time (&time_value);            ca[0]= k+'a'-1;ca[1]='\0';
 *  printf("time=%d,t-=%d\n",time_value,time_value-86400);            if(itimes==1){
 *  tm = *localtime(&time_value);              printf("#%1d%1d%d",i,j,k);
 *  strstart=asctime(&tm);              fprintf(ficparo,"#%1d%1d%d",i,j,k);
 *  printf("tim_value=%d,asctime=%s\n",time_value,strstart);             }else{
 */              printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
   nberr=0; /* Number of errors and warnings */              /*  printf(" %.5le",matcov[i][j]); */
   nbwarn=0;            }
   getcwd(pathcd, size);            ll=0;
             for(li=1;li <=nlstate; li++){
   printf("\n%s\n%s",version,fullversion);              for(lj=1;lj <=nlstate+ndeath; lj++){
   if(argc <=1){                if(lj==li) continue;
     printf("\nEnter the parameter file name: ");                for(lk=1;lk<=ncovmodel;lk++){
     fgets(pathr,FILENAMELENGTH,stdin);                  ll++;
     i=strlen(pathr);                  if(ll<=jj){
     if(pathr[i-1]=='\n')                    cb[0]= lk +'a'-1;cb[1]='\0';
       pathr[i-1]='\0';                    if(ll<jj){
    for (tok = pathr; tok != NULL; ){                      if(itimes==1){
       printf("Pathr |%s|\n",pathr);                        printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
       while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');                        fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
       printf("val= |%s| pathr=%s\n",val,pathr);                      }else{
       strcpy (pathtot, val);                        printf(" 0.");
       if(pathr[0] == '\0') break; /* Un peu sale */                        fprintf(ficparo," 0.");
     }                      }
   }                    }else{
   else{                      if(itimes==1){
     strcpy(pathtot,argv[1]);                        printf(" Var(%s%1d%1d)",ca,i,j);
   }                        fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
   /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/                      }else{
   /*cygwin_split_path(pathtot,path,optionfile);                        printf(" 0.");
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/                        fprintf(ficparo," 0.");
   /* cutv(path,optionfile,pathtot,'\\');*/                      }
                     }
   /* Split argv[0], imach program to get pathimach */                  }
   printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);                } /* end lk */
   split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);              } /* end lj */
   printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);            } /* end li */
  /*   strcpy(pathimach,argv[0]); */            printf("\n");
   /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */            fprintf(ficparo,"\n");
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);            numlinepar++;
   printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);          } /* end k*/
   chdir(path);        } /*end j */
   strcpy(command,"mkdir ");      } /* end i */
   strcat(command,optionfilefiname);    } /* end itimes */
   if((outcmd=system(command)) != 0){  
     printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);  } /* end of prwizard */
     /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */  /******************* Gompertz Likelihood ******************************/
     /* fclose(ficlog); */  double gompertz(double x[])
 /*     exit(1); */  {
   }    double A,B,L=0.0,sump=0.,num=0.;
 /*   if((imk=mkdir(optionfilefiname))<0){ */    int i,n=0; /* n is the size of the sample */
 /*     perror("mkdir"); */  
 /*   } */    for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
   /*-------- arguments in the command line --------*/      /*    sump=sump+1;*/
       num=num+1;
   /* Log file */    }
   strcat(filelog, optionfilefiname);   
   strcat(filelog,".log");    /* */   
   if((ficlog=fopen(filelog,"w"))==NULL)    {    /* for (i=0; i<=imx; i++)
     printf("Problem with logfile %s\n",filelog);       if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
     goto end;  
   }    for (i=1;i<=imx ; i++)
   fprintf(ficlog,"Log filename:%s\n",filelog);      {
   fprintf(ficlog,"\n%s\n%s",version,fullversion);        if (cens[i] == 1 && wav[i]>1)
   fprintf(ficlog,"\nEnter the parameter file name: \n");          A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
   fprintf(ficlog,"pathimach=%s\npathtot=%s\n\       
  path=%s \n\        if (cens[i] == 0 && wav[i]>1)
  optionfile=%s\n\          A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
  optionfilext=%s\n\               +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
  optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);       
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
   printf("Local time (at start):%s",strstart);        if (wav[i] > 1 ) { /* ??? */
   fprintf(ficlog,"Local time (at start): %s",strstart);          L=L+A*weight[i];
   fflush(ficlog);          /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
 /*   (void) gettimeofday(&curr_time,&tzp); */        }
 /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */      }
   
   /* */   /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
   strcpy(fileres,"r");   
   strcat(fileres, optionfilefiname);    return -2*L*num/sump;
   strcat(fileres,".txt");    /* Other files have txt extension */  }
   
   /*---------arguments file --------*/  /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
   if((ficpar=fopen(optionfile,"r"))==NULL)    {                    int lastpass, int stepm, int weightopt, char model[],\
     printf("Problem with optionfile %s\n",optionfile);                    int imx,  double p[],double **matcov,double agemortsup){
     fprintf(ficlog,"Problem with optionfile %s\n",optionfile);    int i,k;
     fflush(ficlog);  
     goto end;    fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
   }    fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++)
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
   strcpy(filereso,"o");    fprintf(fichtm,"</ul>");
   strcat(filereso,fileres);  
   if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */  fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
     printf("Problem with Output resultfile: %s\n", filereso);  
     fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);   fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
     fflush(ficlog);  
     goto end;   for (k=agegomp;k<(agemortsup-2);k++)
   }     fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
   /* Reads comments: lines beginning with '#' */   
   numlinepar=0;    fflush(fichtm);
   while((c=getc(ficpar))=='#' && c!= EOF){  }
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);  /******************* Gnuplot file **************/
     numlinepar++;  void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
     puts(line);  
     fputs(line,ficparo);    char dirfileres[132],optfileres[132];
     fputs(line,ficlog);    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
   }    int ng;
   ungetc(c,ficpar);  
   
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);    /*#ifdef windows */
   numlinepar++;    fprintf(ficgp,"cd \"%s\" \n",pathc);
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);      /*#endif */
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);  
   fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);  
   fflush(ficlog);    strcpy(dirfileres,optionfilefiname);
   while((c=getc(ficpar))=='#' && c!= EOF){    strcpy(optfileres,"vpl");
     ungetc(c,ficpar);    fprintf(ficgp,"set out \"graphmort.png\"\n ");
     fgets(line, MAXLINE, ficpar);    fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n ");
     numlinepar++;    fprintf(ficgp, "set ter png small\n set log y\n");
     puts(line);    fprintf(ficgp, "set size 0.65,0.65\n");
     fputs(line,ficparo);    fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
     fputs(line,ficlog);  
   }  }
   ungetc(c,ficpar);  
   
      
   covar=matrix(0,NCOVMAX,1,n);   
   cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/  
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;  /***********************************************/
   /**************** Main Program *****************/
   ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */  /***********************************************/
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */  
   npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/  int main(int argc, char *argv[])
   {
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
   delti=delti3[1][1];    int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
   /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/    int linei, month, year,iout;
   if(mle==-1){ /* Print a wizard for help writing covariance matrix */    int jj, ll, li, lj, lk, imk;
     prwizard(ncovmodel, nlstate, ndeath, model, ficparo);    int numlinepar=0; /* Current linenumber of parameter file */
     printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);    int itimes;
     fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);    int NDIM=2;
     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);   
     fclose (ficparo);    char ca[32], cb[32], cc[32];
     fclose (ficlog);    char dummy[]="                         ";
     exit(0);    /*  FILE *fichtm; *//* Html File */
   }    /* FILE *ficgp;*/ /*Gnuplot File */
   else if(mle==-3) {    struct stat info;
     prwizard(ncovmodel, nlstate, ndeath, model, ficparo);    double agedeb, agefin,hf;
     printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);    double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
     fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);  
     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    double fret;
     matcov=matrix(1,npar,1,npar);    double **xi,tmp,delta;
   }  
   else{    double dum; /* Dummy variable */
     /* Read guess parameters */    double ***p3mat;
     /* Reads comments: lines beginning with '#' */    double ***mobaverage;
     while((c=getc(ficpar))=='#' && c!= EOF){    int *indx;
       ungetc(c,ficpar);    char line[MAXLINE], linepar[MAXLINE];
       fgets(line, MAXLINE, ficpar);    char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
       numlinepar++;    char pathr[MAXLINE], pathimach[MAXLINE];
       puts(line);    char **bp, *tok, *val; /* pathtot */
       fputs(line,ficparo);    int firstobs=1, lastobs=10;
       fputs(line,ficlog);    int sdeb, sfin; /* Status at beginning and end */
     }    int c,  h , cpt,l;
     ungetc(c,ficpar);    int ju,jl, mi;
         int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab;
     for(i=1; i <=nlstate; i++){    int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
       j=0;    int mobilav=0,popforecast=0;
       for(jj=1; jj <=nlstate+ndeath; jj++){    int hstepm, nhstepm;
         if(jj==i) continue;    int agemortsup;
         j++;    float  sumlpop=0.;
         fscanf(ficpar,"%1d%1d",&i1,&j1);    double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
         if ((i1 != i) && (j1 != j)){    double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);  
           exit(1);    double bage, fage, age, agelim, agebase;
         }    double ftolpl=FTOL;
         fprintf(ficparo,"%1d%1d",i1,j1);    double **prlim;
         if(mle==1)    double *severity;
           printf("%1d%1d",i,j);    double ***param; /* Matrix of parameters */
         fprintf(ficlog,"%1d%1d",i,j);    double  *p;
         for(k=1; k<=ncovmodel;k++){    double **matcov; /* Matrix of covariance */
           fscanf(ficpar," %lf",&param[i][j][k]);    double ***delti3; /* Scale */
           if(mle==1){    double *delti; /* Scale */
             printf(" %lf",param[i][j][k]);    double ***eij, ***vareij;
             fprintf(ficlog," %lf",param[i][j][k]);    double **varpl; /* Variances of prevalence limits by age */
           }    double *epj, vepp;
           else    double kk1, kk2;
             fprintf(ficlog," %lf",param[i][j][k]);    double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
           fprintf(ficparo," %lf",param[i][j][k]);    double **ximort;
         }    char *alph[]={"a","a","b","c","d","e"}, str[4];
         fscanf(ficpar,"\n");    int *dcwave;
         numlinepar++;  
         if(mle==1)    char z[1]="c", occ;
           printf("\n");  
         fprintf(ficlog,"\n");    char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
         fprintf(ficparo,"\n");    char  *strt, strtend[80];
       }    char *stratrunc;
     }      int lstra;
     fflush(ficlog);  
     long total_usecs;
     p=param[1][1];   
       /*   setlocale (LC_ALL, ""); */
     /* Reads comments: lines beginning with '#' */  /*   bindtextdomain (PACKAGE, LOCALEDIR); */
     while((c=getc(ficpar))=='#' && c!= EOF){  /*   textdomain (PACKAGE); */
       ungetc(c,ficpar);  /*   setlocale (LC_CTYPE, ""); */
       fgets(line, MAXLINE, ficpar);  /*   setlocale (LC_MESSAGES, ""); */
       numlinepar++;  
       puts(line);    /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
       fputs(line,ficparo);    (void) gettimeofday(&start_time,&tzp);
       fputs(line,ficlog);    curr_time=start_time;
     }    tm = *localtime(&start_time.tv_sec);
     ungetc(c,ficpar);    tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
     for(i=1; i <=nlstate; i++){  
       for(j=1; j <=nlstate+ndeath-1; j++){  /*  printf("Localtime (at start)=%s",strstart); */
         fscanf(ficpar,"%1d%1d",&i1,&j1);  /*  tp.tv_sec = tp.tv_sec +86400; */
         if ((i1-i)*(j1-j)!=0){  /*  tm = *localtime(&start_time.tv_sec); */
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);  /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
           exit(1);  /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
         }  /*   tmg.tm_hour=tmg.tm_hour + 1; */
         printf("%1d%1d",i,j);  /*   tp.tv_sec = mktime(&tmg); */
         fprintf(ficparo,"%1d%1d",i1,j1);  /*   strt=asctime(&tmg); */
         fprintf(ficlog,"%1d%1d",i1,j1);  /*   printf("Time(after) =%s",strstart);  */
         for(k=1; k<=ncovmodel;k++){  /*  (void) time (&time_value);
           fscanf(ficpar,"%le",&delti3[i][j][k]);  *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
           printf(" %le",delti3[i][j][k]);  *  tm = *localtime(&time_value);
           fprintf(ficparo," %le",delti3[i][j][k]);  *  strstart=asctime(&tm);
           fprintf(ficlog," %le",delti3[i][j][k]);  *  printf("tim_value=%d,asctime=%s\n",time_value,strstart);
         }  */
         fscanf(ficpar,"\n");  
         numlinepar++;    nberr=0; /* Number of errors and warnings */
         printf("\n");    nbwarn=0;
         fprintf(ficparo,"\n");    getcwd(pathcd, size);
         fprintf(ficlog,"\n");  
       }    printf("\n%s\n%s",version,fullversion);
     }    if(argc <=1){
     fflush(ficlog);      printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
     delti=delti3[1][1];      i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
     /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */     for (tok = pathr; tok != NULL; ){
           printf("Pathr |%s|\n",pathr);
     /* Reads comments: lines beginning with '#' */        while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
     while((c=getc(ficpar))=='#' && c!= EOF){        printf("val= |%s| pathr=%s\n",val,pathr);
       ungetc(c,ficpar);        strcpy (pathtot, val);
       fgets(line, MAXLINE, ficpar);        if(pathr[0] == '\0') break; /* Dirty */
       numlinepar++;      }
       puts(line);    }
       fputs(line,ficparo);    else{
       fputs(line,ficlog);      strcpy(pathtot,argv[1]);
     }    }
     ungetc(c,ficpar);    /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
       /*cygwin_split_path(pathtot,path,optionfile);
     matcov=matrix(1,npar,1,npar);      printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     for(i=1; i <=npar; i++){    /* cutv(path,optionfile,pathtot,'\\');*/
       fscanf(ficpar,"%s",&str);  
       if(mle==1)    /* Split argv[0], imach program to get pathimach */
         printf("%s",str);    printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
       fprintf(ficlog,"%s",str);    split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
       fprintf(ficparo,"%s",str);    printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
       for(j=1; j <=i; j++){   /*   strcpy(pathimach,argv[0]); */
         fscanf(ficpar," %le",&matcov[i][j]);    /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
         if(mle==1){    split(pathtot,path,optionfile,optionfilext,optionfilefiname);
           printf(" %.5le",matcov[i][j]);    printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
         }    chdir(path); /* Can be a relative path */
         fprintf(ficlog," %.5le",matcov[i][j]);    if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
         fprintf(ficparo," %.5le",matcov[i][j]);      printf("Current directory %s!\n",pathcd);
       }    strcpy(command,"mkdir ");
       fscanf(ficpar,"\n");    strcat(command,optionfilefiname);
       numlinepar++;    if((outcmd=system(command)) != 0){
       if(mle==1)      printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
         printf("\n");      /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       fprintf(ficlog,"\n");      /* fclose(ficlog); */
       fprintf(ficparo,"\n");  /*     exit(1); */
     }    }
     for(i=1; i <=npar; i++)  /*   if((imk=mkdir(optionfilefiname))<0){ */
       for(j=i+1;j<=npar;j++)  /*     perror("mkdir"); */
         matcov[i][j]=matcov[j][i];  /*   } */
       
     if(mle==1)    /*-------- arguments in the command line --------*/
       printf("\n");  
     fprintf(ficlog,"\n");    /* Log file */
         strcat(filelog, optionfilefiname);
     fflush(ficlog);    strcat(filelog,".log");    /* */
         if((ficlog=fopen(filelog,"w"))==NULL)    {
     /*-------- Rewriting parameter file ----------*/      printf("Problem with logfile %s\n",filelog);
     strcpy(rfileres,"r");    /* "Rparameterfile */      goto end;
     strcat(rfileres,optionfilefiname);    /* Parameter file first name*/    }
     strcat(rfileres,".");    /* */    fprintf(ficlog,"Log filename:%s\n",filelog);
     strcat(rfileres,optionfilext);    /* Other files have txt extension */    fprintf(ficlog,"\n%s\n%s",version,fullversion);
     if((ficres =fopen(rfileres,"w"))==NULL) {    fprintf(ficlog,"\nEnter the parameter file name: \n");
       printf("Problem writing new parameter file: %s\n", fileres);goto end;    fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;   path=%s \n\
     }   optionfile=%s\n\
     fprintf(ficres,"#%s\n",version);   optionfilext=%s\n\
   }    /* End of mle != -3 */   optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
   /*-------- data file ----------*/    printf("Local time (at start):%s",strstart);
   if((fic=fopen(datafile,"r"))==NULL)    {    fprintf(ficlog,"Local time (at start): %s",strstart);
     printf("Problem with datafile: %s\n", datafile);goto end;    fflush(ficlog);
     fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;  /*   (void) gettimeofday(&curr_time,&tzp); */
   }  /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
   n= lastobs;    /* */
   severity = vector(1,maxwav);    strcpy(fileres,"r");
   outcome=imatrix(1,maxwav+1,1,n);    strcat(fileres, optionfilefiname);
   num=lvector(1,n);    strcat(fileres,".txt");    /* Other files have txt extension */
   moisnais=vector(1,n);  
   annais=vector(1,n);    /*---------arguments file --------*/
   moisdc=vector(1,n);  
   andc=vector(1,n);    if((ficpar=fopen(optionfile,"r"))==NULL)    {
   agedc=vector(1,n);      printf("Problem with optionfile %s\n",optionfile);
   cod=ivector(1,n);      fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
   weight=vector(1,n);      fflush(ficlog);
   for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */      goto end;
   mint=matrix(1,maxwav,1,n);    }
   anint=matrix(1,maxwav,1,n);  
   s=imatrix(1,maxwav+1,1,n);  
   tab=ivector(1,NCOVMAX);  
   ncodemax=ivector(1,8);    strcpy(filereso,"o");
     strcat(filereso,fileres);
   i=1;    if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
   linei=0;      printf("Problem with Output resultfile: %s\n", filereso);
   while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {      fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
     linei=linei+1;      fflush(ficlog);
     for(j=strlen(line); j>=0;j--){  /* Untabifies line */      goto end;
       if(line[j] == '\t')    }
         line[j] = ' ';  
     }    /* Reads comments: lines beginning with '#' */
     for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){    numlinepar=0;
       ;    while((c=getc(ficpar))=='#' && c!= EOF){
     };      ungetc(c,ficpar);
     line[j+1]=0;  /* Trims blanks at end of line */      fgets(line, MAXLINE, ficpar);
     if(line[0]=='#'){      numlinepar++;
       fprintf(ficlog,"Comment line\n%s\n",line);      puts(line);
       printf("Comment line\n%s\n",line);      fputs(line,ficparo);
       continue;      fputs(line,ficlog);
     }    }
     ungetc(c,ficpar);
     for (j=maxwav;j>=1;j--){  
       cutv(stra, strb,line,' ');     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
       errno=0;    numlinepar++;
       lval=strtol(strb,&endptr,10);     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
       /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/    fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
       if( strb[0]=='\0' || (*endptr != '\0')){    fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
         printf("Error reading data around '%d' at line number %d %s for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);    fflush(ficlog);
         exit(1);    while((c=getc(ficpar))=='#' && c!= EOF){
       }      ungetc(c,ficpar);
       s[j][i]=lval;      fgets(line, MAXLINE, ficpar);
             numlinepar++;
       strcpy(line,stra);      puts(line);
       cutv(stra, strb,line,' ');      fputs(line,ficparo);
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){      fputs(line,ficlog);
       }    }
       else  if(iout=sscanf(strb,"%s.") != 0){    ungetc(c,ficpar);
         month=99;  
         year=9999;     
       }else{    covar=matrix(0,NCOVMAX,1,n);
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);    cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
         exit(1);    if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
       }  
       anint[j][i]= (double) year;     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
       mint[j][i]= (double)month;     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
       strcpy(line,stra);    npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
     } /* ENd Waves */  
         delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     cutv(stra, strb,line,' ');     delti=delti3[1][1];
     if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){    /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     }    if(mle==-1){ /* Print a wizard for help writing covariance matrix */
     else  if(iout=sscanf(strb,"%s.",dummy) != 0){      prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       month=99;      printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       year=9999;      fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
     }else{      free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
       printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);      fclose (ficparo);
       exit(1);      fclose (ficlog);
     }      goto end;
     andc[i]=(double) year;       exit(0);
     moisdc[i]=(double) month;     }
     strcpy(line,stra);    else if(mle==-3) {
           prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
     cutv(stra, strb,line,' ');       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
     if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){      fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
     }      param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     else  if(iout=sscanf(strb,"%s.") != 0){      matcov=matrix(1,npar,1,npar);
       month=99;    }
       year=9999;    else{
     }else{      /* Read guess parameters */
       printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line,j);      /* Reads comments: lines beginning with '#' */
       exit(1);      while((c=getc(ficpar))=='#' && c!= EOF){
     }        ungetc(c,ficpar);
     annais[i]=(double)(year);        fgets(line, MAXLINE, ficpar);
     moisnais[i]=(double)(month);         numlinepar++;
     strcpy(line,stra);        puts(line);
             fputs(line,ficparo);
     cutv(stra, strb,line,' ');         fputs(line,ficlog);
     errno=0;      }
     lval=strtol(strb,&endptr,10);       ungetc(c,ficpar);
     if( strb[0]=='\0' || (*endptr != '\0')){     
       printf("Error reading data around '%d' at line number %ld %s for individual %d\nShould be a weight.  Exiting.\n",lval, i,line,linei);      param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       exit(1);      for(i=1; i <=nlstate; i++){
     }        j=0;
     weight[i]=(double)(lval);         for(jj=1; jj <=nlstate+ndeath; jj++){
     strcpy(line,stra);          if(jj==i) continue;
               j++;
     for (j=ncovcol;j>=1;j--){          fscanf(ficpar,"%1d%1d",&i1,&j1);
       cutv(stra, strb,line,' ');           if ((i1 != i) && (j1 != j)){
       errno=0;            printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
       lval=strtol(strb,&endptr,10);   It might be a problem of design; if ncovcol and the model are correct\n \
       if( strb[0]=='\0' || (*endptr != '\0')){  run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
         printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a covar (meaning 0 for the reference or 1).  Exiting.\n",lval, linei,i, line);            exit(1);
         exit(1);          }
       }          fprintf(ficparo,"%1d%1d",i1,j1);
       if(lval <-1 || lval >1){          if(mle==1)
         printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a value of the %d covar (meaning 0 for the reference or 1. IMaCh does not build design variables, do it your self).  Exiting.\n",lval,linei, i,line,j);            printf("%1d%1d",i,j);
         exit(1);          fprintf(ficlog,"%1d%1d",i,j);
       }          for(k=1; k<=ncovmodel;k++){
       covar[j][i]=(double)(lval);            fscanf(ficpar," %lf",&param[i][j][k]);
       strcpy(line,stra);            if(mle==1){
     }               printf(" %lf",param[i][j][k]);
     lstra=strlen(stra);              fprintf(ficlog," %lf",param[i][j][k]);
                 }
     if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */            else
       stratrunc = &(stra[lstra-9]);              fprintf(ficlog," %lf",param[i][j][k]);
       num[i]=atol(stratrunc);            fprintf(ficparo," %lf",param[i][j][k]);
     }          }
     else          fscanf(ficpar,"\n");
       num[i]=atol(stra);          numlinepar++;
     /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){          if(mle==1)
       printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/            printf("\n");
               fprintf(ficlog,"\n");
     i=i+1;          fprintf(ficparo,"\n");
   } /* End loop reading  data */        }
   fclose(fic);      }  
   /* printf("ii=%d", ij);      fflush(ficlog);
      scanf("%d",i);*/  
   imx=i-1; /* Number of individuals */      p=param[1][1];
      
   /* for (i=1; i<=imx; i++){      /* Reads comments: lines beginning with '#' */
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;      while((c=getc(ficpar))=='#' && c!= EOF){
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;        ungetc(c,ficpar);
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;        fgets(line, MAXLINE, ficpar);
     }*/        numlinepar++;
    /*  for (i=1; i<=imx; i++){        puts(line);
      if (s[4][i]==9)  s[4][i]=-1;         fputs(line,ficparo);
      printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/        fputs(line,ficlog);
         }
   /* for (i=1; i<=imx; i++) */      ungetc(c,ficpar);
    
    /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;      for(i=1; i <=nlstate; i++){
      else weight[i]=1;*/        for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
   /* Calculation of the number of parameters from char model */          if ((i1-i)*(j1-j)!=0){
   Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */            printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
   Tprod=ivector(1,15);             exit(1);
   Tvaraff=ivector(1,15);           }
   Tvard=imatrix(1,15,1,2);          printf("%1d%1d",i,j);
   Tage=ivector(1,15);                fprintf(ficparo,"%1d%1d",i1,j1);
              fprintf(ficlog,"%1d%1d",i1,j1);
   if (strlen(model) >1){ /* If there is at least 1 covariate */          for(k=1; k<=ncovmodel;k++){
     j=0, j1=0, k1=1, k2=1;            fscanf(ficpar,"%le",&delti3[i][j][k]);
     j=nbocc(model,'+'); /* j=Number of '+' */            printf(" %le",delti3[i][j][k]);
     j1=nbocc(model,'*'); /* j1=Number of '*' */            fprintf(ficparo," %le",delti3[i][j][k]);
     cptcovn=j+1;             fprintf(ficlog," %le",delti3[i][j][k]);
     cptcovprod=j1; /*Number of products */          }
               fscanf(ficpar,"\n");
     strcpy(modelsav,model);           numlinepar++;
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){          printf("\n");
       printf("Error. Non available option model=%s ",model);          fprintf(ficparo,"\n");
       fprintf(ficlog,"Error. Non available option model=%s ",model);          fprintf(ficlog,"\n");
       goto end;        }
     }      }
           fflush(ficlog);
     /* This loop fills the array Tvar from the string 'model'.*/  
       delti=delti3[1][1];
     for(i=(j+1); i>=1;i--){  
       cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */   
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */      /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/   
       /*scanf("%d",i);*/      /* Reads comments: lines beginning with '#' */
       if (strchr(strb,'*')) {  /* Model includes a product */      while((c=getc(ficpar))=='#' && c!= EOF){
         cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/        ungetc(c,ficpar);
         if (strcmp(strc,"age")==0) { /* Vn*age */        fgets(line, MAXLINE, ficpar);
           cptcovprod--;        numlinepar++;
           cutv(strb,stre,strd,'V');        puts(line);
           Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/        fputs(line,ficparo);
           cptcovage++;        fputs(line,ficlog);
             Tage[cptcovage]=i;      }
             /*printf("stre=%s ", stre);*/      ungetc(c,ficpar);
         }   
         else if (strcmp(strd,"age")==0) { /* or age*Vn */      matcov=matrix(1,npar,1,npar);
           cptcovprod--;      for(i=1; i <=npar; i++){
           cutv(strb,stre,strc,'V');        fscanf(ficpar,"%s",&str);
           Tvar[i]=atoi(stre);        if(mle==1)
           cptcovage++;          printf("%s",str);
           Tage[cptcovage]=i;        fprintf(ficlog,"%s",str);
         }        fprintf(ficparo,"%s",str);
         else {  /* Age is not in the model */        for(j=1; j <=i; j++){
           cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/          fscanf(ficpar," %le",&matcov[i][j]);
           Tvar[i]=ncovcol+k1;          if(mle==1){
           cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */            printf(" %.5le",matcov[i][j]);
           Tprod[k1]=i;          }
           Tvard[k1][1]=atoi(strc); /* m*/          fprintf(ficlog," %.5le",matcov[i][j]);
           Tvard[k1][2]=atoi(stre); /* n */          fprintf(ficparo," %.5le",matcov[i][j]);
           Tvar[cptcovn+k2]=Tvard[k1][1];        }
           Tvar[cptcovn+k2+1]=Tvard[k1][2];         fscanf(ficpar,"\n");
           for (k=1; k<=lastobs;k++)         numlinepar++;
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];        if(mle==1)
           k1++;          printf("\n");
           k2=k2+2;        fprintf(ficlog,"\n");
         }        fprintf(ficparo,"\n");
       }      }
       else { /* no more sum */      for(i=1; i <=npar; i++)
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/        for(j=i+1;j<=npar;j++)
        /*  scanf("%d",i);*/          matcov[i][j]=matcov[j][i];
       cutv(strd,strc,strb,'V');     
       Tvar[i]=atoi(strc);      if(mle==1)
       }        printf("\n");
       strcpy(modelsav,stra);        fprintf(ficlog,"\n");
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);     
         scanf("%d",i);*/      fflush(ficlog);
     } /* end of loop + */     
   } /* end model */      /*-------- Rewriting parameter file ----------*/
         strcpy(rfileres,"r");    /* "Rparameterfile */
   /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
     If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/      strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);      if((ficres =fopen(rfileres,"w"))==NULL) {
   printf("cptcovprod=%d ", cptcovprod);        printf("Problem writing new parameter file: %s\n", fileres);goto end;
   fprintf(ficlog,"cptcovprod=%d ", cptcovprod);        fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
   scanf("%d ",i);*/      fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
     /*  if(mle==1){*/  
   if (weightopt != 1) { /* Maximisation without weights*/    /*-------- data file ----------*/
     for(i=1;i<=n;i++) weight[i]=1.0;    if((fic=fopen(datafile,"r"))==NULL)    {
   }      printf("Problem while opening datafile: %s\n", datafile);goto end;
     /*-calculation of age at interview from date of interview and age at death -*/      fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);goto end;
   agev=matrix(1,maxwav,1,imx);    }
   
   for (i=1; i<=imx; i++) {    n= lastobs;
     for(m=2; (m<= maxwav); m++) {    severity = vector(1,maxwav);
       if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){    outcome=imatrix(1,maxwav+1,1,n);
         anint[m][i]=9999;    num=lvector(1,n);
         s[m][i]=-1;    moisnais=vector(1,n);
       }    annais=vector(1,n);
       if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){    moisdc=vector(1,n);
         nberr++;    andc=vector(1,n);
         printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);    agedc=vector(1,n);
         fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);    cod=ivector(1,n);
         s[m][i]=-1;    weight=vector(1,n);
       }    for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
       if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){    mint=matrix(1,maxwav,1,n);
         nberr++;    anint=matrix(1,maxwav,1,n);
         printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]);     s=imatrix(1,maxwav+1,1,n);
         fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]);     tab=ivector(1,NCOVMAX);
         s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */    ncodemax=ivector(1,8);
       }  
     }    i=1;
   }    linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
   for (i=1; i<=imx; i++)  {      linei=linei+1;
     agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);      for(j=strlen(line); j>=0;j--){  /* Untabifies line */
     for(m=firstpass; (m<= lastpass); m++){        if(line[j] == '\t')
       if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){          line[j] = ' ';
         if (s[m][i] >= nlstate+1) {      }
           if(agedc[i]>0)      for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
             if((int)moisdc[i]!=99 && (int)andc[i]!=9999)        ;
               agev[m][i]=agedc[i];      };
           /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/      line[j+1]=0;  /* Trims blanks at end of line */
             else {      if(line[0]=='#'){
               if ((int)andc[i]!=9999){        fprintf(ficlog,"Comment line\n%s\n",line);
                 nbwarn++;        printf("Comment line\n%s\n",line);
                 printf("Warning negative age at death: %ld line:%d\n",num[i],i);        continue;
                 fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);      }
                 agev[m][i]=-1;  
               }      for (j=maxwav;j>=1;j--){
             }        cutv(stra, strb,line,' ');
         }        errno=0;
         else if(s[m][i] !=9){ /* Standard case, age in fractional        lval=strtol(strb,&endptr,10);
                                  years but with the precision of a month */        /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
           agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);        if( strb[0]=='\0' || (*endptr != '\0')){
           if((int)mint[m][i]==99 || (int)anint[m][i]==9999)          printf("Error reading data around '%d' at line number %d %s for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
             agev[m][i]=1;          exit(1);
           else if(agev[m][i] <agemin){         }
             agemin=agev[m][i];        s[j][i]=lval;
             /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/       
           }        strcpy(line,stra);
           else if(agev[m][i] >agemax){        cutv(stra, strb,line,' ');
             agemax=agev[m][i];        if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
             /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/        }
           }        else  if(iout=sscanf(strb,"%s.") != 0){
           /*agev[m][i]=anint[m][i]-annais[i];*/          month=99;
           /*     agev[m][i] = age[i]+2*m;*/          year=9999;
         }        }else{
         else { /* =9 */          printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           agev[m][i]=1;          exit(1);
           s[m][i]=-1;        }
         }        anint[j][i]= (double) year;
       }        mint[j][i]= (double)month;
       else /*= 0 Unknown */        strcpy(line,stra);
         agev[m][i]=1;      } /* ENd Waves */
     }     
           cutv(stra, strb,line,' ');
   }      if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
   for (i=1; i<=imx; i++)  {      }
     for(m=firstpass; (m<=lastpass); m++){      else  if(iout=sscanf(strb,"%s.",dummy) != 0){
       if (s[m][i] > (nlstate+ndeath)) {        month=99;
         nberr++;        year=9999;
         printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);           }else{
         fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);             printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         goto end;        exit(1);
       }      }
     }      andc[i]=(double) year;
   }      moisdc[i]=(double) month;
       strcpy(line,stra);
   /*for (i=1; i<=imx; i++){     
   for (m=firstpass; (m<lastpass); m++){      cutv(stra, strb,line,' ');
      printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);      if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
 }      }
       else  if(iout=sscanf(strb,"%s.") != 0){
 }*/        month=99;
         year=9999;
       }else{
   printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);        printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line,j);
   fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);         exit(1);
       }
   agegomp=(int)agemin;      annais[i]=(double)(year);
   free_vector(severity,1,maxwav);      moisnais[i]=(double)(month);
   free_imatrix(outcome,1,maxwav+1,1,n);      strcpy(line,stra);
   free_vector(moisnais,1,n);     
   free_vector(annais,1,n);      cutv(stra, strb,line,' ');
   /* free_matrix(mint,1,maxwav,1,n);      errno=0;
      free_matrix(anint,1,maxwav,1,n);*/      dval=strtod(strb,&endptr);
   free_vector(moisdc,1,n);      if( strb[0]=='\0' || (*endptr != '\0')){
   free_vector(andc,1,n);        printf("Error reading data around '%f' at line number %ld, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         exit(1);
          }
   wav=ivector(1,imx);      weight[i]=dval;
   dh=imatrix(1,lastpass-firstpass+1,1,imx);      strcpy(line,stra);
   bh=imatrix(1,lastpass-firstpass+1,1,imx);     
   mw=imatrix(1,lastpass-firstpass+1,1,imx);      for (j=ncovcol;j>=1;j--){
            cutv(stra, strb,line,' ');
   /* Concatenates waves */        errno=0;
   concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);        lval=strtol(strb,&endptr,10);
         if( strb[0]=='\0' || (*endptr != '\0')){
   /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */          printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a covar (meaning 0 for the reference or 1).  Exiting.\n",lval, linei,i, line);
           exit(1);
   Tcode=ivector(1,100);        }
   nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);         if(lval <-1 || lval >1){
   ncodemax[1]=1;          printf("Error reading data around '%d' at line number %ld for individual %d, '%s'\n \
   if (cptcovn > 0) tricode(Tvar,nbcode,imx);   Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
          for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
   codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of    For example, for multinomial values like 1, 2 and 3,\n \
                                  the estimations*/   build V1=0 V2=0 for the reference value (1),\n \
   h=0;          V1=1 V2=0 for (2) \n \
   m=pow(2,cptcoveff);   and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
     output of IMaCh is often meaningless.\n \
   for(k=1;k<=cptcoveff; k++){   Exiting.\n",lval,linei, i,line,j);
     for(i=1; i <=(m/pow(2,k));i++){          exit(1);
       for(j=1; j <= ncodemax[k]; j++){        }
         for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){        covar[j][i]=(double)(lval);
           h++;        strcpy(line,stra);
           if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;      }
           /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/      lstra=strlen(stra);
         }      
       }      if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
     }        stratrunc = &(stra[lstra-9]);
   }         num[i]=atol(stratrunc);
   /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);       }
      codtab[1][2]=1;codtab[2][2]=2; */      else
   /* for(i=1; i <=m ;i++){         num[i]=atol(stra);
      for(k=1; k <=cptcovn; k++){      /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
      printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
      }     
      printf("\n");      i=i+1;
      }    } /* End loop reading  data */
      scanf("%d",i);*/    fclose(fic);
         /* printf("ii=%d", ij);
   /*------------ gnuplot -------------*/       scanf("%d",i);*/
   strcpy(optionfilegnuplot,optionfilefiname);    imx=i-1; /* Number of individuals */
   if(mle==-3)  
     strcat(optionfilegnuplot,"-mort");    /* for (i=1; i<=imx; i++){
   strcat(optionfilegnuplot,".gp");      if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {      if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
     printf("Problem with file %s",optionfilegnuplot);      }*/
   }     /*  for (i=1; i<=imx; i++){
   else{       if (s[4][i]==9)  s[4][i]=-1;
     fprintf(ficgp,"\n# %s\n", version);        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     fprintf(ficgp,"# %s\n", optionfilegnuplot);    
     fprintf(ficgp,"set missing 'NaNq'\n");    /* for (i=1; i<=imx; i++) */
   }   
   /*  fclose(ficgp);*/     /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
   /*--------- index.htm --------*/       else weight[i]=1;*/
   
   strcpy(optionfilehtm,optionfilefiname); /* Main html file */    /* Calculation of the number of parameters from char model */
   if(mle==-3)    Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     strcat(optionfilehtm,"-mort");    Tprod=ivector(1,15);
   strcat(optionfilehtm,".htm");    Tvaraff=ivector(1,15);
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {    Tvard=imatrix(1,15,1,2);
     printf("Problem with %s \n",optionfilehtm), exit(0);    Tage=ivector(1,15);      
   }     
     if (strlen(model) >1){ /* If there is at least 1 covariate */
   strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */      j=0, j1=0, k1=1, k2=1;
   strcat(optionfilehtmcov,"-cov.htm");      j=nbocc(model,'+'); /* j=Number of '+' */
   if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {      j1=nbocc(model,'*'); /* j1=Number of '*' */
     printf("Problem with %s \n",optionfilehtmcov), exit(0);      cptcovn=j+1;
   }      cptcovprod=j1; /*Number of products */
   else{     
   fprintf(fichtmcov,"<body>\n<title>IMaCh Cov %s</title>\n <font size=\"2\">%s <br> %s</font> \      strcpy(modelsav,model);
 <hr size=\"2\" color=\"#EC5E5E\"> \n\      if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\        printf("Error. Non available option model=%s ",model);
           fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);        fprintf(ficlog,"Error. Non available option model=%s ",model);
   }        goto end;
       }
   fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \     
 <hr size=\"2\" color=\"#EC5E5E\"> \n\      /* This loop fills the array Tvar from the string 'model'.*/
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\  
 \n\      for(i=(j+1); i>=1;i--){
 <hr  size=\"2\" color=\"#EC5E5E\">\        cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */
  <ul><li><h4>Parameter files</h4>\n\        if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\        /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
  - Log file of the run: <a href=\"%s\">%s</a><br>\n\        /*scanf("%d",i);*/
  - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\        if (strchr(strb,'*')) {  /* Model includes a product */
  - Date and time at start: %s</ul>\n",\          cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\          if (strcmp(strc,"age")==0) { /* Vn*age */
           fileres,fileres,\            cptcovprod--;
           filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);            cutv(strb,stre,strd,'V');
   fflush(fichtm);            Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
   strcpy(pathr,path);              Tage[cptcovage]=i;
   strcat(pathr,optionfilefiname);              /*printf("stre=%s ", stre);*/
   chdir(optionfilefiname); /* Move to directory named optionfile */          }
             else if (strcmp(strd,"age")==0) { /* or age*Vn */
   /* Calculates basic frequencies. Computes observed prevalence at single age            cptcovprod--;
      and prints on file fileres'p'. */            cutv(strb,stre,strc,'V');
   freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);            Tvar[i]=atoi(stre);
             cptcovage++;
   fprintf(fichtm,"\n");            Tage[cptcovage]=i;
   fprintf(fichtm,"<br>Total number of observations=%d <br>\n\          }
 Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\          else {  /* Age is not in the model */
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\            cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
           imx,agemin,agemax,jmin,jmax,jmean);            Tvar[i]=ncovcol+k1;
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */            cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */            Tprod[k1]=i;
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */            Tvard[k1][1]=atoi(strc); /* m*/
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */            Tvard[k1][2]=atoi(stre); /* n */
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */            Tvar[cptcovn+k2]=Tvard[k1][1];
                 Tvar[cptcovn+k2+1]=Tvard[k1][2];
                for (k=1; k<=lastobs;k++)
   /* For Powell, parameters are in a vector p[] starting at p[1]              covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
      so we point p on param[1][1] so that p[1] maps on param[1][1][1] */            k1++;
   p=param[1][1]; /* *(*(*(param +1)+1)+0) */            k2=k2+2;
           }
   globpr=0; /* To get the number ipmx of contributions and the sum of weights*/        }
         else { /* no more sum */
   if (mle==-3){          /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
     ximort=matrix(1,NDIM,1,NDIM);         /*  scanf("%d",i);*/
     cens=ivector(1,n);        cutv(strd,strc,strb,'V');
     ageexmed=vector(1,n);        Tvar[i]=atoi(strc);
     agecens=vector(1,n);        }
     dcwave=ivector(1,n);        strcpy(modelsav,stra);  
          /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
     for (i=1; i<=imx; i++){          scanf("%d",i);*/
       dcwave[i]=-1;      } /* end of loop + */
       for (m=firstpass; m<=lastpass; m++)    } /* end model */
         if (s[m][i]>nlstate) {   
           dcwave[i]=m;    /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
           /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/      If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
           break;  
         }    /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     }    printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
     for (i=1; i<=imx; i++) {  
       if (wav[i]>0){    scanf("%d ",i);*/
         ageexmed[i]=agev[mw[1][i]][i];  
         j=wav[i];      /*  if(mle==1){*/
         agecens[i]=1.;     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
         if (ageexmed[i]> 1 && wav[i] > 0){    }
           agecens[i]=agev[mw[j][i]][i];      /*-calculation of age at interview from date of interview and age at death -*/
           cens[i]= 1;    agev=matrix(1,maxwav,1,imx);
         }else if (ageexmed[i]< 1)   
           cens[i]= -1;    for (i=1; i<=imx; i++) {
         if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)      for(m=2; (m<= maxwav); m++) {
           cens[i]=0 ;        if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
       }          anint[m][i]=9999;
       else cens[i]=-1;          s[m][i]=-1;
     }        }
             if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
     for (i=1;i<=NDIM;i++) {          nberr++;
       for (j=1;j<=NDIM;j++)          printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
         ximort[i][j]=(i == j ? 1.0 : 0.0);          fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
     }          s[m][i]=-1;
             }
     p[1]=0.0268; p[NDIM]=0.083;        if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
     /*printf("%lf %lf", p[1], p[2]);*/          nberr++;
               printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]);
               fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]);
     printf("Powell\n");  fprintf(ficlog,"Powell\n");          s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
     strcpy(filerespow,"pow-mort");         }
     strcat(filerespow,fileres);      }
     if((ficrespow=fopen(filerespow,"w"))==NULL) {    }
       printf("Problem with resultfile: %s\n", filerespow);  
       fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);    for (i=1; i<=imx; i++)  {
     }      agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
     fprintf(ficrespow,"# Powell\n# iter -2*LL");      for(m=firstpass; (m<= lastpass); m++){
     /*  for (i=1;i<=nlstate;i++)        if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
         for(j=1;j<=nlstate+ndeath;j++)          if (s[m][i] >= nlstate+1) {
         if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);            if(agedc[i]>0)
     */              if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
     fprintf(ficrespow,"\n");                agev[m][i]=agedc[i];
                 /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
     powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);              else {
     fclose(ficrespow);                if ((int)andc[i]!=9999){
                       nbwarn++;
     hesscov(matcov, p, NDIM, delti, 1e-4, gompertz);                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
     for(i=1; i <=NDIM; i++)                  agev[m][i]=-1;
       for(j=i+1;j<=NDIM;j++)                }
         matcov[i][j]=matcov[j][i];              }
               }
     printf("\nCovariance matrix\n ");          else if(s[m][i] !=9){ /* Standard case, age in fractional
     for(i=1; i <=NDIM; i++) {                                   years but with the precision of a month */
       for(j=1;j<=NDIM;j++){             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
         printf("%f ",matcov[i][j]);            if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
       }              agev[m][i]=1;
       printf("\n ");            else if(agev[m][i] <agemin){
     }              agemin=agev[m][i];
                   /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
     printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);            }
     for (i=1;i<=NDIM;i++)             else if(agev[m][i] >agemax){
       printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));              agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
     lsurv=vector(1,AGESUP);            }
     lpop=vector(1,AGESUP);            /*agev[m][i]=anint[m][i]-annais[i];*/
     tpop=vector(1,AGESUP);            /*     agev[m][i] = age[i]+2*m;*/
     lsurv[agegomp]=100000;          }
               else { /* =9 */
     for (k=agegomp;k<=AGESUP;k++) {            agev[m][i]=1;
       agemortsup=k;            s[m][i]=-1;
       if (p[1]*exp(p[2]*(k-agegomp))>1) break;          }
     }        }
             else /*= 0 Unknown */
     for (k=agegomp;k<agemortsup;k++)          agev[m][i]=1;
       lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));      }
          
     for (k=agegomp;k<agemortsup;k++){    }
       lpop[k]=(lsurv[k]+lsurv[k+1])/2.;    for (i=1; i<=imx; i++)  {
       sumlpop=sumlpop+lpop[k];      for(m=firstpass; (m<=lastpass); m++){
     }        if (s[m][i] > (nlstate+ndeath)) {
               nberr++;
     tpop[agegomp]=sumlpop;          printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);    
     for (k=agegomp;k<(agemortsup-3);k++){          fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);    
       /*  tpop[k+1]=2;*/          goto end;
       tpop[k+1]=tpop[k]-lpop[k];        }
     }      }
         }
       
     printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");    /*for (i=1; i<=imx; i++){
     for (k=agegomp;k<(agemortsup-2);k++)     for (m=firstpass; (m<lastpass); m++){
       printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);       printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
       }
       
     replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */  }*/
     printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);  
       
     printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \    printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
                      stepm, weightopt,\    fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
                      model,imx,p,matcov,agemortsup);  
         agegomp=(int)agemin;
     free_vector(lsurv,1,AGESUP);    free_vector(severity,1,maxwav);
     free_vector(lpop,1,AGESUP);    free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(tpop,1,AGESUP);    free_vector(moisnais,1,n);
   } /* Endof if mle==-3 */    free_vector(annais,1,n);
       /* free_matrix(mint,1,maxwav,1,n);
   else{ /* For mle >=1 */       free_matrix(anint,1,maxwav,1,n);*/
       free_vector(moisdc,1,n);
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */    free_vector(andc,1,n);
     printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);  
     for (k=1; k<=npar;k++)     
       printf(" %d %8.5f",k,p[k]);    wav=ivector(1,imx);
     printf("\n");    dh=imatrix(1,lastpass-firstpass+1,1,imx);
     globpr=1; /* to print the contributions */    bh=imatrix(1,lastpass-firstpass+1,1,imx);
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */    mw=imatrix(1,lastpass-firstpass+1,1,imx);
     printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);     
     for (k=1; k<=npar;k++)    /* Concatenates waves */
       printf(" %d %8.5f",k,p[k]);    concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
     printf("\n");  
     if(mle>=1){ /* Could be 1 or 2 */    /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
       mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);  
     }    Tcode=ivector(1,100);
         nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);
     /*--------- results files --------------*/    ncodemax[1]=1;
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);    if (cptcovn > 0) tricode(Tvar,nbcode,imx);
            
         codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of
     fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");                                   the estimations*/
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    h=0;
     fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    m=pow(2,cptcoveff);
     for(i=1,jk=1; i <=nlstate; i++){   
       for(k=1; k <=(nlstate+ndeath); k++){    for(k=1;k<=cptcoveff; k++){
         if (k != i) {      for(i=1; i <=(m/pow(2,k));i++){
           printf("%d%d ",i,k);        for(j=1; j <= ncodemax[k]; j++){
           fprintf(ficlog,"%d%d ",i,k);          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
           fprintf(ficres,"%1d%1d ",i,k);            h++;
           for(j=1; j <=ncovmodel; j++){            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             printf("%f ",p[jk]);            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
             fprintf(ficlog,"%f ",p[jk]);          }
             fprintf(ficres,"%f ",p[jk]);        }
             jk++;       }
           }    }
           printf("\n");    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);
           fprintf(ficlog,"\n");       codtab[1][2]=1;codtab[2][2]=2; */
           fprintf(ficres,"\n");    /* for(i=1; i <=m ;i++){
         }       for(k=1; k <=cptcovn; k++){
       }       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
     }       }
     if(mle!=0){       printf("\n");
       /* Computing hessian and covariance matrix */       }
       ftolhess=ftol; /* Usually correct */       scanf("%d",i);*/
       hesscov(matcov, p, npar, delti, ftolhess, func);     
     }    /*------------ gnuplot -------------*/
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");    strcpy(optionfilegnuplot,optionfilefiname);
     printf("# Scales (for hessian or gradient estimation)\n");    if(mle==-3)
     fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");      strcat(optionfilegnuplot,"-mort");
     for(i=1,jk=1; i <=nlstate; i++){    strcat(optionfilegnuplot,".gp");
       for(j=1; j <=nlstate+ndeath; j++){  
         if (j!=i) {    if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
           fprintf(ficres,"%1d%1d",i,j);      printf("Problem with file %s",optionfilegnuplot);
           printf("%1d%1d",i,j);    }
           fprintf(ficlog,"%1d%1d",i,j);    else{
           for(k=1; k<=ncovmodel;k++){      fprintf(ficgp,"\n# %s\n", version);
             printf(" %.5e",delti[jk]);      fprintf(ficgp,"# %s\n", optionfilegnuplot);
             fprintf(ficlog," %.5e",delti[jk]);      fprintf(ficgp,"set missing 'NaNq'\n");
             fprintf(ficres," %.5e",delti[jk]);    }
             jk++;    /*  fclose(ficgp);*/
           }    /*--------- index.htm --------*/
           printf("\n");  
           fprintf(ficlog,"\n");    strcpy(optionfilehtm,optionfilefiname); /* Main html file */
           fprintf(ficres,"\n");    if(mle==-3)
         }      strcat(optionfilehtm,"-mort");
       }    strcat(optionfilehtm,".htm");
     }    if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
           printf("Problem with %s \n",optionfilehtm), exit(0);
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");    }
     if(mle>=1)  
       printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");    strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");    strcat(optionfilehtmcov,"-cov.htm");
     /* # 121 Var(a12)\n\ */    if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
     /* # 122 Cov(b12,a12) Var(b12)\n\ */      printf("Problem with %s \n",optionfilehtmcov), exit(0);
     /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */    }
     /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */    else{
     /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */    fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
     /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */  <hr size=\"2\" color=\"#EC5E5E\"> \n\
     /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */  Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
     /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */            optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
         }
       
     /* Just to have a covariance matrix which will be more understandable    fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
        even is we still don't want to manage dictionary of variables  <hr size=\"2\" color=\"#EC5E5E\"> \n\
     */  Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
     for(itimes=1;itimes<=2;itimes++){  \n\
       jj=0;  <hr  size=\"2\" color=\"#EC5E5E\">\
       for(i=1; i <=nlstate; i++){   <ul><li><h4>Parameter files</h4>\n\
         for(j=1; j <=nlstate+ndeath; j++){   - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
           if(j==i) continue;   - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
           for(k=1; k<=ncovmodel;k++){   - Log file of the run: <a href=\"%s\">%s</a><br>\n\
             jj++;   - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
             ca[0]= k+'a'-1;ca[1]='\0';   - Date and time at start: %s</ul>\n",\
             if(itimes==1){            optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
               if(mle>=1)            optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
                 printf("#%1d%1d%d",i,j,k);            fileres,fileres,\
               fprintf(ficlog,"#%1d%1d%d",i,j,k);            filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
               fprintf(ficres,"#%1d%1d%d",i,j,k);    fflush(fichtm);
             }else{  
               if(mle>=1)    strcpy(pathr,path);
                 printf("%1d%1d%d",i,j,k);    strcat(pathr,optionfilefiname);
               fprintf(ficlog,"%1d%1d%d",i,j,k);    chdir(optionfilefiname); /* Move to directory named optionfile */
               fprintf(ficres,"%1d%1d%d",i,j,k);   
             }    /* Calculates basic frequencies. Computes observed prevalence at single age
             ll=0;       and prints on file fileres'p'. */
             for(li=1;li <=nlstate; li++){    freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
               for(lj=1;lj <=nlstate+ndeath; lj++){  
                 if(lj==li) continue;    fprintf(fichtm,"\n");
                 for(lk=1;lk<=ncovmodel;lk++){    fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
                   ll++;  Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
                   if(ll<=jj){  Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
                     cb[0]= lk +'a'-1;cb[1]='\0';            imx,agemin,agemax,jmin,jmax,jmean);
                     if(ll<jj){    pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
                       if(itimes==1){      oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
                         if(mle>=1)      newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
                           printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);      savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
                         fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);      oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
                         fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);     
                       }else{     
                         if(mle>=1)    /* For Powell, parameters are in a vector p[] starting at p[1]
                           printf(" %.5e",matcov[jj][ll]);        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
                         fprintf(ficlog," %.5e",matcov[jj][ll]);     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
                         fprintf(ficres," %.5e",matcov[jj][ll]);   
                       }    globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
                     }else{  
                       if(itimes==1){    if (mle==-3){
                         if(mle>=1)      ximort=matrix(1,NDIM,1,NDIM);
                           printf(" Var(%s%1d%1d)",ca,i,j);      cens=ivector(1,n);
                         fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);      ageexmed=vector(1,n);
                         fprintf(ficres," Var(%s%1d%1d)",ca,i,j);      agecens=vector(1,n);
                       }else{      dcwave=ivector(1,n);
                         if(mle>=1)   
                           printf(" %.5e",matcov[jj][ll]);       for (i=1; i<=imx; i++){
                         fprintf(ficlog," %.5e",matcov[jj][ll]);         dcwave[i]=-1;
                         fprintf(ficres," %.5e",matcov[jj][ll]);         for (m=firstpass; m<=lastpass; m++)
                       }          if (s[m][i]>nlstate) {
                     }            dcwave[i]=m;
                   }            /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
                 } /* end lk */            break;
               } /* end lj */          }
             } /* end li */      }
             if(mle>=1)  
               printf("\n");      for (i=1; i<=imx; i++) {
             fprintf(ficlog,"\n");        if (wav[i]>0){
             fprintf(ficres,"\n");          ageexmed[i]=agev[mw[1][i]][i];
             numlinepar++;          j=wav[i];
           } /* end k*/          agecens[i]=1.;
         } /*end j */  
       } /* end i */          if (ageexmed[i]> 1 && wav[i] > 0){
     } /* end itimes */            agecens[i]=agev[mw[j][i]][i];
                 cens[i]= 1;
     fflush(ficlog);          }else if (ageexmed[i]< 1)
     fflush(ficres);            cens[i]= -1;
               if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
     while((c=getc(ficpar))=='#' && c!= EOF){            cens[i]=0 ;
       ungetc(c,ficpar);        }
       fgets(line, MAXLINE, ficpar);        else cens[i]=-1;
       puts(line);      }
       fputs(line,ficparo);     
     }      for (i=1;i<=NDIM;i++) {
     ungetc(c,ficpar);        for (j=1;j<=NDIM;j++)
               ximort[i][j]=(i == j ? 1.0 : 0.0);
     estepm=0;      }
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);     
     if (estepm==0 || estepm < stepm) estepm=stepm;      p[1]=0.0268; p[NDIM]=0.083;
     if (fage <= 2) {      /*printf("%lf %lf", p[1], p[2]);*/
       bage = ageminpar;     
       fage = agemaxpar;     
     }      printf("Powell\n");  fprintf(ficlog,"Powell\n");
           strcpy(filerespow,"pow-mort");
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");      strcat(filerespow,fileres);
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);      if((ficrespow=fopen(filerespow,"w"))==NULL) {
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);        printf("Problem with resultfile: %s\n", filerespow);
             fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
     while((c=getc(ficpar))=='#' && c!= EOF){      }
       ungetc(c,ficpar);      fprintf(ficrespow,"# Powell\n# iter -2*LL");
       fgets(line, MAXLINE, ficpar);      /*  for (i=1;i<=nlstate;i++)
       puts(line);          for(j=1;j<=nlstate+ndeath;j++)
       fputs(line,ficparo);          if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
     }      */
     ungetc(c,ficpar);      fprintf(ficrespow,"\n");
          
     fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);      powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
     fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);      fclose(ficrespow);
     fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);     
     printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);      hesscov(matcov, p, NDIM, delti, 1e-4, gompertz);
     fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);  
           for(i=1; i <=NDIM; i++)
     while((c=getc(ficpar))=='#' && c!= EOF){        for(j=i+1;j<=NDIM;j++)
       ungetc(c,ficpar);          matcov[i][j]=matcov[j][i];
       fgets(line, MAXLINE, ficpar);     
       puts(line);      printf("\nCovariance matrix\n ");
       fputs(line,ficparo);      for(i=1; i <=NDIM; i++) {
     }        for(j=1;j<=NDIM;j++){
     ungetc(c,ficpar);          printf("%f ",matcov[i][j]);
             }
             printf("\n ");
     dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;      }
     dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;     
           printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
     fscanf(ficpar,"pop_based=%d\n",&popbased);      for (i=1;i<=NDIM;i++)
     fprintf(ficparo,"pop_based=%d\n",popbased);           printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(ficres,"pop_based=%d\n",popbased);     
           lsurv=vector(1,AGESUP);
     while((c=getc(ficpar))=='#' && c!= EOF){      lpop=vector(1,AGESUP);
       ungetc(c,ficpar);      tpop=vector(1,AGESUP);
       fgets(line, MAXLINE, ficpar);      lsurv[agegomp]=100000;
       puts(line);     
       fputs(line,ficparo);      for (k=agegomp;k<=AGESUP;k++) {
     }        agemortsup=k;
     ungetc(c,ficpar);        if (p[1]*exp(p[2]*(k-agegomp))>1) break;
           }
     fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);     
     fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);      for (k=agegomp;k<agemortsup;k++)
     printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);        lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
     fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);     
     fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);      for (k=agegomp;k<agemortsup;k++){
     /* day and month of proj2 are not used but only year anproj2.*/        lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
             sumlpop=sumlpop+lpop[k];
           }
          
     /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/      tpop[agegomp]=sumlpop;
     /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/      for (k=agegomp;k<(agemortsup-3);k++){
             /*  tpop[k+1]=2;*/
     replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */        tpop[k+1]=tpop[k]-lpop[k];
     printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);      }
          
     printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\     
                  model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\      printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
                  jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);      for (k=agegomp;k<(agemortsup-2);k++)
               printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
    /*------------ free_vector  -------------*/     
    /*  chdir(path); */     
        replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
     free_ivector(wav,1,imx);      printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);     
     free_imatrix(bh,1,lastpass-firstpass+1,1,imx);      printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);                          stepm, weightopt,\
     free_lvector(num,1,n);                       model,imx,p,matcov,agemortsup);
     free_vector(agedc,1,n);     
     /*free_matrix(covar,0,NCOVMAX,1,n);*/      free_vector(lsurv,1,AGESUP);
     /*free_matrix(covar,1,NCOVMAX,1,n);*/      free_vector(lpop,1,AGESUP);
     fclose(ficparo);      free_vector(tpop,1,AGESUP);
     fclose(ficres);    } /* Endof if mle==-3 */
    
     else{ /* For mle >=1 */
     /*--------------- Prevalence limit  (stable prevalence) --------------*/   
         likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
     strcpy(filerespl,"pl");      printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
     strcat(filerespl,fileres);      for (k=1; k<=npar;k++)
     if((ficrespl=fopen(filerespl,"w"))==NULL) {        printf(" %d %8.5f",k,p[k]);
       printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;      printf("\n");
       fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;      globpr=1; /* to print the contributions */
     }      likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
     printf("Computing stable prevalence: result on file '%s' \n", filerespl);      printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
     fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);      for (k=1; k<=npar;k++)
     fprintf(ficrespl, "#Local time at start: %s", strstart);        printf(" %d %8.5f",k,p[k]);
     fprintf(ficrespl,"#Stable prevalence \n");      printf("\n");
     fprintf(ficrespl,"#Age ");      if(mle>=1){ /* Could be 1 or 2 */
     for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);        mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
     fprintf(ficrespl,"\n");      }
        
     prlim=matrix(1,nlstate,1,nlstate);      /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
     agebase=ageminpar;     
     agelim=agemaxpar;     
     ftolpl=1.e-10;      fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     i1=cptcoveff;      printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     if (cptcovn < 1){i1=1;}      fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){        for(k=1; k <=(nlstate+ndeath); k++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){          if (k != i) {
         k=k+1;            printf("%d%d ",i,k);
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/            fprintf(ficlog,"%d%d ",i,k);
         fprintf(ficrespl,"\n#******");            fprintf(ficres,"%1d%1d ",i,k);
         printf("\n#******");            for(j=1; j <=ncovmodel; j++){
         fprintf(ficlog,"\n#******");              printf("%lf ",p[jk]);
         for(j=1;j<=cptcoveff;j++) {              fprintf(ficlog,"%lf ",p[jk]);
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);              fprintf(ficres,"%lf ",p[jk]);
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);              jk++;
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            }
         }            printf("\n");
         fprintf(ficrespl,"******\n");            fprintf(ficlog,"\n");
         printf("******\n");            fprintf(ficres,"\n");
         fprintf(ficlog,"******\n");          }
                 }
         for (age=agebase; age<=agelim; age++){      }
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);      if(mle!=0){
           fprintf(ficrespl,"%.0f ",age );        /* Computing hessian and covariance matrix */
           for(j=1;j<=cptcoveff;j++)        ftolhess=ftol; /* Usually correct */
             fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        hesscov(matcov, p, npar, delti, ftolhess, func);
           for(i=1; i<=nlstate;i++)      }
             fprintf(ficrespl," %.5f", prlim[i][i]);      fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
           fprintf(ficrespl,"\n");      printf("# Scales (for hessian or gradient estimation)\n");
         }      fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       }      for(i=1,jk=1; i <=nlstate; i++){
     }        for(j=1; j <=nlstate+ndeath; j++){
     fclose(ficrespl);          if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
     /*------------- h Pij x at various ages ------------*/            printf("%1d%1d",i,j);
               fprintf(ficlog,"%1d%1d",i,j);
     strcpy(filerespij,"pij");  strcat(filerespij,fileres);            for(k=1; k<=ncovmodel;k++){
     if((ficrespij=fopen(filerespij,"w"))==NULL) {              printf(" %.5e",delti[jk]);
       printf("Problem with Pij resultfile: %s\n", filerespij);goto end;              fprintf(ficlog," %.5e",delti[jk]);
       fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;              fprintf(ficres," %.5e",delti[jk]);
     }              jk++;
     printf("Computing pij: result on file '%s' \n", filerespij);            }
     fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);            printf("\n");
               fprintf(ficlog,"\n");
     stepsize=(int) (stepm+YEARM-1)/YEARM;            fprintf(ficres,"\n");
     /*if (stepm<=24) stepsize=2;*/          }
         }
     agelim=AGESUP;      }
     hstepm=stepsize*YEARM; /* Every year of age */     
     hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
     /* hstepm=1;   aff par mois*/        printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     fprintf(ficrespij, "#Local time at start: %s", strstart);      fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");      /* # 121 Var(a12)\n\ */
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){      /* # 122 Cov(b12,a12) Var(b12)\n\ */
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
         k=k+1;      /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
         fprintf(ficrespij,"\n#****** ");      /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
         for(j=1;j<=cptcoveff;j++)       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
         fprintf(ficrespij,"******\n");      /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
              
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */     
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */       /* Just to have a covariance matrix which will be more understandable
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */         even is we still don't want to manage dictionary of variables
       */
           /*      nhstepm=nhstepm*YEARM; aff par mois*/      for(itimes=1;itimes<=2;itimes++){
         jj=0;
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        for(i=1; i <=nlstate; i++){
           oldm=oldms;savm=savms;          for(j=1; j <=nlstate+ndeath; j++){
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);              if(j==i) continue;
           fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");            for(k=1; k<=ncovmodel;k++){
           for(i=1; i<=nlstate;i++)              jj++;
             for(j=1; j<=nlstate+ndeath;j++)              ca[0]= k+'a'-1;ca[1]='\0';
               fprintf(ficrespij," %1d-%1d",i,j);              if(itimes==1){
           fprintf(ficrespij,"\n");                if(mle>=1)
           for (h=0; h<=nhstepm; h++){                  printf("#%1d%1d%d",i,j,k);
             fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );                fprintf(ficlog,"#%1d%1d%d",i,j,k);
             for(i=1; i<=nlstate;i++)                fprintf(ficres,"#%1d%1d%d",i,j,k);
               for(j=1; j<=nlstate+ndeath;j++)              }else{
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);                if(mle>=1)
             fprintf(ficrespij,"\n");                  printf("%1d%1d%d",i,j,k);
           }                fprintf(ficlog,"%1d%1d%d",i,j,k);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                fprintf(ficres,"%1d%1d%d",i,j,k);
           fprintf(ficrespij,"\n");              }
         }              ll=0;
       }              for(li=1;li <=nlstate; li++){
     }                for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
     varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);                  for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
     fclose(ficrespij);                    if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
     probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);                      if(ll<jj){
     for(i=1;i<=AGESUP;i++)                        if(itimes==1){
       for(j=1;j<=NCOVMAX;j++)                          if(mle>=1)
         for(k=1;k<=NCOVMAX;k++)                            printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
           probs[i][j][k]=0.;                          fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
     /*---------- Forecasting ------------------*/                        }else{
     /*if((stepm == 1) && (strcmp(model,".")==0)){*/                          if(mle>=1)
     if(prevfcast==1){                            printf(" %.5e",matcov[jj][ll]);
       /*    if(stepm ==1){*/                          fprintf(ficlog," %.5e",matcov[jj][ll]);
       prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);                          fprintf(ficres," %.5e",matcov[jj][ll]);
       /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/                        }
       /*      }  */                      }else{
       /*      else{ */                        if(itimes==1){
       /*        erreur=108; */                          if(mle>=1)
       /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */                            printf(" Var(%s%1d%1d)",ca,i,j);
       /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */                          fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
       /*      } */                          fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
     }                        }else{
                             if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]);
     /*---------- Health expectancies and variances ------------*/                          fprintf(ficlog," %.5e",matcov[jj][ll]);
                           fprintf(ficres," %.5e",matcov[jj][ll]);
     strcpy(filerest,"t");                        }
     strcat(filerest,fileres);                      }
     if((ficrest=fopen(filerest,"w"))==NULL) {                    }
       printf("Problem with total LE resultfile: %s\n", filerest);goto end;                  } /* end lk */
       fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;                } /* end lj */
     }              } /* end li */
     printf("Computing Total LEs with variances: file '%s' \n", filerest);               if(mle>=1)
     fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest);                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
     strcpy(filerese,"e");              numlinepar++;
     strcat(filerese,fileres);            } /* end k*/
     if((ficreseij=fopen(filerese,"w"))==NULL) {          } /*end j */
       printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);        } /* end i */
       fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);      } /* end itimes */
     }     
     printf("Computing Health Expectancies: result on file '%s' \n", filerese);      fflush(ficlog);
     fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);      fflush(ficres);
      
     strcpy(fileresv,"v");      while((c=getc(ficpar))=='#' && c!= EOF){
     strcat(fileresv,fileres);        ungetc(c,ficpar);
     if((ficresvij=fopen(fileresv,"w"))==NULL) {        fgets(line, MAXLINE, ficpar);
       printf("Problem with variance resultfile: %s\n", fileresv);exit(0);        puts(line);
       fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);        fputs(line,ficparo);
     }      }
     printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);      ungetc(c,ficpar);
     fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);     
       estepm=0;
     /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */      fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
     prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);      if (estepm==0 || estepm < stepm) estepm=stepm;
     /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\      if (fage <= 2) {
         ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);        bage = ageminpar;
     */        fage = agemaxpar;
       }
     if (mobilav!=0) {     
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){      fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);      fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);     
       }      while((c=getc(ficpar))=='#' && c!= EOF){
     }        ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){        puts(line);
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        fputs(line,ficparo);
         k=k+1;       }
         fprintf(ficrest,"\n#****** ");      ungetc(c,ficpar);
         for(j=1;j<=cptcoveff;j++)      
           fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
         fprintf(ficrest,"******\n");      fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
         fprintf(ficreseij,"\n#****** ");      printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
         for(j=1;j<=cptcoveff;j++)       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
           fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);     
         fprintf(ficreseij,"******\n");      while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fprintf(ficresvij,"\n#****** ");        fgets(line, MAXLINE, ficpar);
         for(j=1;j<=cptcoveff;j++)         puts(line);
           fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        fputs(line,ficparo);
         fprintf(ficresvij,"******\n");      }
       ungetc(c,ficpar);
         eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);     
         oldm=oldms;savm=savms;     
         evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);        dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
        dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
         vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);     
         oldm=oldms;savm=savms;      fscanf(ficpar,"pop_based=%d\n",&popbased);
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav, strstart);      fprintf(ficparo,"pop_based=%d\n",popbased);  
         if(popbased==1){      fprintf(ficres,"pop_based=%d\n",popbased);  
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav, strstart);     
         }      while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fprintf(ficrest, "#Local time at start: %s", strstart);        fgets(line, MAXLINE, ficpar);
         fprintf(ficrest,"#Total LEs with variances: e.. (std) ");        puts(line);
         for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);        fputs(line,ficparo);
         fprintf(ficrest,"\n");      }
       ungetc(c,ficpar);
         epj=vector(1,nlstate+1);     
         for(age=bage; age <=fage ;age++){      fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);      fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
           if (popbased==1) {      printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
             if(mobilav ==0){      fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
               for(i=1; i<=nlstate;i++)      fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
                 prlim[i][i]=probs[(int)age][i][k];      /* day and month of proj2 are not used but only year anproj2.*/
             }else{ /* mobilav */      
               for(i=1; i<=nlstate;i++)     
                 prlim[i][i]=mobaverage[(int)age][i][k];     
             }      /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
           }      /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
              
           fprintf(ficrest," %4.0f",age);      replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
           for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){      printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
             for(i=1, epj[j]=0.;i <=nlstate;i++) {     
               epj[j] += prlim[i][i]*eij[i][j][(int)age];      printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
               /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/                   model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
             }                   jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
             epj[nlstate+1] +=epj[j];       
           }     /*------------ free_vector  -------------*/
      /*  chdir(path); */
           for(i=1, vepp=0.;i <=nlstate;i++)   
             for(j=1;j <=nlstate;j++)      free_ivector(wav,1,imx);
               vepp += vareij[i][j][(int)age];      free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
           fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));      free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
           for(j=1;j <=nlstate;j++){      free_imatrix(mw,1,lastpass-firstpass+1,1,imx);  
             fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));      free_lvector(num,1,n);
           }      free_vector(agedc,1,n);
           fprintf(ficrest,"\n");      /*free_matrix(covar,0,NCOVMAX,1,n);*/
         }      /*free_matrix(covar,1,NCOVMAX,1,n);*/
         free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);      fclose(ficparo);
         free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);      fclose(ficres);
         free_vector(epj,1,nlstate+1);  
       }  
     }      /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
     free_vector(weight,1,n);   
     free_imatrix(Tvard,1,15,1,2);      strcpy(filerespl,"pl");
     free_imatrix(s,1,maxwav+1,1,n);      strcat(filerespl,fileres);
     free_matrix(anint,1,maxwav,1,n);       if((ficrespl=fopen(filerespl,"w"))==NULL) {
     free_matrix(mint,1,maxwav,1,n);        printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
     free_ivector(cod,1,n);        fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
     free_ivector(tab,1,NCOVMAX);      }
     fclose(ficreseij);      printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
     fclose(ficresvij);      fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
     fclose(ficrest);      pstamp(ficrespl);
     fclose(ficpar);      fprintf(ficrespl,"# Period (stable) prevalence \n");
         fprintf(ficrespl,"#Age ");
     /*------- Variance of stable prevalence------*/         for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     strcpy(fileresvpl,"vpl");   
     strcat(fileresvpl,fileres);      prlim=matrix(1,nlstate,1,nlstate);
     if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {  
       printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);      agebase=ageminpar;
       exit(0);      agelim=agemaxpar;
     }      ftolpl=1.e-10;
     printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);      i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){  
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         k=k+1;        for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         fprintf(ficresvpl,"\n#****** ");          k=k+1;
         for(j=1;j<=cptcoveff;j++)           /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
           fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          fprintf(ficrespl,"\n#******");
         fprintf(ficresvpl,"******\n");          printf("\n#******");
                 fprintf(ficlog,"\n#******");
         varpl=matrix(1,nlstate,(int) bage, (int) fage);          for(j=1;j<=cptcoveff;j++) {
         oldm=oldms;savm=savms;            fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);            printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         free_matrix(varpl,1,nlstate,(int) bage, (int)fage);            fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
       }          }
     }          fprintf(ficrespl,"******\n");
           printf("******\n");
     fclose(ficresvpl);          fprintf(ficlog,"******\n");
          
     /*---------- End : free ----------------*/          for (age=agebase; age<=agelim; age++){
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);            prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
     free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);            fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
   }  /* mle==-3 arrives here for freeing */              fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
   free_matrix(prlim,1,nlstate,1,nlstate);            for(i=1; i<=nlstate;i++)
     free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);              fprintf(ficrespl," %.5f", prlim[i][i]);
     free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);            fprintf(ficrespl,"\n");
     free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);          }
     free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);        }
     free_matrix(covar,0,NCOVMAX,1,n);      }
     free_matrix(matcov,1,npar,1,npar);      fclose(ficrespl);
     /*free_vector(delti,1,npar);*/  
     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);       /*------------- h Pij x at various ages ------------*/
     free_matrix(agev,1,maxwav,1,imx);   
     free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);      strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
     free_ivector(ncodemax,1,8);        printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
     free_ivector(Tvar,1,15);        fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
     free_ivector(Tprod,1,15);      }
     free_ivector(Tvaraff,1,15);      printf("Computing pij: result on file '%s' \n", filerespij);
     free_ivector(Tage,1,15);      fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     free_ivector(Tcode,1,100);   
       stepsize=(int) (stepm+YEARM-1)/YEARM;
     free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);      /*if (stepm<=24) stepsize=2;*/
     free_imatrix(codtab,1,100,1,10);  
   fflush(fichtm);      agelim=AGESUP;
   fflush(ficgp);      hstepm=stepsize*YEARM; /* Every year of age */
         hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */
   
   if((nberr >0) || (nbwarn>0)){      /* hstepm=1;   aff par mois*/
     printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);      pstamp(ficrespij);
     fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);      fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
   }else{      for(cptcov=1,k=0;cptcov<=i1;cptcov++){
     printf("End of Imach\n");        for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
     fprintf(ficlog,"End of Imach\n");          k=k+1;
   }          fprintf(ficrespij,"\n#****** ");
   printf("See log file on %s\n",filelog);          for(j=1;j<=cptcoveff;j++)
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */            fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
   (void) gettimeofday(&end_time,&tzp);          fprintf(ficrespij,"******\n");
   tm = *localtime(&end_time.tv_sec);         
   tmg = *gmtime(&end_time.tv_sec);          for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
   strcpy(strtend,asctime(&tm));            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */
   printf("Local time at start %s\nLocal time at end   %s",strstart, strtend);             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend);   
   printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));            /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
   printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));            oldm=oldms;savm=savms;
   fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
   /*  printf("Total time was %d uSec.\n", total_usecs);*/            fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
 /*   if(fileappend(fichtm,optionfilehtm)){ */            for(i=1; i<=nlstate;i++)
   fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);              for(j=1; j<=nlstate+ndeath;j++)
   fclose(fichtm);                fprintf(ficrespij," %1d-%1d",i,j);
   fclose(fichtmcov);            fprintf(ficrespij,"\n");
   fclose(ficgp);            for (h=0; h<=nhstepm; h++){
   fclose(ficlog);              fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
   /*------ End -----------*/              for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
   chdir(path);                  fprintf(ficrespij," %.5f", p3mat[i][j][h]);
   /*strcat(plotcmd,CHARSEPARATOR);*/              fprintf(ficrespij,"\n");
   sprintf(plotcmd,"gnuplot");            }
 #ifndef UNIX            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);            fprintf(ficrespij,"\n");
 #endif          }
   if(!stat(plotcmd,&info)){        }
     printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);      }
     if(!stat(getenv("GNUPLOTBIN"),&info)){  
       printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);      varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
     }else  
       strcpy(pplotcmd,plotcmd);      fclose(ficrespij);
 #ifdef UNIX  
     strcpy(plotcmd,GNUPLOTPROGRAM);      probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
     if(!stat(plotcmd,&info)){      for(i=1;i<=AGESUP;i++)
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);        for(j=1;j<=NCOVMAX;j++)
     }else          for(k=1;k<=NCOVMAX;k++)
       strcpy(pplotcmd,plotcmd);            probs[i][j][k]=0.;
 #endif  
   }else      /*---------- Forecasting ------------------*/
     strcpy(pplotcmd,plotcmd);      /*if((stepm == 1) && (strcmp(model,".")==0)){*/
         if(prevfcast==1){
   sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);        /*    if(stepm ==1){*/
   printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);        prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
   if((outcmd=system(plotcmd)) != 0){        /*      }  */
     printf("\n Problem with gnuplot\n");        /*      else{ */
   }        /*        erreur=108; */
   printf(" Wait...");        /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   while (z[0] != 'q') {        /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
     /* chdir(path); */        /*      } */
     printf("\nType e to edit output files, g to graph again and q for exiting: ");      }
     scanf("%s",z);   
 /*     if (z[0] == 'c') system("./imach"); */  
     if (z[0] == 'e') {      /*---------- Health expectancies and variances ------------*/
       printf("Starting browser with: %s",optionfilehtm);fflush(stdout);  
       system(optionfilehtm);      strcpy(filerest,"t");
     }      strcat(filerest,fileres);
     else if (z[0] == 'g') system(plotcmd);      if((ficrest=fopen(filerest,"w"))==NULL) {
     else if (z[0] == 'q') exit(0);        printf("Problem with total LE resultfile: %s\n", filerest);goto end;
   }        fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
   end:      }
   while (z[0] != 'q') {      printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest);
     printf("\nType  q for exiting: ");      fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest);
     scanf("%s",z);  
   }  
 }      strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficreseij,"\n#****** ");
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
           cvevsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav, strstart);
           if(popbased==1){
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav, strstart);
           }
   
           pstamp(ficrest);
           fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n# Age ( e.. (std) ");
           for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
           fprintf(ficrest,"\n");
   
           epj=vector(1,nlstate+1);
           for(age=bage; age <=fage ;age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             if (popbased==1) {
               if(mobilav ==0){
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=probs[(int)age][i][k];
               }else{ /* mobilav */
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=mobaverage[(int)age][i][k];
               }
             }
          
             fprintf(ficrest," %4.0f",age);
             for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
               for(i=1, epj[j]=0.;i <=nlstate;i++) {
                 epj[j] += prlim[i][i]*eij[i][j][(int)age];
                 /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
               }
               epj[nlstate+1] +=epj[j];
             }
   
             for(i=1, vepp=0.;i <=nlstate;i++)
               for(j=1;j <=nlstate;j++)
                 vepp += vareij[i][j][(int)age];
             fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
             for(j=1;j <=nlstate;j++){
               fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
             }
             fprintf(ficrest,"\n");
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n);
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficreseij);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
    
       /*------- Variance of period (stable) prevalence------*/  
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
        
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
     free_matrix(prlim,1,nlstate,1,nlstate);
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
       free_ivector(Tcode,1,100);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
    
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend);
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend);
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
    
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.114  
changed lines
  Added in v.1.125


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>