Diff for /imach/src/imach.c between versions 1.41.2.2 and 1.110

version 1.41.2.2, 2003/06/13 07:45:28 version 1.110, 2006/01/25 00:51:50
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.110  2006/01/25 00:51:50  brouard
      (Module): Lots of cleaning and bugs added (Gompertz)
   This program computes Healthy Life Expectancies from  
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    Revision 1.109  2006/01/24 19:37:15  brouard
   first survey ("cross") where individuals from different ages are    (Module): Comments (lines starting with a #) are allowed in data.
   interviewed on their health status or degree of disability (in the  
   case of a health survey which is our main interest) -2- at least a    Revision 1.108  2006/01/19 18:05:42  lievre
   second wave of interviews ("longitudinal") which measure each change    Gnuplot problem appeared...
   (if any) in individual health status.  Health expectancies are    To be fixed
   computed from the time spent in each health state according to a  
   model. More health states you consider, more time is necessary to reach the    Revision 1.107  2006/01/19 16:20:37  brouard
   Maximum Likelihood of the parameters involved in the model.  The    Test existence of gnuplot in imach path
   simplest model is the multinomial logistic model where pij is the  
   probability to be observed in state j at the second wave    Revision 1.106  2006/01/19 13:24:36  brouard
   conditional to be observed in state i at the first wave. Therefore    Some cleaning and links added in html output
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where  
   'age' is age and 'sex' is a covariate. If you want to have a more    Revision 1.105  2006/01/05 20:23:19  lievre
   complex model than "constant and age", you should modify the program    *** empty log message ***
   where the markup *Covariates have to be included here again* invites  
   you to do it.  More covariates you add, slower the    Revision 1.104  2005/09/30 16:11:43  lievre
   convergence.    (Module): sump fixed, loop imx fixed, and simplifications.
     (Module): If the status is missing at the last wave but we know
   The advantage of this computer programme, compared to a simple    that the person is alive, then we can code his/her status as -2
   multinomial logistic model, is clear when the delay between waves is not    (instead of missing=-1 in earlier versions) and his/her
   identical for each individual. Also, if a individual missed an    contributions to the likelihood is 1 - Prob of dying from last
   intermediate interview, the information is lost, but taken into    health status (= 1-p13= p11+p12 in the easiest case of somebody in
   account using an interpolation or extrapolation.      the healthy state at last known wave). Version is 0.98
   
   hPijx is the probability to be observed in state i at age x+h    Revision 1.103  2005/09/30 15:54:49  lievre
   conditional to the observed state i at age x. The delay 'h' can be    (Module): sump fixed, loop imx fixed, and simplifications.
   split into an exact number (nh*stepm) of unobserved intermediate  
   states. This elementary transition (by month or quarter trimester,    Revision 1.102  2004/09/15 17:31:30  brouard
   semester or year) is model as a multinomial logistic.  The hPx    Add the possibility to read data file including tab characters.
   matrix is simply the matrix product of nh*stepm elementary matrices  
   and the contribution of each individual to the likelihood is simply    Revision 1.101  2004/09/15 10:38:38  brouard
   hPijx.    Fix on curr_time
   
   Also this programme outputs the covariance matrix of the parameters but also    Revision 1.100  2004/07/12 18:29:06  brouard
   of the life expectancies. It also computes the prevalence limits.    Add version for Mac OS X. Just define UNIX in Makefile
    
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    Revision 1.99  2004/06/05 08:57:40  brouard
            Institut national d'études démographiques, Paris.    *** empty log message ***
   This software have been partly granted by Euro-REVES, a concerted action  
   from the European Union.    Revision 1.98  2004/05/16 15:05:56  brouard
   It is copyrighted identically to a GNU software product, ie programme and    New version 0.97 . First attempt to estimate force of mortality
   software can be distributed freely for non commercial use. Latest version    directly from the data i.e. without the need of knowing the health
   can be accessed at http://euroreves.ined.fr/imach .    state at each age, but using a Gompertz model: log u =a + b*age .
   **********************************************************************/    This is the basic analysis of mortality and should be done before any
      other analysis, in order to test if the mortality estimated from the
 #include <math.h>    cross-longitudinal survey is different from the mortality estimated
 #include <stdio.h>    from other sources like vital statistic data.
 #include <stdlib.h>  
 #include <unistd.h>    The same imach parameter file can be used but the option for mle should be -3.
   
 #define MAXLINE 256    Agnès, who wrote this part of the code, tried to keep most of the
 #define GNUPLOTPROGRAM "wgnuplot"    former routines in order to include the new code within the former code.
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/  
 #define FILENAMELENGTH 80    The output is very simple: only an estimate of the intercept and of
 /*#define DEBUG*/    the slope with 95% confident intervals.
   
 /*#define windows*/    Current limitations:
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    A) Even if you enter covariates, i.e. with the
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
     B) There is no computation of Life Expectancy nor Life Table.
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */  
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    Revision 1.97  2004/02/20 13:25:42  lievre
     Version 0.96d. Population forecasting command line is (temporarily)
 #define NINTERVMAX 8    suppressed.
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */  
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    Revision 1.96  2003/07/15 15:38:55  brouard
 #define NCOVMAX 8 /* Maximum number of covariates */    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
 #define MAXN 20000    rewritten within the same printf. Workaround: many printfs.
 #define YEARM 12. /* Number of months per year */  
 #define AGESUP 130    Revision 1.95  2003/07/08 07:54:34  brouard
 #define AGEBASE 40    * imach.c (Repository):
     (Repository): Using imachwizard code to output a more meaningful covariance
     matrix (cov(a12,c31) instead of numbers.
 int erreur; /* Error number */  
 int nvar;    Revision 1.94  2003/06/27 13:00:02  brouard
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    Just cleaning
 int npar=NPARMAX;  
 int nlstate=2; /* Number of live states */    Revision 1.93  2003/06/25 16:33:55  brouard
 int ndeath=1; /* Number of dead states */    (Module): On windows (cygwin) function asctime_r doesn't
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    exist so I changed back to asctime which exists.
 int popbased=0;    (Module): Version 0.96b
   
 int *wav; /* Number of waves for this individuual 0 is possible */    Revision 1.92  2003/06/25 16:30:45  brouard
 int maxwav; /* Maxim number of waves */    (Module): On windows (cygwin) function asctime_r doesn't
 int jmin, jmax; /* min, max spacing between 2 waves */    exist so I changed back to asctime which exists.
 int mle, weightopt;  
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    Revision 1.91  2003/06/25 15:30:29  brouard
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    * imach.c (Repository): Duplicated warning errors corrected.
 double jmean; /* Mean space between 2 waves */    (Repository): Elapsed time after each iteration is now output. It
 double **oldm, **newm, **savm; /* Working pointers to matrices */    helps to forecast when convergence will be reached. Elapsed time
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    is stamped in powell.  We created a new html file for the graphs
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    concerning matrix of covariance. It has extension -cov.htm.
 FILE *ficgp,*ficresprob,*ficpop;  
 FILE *ficreseij;    Revision 1.90  2003/06/24 12:34:15  brouard
   char filerese[FILENAMELENGTH];    (Module): Some bugs corrected for windows. Also, when
  FILE  *ficresvij;    mle=-1 a template is output in file "or"mypar.txt with the design
   char fileresv[FILENAMELENGTH];    of the covariance matrix to be input.
  FILE  *ficresvpl;  
   char fileresvpl[FILENAMELENGTH];    Revision 1.89  2003/06/24 12:30:52  brouard
     (Module): Some bugs corrected for windows. Also, when
 #define NR_END 1    mle=-1 a template is output in file "or"mypar.txt with the design
 #define FREE_ARG char*    of the covariance matrix to be input.
 #define FTOL 1.0e-10  
     Revision 1.88  2003/06/23 17:54:56  brouard
 #define NRANSI    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
 #define ITMAX 200  
     Revision 1.87  2003/06/18 12:26:01  brouard
 #define TOL 2.0e-4    Version 0.96
   
 #define CGOLD 0.3819660    Revision 1.86  2003/06/17 20:04:08  brouard
 #define ZEPS 1.0e-10    (Module): Change position of html and gnuplot routines and added
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    routine fileappend.
   
 #define GOLD 1.618034    Revision 1.85  2003/06/17 13:12:43  brouard
 #define GLIMIT 100.0    * imach.c (Repository): Check when date of death was earlier that
 #define TINY 1.0e-20    current date of interview. It may happen when the death was just
     prior to the death. In this case, dh was negative and likelihood
 static double maxarg1,maxarg2;    was wrong (infinity). We still send an "Error" but patch by
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    assuming that the date of death was just one stepm after the
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    interview.
      (Repository): Because some people have very long ID (first column)
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    we changed int to long in num[] and we added a new lvector for
 #define rint(a) floor(a+0.5)    memory allocation. But we also truncated to 8 characters (left
     truncation)
 static double sqrarg;    (Repository): No more line truncation errors.
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)  
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    Revision 1.84  2003/06/13 21:44:43  brouard
     * imach.c (Repository): Replace "freqsummary" at a correct
 int imx;    place. It differs from routine "prevalence" which may be called
 int stepm;    many times. Probs is memory consuming and must be used with
 /* Stepm, step in month: minimum step interpolation*/    parcimony.
     Version 0.95a3 (should output exactly the same maximization than 0.8a2)
 int estepm;  
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/    Revision 1.83  2003/06/10 13:39:11  lievre
     *** empty log message ***
 int m,nb;  
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    Revision 1.82  2003/06/05 15:57:20  brouard
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    Add log in  imach.c and  fullversion number is now printed.
 double **pmmij, ***probs, ***mobaverage;  
 double dateintmean=0;  */
   /*
 double *weight;     Interpolated Markov Chain
 int **s; /* Status */  
 double *agedc, **covar, idx;    Short summary of the programme:
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    
     This program computes Healthy Life Expectancies from
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
 double ftolhess; /* Tolerance for computing hessian */    first survey ("cross") where individuals from different ages are
     interviewed on their health status or degree of disability (in the
 /**************** split *************************/    case of a health survey which is our main interest) -2- at least a
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    second wave of interviews ("longitudinal") which measure each change
 {    (if any) in individual health status.  Health expectancies are
    char *s;                             /* pointer */    computed from the time spent in each health state according to a
    int  l1, l2;                         /* length counters */    model. More health states you consider, more time is necessary to reach the
     Maximum Likelihood of the parameters involved in the model.  The
    l1 = strlen( path );                 /* length of path */    simplest model is the multinomial logistic model where pij is the
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    probability to be observed in state j at the second wave
 #ifdef windows    conditional to be observed in state i at the first wave. Therefore
    s = strrchr( path, '\\' );           /* find last / */    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
 #else    'age' is age and 'sex' is a covariate. If you want to have a more
    s = strrchr( path, '/' );            /* find last / */    complex model than "constant and age", you should modify the program
 #endif    where the markup *Covariates have to be included here again* invites
    if ( s == NULL ) {                   /* no directory, so use current */    you to do it.  More covariates you add, slower the
 #if     defined(__bsd__)                /* get current working directory */    convergence.
       extern char       *getwd( );  
     The advantage of this computer programme, compared to a simple
       if ( getwd( dirc ) == NULL ) {    multinomial logistic model, is clear when the delay between waves is not
 #else    identical for each individual. Also, if a individual missed an
       extern char       *getcwd( );    intermediate interview, the information is lost, but taken into
     account using an interpolation or extrapolation.  
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {  
 #endif    hPijx is the probability to be observed in state i at age x+h
          return( GLOCK_ERROR_GETCWD );    conditional to the observed state i at age x. The delay 'h' can be
       }    split into an exact number (nh*stepm) of unobserved intermediate
       strcpy( name, path );             /* we've got it */    states. This elementary transition (by month, quarter,
    } else {                             /* strip direcotry from path */    semester or year) is modelled as a multinomial logistic.  The hPx
       s++;                              /* after this, the filename */    matrix is simply the matrix product of nh*stepm elementary matrices
       l2 = strlen( s );                 /* length of filename */    and the contribution of each individual to the likelihood is simply
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    hPijx.
       strcpy( name, s );                /* save file name */  
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    Also this programme outputs the covariance matrix of the parameters but also
       dirc[l1-l2] = 0;                  /* add zero */    of the life expectancies. It also computes the stable prevalence. 
    }    
    l1 = strlen( dirc );                 /* length of directory */    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
 #ifdef windows             Institut national d'études démographiques, Paris.
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    This software have been partly granted by Euro-REVES, a concerted action
 #else    from the European Union.
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }    It is copyrighted identically to a GNU software product, ie programme and
 #endif    software can be distributed freely for non commercial use. Latest version
    s = strrchr( name, '.' );            /* find last / */    can be accessed at http://euroreves.ined.fr/imach .
    s++;  
    strcpy(ext,s);                       /* save extension */    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
    l1= strlen( name);    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
    l2= strlen( s)+1;    
    strncpy( finame, name, l1-l2);    **********************************************************************/
    finame[l1-l2]= 0;  /*
    return( 0 );                         /* we're done */    main
 }    read parameterfile
     read datafile
     concatwav
 /******************************************/    freqsummary
     if (mle >= 1)
 void replace(char *s, char*t)      mlikeli
 {    print results files
   int i;    if mle==1 
   int lg=20;       computes hessian
   i=0;    read end of parameter file: agemin, agemax, bage, fage, estepm
   lg=strlen(t);        begin-prev-date,...
   for(i=0; i<= lg; i++) {    open gnuplot file
     (s[i] = t[i]);    open html file
     if (t[i]== '\\') s[i]='/';    stable prevalence
   }     for age prevalim()
 }    h Pij x
     variance of p varprob
 int nbocc(char *s, char occ)    forecasting if prevfcast==1 prevforecast call prevalence()
 {    health expectancies
   int i,j=0;    Variance-covariance of DFLE
   int lg=20;    prevalence()
   i=0;     movingaverage()
   lg=strlen(s);    varevsij() 
   for(i=0; i<= lg; i++) {    if popbased==1 varevsij(,popbased)
   if  (s[i] == occ ) j++;    total life expectancies
   }    Variance of stable prevalence
   return j;   end
 }  */
   
 void cutv(char *u,char *v, char*t, char occ)  
 {  
   int i,lg,j,p=0;   
   i=0;  #include <math.h>
   for(j=0; j<=strlen(t)-1; j++) {  #include <stdio.h>
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  #include <stdlib.h>
   }  #include <string.h>
   #include <unistd.h>
   lg=strlen(t);  
   for(j=0; j<p; j++) {  #include <limits.h>
     (u[j] = t[j]);  #include <sys/types.h>
   }  #include <sys/stat.h>
      u[p]='\0';  #include <errno.h>
   extern int errno;
    for(j=0; j<= lg; j++) {  
     if (j>=(p+1))(v[j-p-1] = t[j]);  /* #include <sys/time.h> */
   }  #include <time.h>
 }  #include "timeval.h"
   
 /********************** nrerror ********************/  /* #include <libintl.h> */
   /* #define _(String) gettext (String) */
 void nrerror(char error_text[])  
 {  #define MAXLINE 256
   fprintf(stderr,"ERREUR ...\n");  
   fprintf(stderr,"%s\n",error_text);  #define GNUPLOTPROGRAM "gnuplot"
   exit(1);  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
 }  #define FILENAMELENGTH 132
 /*********************** vector *******************/  
 double *vector(int nl, int nh)  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
 {  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
   double *v;  
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
   if (!v) nrerror("allocation failure in vector");  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
   return v-nl+NR_END;  
 }  #define NINTERVMAX 8
   #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
 /************************ free vector ******************/  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
 void free_vector(double*v, int nl, int nh)  #define NCOVMAX 8 /* Maximum number of covariates */
 {  #define MAXN 20000
   free((FREE_ARG)(v+nl-NR_END));  #define YEARM 12. /* Number of months per year */
 }  #define AGESUP 130
   #define AGEBASE 40
 /************************ivector *******************************/  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
 int *ivector(long nl,long nh)  #ifdef UNIX
 {  #define DIRSEPARATOR '/'
   int *v;  #define CHARSEPARATOR "/"
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  #define ODIRSEPARATOR '\\'
   if (!v) nrerror("allocation failure in ivector");  #else
   return v-nl+NR_END;  #define DIRSEPARATOR '\\'
 }  #define CHARSEPARATOR "\\"
   #define ODIRSEPARATOR '/'
 /******************free ivector **************************/  #endif
 void free_ivector(int *v, long nl, long nh)  
 {  /* $Id$ */
   free((FREE_ARG)(v+nl-NR_END));  /* $State$ */
 }  
   char version[]="Imach version 0.98a, January 2006, INED-EUROREVES ";
 /******************* imatrix *******************************/  char fullversion[]="$Revision$ $Date$"; 
 int **imatrix(long nrl, long nrh, long ncl, long nch)  int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  int nvar;
 {  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  int npar=NPARMAX;
   int **m;  int nlstate=2; /* Number of live states */
    int ndeath=1; /* Number of dead states */
   /* allocate pointers to rows */  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  int popbased=0;
   if (!m) nrerror("allocation failure 1 in matrix()");  
   m += NR_END;  int *wav; /* Number of waves for this individuual 0 is possible */
   m -= nrl;  int maxwav; /* Maxim number of waves */
    int jmin, jmax; /* min, max spacing between 2 waves */
    int ijmin, ijmax; /* Individuals having jmin and jmax */ 
   /* allocate rows and set pointers to them */  int gipmx, gsw; /* Global variables on the number of contributions 
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));                     to the likelihood and the sum of weights (done by funcone)*/
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  int mle, weightopt;
   m[nrl] += NR_END;  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
   m[nrl] -= ncl;  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
    int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;             * wave mi and wave mi+1 is not an exact multiple of stepm. */
    double jmean; /* Mean space between 2 waves */
   /* return pointer to array of pointers to rows */  double **oldm, **newm, **savm; /* Working pointers to matrices */
   return m;  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
 }  FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
   FILE *ficlog, *ficrespow;
 /****************** free_imatrix *************************/  int globpr; /* Global variable for printing or not */
 void free_imatrix(m,nrl,nrh,ncl,nch)  double fretone; /* Only one call to likelihood */
       int **m;  long ipmx; /* Number of contributions */
       long nch,ncl,nrh,nrl;  double sw; /* Sum of weights */
      /* free an int matrix allocated by imatrix() */  char filerespow[FILENAMELENGTH];
 {  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  FILE *ficresilk;
   free((FREE_ARG) (m+nrl-NR_END));  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
 }  FILE *ficresprobmorprev;
   FILE *fichtm, *fichtmcov; /* Html File */
 /******************* matrix *******************************/  FILE *ficreseij;
 double **matrix(long nrl, long nrh, long ncl, long nch)  char filerese[FILENAMELENGTH];
 {  FILE  *ficresvij;
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  char fileresv[FILENAMELENGTH];
   double **m;  FILE  *ficresvpl;
   char fileresvpl[FILENAMELENGTH];
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  char title[MAXLINE];
   if (!m) nrerror("allocation failure 1 in matrix()");  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
   m += NR_END;  char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];
   m -= nrl;  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
   char command[FILENAMELENGTH];
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  int  outcmd=0;
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  
   m[nrl] += NR_END;  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
   m[nrl] -= ncl;  
   char filelog[FILENAMELENGTH]; /* Log file */
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  char filerest[FILENAMELENGTH];
   return m;  char fileregp[FILENAMELENGTH];
 }  char popfile[FILENAMELENGTH];
   
 /*************************free matrix ************************/  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  
 {  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  struct timezone tzp;
   free((FREE_ARG)(m+nrl-NR_END));  extern int gettimeofday();
 }  struct tm tmg, tm, tmf, *gmtime(), *localtime();
   long time_value;
 /******************* ma3x *******************************/  extern long time();
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  char strcurr[80], strfor[80];
 {  
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  char *endptr;
   double ***m;  long lval;
   
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  #define NR_END 1
   if (!m) nrerror("allocation failure 1 in matrix()");  #define FREE_ARG char*
   m += NR_END;  #define FTOL 1.0e-10
   m -= nrl;  
   #define NRANSI 
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  #define ITMAX 200 
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  
   m[nrl] += NR_END;  #define TOL 2.0e-4 
   m[nrl] -= ncl;  
   #define CGOLD 0.3819660 
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  #define ZEPS 1.0e-10 
   #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  #define GOLD 1.618034 
   m[nrl][ncl] += NR_END;  #define GLIMIT 100.0 
   m[nrl][ncl] -= nll;  #define TINY 1.0e-20 
   for (j=ncl+1; j<=nch; j++)  
     m[nrl][j]=m[nrl][j-1]+nlay;  static double maxarg1,maxarg2;
    #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
   for (i=nrl+1; i<=nrh; i++) {  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;    
     for (j=ncl+1; j<=nch; j++)  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
       m[i][j]=m[i][j-1]+nlay;  #define rint(a) floor(a+0.5)
   }  
   return m;  static double sqrarg;
 }  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
 /*************************free ma3x ************************/  int agegomp= AGEGOMP;
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  
 {  int imx; 
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  int stepm=1;
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  /* Stepm, step in month: minimum step interpolation*/
   free((FREE_ARG)(m+nrl-NR_END));  
 }  int estepm;
   /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
 /***************** f1dim *************************/  
 extern int ncom;  int m,nb;
 extern double *pcom,*xicom;  long *num;
 extern double (*nrfunc)(double []);  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
    double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
 double f1dim(double x)  double **pmmij, ***probs;
 {  double *ageexmed,*agecens;
   int j;  double dateintmean=0;
   double f;  
   double *xt;  double *weight;
    int **s; /* Status */
   xt=vector(1,ncom);  double *agedc, **covar, idx;
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
   f=(*nrfunc)(xt);  double *lsurv, *lpop, *tpop;
   free_vector(xt,1,ncom);  
   return f;  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
 }  double ftolhess; /* Tolerance for computing hessian */
   
 /*****************brent *************************/  /**************** split *************************/
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
 {  {
   int iter;    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
   double a,b,d,etemp;       the name of the file (name), its extension only (ext) and its first part of the name (finame)
   double fu,fv,fw,fx;    */ 
   double ftemp;    char  *ss;                            /* pointer */
   double p,q,r,tol1,tol2,u,v,w,x,xm;    int   l1, l2;                         /* length counters */
   double e=0.0;  
      l1 = strlen(path );                   /* length of path */
   a=(ax < cx ? ax : cx);    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
   b=(ax > cx ? ax : cx);    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
   x=w=v=bx;    if ( ss == NULL ) {                   /* no directory, so determine current directory */
   fw=fv=fx=(*f)(x);      strcpy( name, path );               /* we got the fullname name because no directory */
   for (iter=1;iter<=ITMAX;iter++) {      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
     xm=0.5*(a+b);        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);      /* get current working directory */
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/      /*    extern  char* getcwd ( char *buf , int len);*/
     printf(".");fflush(stdout);      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
 #ifdef DEBUG        return( GLOCK_ERROR_GETCWD );
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);      }
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */      /* got dirc from getcwd*/
 #endif      printf(" DIRC = %s \n",dirc);
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){    } else {                              /* strip direcotry from path */
       *xmin=x;      ss++;                               /* after this, the filename */
       return fx;      l2 = strlen( ss );                  /* length of filename */
     }      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
     ftemp=fu;      strcpy( name, ss );         /* save file name */
     if (fabs(e) > tol1) {      strncpy( dirc, path, l1 - l2 );     /* now the directory */
       r=(x-w)*(fx-fv);      dirc[l1-l2] = 0;                    /* add zero */
       q=(x-v)*(fx-fw);      printf(" DIRC2 = %s \n",dirc);
       p=(x-v)*q-(x-w)*r;    }
       q=2.0*(q-r);    /* We add a separator at the end of dirc if not exists */
       if (q > 0.0) p = -p;    l1 = strlen( dirc );                  /* length of directory */
       q=fabs(q);    if( dirc[l1-1] != DIRSEPARATOR ){
       etemp=e;      dirc[l1] =  DIRSEPARATOR;
       e=d;      dirc[l1+1] = 0; 
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))      printf(" DIRC3 = %s \n",dirc);
         d=CGOLD*(e=(x >= xm ? a-x : b-x));    }
       else {    ss = strrchr( name, '.' );            /* find last / */
         d=p/q;    if (ss >0){
         u=x+d;      ss++;
         if (u-a < tol2 || b-u < tol2)      strcpy(ext,ss);                     /* save extension */
           d=SIGN(tol1,xm-x);      l1= strlen( name);
       }      l2= strlen(ss)+1;
     } else {      strncpy( finame, name, l1-l2);
       d=CGOLD*(e=(x >= xm ? a-x : b-x));      finame[l1-l2]= 0;
     }    }
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  
     fu=(*f)(u);    return( 0 );                          /* we're done */
     if (fu <= fx) {  }
       if (u >= x) a=x; else b=x;  
       SHFT(v,w,x,u)  
         SHFT(fv,fw,fx,fu)  /******************************************/
         } else {  
           if (u < x) a=u; else b=u;  void replace_back_to_slash(char *s, char*t)
           if (fu <= fw || w == x) {  {
             v=w;    int i;
             w=u;    int lg=0;
             fv=fw;    i=0;
             fw=fu;    lg=strlen(t);
           } else if (fu <= fv || v == x || v == w) {    for(i=0; i<= lg; i++) {
             v=u;      (s[i] = t[i]);
             fv=fu;      if (t[i]== '\\') s[i]='/';
           }    }
         }  }
   }  
   nrerror("Too many iterations in brent");  int nbocc(char *s, char occ)
   *xmin=x;  {
   return fx;    int i,j=0;
 }    int lg=20;
     i=0;
 /****************** mnbrak ***********************/    lg=strlen(s);
     for(i=0; i<= lg; i++) {
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,    if  (s[i] == occ ) j++;
             double (*func)(double))    }
 {    return j;
   double ulim,u,r,q, dum;  }
   double fu;  
    void cutv(char *u,char *v, char*t, char occ)
   *fa=(*func)(*ax);  {
   *fb=(*func)(*bx);    /* cuts string t into u and v where u ends before first occurence of char 'occ' 
   if (*fb > *fa) {       and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
     SHFT(dum,*ax,*bx,dum)       gives u="abcedf" and v="ghi2j" */
       SHFT(dum,*fb,*fa,dum)    int i,lg,j,p=0;
       }    i=0;
   *cx=(*bx)+GOLD*(*bx-*ax);    for(j=0; j<=strlen(t)-1; j++) {
   *fc=(*func)(*cx);      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
   while (*fb > *fc) {    }
     r=(*bx-*ax)*(*fb-*fc);  
     q=(*bx-*cx)*(*fb-*fa);    lg=strlen(t);
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/    for(j=0; j<p; j++) {
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));      (u[j] = t[j]);
     ulim=(*bx)+GLIMIT*(*cx-*bx);    }
     if ((*bx-u)*(u-*cx) > 0.0) {       u[p]='\0';
       fu=(*func)(u);  
     } else if ((*cx-u)*(u-ulim) > 0.0) {     for(j=0; j<= lg; j++) {
       fu=(*func)(u);      if (j>=(p+1))(v[j-p-1] = t[j]);
       if (fu < *fc) {    }
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))  }
           SHFT(*fb,*fc,fu,(*func)(u))  
           }  /********************** nrerror ********************/
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  
       u=ulim;  void nrerror(char error_text[])
       fu=(*func)(u);  {
     } else {    fprintf(stderr,"ERREUR ...\n");
       u=(*cx)+GOLD*(*cx-*bx);    fprintf(stderr,"%s\n",error_text);
       fu=(*func)(u);    exit(EXIT_FAILURE);
     }  }
     SHFT(*ax,*bx,*cx,u)  /*********************** vector *******************/
       SHFT(*fa,*fb,*fc,fu)  double *vector(int nl, int nh)
       }  {
 }    double *v;
     v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
 /*************** linmin ************************/    if (!v) nrerror("allocation failure in vector");
     return v-nl+NR_END;
 int ncom;  }
 double *pcom,*xicom;  
 double (*nrfunc)(double []);  /************************ free vector ******************/
    void free_vector(double*v, int nl, int nh)
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))  {
 {    free((FREE_ARG)(v+nl-NR_END));
   double brent(double ax, double bx, double cx,  }
                double (*f)(double), double tol, double *xmin);  
   double f1dim(double x);  /************************ivector *******************************/
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,  int *ivector(long nl,long nh)
               double *fc, double (*func)(double));  {
   int j;    int *v;
   double xx,xmin,bx,ax;    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
   double fx,fb,fa;    if (!v) nrerror("allocation failure in ivector");
      return v-nl+NR_END;
   ncom=n;  }
   pcom=vector(1,n);  
   xicom=vector(1,n);  /******************free ivector **************************/
   nrfunc=func;  void free_ivector(int *v, long nl, long nh)
   for (j=1;j<=n;j++) {  {
     pcom[j]=p[j];    free((FREE_ARG)(v+nl-NR_END));
     xicom[j]=xi[j];  }
   }  
   ax=0.0;  /************************lvector *******************************/
   xx=1.0;  long *lvector(long nl,long nh)
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  {
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);    long *v;
 #ifdef DEBUG    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    if (!v) nrerror("allocation failure in ivector");
 #endif    return v-nl+NR_END;
   for (j=1;j<=n;j++) {  }
     xi[j] *= xmin;  
     p[j] += xi[j];  /******************free lvector **************************/
   }  void free_lvector(long *v, long nl, long nh)
   free_vector(xicom,1,n);  {
   free_vector(pcom,1,n);    free((FREE_ARG)(v+nl-NR_END));
 }  }
   
 /*************** powell ************************/  /******************* imatrix *******************************/
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,  int **imatrix(long nrl, long nrh, long ncl, long nch) 
             double (*func)(double []))       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
 {  { 
   void linmin(double p[], double xi[], int n, double *fret,    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
               double (*func)(double []));    int **m; 
   int i,ibig,j;    
   double del,t,*pt,*ptt,*xit;    /* allocate pointers to rows */ 
   double fp,fptt;    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
   double *xits;    if (!m) nrerror("allocation failure 1 in matrix()"); 
   pt=vector(1,n);    m += NR_END; 
   ptt=vector(1,n);    m -= nrl; 
   xit=vector(1,n);    
   xits=vector(1,n);    
   *fret=(*func)(p);    /* allocate rows and set pointers to them */ 
   for (j=1;j<=n;j++) pt[j]=p[j];    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
   for (*iter=1;;++(*iter)) {    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
     fp=(*fret);    m[nrl] += NR_END; 
     ibig=0;    m[nrl] -= ncl; 
     del=0.0;    
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
     for (i=1;i<=n;i++)    
       printf(" %d %.12f",i, p[i]);    /* return pointer to array of pointers to rows */ 
     printf("\n");    return m; 
     for (i=1;i<=n;i++) {  } 
       for (j=1;j<=n;j++) xit[j]=xi[j][i];  
       fptt=(*fret);  /****************** free_imatrix *************************/
 #ifdef DEBUG  void free_imatrix(m,nrl,nrh,ncl,nch)
       printf("fret=%lf \n",*fret);        int **m;
 #endif        long nch,ncl,nrh,nrl; 
       printf("%d",i);fflush(stdout);       /* free an int matrix allocated by imatrix() */ 
       linmin(p,xit,n,fret,func);  { 
       if (fabs(fptt-(*fret)) > del) {    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
         del=fabs(fptt-(*fret));    free((FREE_ARG) (m+nrl-NR_END)); 
         ibig=i;  } 
       }  
 #ifdef DEBUG  /******************* matrix *******************************/
       printf("%d %.12e",i,(*fret));  double **matrix(long nrl, long nrh, long ncl, long nch)
       for (j=1;j<=n;j++) {  {
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
         printf(" x(%d)=%.12e",j,xit[j]);    double **m;
       }  
       for(j=1;j<=n;j++)    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
         printf(" p=%.12e",p[j]);    if (!m) nrerror("allocation failure 1 in matrix()");
       printf("\n");    m += NR_END;
 #endif    m -= nrl;
     }  
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
 #ifdef DEBUG    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       int k[2],l;    m[nrl] += NR_END;
       k[0]=1;    m[nrl] -= ncl;
       k[1]=-1;  
       printf("Max: %.12e",(*func)(p));    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
       for (j=1;j<=n;j++)    return m;
         printf(" %.12e",p[j]);    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
       printf("\n");     */
       for(l=0;l<=1;l++) {  }
         for (j=1;j<=n;j++) {  
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];  /*************************free matrix ************************/
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
         }  {
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    free((FREE_ARG)(m[nrl]+ncl-NR_END));
       }    free((FREE_ARG)(m+nrl-NR_END));
 #endif  }
   
   /******************* ma3x *******************************/
       free_vector(xit,1,n);  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
       free_vector(xits,1,n);  {
       free_vector(ptt,1,n);    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
       free_vector(pt,1,n);    double ***m;
       return;  
     }    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");    if (!m) nrerror("allocation failure 1 in matrix()");
     for (j=1;j<=n;j++) {    m += NR_END;
       ptt[j]=2.0*p[j]-pt[j];    m -= nrl;
       xit[j]=p[j]-pt[j];  
       pt[j]=p[j];    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     }    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     fptt=(*func)(ptt);    m[nrl] += NR_END;
     if (fptt < fp) {    m[nrl] -= ncl;
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);  
       if (t < 0.0) {    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
         linmin(p,xit,n,fret,func);  
         for (j=1;j<=n;j++) {    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
           xi[j][ibig]=xi[j][n];    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
           xi[j][n]=xit[j];    m[nrl][ncl] += NR_END;
         }    m[nrl][ncl] -= nll;
 #ifdef DEBUG    for (j=ncl+1; j<=nch; j++) 
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);      m[nrl][j]=m[nrl][j-1]+nlay;
         for(j=1;j<=n;j++)    
           printf(" %.12e",xit[j]);    for (i=nrl+1; i<=nrh; i++) {
         printf("\n");      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
 #endif      for (j=ncl+1; j<=nch; j++) 
       }        m[i][j]=m[i][j-1]+nlay;
     }    }
   }    return m; 
 }    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
              &(m[i][j][k]) <=> *((*(m+i) + j)+k)
 /**** Prevalence limit ****************/    */
   }
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)  
 {  /*************************free ma3x ************************/
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
      matrix by transitions matrix until convergence is reached */  {
     free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
   int i, ii,j,k;    free((FREE_ARG)(m[nrl]+ncl-NR_END));
   double min, max, maxmin, maxmax,sumnew=0.;    free((FREE_ARG)(m+nrl-NR_END));
   double **matprod2();  }
   double **out, cov[NCOVMAX], **pmij();  
   double **newm;  /*************** function subdirf ***********/
   double agefin, delaymax=50 ; /* Max number of years to converge */  char *subdirf(char fileres[])
   {
   for (ii=1;ii<=nlstate+ndeath;ii++)    /* Caution optionfilefiname is hidden */
     for (j=1;j<=nlstate+ndeath;j++){    strcpy(tmpout,optionfilefiname);
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);    strcat(tmpout,"/"); /* Add to the right */
     }    strcat(tmpout,fileres);
     return tmpout;
    cov[1]=1.;  }
    
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */  /*************** function subdirf2 ***********/
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){  char *subdirf2(char fileres[], char *preop)
     newm=savm;  {
     /* Covariates have to be included here again */    
      cov[2]=agefin;    /* Caution optionfilefiname is hidden */
      strcpy(tmpout,optionfilefiname);
       for (k=1; k<=cptcovn;k++) {    strcat(tmpout,"/");
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    strcat(tmpout,preop);
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/    strcat(tmpout,fileres);
       }    return tmpout;
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  }
       for (k=1; k<=cptcovprod;k++)  
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  /*************** function subdirf3 ***********/
   char *subdirf3(char fileres[], char *preop, char *preop2)
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/  {
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/    
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/    /* Caution optionfilefiname is hidden */
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);    strcpy(tmpout,optionfilefiname);
     strcat(tmpout,"/");
     savm=oldm;    strcat(tmpout,preop);
     oldm=newm;    strcat(tmpout,preop2);
     maxmax=0.;    strcat(tmpout,fileres);
     for(j=1;j<=nlstate;j++){    return tmpout;
       min=1.;  }
       max=0.;  
       for(i=1; i<=nlstate; i++) {  /***************** f1dim *************************/
         sumnew=0;  extern int ncom; 
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];  extern double *pcom,*xicom;
         prlim[i][j]= newm[i][j]/(1-sumnew);  extern double (*nrfunc)(double []); 
         max=FMAX(max,prlim[i][j]);   
         min=FMIN(min,prlim[i][j]);  double f1dim(double x) 
       }  { 
       maxmin=max-min;    int j; 
       maxmax=FMAX(maxmax,maxmin);    double f;
     }    double *xt; 
     if(maxmax < ftolpl){   
       return prlim;    xt=vector(1,ncom); 
     }    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
   }    f=(*nrfunc)(xt); 
 }    free_vector(xt,1,ncom); 
     return f; 
 /*************** transition probabilities ***************/  } 
   
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )  /*****************brent *************************/
 {  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
   double s1, s2;  { 
   /*double t34;*/    int iter; 
   int i,j,j1, nc, ii, jj;    double a,b,d,etemp;
     double fu,fv,fw,fx;
     for(i=1; i<= nlstate; i++){    double ftemp;
     for(j=1; j<i;j++){    double p,q,r,tol1,tol2,u,v,w,x,xm; 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    double e=0.0; 
         /*s2 += param[i][j][nc]*cov[nc];*/   
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    a=(ax < cx ? ax : cx); 
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/    b=(ax > cx ? ax : cx); 
       }    x=w=v=bx; 
       ps[i][j]=s2;    fw=fv=fx=(*f)(x); 
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/    for (iter=1;iter<=ITMAX;iter++) { 
     }      xm=0.5*(a+b); 
     for(j=i+1; j<=nlstate+ndeath;j++){      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];      printf(".");fflush(stdout);
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/      fprintf(ficlog,".");fflush(ficlog);
       }  #ifdef DEBUG
       ps[i][j]=s2;      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
     }      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   }      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
     /*ps[3][2]=1;*/  #endif
       if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
   for(i=1; i<= nlstate; i++){        *xmin=x; 
      s1=0;        return fx; 
     for(j=1; j<i; j++)      } 
       s1+=exp(ps[i][j]);      ftemp=fu;
     for(j=i+1; j<=nlstate+ndeath; j++)      if (fabs(e) > tol1) { 
       s1+=exp(ps[i][j]);        r=(x-w)*(fx-fv); 
     ps[i][i]=1./(s1+1.);        q=(x-v)*(fx-fw); 
     for(j=1; j<i; j++)        p=(x-v)*q-(x-w)*r; 
       ps[i][j]= exp(ps[i][j])*ps[i][i];        q=2.0*(q-r); 
     for(j=i+1; j<=nlstate+ndeath; j++)        if (q > 0.0) p = -p; 
       ps[i][j]= exp(ps[i][j])*ps[i][i];        q=fabs(q); 
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */        etemp=e; 
   } /* end i */        e=d; 
         if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
     for(jj=1; jj<= nlstate+ndeath; jj++){        else { 
       ps[ii][jj]=0;          d=p/q; 
       ps[ii][ii]=1;          u=x+d; 
     }          if (u-a < tol2 || b-u < tol2) 
   }            d=SIGN(tol1,xm-x); 
         } 
       } else { 
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
     for(jj=1; jj<= nlstate+ndeath; jj++){      } 
      printf("%lf ",ps[ii][jj]);      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
    }      fu=(*f)(u); 
     printf("\n ");      if (fu <= fx) { 
     }        if (u >= x) a=x; else b=x; 
     printf("\n ");printf("%lf ",cov[2]);*/        SHFT(v,w,x,u) 
 /*          SHFT(fv,fw,fx,fu) 
   for(i=1; i<= npar; i++) printf("%f ",x[i]);          } else { 
   goto end;*/            if (u < x) a=u; else b=u; 
     return ps;            if (fu <= fw || w == x) { 
 }              v=w; 
               w=u; 
 /**************** Product of 2 matrices ******************/              fv=fw; 
               fw=fu; 
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)            } else if (fu <= fv || v == x || v == w) { 
 {              v=u; 
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times              fv=fu; 
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */            } 
   /* in, b, out are matrice of pointers which should have been initialized          } 
      before: only the contents of out is modified. The function returns    } 
      a pointer to pointers identical to out */    nrerror("Too many iterations in brent"); 
   long i, j, k;    *xmin=x; 
   for(i=nrl; i<= nrh; i++)    return fx; 
     for(k=ncolol; k<=ncoloh; k++)  } 
       for(j=ncl,out[i][k]=0.; j<=nch; j++)  
         out[i][k] +=in[i][j]*b[j][k];  /****************** mnbrak ***********************/
   
   return out;  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
 }              double (*func)(double)) 
   { 
     double ulim,u,r,q, dum;
 /************* Higher Matrix Product ***************/    double fu; 
    
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )    *fa=(*func)(*ax); 
 {    *fb=(*func)(*bx); 
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month    if (*fb > *fa) { 
      duration (i.e. until      SHFT(dum,*ax,*bx,dum) 
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.        SHFT(dum,*fb,*fa,dum) 
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step        } 
      (typically every 2 years instead of every month which is too big).    *cx=(*bx)+GOLD*(*bx-*ax); 
      Model is determined by parameters x and covariates have to be    *fc=(*func)(*cx); 
      included manually here.    while (*fb > *fc) { 
       r=(*bx-*ax)*(*fb-*fc); 
      */      q=(*bx-*cx)*(*fb-*fa); 
       u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
   int i, j, d, h, k;        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
   double **out, cov[NCOVMAX];      ulim=(*bx)+GLIMIT*(*cx-*bx); 
   double **newm;      if ((*bx-u)*(u-*cx) > 0.0) { 
         fu=(*func)(u); 
   /* Hstepm could be zero and should return the unit matrix */      } else if ((*cx-u)*(u-ulim) > 0.0) { 
   for (i=1;i<=nlstate+ndeath;i++)        fu=(*func)(u); 
     for (j=1;j<=nlstate+ndeath;j++){        if (fu < *fc) { 
       oldm[i][j]=(i==j ? 1.0 : 0.0);          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
       po[i][j][0]=(i==j ? 1.0 : 0.0);            SHFT(*fb,*fc,fu,(*func)(u)) 
     }            } 
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
   for(h=1; h <=nhstepm; h++){        u=ulim; 
     for(d=1; d <=hstepm; d++){        fu=(*func)(u); 
       newm=savm;      } else { 
       /* Covariates have to be included here again */        u=(*cx)+GOLD*(*cx-*bx); 
       cov[1]=1.;        fu=(*func)(u); 
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;      } 
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];      SHFT(*ax,*bx,*cx,u) 
       for (k=1; k<=cptcovage;k++)        SHFT(*fa,*fb,*fc,fu) 
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];        } 
       for (k=1; k<=cptcovprod;k++)  } 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  
   /*************** linmin ************************/
   
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/  int ncom; 
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/  double *pcom,*xicom;
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,  double (*nrfunc)(double []); 
                    pmij(pmmij,cov,ncovmodel,x,nlstate));   
       savm=oldm;  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
       oldm=newm;  { 
     }    double brent(double ax, double bx, double cx, 
     for(i=1; i<=nlstate+ndeath; i++)                 double (*f)(double), double tol, double *xmin); 
       for(j=1;j<=nlstate+ndeath;j++) {    double f1dim(double x); 
         po[i][j][h]=newm[i][j];    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);                double *fc, double (*func)(double)); 
          */    int j; 
       }    double xx,xmin,bx,ax; 
   } /* end h */    double fx,fb,fa;
   return po;   
 }    ncom=n; 
     pcom=vector(1,n); 
     xicom=vector(1,n); 
 /*************** log-likelihood *************/    nrfunc=func; 
 double func( double *x)    for (j=1;j<=n;j++) { 
 {      pcom[j]=p[j]; 
   int i, ii, j, k, mi, d, kk;      xicom[j]=xi[j]; 
   double l, ll[NLSTATEMAX], cov[NCOVMAX];    } 
   double **out;    ax=0.0; 
   double sw; /* Sum of weights */    xx=1.0; 
   double lli; /* Individual log likelihood */    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
   int s1, s2;    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
   long ipmx;  #ifdef DEBUG
   /*extern weight */    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   /* We are differentiating ll according to initial status */    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/  #endif
   /*for(i=1;i<imx;i++)    for (j=1;j<=n;j++) { 
     printf(" %d\n",s[4][i]);      xi[j] *= xmin; 
   */      p[j] += xi[j]; 
   cov[1]=1.;    } 
     free_vector(xicom,1,n); 
   for(k=1; k<=nlstate; k++) ll[k]=0.;    free_vector(pcom,1,n); 
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){  } 
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];  
     for(mi=1; mi<= wav[i]-1; mi++){  char *asc_diff_time(long time_sec, char ascdiff[])
       for (ii=1;ii<=nlstate+ndeath;ii++)  {
         for (j=1;j<=nlstate+ndeath;j++){    long sec_left, days, hours, minutes;
           oldm[ii][j]=(ii==j ? 1.0 : 0.0);    days = (time_sec) / (60*60*24);
           savm[ii][j]=(ii==j ? 1.0 : 0.0);    sec_left = (time_sec) % (60*60*24);
         }    hours = (sec_left) / (60*60) ;
       for(d=0; d<dh[mi][i]; d++){    sec_left = (sec_left) %(60*60);
         newm=savm;    minutes = (sec_left) /60;
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;    sec_left = (sec_left) % (60);
         for (kk=1; kk<=cptcovage;kk++) {    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];    return ascdiff;
         }  }
          
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,  /*************** powell ************************/
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
         savm=oldm;              double (*func)(double [])) 
         oldm=newm;  { 
            void linmin(double p[], double xi[], int n, double *fret, 
                        double (*func)(double [])); 
       } /* end mult */    int i,ibig,j; 
          double del,t,*pt,*ptt,*xit;
       s1=s[mw[mi][i]][i];    double fp,fptt;
       s2=s[mw[mi+1][i]][i];    double *xits;
       if( s2 > nlstate){    int niterf, itmp;
         /* i.e. if s2 is a death state and if the date of death is known then the contribution  
            to the likelihood is the probability to die between last step unit time and current    pt=vector(1,n); 
            step unit time, which is also the differences between probability to die before dh    ptt=vector(1,n); 
            and probability to die before dh-stepm .    xit=vector(1,n); 
            In version up to 0.92 likelihood was computed    xits=vector(1,n); 
            as if date of death was unknown. Death was treated as any other    *fret=(*func)(p); 
            health state: the date of the interview describes the actual state    for (j=1;j<=n;j++) pt[j]=p[j]; 
            and not the date of a change in health state. The former idea was    for (*iter=1;;++(*iter)) { 
            to consider that at each interview the state was recorded      fp=(*fret); 
            (healthy, disable or death) and IMaCh was corrected; but when we      ibig=0; 
            introduced the exact date of death then we should have modified      del=0.0; 
            the contribution of an exact death to the likelihood. This new      last_time=curr_time;
            contribution is smaller and very dependent of the step unit      (void) gettimeofday(&curr_time,&tzp);
            stepm. It is no more the probability to die between last interview      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
            and month of death but the probability to survive from last      /*    fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);
            interview up to one month before death multiplied by the      fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);
            probability to die within a month. Thanks to Chris      */
            Jackson for correcting this bug.  Former versions increased     for (i=1;i<=n;i++) {
            mortality artificially. The bad side is that we add another loop        printf(" %d %.12f",i, p[i]);
            which slows down the processing. The difference can be up to 10%        fprintf(ficlog," %d %.12lf",i, p[i]);
            lower mortality.        fprintf(ficrespow," %.12lf", p[i]);
         */      }
         lli=log(out[s1][s2] - savm[s1][s2]);      printf("\n");
       }else{      fprintf(ficlog,"\n");
         lli=log(out[s1][s2]); /* or     lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); */      fprintf(ficrespow,"\n");fflush(ficrespow);
         /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/      if(*iter <=3){
       }        tm = *localtime(&curr_time.tv_sec);
       ipmx +=1;        strcpy(strcurr,asctime(&tm));
       sw += weight[i];  /*       asctime_r(&tm,strcurr); */
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;        forecast_time=curr_time; 
       /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d lli=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],lli,weight[i],out[s1][s2],savm[s1][s2]);*/        itmp = strlen(strcurr);
     } /* end of wave */        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
   } /* end of individual */          strcurr[itmp-1]='\0';
         printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */        for(niterf=10;niterf<=30;niterf+=10){
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
   /*exit(0);*/          tmf = *localtime(&forecast_time.tv_sec);
   return -l;  /*      asctime_r(&tmf,strfor); */
 }          strcpy(strfor,asctime(&tmf));
           itmp = strlen(strfor);
           if(strfor[itmp-1]=='\n')
 /*********** Maximum Likelihood Estimation ***************/          strfor[itmp-1]='\0';
           printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
 {        }
   int i,j, iter;      }
   double **xi,*delti;      for (i=1;i<=n;i++) { 
   double fret;        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
   xi=matrix(1,npar,1,npar);        fptt=(*fret); 
   for (i=1;i<=npar;i++)  #ifdef DEBUG
     for (j=1;j<=npar;j++)        printf("fret=%lf \n",*fret);
       xi[i][j]=(i==j ? 1.0 : 0.0);        fprintf(ficlog,"fret=%lf \n",*fret);
   printf("Powell\n");  #endif
   powell(p,xi,npar,ftol,&iter,&fret,func);        printf("%d",i);fflush(stdout);
         fprintf(ficlog,"%d",i);fflush(ficlog);
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));        linmin(p,xit,n,fret,func); 
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));        if (fabs(fptt-(*fret)) > del) { 
           del=fabs(fptt-(*fret)); 
 }          ibig=i; 
         } 
 /**** Computes Hessian and covariance matrix ***/  #ifdef DEBUG
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))        printf("%d %.12e",i,(*fret));
 {        fprintf(ficlog,"%d %.12e",i,(*fret));
   double  **a,**y,*x,pd;        for (j=1;j<=n;j++) {
   double **hess;          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
   int i, j,jk;          printf(" x(%d)=%.12e",j,xit[j]);
   int *indx;          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
         }
   double hessii(double p[], double delta, int theta, double delti[]);        for(j=1;j<=n;j++) {
   double hessij(double p[], double delti[], int i, int j);          printf(" p=%.12e",p[j]);
   void lubksb(double **a, int npar, int *indx, double b[]) ;          fprintf(ficlog," p=%.12e",p[j]);
   void ludcmp(double **a, int npar, int *indx, double *d) ;        }
         printf("\n");
   hess=matrix(1,npar,1,npar);        fprintf(ficlog,"\n");
   #endif
   printf("\nCalculation of the hessian matrix. Wait...\n");      } 
   for (i=1;i<=npar;i++){      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
     printf("%d",i);fflush(stdout);  #ifdef DEBUG
     hess[i][i]=hessii(p,ftolhess,i,delti);        int k[2],l;
     /*printf(" %f ",p[i]);*/        k[0]=1;
     /*printf(" %lf ",hess[i][i]);*/        k[1]=-1;
   }        printf("Max: %.12e",(*func)(p));
          fprintf(ficlog,"Max: %.12e",(*func)(p));
   for (i=1;i<=npar;i++) {        for (j=1;j<=n;j++) {
     for (j=1;j<=npar;j++)  {          printf(" %.12e",p[j]);
       if (j>i) {          fprintf(ficlog," %.12e",p[j]);
         printf(".%d%d",i,j);fflush(stdout);        }
         hess[i][j]=hessij(p,delti,i,j);        printf("\n");
         hess[j][i]=hess[i][j];            fprintf(ficlog,"\n");
         /*printf(" %lf ",hess[i][j]);*/        for(l=0;l<=1;l++) {
       }          for (j=1;j<=n;j++) {
     }            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
   }            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   printf("\n");            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
           }
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
            fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   a=matrix(1,npar,1,npar);        }
   y=matrix(1,npar,1,npar);  #endif
   x=vector(1,npar);  
   indx=ivector(1,npar);  
   for (i=1;i<=npar;i++)        free_vector(xit,1,n); 
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];        free_vector(xits,1,n); 
   ludcmp(a,npar,indx,&pd);        free_vector(ptt,1,n); 
         free_vector(pt,1,n); 
   for (j=1;j<=npar;j++) {        return; 
     for (i=1;i<=npar;i++) x[i]=0;      } 
     x[j]=1;      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
     lubksb(a,npar,indx,x);      for (j=1;j<=n;j++) { 
     for (i=1;i<=npar;i++){        ptt[j]=2.0*p[j]-pt[j]; 
       matcov[i][j]=x[i];        xit[j]=p[j]-pt[j]; 
     }        pt[j]=p[j]; 
   }      } 
       fptt=(*func)(ptt); 
   printf("\n#Hessian matrix#\n");      if (fptt < fp) { 
   for (i=1;i<=npar;i++) {        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
     for (j=1;j<=npar;j++) {        if (t < 0.0) { 
       printf("%.3e ",hess[i][j]);          linmin(p,xit,n,fret,func); 
     }          for (j=1;j<=n;j++) { 
     printf("\n");            xi[j][ibig]=xi[j][n]; 
   }            xi[j][n]=xit[j]; 
           }
   /* Recompute Inverse */  #ifdef DEBUG
   for (i=1;i<=npar;i++)          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   ludcmp(a,npar,indx,&pd);          for(j=1;j<=n;j++){
             printf(" %.12e",xit[j]);
   /*  printf("\n#Hessian matrix recomputed#\n");            fprintf(ficlog," %.12e",xit[j]);
           }
   for (j=1;j<=npar;j++) {          printf("\n");
     for (i=1;i<=npar;i++) x[i]=0;          fprintf(ficlog,"\n");
     x[j]=1;  #endif
     lubksb(a,npar,indx,x);        }
     for (i=1;i<=npar;i++){      } 
       y[i][j]=x[i];    } 
       printf("%.3e ",y[i][j]);  } 
     }  
     printf("\n");  /**** Prevalence limit (stable prevalence)  ****************/
   }  
   */  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
   {
   free_matrix(a,1,npar,1,npar);    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
   free_matrix(y,1,npar,1,npar);       matrix by transitions matrix until convergence is reached */
   free_vector(x,1,npar);  
   free_ivector(indx,1,npar);    int i, ii,j,k;
   free_matrix(hess,1,npar,1,npar);    double min, max, maxmin, maxmax,sumnew=0.;
     double **matprod2();
     double **out, cov[NCOVMAX], **pmij();
 }    double **newm;
     double agefin, delaymax=50 ; /* Max number of years to converge */
 /*************** hessian matrix ****************/  
 double hessii( double x[], double delta, int theta, double delti[])    for (ii=1;ii<=nlstate+ndeath;ii++)
 {      for (j=1;j<=nlstate+ndeath;j++){
   int i;        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   int l=1, lmax=20;      }
   double k1,k2;  
   double p2[NPARMAX+1];     cov[1]=1.;
   double res;   
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   double fx;    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
   int k=0,kmax=10;      newm=savm;
   double l1;      /* Covariates have to be included here again */
        cov[2]=agefin;
   fx=func(x);    
   for (i=1;i<=npar;i++) p2[i]=x[i];        for (k=1; k<=cptcovn;k++) {
   for(l=0 ; l <=lmax; l++){          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
     l1=pow(10,l);          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
     delts=delt;        }
     for(k=1 ; k <kmax; k=k+1){        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
       delt = delta*(l1*k);        for (k=1; k<=cptcovprod;k++)
       p2[theta]=x[theta] +delt;          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
       k1=func(p2)-fx;  
       p2[theta]=x[theta]-delt;        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
       k2=func(p2)-fx;        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
       /*res= (k1-2.0*fx+k2)/delt/delt; */        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
        
 #ifdef DEBUG      savm=oldm;
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);      oldm=newm;
 #endif      maxmax=0.;
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */      for(j=1;j<=nlstate;j++){
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){        min=1.;
         k=kmax;        max=0.;
       }        for(i=1; i<=nlstate; i++) {
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */          sumnew=0;
         k=kmax; l=lmax*10.;          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
       }          prlim[i][j]= newm[i][j]/(1-sumnew);
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){          max=FMAX(max,prlim[i][j]);
         delts=delt;          min=FMIN(min,prlim[i][j]);
       }        }
     }        maxmin=max-min;
   }        maxmax=FMAX(maxmax,maxmin);
   delti[theta]=delts;      }
   return res;      if(maxmax < ftolpl){
          return prlim;
 }      }
     }
 double hessij( double x[], double delti[], int thetai,int thetaj)  }
 {  
   int i;  /*************** transition probabilities ***************/ 
   int l=1, l1, lmax=20;  
   double k1,k2,k3,k4,res,fx;  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
   double p2[NPARMAX+1];  {
   int k;    double s1, s2;
     /*double t34;*/
   fx=func(x);    int i,j,j1, nc, ii, jj;
   for (k=1; k<=2; k++) {  
     for (i=1;i<=npar;i++) p2[i]=x[i];      for(i=1; i<= nlstate; i++){
     p2[thetai]=x[thetai]+delti[thetai]/k;        for(j=1; j<i;j++){
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
     k1=func(p2)-fx;            /*s2 += param[i][j][nc]*cov[nc];*/
              s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
     p2[thetai]=x[thetai]+delti[thetai]/k;  /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;          }
     k2=func(p2)-fx;          ps[i][j]=s2;
    /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
     p2[thetai]=x[thetai]-delti[thetai]/k;        }
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;        for(j=i+1; j<=nlstate+ndeath;j++){
     k3=func(p2)-fx;          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
              s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
     p2[thetai]=x[thetai]-delti[thetai]/k;  /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;          }
     k4=func(p2)-fx;          ps[i][j]=s2;
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */        }
 #ifdef DEBUG      }
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);      /*ps[3][2]=1;*/
 #endif      
   }      for(i=1; i<= nlstate; i++){
   return res;        s1=0;
 }        for(j=1; j<i; j++)
           s1+=exp(ps[i][j]);
 /************** Inverse of matrix **************/        for(j=i+1; j<=nlstate+ndeath; j++)
 void ludcmp(double **a, int n, int *indx, double *d)          s1+=exp(ps[i][j]);
 {        ps[i][i]=1./(s1+1.);
   int i,imax,j,k;        for(j=1; j<i; j++)
   double big,dum,sum,temp;          ps[i][j]= exp(ps[i][j])*ps[i][i];
   double *vv;        for(j=i+1; j<=nlstate+ndeath; j++)
            ps[i][j]= exp(ps[i][j])*ps[i][i];
   vv=vector(1,n);        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
   *d=1.0;      } /* end i */
   for (i=1;i<=n;i++) {      
     big=0.0;      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
     for (j=1;j<=n;j++)        for(jj=1; jj<= nlstate+ndeath; jj++){
       if ((temp=fabs(a[i][j])) > big) big=temp;          ps[ii][jj]=0;
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");          ps[ii][ii]=1;
     vv[i]=1.0/big;        }
   }      }
   for (j=1;j<=n;j++) {      
     for (i=1;i<j;i++) {  
       sum=a[i][j];  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
       a[i][j]=sum;  /*         printf("ddd %lf ",ps[ii][jj]); */
     }  /*       } */
     big=0.0;  /*       printf("\n "); */
     for (i=j;i<=n;i++) {  /*        } */
       sum=a[i][j];  /*        printf("\n ");printf("%lf ",cov[2]); */
       for (k=1;k<j;k++)         /*
         sum -= a[i][k]*a[k][j];        for(i=1; i<= npar; i++) printf("%f ",x[i]);
       a[i][j]=sum;        goto end;*/
       if ( (dum=vv[i]*fabs(sum)) >= big) {      return ps;
         big=dum;  }
         imax=i;  
       }  /**************** Product of 2 matrices ******************/
     }  
     if (j != imax) {  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
       for (k=1;k<=n;k++) {  {
         dum=a[imax][k];    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
         a[imax][k]=a[j][k];       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
         a[j][k]=dum;    /* in, b, out are matrice of pointers which should have been initialized 
       }       before: only the contents of out is modified. The function returns
       *d = -(*d);       a pointer to pointers identical to out */
       vv[imax]=vv[j];    long i, j, k;
     }    for(i=nrl; i<= nrh; i++)
     indx[j]=imax;      for(k=ncolol; k<=ncoloh; k++)
     if (a[j][j] == 0.0) a[j][j]=TINY;        for(j=ncl,out[i][k]=0.; j<=nch; j++)
     if (j != n) {          out[i][k] +=in[i][j]*b[j][k];
       dum=1.0/(a[j][j]);  
       for (i=j+1;i<=n;i++) a[i][j] *= dum;    return out;
     }  }
   }  
   free_vector(vv,1,n);  /* Doesn't work */  
 ;  /************* Higher Matrix Product ***************/
 }  
   double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
 void lubksb(double **a, int n, int *indx, double b[])  {
 {    /* Computes the transition matrix starting at age 'age' over 
   int i,ii=0,ip,j;       'nhstepm*hstepm*stepm' months (i.e. until
   double sum;       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
         nhstepm*hstepm matrices. 
   for (i=1;i<=n;i++) {       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
     ip=indx[i];       (typically every 2 years instead of every month which is too big 
     sum=b[ip];       for the memory).
     b[ip]=b[i];       Model is determined by parameters x and covariates have to be 
     if (ii)       included manually here. 
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];  
     else if (sum) ii=i;       */
     b[i]=sum;  
   }    int i, j, d, h, k;
   for (i=n;i>=1;i--) {    double **out, cov[NCOVMAX];
     sum=b[i];    double **newm;
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];  
     b[i]=sum/a[i][i];    /* Hstepm could be zero and should return the unit matrix */
   }    for (i=1;i<=nlstate+ndeath;i++)
 }      for (j=1;j<=nlstate+ndeath;j++){
         oldm[i][j]=(i==j ? 1.0 : 0.0);
 /************ Frequencies ********************/        po[i][j][0]=(i==j ? 1.0 : 0.0);
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)      }
 {  /* Some frequencies */    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
      for(h=1; h <=nhstepm; h++){
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;      for(d=1; d <=hstepm; d++){
   double ***freq; /* Frequencies */        newm=savm;
   double *pp;        /* Covariates have to be included here again */
   double pos, k2, dateintsum=0,k2cpt=0;        cov[1]=1.;
   FILE *ficresp;        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
   char fileresp[FILENAMELENGTH];        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
          for (k=1; k<=cptcovage;k++)
   pp=vector(1,nlstate);          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);        for (k=1; k<=cptcovprod;k++)
   strcpy(fileresp,"p");          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   strcat(fileresp,fileres);  
   if((ficresp=fopen(fileresp,"w"))==NULL) {  
     printf("Problem with prevalence resultfile: %s\n", fileresp);        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
     exit(0);        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
   }        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);                     pmij(pmmij,cov,ncovmodel,x,nlstate));
   j1=0;        savm=oldm;
          oldm=newm;
   j=cptcoveff;      }
   if (cptcovn<1) {j=1;ncodemax[1]=1;}      for(i=1; i<=nlstate+ndeath; i++)
          for(j=1;j<=nlstate+ndeath;j++) {
   for(k1=1; k1<=j;k1++){          po[i][j][h]=newm[i][j];
     for(i1=1; i1<=ncodemax[k1];i1++){          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
       j1++;           */
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);        }
         scanf("%d", i);*/    } /* end h */
       for (i=-1; i<=nlstate+ndeath; i++)      return po;
         for (jk=-1; jk<=nlstate+ndeath; jk++)    }
           for(m=agemin; m <= agemax+3; m++)  
             freq[i][jk][m]=0;  
        /*************** log-likelihood *************/
       dateintsum=0;  double func( double *x)
       k2cpt=0;  {
       for (i=1; i<=imx; i++) {    int i, ii, j, k, mi, d, kk;
         bool=1;    double l, ll[NLSTATEMAX], cov[NCOVMAX];
         if  (cptcovn>0) {    double **out;
           for (z1=1; z1<=cptcoveff; z1++)    double sw; /* Sum of weights */
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])    double lli; /* Individual log likelihood */
               bool=0;    int s1, s2;
         }    double bbh, survp;
         if (bool==1) {    long ipmx;
           for(m=firstpass; m<=lastpass; m++){    /*extern weight */
             k2=anint[m][i]+(mint[m][i]/12.);    /* We are differentiating ll according to initial status */
             if ((k2>=dateprev1) && (k2<=dateprev2)) {    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
               if(agev[m][i]==0) agev[m][i]=agemax+1;    /*for(i=1;i<imx;i++) 
               if(agev[m][i]==1) agev[m][i]=agemax+2;      printf(" %d\n",s[4][i]);
               if (m<lastpass) {    */
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];    cov[1]=1.;
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];  
               }    for(k=1; k<=nlstate; k++) ll[k]=0.;
                
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {    if(mle==1){
                 dateintsum=dateintsum+k2;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
                 k2cpt++;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
               }        for(mi=1; mi<= wav[i]-1; mi++){
             }          for (ii=1;ii<=nlstate+ndeath;ii++)
           }            for (j=1;j<=nlstate+ndeath;j++){
         }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
                    }
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);          for(d=0; d<dh[mi][i]; d++){
             newm=savm;
       if  (cptcovn>0) {            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         fprintf(ficresp, "\n#********** Variable ");            for (kk=1; kk<=cptcovage;kk++) {
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         fprintf(ficresp, "**********\n#");            }
       }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       for(i=1; i<=nlstate;i++)                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);            savm=oldm;
       fprintf(ficresp, "\n");            oldm=newm;
                } /* end mult */
       for(i=(int)agemin; i <= (int)agemax+3; i++){        
         if(i==(int)agemax+3)          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
           printf("Total");          /* But now since version 0.9 we anticipate for bias at large stepm.
         else           * If stepm is larger than one month (smallest stepm) and if the exact delay 
           printf("Age %d", i);           * (in months) between two waves is not a multiple of stepm, we rounded to 
         for(jk=1; jk <=nlstate ; jk++){           * the nearest (and in case of equal distance, to the lowest) interval but now
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)           * we keep into memory the bias bh[mi][i] and also the previous matrix product
             pp[jk] += freq[jk][m][i];           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
         }           * probability in order to take into account the bias as a fraction of the way
         for(jk=1; jk <=nlstate ; jk++){           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
           for(m=-1, pos=0; m <=0 ; m++)           * -stepm/2 to stepm/2 .
             pos += freq[jk][m][i];           * For stepm=1 the results are the same as for previous versions of Imach.
           if(pp[jk]>=1.e-10)           * For stepm > 1 the results are less biased than in previous versions. 
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);           */
           else          s1=s[mw[mi][i]][i];
             printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);          s2=s[mw[mi+1][i]][i];
         }          bbh=(double)bh[mi][i]/(double)stepm; 
           /* bias bh is positive if real duration
         for(jk=1; jk <=nlstate ; jk++){           * is higher than the multiple of stepm and negative otherwise.
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)           */
             pp[jk] += freq[jk][m][i];          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
         }          if( s2 > nlstate){ 
             /* i.e. if s2 is a death state and if the date of death is known 
         for(jk=1,pos=0; jk <=nlstate ; jk++)               then the contribution to the likelihood is the probability to 
           pos += pp[jk];               die between last step unit time and current  step unit time, 
         for(jk=1; jk <=nlstate ; jk++){               which is also equal to probability to die before dh 
           if(pos>=1.e-5)               minus probability to die before dh-stepm . 
             printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);               In version up to 0.92 likelihood was computed
           else          as if date of death was unknown. Death was treated as any other
             printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);          health state: the date of the interview describes the actual state
           if( i <= (int) agemax){          and not the date of a change in health state. The former idea was
             if(pos>=1.e-5){          to consider that at each interview the state was recorded
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);          (healthy, disable or death) and IMaCh was corrected; but when we
               probs[i][jk][j1]= pp[jk]/pos;          introduced the exact date of death then we should have modified
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/          the contribution of an exact death to the likelihood. This new
             }          contribution is smaller and very dependent of the step unit
             else          stepm. It is no more the probability to die between last interview
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);          and month of death but the probability to survive from last
           }          interview up to one month before death multiplied by the
         }          probability to die within a month. Thanks to Chris
                  Jackson for correcting this bug.  Former versions increased
         for(jk=-1; jk <=nlstate+ndeath; jk++)          mortality artificially. The bad side is that we add another loop
           for(m=-1; m <=nlstate+ndeath; m++)          which slows down the processing. The difference can be up to 10%
             if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);          lower mortality.
         if(i <= (int) agemax)            */
           fprintf(ficresp,"\n");            lli=log(out[s1][s2] - savm[s1][s2]);
         printf("\n");  
       }  
     }          } else if  (s2==-2) {
   }            for (j=1,survp=0. ; j<=nlstate; j++) 
   dateintmean=dateintsum/k2cpt;              survp += out[s1][j];
              lli= survp;
   fclose(ficresp);          }
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);          
   free_vector(pp,1,nlstate);          else if  (s2==-4) {
              for (j=3,survp=0. ; j<=nlstate; j++) 
   /* End of Freq */              survp += out[s1][j];
 }            lli= survp;
           }
 /************ Prevalence ********************/          
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)          else if  (s2==-5) {
 {  /* Some frequencies */            for (j=1,survp=0. ; j<=2; j++) 
                survp += out[s1][j];
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;            lli= survp;
   double ***freq; /* Frequencies */          }
   double *pp;  
   double pos, k2;  
           else{
   pp=vector(1,nlstate);            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
            } 
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
   j1=0;          /*if(lli ==000.0)*/
            /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
   j=cptcoveff;          ipmx +=1;
   if (cptcovn<1) {j=1;ncodemax[1]=1;}          sw += weight[i];
            ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
  for(k1=1; k1<=j;k1++){        } /* end of wave */
     for(i1=1; i1<=ncodemax[k1];i1++){      } /* end of individual */
       j1++;    }  else if(mle==2){
        for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       for (i=-1; i<=nlstate+ndeath; i++)          for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for (jk=-1; jk<=nlstate+ndeath; jk++)          for(mi=1; mi<= wav[i]-1; mi++){
           for(m=agemin; m <= agemax+3; m++)          for (ii=1;ii<=nlstate+ndeath;ii++)
             freq[i][jk][m]=0;            for (j=1;j<=nlstate+ndeath;j++){
                    oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       for (i=1; i<=imx; i++) {              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         bool=1;            }
         if  (cptcovn>0) {          for(d=0; d<=dh[mi][i]; d++){
           for (z1=1; z1<=cptcoveff; z1++)            newm=savm;
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
               bool=0;            for (kk=1; kk<=cptcovage;kk++) {
         }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         if (bool==1) {            }
           for(m=firstpass; m<=lastpass; m++){            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
             k2=anint[m][i]+(mint[m][i]/12.);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             if ((k2>=dateprev1) && (k2<=dateprev2)) {            savm=oldm;
               if(agev[m][i]==0) agev[m][i]=agemax+1;            oldm=newm;
               if(agev[m][i]==1) agev[m][i]=agemax+2;          } /* end mult */
               if (m<lastpass)        
                 if (calagedate>0) freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];          s1=s[mw[mi][i]][i];
               else          s2=s[mw[mi+1][i]][i];
                freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];          bbh=(double)bh[mi][i]/(double)stepm; 
                freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
             }          ipmx +=1;
           }          sw += weight[i];
         }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       }        } /* end of wave */
         for(i=(int)agemin; i <= (int)agemax+3; i++){      } /* end of individual */
           for(jk=1; jk <=nlstate ; jk++){    }  else if(mle==3){  /* exponential inter-extrapolation */
             for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
               pp[jk] += freq[jk][m][i];        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
           }        for(mi=1; mi<= wav[i]-1; mi++){
           for(jk=1; jk <=nlstate ; jk++){          for (ii=1;ii<=nlstate+ndeath;ii++)
             for(m=-1, pos=0; m <=0 ; m++)            for (j=1;j<=nlstate+ndeath;j++){
             pos += freq[jk][m][i];              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
                    }
          for(jk=1; jk <=nlstate ; jk++){          for(d=0; d<dh[mi][i]; d++){
            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)            newm=savm;
              pp[jk] += freq[jk][m][i];            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
          }            for (kk=1; kk<=cptcovage;kk++) {
                        cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
          for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];            }
             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
          for(jk=1; jk <=nlstate ; jk++){                                   1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
            if( i <= (int) agemax){            savm=oldm;
              if(pos>=1.e-5){            oldm=newm;
                probs[i][jk][j1]= pp[jk]/pos;          } /* end mult */
              }        
            }          s1=s[mw[mi][i]][i];
          }          s2=s[mw[mi+1][i]][i];
                    bbh=(double)bh[mi][i]/(double)stepm; 
         }          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
     }          ipmx +=1;
   }          sw += weight[i];
           ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
          } /* end of wave */
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);      } /* end of individual */
   free_vector(pp,1,nlstate);    }else if (mle==4){  /* ml=4 no inter-extrapolation */
        for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 }  /* End of Freq */        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(mi=1; mi<= wav[i]-1; mi++){
 /************* Waves Concatenation ***************/          for (ii=1;ii<=nlstate+ndeath;ii++)
             for (j=1;j<=nlstate+ndeath;j++){
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 {              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.            }
      Death is a valid wave (if date is known).          for(d=0; d<dh[mi][i]; d++){
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i            newm=savm;
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
      and mw[mi+1][i]. dh depends on stepm.            for (kk=1; kk<=cptcovage;kk++) {
      */              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             }
   int i, mi, m;          
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
      double sum=0., jmean=0.;*/                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             savm=oldm;
   int j, k=0,jk, ju, jl;            oldm=newm;
   double sum=0.;          } /* end mult */
   jmin=1e+5;        
   jmax=-1;          s1=s[mw[mi][i]][i];
   jmean=0.;          s2=s[mw[mi+1][i]][i];
   for(i=1; i<=imx; i++){          if( s2 > nlstate){ 
     mi=0;            lli=log(out[s1][s2] - savm[s1][s2]);
     m=firstpass;          }else{
     while(s[m][i] <= nlstate){            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
       if(s[m][i]>=1)          }
         mw[++mi][i]=m;          ipmx +=1;
       if(m >=lastpass)          sw += weight[i];
         break;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       else  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
         m++;        } /* end of wave */
     }/* end while */      } /* end of individual */
     if (s[m][i] > nlstate){    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
       mi++;     /* Death is another wave */      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       /* if(mi==0)  never been interviewed correctly before death */        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
          /* Only death is a correct wave */        for(mi=1; mi<= wav[i]-1; mi++){
       mw[mi][i]=m;          for (ii=1;ii<=nlstate+ndeath;ii++)
     }            for (j=1;j<=nlstate+ndeath;j++){
               oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     wav[i]=mi;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     if(mi==0)            }
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);          for(d=0; d<dh[mi][i]; d++){
   }            newm=savm;
             cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   for(i=1; i<=imx; i++){            for (kk=1; kk<=cptcovage;kk++) {
     for(mi=1; mi<wav[i];mi++){              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       if (stepm <=0)            }
         dh[mi][i]=1;          
       else{            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         if (s[mw[mi+1][i]][i] > nlstate) {                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           if (agedc[i] < 2*AGESUP) {            savm=oldm;
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);            oldm=newm;
           if(j==0) j=1;  /* Survives at least one month after exam */          } /* end mult */
           k=k+1;        
           if (j >= jmax) jmax=j;          s1=s[mw[mi][i]][i];
           if (j <= jmin) jmin=j;          s2=s[mw[mi+1][i]][i];
           sum=sum+j;          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
           /*if (j<0) printf("j=%d num=%d \n",j,i); */          ipmx +=1;
           }          sw += weight[i];
         }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         else{          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));        } /* end of wave */
           k=k+1;      } /* end of individual */
           if (j >= jmax) jmax=j;    } /* End of if */
           else if (j <= jmin)jmin=j;    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
           sum=sum+j;    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
         }    return -l;
         jk= j/stepm;  }
         jl= j -jk*stepm;  
         ju= j -(jk+1)*stepm;  /*************** log-likelihood *************/
         if(jl <= -ju)  double funcone( double *x)
           dh[mi][i]=jk;  {
         else    /* Same as likeli but slower because of a lot of printf and if */
           dh[mi][i]=jk+1;    int i, ii, j, k, mi, d, kk;
         if(dh[mi][i]==0)    double l, ll[NLSTATEMAX], cov[NCOVMAX];
           dh[mi][i]=1; /* At least one step */    double **out;
       }    double lli; /* Individual log likelihood */
     }    double llt;
   }    int s1, s2;
   jmean=sum/k;    double bbh, survp;
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);    /*extern weight */
  }    /* We are differentiating ll according to initial status */
 /*********** Tricode ****************************/    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
 void tricode(int *Tvar, int **nbcode, int imx)    /*for(i=1;i<imx;i++) 
 {      printf(" %d\n",s[4][i]);
   int Ndum[20],ij=1, k, j, i;    */
   int cptcode=0;    cov[1]=1.;
   cptcoveff=0;  
      for(k=1; k<=nlstate; k++) ll[k]=0.;
   for (k=0; k<19; k++) Ndum[k]=0;  
   for (k=1; k<=7; k++) ncodemax[k]=0;    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {      for(mi=1; mi<= wav[i]-1; mi++){
     for (i=1; i<=imx; i++) {        for (ii=1;ii<=nlstate+ndeath;ii++)
       ij=(int)(covar[Tvar[j]][i]);          for (j=1;j<=nlstate+ndeath;j++){
       Ndum[ij]++;            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/            savm[ii][j]=(ii==j ? 1.0 : 0.0);
       if (ij > cptcode) cptcode=ij;          }
     }        for(d=0; d<dh[mi][i]; d++){
           newm=savm;
     for (i=0; i<=cptcode; i++) {          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       if(Ndum[i]!=0) ncodemax[j]++;          for (kk=1; kk<=cptcovage;kk++) {
     }            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     ij=1;          }
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     for (i=1; i<=ncodemax[j]; i++) {          savm=oldm;
       for (k=0; k<=19; k++) {          oldm=newm;
         if (Ndum[k] != 0) {        } /* end mult */
           nbcode[Tvar[j]][ij]=k;        
                  s1=s[mw[mi][i]][i];
           ij++;        s2=s[mw[mi+1][i]][i];
         }        bbh=(double)bh[mi][i]/(double)stepm; 
         if (ij > ncodemax[j]) break;        /* bias is positive if real duration
       }           * is higher than the multiple of stepm and negative otherwise.
     }         */
   }          if( s2 > nlstate && (mle <5) ){  /* Jackson */
           lli=log(out[s1][s2] - savm[s1][s2]);
  for (k=0; k<19; k++) Ndum[k]=0;        } else if (mle==1){
           lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
  for (i=1; i<=ncovmodel-2; i++) {        } else if(mle==2){
       ij=Tvar[i];          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
       Ndum[ij]++;        } else if(mle==3){  /* exponential inter-extrapolation */
     }          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
         } else if (mle==4){  /* mle=4 no inter-extrapolation */
  ij=1;          lli=log(out[s1][s2]); /* Original formula */
  for (i=1; i<=10; i++) {        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
    if((Ndum[i]!=0) && (i<=ncovcol)){          lli=log(out[s1][s2]); /* Original formula */
      Tvaraff[ij]=i;        } /* End of if */
      ij++;        ipmx +=1;
    }        sw += weight[i];
  }        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
    /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
     cptcoveff=ij-1;        if(globpr){
 }          fprintf(ficresilk,"%9d %6d %1d %1d %1d %1d %3d %10.6f %6.4f\
    %10.6f %10.6f %10.6f ", \
 /*********** Health Expectancies ****************/                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
                   2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
             llt +=ll[k]*gipmx/gsw;
 {            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
   /* Health expectancies */          }
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;          fprintf(ficresilk," %10.6f\n", -llt);
   double age, agelim, hf;        }
   double ***p3mat,***varhe;      } /* end of wave */
   double **dnewm,**doldm;    } /* end of individual */
   double *xp;    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   double **gp, **gm;    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   double ***gradg, ***trgradg;    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   int theta;    if(globpr==0){ /* First time we count the contributions and weights */
       gipmx=ipmx;
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);      gsw=sw;
   xp=vector(1,npar);    }
   dnewm=matrix(1,nlstate*2,1,npar);    return -l;
   doldm=matrix(1,nlstate*2,1,nlstate*2);  }
    
   fprintf(ficreseij,"# Health expectancies\n");  
   fprintf(ficreseij,"# Age");  /*************** function likelione ***********/
   for(i=1; i<=nlstate;i++)  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
     for(j=1; j<=nlstate;j++)  {
       fprintf(ficreseij," %1d-%1d (SE)",i,j);    /* This routine should help understanding what is done with 
   fprintf(ficreseij,"\n");       the selection of individuals/waves and
        to check the exact contribution to the likelihood.
   if(estepm < stepm){       Plotting could be done.
     printf ("Problem %d lower than %d\n",estepm, stepm);     */
   }    int k;
   else  hstepm=estepm;    
   /* We compute the life expectancy from trapezoids spaced every estepm months    if(*globpri !=0){ /* Just counts and sums, no printings */
    * This is mainly to measure the difference between two models: for example      strcpy(fileresilk,"ilk"); 
    * if stepm=24 months pijx are given only every 2 years and by summing them      strcat(fileresilk,fileres);
    * we are calculating an estimate of the Life Expectancy assuming a linear      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
    * progression inbetween and thus overestimating or underestimating according        printf("Problem with resultfile: %s\n", fileresilk);
    * to the curvature of the survival function. If, for the same date, we        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
    * estimate the model with stepm=1 month, we can keep estepm to 24 months      }
    * to compare the new estimate of Life expectancy with the same linear      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
    * hypothesis. A more precise result, taking into account a more precise      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
    * curvature will be obtained if estepm is as small as stepm. */      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
       for(k=1; k<=nlstate; k++) 
   /* For example we decided to compute the life expectancy with the smallest unit */        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
      nhstepm is the number of hstepm from age to agelim    }
      nstepm is the number of stepm from age to agelin.  
      Look at hpijx to understand the reason of that which relies in memory size    *fretone=(*funcone)(p);
      and note for a fixed period like estepm months */    if(*globpri !=0){
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the      fclose(ficresilk);
      survival function given by stepm (the optimization length). Unfortunately it      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
      means that if the survival funtion is printed only each two years of age and if      fflush(fichtm); 
      you sum them up and add 1 year (area under the trapezoids) you won't get the same    } 
      results. So we changed our mind and took the option of the best precision.    return;
   */  }
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */  
   
   agelim=AGESUP;  /*********** Maximum Likelihood Estimation ***************/
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */  
     /* nhstepm age range expressed in number of stepm */  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
     nstepm=(int) rint((agelim-age)*YEARM/stepm);  {
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */    int i,j, iter;
     /* if (stepm >= YEARM) hstepm=1;*/    double **xi;
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */    double fret;
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    double fretone; /* Only one call to likelihood */
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);    /*  char filerespow[FILENAMELENGTH];*/
     gp=matrix(0,nhstepm,1,nlstate*2);    xi=matrix(1,npar,1,npar);
     gm=matrix(0,nhstepm,1,nlstate*2);    for (i=1;i<=npar;i++)
       for (j=1;j<=npar;j++)
     /* Computed by stepm unit matrices, product of hstepm matrices, stored        xi[i][j]=(i==j ? 1.0 : 0.0);
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */    printf("Powell\n");  fprintf(ficlog,"Powell\n");
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);      strcpy(filerespow,"pow"); 
      strcat(filerespow,fileres);
     if((ficrespow=fopen(filerespow,"w"))==NULL) {
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */      printf("Problem with resultfile: %s\n", filerespow);
       fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
     /* Computing Variances of health expectancies */    }
     fprintf(ficrespow,"# Powell\n# iter -2*LL");
      for(theta=1; theta <=npar; theta++){    for (i=1;i<=nlstate;i++)
       for(i=1; i<=npar; i++){      for(j=1;j<=nlstate+ndeath;j++)
         xp[i] = x[i] + (i==theta ?delti[theta]:0);        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       }    fprintf(ficrespow,"\n");
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);    
      powell(p,xi,npar,ftol,&iter,&fret,func);
       cptj=0;  
       for(j=1; j<= nlstate; j++){    fclose(ficrespow);
         for(i=1; i<=nlstate; i++){    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
           cptj=cptj+1;    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;  
           }  }
         }  
       }  /**** Computes Hessian and covariance matrix ***/
        void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
        {
       for(i=1; i<=npar; i++)    double  **a,**y,*x,pd;
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    double **hess;
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      int i, j,jk;
          int *indx;
       cptj=0;  
       for(j=1; j<= nlstate; j++){    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
         for(i=1;i<=nlstate;i++){    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
           cptj=cptj+1;    void lubksb(double **a, int npar, int *indx, double b[]) ;
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){    void ludcmp(double **a, int npar, int *indx, double *d) ;
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;    double gompertz(double p[]);
           }    hess=matrix(1,npar,1,npar);
         }  
       }    printf("\nCalculation of the hessian matrix. Wait...\n");
          fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
        for (i=1;i<=npar;i++){
       printf("%d",i);fflush(stdout);
       for(j=1; j<= nlstate*2; j++)      fprintf(ficlog,"%d",i);fflush(ficlog);
         for(h=0; h<=nhstepm-1; h++){     
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
         }      
       /*  printf(" %f ",p[i]);
      }          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
        }
 /* End theta */    
     for (i=1;i<=npar;i++) {
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);      for (j=1;j<=npar;j++)  {
         if (j>i) { 
      for(h=0; h<=nhstepm-1; h++)          printf(".%d%d",i,j);fflush(stdout);
       for(j=1; j<=nlstate*2;j++)          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
         for(theta=1; theta <=npar; theta++)          hess[i][j]=hessij(p,delti,i,j,func,npar);
         trgradg[h][j][theta]=gradg[h][theta][j];          
           hess[j][i]=hess[i][j];    
           /*printf(" %lf ",hess[i][j]);*/
      for(i=1;i<=nlstate*2;i++)        }
       for(j=1;j<=nlstate*2;j++)      }
         varhe[i][j][(int)age] =0.;    }
     printf("\n");
     for(h=0;h<=nhstepm-1;h++){    fprintf(ficlog,"\n");
       for(k=0;k<=nhstepm-1;k++){  
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
         for(i=1;i<=nlstate*2;i++)    
           for(j=1;j<=nlstate*2;j++)    a=matrix(1,npar,1,npar);
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;    y=matrix(1,npar,1,npar);
       }    x=vector(1,npar);
     }    indx=ivector(1,npar);
     for (i=1;i<=npar;i++)
            for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
     /* Computing expectancies */    ludcmp(a,npar,indx,&pd);
     for(i=1; i<=nlstate;i++)  
       for(j=1; j<=nlstate;j++)    for (j=1;j<=npar;j++) {
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){      for (i=1;i<=npar;i++) x[i]=0;
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;      x[j]=1;
                lubksb(a,npar,indx,x);
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/      for (i=1;i<=npar;i++){ 
         matcov[i][j]=x[i];
         }      }
     }
     fprintf(ficreseij,"%3.0f",age );  
     cptj=0;    printf("\n#Hessian matrix#\n");
     for(i=1; i<=nlstate;i++)    fprintf(ficlog,"\n#Hessian matrix#\n");
       for(j=1; j<=nlstate;j++){    for (i=1;i<=npar;i++) { 
         cptj++;      for (j=1;j<=npar;j++) { 
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );        printf("%.3e ",hess[i][j]);
       }        fprintf(ficlog,"%.3e ",hess[i][j]);
     fprintf(ficreseij,"\n");      }
          printf("\n");
     free_matrix(gm,0,nhstepm,1,nlstate*2);      fprintf(ficlog,"\n");
     free_matrix(gp,0,nhstepm,1,nlstate*2);    }
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);  
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);    /* Recompute Inverse */
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    for (i=1;i<=npar;i++)
   }      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
   free_vector(xp,1,npar);    ludcmp(a,npar,indx,&pd);
   free_matrix(dnewm,1,nlstate*2,1,npar);  
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);    /*  printf("\n#Hessian matrix recomputed#\n");
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);  
 }    for (j=1;j<=npar;j++) {
       for (i=1;i<=npar;i++) x[i]=0;
 /************ Variance ******************/      x[j]=1;
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm)      lubksb(a,npar,indx,x);
 {      for (i=1;i<=npar;i++){ 
   /* Variance of health expectancies */        y[i][j]=x[i];
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/        printf("%.3e ",y[i][j]);
   double **newm;        fprintf(ficlog,"%.3e ",y[i][j]);
   double **dnewm,**doldm;      }
   int i, j, nhstepm, hstepm, h, nstepm ;      printf("\n");
   int k, cptcode;      fprintf(ficlog,"\n");
   double *xp;    }
   double **gp, **gm;    */
   double ***gradg, ***trgradg;  
   double ***p3mat;    free_matrix(a,1,npar,1,npar);
   double age,agelim, hf;    free_matrix(y,1,npar,1,npar);
   int theta;    free_vector(x,1,npar);
     free_ivector(indx,1,npar);
    fprintf(ficresvij,"# Covariances of life expectancies\n");    free_matrix(hess,1,npar,1,npar);
   fprintf(ficresvij,"# Age");  
   for(i=1; i<=nlstate;i++)  
     for(j=1; j<=nlstate;j++)  }
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);  
   fprintf(ficresvij,"\n");  /*************** hessian matrix ****************/
   double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
   xp=vector(1,npar);  {
   dnewm=matrix(1,nlstate,1,npar);    int i;
   doldm=matrix(1,nlstate,1,nlstate);    int l=1, lmax=20;
      double k1,k2;
   if(estepm < stepm){    double p2[NPARMAX+1];
     printf ("Problem %d lower than %d\n",estepm, stepm);    double res;
   }    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
   else  hstepm=estepm;      double fx;
   /* For example we decided to compute the life expectancy with the smallest unit */    int k=0,kmax=10;
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.    double l1;
      nhstepm is the number of hstepm from age to agelim  
      nstepm is the number of stepm from age to agelin.    fx=func(x);
      Look at hpijx to understand the reason of that which relies in memory size    for (i=1;i<=npar;i++) p2[i]=x[i];
      and note for a fixed period like k years */    for(l=0 ; l <=lmax; l++){
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the      l1=pow(10,l);
      survival function given by stepm (the optimization length). Unfortunately it      delts=delt;
      means that if the survival funtion is printed only each two years of age and if      for(k=1 ; k <kmax; k=k+1){
      you sum them up and add 1 year (area under the trapezoids) you won't get the same        delt = delta*(l1*k);
      results. So we changed our mind and took the option of the best precision.        p2[theta]=x[theta] +delt;
   */        k1=func(p2)-fx;
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */        p2[theta]=x[theta]-delt;
   agelim = AGESUP;        k2=func(p2)-fx;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */        /*res= (k1-2.0*fx+k2)/delt/delt; */
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */        
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  #ifdef DEBUG
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
     gp=matrix(0,nhstepm,1,nlstate);        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
     gm=matrix(0,nhstepm,1,nlstate);  #endif
         /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
     for(theta=1; theta <=npar; theta++){        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
       for(i=1; i<=npar; i++){ /* Computes gradient */          k=kmax;
         xp[i] = x[i] + (i==theta ?delti[theta]:0);        }
       }        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            k=kmax; l=lmax*10.;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        }
         else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
       if (popbased==1) {          delts=delt;
         for(i=1; i<=nlstate;i++)        }
           prlim[i][i]=probs[(int)age][i][ij];      }
       }    }
      delti[theta]=delts;
       for(j=1; j<= nlstate; j++){    return res; 
         for(h=0; h<=nhstepm; h++){    
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)  }
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];  
         }  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
       }  {
        int i;
       for(i=1; i<=npar; i++) /* Computes gradient */    int l=1, l1, lmax=20;
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    double k1,k2,k3,k4,res,fx;
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      double p2[NPARMAX+1];
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    int k;
    
       if (popbased==1) {    fx=func(x);
         for(i=1; i<=nlstate;i++)    for (k=1; k<=2; k++) {
           prlim[i][i]=probs[(int)age][i][ij];      for (i=1;i<=npar;i++) p2[i]=x[i];
       }      p2[thetai]=x[thetai]+delti[thetai]/k;
       p2[thetaj]=x[thetaj]+delti[thetaj]/k;
       for(j=1; j<= nlstate; j++){      k1=func(p2)-fx;
         for(h=0; h<=nhstepm; h++){    
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)      p2[thetai]=x[thetai]+delti[thetai]/k;
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
         }      k2=func(p2)-fx;
       }    
       p2[thetai]=x[thetai]-delti[thetai]/k;
       for(j=1; j<= nlstate; j++)      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
         for(h=0; h<=nhstepm; h++){      k3=func(p2)-fx;
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];    
         }      p2[thetai]=x[thetai]-delti[thetai]/k;
     } /* End theta */      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
       k4=func(p2)-fx;
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
   #ifdef DEBUG
     for(h=0; h<=nhstepm; h++)      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
       for(j=1; j<=nlstate;j++)      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
         for(theta=1; theta <=npar; theta++)  #endif
           trgradg[h][j][theta]=gradg[h][theta][j];    }
     return res;
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */  }
     for(i=1;i<=nlstate;i++)  
       for(j=1;j<=nlstate;j++)  /************** Inverse of matrix **************/
         vareij[i][j][(int)age] =0.;  void ludcmp(double **a, int n, int *indx, double *d) 
   { 
     for(h=0;h<=nhstepm;h++){    int i,imax,j,k; 
       for(k=0;k<=nhstepm;k++){    double big,dum,sum,temp; 
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);    double *vv; 
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);   
         for(i=1;i<=nlstate;i++)    vv=vector(1,n); 
           for(j=1;j<=nlstate;j++)    *d=1.0; 
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;    for (i=1;i<=n;i++) { 
       }      big=0.0; 
     }      for (j=1;j<=n;j++) 
         if ((temp=fabs(a[i][j])) > big) big=temp; 
     fprintf(ficresvij,"%.0f ",age );      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
     for(i=1; i<=nlstate;i++)      vv[i]=1.0/big; 
       for(j=1; j<=nlstate;j++){    } 
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);    for (j=1;j<=n;j++) { 
       }      for (i=1;i<j;i++) { 
     fprintf(ficresvij,"\n");        sum=a[i][j]; 
     free_matrix(gp,0,nhstepm,1,nlstate);        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
     free_matrix(gm,0,nhstepm,1,nlstate);        a[i][j]=sum; 
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);      } 
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);      big=0.0; 
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      for (i=j;i<=n;i++) { 
   } /* End age */        sum=a[i][j]; 
          for (k=1;k<j;k++) 
   free_vector(xp,1,npar);          sum -= a[i][k]*a[k][j]; 
   free_matrix(doldm,1,nlstate,1,npar);        a[i][j]=sum; 
   free_matrix(dnewm,1,nlstate,1,nlstate);        if ( (dum=vv[i]*fabs(sum)) >= big) { 
           big=dum; 
 }          imax=i; 
         } 
 /************ Variance of prevlim ******************/      } 
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)      if (j != imax) { 
 {        for (k=1;k<=n;k++) { 
   /* Variance of prevalence limit */          dum=a[imax][k]; 
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/          a[imax][k]=a[j][k]; 
   double **newm;          a[j][k]=dum; 
   double **dnewm,**doldm;        } 
   int i, j, nhstepm, hstepm;        *d = -(*d); 
   int k, cptcode;        vv[imax]=vv[j]; 
   double *xp;      } 
   double *gp, *gm;      indx[j]=imax; 
   double **gradg, **trgradg;      if (a[j][j] == 0.0) a[j][j]=TINY; 
   double age,agelim;      if (j != n) { 
   int theta;        dum=1.0/(a[j][j]); 
            for (i=j+1;i<=n;i++) a[i][j] *= dum; 
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");      } 
   fprintf(ficresvpl,"# Age");    } 
   for(i=1; i<=nlstate;i++)    free_vector(vv,1,n);  /* Doesn't work */
       fprintf(ficresvpl," %1d-%1d",i,i);  ;
   fprintf(ficresvpl,"\n");  } 
   
   xp=vector(1,npar);  void lubksb(double **a, int n, int *indx, double b[]) 
   dnewm=matrix(1,nlstate,1,npar);  { 
   doldm=matrix(1,nlstate,1,nlstate);    int i,ii=0,ip,j; 
      double sum; 
   hstepm=1*YEARM; /* Every year of age */   
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */    for (i=1;i<=n;i++) { 
   agelim = AGESUP;      ip=indx[i]; 
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */      sum=b[ip]; 
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */      b[ip]=b[i]; 
     if (stepm >= YEARM) hstepm=1;      if (ii) 
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
     gradg=matrix(1,npar,1,nlstate);      else if (sum) ii=i; 
     gp=vector(1,nlstate);      b[i]=sum; 
     gm=vector(1,nlstate);    } 
     for (i=n;i>=1;i--) { 
     for(theta=1; theta <=npar; theta++){      sum=b[i]; 
       for(i=1; i<=npar; i++){ /* Computes gradient */      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
         xp[i] = x[i] + (i==theta ?delti[theta]:0);      b[i]=sum/a[i][i]; 
       }    } 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  } 
       for(i=1;i<=nlstate;i++)  
         gp[i] = prlim[i][i];  /************ Frequencies ********************/
      void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
       for(i=1; i<=npar; i++) /* Computes gradient */  {  /* Some frequencies */
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
       for(i=1;i<=nlstate;i++)    int first;
         gm[i] = prlim[i][i];    double ***freq; /* Frequencies */
     double *pp, **prop;
       for(i=1;i<=nlstate;i++)    double pos,posprop, k2, dateintsum=0,k2cpt=0;
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];    FILE *ficresp;
     } /* End theta */    char fileresp[FILENAMELENGTH];
     
     trgradg =matrix(1,nlstate,1,npar);    pp=vector(1,nlstate);
     prop=matrix(1,nlstate,iagemin,iagemax+3);
     for(j=1; j<=nlstate;j++)    strcpy(fileresp,"p");
       for(theta=1; theta <=npar; theta++)    strcat(fileresp,fileres);
         trgradg[j][theta]=gradg[theta][j];    if((ficresp=fopen(fileresp,"w"))==NULL) {
       printf("Problem with prevalence resultfile: %s\n", fileresp);
     for(i=1;i<=nlstate;i++)      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
       varpl[i][(int)age] =0.;      exit(0);
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);    }
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
     for(i=1;i<=nlstate;i++)    j1=0;
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */    
     j=cptcoveff;
     fprintf(ficresvpl,"%.0f ",age );    if (cptcovn<1) {j=1;ncodemax[1]=1;}
     for(i=1; i<=nlstate;i++)  
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));    first=1;
     fprintf(ficresvpl,"\n");  
     free_vector(gp,1,nlstate);    for(k1=1; k1<=j;k1++){
     free_vector(gm,1,nlstate);      for(i1=1; i1<=ncodemax[k1];i1++){
     free_matrix(gradg,1,npar,1,nlstate);        j1++;
     free_matrix(trgradg,1,nlstate,1,npar);        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
   } /* End age */          scanf("%d", i);*/
         for (i=-5; i<=nlstate+ndeath; i++)  
   free_vector(xp,1,npar);          for (jk=-5; jk<=nlstate+ndeath; jk++)  
   free_matrix(doldm,1,nlstate,1,npar);            for(m=iagemin; m <= iagemax+3; m++)
   free_matrix(dnewm,1,nlstate,1,nlstate);              freq[i][jk][m]=0;
   
 }      for (i=1; i<=nlstate; i++)  
         for(m=iagemin; m <= iagemax+3; m++)
 /************ Variance of one-step probabilities  ******************/          prop[i][m]=0;
 void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)        
 {        dateintsum=0;
   int i, j, i1, k1, j1, z1;        k2cpt=0;
   int k=0, cptcode;        for (i=1; i<=imx; i++) {
   double **dnewm,**doldm;          bool=1;
   double *xp;          if  (cptcovn>0) {
   double *gp, *gm;            for (z1=1; z1<=cptcoveff; z1++) 
   double **gradg, **trgradg;              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
   double age,agelim, cov[NCOVMAX];                bool=0;
   int theta;          }
   char fileresprob[FILENAMELENGTH];          if (bool==1){
             for(m=firstpass; m<=lastpass; m++){
   strcpy(fileresprob,"prob");              k2=anint[m][i]+(mint[m][i]/12.);
   strcat(fileresprob,fileres);              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {                if(agev[m][i]==0) agev[m][i]=iagemax+1;
     printf("Problem with resultfile: %s\n", fileresprob);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
   }                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);                if (m<lastpass) {
                    freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
 fprintf(ficresprob,"#One-step probabilities and standard deviation in parentheses\n");                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
   fprintf(ficresprob,"# Age");                }
   for(i=1; i<=nlstate;i++)                
     for(j=1; j<=(nlstate+ndeath);j++)                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);                  dateintsum=dateintsum+k2;
                   k2cpt++;
                 }
   fprintf(ficresprob,"\n");                /*}*/
             }
           }
   xp=vector(1,npar);        }
   dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);         
   doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
    fprintf(ficresp, "#Local time at start: %s", strstart);
   cov[1]=1;        if  (cptcovn>0) {
   j=cptcoveff;          fprintf(ficresp, "\n#********** Variable "); 
   if (cptcovn<1) {j=1;ncodemax[1]=1;}          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   j1=0;          fprintf(ficresp, "**********\n#");
   for(k1=1; k1<=1;k1++){        }
     for(i1=1; i1<=ncodemax[k1];i1++){        for(i=1; i<=nlstate;i++) 
     j1++;          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
         fprintf(ficresp, "\n");
     if  (cptcovn>0) {        
       fprintf(ficresprob, "\n#********** Variable ");        for(i=iagemin; i <= iagemax+3; i++){
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          if(i==iagemax+3){
       fprintf(ficresprob, "**********\n#");            fprintf(ficlog,"Total");
     }          }else{
                if(first==1){
       for (age=bage; age<=fage; age ++){              first=0;
         cov[2]=age;              printf("See log file for details...\n");
         for (k=1; k<=cptcovn;k++) {            }
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];            fprintf(ficlog,"Age %d", i);
                    }
         }          for(jk=1; jk <=nlstate ; jk++){
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
         for (k=1; k<=cptcovprod;k++)              pp[jk] += freq[jk][m][i]; 
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];          }
                  for(jk=1; jk <=nlstate ; jk++){
         gradg=matrix(1,npar,1,9);            for(m=-1, pos=0; m <=0 ; m++)
         trgradg=matrix(1,9,1,npar);              pos += freq[jk][m][i];
         gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));            if(pp[jk]>=1.e-10){
         gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));              if(first==1){
                  printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
         for(theta=1; theta <=npar; theta++){              }
           for(i=1; i<=npar; i++)              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
             xp[i] = x[i] + (i==theta ?delti[theta]:0);            }else{
                        if(first==1)
           pmij(pmmij,cov,ncovmodel,xp,nlstate);                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
                        fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
           k=0;            }
           for(i=1; i<= (nlstate+ndeath); i++){          }
             for(j=1; j<=(nlstate+ndeath);j++){  
               k=k+1;          for(jk=1; jk <=nlstate ; jk++){
               gp[k]=pmmij[i][j];            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
             }              pp[jk] += freq[jk][m][i];
           }          }       
                    for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
           for(i=1; i<=npar; i++)            pos += pp[jk];
             xp[i] = x[i] - (i==theta ?delti[theta]:0);            posprop += prop[jk][i];
              }
           pmij(pmmij,cov,ncovmodel,xp,nlstate);          for(jk=1; jk <=nlstate ; jk++){
           k=0;            if(pos>=1.e-5){
           for(i=1; i<=(nlstate+ndeath); i++){              if(first==1)
             for(j=1; j<=(nlstate+ndeath);j++){                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
               k=k+1;              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
               gm[k]=pmmij[i][j];            }else{
             }              if(first==1)
           }                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
                    fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
           for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)            }
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];              if( i <= iagemax){
         }              if(pos>=1.e-5){
                 fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
         for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)                /*probs[i][jk][j1]= pp[jk]/pos;*/
           for(theta=1; theta <=npar; theta++)                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
             trgradg[j][theta]=gradg[theta][j];              }
                      else
         matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
         matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);            }
                  }
         pmij(pmmij,cov,ncovmodel,x,nlstate);          
                  for(jk=-1; jk <=nlstate+ndeath; jk++)
         k=0;            for(m=-1; m <=nlstate+ndeath; m++)
         for(i=1; i<=(nlstate+ndeath); i++){              if(freq[jk][m][i] !=0 ) {
           for(j=1; j<=(nlstate+ndeath);j++){              if(first==1)
             k=k+1;                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
             gm[k]=pmmij[i][j];                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
           }              }
         }          if(i <= iagemax)
                  fprintf(ficresp,"\n");
      /*printf("\n%d ",(int)age);          if(first==1)
      for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){            printf("Others in log...\n");
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));          fprintf(ficlog,"\n");
      }*/        }
       }
         fprintf(ficresprob,"\n%d ",(int)age);    }
     dateintmean=dateintsum/k2cpt; 
         for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++)   
           fprintf(ficresprob,"%.3e (%.3e) ",gm[i],sqrt(doldm[i][i]));    fclose(ficresp);
      free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
       }    free_vector(pp,1,nlstate);
     }    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));    /* End of Freq */
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));  }
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);  
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);  /************ Prevalence ********************/
   }  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
   free_vector(xp,1,npar);  {  
   fclose(ficresprob);    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
         in each health status at the date of interview (if between dateprev1 and dateprev2).
 }       We still use firstpass and lastpass as another selection.
     */
 /******************* Printing html file ***********/   
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
  int lastpass, int stepm, int weightopt, char model[],\    double ***freq; /* Frequencies */
  int imx,int jmin, int jmax, double jmeanint,char optionfile[], \    double *pp, **prop;
  char optionfilehtm[],char rfileres[], char optionfilegnuplot[],\    double pos,posprop; 
  char version[], int popforecast, int estepm ){    double  y2; /* in fractional years */
   int jj1, k1, i1, cpt;    int iagemin, iagemax;
   FILE *fichtm;  
   /*char optionfilehtm[FILENAMELENGTH];*/    iagemin= (int) agemin;
     iagemax= (int) agemax;
   strcpy(optionfilehtm,optionfile);    /*pp=vector(1,nlstate);*/
   strcat(optionfilehtm,".htm");    prop=matrix(1,nlstate,iagemin,iagemax+3); 
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
     printf("Problem with %s \n",optionfilehtm), exit(0);    j1=0;
   }    
     j=cptcoveff;
  fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n    if (cptcovn<1) {j=1;ncodemax[1]=1;}
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n    
 \n    for(k1=1; k1<=j;k1++){
 Total number of observations=%d <br>\n      for(i1=1; i1<=ncodemax[k1];i1++){
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n        j1++;
 <hr  size=\"2\" color=\"#EC5E5E\">        
  <ul><li>Outputs files<br>\n        for (i=1; i<=nlstate; i++)  
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n          for(m=iagemin; m <= iagemax+3; m++)
  - Gnuplot file name: <a href=\"%s\">%s</a><br>\n            prop[i][m]=0.0;
  - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n       
  - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>\n        for (i=1; i<=imx; i++) { /* Each individual */
  - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>\n          bool=1;
  - Life expectancies by age and initial health status (estepm=%2d months): <a href=\"e%s\">e%s</a> <br>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot,fileres,fileres,fileres,fileres,fileres,fileres,estepm,fileres,fileres);          if  (cptcovn>0) {
             for (z1=1; z1<=cptcoveff; z1++) 
  fprintf(fichtm,"\n              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
  - Parameter file with estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>\n                bool=0;
   - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n          } 
  - Variances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n          if (bool==1) { 
  - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>\n            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
  - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
               if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
  if(popforecast==1) fprintf(fichtm,"\n                if(agev[m][i]==0) agev[m][i]=iagemax+1;
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n                if(agev[m][i]==1) agev[m][i]=iagemax+2;
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
         <br>",fileres,fileres,fileres,fileres);                if (s[m][i]>0 && s[m][i]<=nlstate) { 
  else                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
 fprintf(fichtm," <li>Graphs</li><p>");                  prop[s[m][i]][iagemax+3] += weight[i]; 
                 } 
  m=cptcoveff;              }
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}            } /* end selection of waves */
           }
  jj1=0;        }
  for(k1=1; k1<=m;k1++){        for(i=iagemin; i <= iagemax+3; i++){  
    for(i1=1; i1<=ncodemax[k1];i1++){          
        jj1++;          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
        if (cptcovn > 0) {            posprop += prop[jk][i]; 
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");          } 
          for (cpt=1; cpt<=cptcoveff;cpt++)  
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);          for(jk=1; jk <=nlstate ; jk++){     
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");            if( i <=  iagemax){ 
        }              if(posprop>=1.e-5){ 
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>                probs[i][jk][j1]= prop[jk][i]/posprop;
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);                  } 
        for(cpt=1; cpt<nlstate;cpt++){            } 
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>          }/* end jk */ 
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);        }/* end i */ 
        }      } /* end i1 */
     for(cpt=1; cpt<=nlstate;cpt++) {    } /* end k1 */
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident    
 interval) in state (%d): v%s%d%d.gif <br>    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);      /*free_vector(pp,1,nlstate);*/
      }    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
      for(cpt=1; cpt<=nlstate;cpt++) {  }  /* End of prevalence */
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>  
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);  /************* Waves Concatenation ***************/
      }  
      fprintf(fichtm,"\n<br>- Total life expectancy by age and  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
 health expectancies in states (1) and (2): e%s%d.gif<br>  {
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
 fprintf(fichtm,"\n</body>");       Death is a valid wave (if date is known).
    }       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
    }       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
 fclose(fichtm);       and mw[mi+1][i]. dh depends on stepm.
 }       */
   
 /******************* Gnuplot file **************/    int i, mi, m;
 void printinggnuplot(char fileres[],char optionfilefiname[],char optionfile[],char optionfilegnuplot[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
        double sum=0., jmean=0.;*/
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;    int first;
     int j, k=0,jk, ju, jl;
   strcpy(optionfilegnuplot,optionfilefiname);    double sum=0.;
   strcat(optionfilegnuplot,".gp.txt");    first=0;
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {    jmin=1e+5;
     printf("Problem with file %s",optionfilegnuplot);    jmax=-1;
   }    jmean=0.;
     for(i=1; i<=imx; i++){
 #ifdef windows      mi=0;
     fprintf(ficgp,"cd \"%s\" \n",pathc);      m=firstpass;
 #endif      while(s[m][i] <= nlstate){
 m=pow(2,cptcoveff);        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
            mw[++mi][i]=m;
  /* 1eme*/        if(m >=lastpass)
   for (cpt=1; cpt<= nlstate ; cpt ++) {          break;
    for (k1=1; k1<= m ; k1 ++) {        else
           m++;
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);      }/* end while */
       if (s[m][i] > nlstate){
 for (i=1; i<= nlstate ; i ++) {        mi++;     /* Death is another wave */
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");        /* if(mi==0)  never been interviewed correctly before death */
   else fprintf(ficgp," \%%*lf (\%%*lf)");           /* Only death is a correct wave */
 }        mw[mi][i]=m;
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);      }
     for (i=1; i<= nlstate ; i ++) {  
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");      wav[i]=mi;
   else fprintf(ficgp," \%%*lf (\%%*lf)");      if(mi==0){
 }        nbwarn++;
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);        if(first==0){
      for (i=1; i<= nlstate ; i ++) {          printf("Warning! None valid information for:%ld line=%d (skipped) and may be others, see log file\n",num[i],i);
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");          first=1;
   else fprintf(ficgp," \%%*lf (\%%*lf)");        }
 }          if(first==1){
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));          fprintf(ficlog,"Warning! None valid information for:%ld line=%d (skipped)\n",num[i],i);
         }
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);      } /* end mi==0 */
    }    } /* End individuals */
   }  
   /*2 eme*/    for(i=1; i<=imx; i++){
       for(mi=1; mi<wav[i];mi++){
   for (k1=1; k1<= m ; k1 ++) {        if (stepm <=0)
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",ageminpar,fage);          dh[mi][i]=1;
            else{
     for (i=1; i<= nlstate+1 ; i ++) {          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
       k=2*i;            if (agedc[i] < 2*AGESUP) {
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
       for (j=1; j<= nlstate+1 ; j ++) {              if(j==0) j=1;  /* Survives at least one month after exam */
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");              else if(j<0){
   else fprintf(ficgp," \%%*lf (\%%*lf)");                nberr++;
 }                  printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");                j=1; /* Temporary Dangerous patch */
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
       for (j=1; j<= nlstate+1 ; j ++) {                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");              }
         else fprintf(ficgp," \%%*lf (\%%*lf)");              k=k+1;
 }                if (j >= jmax){
       fprintf(ficgp,"\" t\"\" w l 0,");                jmax=j;
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);                ijmax=i;
       for (j=1; j<= nlstate+1 ; j ++) {              }
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");              if (j <= jmin){
   else fprintf(ficgp," \%%*lf (\%%*lf)");                jmin=j;
 }                  ijmin=i;
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");              }
       else fprintf(ficgp,"\" t\"\" w l 0,");              sum=sum+j;
     }              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
   }            }
            }
   /*3eme*/          else{
             j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
   for (k1=1; k1<= m ; k1 ++) {  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
     for (cpt=1; cpt<= nlstate ; cpt ++) {  
       k=2+nlstate*(2*cpt-2);            k=k+1;
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);            if (j >= jmax) {
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);              jmax=j;
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");              ijmax=i;
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);            }
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);            else if (j <= jmin){
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");              jmin=j;
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);              ijmin=i;
             }
 */            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
       for (i=1; i< nlstate ; i ++) {            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);            if(j<0){
               nberr++;
       }              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     }            }
     }            sum=sum+j;
            }
   /* CV preval stat */          jk= j/stepm;
     for (k1=1; k1<= m ; k1 ++) {          jl= j -jk*stepm;
     for (cpt=1; cpt<nlstate ; cpt ++) {          ju= j -(jk+1)*stepm;
       k=3;          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);            if(jl==0){
               dh[mi][i]=jk;
       for (i=1; i< nlstate ; i ++)              bh[mi][i]=0;
         fprintf(ficgp,"+$%d",k+i+1);            }else{ /* We want a negative bias in order to only have interpolation ie
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);                    * at the price of an extra matrix product in likelihood */
                    dh[mi][i]=jk+1;
       l=3+(nlstate+ndeath)*cpt;              bh[mi][i]=ju;
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);            }
       for (i=1; i< nlstate ; i ++) {          }else{
         l=3+(nlstate+ndeath)*cpt;            if(jl <= -ju){
         fprintf(ficgp,"+$%d",l+i+1);              dh[mi][i]=jk;
       }              bh[mi][i]=jl;       /* bias is positive if real duration
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);                                     * is higher than the multiple of stepm and negative otherwise.
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);                                   */
     }            }
   }              else{
                dh[mi][i]=jk+1;
   /* proba elementaires */              bh[mi][i]=ju;
    for(i=1,jk=1; i <=nlstate; i++){            }
     for(k=1; k <=(nlstate+ndeath); k++){            if(dh[mi][i]==0){
       if (k != i) {              dh[mi][i]=1; /* At least one step */
         for(j=1; j <=ncovmodel; j++){              bh[mi][i]=ju; /* At least one step */
                      /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);            }
           jk++;          } /* end if mle */
           fprintf(ficgp,"\n");        }
         }      } /* end wave */
       }    }
     }    jmean=sum/k;
     }    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
     fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
     for(jk=1; jk <=m; jk++) {   }
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);  
    i=1;  /*********** Tricode ****************************/
    for(k2=1; k2<=nlstate; k2++) {  void tricode(int *Tvar, int **nbcode, int imx)
      k3=i;  {
      for(k=1; k<=(nlstate+ndeath); k++) {    
        if (k != k2){    int Ndum[20],ij=1, k, j, i, maxncov=19;
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);    int cptcode=0;
 ij=1;    cptcoveff=0; 
         for(j=3; j <=ncovmodel; j++) {   
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {    for (k=0; k<maxncov; k++) Ndum[k]=0;
             fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);    for (k=1; k<=7; k++) ncodemax[k]=0;
             ij++;  
           }    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
           else      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);                                 modality*/ 
         }        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
           fprintf(ficgp,")/(1");        Ndum[ij]++; /*store the modality */
                /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
         for(k1=1; k1 <=nlstate; k1++){          if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);                                         Tvar[j]. If V=sex and male is 0 and 
 ij=1;                                         female is 1, then  cptcode=1.*/
           for(j=3; j <=ncovmodel; j++){      }
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {  
             fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);      for (i=0; i<=cptcode; i++) {
             ij++;        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
           }      }
           else  
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);      ij=1; 
           }      for (i=1; i<=ncodemax[j]; i++) {
           fprintf(ficgp,")");        for (k=0; k<= maxncov; k++) {
         }          if (Ndum[k] != 0) {
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);            nbcode[Tvar[j]][ij]=k; 
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
         i=i+ncovmodel;            
        }            ij++;
      }          }
    }          if (ij > ncodemax[j]) break; 
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);        }  
    }      } 
        }  
   fclose(ficgp);  
 }  /* end gnuplot */   for (k=0; k< maxncov; k++) Ndum[k]=0;
   
    for (i=1; i<=ncovmodel-2; i++) { 
 /*************** Moving average **************/     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){     ij=Tvar[i];
      Ndum[ij]++;
   int i, cpt, cptcod;   }
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)  
       for (i=1; i<=nlstate;i++)   ij=1;
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)   for (i=1; i<= maxncov; i++) {
           mobaverage[(int)agedeb][i][cptcod]=0.;     if((Ndum[i]!=0) && (i<=ncovcol)){
           Tvaraff[ij]=i; /*For printing */
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){       ij++;
       for (i=1; i<=nlstate;i++){     }
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){   }
           for (cpt=0;cpt<=4;cpt++){   
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];   cptcoveff=ij-1; /*Number of simple covariates*/
           }  }
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;  
         }  /*********** Health Expectancies ****************/
       }  
     }  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov,char strstart[] )
      
 }  {
     /* Health expectancies */
     int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
 /************** Forecasting ******************/    double age, agelim, hf;
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){    double ***p3mat,***varhe;
      double **dnewm,**doldm;
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;    double *xp;
   int *popage;    double **gp, **gm;
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;    double ***gradg, ***trgradg;
   double *popeffectif,*popcount;    int theta;
   double ***p3mat;  
   char fileresf[FILENAMELENGTH];    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
     xp=vector(1,npar);
  agelim=AGESUP;    dnewm=matrix(1,nlstate*nlstate,1,npar);
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
     
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    fprintf(ficreseij,"# Local time at start: %s", strstart);
      fprintf(ficreseij,"# Health expectancies\n");
      fprintf(ficreseij,"# Age");
   strcpy(fileresf,"f");    for(i=1; i<=nlstate;i++)
   strcat(fileresf,fileres);      for(j=1; j<=nlstate;j++)
   if((ficresf=fopen(fileresf,"w"))==NULL) {        fprintf(ficreseij," %1d-%1d (SE)",i,j);
     printf("Problem with forecast resultfile: %s\n", fileresf);    fprintf(ficreseij,"\n");
   }  
   printf("Computing forecasting: result on file '%s' \n", fileresf);    if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
   if (cptcoveff==0) ncodemax[cptcoveff]=1;    }
     else  hstepm=estepm;   
   if (mobilav==1) {    /* We compute the life expectancy from trapezoids spaced every estepm months
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);     * This is mainly to measure the difference between two models: for example
     movingaverage(agedeb, fage, ageminpar, mobaverage);     * if stepm=24 months pijx are given only every 2 years and by summing them
   }     * we are calculating an estimate of the Life Expectancy assuming a linear 
      * progression in between and thus overestimating or underestimating according
   stepsize=(int) (stepm+YEARM-1)/YEARM;     * to the curvature of the survival function. If, for the same date, we 
   if (stepm<=12) stepsize=1;     * estimate the model with stepm=1 month, we can keep estepm to 24 months
       * to compare the new estimate of Life expectancy with the same linear 
   agelim=AGESUP;     * hypothesis. A more precise result, taking into account a more precise
       * curvature will be obtained if estepm is as small as stepm. */
   hstepm=1;  
   hstepm=hstepm/stepm;    /* For example we decided to compute the life expectancy with the smallest unit */
   yp1=modf(dateintmean,&yp);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   anprojmean=yp;       nhstepm is the number of hstepm from age to agelim 
   yp2=modf((yp1*12),&yp);       nstepm is the number of stepm from age to agelin. 
   mprojmean=yp;       Look at hpijx to understand the reason of that which relies in memory size
   yp1=modf((yp2*30.5),&yp);       and note for a fixed period like estepm months */
   jprojmean=yp;    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   if(jprojmean==0) jprojmean=1;       survival function given by stepm (the optimization length). Unfortunately it
   if(mprojmean==0) jprojmean=1;       means that if the survival funtion is printed only each two years of age and if
         you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);       results. So we changed our mind and took the option of the best precision.
      */
   for(cptcov=1;cptcov<=i2;cptcov++){    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){  
       k=k+1;    agelim=AGESUP;
       fprintf(ficresf,"\n#******");    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       for(j=1;j<=cptcoveff;j++) {      /* nhstepm age range expressed in number of stepm */
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      nstepm=(int) rint((agelim-age)*YEARM/stepm); 
       }      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
       fprintf(ficresf,"******\n");      /* if (stepm >= YEARM) hstepm=1;*/
       fprintf(ficresf,"# StartingAge FinalAge");      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
            gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
            gp=matrix(0,nhstepm,1,nlstate*nlstate);
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {      gm=matrix(0,nhstepm,1,nlstate*nlstate);
         fprintf(ficresf,"\n");  
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);        /* Computed by stepm unit matrices, product of hstepm matrices, stored
          in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);   
           nhstepm = nhstepm/hstepm;  
                hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
           oldm=oldms;savm=savms;      /* Computing  Variances of health expectancies */
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);    
               for(theta=1; theta <=npar; theta++){
           for (h=0; h<=nhstepm; h++){        for(i=1; i<=npar; i++){ 
             if (h==(int) (calagedate+YEARM*cpt)) {          xp[i] = x[i] + (i==theta ?delti[theta]:0);
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);        }
             }        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
             for(j=1; j<=nlstate+ndeath;j++) {    
               kk1=0.;kk2=0;        cptj=0;
               for(i=1; i<=nlstate;i++) {                      for(j=1; j<= nlstate; j++){
                 if (mobilav==1)          for(i=1; i<=nlstate; i++){
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];            cptj=cptj+1;
                 else {            for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];              gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
                 }            }
                          }
               }        }
               if (h==(int)(calagedate+12*cpt)){       
                 fprintf(ficresf," %.3f", kk1);       
                                for(i=1; i<=npar; i++) 
               }          xp[i] = x[i] - (i==theta ?delti[theta]:0);
             }        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
           }        
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        cptj=0;
         }        for(j=1; j<= nlstate; j++){
       }          for(i=1;i<=nlstate;i++){
     }            cptj=cptj+1;
   }            for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
          
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);              gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
             }
   fclose(ficresf);          }
 }        }
 /************** Forecasting ******************/        for(j=1; j<= nlstate*nlstate; j++)
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){          for(h=0; h<=nhstepm-1; h++){
              gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;          }
   int *popage;       } 
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;     
   double *popeffectif,*popcount;  /* End theta */
   double ***p3mat,***tabpop,***tabpopprev;  
   char filerespop[FILENAMELENGTH];       trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
   
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);       for(h=0; h<=nhstepm-1; h++)
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        for(j=1; j<=nlstate*nlstate;j++)
   agelim=AGESUP;          for(theta=1; theta <=npar; theta++)
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;            trgradg[h][j][theta]=gradg[h][theta][j];
         
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);  
         for(i=1;i<=nlstate*nlstate;i++)
          for(j=1;j<=nlstate*nlstate;j++)
   strcpy(filerespop,"pop");          varhe[i][j][(int)age] =0.;
   strcat(filerespop,fileres);  
   if((ficrespop=fopen(filerespop,"w"))==NULL) {       printf("%d|",(int)age);fflush(stdout);
     printf("Problem with forecast resultfile: %s\n", filerespop);       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
   }       for(h=0;h<=nhstepm-1;h++){
   printf("Computing forecasting: result on file '%s' \n", filerespop);        for(k=0;k<=nhstepm-1;k++){
           matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
   if (cptcoveff==0) ncodemax[cptcoveff]=1;          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
           for(i=1;i<=nlstate*nlstate;i++)
   if (mobilav==1) {            for(j=1;j<=nlstate*nlstate;j++)
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);              varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
     movingaverage(agedeb, fage, ageminpar, mobaverage);        }
   }      }
       /* Computing expectancies */
   stepsize=(int) (stepm+YEARM-1)/YEARM;      for(i=1; i<=nlstate;i++)
   if (stepm<=12) stepsize=1;        for(j=1; j<=nlstate;j++)
            for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
   agelim=AGESUP;            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
              
   hstepm=1;  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   hstepm=hstepm/stepm;  
            }
   if (popforecast==1) {  
     if((ficpop=fopen(popfile,"r"))==NULL) {      fprintf(ficreseij,"%3.0f",age );
       printf("Problem with population file : %s\n",popfile);exit(0);      cptj=0;
     }      for(i=1; i<=nlstate;i++)
     popage=ivector(0,AGESUP);        for(j=1; j<=nlstate;j++){
     popeffectif=vector(0,AGESUP);          cptj++;
     popcount=vector(0,AGESUP);          fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
            }
     i=1;        fprintf(ficreseij,"\n");
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;     
          free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
     imx=i;      free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
   }      free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
       free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   for(cptcov=1;cptcov<=i2;cptcov++){    }
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    printf("\n");
       k=k+1;    fprintf(ficlog,"\n");
       fprintf(ficrespop,"\n#******");  
       for(j=1;j<=cptcoveff;j++) {    free_vector(xp,1,npar);
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
       }    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
       fprintf(ficrespop,"******\n");    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
       fprintf(ficrespop,"# Age");  }
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);  
       if (popforecast==1)  fprintf(ficrespop," [Population]");  /************ Variance ******************/
        void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
       for (cpt=0; cpt<=0;cpt++) {  {
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);      /* Variance of health expectancies */
            /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    /* double **newm;*/
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    double **dnewm,**doldm;
           nhstepm = nhstepm/hstepm;    double **dnewmp,**doldmp;
              int i, j, nhstepm, hstepm, h, nstepm ;
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    int k, cptcode;
           oldm=oldms;savm=savms;    double *xp;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      double **gp, **gm;  /* for var eij */
            double ***gradg, ***trgradg; /*for var eij */
           for (h=0; h<=nhstepm; h++){    double **gradgp, **trgradgp; /* for var p point j */
             if (h==(int) (calagedate+YEARM*cpt)) {    double *gpp, *gmp; /* for var p point j */
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
             }    double ***p3mat;
             for(j=1; j<=nlstate+ndeath;j++) {    double age,agelim, hf;
               kk1=0.;kk2=0;    double ***mobaverage;
               for(i=1; i<=nlstate;i++) {                  int theta;
                 if (mobilav==1)    char digit[4];
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];    char digitp[25];
                 else {  
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];    char fileresprobmorprev[FILENAMELENGTH];
                 }  
               }    if(popbased==1){
               if (h==(int)(calagedate+12*cpt)){      if(mobilav!=0)
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;        strcpy(digitp,"-populbased-mobilav-");
                   /*fprintf(ficrespop," %.3f", kk1);      else strcpy(digitp,"-populbased-nomobil-");
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/    }
               }    else 
             }      strcpy(digitp,"-stablbased-");
             for(i=1; i<=nlstate;i++){  
               kk1=0.;    if (mobilav!=0) {
                 for(j=1; j<=nlstate;j++){      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
                 }        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];        printf(" Error in movingaverage mobilav=%d\n",mobilav);
             }      }
     }
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)  
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);    strcpy(fileresprobmorprev,"prmorprev"); 
           }    sprintf(digit,"%-d",ij);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
         }    strcat(fileresprobmorprev,digit); /* Tvar to be done */
       }    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
      strcat(fileresprobmorprev,fileres);
   /******/    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobmorprev);
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);      }
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);   
           nhstepm = nhstepm/hstepm;    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
              fprintf(ficresprobmorprev, "#Local time at start: %s", strstart);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
           oldm=oldms;savm=savms;    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
           for (h=0; h<=nhstepm; h++){      fprintf(ficresprobmorprev," p.%-d SE",j);
             if (h==(int) (calagedate+YEARM*cpt)) {      for(i=1; i<=nlstate;i++)
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
             }    }  
             for(j=1; j<=nlstate+ndeath;j++) {    fprintf(ficresprobmorprev,"\n");
               kk1=0.;kk2=0;    fprintf(ficgp,"\n# Routine varevsij");
               for(i=1; i<=nlstate;i++) {                  /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];        fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
               }    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);  /*   } */
             }    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
           }   fprintf(ficresvij, "#Local time at start: %s", strstart);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
         }    fprintf(ficresvij,"# Age");
       }    for(i=1; i<=nlstate;i++)
    }      for(j=1; j<=nlstate;j++)
   }        fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
      fprintf(ficresvij,"\n");
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
     xp=vector(1,npar);
   if (popforecast==1) {    dnewm=matrix(1,nlstate,1,npar);
     free_ivector(popage,0,AGESUP);    doldm=matrix(1,nlstate,1,nlstate);
     free_vector(popeffectif,0,AGESUP);    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
     free_vector(popcount,0,AGESUP);    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   }  
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    gpp=vector(nlstate+1,nlstate+ndeath);
   fclose(ficrespop);    gmp=vector(nlstate+1,nlstate+ndeath);
 }    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     
 /***********************************************/    if(estepm < stepm){
 /**************** Main Program *****************/      printf ("Problem %d lower than %d\n",estepm, stepm);
 /***********************************************/    }
     else  hstepm=estepm;   
 int main(int argc, char *argv[])    /* For example we decided to compute the life expectancy with the smallest unit */
 {    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
        nhstepm is the number of hstepm from age to agelim 
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;       nstepm is the number of stepm from age to agelin. 
   double agedeb, agefin,hf;       Look at hpijx to understand the reason of that which relies in memory size
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;       and note for a fixed period like k years */
     /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   double fret;       survival function given by stepm (the optimization length). Unfortunately it
   double **xi,tmp,delta;       means that if the survival funtion is printed every two years of age and if
        you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   double dum; /* Dummy variable */       results. So we changed our mind and took the option of the best precision.
   double ***p3mat;    */
   int *indx;    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   char line[MAXLINE], linepar[MAXLINE];    agelim = AGESUP;
   char title[MAXLINE];    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
   char optionfilext[10], optionfilefiname[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilegnuplot[FILENAMELENGTH], plotcmd[FILENAMELENGTH];      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
        p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
       gp=matrix(0,nhstepm,1,nlstate);
   char filerest[FILENAMELENGTH];      gm=matrix(0,nhstepm,1,nlstate);
   char fileregp[FILENAMELENGTH];  
   char popfile[FILENAMELENGTH];  
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];      for(theta=1; theta <=npar; theta++){
   int firstobs=1, lastobs=10;        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
   int sdeb, sfin; /* Status at beginning and end */          xp[i] = x[i] + (i==theta ?delti[theta]:0);
   int c,  h , cpt,l;        }
   int ju,jl, mi;        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;  
   int mobilav=0,popforecast=0;        if (popbased==1) {
   int hstepm, nhstepm;          if(mobilav ==0){
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;            for(i=1; i<=nlstate;i++)
               prlim[i][i]=probs[(int)age][i][ij];
   double bage, fage, age, agelim, agebase;          }else{ /* mobilav */ 
   double ftolpl=FTOL;            for(i=1; i<=nlstate;i++)
   double **prlim;              prlim[i][i]=mobaverage[(int)age][i][ij];
   double *severity;          }
   double ***param; /* Matrix of parameters */        }
   double  *p;    
   double **matcov; /* Matrix of covariance */        for(j=1; j<= nlstate; j++){
   double ***delti3; /* Scale */          for(h=0; h<=nhstepm; h++){
   double *delti; /* Scale */            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
   double ***eij, ***vareij;              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
   double **varpl; /* Variances of prevalence limits by age */          }
   double *epj, vepp;        }
   double kk1, kk2;        /* This for computing probability of death (h=1 means
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;           computed over hstepm matrices product = hstepm*stepm months) 
             as a weighted average of prlim.
         */
   char version[80]="Imach version 0.8a1, June 2003, INED-EUROREVES ";        for(j=nlstate+1;j<=nlstate+ndeath;j++){
   char *alph[]={"a","a","b","c","d","e"}, str[4];          for(i=1,gpp[j]=0.; i<= nlstate; i++)
             gpp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
   char z[1]="c", occ;        /* end probability of death */
 #include <sys/time.h>  
 #include <time.h>        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];          xp[i] = x[i] - (i==theta ?delti[theta]:0);
          hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   /* long total_usecs;        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   struct timeval start_time, end_time;   
          if (popbased==1) {
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */          if(mobilav ==0){
   getcwd(pathcd, size);            for(i=1; i<=nlstate;i++)
               prlim[i][i]=probs[(int)age][i][ij];
   printf("\n%s",version);          }else{ /* mobilav */ 
   if(argc <=1){            for(i=1; i<=nlstate;i++)
     printf("\nEnter the parameter file name: ");              prlim[i][i]=mobaverage[(int)age][i][ij];
     scanf("%s",pathtot);          }
   }        }
   else{  
     strcpy(pathtot,argv[1]);        for(j=1; j<= nlstate; j++){
   }          for(h=0; h<=nhstepm; h++){
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
   /*cygwin_split_path(pathtot,path,optionfile);              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/          }
   /* cutv(path,optionfile,pathtot,'\\');*/        }
         /* This for computing probability of death (h=1 means
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);           computed over hstepm matrices product = hstepm*stepm months) 
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);           as a weighted average of prlim.
   chdir(path);        */
   replace(pathc,path);        for(j=nlstate+1;j<=nlstate+ndeath;j++){
           for(i=1,gmp[j]=0.; i<= nlstate; i++)
 /*-------- arguments in the command line --------*/           gmp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
   strcpy(fileres,"r");        /* end probability of death */
   strcat(fileres, optionfilefiname);  
   strcat(fileres,".txt");    /* Other files have txt extension */        for(j=1; j<= nlstate; j++) /* vareij */
           for(h=0; h<=nhstepm; h++){
   /*---------arguments file --------*/            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
           }
   if((ficpar=fopen(optionfile,"r"))==NULL)    {  
     printf("Problem with optionfile %s\n",optionfile);        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
     goto end;          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
   }        }
   
   strcpy(filereso,"o");      } /* End theta */
   strcat(filereso,fileres);  
   if((ficparo=fopen(filereso,"w"))==NULL) {      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
     printf("Problem with Output resultfile: %s\n", filereso);goto end;  
   }      for(h=0; h<=nhstepm; h++) /* veij */
         for(j=1; j<=nlstate;j++)
   /* Reads comments: lines beginning with '#' */          for(theta=1; theta <=npar; theta++)
   while((c=getc(ficpar))=='#' && c!= EOF){            trgradg[h][j][theta]=gradg[h][theta][j];
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
     puts(line);        for(theta=1; theta <=npar; theta++)
     fputs(line,ficparo);          trgradgp[j][theta]=gradgp[theta][j];
   }    
   ungetc(c,ficpar);  
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);      for(i=1;i<=nlstate;i++)
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);        for(j=1;j<=nlstate;j++)
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);          vareij[i][j][(int)age] =0.;
 while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);      for(h=0;h<=nhstepm;h++){
     fgets(line, MAXLINE, ficpar);        for(k=0;k<=nhstepm;k++){
     puts(line);          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
     fputs(line,ficparo);          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
   }          for(i=1;i<=nlstate;i++)
   ungetc(c,ficpar);            for(j=1;j<=nlstate;j++)
                vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
            }
   covar=matrix(0,NCOVMAX,1,n);      }
   cptcovn=0;    
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;      /* pptj */
       matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
   ncovmodel=2+cptcovn;      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */      for(j=nlstate+1;j<=nlstate+ndeath;j++)
          for(i=nlstate+1;i<=nlstate+ndeath;i++)
   /* Read guess parameters */          varppt[j][i]=doldmp[j][i];
   /* Reads comments: lines beginning with '#' */      /* end ppptj */
   while((c=getc(ficpar))=='#' && c!= EOF){      /*  x centered again */
     ungetc(c,ficpar);      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
     fgets(line, MAXLINE, ficpar);      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
     puts(line);   
     fputs(line,ficparo);      if (popbased==1) {
   }        if(mobilav ==0){
   ungetc(c,ficpar);          for(i=1; i<=nlstate;i++)
              prlim[i][i]=probs[(int)age][i][ij];
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);        }else{ /* mobilav */ 
     for(i=1; i <=nlstate; i++)          for(i=1; i<=nlstate;i++)
     for(j=1; j <=nlstate+ndeath-1; j++){            prlim[i][i]=mobaverage[(int)age][i][ij];
       fscanf(ficpar,"%1d%1d",&i1,&j1);        }
       fprintf(ficparo,"%1d%1d",i1,j1);      }
       printf("%1d%1d",i,j);               
       for(k=1; k<=ncovmodel;k++){      /* This for computing probability of death (h=1 means
         fscanf(ficpar," %lf",&param[i][j][k]);         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
         printf(" %lf",param[i][j][k]);         as a weighted average of prlim.
         fprintf(ficparo," %lf",param[i][j][k]);      */
       }      for(j=nlstate+1;j<=nlstate+ndeath;j++){
       fscanf(ficpar,"\n");        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
       printf("\n");          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
       fprintf(ficparo,"\n");      }    
     }      /* end probability of death */
    
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
       for(j=nlstate+1; j<=(nlstate+ndeath);j++){
   p=param[1][1];        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
          for(i=1; i<=nlstate;i++){
   /* Reads comments: lines beginning with '#' */          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
   while((c=getc(ficpar))=='#' && c!= EOF){        }
     ungetc(c,ficpar);      } 
     fgets(line, MAXLINE, ficpar);      fprintf(ficresprobmorprev,"\n");
     puts(line);  
     fputs(line,ficparo);      fprintf(ficresvij,"%.0f ",age );
   }      for(i=1; i<=nlstate;i++)
   ungetc(c,ficpar);        for(j=1; j<=nlstate;j++){
           fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);        }
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */      fprintf(ficresvij,"\n");
   for(i=1; i <=nlstate; i++){      free_matrix(gp,0,nhstepm,1,nlstate);
     for(j=1; j <=nlstate+ndeath-1; j++){      free_matrix(gm,0,nhstepm,1,nlstate);
       fscanf(ficpar,"%1d%1d",&i1,&j1);      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
       printf("%1d%1d",i,j);      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
       fprintf(ficparo,"%1d%1d",i1,j1);      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       for(k=1; k<=ncovmodel;k++){    } /* End age */
         fscanf(ficpar,"%le",&delti3[i][j][k]);    free_vector(gpp,nlstate+1,nlstate+ndeath);
         printf(" %le",delti3[i][j][k]);    free_vector(gmp,nlstate+1,nlstate+ndeath);
         fprintf(ficparo," %le",delti3[i][j][k]);    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
       }    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
       fscanf(ficpar,"\n");    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
       printf("\n");    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
       fprintf(ficparo,"\n");    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
     }  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   }  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
   delti=delti3[1][1];  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
      fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
   /* Reads comments: lines beginning with '#' */    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
   while((c=getc(ficpar))=='#' && c!= EOF){    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
     ungetc(c,ficpar);    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
     fgets(line, MAXLINE, ficpar);    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
     puts(line);    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
     fputs(line,ficparo);  */
   }  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
   ungetc(c,ficpar);    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
    
   matcov=matrix(1,npar,1,npar);    free_vector(xp,1,npar);
   for(i=1; i <=npar; i++){    free_matrix(doldm,1,nlstate,1,nlstate);
     fscanf(ficpar,"%s",&str);    free_matrix(dnewm,1,nlstate,1,npar);
     printf("%s",str);    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     fprintf(ficparo,"%s",str);    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
     for(j=1; j <=i; j++){    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
       fscanf(ficpar," %le",&matcov[i][j]);    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       printf(" %.5le",matcov[i][j]);    fclose(ficresprobmorprev);
       fprintf(ficparo," %.5le",matcov[i][j]);    fflush(ficgp);
     }    fflush(fichtm); 
     fscanf(ficpar,"\n");  }  /* end varevsij */
     printf("\n");  
     fprintf(ficparo,"\n");  /************ Variance of prevlim ******************/
   }  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
   for(i=1; i <=npar; i++)  {
     for(j=i+1;j<=npar;j++)    /* Variance of prevalence limit */
       matcov[i][j]=matcov[j][i];    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
        double **newm;
   printf("\n");    double **dnewm,**doldm;
     int i, j, nhstepm, hstepm;
     int k, cptcode;
     /*-------- Rewriting paramater file ----------*/    double *xp;
      strcpy(rfileres,"r");    /* "Rparameterfile */    double *gp, *gm;
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/    double **gradg, **trgradg;
      strcat(rfileres,".");    /* */    double age,agelim;
      strcat(rfileres,optionfilext);    /* Other files have txt extension */    int theta;
     if((ficres =fopen(rfileres,"w"))==NULL) {    fprintf(ficresvpl, "#Local time at start: %s", strstart); 
       printf("Problem writing new parameter file: %s\n", fileres);goto end;    fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
     }    fprintf(ficresvpl,"# Age");
     fprintf(ficres,"#%s\n",version);    for(i=1; i<=nlstate;i++)
            fprintf(ficresvpl," %1d-%1d",i,i);
     /*-------- data file ----------*/    fprintf(ficresvpl,"\n");
     if((fic=fopen(datafile,"r"))==NULL)    {  
       printf("Problem with datafile: %s\n", datafile);goto end;    xp=vector(1,npar);
     }    dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
     n= lastobs;    
     severity = vector(1,maxwav);    hstepm=1*YEARM; /* Every year of age */
     outcome=imatrix(1,maxwav+1,1,n);    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
     num=ivector(1,n);    agelim = AGESUP;
     moisnais=vector(1,n);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
     annais=vector(1,n);      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
     moisdc=vector(1,n);      if (stepm >= YEARM) hstepm=1;
     andc=vector(1,n);      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
     agedc=vector(1,n);      gradg=matrix(1,npar,1,nlstate);
     cod=ivector(1,n);      gp=vector(1,nlstate);
     weight=vector(1,n);      gm=vector(1,nlstate);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */  
     mint=matrix(1,maxwav,1,n);      for(theta=1; theta <=npar; theta++){
     anint=matrix(1,maxwav,1,n);        for(i=1; i<=npar; i++){ /* Computes gradient */
     s=imatrix(1,maxwav+1,1,n);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
     adl=imatrix(1,maxwav+1,1,n);            }
     tab=ivector(1,NCOVMAX);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     ncodemax=ivector(1,8);        for(i=1;i<=nlstate;i++)
           gp[i] = prlim[i][i];
     i=1;      
     while (fgets(line, MAXLINE, fic) != NULL)    {        for(i=1; i<=npar; i++) /* Computes gradient */
       if ((i >= firstobs) && (i <=lastobs)) {          xp[i] = x[i] - (i==theta ?delti[theta]:0);
                prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for (j=maxwav;j>=1;j--){        for(i=1;i<=nlstate;i++)
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);          gm[i] = prlim[i][i];
           strcpy(line,stra);  
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);        for(i=1;i<=nlstate;i++)
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
         }      } /* End theta */
          
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);      trgradg =matrix(1,nlstate,1,npar);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);  
       for(j=1; j<=nlstate;j++)
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);        for(theta=1; theta <=npar; theta++)
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);          trgradg[j][theta]=gradg[theta][j];
   
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);      for(i=1;i<=nlstate;i++)
         for (j=ncovcol;j>=1;j--){        varpl[i][(int)age] =0.;
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
         }      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
         num[i]=atol(stra);      for(i=1;i<=nlstate;i++)
                varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){  
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/      fprintf(ficresvpl,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         i=i+1;        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
       }      fprintf(ficresvpl,"\n");
     }      free_vector(gp,1,nlstate);
     /* printf("ii=%d", ij);      free_vector(gm,1,nlstate);
        scanf("%d",i);*/      free_matrix(gradg,1,npar,1,nlstate);
   imx=i-1; /* Number of individuals */      free_matrix(trgradg,1,nlstate,1,npar);
     } /* End age */
   /* for (i=1; i<=imx; i++){  
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;    free_vector(xp,1,npar);
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;    free_matrix(doldm,1,nlstate,1,npar);
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;    free_matrix(dnewm,1,nlstate,1,nlstate);
     }*/  
    /*  for (i=1; i<=imx; i++){  }
      if (s[4][i]==9)  s[4][i]=-1;  
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/  /************ Variance of one-step probabilities  ******************/
    void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
    {
   /* Calculation of the number of parameter from char model*/    int i, j=0,  i1, k1, l1, t, tj;
   Tvar=ivector(1,15);    int k2, l2, j1,  z1;
   Tprod=ivector(1,15);    int k=0,l, cptcode;
   Tvaraff=ivector(1,15);    int first=1, first1;
   Tvard=imatrix(1,15,1,2);    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
   Tage=ivector(1,15);          double **dnewm,**doldm;
        double *xp;
   if (strlen(model) >1){    double *gp, *gm;
     j=0, j1=0, k1=1, k2=1;    double **gradg, **trgradg;
     j=nbocc(model,'+');    double **mu;
     j1=nbocc(model,'*');    double age,agelim, cov[NCOVMAX];
     cptcovn=j+1;    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     cptcovprod=j1;    int theta;
        char fileresprob[FILENAMELENGTH];
     strcpy(modelsav,model);    char fileresprobcov[FILENAMELENGTH];
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){    char fileresprobcor[FILENAMELENGTH];
       printf("Error. Non available option model=%s ",model);  
       goto end;    double ***varpij;
     }  
        strcpy(fileresprob,"prob"); 
     for(i=(j+1); i>=1;i--){    strcat(fileresprob,fileres);
       cutv(stra,strb,modelsav,'+');    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);      printf("Problem with resultfile: %s\n", fileresprob);
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
       /*scanf("%d",i);*/    }
       if (strchr(strb,'*')) {    strcpy(fileresprobcov,"probcov"); 
         cutv(strd,strc,strb,'*');    strcat(fileresprobcov,fileres);
         if (strcmp(strc,"age")==0) {    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
           cptcovprod--;      printf("Problem with resultfile: %s\n", fileresprobcov);
           cutv(strb,stre,strd,'V');      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
           Tvar[i]=atoi(stre);    }
           cptcovage++;    strcpy(fileresprobcor,"probcor"); 
             Tage[cptcovage]=i;    strcat(fileresprobcor,fileres);
             /*printf("stre=%s ", stre);*/    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
         }      printf("Problem with resultfile: %s\n", fileresprobcor);
         else if (strcmp(strd,"age")==0) {      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
           cptcovprod--;    }
           cutv(strb,stre,strc,'V');    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
           Tvar[i]=atoi(stre);    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
           cptcovage++;    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
           Tage[cptcovage]=i;    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
         }    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
         else {    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
           cutv(strb,stre,strc,'V');    fprintf(ficresprob, "#Local time at start: %s", strstart);
           Tvar[i]=ncovcol+k1;    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
           cutv(strb,strc,strd,'V');    fprintf(ficresprob,"# Age");
           Tprod[k1]=i;    fprintf(ficresprobcov, "#Local time at start: %s", strstart);
           Tvard[k1][1]=atoi(strc);    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
           Tvard[k1][2]=atoi(stre);    fprintf(ficresprobcov,"# Age");
           Tvar[cptcovn+k2]=Tvard[k1][1];    fprintf(ficresprobcor, "#Local time at start: %s", strstart);
           Tvar[cptcovn+k2+1]=Tvard[k1][2];    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
           for (k=1; k<=lastobs;k++)    fprintf(ficresprobcov,"# Age");
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];  
           k1++;  
           k2=k2+2;    for(i=1; i<=nlstate;i++)
         }      for(j=1; j<=(nlstate+ndeath);j++){
       }        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
       else {        fprintf(ficresprobcov," p%1d-%1d ",i,j);
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/        fprintf(ficresprobcor," p%1d-%1d ",i,j);
        /*  scanf("%d",i);*/      }  
       cutv(strd,strc,strb,'V');   /* fprintf(ficresprob,"\n");
       Tvar[i]=atoi(strc);    fprintf(ficresprobcov,"\n");
       }    fprintf(ficresprobcor,"\n");
       strcpy(modelsav,stra);     */
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);   xp=vector(1,npar);
         scanf("%d",i);*/    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     }    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
 }    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
      varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);    first=1;
   printf("cptcovprod=%d ", cptcovprod);    fprintf(ficgp,"\n# Routine varprob");
   scanf("%d ",i);*/    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
     fclose(fic);    fprintf(fichtm,"\n");
   
     /*  if(mle==1){*/    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
     if (weightopt != 1) { /* Maximisation without weights*/    fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
       for(i=1;i<=n;i++) weight[i]=1.0;    file %s<br>\n",optionfilehtmcov);
     }    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
     /*-calculation of age at interview from date of interview and age at death -*/  and drawn. It helps understanding how is the covariance between two incidences.\
     agev=matrix(1,maxwav,1,imx);   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
     fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
     for (i=1; i<=imx; i++) {  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
       for(m=2; (m<= maxwav); m++) {  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){  standard deviations wide on each axis. <br>\
          anint[m][i]=9999;   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
          s[m][i]=-1;   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
        }  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;  
       }    cov[1]=1;
     }    tj=cptcoveff;
     if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     for (i=1; i<=imx; i++)  {    j1=0;
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);    for(t=1; t<=tj;t++){
       for(m=1; (m<= maxwav); m++){      for(i1=1; i1<=ncodemax[t];i1++){ 
         if(s[m][i] >0){        j1++;
           if (s[m][i] >= nlstate+1) {        if  (cptcovn>0) {
             if(agedc[i]>0)          fprintf(ficresprob, "\n#********** Variable "); 
               if(moisdc[i]!=99 && andc[i]!=9999)          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
                 agev[m][i]=agedc[i];          fprintf(ficresprob, "**********\n#\n");
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/          fprintf(ficresprobcov, "\n#********** Variable "); 
            else {          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
               if (andc[i]!=9999){          fprintf(ficresprobcov, "**********\n#\n");
               printf("Warning negative age at death: %d line:%d\n",num[i],i);          
               agev[m][i]=-1;          fprintf(ficgp, "\n#********** Variable "); 
               }          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
             }          fprintf(ficgp, "**********\n#\n");
           }          
           else if(s[m][i] !=9){ /* Should no more exist */          
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);          fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
             if(mint[m][i]==99 || anint[m][i]==9999)          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
               agev[m][i]=1;          fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
             else if(agev[m][i] <agemin){          
               agemin=agev[m][i];          fprintf(ficresprobcor, "\n#********** Variable ");    
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
             }          fprintf(ficresprobcor, "**********\n#");    
             else if(agev[m][i] >agemax){        }
               agemax=agev[m][i];        
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/        for (age=bage; age<=fage; age ++){ 
             }          cov[2]=age;
             /*agev[m][i]=anint[m][i]-annais[i];*/          for (k=1; k<=cptcovn;k++) {
             /*   agev[m][i] = age[i]+2*m;*/            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
           }          }
           else { /* =9 */          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
             agev[m][i]=1;          for (k=1; k<=cptcovprod;k++)
             s[m][i]=-1;            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           }          
         }          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
         else /*= 0 Unknown */          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
           agev[m][i]=1;          gp=vector(1,(nlstate)*(nlstate+ndeath));
       }          gm=vector(1,(nlstate)*(nlstate+ndeath));
          
     }          for(theta=1; theta <=npar; theta++){
     for (i=1; i<=imx; i++)  {            for(i=1; i<=npar; i++)
       for(m=1; (m<= maxwav); m++){              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
         if (s[m][i] > (nlstate+ndeath)) {            
           printf("Error: Wrong value in nlstate or ndeath\n");              pmij(pmmij,cov,ncovmodel,xp,nlstate);
           goto end;            
         }            k=0;
       }            for(i=1; i<= (nlstate); i++){
     }              for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);                gp[k]=pmmij[i][j];
               }
     free_vector(severity,1,maxwav);            }
     free_imatrix(outcome,1,maxwav+1,1,n);            
     free_vector(moisnais,1,n);            for(i=1; i<=npar; i++)
     free_vector(annais,1,n);              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
     /* free_matrix(mint,1,maxwav,1,n);      
        free_matrix(anint,1,maxwav,1,n);*/            pmij(pmmij,cov,ncovmodel,xp,nlstate);
     free_vector(moisdc,1,n);            k=0;
     free_vector(andc,1,n);            for(i=1; i<=(nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                    k=k+1;
     wav=ivector(1,imx);                gm[k]=pmmij[i][j];
     dh=imatrix(1,lastpass-firstpass+1,1,imx);              }
     mw=imatrix(1,lastpass-firstpass+1,1,imx);            }
           
     /* Concatenates waves */            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
           }
   
       Tcode=ivector(1,100);          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);            for(theta=1; theta <=npar; theta++)
       ncodemax[1]=1;              trgradg[j][theta]=gradg[theta][j];
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);          
                matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
    codtab=imatrix(1,100,1,10);          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
    h=0;          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
    m=pow(2,cptcoveff);          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
            free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
    for(k=1;k<=cptcoveff; k++){          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
      for(i=1; i <=(m/pow(2,k));i++){  
        for(j=1; j <= ncodemax[k]; j++){          pmij(pmmij,cov,ncovmodel,x,nlstate);
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){          
            h++;          k=0;
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;          for(i=1; i<=(nlstate); i++){
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/            for(j=1; j<=(nlstate+ndeath);j++){
          }              k=k+1;
        }              mu[k][(int) age]=pmmij[i][j];
      }            }
    }          }
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
       codtab[1][2]=1;codtab[2][2]=2; */            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
    /* for(i=1; i <=m ;i++){              varpij[i][j][(int)age] = doldm[i][j];
       for(k=1; k <=cptcovn; k++){  
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);          /*printf("\n%d ",(int)age);
       }            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
       printf("\n");            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
       }            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
       scanf("%d",i);*/            }*/
      
    /* Calculates basic frequencies. Computes observed prevalence at single age          fprintf(ficresprob,"\n%d ",(int)age);
        and prints on file fileres'p'. */          fprintf(ficresprobcov,"\n%d ",(int)age);
           fprintf(ficresprobcor,"\n%d ",(int)age);
      
              for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */          }
                i=0;
     /* For Powell, parameters are in a vector p[] starting at p[1]          for (k=1; k<=(nlstate);k++){
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */            for (l=1; l<=(nlstate+ndeath);l++){ 
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */              i=i++;
               fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
     if(mle==1){              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);              for (j=1; j<=i;j++){
     }                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                    fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
     /*--------- results files --------------*/              }
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);            }
            }/* end of loop for state */
         } /* end of loop for age */
    jk=1;  
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");        /* Confidence intervalle of pij  */
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");        /*
    for(i=1,jk=1; i <=nlstate; i++){          fprintf(ficgp,"\nset noparametric;unset label");
      for(k=1; k <=(nlstate+ndeath); k++){          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
        if (k != i)          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
          {          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
            printf("%d%d ",i,k);          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
            fprintf(ficres,"%1d%1d ",i,k);          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
            for(j=1; j <=ncovmodel; j++){          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
              printf("%f ",p[jk]);        */
              fprintf(ficres,"%f ",p[jk]);  
              jk++;        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
            }        first1=1;
            printf("\n");        for (k2=1; k2<=(nlstate);k2++){
            fprintf(ficres,"\n");          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
          }            if(l2==k2) continue;
      }            j=(k2-1)*(nlstate+ndeath)+l2;
    }            for (k1=1; k1<=(nlstate);k1++){
  if(mle==1){              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
     /* Computing hessian and covariance matrix */                if(l1==k1) continue;
     ftolhess=ftol; /* Usually correct */                i=(k1-1)*(nlstate+ndeath)+l1;
     hesscov(matcov, p, npar, delti, ftolhess, func);                if(i<=j) continue;
  }                for (age=bage; age<=fage; age ++){ 
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");                  if ((int)age %5==0){
     printf("# Scales (for hessian or gradient estimation)\n");                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
      for(i=1,jk=1; i <=nlstate; i++){                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
       for(j=1; j <=nlstate+ndeath; j++){                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
         if (j!=i) {                    mu1=mu[i][(int) age]/stepm*YEARM ;
           fprintf(ficres,"%1d%1d",i,j);                    mu2=mu[j][(int) age]/stepm*YEARM;
           printf("%1d%1d",i,j);                    c12=cv12/sqrt(v1*v2);
           for(k=1; k<=ncovmodel;k++){                    /* Computing eigen value of matrix of covariance */
             printf(" %.5e",delti[jk]);                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
             fprintf(ficres," %.5e",delti[jk]);                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
             jk++;                    /* Eigen vectors */
           }                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
           printf("\n");                    /*v21=sqrt(1.-v11*v11); *//* error */
           fprintf(ficres,"\n");                    v21=(lc1-v1)/cv12*v11;
         }                    v12=-v21;
       }                    v22=v11;
      }                    tnalp=v21/v11;
                        if(first1==1){
     k=1;                      first1=0;
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");                    }
     for(i=1;i<=npar;i++){                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
       /*  if (k>nlstate) k=1;                    /*printf(fignu*/
       i1=(i-1)/(ncovmodel*nlstate)+1;                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
       printf("%s%d%d",alph[k],i1,tab[i]);*/                    if(first==1){
       fprintf(ficres,"%3d",i);                      first=0;
       printf("%3d",i);                      fprintf(ficgp,"\nset parametric;unset label");
       for(j=1; j<=i;j++){                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
         fprintf(ficres," %.5e",matcov[i][j]);                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
         printf(" %.5e",matcov[i][j]);                      fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
       }   :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
       fprintf(ficres,"\n");  %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
       printf("\n");                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
       k++;                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
     }                      fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                          fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
     while((c=getc(ficpar))=='#' && c!= EOF){                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
       ungetc(c,ficpar);                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
       fgets(line, MAXLINE, ficpar);                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
       puts(line);                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
       fputs(line,ficparo);                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
     }                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
     ungetc(c,ficpar);                    }else{
     estepm=0;                      first=0;
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);                      fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
     if (estepm==0 || estepm < stepm) estepm=stepm;                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
     if (fage <= 2) {                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
       bage = ageminpar;                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
       fage = agemaxpar;                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
     }                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                        }/* if first */
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");                  } /* age mod 5 */
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);                } /* end loop age */
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);                fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                  first=1;
     while((c=getc(ficpar))=='#' && c!= EOF){              } /*l12 */
     ungetc(c,ficpar);            } /* k12 */
     fgets(line, MAXLINE, ficpar);          } /*l1 */
     puts(line);        }/* k1 */
     fputs(line,ficparo);      } /* loop covariates */
   }    }
   ungetc(c,ficpar);    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
      free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);    free_vector(xp,1,npar);
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    fclose(ficresprob);
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    fclose(ficresprobcov);
          fclose(ficresprobcor);
   while((c=getc(ficpar))=='#' && c!= EOF){    fflush(ficgp);
     ungetc(c,ficpar);    fflush(fichtmcov);
     fgets(line, MAXLINE, ficpar);  }
     puts(line);  
     fputs(line,ficparo);  
   }  /******************* Printing html file ***********/
   ungetc(c,ficpar);  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                      int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
    dateprev1=anprev1+mprev1/12.+jprev1/365.;                    int popforecast, int estepm ,\
    dateprev2=anprev2+mprev2/12.+jprev2/365.;                    double jprev1, double mprev1,double anprev1, \
                     double jprev2, double mprev2,double anprev2){
   fscanf(ficpar,"pop_based=%d\n",&popbased);    int jj1, k1, i1, cpt;
   fprintf(ficparo,"pop_based=%d\n",popbased);    
   fprintf(ficres,"pop_based=%d\n",popbased);       fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
       <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   while((c=getc(ficpar))=='#' && c!= EOF){  </ul>");
     ungetc(c,ficpar);     fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
     fgets(line, MAXLINE, ficpar);   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
     puts(line);             jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
     fputs(line,ficparo);     fprintf(fichtm,"\
   }   - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
   ungetc(c,ficpar);             stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
      fprintf(fichtm,"\
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);   - Stable prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);             subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);     fprintf(fichtm,"\
    - Life expectancies by age and initial health status (estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
 while((c=getc(ficpar))=='#' && c!= EOF){             estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
     puts(line);  
     fputs(line,ficparo);   m=cptcoveff;
   }   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   ungetc(c,ficpar);  
    jj1=0;
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);   for(k1=1; k1<=m;k1++){
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);     for(i1=1; i1<=ncodemax[k1];i1++){
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);       jj1++;
        if (cptcovn > 0) {
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
 /*------------ gnuplot -------------*/           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
  printinggnuplot(fileres,optionfilefiname,optionfile,optionfilegnuplot, ageminpar,agemaxpar,fage, pathc,p);         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
         }
 /*------------ free_vector  -------------*/       /* Pij */
  chdir(path);       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: %s%d1.png<br> \
    <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
  free_ivector(wav,1,imx);       /* Quasi-incidences */
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);     before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: %s%d2.png<br> \
  free_ivector(num,1,n);  <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
  free_vector(agedc,1,n);         /* Stable prevalence in each health state */
  /*free_matrix(covar,1,NCOVMAX,1,n);*/         for(cpt=1; cpt<nlstate;cpt++){
  fclose(ficparo);           fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \
  fclose(ficres);  <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
          }
 /*--------- index.htm --------*/       for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): %s%d%d.png <br> \
   printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,optionfile,optionfilehtm,rfileres,optionfilegnuplot,version,popforecast,estepm);  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
        }
       } /* end i1 */
   /*--------------- Prevalence limit --------------*/   }/* End k1 */
     fprintf(fichtm,"</ul>");
   strcpy(filerespl,"pl");  
   strcat(filerespl,fileres);  
   if((ficrespl=fopen(filerespl,"w"))==NULL) {   fprintf(fichtm,"\
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;  \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
   }   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);  
   fprintf(ficrespl,"#Prevalence limit\n");   fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
   fprintf(ficrespl,"#Age ");           subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);   fprintf(fichtm,"\
   fprintf(ficrespl,"\n");   - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
             subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   prlim=matrix(1,nlstate,1,nlstate);  
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */   fprintf(fichtm,"\
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */   - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */           subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */   fprintf(fichtm,"\
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */   - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
   k=0;           estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
   agebase=ageminpar;   fprintf(fichtm,"\
   agelim=agemaxpar;   - Health expectancies with their variances (no covariance): <a href=\"%s\">%s</a> <br>\n",
   ftolpl=1.e-10;           subdirf2(fileres,"t"),subdirf2(fileres,"t"));
   i1=cptcoveff;   fprintf(fichtm,"\
   if (cptcovn < 1){i1=1;}   - Standard deviation of stable prevalences: <a href=\"%s\">%s</a> <br>\n",\
            subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   for(cptcov=1;cptcov<=i1;cptcov++){  
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  /*  if(popforecast==1) fprintf(fichtm,"\n */
         k=k+1;  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
         fprintf(ficrespl,"\n#******");  /*      <br>",fileres,fileres,fileres,fileres); */
         for(j=1;j<=cptcoveff;j++)  /*  else  */
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
         fprintf(ficrespl,"******\n");   fflush(fichtm);
           fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
         for (age=agebase; age<=agelim; age++){  
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);   m=cptcoveff;
           fprintf(ficrespl,"%.0f",age );   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
           for(i=1; i<=nlstate;i++)  
           fprintf(ficrespl," %.5f", prlim[i][i]);   jj1=0;
           fprintf(ficrespl,"\n");   for(k1=1; k1<=m;k1++){
         }     for(i1=1; i1<=ncodemax[k1];i1++){
       }       jj1++;
     }       if (cptcovn > 0) {
   fclose(ficrespl);         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
   /*------------- h Pij x at various ages ------------*/           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
           fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);       }
   if((ficrespij=fopen(filerespij,"w"))==NULL) {       for(cpt=1; cpt<=nlstate;cpt++) {
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;         fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   }  prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
   printf("Computing pij: result on file '%s' \n", filerespij);  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
         }
   stepsize=(int) (stepm+YEARM-1)/YEARM;       fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   /*if (stepm<=24) stepsize=2;*/  health expectancies in states (1) and (2): %s%d.png<br>\
   <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
   agelim=AGESUP;     } /* end i1 */
   hstepm=stepsize*YEARM; /* Every year of age */   }/* End k1 */
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */   fprintf(fichtm,"</ul>");
     fflush(fichtm);
   k=0;  }
   for(cptcov=1;cptcov<=i1;cptcov++){  
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  /******************* Gnuplot file **************/
       k=k+1;  void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
         fprintf(ficrespij,"\n#****** ");  
         for(j=1;j<=cptcoveff;j++)    char dirfileres[132],optfileres[132];
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
         fprintf(ficrespij,"******\n");    int ng;
          /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */  /*     printf("Problem with file %s",optionfilegnuplot); */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */  /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */  /*   } */
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
           oldm=oldms;savm=savms;    /*#ifdef windows */
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      fprintf(ficgp,"cd \"%s\" \n",pathc);
           fprintf(ficrespij,"# Age");      /*#endif */
           for(i=1; i<=nlstate;i++)    m=pow(2,cptcoveff);
             for(j=1; j<=nlstate+ndeath;j++)  
               fprintf(ficrespij," %1d-%1d",i,j);    strcpy(dirfileres,optionfilefiname);
           fprintf(ficrespij,"\n");    strcpy(optfileres,"vpl");
            for (h=0; h<=nhstepm; h++){   /* 1eme*/
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );    for (cpt=1; cpt<= nlstate ; cpt ++) {
             for(i=1; i<=nlstate;i++)     for (k1=1; k1<= m ; k1 ++) {
               for(j=1; j<=nlstate+ndeath;j++)       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);       fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
             fprintf(ficrespij,"\n");       fprintf(ficgp,"set xlabel \"Age\" \n\
              }  set ylabel \"Probability\" \n\
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  set ter png small\n\
           fprintf(ficrespij,"\n");  set size 0.65,0.65\n\
         }  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
     }  
   }       for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
   varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);         else fprintf(ficgp," \%%*lf (\%%*lf)");
        }
   fclose(ficrespij);       fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
   /*---------- Forecasting ------------------*/         else fprintf(ficgp," \%%*lf (\%%*lf)");
   if((stepm == 1) && (strcmp(model,".")==0)){       } 
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);       fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);       for (i=1; i<= nlstate ; i ++) {
   }         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
   else{         else fprintf(ficgp," \%%*lf (\%%*lf)");
     erreur=108;       }  
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);       fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
   }     }
      }
     /*2 eme*/
   /*---------- Health expectancies and variances ------------*/    
     for (k1=1; k1<= m ; k1 ++) { 
   strcpy(filerest,"t");      fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
   strcat(filerest,fileres);      fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
   if((ficrest=fopen(filerest,"w"))==NULL) {      
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;      for (i=1; i<= nlstate+1 ; i ++) {
   }        k=2*i;
   printf("Computing Total LEs with variances: file '%s' \n", filerest);        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
   strcpy(filerese,"e");          else fprintf(ficgp," \%%*lf (\%%*lf)");
   strcat(filerese,fileres);        }   
   if((ficreseij=fopen(filerese,"w"))==NULL) {        if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);        else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
   }        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);        for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
  strcpy(fileresv,"v");          else fprintf(ficgp," \%%*lf (\%%*lf)");
   strcat(fileresv,fileres);        }   
   if((ficresvij=fopen(fileresv,"w"))==NULL) {        fprintf(ficgp,"\" t\"\" w l 0,");
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
   }        for (j=1; j<= nlstate+1 ; j ++) {
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
   calagedate=-1;          else fprintf(ficgp," \%%*lf (\%%*lf)");
 prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);        }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
   k=0;        else fprintf(ficgp,"\" t\"\" w l 0,");
   for(cptcov=1;cptcov<=i1;cptcov++){      }
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    }
       k=k+1;    
       fprintf(ficrest,"\n#****** ");    /*3eme*/
       for(j=1;j<=cptcoveff;j++)    
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficrest,"******\n");      for (cpt=1; cpt<= nlstate ; cpt ++) {
         k=2+nlstate*(2*cpt-2);
       fprintf(ficreseij,"\n#****** ");        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
       for(j=1;j<=cptcoveff;j++)        fprintf(ficgp,"set ter png small\n\
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  set size 0.65,0.65\n\
       fprintf(ficreseij,"******\n");  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
       fprintf(ficresvij,"\n#****** ");          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
       for(j=1;j<=cptcoveff;j++)          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
       fprintf(ficresvij,"******\n");          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);          
       oldm=oldms;savm=savms;        */
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);          for (i=1; i< nlstate ; i ++) {
            fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);          
       oldm=oldms;savm=savms;        } 
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm);      }
        }
     
      /* CV preval stable (period) */
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");    for (k1=1; k1<= m ; k1 ++) { 
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);      for (cpt=1; cpt<=nlstate ; cpt ++) {
       fprintf(ficrest,"\n");        k=3;
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
       epj=vector(1,nlstate+1);        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
       for(age=bage; age <=fage ;age++){  set ter png small\nset size 0.65,0.65\n\
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);  unset log y\n\
         if (popbased==1) {  plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
           for(i=1; i<=nlstate;i++)        
             prlim[i][i]=probs[(int)age][i][k];        for (i=1; i< nlstate ; i ++)
         }          fprintf(ficgp,"+$%d",k+i+1);
                fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         fprintf(ficrest," %4.0f",age);        
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){        l=3+(nlstate+ndeath)*cpt;
           for(i=1, epj[j]=0.;i <=nlstate;i++) {        fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
             epj[j] += prlim[i][i]*eij[i][j][(int)age];        for (i=1; i< nlstate ; i ++) {
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/          l=3+(nlstate+ndeath)*cpt;
           }          fprintf(ficgp,"+$%d",l+i+1);
           epj[nlstate+1] +=epj[j];        }
         }        fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       } 
         for(i=1, vepp=0.;i <=nlstate;i++)    }  
           for(j=1;j <=nlstate;j++)    
             vepp += vareij[i][j][(int)age];    /* proba elementaires */
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));    for(i=1,jk=1; i <=nlstate; i++){
         for(j=1;j <=nlstate;j++){      for(k=1; k <=(nlstate+ndeath); k++){
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));        if (k != i) {
         }          for(j=1; j <=ncovmodel; j++){
         fprintf(ficrest,"\n");            fprintf(ficgp,"p%d=%f ",jk,p[jk]);
       }            jk++; 
     }            fprintf(ficgp,"\n");
   }          }
 free_matrix(mint,1,maxwav,1,n);        }
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);      }
     free_vector(weight,1,n);     }
   fclose(ficreseij);  
   fclose(ficresvij);     for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
   fclose(ficrest);       for(jk=1; jk <=m; jk++) {
   fclose(ficpar);         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
   free_vector(epj,1,nlstate+1);         if (ng==2)
             fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
   /*------- Variance limit prevalence------*/           else
            fprintf(ficgp,"\nset title \"Probability\"\n");
   strcpy(fileresvpl,"vpl");         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
   strcat(fileresvpl,fileres);         i=1;
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {         for(k2=1; k2<=nlstate; k2++) {
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);           k3=i;
     exit(0);           for(k=1; k<=(nlstate+ndeath); k++) {
   }             if (k != k2){
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);               if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
   k=0;               else
   for(cptcov=1;cptcov<=i1;cptcov++){                 fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){               ij=1;
       k=k+1;               for(j=3; j <=ncovmodel; j++) {
       fprintf(ficresvpl,"\n#****** ");                 if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
       for(j=1;j<=cptcoveff;j++)                   fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                   ij++;
       fprintf(ficresvpl,"******\n");                 }
                       else
       varpl=matrix(1,nlstate,(int) bage, (int) fage);                   fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
       oldm=oldms;savm=savms;               }
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);               fprintf(ficgp,")/(1");
     }               
  }               for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
   fclose(ficresvpl);                 ij=1;
                  for(j=3; j <=ncovmodel; j++){
   /*---------- End : free ----------------*/                   if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);                     fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                       ij++;
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);                   }
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);                   else
                       fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                   }
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);                 fprintf(ficgp,")");
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);               }
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);               fprintf(ficgp,") t \"p%d%d\" ", k2,k);
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);               if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                 i=i+ncovmodel;
   free_matrix(matcov,1,npar,1,npar);             }
   free_vector(delti,1,npar);           } /* end k */
   free_matrix(agev,1,maxwav,1,imx);         } /* end k2 */
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);       } /* end jk */
      } /* end ng */
   if(erreur >0)     fflush(ficgp); 
     printf("End of Imach with error or warning %d\n",erreur);  }  /* end gnuplot */
   else   printf("End of Imach\n");  
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */  
    /*************** Moving average **************/
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/  int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   /*printf("Total time was %d uSec.\n", total_usecs);*/  
   /*------ End -----------*/    int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
  end:    double age;
   /* chdir(pathcd);*/  
  /*system("wgnuplot graph.plt");*/    modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
  /*system("../gp37mgw/wgnuplot graph.plt");*/                             a covariate has 2 modalities */
  /*system("cd ../gp37mgw");*/    if (cptcovn<1) modcovmax=1; /* At least 1 pass */
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/  
  strcpy(plotcmd,GNUPLOTPROGRAM);    if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
  strcat(plotcmd," ");      if(mobilav==1) mobilavrange=5; /* default */
  strcat(plotcmd,optionfilegnuplot);      else mobilavrange=mobilav;
  system(plotcmd);      for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
  /*#ifdef windows*/          for (cptcod=1;cptcod<=modcovmax;cptcod++)
   while (z[0] != 'q') {            mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
     /* chdir(path); */      /* We keep the original values on the extreme ages bage, fage and for 
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");         fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
     scanf("%s",z);         we use a 5 terms etc. until the borders are no more concerned. 
     if (z[0] == 'c') system("./imach");      */ 
     else if (z[0] == 'e') system(optionfilehtm);      for (mob=3;mob <=mobilavrange;mob=mob+2){
     else if (z[0] == 'g') system(plotcmd);        for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
     else if (z[0] == 'q') exit(0);          for (i=1; i<=nlstate;i++){
   }            for (cptcod=1;cptcod<=modcovmax;cptcod++){
   /*#endif */              mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
 }                for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small\n set log y\n"); 
     fprintf(ficgp, "set size 0.65,0.65\n");
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int linei, month, year,iout;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
   
     char ca[32], cb[32], cc[32];
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char strstart[80], *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       scanf("%s",pathtot);
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem with datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs)))    {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
           if(line[j] == '\t')
             line[j] = ' ';
         }
         for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
           ;
         };
         line[j+1]=0;  /* Trims blanks at end of line */
         if(line[0]=='#'){
           fprintf(ficlog,"Comment line\n%s\n",line);
           printf("Comment line\n%s\n",line);
           continue;
         }
         for (j=maxwav;j>=1;j--){
           cutv(stra, strb,line,' '); 
           errno=0;
           lval=strtol(strb,&endptr,10); 
           /*      if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%d' at line number %d %s for individual %d\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n",lval, i,line,linei,j,maxwav);
             exit(1);
           }
           s[j][i]=lval;
   
           strcpy(line,stra);
           cutv(stra, strb,line,' ');
           if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
           }
           else  if(iout=sscanf(strb,".") != 0){
             month=99;
             year=9999;
           }else{
             printf("Error reading data around '%s'.at line number %ld %s for individual %d\nShould be a year of exam at wave %d.  Exiting.\n",strb, i,line,linei,j);
             exit(1);
           }
           anint[j][i]= (double) year; 
           mint[j][i]= (double)month; 
           strcpy(line,stra);
         } /* ENd Waves */
           
         cutv(stra, strb,line,' '); 
         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }
         else  if(iout=sscanf(strb,".") != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s'.at line number %ld %s for individual %d\nShould be a year of exam at wave %d.  Exiting.\n",strb, i,line,linei,j);
           exit(1);
         }
         andc[i]=(double) year; 
         moisdc[i]=(double) month; 
         strcpy(line,stra);
   
         cutv(stra, strb,line,' '); 
         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }
         else  if(iout=sscanf(strb,".") != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s'.at line number %ld %s for individual %d\nShould be a year of exam at wave %d.  Exiting.\n",strb, i,line,linei,j);
           exit(1);
         }
         annais[i]=(double)(year);
         moisnais[i]=(double)(month); 
         strcpy(line,stra);
   
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %ld %s for individual %d\nShould be a weight.  Exiting.\n",lval, i,line,linei);
           exit(1);
         }
         weight[i]=(double)(lval); 
         strcpy(line,stra);
   
         for (j=ncovcol;j>=1;j--){
           cutv(stra, strb,line,' '); 
           errno=0;
           lval=strtol(strb,&endptr,10); 
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%d' at line number %ld %s for individual %d\nShould be a covar (meaning 0 for the reference or 1).  Exiting.\n",lval, i,line,linei);
             exit(1);
           }
           if(lval <-1 || lval >1){
             printf("Error reading data around '%d' at line number %ld %s for individual %d\nShould be a value of the %d covar (meaning 0 for the reference or 1. IMaCh does not build design variables, do it your self).  Exiting.\n",lval,i,line,linei,j);
             exit(1);
           }
           covar[j][i]=(double)(lval);
           strcpy(line,stra);
         } 
         lstra=strlen(stra);
   
         if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
           stratrunc = &(stra[lstra-9]);
           num[i]=atol(stratrunc);
         }
         else
           num[i]=atol(stra);
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
           printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
   
         i=i+1;
     } /* End loop reading  data */
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
     /* for (i=1; i<=imx; i++) */
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameters from char model */
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);
     fclose(fic);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     agegomp=(int)agemin;
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<body>\n<title>IMaCh Cov %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       p[1]=0.1; p[NDIM]=0.1;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
       
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
     
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing stable prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
       fprintf(ficrespl, "#Local time at start: %s", strstart);
       fprintf(ficrespl,"#Stable prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       fprintf(ficrespij, "#Local time at start: %s", strstart);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /*---------- Health expectancies and variances ------------*/
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total LEs with variances: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficreseij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav, strstart);
           if(popbased==1){
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav, strstart);
           }
   
           fprintf(ficrest, "#Local time at start: %s", strstart);
           fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
           for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
           fprintf(ficrest,"\n");
   
           epj=vector(1,nlstate+1);
           for(age=bage; age <=fage ;age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             if (popbased==1) {
               if(mobilav ==0){
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=probs[(int)age][i][k];
               }else{ /* mobilav */ 
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=mobaverage[(int)age][i][k];
               }
             }
           
             fprintf(ficrest," %4.0f",age);
             for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
               for(i=1, epj[j]=0.;i <=nlstate;i++) {
                 epj[j] += prlim[i][i]*eij[i][j][(int)age];
                 /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
               }
               epj[nlstate+1] +=epj[j];
             }
   
             for(i=1, vepp=0.;i <=nlstate;i++)
               for(j=1;j <=nlstate;j++)
                 vepp += vareij[i][j][(int)age];
             fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
             for(j=1;j <=nlstate;j++){
               fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
             }
             fprintf(ficrest,"\n");
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficreseij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of stable prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
     
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
       free_ivector(Tcode,1,100);
   
   
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);
     fclose(fichtm);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
     chdir(path);
   #ifndef UNIX
     /*  strcpy(plotcmd,"\""); */
   #endif
     strcpy(plotcmd,pathimach);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     strcat(plotcmd,GNUPLOTPROGRAM);
   #ifndef UNIX
     strcat(plotcmd,".exe");
     /*  strcat(plotcmd,"\"");*/
   #endif
     if(stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
     }
   
   #ifndef UNIX
     strcpy(plotcmd,"\"");
   #endif
     strcat(plotcmd,pathimach);
     strcat(plotcmd,GNUPLOTPROGRAM);
   #ifndef UNIX
     strcat(plotcmd,".exe");
     strcat(plotcmd,"\"");
   #endif
     strcat(plotcmd," ");
     strcat(plotcmd,optionfilegnuplot);
     printf("Starting graphs with: %s",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.41.2.2  
changed lines
  Added in v.1.110


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>