Diff for /imach/src/imach.c between versions 1.50 and 1.129

version 1.50, 2002/06/26 23:25:02 version 1.129, 2007/08/31 13:49:27
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.129  2007/08/31 13:49:27  lievre
      Modification of the way of exiting when the covariate is not binary in order to see on the window the error message before exiting
   This program computes Healthy Life Expectancies from  
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    Revision 1.128  2006/06/30 13:02:05  brouard
   first survey ("cross") where individuals from different ages are    (Module): Clarifications on computing e.j
   interviewed on their health status or degree of disability (in the  
   case of a health survey which is our main interest) -2- at least a    Revision 1.127  2006/04/28 18:11:50  brouard
   second wave of interviews ("longitudinal") which measure each change    (Module): Yes the sum of survivors was wrong since
   (if any) in individual health status.  Health expectancies are    imach-114 because nhstepm was no more computed in the age
   computed from the time spent in each health state according to a    loop. Now we define nhstepma in the age loop.
   model. More health states you consider, more time is necessary to reach the    (Module): In order to speed up (in case of numerous covariates) we
   Maximum Likelihood of the parameters involved in the model.  The    compute health expectancies (without variances) in a first step
   simplest model is the multinomial logistic model where pij is the    and then all the health expectancies with variances or standard
   probability to be observed in state j at the second wave    deviation (needs data from the Hessian matrices) which slows the
   conditional to be observed in state i at the first wave. Therefore    computation.
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    In the future we should be able to stop the program is only health
   'age' is age and 'sex' is a covariate. If you want to have a more    expectancies and graph are needed without standard deviations.
   complex model than "constant and age", you should modify the program  
   where the markup *Covariates have to be included here again* invites    Revision 1.126  2006/04/28 17:23:28  brouard
   you to do it.  More covariates you add, slower the    (Module): Yes the sum of survivors was wrong since
   convergence.    imach-114 because nhstepm was no more computed in the age
     loop. Now we define nhstepma in the age loop.
   The advantage of this computer programme, compared to a simple    Version 0.98h
   multinomial logistic model, is clear when the delay between waves is not  
   identical for each individual. Also, if a individual missed an    Revision 1.125  2006/04/04 15:20:31  lievre
   intermediate interview, the information is lost, but taken into    Errors in calculation of health expectancies. Age was not initialized.
   account using an interpolation or extrapolation.      Forecasting file added.
   
   hPijx is the probability to be observed in state i at age x+h    Revision 1.124  2006/03/22 17:13:53  lievre
   conditional to the observed state i at age x. The delay 'h' can be    Parameters are printed with %lf instead of %f (more numbers after the comma).
   split into an exact number (nh*stepm) of unobserved intermediate    The log-likelihood is printed in the log file
   states. This elementary transition (by month or quarter trimester,  
   semester or year) is model as a multinomial logistic.  The hPx    Revision 1.123  2006/03/20 10:52:43  brouard
   matrix is simply the matrix product of nh*stepm elementary matrices    * imach.c (Module): <title> changed, corresponds to .htm file
   and the contribution of each individual to the likelihood is simply    name. <head> headers where missing.
   hPijx.  
     * imach.c (Module): Weights can have a decimal point as for
   Also this programme outputs the covariance matrix of the parameters but also    English (a comma might work with a correct LC_NUMERIC environment,
   of the life expectancies. It also computes the prevalence limits.    otherwise the weight is truncated).
      Modification of warning when the covariates values are not 0 or
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    1.
            Institut national d'études démographiques, Paris.    Version 0.98g
   This software have been partly granted by Euro-REVES, a concerted action  
   from the European Union.    Revision 1.122  2006/03/20 09:45:41  brouard
   It is copyrighted identically to a GNU software product, ie programme and    (Module): Weights can have a decimal point as for
   software can be distributed freely for non commercial use. Latest version    English (a comma might work with a correct LC_NUMERIC environment,
   can be accessed at http://euroreves.ined.fr/imach .    otherwise the weight is truncated).
   **********************************************************************/    Modification of warning when the covariates values are not 0 or
      1.
 #include <math.h>    Version 0.98g
 #include <stdio.h>  
 #include <stdlib.h>    Revision 1.121  2006/03/16 17:45:01  lievre
 #include <unistd.h>    * imach.c (Module): Comments concerning covariates added
   
 #define MAXLINE 256    * imach.c (Module): refinements in the computation of lli if
 #define GNUPLOTPROGRAM "gnuplot"    status=-2 in order to have more reliable computation if stepm is
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    not 1 month. Version 0.98f
 #define FILENAMELENGTH 80  
 /*#define DEBUG*/    Revision 1.120  2006/03/16 15:10:38  lievre
 #define windows    (Module): refinements in the computation of lli if
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    status=-2 in order to have more reliable computation if stepm is
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    not 1 month. Version 0.98f
   
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    Revision 1.119  2006/03/15 17:42:26  brouard
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    (Module): Bug if status = -2, the loglikelihood was
     computed as likelihood omitting the logarithm. Version O.98e
 #define NINTERVMAX 8  
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    Revision 1.118  2006/03/14 18:20:07  brouard
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    (Module): varevsij Comments added explaining the second
 #define NCOVMAX 8 /* Maximum number of covariates */    table of variances if popbased=1 .
 #define MAXN 20000    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
 #define YEARM 12. /* Number of months per year */    (Module): Function pstamp added
 #define AGESUP 130    (Module): Version 0.98d
 #define AGEBASE 40  
 #ifdef windows    Revision 1.117  2006/03/14 17:16:22  brouard
 #define DIRSEPARATOR '\\'    (Module): varevsij Comments added explaining the second
 #define ODIRSEPARATOR '/'    table of variances if popbased=1 .
 #else    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
 #define DIRSEPARATOR '/'    (Module): Function pstamp added
 #define ODIRSEPARATOR '\\'    (Module): Version 0.98d
 #endif  
     Revision 1.116  2006/03/06 10:29:27  brouard
 char version[80]="Imach version 0.8i, June 2002, INED-EUROREVES ";    (Module): Variance-covariance wrong links and
 int erreur; /* Error number */    varian-covariance of ej. is needed (Saito).
 int nvar;  
 int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;    Revision 1.115  2006/02/27 12:17:45  brouard
 int npar=NPARMAX;    (Module): One freematrix added in mlikeli! 0.98c
 int nlstate=2; /* Number of live states */  
 int ndeath=1; /* Number of dead states */    Revision 1.114  2006/02/26 12:57:58  brouard
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    (Module): Some improvements in processing parameter
 int popbased=0;    filename with strsep.
   
 int *wav; /* Number of waves for this individuual 0 is possible */    Revision 1.113  2006/02/24 14:20:24  brouard
 int maxwav; /* Maxim number of waves */    (Module): Memory leaks checks with valgrind and:
 int jmin, jmax; /* min, max spacing between 2 waves */    datafile was not closed, some imatrix were not freed and on matrix
 int mle, weightopt;    allocation too.
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */  
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    Revision 1.112  2006/01/30 09:55:26  brouard
 double jmean; /* Mean space between 2 waves */    (Module): Back to gnuplot.exe instead of wgnuplot.exe
 double **oldm, **newm, **savm; /* Working pointers to matrices */  
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    Revision 1.111  2006/01/25 20:38:18  brouard
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    (Module): Lots of cleaning and bugs added (Gompertz)
 FILE *ficlog;    (Module): Comments can be added in data file. Missing date values
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;    can be a simple dot '.'.
 FILE *ficresprobmorprev;  
 FILE *fichtm; /* Html File */    Revision 1.110  2006/01/25 00:51:50  brouard
 FILE *ficreseij;    (Module): Lots of cleaning and bugs added (Gompertz)
 char filerese[FILENAMELENGTH];  
 FILE  *ficresvij;    Revision 1.109  2006/01/24 19:37:15  brouard
 char fileresv[FILENAMELENGTH];    (Module): Comments (lines starting with a #) are allowed in data.
 FILE  *ficresvpl;  
 char fileresvpl[FILENAMELENGTH];    Revision 1.108  2006/01/19 18:05:42  lievre
 char title[MAXLINE];    Gnuplot problem appeared...
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];    To be fixed
 char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];  
     Revision 1.107  2006/01/19 16:20:37  brouard
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];    Test existence of gnuplot in imach path
 char filelog[FILENAMELENGTH]; /* Log file */  
 char filerest[FILENAMELENGTH];    Revision 1.106  2006/01/19 13:24:36  brouard
 char fileregp[FILENAMELENGTH];    Some cleaning and links added in html output
 char popfile[FILENAMELENGTH];  
     Revision 1.105  2006/01/05 20:23:19  lievre
 char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];    *** empty log message ***
   
 #define NR_END 1    Revision 1.104  2005/09/30 16:11:43  lievre
 #define FREE_ARG char*    (Module): sump fixed, loop imx fixed, and simplifications.
 #define FTOL 1.0e-10    (Module): If the status is missing at the last wave but we know
     that the person is alive, then we can code his/her status as -2
 #define NRANSI    (instead of missing=-1 in earlier versions) and his/her
 #define ITMAX 200    contributions to the likelihood is 1 - Prob of dying from last
     health status (= 1-p13= p11+p12 in the easiest case of somebody in
 #define TOL 2.0e-4    the healthy state at last known wave). Version is 0.98
   
 #define CGOLD 0.3819660    Revision 1.103  2005/09/30 15:54:49  lievre
 #define ZEPS 1.0e-10    (Module): sump fixed, loop imx fixed, and simplifications.
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);  
     Revision 1.102  2004/09/15 17:31:30  brouard
 #define GOLD 1.618034    Add the possibility to read data file including tab characters.
 #define GLIMIT 100.0  
 #define TINY 1.0e-20    Revision 1.101  2004/09/15 10:38:38  brouard
     Fix on curr_time
 static double maxarg1,maxarg2;  
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    Revision 1.100  2004/07/12 18:29:06  brouard
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    Add version for Mac OS X. Just define UNIX in Makefile
    
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    Revision 1.99  2004/06/05 08:57:40  brouard
 #define rint(a) floor(a+0.5)    *** empty log message ***
   
 static double sqrarg;    Revision 1.98  2004/05/16 15:05:56  brouard
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    New version 0.97 . First attempt to estimate force of mortality
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    directly from the data i.e. without the need of knowing the health
     state at each age, but using a Gompertz model: log u =a + b*age .
 int imx;    This is the basic analysis of mortality and should be done before any
 int stepm;    other analysis, in order to test if the mortality estimated from the
 /* Stepm, step in month: minimum step interpolation*/    cross-longitudinal survey is different from the mortality estimated
     from other sources like vital statistic data.
 int estepm;  
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/    The same imach parameter file can be used but the option for mle should be -3.
   
 int m,nb;    Agnès, who wrote this part of the code, tried to keep most of the
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    former routines in order to include the new code within the former code.
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;  
 double **pmmij, ***probs, ***mobaverage;    The output is very simple: only an estimate of the intercept and of
 double dateintmean=0;    the slope with 95% confident intervals.
   
 double *weight;    Current limitations:
 int **s; /* Status */    A) Even if you enter covariates, i.e. with the
 double *agedc, **covar, idx;    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    B) There is no computation of Life Expectancy nor Life Table.
   
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    Revision 1.97  2004/02/20 13:25:42  lievre
 double ftolhess; /* Tolerance for computing hessian */    Version 0.96d. Population forecasting command line is (temporarily)
     suppressed.
 /**************** split *************************/  
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    Revision 1.96  2003/07/15 15:38:55  brouard
 {    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
    char *s;                             /* pointer */    rewritten within the same printf. Workaround: many printfs.
    int  l1, l2;                         /* length counters */  
     Revision 1.95  2003/07/08 07:54:34  brouard
    l1 = strlen( path );                 /* length of path */    * imach.c (Repository):
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    (Repository): Using imachwizard code to output a more meaningful covariance
    s= strrchr( path, DIRSEPARATOR );            /* find last / */    matrix (cov(a12,c31) instead of numbers.
    if ( s == NULL ) {                   /* no directory, so use current */  
      /*if(strrchr(path, ODIRSEPARATOR )==NULL)    Revision 1.94  2003/06/27 13:00:02  brouard
        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/    Just cleaning
 #if     defined(__bsd__)                /* get current working directory */  
       extern char       *getwd( );    Revision 1.93  2003/06/25 16:33:55  brouard
     (Module): On windows (cygwin) function asctime_r doesn't
       if ( getwd( dirc ) == NULL ) {    exist so I changed back to asctime which exists.
 #else    (Module): Version 0.96b
       extern char       *getcwd( );  
     Revision 1.92  2003/06/25 16:30:45  brouard
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    (Module): On windows (cygwin) function asctime_r doesn't
 #endif    exist so I changed back to asctime which exists.
          return( GLOCK_ERROR_GETCWD );  
       }    Revision 1.91  2003/06/25 15:30:29  brouard
       strcpy( name, path );             /* we've got it */    * imach.c (Repository): Duplicated warning errors corrected.
    } else {                             /* strip direcotry from path */    (Repository): Elapsed time after each iteration is now output. It
       s++;                              /* after this, the filename */    helps to forecast when convergence will be reached. Elapsed time
       l2 = strlen( s );                 /* length of filename */    is stamped in powell.  We created a new html file for the graphs
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    concerning matrix of covariance. It has extension -cov.htm.
       strcpy( name, s );                /* save file name */  
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    Revision 1.90  2003/06/24 12:34:15  brouard
       dirc[l1-l2] = 0;                  /* add zero */    (Module): Some bugs corrected for windows. Also, when
    }    mle=-1 a template is output in file "or"mypar.txt with the design
    l1 = strlen( dirc );                 /* length of directory */    of the covariance matrix to be input.
 #ifdef windows  
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    Revision 1.89  2003/06/24 12:30:52  brouard
 #else    (Module): Some bugs corrected for windows. Also, when
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }    mle=-1 a template is output in file "or"mypar.txt with the design
 #endif    of the covariance matrix to be input.
    s = strrchr( name, '.' );            /* find last / */  
    s++;    Revision 1.88  2003/06/23 17:54:56  brouard
    strcpy(ext,s);                       /* save extension */    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
    l1= strlen( name);  
    l2= strlen( s)+1;    Revision 1.87  2003/06/18 12:26:01  brouard
    strncpy( finame, name, l1-l2);    Version 0.96
    finame[l1-l2]= 0;  
    return( 0 );                         /* we're done */    Revision 1.86  2003/06/17 20:04:08  brouard
 }    (Module): Change position of html and gnuplot routines and added
     routine fileappend.
   
 /******************************************/    Revision 1.85  2003/06/17 13:12:43  brouard
     * imach.c (Repository): Check when date of death was earlier that
 void replace(char *s, char*t)    current date of interview. It may happen when the death was just
 {    prior to the death. In this case, dh was negative and likelihood
   int i;    was wrong (infinity). We still send an "Error" but patch by
   int lg=20;    assuming that the date of death was just one stepm after the
   i=0;    interview.
   lg=strlen(t);    (Repository): Because some people have very long ID (first column)
   for(i=0; i<= lg; i++) {    we changed int to long in num[] and we added a new lvector for
     (s[i] = t[i]);    memory allocation. But we also truncated to 8 characters (left
     if (t[i]== '\\') s[i]='/';    truncation)
   }    (Repository): No more line truncation errors.
 }  
     Revision 1.84  2003/06/13 21:44:43  brouard
 int nbocc(char *s, char occ)    * imach.c (Repository): Replace "freqsummary" at a correct
 {    place. It differs from routine "prevalence" which may be called
   int i,j=0;    many times. Probs is memory consuming and must be used with
   int lg=20;    parcimony.
   i=0;    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
   lg=strlen(s);  
   for(i=0; i<= lg; i++) {    Revision 1.83  2003/06/10 13:39:11  lievre
   if  (s[i] == occ ) j++;    *** empty log message ***
   }  
   return j;    Revision 1.82  2003/06/05 15:57:20  brouard
 }    Add log in  imach.c and  fullversion number is now printed.
   
 void cutv(char *u,char *v, char*t, char occ)  */
 {  /*
   /* cuts string t into u and v where u is ended by char occ excluding it     Interpolated Markov Chain
      and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)  
      gives u="abcedf" and v="ghi2j" */    Short summary of the programme:
   int i,lg,j,p=0;    
   i=0;    This program computes Healthy Life Expectancies from
   for(j=0; j<=strlen(t)-1; j++) {    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;    first survey ("cross") where individuals from different ages are
   }    interviewed on their health status or degree of disability (in the
     case of a health survey which is our main interest) -2- at least a
   lg=strlen(t);    second wave of interviews ("longitudinal") which measure each change
   for(j=0; j<p; j++) {    (if any) in individual health status.  Health expectancies are
     (u[j] = t[j]);    computed from the time spent in each health state according to a
   }    model. More health states you consider, more time is necessary to reach the
      u[p]='\0';    Maximum Likelihood of the parameters involved in the model.  The
     simplest model is the multinomial logistic model where pij is the
    for(j=0; j<= lg; j++) {    probability to be observed in state j at the second wave
     if (j>=(p+1))(v[j-p-1] = t[j]);    conditional to be observed in state i at the first wave. Therefore
   }    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
 }    'age' is age and 'sex' is a covariate. If you want to have a more
     complex model than "constant and age", you should modify the program
 /********************** nrerror ********************/    where the markup *Covariates have to be included here again* invites
     you to do it.  More covariates you add, slower the
 void nrerror(char error_text[])    convergence.
 {  
   fprintf(stderr,"ERREUR ...\n");    The advantage of this computer programme, compared to a simple
   fprintf(stderr,"%s\n",error_text);    multinomial logistic model, is clear when the delay between waves is not
   exit(1);    identical for each individual. Also, if a individual missed an
 }    intermediate interview, the information is lost, but taken into
 /*********************** vector *******************/    account using an interpolation or extrapolation.  
 double *vector(int nl, int nh)  
 {    hPijx is the probability to be observed in state i at age x+h
   double *v;    conditional to the observed state i at age x. The delay 'h' can be
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));    split into an exact number (nh*stepm) of unobserved intermediate
   if (!v) nrerror("allocation failure in vector");    states. This elementary transition (by month, quarter,
   return v-nl+NR_END;    semester or year) is modelled as a multinomial logistic.  The hPx
 }    matrix is simply the matrix product of nh*stepm elementary matrices
     and the contribution of each individual to the likelihood is simply
 /************************ free vector ******************/    hPijx.
 void free_vector(double*v, int nl, int nh)  
 {    Also this programme outputs the covariance matrix of the parameters but also
   free((FREE_ARG)(v+nl-NR_END));    of the life expectancies. It also computes the period (stable) prevalence. 
 }    
     Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
 /************************ivector *******************************/             Institut national d'études démographiques, Paris.
 int *ivector(long nl,long nh)    This software have been partly granted by Euro-REVES, a concerted action
 {    from the European Union.
   int *v;    It is copyrighted identically to a GNU software product, ie programme and
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));    software can be distributed freely for non commercial use. Latest version
   if (!v) nrerror("allocation failure in ivector");    can be accessed at http://euroreves.ined.fr/imach .
   return v-nl+NR_END;  
 }    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
     or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
 /******************free ivector **************************/    
 void free_ivector(int *v, long nl, long nh)    **********************************************************************/
 {  /*
   free((FREE_ARG)(v+nl-NR_END));    main
 }    read parameterfile
     read datafile
 /******************* imatrix *******************************/    concatwav
 int **imatrix(long nrl, long nrh, long ncl, long nch)    freqsummary
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */    if (mle >= 1)
 {      mlikeli
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;    print results files
   int **m;    if mle==1 
         computes hessian
   /* allocate pointers to rows */    read end of parameter file: agemin, agemax, bage, fage, estepm
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));        begin-prev-date,...
   if (!m) nrerror("allocation failure 1 in matrix()");    open gnuplot file
   m += NR_END;    open html file
   m -= nrl;    period (stable) prevalence
       for age prevalim()
      h Pij x
   /* allocate rows and set pointers to them */    variance of p varprob
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));    forecasting if prevfcast==1 prevforecast call prevalence()
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    health expectancies
   m[nrl] += NR_END;    Variance-covariance of DFLE
   m[nrl] -= ncl;    prevalence()
       movingaverage()
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;    varevsij() 
      if popbased==1 varevsij(,popbased)
   /* return pointer to array of pointers to rows */    total life expectancies
   return m;    Variance of period (stable) prevalence
 }   end
   */
 /****************** free_imatrix *************************/  
 void free_imatrix(m,nrl,nrh,ncl,nch)  
       int **m;  
       long nch,ncl,nrh,nrl;   
      /* free an int matrix allocated by imatrix() */  #include <math.h>
 {  #include <stdio.h>
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  #include <stdlib.h>
   free((FREE_ARG) (m+nrl-NR_END));  #include <string.h>
 }  #include <unistd.h>
   
 /******************* matrix *******************************/  #include <limits.h>
 double **matrix(long nrl, long nrh, long ncl, long nch)  #include <sys/types.h>
 {  #include <sys/stat.h>
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  #include <errno.h>
   double **m;  extern int errno;
   
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  /* #include <sys/time.h> */
   if (!m) nrerror("allocation failure 1 in matrix()");  #include <time.h>
   m += NR_END;  #include "timeval.h"
   m -= nrl;  
   /* #include <libintl.h> */
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  /* #define _(String) gettext (String) */
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  
   m[nrl] += NR_END;  #define MAXLINE 256
   m[nrl] -= ncl;  
   #define GNUPLOTPROGRAM "gnuplot"
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
   return m;  #define FILENAMELENGTH 132
 }  
   #define GLOCK_ERROR_NOPATH              -1      /* empty path */
 /*************************free matrix ************************/  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  
 {  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
   free((FREE_ARG)(m+nrl-NR_END));  
 }  #define NINTERVMAX 8
   #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
 /******************* ma3x *******************************/  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  #define NCOVMAX 8 /* Maximum number of covariates */
 {  #define MAXN 20000
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  #define YEARM 12. /* Number of months per year */
   double ***m;  #define AGESUP 130
   #define AGEBASE 40
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
   if (!m) nrerror("allocation failure 1 in matrix()");  #ifdef UNIX
   m += NR_END;  #define DIRSEPARATOR '/'
   m -= nrl;  #define CHARSEPARATOR "/"
   #define ODIRSEPARATOR '\\'
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  #else
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  #define DIRSEPARATOR '\\'
   m[nrl] += NR_END;  #define CHARSEPARATOR "\\"
   m[nrl] -= ncl;  #define ODIRSEPARATOR '/'
   #endif
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  
   /* $Id$ */
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  /* $State$ */
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  
   m[nrl][ncl] += NR_END;  char version[]="Imach version 0.98i, June 2006, INED-EUROREVES-Institut de longevite ";
   m[nrl][ncl] -= nll;  char fullversion[]="$Revision$ $Date$"; 
   for (j=ncl+1; j<=nch; j++)  char strstart[80];
     m[nrl][j]=m[nrl][j-1]+nlay;  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
    int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
   for (i=nrl+1; i<=nrh; i++) {  int nvar;
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
     for (j=ncl+1; j<=nch; j++)  int npar=NPARMAX;
       m[i][j]=m[i][j-1]+nlay;  int nlstate=2; /* Number of live states */
   }  int ndeath=1; /* Number of dead states */
   return m;  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
 }  int popbased=0;
   
 /*************************free ma3x ************************/  int *wav; /* Number of waves for this individuual 0 is possible */
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  int maxwav; /* Maxim number of waves */
 {  int jmin, jmax; /* min, max spacing between 2 waves */
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  int ijmin, ijmax; /* Individuals having jmin and jmax */ 
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  int gipmx, gsw; /* Global variables on the number of contributions 
   free((FREE_ARG)(m+nrl-NR_END));                     to the likelihood and the sum of weights (done by funcone)*/
 }  int mle, weightopt;
   int **mw; /* mw[mi][i] is number of the mi wave for this individual */
 /***************** f1dim *************************/  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
 extern int ncom;  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
 extern double *pcom,*xicom;             * wave mi and wave mi+1 is not an exact multiple of stepm. */
 extern double (*nrfunc)(double []);  double jmean; /* Mean space between 2 waves */
    double **oldm, **newm, **savm; /* Working pointers to matrices */
 double f1dim(double x)  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
 {  FILE *fic,*ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
   int j;  FILE *ficlog, *ficrespow;
   double f;  int globpr; /* Global variable for printing or not */
   double *xt;  double fretone; /* Only one call to likelihood */
    long ipmx; /* Number of contributions */
   xt=vector(1,ncom);  double sw; /* Sum of weights */
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  char filerespow[FILENAMELENGTH];
   f=(*nrfunc)(xt);  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
   free_vector(xt,1,ncom);  FILE *ficresilk;
   return f;  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
 }  FILE *ficresprobmorprev;
   FILE *fichtm, *fichtmcov; /* Html File */
 /*****************brent *************************/  FILE *ficreseij;
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  char filerese[FILENAMELENGTH];
 {  FILE *ficresstdeij;
   int iter;  char fileresstde[FILENAMELENGTH];
   double a,b,d,etemp;  FILE *ficrescveij;
   double fu,fv,fw,fx;  char filerescve[FILENAMELENGTH];
   double ftemp;  FILE  *ficresvij;
   double p,q,r,tol1,tol2,u,v,w,x,xm;  char fileresv[FILENAMELENGTH];
   double e=0.0;  FILE  *ficresvpl;
    char fileresvpl[FILENAMELENGTH];
   a=(ax < cx ? ax : cx);  char title[MAXLINE];
   b=(ax > cx ? ax : cx);  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
   x=w=v=bx;  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
   fw=fv=fx=(*f)(x);  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
   for (iter=1;iter<=ITMAX;iter++) {  char command[FILENAMELENGTH];
     xm=0.5*(a+b);  int  outcmd=0;
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
     printf(".");fflush(stdout);  
     fprintf(ficlog,".");fflush(ficlog);  char filelog[FILENAMELENGTH]; /* Log file */
 #ifdef DEBUG  char filerest[FILENAMELENGTH];
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  char fileregp[FILENAMELENGTH];
     fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  char popfile[FILENAMELENGTH];
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  
 #endif  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  
       *xmin=x;  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
       return fx;  struct timezone tzp;
     }  extern int gettimeofday();
     ftemp=fu;  struct tm tmg, tm, tmf, *gmtime(), *localtime();
     if (fabs(e) > tol1) {  long time_value;
       r=(x-w)*(fx-fv);  extern long time();
       q=(x-v)*(fx-fw);  char strcurr[80], strfor[80];
       p=(x-v)*q-(x-w)*r;  
       q=2.0*(q-r);  char *endptr;
       if (q > 0.0) p = -p;  long lval;
       q=fabs(q);  double dval;
       etemp=e;  
       e=d;  #define NR_END 1
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  #define FREE_ARG char*
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  #define FTOL 1.0e-10
       else {  
         d=p/q;  #define NRANSI 
         u=x+d;  #define ITMAX 200 
         if (u-a < tol2 || b-u < tol2)  
           d=SIGN(tol1,xm-x);  #define TOL 2.0e-4 
       }  
     } else {  #define CGOLD 0.3819660 
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  #define ZEPS 1.0e-10 
     }  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  
     fu=(*f)(u);  #define GOLD 1.618034 
     if (fu <= fx) {  #define GLIMIT 100.0 
       if (u >= x) a=x; else b=x;  #define TINY 1.0e-20 
       SHFT(v,w,x,u)  
         SHFT(fv,fw,fx,fu)  static double maxarg1,maxarg2;
         } else {  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
           if (u < x) a=u; else b=u;  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
           if (fu <= fw || w == x) {    
             v=w;  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
             w=u;  #define rint(a) floor(a+0.5)
             fv=fw;  
             fw=fu;  static double sqrarg;
           } else if (fu <= fv || v == x || v == w) {  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
             v=u;  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
             fv=fu;  int agegomp= AGEGOMP;
           }  
         }  int imx; 
   }  int stepm=1;
   nrerror("Too many iterations in brent");  /* Stepm, step in month: minimum step interpolation*/
   *xmin=x;  
   return fx;  int estepm;
 }  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
   
 /****************** mnbrak ***********************/  int m,nb;
   long *num;
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
             double (*func)(double))  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
 {  double **pmmij, ***probs;
   double ulim,u,r,q, dum;  double *ageexmed,*agecens;
   double fu;  double dateintmean=0;
    
   *fa=(*func)(*ax);  double *weight;
   *fb=(*func)(*bx);  int **s; /* Status */
   if (*fb > *fa) {  double *agedc, **covar, idx;
     SHFT(dum,*ax,*bx,dum)  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
       SHFT(dum,*fb,*fa,dum)  double *lsurv, *lpop, *tpop;
       }  
   *cx=(*bx)+GOLD*(*bx-*ax);  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
   *fc=(*func)(*cx);  double ftolhess; /* Tolerance for computing hessian */
   while (*fb > *fc) {  
     r=(*bx-*ax)*(*fb-*fc);  /**************** split *************************/
     q=(*bx-*cx)*(*fb-*fa);  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/  {
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
     ulim=(*bx)+GLIMIT*(*cx-*bx);       the name of the file (name), its extension only (ext) and its first part of the name (finame)
     if ((*bx-u)*(u-*cx) > 0.0) {    */ 
       fu=(*func)(u);    char  *ss;                            /* pointer */
     } else if ((*cx-u)*(u-ulim) > 0.0) {    int   l1, l2;                         /* length counters */
       fu=(*func)(u);  
       if (fu < *fc) {    l1 = strlen(path );                   /* length of path */
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
           SHFT(*fb,*fc,fu,(*func)(u))    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
           }    if ( ss == NULL ) {                   /* no directory, so determine current directory */
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {      strcpy( name, path );               /* we got the fullname name because no directory */
       u=ulim;      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
       fu=(*func)(u);        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
     } else {      /* get current working directory */
       u=(*cx)+GOLD*(*cx-*bx);      /*    extern  char* getcwd ( char *buf , int len);*/
       fu=(*func)(u);      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
     }        return( GLOCK_ERROR_GETCWD );
     SHFT(*ax,*bx,*cx,u)      }
       SHFT(*fa,*fb,*fc,fu)      /* got dirc from getcwd*/
       }      printf(" DIRC = %s \n",dirc);
 }    } else {                              /* strip direcotry from path */
       ss++;                               /* after this, the filename */
 /*************** linmin ************************/      l2 = strlen( ss );                  /* length of filename */
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
 int ncom;      strcpy( name, ss );         /* save file name */
 double *pcom,*xicom;      strncpy( dirc, path, l1 - l2 );     /* now the directory */
 double (*nrfunc)(double []);      dirc[l1-l2] = 0;                    /* add zero */
        printf(" DIRC2 = %s \n",dirc);
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))    }
 {    /* We add a separator at the end of dirc if not exists */
   double brent(double ax, double bx, double cx,    l1 = strlen( dirc );                  /* length of directory */
                double (*f)(double), double tol, double *xmin);    if( dirc[l1-1] != DIRSEPARATOR ){
   double f1dim(double x);      dirc[l1] =  DIRSEPARATOR;
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,      dirc[l1+1] = 0; 
               double *fc, double (*func)(double));      printf(" DIRC3 = %s \n",dirc);
   int j;    }
   double xx,xmin,bx,ax;    ss = strrchr( name, '.' );            /* find last / */
   double fx,fb,fa;    if (ss >0){
        ss++;
   ncom=n;      strcpy(ext,ss);                     /* save extension */
   pcom=vector(1,n);      l1= strlen( name);
   xicom=vector(1,n);      l2= strlen(ss)+1;
   nrfunc=func;      strncpy( finame, name, l1-l2);
   for (j=1;j<=n;j++) {      finame[l1-l2]= 0;
     pcom[j]=p[j];    }
     xicom[j]=xi[j];  
   }    return( 0 );                          /* we're done */
   ax=0.0;  }
   xx=1.0;  
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);  /******************************************/
 #ifdef DEBUG  
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  void replace_back_to_slash(char *s, char*t)
   fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  {
 #endif    int i;
   for (j=1;j<=n;j++) {    int lg=0;
     xi[j] *= xmin;    i=0;
     p[j] += xi[j];    lg=strlen(t);
   }    for(i=0; i<= lg; i++) {
   free_vector(xicom,1,n);      (s[i] = t[i]);
   free_vector(pcom,1,n);      if (t[i]== '\\') s[i]='/';
 }    }
   }
 /*************** powell ************************/  
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,  int nbocc(char *s, char occ)
             double (*func)(double []))  {
 {    int i,j=0;
   void linmin(double p[], double xi[], int n, double *fret,    int lg=20;
               double (*func)(double []));    i=0;
   int i,ibig,j;    lg=strlen(s);
   double del,t,*pt,*ptt,*xit;    for(i=0; i<= lg; i++) {
   double fp,fptt;    if  (s[i] == occ ) j++;
   double *xits;    }
   pt=vector(1,n);    return j;
   ptt=vector(1,n);  }
   xit=vector(1,n);  
   xits=vector(1,n);  void cutv(char *u,char *v, char*t, char occ)
   *fret=(*func)(p);  {
   for (j=1;j<=n;j++) pt[j]=p[j];    /* cuts string t into u and v where u ends before first occurence of char 'occ' 
   for (*iter=1;;++(*iter)) {       and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
     fp=(*fret);       gives u="abcedf" and v="ghi2j" */
     ibig=0;    int i,lg,j,p=0;
     del=0.0;    i=0;
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);    for(j=0; j<=strlen(t)-1; j++) {
     fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f",*iter,*fret);      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
     for (i=1;i<=n;i++)    }
       printf(" %d %.12f",i, p[i]);  
     fprintf(ficlog," %d %.12f",i, p[i]);    lg=strlen(t);
     printf("\n");    for(j=0; j<p; j++) {
     fprintf(ficlog,"\n");      (u[j] = t[j]);
     for (i=1;i<=n;i++) {    }
       for (j=1;j<=n;j++) xit[j]=xi[j][i];       u[p]='\0';
       fptt=(*fret);  
 #ifdef DEBUG     for(j=0; j<= lg; j++) {
       printf("fret=%lf \n",*fret);      if (j>=(p+1))(v[j-p-1] = t[j]);
       fprintf(ficlog,"fret=%lf \n",*fret);    }
 #endif  }
       printf("%d",i);fflush(stdout);  
       fprintf(ficlog,"%d",i);fflush(ficlog);  /********************** nrerror ********************/
       linmin(p,xit,n,fret,func);  
       if (fabs(fptt-(*fret)) > del) {  void nrerror(char error_text[])
         del=fabs(fptt-(*fret));  {
         ibig=i;    fprintf(stderr,"ERREUR ...\n");
       }    fprintf(stderr,"%s\n",error_text);
 #ifdef DEBUG    exit(EXIT_FAILURE);
       printf("%d %.12e",i,(*fret));  }
       fprintf(ficlog,"%d %.12e",i,(*fret));  /*********************** vector *******************/
       for (j=1;j<=n;j++) {  double *vector(int nl, int nh)
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);  {
         printf(" x(%d)=%.12e",j,xit[j]);    double *v;
         fprintf(ficlog," x(%d)=%.12e",j,xit[j]);    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
       }    if (!v) nrerror("allocation failure in vector");
       for(j=1;j<=n;j++) {    return v-nl+NR_END;
         printf(" p=%.12e",p[j]);  }
         fprintf(ficlog," p=%.12e",p[j]);  
       }  /************************ free vector ******************/
       printf("\n");  void free_vector(double*v, int nl, int nh)
       fprintf(ficlog,"\n");  {
 #endif    free((FREE_ARG)(v+nl-NR_END));
     }  }
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {  
 #ifdef DEBUG  /************************ivector *******************************/
       int k[2],l;  int *ivector(long nl,long nh)
       k[0]=1;  {
       k[1]=-1;    int *v;
       printf("Max: %.12e",(*func)(p));    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
       fprintf(ficlog,"Max: %.12e",(*func)(p));    if (!v) nrerror("allocation failure in ivector");
       for (j=1;j<=n;j++) {    return v-nl+NR_END;
         printf(" %.12e",p[j]);  }
         fprintf(ficlog," %.12e",p[j]);  
       }  /******************free ivector **************************/
       printf("\n");  void free_ivector(int *v, long nl, long nh)
       fprintf(ficlog,"\n");  {
       for(l=0;l<=1;l++) {    free((FREE_ARG)(v+nl-NR_END));
         for (j=1;j<=n;j++) {  }
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];  
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  /************************lvector *******************************/
           fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  long *lvector(long nl,long nh)
         }  {
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    long *v;
         fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
       }    if (!v) nrerror("allocation failure in ivector");
 #endif    return v-nl+NR_END;
   }
   
       free_vector(xit,1,n);  /******************free lvector **************************/
       free_vector(xits,1,n);  void free_lvector(long *v, long nl, long nh)
       free_vector(ptt,1,n);  {
       free_vector(pt,1,n);    free((FREE_ARG)(v+nl-NR_END));
       return;  }
     }  
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");  /******************* imatrix *******************************/
     for (j=1;j<=n;j++) {  int **imatrix(long nrl, long nrh, long ncl, long nch) 
       ptt[j]=2.0*p[j]-pt[j];       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
       xit[j]=p[j]-pt[j];  { 
       pt[j]=p[j];    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
     }    int **m; 
     fptt=(*func)(ptt);    
     if (fptt < fp) {    /* allocate pointers to rows */ 
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
       if (t < 0.0) {    if (!m) nrerror("allocation failure 1 in matrix()"); 
         linmin(p,xit,n,fret,func);    m += NR_END; 
         for (j=1;j<=n;j++) {    m -= nrl; 
           xi[j][ibig]=xi[j][n];    
           xi[j][n]=xit[j];    
         }    /* allocate rows and set pointers to them */ 
 #ifdef DEBUG    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
         fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);    m[nrl] += NR_END; 
         for(j=1;j<=n;j++){    m[nrl] -= ncl; 
           printf(" %.12e",xit[j]);    
           fprintf(ficlog," %.12e",xit[j]);    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
         }    
         printf("\n");    /* return pointer to array of pointers to rows */ 
         fprintf(ficlog,"\n");    return m; 
 #endif  } 
       }  
     }  /****************** free_imatrix *************************/
   }  void free_imatrix(m,nrl,nrh,ncl,nch)
 }        int **m;
         long nch,ncl,nrh,nrl; 
 /**** Prevalence limit ****************/       /* free an int matrix allocated by imatrix() */ 
   { 
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
 {    free((FREE_ARG) (m+nrl-NR_END)); 
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit  } 
      matrix by transitions matrix until convergence is reached */  
   /******************* matrix *******************************/
   int i, ii,j,k;  double **matrix(long nrl, long nrh, long ncl, long nch)
   double min, max, maxmin, maxmax,sumnew=0.;  {
   double **matprod2();    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
   double **out, cov[NCOVMAX], **pmij();    double **m;
   double **newm;  
   double agefin, delaymax=50 ; /* Max number of years to converge */    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     if (!m) nrerror("allocation failure 1 in matrix()");
   for (ii=1;ii<=nlstate+ndeath;ii++)    m += NR_END;
     for (j=1;j<=nlstate+ndeath;j++){    m -= nrl;
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);  
     }    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
    cov[1]=1.;    m[nrl] += NR_END;
      m[nrl] -= ncl;
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */  
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
     newm=savm;    return m;
     /* Covariates have to be included here again */    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
      cov[2]=agefin;     */
    }
       for (k=1; k<=cptcovn;k++) {  
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  /*************************free matrix ************************/
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
       }  {
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    free((FREE_ARG)(m[nrl]+ncl-NR_END));
       for (k=1; k<=cptcovprod;k++)    free((FREE_ARG)(m+nrl-NR_END));
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  }
   
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/  /******************* ma3x *******************************/
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/  {
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
     double ***m;
     savm=oldm;  
     oldm=newm;    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     maxmax=0.;    if (!m) nrerror("allocation failure 1 in matrix()");
     for(j=1;j<=nlstate;j++){    m += NR_END;
       min=1.;    m -= nrl;
       max=0.;  
       for(i=1; i<=nlstate; i++) {    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
         sumnew=0;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];    m[nrl] += NR_END;
         prlim[i][j]= newm[i][j]/(1-sumnew);    m[nrl] -= ncl;
         max=FMAX(max,prlim[i][j]);  
         min=FMIN(min,prlim[i][j]);    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
       }  
       maxmin=max-min;    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
       maxmax=FMAX(maxmax,maxmin);    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
     }    m[nrl][ncl] += NR_END;
     if(maxmax < ftolpl){    m[nrl][ncl] -= nll;
       return prlim;    for (j=ncl+1; j<=nch; j++) 
     }      m[nrl][j]=m[nrl][j-1]+nlay;
   }    
 }    for (i=nrl+1; i<=nrh; i++) {
       m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
 /*************** transition probabilities ***************/      for (j=ncl+1; j<=nch; j++) 
         m[i][j]=m[i][j-1]+nlay;
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )    }
 {    return m; 
   double s1, s2;    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
   /*double t34;*/             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
   int i,j,j1, nc, ii, jj;    */
   }
     for(i=1; i<= nlstate; i++){  
     for(j=1; j<i;j++){  /*************************free ma3x ************************/
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
         /*s2 += param[i][j][nc]*cov[nc];*/  {
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/    free((FREE_ARG)(m[nrl]+ncl-NR_END));
       }    free((FREE_ARG)(m+nrl-NR_END));
       ps[i][j]=s2;  }
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/  
     }  /*************** function subdirf ***********/
     for(j=i+1; j<=nlstate+ndeath;j++){  char *subdirf(char fileres[])
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  {
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    /* Caution optionfilefiname is hidden */
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/    strcpy(tmpout,optionfilefiname);
       }    strcat(tmpout,"/"); /* Add to the right */
       ps[i][j]=s2;    strcat(tmpout,fileres);
     }    return tmpout;
   }  }
     /*ps[3][2]=1;*/  
   /*************** function subdirf2 ***********/
   for(i=1; i<= nlstate; i++){  char *subdirf2(char fileres[], char *preop)
      s1=0;  {
     for(j=1; j<i; j++)    
       s1+=exp(ps[i][j]);    /* Caution optionfilefiname is hidden */
     for(j=i+1; j<=nlstate+ndeath; j++)    strcpy(tmpout,optionfilefiname);
       s1+=exp(ps[i][j]);    strcat(tmpout,"/");
     ps[i][i]=1./(s1+1.);    strcat(tmpout,preop);
     for(j=1; j<i; j++)    strcat(tmpout,fileres);
       ps[i][j]= exp(ps[i][j])*ps[i][i];    return tmpout;
     for(j=i+1; j<=nlstate+ndeath; j++)  }
       ps[i][j]= exp(ps[i][j])*ps[i][i];  
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */  /*************** function subdirf3 ***********/
   } /* end i */  char *subdirf3(char fileres[], char *preop, char *preop2)
   {
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){    
     for(jj=1; jj<= nlstate+ndeath; jj++){    /* Caution optionfilefiname is hidden */
       ps[ii][jj]=0;    strcpy(tmpout,optionfilefiname);
       ps[ii][ii]=1;    strcat(tmpout,"/");
     }    strcat(tmpout,preop);
   }    strcat(tmpout,preop2);
     strcat(tmpout,fileres);
     return tmpout;
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){  }
     for(jj=1; jj<= nlstate+ndeath; jj++){  
      printf("%lf ",ps[ii][jj]);  /***************** f1dim *************************/
    }  extern int ncom; 
     printf("\n ");  extern double *pcom,*xicom;
     }  extern double (*nrfunc)(double []); 
     printf("\n ");printf("%lf ",cov[2]);*/   
 /*  double f1dim(double x) 
   for(i=1; i<= npar; i++) printf("%f ",x[i]);  { 
   goto end;*/    int j; 
     return ps;    double f;
 }    double *xt; 
    
 /**************** Product of 2 matrices ******************/    xt=vector(1,ncom); 
     for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)    f=(*nrfunc)(xt); 
 {    free_vector(xt,1,ncom); 
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times    return f; 
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */  } 
   /* in, b, out are matrice of pointers which should have been initialized  
      before: only the contents of out is modified. The function returns  /*****************brent *************************/
      a pointer to pointers identical to out */  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
   long i, j, k;  { 
   for(i=nrl; i<= nrh; i++)    int iter; 
     for(k=ncolol; k<=ncoloh; k++)    double a,b,d,etemp;
       for(j=ncl,out[i][k]=0.; j<=nch; j++)    double fu,fv,fw,fx;
         out[i][k] +=in[i][j]*b[j][k];    double ftemp;
     double p,q,r,tol1,tol2,u,v,w,x,xm; 
   return out;    double e=0.0; 
 }   
     a=(ax < cx ? ax : cx); 
     b=(ax > cx ? ax : cx); 
 /************* Higher Matrix Product ***************/    x=w=v=bx; 
     fw=fv=fx=(*f)(x); 
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )    for (iter=1;iter<=ITMAX;iter++) { 
 {      xm=0.5*(a+b); 
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
      duration (i.e. until      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.      printf(".");fflush(stdout);
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step      fprintf(ficlog,".");fflush(ficlog);
      (typically every 2 years instead of every month which is too big).  #ifdef DEBUG
      Model is determined by parameters x and covariates have to be      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
      included manually here.      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
      */  #endif
       if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
   int i, j, d, h, k;        *xmin=x; 
   double **out, cov[NCOVMAX];        return fx; 
   double **newm;      } 
       ftemp=fu;
   /* Hstepm could be zero and should return the unit matrix */      if (fabs(e) > tol1) { 
   for (i=1;i<=nlstate+ndeath;i++)        r=(x-w)*(fx-fv); 
     for (j=1;j<=nlstate+ndeath;j++){        q=(x-v)*(fx-fw); 
       oldm[i][j]=(i==j ? 1.0 : 0.0);        p=(x-v)*q-(x-w)*r; 
       po[i][j][0]=(i==j ? 1.0 : 0.0);        q=2.0*(q-r); 
     }        if (q > 0.0) p = -p; 
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */        q=fabs(q); 
   for(h=1; h <=nhstepm; h++){        etemp=e; 
     for(d=1; d <=hstepm; d++){        e=d; 
       newm=savm;        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
       /* Covariates have to be included here again */          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
       cov[1]=1.;        else { 
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;          d=p/q; 
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];          u=x+d; 
       for (k=1; k<=cptcovage;k++)          if (u-a < tol2 || b-u < tol2) 
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];            d=SIGN(tol1,xm-x); 
       for (k=1; k<=cptcovprod;k++)        } 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];      } else { 
         d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
       } 
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/      fu=(*f)(u); 
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,      if (fu <= fx) { 
                    pmij(pmmij,cov,ncovmodel,x,nlstate));        if (u >= x) a=x; else b=x; 
       savm=oldm;        SHFT(v,w,x,u) 
       oldm=newm;          SHFT(fv,fw,fx,fu) 
     }          } else { 
     for(i=1; i<=nlstate+ndeath; i++)            if (u < x) a=u; else b=u; 
       for(j=1;j<=nlstate+ndeath;j++) {            if (fu <= fw || w == x) { 
         po[i][j][h]=newm[i][j];              v=w; 
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);              w=u; 
          */              fv=fw; 
       }              fw=fu; 
   } /* end h */            } else if (fu <= fv || v == x || v == w) { 
   return po;              v=u; 
 }              fv=fu; 
             } 
           } 
 /*************** log-likelihood *************/    } 
 double func( double *x)    nrerror("Too many iterations in brent"); 
 {    *xmin=x; 
   int i, ii, j, k, mi, d, kk;    return fx; 
   double l, ll[NLSTATEMAX], cov[NCOVMAX];  } 
   double **out;  
   double sw; /* Sum of weights */  /****************** mnbrak ***********************/
   double lli; /* Individual log likelihood */  
   long ipmx;  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
   /*extern weight */              double (*func)(double)) 
   /* We are differentiating ll according to initial status */  { 
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/    double ulim,u,r,q, dum;
   /*for(i=1;i<imx;i++)    double fu; 
     printf(" %d\n",s[4][i]);   
   */    *fa=(*func)(*ax); 
   cov[1]=1.;    *fb=(*func)(*bx); 
     if (*fb > *fa) { 
   for(k=1; k<=nlstate; k++) ll[k]=0.;      SHFT(dum,*ax,*bx,dum) 
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){        SHFT(dum,*fb,*fa,dum) 
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];        } 
     for(mi=1; mi<= wav[i]-1; mi++){    *cx=(*bx)+GOLD*(*bx-*ax); 
       for (ii=1;ii<=nlstate+ndeath;ii++)    *fc=(*func)(*cx); 
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);    while (*fb > *fc) { 
       for(d=0; d<dh[mi][i]; d++){      r=(*bx-*ax)*(*fb-*fc); 
         newm=savm;      q=(*bx-*cx)*(*fb-*fa); 
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
         for (kk=1; kk<=cptcovage;kk++) {        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];      ulim=(*bx)+GLIMIT*(*cx-*bx); 
         }      if ((*bx-u)*(u-*cx) > 0.0) { 
                fu=(*func)(u); 
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,      } else if ((*cx-u)*(u-ulim) > 0.0) { 
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));        fu=(*func)(u); 
         savm=oldm;        if (fu < *fc) { 
         oldm=newm;          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
                    SHFT(*fb,*fc,fu,(*func)(u)) 
                    } 
       } /* end mult */      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
              u=ulim; 
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);        fu=(*func)(u); 
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/      } else { 
       ipmx +=1;        u=(*cx)+GOLD*(*cx-*bx); 
       sw += weight[i];        fu=(*func)(u); 
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;      } 
     } /* end of wave */      SHFT(*ax,*bx,*cx,u) 
   } /* end of individual */        SHFT(*fa,*fb,*fc,fu) 
         } 
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];  } 
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */  
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */  /*************** linmin ************************/
   return -l;  
 }  int ncom; 
   double *pcom,*xicom;
   double (*nrfunc)(double []); 
 /*********** Maximum Likelihood Estimation ***************/   
   void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))  { 
 {    double brent(double ax, double bx, double cx, 
   int i,j, iter;                 double (*f)(double), double tol, double *xmin); 
   double **xi,*delti;    double f1dim(double x); 
   double fret;    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
   xi=matrix(1,npar,1,npar);                double *fc, double (*func)(double)); 
   for (i=1;i<=npar;i++)    int j; 
     for (j=1;j<=npar;j++)    double xx,xmin,bx,ax; 
       xi[i][j]=(i==j ? 1.0 : 0.0);    double fx,fb,fa;
   printf("Powell\n");  fprintf(ficlog,"Powell\n");   
   powell(p,xi,npar,ftol,&iter,&fret,func);    ncom=n; 
     pcom=vector(1,n); 
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));    xicom=vector(1,n); 
   fprintf(ficlog,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));    nrfunc=func; 
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));    for (j=1;j<=n;j++) { 
       pcom[j]=p[j]; 
 }      xicom[j]=xi[j]; 
     } 
 /**** Computes Hessian and covariance matrix ***/    ax=0.0; 
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))    xx=1.0; 
 {    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
   double  **a,**y,*x,pd;    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
   double **hess;  #ifdef DEBUG
   int i, j,jk;    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   int *indx;    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   #endif
   double hessii(double p[], double delta, int theta, double delti[]);    for (j=1;j<=n;j++) { 
   double hessij(double p[], double delti[], int i, int j);      xi[j] *= xmin; 
   void lubksb(double **a, int npar, int *indx, double b[]) ;      p[j] += xi[j]; 
   void ludcmp(double **a, int npar, int *indx, double *d) ;    } 
     free_vector(xicom,1,n); 
   hess=matrix(1,npar,1,npar);    free_vector(pcom,1,n); 
   } 
   printf("\nCalculation of the hessian matrix. Wait...\n");  
   fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");  char *asc_diff_time(long time_sec, char ascdiff[])
   for (i=1;i<=npar;i++){  {
     printf("%d",i);fflush(stdout);    long sec_left, days, hours, minutes;
     fprintf(ficlog,"%d",i);fflush(ficlog);    days = (time_sec) / (60*60*24);
     hess[i][i]=hessii(p,ftolhess,i,delti);    sec_left = (time_sec) % (60*60*24);
     /*printf(" %f ",p[i]);*/    hours = (sec_left) / (60*60) ;
     /*printf(" %lf ",hess[i][i]);*/    sec_left = (sec_left) %(60*60);
   }    minutes = (sec_left) /60;
      sec_left = (sec_left) % (60);
   for (i=1;i<=npar;i++) {    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
     for (j=1;j<=npar;j++)  {    return ascdiff;
       if (j>i) {  }
         printf(".%d%d",i,j);fflush(stdout);  
         fprintf(ficlog,".%d%d",i,j);fflush(ficlog);  /*************** powell ************************/
         hess[i][j]=hessij(p,delti,i,j);  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
         hess[j][i]=hess[i][j];                  double (*func)(double [])) 
         /*printf(" %lf ",hess[i][j]);*/  { 
       }    void linmin(double p[], double xi[], int n, double *fret, 
     }                double (*func)(double [])); 
   }    int i,ibig,j; 
   printf("\n");    double del,t,*pt,*ptt,*xit;
   fprintf(ficlog,"\n");    double fp,fptt;
     double *xits;
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");    int niterf, itmp;
   fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");  
      pt=vector(1,n); 
   a=matrix(1,npar,1,npar);    ptt=vector(1,n); 
   y=matrix(1,npar,1,npar);    xit=vector(1,n); 
   x=vector(1,npar);    xits=vector(1,n); 
   indx=ivector(1,npar);    *fret=(*func)(p); 
   for (i=1;i<=npar;i++)    for (j=1;j<=n;j++) pt[j]=p[j]; 
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];    for (*iter=1;;++(*iter)) { 
   ludcmp(a,npar,indx,&pd);      fp=(*fret); 
       ibig=0; 
   for (j=1;j<=npar;j++) {      del=0.0; 
     for (i=1;i<=npar;i++) x[i]=0;      last_time=curr_time;
     x[j]=1;      (void) gettimeofday(&curr_time,&tzp);
     lubksb(a,npar,indx,x);      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
     for (i=1;i<=npar;i++){      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec); fflush(ficlog);
       matcov[i][j]=x[i];  /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec); */
     }     for (i=1;i<=n;i++) {
   }        printf(" %d %.12f",i, p[i]);
         fprintf(ficlog," %d %.12lf",i, p[i]);
   printf("\n#Hessian matrix#\n");        fprintf(ficrespow," %.12lf", p[i]);
   fprintf(ficlog,"\n#Hessian matrix#\n");      }
   for (i=1;i<=npar;i++) {      printf("\n");
     for (j=1;j<=npar;j++) {      fprintf(ficlog,"\n");
       printf("%.3e ",hess[i][j]);      fprintf(ficrespow,"\n");fflush(ficrespow);
       fprintf(ficlog,"%.3e ",hess[i][j]);      if(*iter <=3){
     }        tm = *localtime(&curr_time.tv_sec);
     printf("\n");        strcpy(strcurr,asctime(&tm));
     fprintf(ficlog,"\n");  /*       asctime_r(&tm,strcurr); */
   }        forecast_time=curr_time; 
         itmp = strlen(strcurr);
   /* Recompute Inverse */        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
   for (i=1;i<=npar;i++)          strcurr[itmp-1]='\0';
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
   ludcmp(a,npar,indx,&pd);        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
         for(niterf=10;niterf<=30;niterf+=10){
   /*  printf("\n#Hessian matrix recomputed#\n");          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
           tmf = *localtime(&forecast_time.tv_sec);
   for (j=1;j<=npar;j++) {  /*      asctime_r(&tmf,strfor); */
     for (i=1;i<=npar;i++) x[i]=0;          strcpy(strfor,asctime(&tmf));
     x[j]=1;          itmp = strlen(strfor);
     lubksb(a,npar,indx,x);          if(strfor[itmp-1]=='\n')
     for (i=1;i<=npar;i++){          strfor[itmp-1]='\0';
       y[i][j]=x[i];          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
       printf("%.3e ",y[i][j]);          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
       fprintf(ficlog,"%.3e ",y[i][j]);        }
     }      }
     printf("\n");      for (i=1;i<=n;i++) { 
     fprintf(ficlog,"\n");        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
   }        fptt=(*fret); 
   */  #ifdef DEBUG
         printf("fret=%lf \n",*fret);
   free_matrix(a,1,npar,1,npar);        fprintf(ficlog,"fret=%lf \n",*fret);
   free_matrix(y,1,npar,1,npar);  #endif
   free_vector(x,1,npar);        printf("%d",i);fflush(stdout);
   free_ivector(indx,1,npar);        fprintf(ficlog,"%d",i);fflush(ficlog);
   free_matrix(hess,1,npar,1,npar);        linmin(p,xit,n,fret,func); 
         if (fabs(fptt-(*fret)) > del) { 
           del=fabs(fptt-(*fret)); 
 }          ibig=i; 
         } 
 /*************** hessian matrix ****************/  #ifdef DEBUG
 double hessii( double x[], double delta, int theta, double delti[])        printf("%d %.12e",i,(*fret));
 {        fprintf(ficlog,"%d %.12e",i,(*fret));
   int i;        for (j=1;j<=n;j++) {
   int l=1, lmax=20;          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
   double k1,k2;          printf(" x(%d)=%.12e",j,xit[j]);
   double p2[NPARMAX+1];          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
   double res;        }
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;        for(j=1;j<=n;j++) {
   double fx;          printf(" p=%.12e",p[j]);
   int k=0,kmax=10;          fprintf(ficlog," p=%.12e",p[j]);
   double l1;        }
         printf("\n");
   fx=func(x);        fprintf(ficlog,"\n");
   for (i=1;i<=npar;i++) p2[i]=x[i];  #endif
   for(l=0 ; l <=lmax; l++){      } 
     l1=pow(10,l);      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
     delts=delt;  #ifdef DEBUG
     for(k=1 ; k <kmax; k=k+1){        int k[2],l;
       delt = delta*(l1*k);        k[0]=1;
       p2[theta]=x[theta] +delt;        k[1]=-1;
       k1=func(p2)-fx;        printf("Max: %.12e",(*func)(p));
       p2[theta]=x[theta]-delt;        fprintf(ficlog,"Max: %.12e",(*func)(p));
       k2=func(p2)-fx;        for (j=1;j<=n;j++) {
       /*res= (k1-2.0*fx+k2)/delt/delt; */          printf(" %.12e",p[j]);
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */          fprintf(ficlog," %.12e",p[j]);
              }
 #ifdef DEBUG        printf("\n");
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);        fprintf(ficlog,"\n");
       fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);        for(l=0;l<=1;l++) {
 #endif          for (j=1;j<=n;j++) {
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
         k=kmax;            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
       }          }
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
         k=kmax; l=lmax*10.;          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
       }        }
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){  #endif
         delts=delt;  
       }  
     }        free_vector(xit,1,n); 
   }        free_vector(xits,1,n); 
   delti[theta]=delts;        free_vector(ptt,1,n); 
   return res;        free_vector(pt,1,n); 
          return; 
 }      } 
       if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
 double hessij( double x[], double delti[], int thetai,int thetaj)      for (j=1;j<=n;j++) { 
 {        ptt[j]=2.0*p[j]-pt[j]; 
   int i;        xit[j]=p[j]-pt[j]; 
   int l=1, l1, lmax=20;        pt[j]=p[j]; 
   double k1,k2,k3,k4,res,fx;      } 
   double p2[NPARMAX+1];      fptt=(*func)(ptt); 
   int k;      if (fptt < fp) { 
         t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
   fx=func(x);        if (t < 0.0) { 
   for (k=1; k<=2; k++) {          linmin(p,xit,n,fret,func); 
     for (i=1;i<=npar;i++) p2[i]=x[i];          for (j=1;j<=n;j++) { 
     p2[thetai]=x[thetai]+delti[thetai]/k;            xi[j][ibig]=xi[j][n]; 
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;            xi[j][n]=xit[j]; 
     k1=func(p2)-fx;          }
    #ifdef DEBUG
     p2[thetai]=x[thetai]+delti[thetai]/k;          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
     k2=func(p2)-fx;          for(j=1;j<=n;j++){
              printf(" %.12e",xit[j]);
     p2[thetai]=x[thetai]-delti[thetai]/k;            fprintf(ficlog," %.12e",xit[j]);
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;          }
     k3=func(p2)-fx;          printf("\n");
            fprintf(ficlog,"\n");
     p2[thetai]=x[thetai]-delti[thetai]/k;  #endif
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;        }
     k4=func(p2)-fx;      } 
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */    } 
 #ifdef DEBUG  } 
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);  
     fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);  /**** Prevalence limit (stable or period prevalence)  ****************/
 #endif  
   }  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
   return res;  {
 }    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
        matrix by transitions matrix until convergence is reached */
 /************** Inverse of matrix **************/  
 void ludcmp(double **a, int n, int *indx, double *d)    int i, ii,j,k;
 {    double min, max, maxmin, maxmax,sumnew=0.;
   int i,imax,j,k;    double **matprod2();
   double big,dum,sum,temp;    double **out, cov[NCOVMAX], **pmij();
   double *vv;    double **newm;
      double agefin, delaymax=50 ; /* Max number of years to converge */
   vv=vector(1,n);  
   *d=1.0;    for (ii=1;ii<=nlstate+ndeath;ii++)
   for (i=1;i<=n;i++) {      for (j=1;j<=nlstate+ndeath;j++){
     big=0.0;        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     for (j=1;j<=n;j++)      }
       if ((temp=fabs(a[i][j])) > big) big=temp;  
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");     cov[1]=1.;
     vv[i]=1.0/big;   
   }   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   for (j=1;j<=n;j++) {    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
     for (i=1;i<j;i++) {      newm=savm;
       sum=a[i][j];      /* Covariates have to be included here again */
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];       cov[2]=agefin;
       a[i][j]=sum;    
     }        for (k=1; k<=cptcovn;k++) {
     big=0.0;          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
     for (i=j;i<=n;i++) {          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
       sum=a[i][j];        }
       for (k=1;k<j;k++)        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
         sum -= a[i][k]*a[k][j];        for (k=1; k<=cptcovprod;k++)
       a[i][j]=sum;          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
       if ( (dum=vv[i]*fabs(sum)) >= big) {  
         big=dum;        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
         imax=i;        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
       }        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
     }      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
     if (j != imax) {  
       for (k=1;k<=n;k++) {      savm=oldm;
         dum=a[imax][k];      oldm=newm;
         a[imax][k]=a[j][k];      maxmax=0.;
         a[j][k]=dum;      for(j=1;j<=nlstate;j++){
       }        min=1.;
       *d = -(*d);        max=0.;
       vv[imax]=vv[j];        for(i=1; i<=nlstate; i++) {
     }          sumnew=0;
     indx[j]=imax;          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
     if (a[j][j] == 0.0) a[j][j]=TINY;          prlim[i][j]= newm[i][j]/(1-sumnew);
     if (j != n) {          max=FMAX(max,prlim[i][j]);
       dum=1.0/(a[j][j]);          min=FMIN(min,prlim[i][j]);
       for (i=j+1;i<=n;i++) a[i][j] *= dum;        }
     }        maxmin=max-min;
   }        maxmax=FMAX(maxmax,maxmin);
   free_vector(vv,1,n);  /* Doesn't work */      }
 ;      if(maxmax < ftolpl){
 }        return prlim;
       }
 void lubksb(double **a, int n, int *indx, double b[])    }
 {  }
   int i,ii=0,ip,j;  
   double sum;  /*************** transition probabilities ***************/ 
    
   for (i=1;i<=n;i++) {  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
     ip=indx[i];  {
     sum=b[ip];    double s1, s2;
     b[ip]=b[i];    /*double t34;*/
     if (ii)    int i,j,j1, nc, ii, jj;
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];  
     else if (sum) ii=i;      for(i=1; i<= nlstate; i++){
     b[i]=sum;        for(j=1; j<i;j++){
   }          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
   for (i=n;i>=1;i--) {            /*s2 += param[i][j][nc]*cov[nc];*/
     sum=b[i];            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];  /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
     b[i]=sum/a[i][i];          }
   }          ps[i][j]=s2;
 }  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
         }
 /************ Frequencies ********************/        for(j=i+1; j<=nlstate+ndeath;j++){
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
 {  /* Some frequencies */            s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
    /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;          }
   int first;          ps[i][j]=s2;
   double ***freq; /* Frequencies */        }
   double *pp;      }
   double pos, k2, dateintsum=0,k2cpt=0;      /*ps[3][2]=1;*/
   FILE *ficresp;      
   char fileresp[FILENAMELENGTH];      for(i=1; i<= nlstate; i++){
          s1=0;
   pp=vector(1,nlstate);        for(j=1; j<i; j++)
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);          s1+=exp(ps[i][j]);
   strcpy(fileresp,"p");        for(j=i+1; j<=nlstate+ndeath; j++)
   strcat(fileresp,fileres);          s1+=exp(ps[i][j]);
   if((ficresp=fopen(fileresp,"w"))==NULL) {        ps[i][i]=1./(s1+1.);
     printf("Problem with prevalence resultfile: %s\n", fileresp);        for(j=1; j<i; j++)
     fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);          ps[i][j]= exp(ps[i][j])*ps[i][i];
     exit(0);        for(j=i+1; j<=nlstate+ndeath; j++)
   }          ps[i][j]= exp(ps[i][j])*ps[i][i];
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
   j1=0;      } /* end i */
        
   j=cptcoveff;      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
   if (cptcovn<1) {j=1;ncodemax[1]=1;}        for(jj=1; jj<= nlstate+ndeath; jj++){
           ps[ii][jj]=0;
   first=1;          ps[ii][ii]=1;
         }
   for(k1=1; k1<=j;k1++){      }
     for(i1=1; i1<=ncodemax[k1];i1++){      
       j1++;  
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
         scanf("%d", i);*/  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
       for (i=-1; i<=nlstate+ndeath; i++)    /*         printf("ddd %lf ",ps[ii][jj]); */
         for (jk=-1; jk<=nlstate+ndeath; jk++)    /*       } */
           for(m=agemin; m <= agemax+3; m++)  /*       printf("\n "); */
             freq[i][jk][m]=0;  /*        } */
        /*        printf("\n ");printf("%lf ",cov[2]); */
       dateintsum=0;         /*
       k2cpt=0;        for(i=1; i<= npar; i++) printf("%f ",x[i]);
       for (i=1; i<=imx; i++) {        goto end;*/
         bool=1;      return ps;
         if  (cptcovn>0) {  }
           for (z1=1; z1<=cptcoveff; z1++)  
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])  /**************** Product of 2 matrices ******************/
               bool=0;  
         }  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
         if (bool==1) {  {
           for(m=firstpass; m<=lastpass; m++){    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
             k2=anint[m][i]+(mint[m][i]/12.);       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
             if ((k2>=dateprev1) && (k2<=dateprev2)) {    /* in, b, out are matrice of pointers which should have been initialized 
               if(agev[m][i]==0) agev[m][i]=agemax+1;       before: only the contents of out is modified. The function returns
               if(agev[m][i]==1) agev[m][i]=agemax+2;       a pointer to pointers identical to out */
               if (m<lastpass) {    long i, j, k;
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];    for(i=nrl; i<= nrh; i++)
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];      for(k=ncolol; k<=ncoloh; k++)
               }        for(j=ncl,out[i][k]=0.; j<=nch; j++)
                        out[i][k] +=in[i][j]*b[j][k];
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {  
                 dateintsum=dateintsum+k2;    return out;
                 k2cpt++;  }
               }  
             }  
           }  /************* Higher Matrix Product ***************/
         }  
       }  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
          {
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    /* Computes the transition matrix starting at age 'age' over 
        'nhstepm*hstepm*stepm' months (i.e. until
       if  (cptcovn>0) {       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
         fprintf(ficresp, "\n#********** Variable ");       nhstepm*hstepm matrices. 
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
         fprintf(ficresp, "**********\n#");       (typically every 2 years instead of every month which is too big 
       }       for the memory).
       for(i=1; i<=nlstate;i++)       Model is determined by parameters x and covariates have to be 
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);       included manually here. 
       fprintf(ficresp, "\n");  
             */
       for(i=(int)agemin; i <= (int)agemax+3; i++){  
         if(i==(int)agemax+3){    int i, j, d, h, k;
           fprintf(ficlog,"Total");    double **out, cov[NCOVMAX];
         }else{    double **newm;
           if(first==1){  
             first=0;    /* Hstepm could be zero and should return the unit matrix */
             printf("See log file for details...\n");    for (i=1;i<=nlstate+ndeath;i++)
           }      for (j=1;j<=nlstate+ndeath;j++){
           fprintf(ficlog,"Age %d", i);        oldm[i][j]=(i==j ? 1.0 : 0.0);
         }        po[i][j][0]=(i==j ? 1.0 : 0.0);
         for(jk=1; jk <=nlstate ; jk++){      }
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
             pp[jk] += freq[jk][m][i];    for(h=1; h <=nhstepm; h++){
         }      for(d=1; d <=hstepm; d++){
         for(jk=1; jk <=nlstate ; jk++){        newm=savm;
           for(m=-1, pos=0; m <=0 ; m++)        /* Covariates have to be included here again */
             pos += freq[jk][m][i];        cov[1]=1.;
           if(pp[jk]>=1.e-10){        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
             if(first==1){        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);        for (k=1; k<=cptcovage;k++)
             }          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
             fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);        for (k=1; k<=cptcovprod;k++)
           }else{          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
             if(first==1)  
               printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);  
             fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
           }        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
         }        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
                      pmij(pmmij,cov,ncovmodel,x,nlstate));
         for(jk=1; jk <=nlstate ; jk++){        savm=oldm;
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)        oldm=newm;
             pp[jk] += freq[jk][m][i];      }
         }      for(i=1; i<=nlstate+ndeath; i++)
         for(j=1;j<=nlstate+ndeath;j++) {
         for(jk=1,pos=0; jk <=nlstate ; jk++)          po[i][j][h]=newm[i][j];
           pos += pp[jk];          /*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/
         for(jk=1; jk <=nlstate ; jk++){        }
           if(pos>=1.e-5){      /*printf("h=%d ",h);*/
             if(first==1)    } /* end h */
               printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);  /*     printf("\n H=%d \n",h); */
             fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);    return po;
           }else{  }
             if(first==1)  
               printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);  
             fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);  /*************** log-likelihood *************/
           }  double func( double *x)
           if( i <= (int) agemax){  {
             if(pos>=1.e-5){    int i, ii, j, k, mi, d, kk;
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);    double l, ll[NLSTATEMAX], cov[NCOVMAX];
               probs[i][jk][j1]= pp[jk]/pos;    double **out;
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/    double sw; /* Sum of weights */
             }    double lli; /* Individual log likelihood */
             else    int s1, s2;
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);    double bbh, survp;
           }    long ipmx;
         }    /*extern weight */
            /* We are differentiating ll according to initial status */
         for(jk=-1; jk <=nlstate+ndeath; jk++)    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
           for(m=-1; m <=nlstate+ndeath; m++)    /*for(i=1;i<imx;i++) 
             if(freq[jk][m][i] !=0 ) {      printf(" %d\n",s[4][i]);
             if(first==1)    */
               printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);    cov[1]=1.;
               fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);  
             }    for(k=1; k<=nlstate; k++) ll[k]=0.;
         if(i <= (int) agemax)  
           fprintf(ficresp,"\n");    if(mle==1){
         if(first==1)      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           printf("Others in log...\n");        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         fprintf(ficlog,"\n");        for(mi=1; mi<= wav[i]-1; mi++){
       }          for (ii=1;ii<=nlstate+ndeath;ii++)
     }            for (j=1;j<=nlstate+ndeath;j++){
   }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   dateintmean=dateintsum/k2cpt;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
              }
   fclose(ficresp);          for(d=0; d<dh[mi][i]; d++){
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);            newm=savm;
   free_vector(pp,1,nlstate);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
              for (kk=1; kk<=cptcovage;kk++) {
   /* End of Freq */              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 }            }
             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 /************ Prevalence ********************/                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)            savm=oldm;
 {  /* Some frequencies */            oldm=newm;
            } /* end mult */
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;        
   double ***freq; /* Frequencies */          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
   double *pp;          /* But now since version 0.9 we anticipate for bias at large stepm.
   double pos, k2;           * If stepm is larger than one month (smallest stepm) and if the exact delay 
            * (in months) between two waves is not a multiple of stepm, we rounded to 
   pp=vector(1,nlstate);           * the nearest (and in case of equal distance, to the lowest) interval but now
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);           * we keep into memory the bias bh[mi][i] and also the previous matrix product
             * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);           * probability in order to take into account the bias as a fraction of the way
   j1=0;           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
             * -stepm/2 to stepm/2 .
   j=cptcoveff;           * For stepm=1 the results are the same as for previous versions of Imach.
   if (cptcovn<1) {j=1;ncodemax[1]=1;}           * For stepm > 1 the results are less biased than in previous versions. 
             */
   for(k1=1; k1<=j;k1++){          s1=s[mw[mi][i]][i];
     for(i1=1; i1<=ncodemax[k1];i1++){          s2=s[mw[mi+1][i]][i];
       j1++;          bbh=(double)bh[mi][i]/(double)stepm; 
                /* bias bh is positive if real duration
       for (i=-1; i<=nlstate+ndeath; i++)             * is higher than the multiple of stepm and negative otherwise.
         for (jk=-1; jk<=nlstate+ndeath; jk++)             */
           for(m=agemin; m <= agemax+3; m++)          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
             freq[i][jk][m]=0;          if( s2 > nlstate){ 
                  /* i.e. if s2 is a death state and if the date of death is known 
       for (i=1; i<=imx; i++) {               then the contribution to the likelihood is the probability to 
         bool=1;               die between last step unit time and current  step unit time, 
         if  (cptcovn>0) {               which is also equal to probability to die before dh 
           for (z1=1; z1<=cptcoveff; z1++)               minus probability to die before dh-stepm . 
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])               In version up to 0.92 likelihood was computed
               bool=0;          as if date of death was unknown. Death was treated as any other
         }          health state: the date of the interview describes the actual state
         if (bool==1) {          and not the date of a change in health state. The former idea was
           for(m=firstpass; m<=lastpass; m++){          to consider that at each interview the state was recorded
             k2=anint[m][i]+(mint[m][i]/12.);          (healthy, disable or death) and IMaCh was corrected; but when we
             if ((k2>=dateprev1) && (k2<=dateprev2)) {          introduced the exact date of death then we should have modified
               if(agev[m][i]==0) agev[m][i]=agemax+1;          the contribution of an exact death to the likelihood. This new
               if(agev[m][i]==1) agev[m][i]=agemax+2;          contribution is smaller and very dependent of the step unit
               if (m<lastpass) {          stepm. It is no more the probability to die between last interview
                 if (calagedate>0)          and month of death but the probability to survive from last
                   freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];          interview up to one month before death multiplied by the
                 else          probability to die within a month. Thanks to Chris
                   freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];          Jackson for correcting this bug.  Former versions increased
                 freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];          mortality artificially. The bad side is that we add another loop
               }          which slows down the processing. The difference can be up to 10%
             }          lower mortality.
           }            */
         }            lli=log(out[s1][s2] - savm[s1][s2]);
       }  
       for(i=(int)agemin; i <= (int)agemax+3; i++){  
         for(jk=1; jk <=nlstate ; jk++){          } else if  (s2==-2) {
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)            for (j=1,survp=0. ; j<=nlstate; j++) 
             pp[jk] += freq[jk][m][i];              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
         }            /*survp += out[s1][j]; */
         for(jk=1; jk <=nlstate ; jk++){            lli= log(survp);
           for(m=-1, pos=0; m <=0 ; m++)          }
             pos += freq[jk][m][i];          
         }          else if  (s2==-4) { 
                    for (j=3,survp=0. ; j<=nlstate; j++)  
         for(jk=1; jk <=nlstate ; jk++){              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)            lli= log(survp); 
             pp[jk] += freq[jk][m][i];          } 
         }  
                  else if  (s2==-5) { 
         for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];            for (j=1,survp=0. ; j<=2; j++)  
                      survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
         for(jk=1; jk <=nlstate ; jk++){                lli= log(survp); 
           if( i <= (int) agemax){          } 
             if(pos>=1.e-5){          
               probs[i][jk][j1]= pp[jk]/pos;          else{
             }            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
           }            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
         }/* end jk */          } 
       }/* end i */          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
     } /* end i1 */          /*if(lli ==000.0)*/
   } /* end k1 */          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
           ipmx +=1;
            sw += weight[i];
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   free_vector(pp,1,nlstate);        } /* end of wave */
        } /* end of individual */
 }  /* End of Freq */    }  else if(mle==2){
       for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 /************* Waves Concatenation ***************/        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(mi=1; mi<= wav[i]-1; mi++){
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)          for (ii=1;ii<=nlstate+ndeath;ii++)
 {            for (j=1;j<=nlstate+ndeath;j++){
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
      Death is a valid wave (if date is known).              savm[ii][j]=(ii==j ? 1.0 : 0.0);
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i            }
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]          for(d=0; d<=dh[mi][i]; d++){
      and mw[mi+1][i]. dh depends on stepm.            newm=savm;
      */            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             for (kk=1; kk<=cptcovage;kk++) {
   int i, mi, m;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;            }
      double sum=0., jmean=0.;*/            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   int first;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   int j, k=0,jk, ju, jl;            savm=oldm;
   double sum=0.;            oldm=newm;
   first=0;          } /* end mult */
   jmin=1e+5;        
   jmax=-1;          s1=s[mw[mi][i]][i];
   jmean=0.;          s2=s[mw[mi+1][i]][i];
   for(i=1; i<=imx; i++){          bbh=(double)bh[mi][i]/(double)stepm; 
     mi=0;          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
     m=firstpass;          ipmx +=1;
     while(s[m][i] <= nlstate){          sw += weight[i];
       if(s[m][i]>=1)          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         mw[++mi][i]=m;        } /* end of wave */
       if(m >=lastpass)      } /* end of individual */
         break;    }  else if(mle==3){  /* exponential inter-extrapolation */
       else      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         m++;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     }/* end while */        for(mi=1; mi<= wav[i]-1; mi++){
     if (s[m][i] > nlstate){          for (ii=1;ii<=nlstate+ndeath;ii++)
       mi++;     /* Death is another wave */            for (j=1;j<=nlstate+ndeath;j++){
       /* if(mi==0)  never been interviewed correctly before death */              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
          /* Only death is a correct wave */              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       mw[mi][i]=m;            }
     }          for(d=0; d<dh[mi][i]; d++){
             newm=savm;
     wav[i]=mi;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     if(mi==0){            for (kk=1; kk<=cptcovage;kk++) {
       if(first==0){              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         printf("Warning, no any valid information for:%d line=%d and may be others, see log file\n",num[i],i);            }
         first=1;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       if(first==1){            savm=oldm;
         fprintf(ficlog,"Warning, no any valid information for:%d line=%d\n",num[i],i);            oldm=newm;
       }          } /* end mult */
     } /* end mi==0 */        
   }          s1=s[mw[mi][i]][i];
           s2=s[mw[mi+1][i]][i];
   for(i=1; i<=imx; i++){          bbh=(double)bh[mi][i]/(double)stepm; 
     for(mi=1; mi<wav[i];mi++){          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
       if (stepm <=0)          ipmx +=1;
         dh[mi][i]=1;          sw += weight[i];
       else{          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         if (s[mw[mi+1][i]][i] > nlstate) {        } /* end of wave */
           if (agedc[i] < 2*AGESUP) {      } /* end of individual */
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);    }else if (mle==4){  /* ml=4 no inter-extrapolation */
           if(j==0) j=1;  /* Survives at least one month after exam */      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           k=k+1;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
           if (j >= jmax) jmax=j;        for(mi=1; mi<= wav[i]-1; mi++){
           if (j <= jmin) jmin=j;          for (ii=1;ii<=nlstate+ndeath;ii++)
           sum=sum+j;            for (j=1;j<=nlstate+ndeath;j++){
           /*if (j<0) printf("j=%d num=%d \n",j,i); */              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         }            }
         else{          for(d=0; d<dh[mi][i]; d++){
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));            newm=savm;
           k=k+1;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           if (j >= jmax) jmax=j;            for (kk=1; kk<=cptcovage;kk++) {
           else if (j <= jmin)jmin=j;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */            }
           sum=sum+j;          
         }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         jk= j/stepm;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         jl= j -jk*stepm;            savm=oldm;
         ju= j -(jk+1)*stepm;            oldm=newm;
         if(jl <= -ju)          } /* end mult */
           dh[mi][i]=jk;        
         else          s1=s[mw[mi][i]][i];
           dh[mi][i]=jk+1;          s2=s[mw[mi+1][i]][i];
         if(dh[mi][i]==0)          if( s2 > nlstate){ 
           dh[mi][i]=1; /* At least one step */            lli=log(out[s1][s2] - savm[s1][s2]);
       }          }else{
     }            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
   }          }
   jmean=sum/k;          ipmx +=1;
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);          sw += weight[i];
   fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
  }  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
         } /* end of wave */
 /*********** Tricode ****************************/      } /* end of individual */
 void tricode(int *Tvar, int **nbcode, int imx)    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
 {      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   int Ndum[20],ij=1, k, j, i;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   int cptcode=0;        for(mi=1; mi<= wav[i]-1; mi++){
   cptcoveff=0;          for (ii=1;ii<=nlstate+ndeath;ii++)
              for (j=1;j<=nlstate+ndeath;j++){
   for (k=0; k<19; k++) Ndum[k]=0;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   for (k=1; k<=7; k++) ncodemax[k]=0;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
             }
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {          for(d=0; d<dh[mi][i]; d++){
     for (i=1; i<=imx; i++) {            newm=savm;
       ij=(int)(covar[Tvar[j]][i]);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       Ndum[ij]++;            for (kk=1; kk<=cptcovage;kk++) {
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       if (ij > cptcode) cptcode=ij;            }
     }          
             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     for (i=0; i<=cptcode; i++) {                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       if(Ndum[i]!=0) ncodemax[j]++;            savm=oldm;
     }            oldm=newm;
     ij=1;          } /* end mult */
         
           s1=s[mw[mi][i]][i];
     for (i=1; i<=ncodemax[j]; i++) {          s2=s[mw[mi+1][i]][i];
       for (k=0; k<=19; k++) {          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
         if (Ndum[k] != 0) {          ipmx +=1;
           nbcode[Tvar[j]][ij]=k;          sw += weight[i];
                    ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           ij++;          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
         }        } /* end of wave */
         if (ij > ncodemax[j]) break;      } /* end of individual */
       }      } /* End of if */
     }    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   }      /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
     l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
  for (k=0; k<19; k++) Ndum[k]=0;    return -l;
   }
  for (i=1; i<=ncovmodel-2; i++) {  
    ij=Tvar[i];  /*************** log-likelihood *************/
    Ndum[ij]++;  double funcone( double *x)
  }  {
     /* Same as likeli but slower because of a lot of printf and if */
  ij=1;    int i, ii, j, k, mi, d, kk;
  for (i=1; i<=10; i++) {    double l, ll[NLSTATEMAX], cov[NCOVMAX];
    if((Ndum[i]!=0) && (i<=ncovcol)){    double **out;
      Tvaraff[ij]=i;    double lli; /* Individual log likelihood */
      ij++;    double llt;
    }    int s1, s2;
  }    double bbh, survp;
      /*extern weight */
  cptcoveff=ij-1;    /* We are differentiating ll according to initial status */
 }    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     /*for(i=1;i<imx;i++) 
 /*********** Health Expectancies ****************/      printf(" %d\n",s[4][i]);
     */
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )    cov[1]=1.;
   
 {    for(k=1; k<=nlstate; k++) ll[k]=0.;
   /* Health expectancies */  
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   double age, agelim, hf;      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   double ***p3mat,***varhe;      for(mi=1; mi<= wav[i]-1; mi++){
   double **dnewm,**doldm;        for (ii=1;ii<=nlstate+ndeath;ii++)
   double *xp;          for (j=1;j<=nlstate+ndeath;j++){
   double **gp, **gm;            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   double ***gradg, ***trgradg;            savm[ii][j]=(ii==j ? 1.0 : 0.0);
   int theta;          }
         for(d=0; d<dh[mi][i]; d++){
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);          newm=savm;
   xp=vector(1,npar);          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   dnewm=matrix(1,nlstate*2,1,npar);          for (kk=1; kk<=cptcovage;kk++) {
   doldm=matrix(1,nlstate*2,1,nlstate*2);            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
            }
   fprintf(ficreseij,"# Health expectancies\n");          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   fprintf(ficreseij,"# Age");                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   for(i=1; i<=nlstate;i++)          savm=oldm;
     for(j=1; j<=nlstate;j++)          oldm=newm;
       fprintf(ficreseij," %1d-%1d (SE)",i,j);        } /* end mult */
   fprintf(ficreseij,"\n");        
         s1=s[mw[mi][i]][i];
   if(estepm < stepm){        s2=s[mw[mi+1][i]][i];
     printf ("Problem %d lower than %d\n",estepm, stepm);        bbh=(double)bh[mi][i]/(double)stepm; 
   }        /* bias is positive if real duration
   else  hstepm=estepm;           * is higher than the multiple of stepm and negative otherwise.
   /* We compute the life expectancy from trapezoids spaced every estepm months         */
    * This is mainly to measure the difference between two models: for example        if( s2 > nlstate && (mle <5) ){  /* Jackson */
    * if stepm=24 months pijx are given only every 2 years and by summing them          lli=log(out[s1][s2] - savm[s1][s2]);
    * we are calculating an estimate of the Life Expectancy assuming a linear        } else if  (s2==-2) {
    * progression inbetween and thus overestimating or underestimating according          for (j=1,survp=0. ; j<=nlstate; j++) 
    * to the curvature of the survival function. If, for the same date, we            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
    * estimate the model with stepm=1 month, we can keep estepm to 24 months          lli= log(survp);
    * to compare the new estimate of Life expectancy with the same linear        }else if (mle==1){
    * hypothesis. A more precise result, taking into account a more precise          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
    * curvature will be obtained if estepm is as small as stepm. */        } else if(mle==2){
           lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
   /* For example we decided to compute the life expectancy with the smallest unit */        } else if(mle==3){  /* exponential inter-extrapolation */
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
      nhstepm is the number of hstepm from age to agelim        } else if (mle==4){  /* mle=4 no inter-extrapolation */
      nstepm is the number of stepm from age to agelin.          lli=log(out[s1][s2]); /* Original formula */
      Look at hpijx to understand the reason of that which relies in memory size        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
      and note for a fixed period like estepm months */          lli=log(out[s1][s2]); /* Original formula */
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the        } /* End of if */
      survival function given by stepm (the optimization length). Unfortunately it        ipmx +=1;
      means that if the survival funtion is printed only each two years of age and if        sw += weight[i];
      you sum them up and add 1 year (area under the trapezoids) you won't get the same        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
      results. So we changed our mind and took the option of the best precision.  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
   */        if(globpr){
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */          fprintf(ficresilk,"%9d %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
    %11.6f %11.6f %11.6f ", \
   agelim=AGESUP;                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
     /* nhstepm age range expressed in number of stepm */          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
     nstepm=(int) rint((agelim-age)*YEARM/stepm);            llt +=ll[k]*gipmx/gsw;
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
     /* if (stepm >= YEARM) hstepm=1;*/          }
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */          fprintf(ficresilk," %10.6f\n", -llt);
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        }
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);      } /* end of wave */
     gp=matrix(0,nhstepm,1,nlstate*2);    } /* end of individual */
     gm=matrix(0,nhstepm,1,nlstate*2);    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
     /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
     /* Computed by stepm unit matrices, product of hstepm matrices, stored    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */    if(globpr==0){ /* First time we count the contributions and weights */
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);        gipmx=ipmx;
        gsw=sw;
     }
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */    return -l;
   }
     /* Computing Variances of health expectancies */  
   
      for(theta=1; theta <=npar; theta++){  /*************** function likelione ***********/
       for(i=1; i<=npar; i++){  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
         xp[i] = x[i] + (i==theta ?delti[theta]:0);  {
       }    /* This routine should help understanding what is done with 
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);         the selection of individuals/waves and
         to check the exact contribution to the likelihood.
       cptj=0;       Plotting could be done.
       for(j=1; j<= nlstate; j++){     */
         for(i=1; i<=nlstate; i++){    int k;
           cptj=cptj+1;  
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){    if(*globpri !=0){ /* Just counts and sums, no printings */
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;      strcpy(fileresilk,"ilk"); 
           }      strcat(fileresilk,fileres);
         }      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
       }        printf("Problem with resultfile: %s\n", fileresilk);
              fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
            }
       for(i=1; i<=npar; i++)      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
         xp[i] = x[i] - (i==theta ?delti[theta]:0);      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
            for(k=1; k<=nlstate; k++) 
       cptj=0;        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
       for(j=1; j<= nlstate; j++){      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
         for(i=1;i<=nlstate;i++){    }
           cptj=cptj+1;  
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){    *fretone=(*funcone)(p);
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;    if(*globpri !=0){
           }      fclose(ficresilk);
         }      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
       }      fflush(fichtm); 
       for(j=1; j<= nlstate*2; j++)    } 
         for(h=0; h<=nhstepm-1; h++){    return;
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];  }
         }  
      }  
      /*********** Maximum Likelihood Estimation ***************/
 /* End theta */  
   void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);  {
     int i,j, iter;
      for(h=0; h<=nhstepm-1; h++)    double **xi;
       for(j=1; j<=nlstate*2;j++)    double fret;
         for(theta=1; theta <=npar; theta++)    double fretone; /* Only one call to likelihood */
           trgradg[h][j][theta]=gradg[h][theta][j];    /*  char filerespow[FILENAMELENGTH];*/
          xi=matrix(1,npar,1,npar);
     for (i=1;i<=npar;i++)
      for(i=1;i<=nlstate*2;i++)      for (j=1;j<=npar;j++)
       for(j=1;j<=nlstate*2;j++)        xi[i][j]=(i==j ? 1.0 : 0.0);
         varhe[i][j][(int)age] =0.;    printf("Powell\n");  fprintf(ficlog,"Powell\n");
     strcpy(filerespow,"pow"); 
      printf("%d|",(int)age);fflush(stdout);    strcat(filerespow,fileres);
      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);    if((ficrespow=fopen(filerespow,"w"))==NULL) {
      for(h=0;h<=nhstepm-1;h++){      printf("Problem with resultfile: %s\n", filerespow);
       for(k=0;k<=nhstepm-1;k++){      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);    }
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);    fprintf(ficrespow,"# Powell\n# iter -2*LL");
         for(i=1;i<=nlstate*2;i++)    for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate*2;j++)      for(j=1;j<=nlstate+ndeath;j++)
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       }    fprintf(ficrespow,"\n");
     }  
     /* Computing expectancies */    powell(p,xi,npar,ftol,&iter,&fret,func);
     for(i=1; i<=nlstate;i++)  
       for(j=1; j<=nlstate;j++)    free_matrix(xi,1,npar,1,npar);
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){    fclose(ficrespow);
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
              fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   
         }  }
   
     fprintf(ficreseij,"%3.0f",age );  /**** Computes Hessian and covariance matrix ***/
     cptj=0;  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
     for(i=1; i<=nlstate;i++)  {
       for(j=1; j<=nlstate;j++){    double  **a,**y,*x,pd;
         cptj++;    double **hess;
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );    int i, j,jk;
       }    int *indx;
     fprintf(ficreseij,"\n");  
        double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
     free_matrix(gm,0,nhstepm,1,nlstate*2);    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
     free_matrix(gp,0,nhstepm,1,nlstate*2);    void lubksb(double **a, int npar, int *indx, double b[]) ;
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);    void ludcmp(double **a, int npar, int *indx, double *d) ;
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);    double gompertz(double p[]);
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    hess=matrix(1,npar,1,npar);
   }  
   printf("\n");    printf("\nCalculation of the hessian matrix. Wait...\n");
   fprintf(ficlog,"\n");    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
     for (i=1;i<=npar;i++){
   free_vector(xp,1,npar);      printf("%d",i);fflush(stdout);
   free_matrix(dnewm,1,nlstate*2,1,npar);      fprintf(ficlog,"%d",i);fflush(ficlog);
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);     
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
 }      
       /*  printf(" %f ",p[i]);
 /************ Variance ******************/          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
 void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased)    }
 {    
   /* Variance of health expectancies */    for (i=1;i<=npar;i++) {
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/      for (j=1;j<=npar;j++)  {
   /* double **newm;*/        if (j>i) { 
   double **dnewm,**doldm;          printf(".%d%d",i,j);fflush(stdout);
   double **dnewmp,**doldmp;          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
   int i, j, nhstepm, hstepm, h, nstepm ;          hess[i][j]=hessij(p,delti,i,j,func,npar);
   int k, cptcode;          
   double *xp;          hess[j][i]=hess[i][j];    
   double **gp, **gm;  /* for var eij */          /*printf(" %lf ",hess[i][j]);*/
   double ***gradg, ***trgradg; /*for var eij */        }
   double **gradgp, **trgradgp; /* for var p point j */      }
   double *gpp, *gmp; /* for var p point j */    }
   double **varppt; /* for var p point j nlstate to nlstate+ndeath */    printf("\n");
   double ***p3mat;    fprintf(ficlog,"\n");
   double age,agelim, hf;  
   int theta;    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
   char digit[4];    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
   char digitp[16];    
     a=matrix(1,npar,1,npar);
   char fileresprobmorprev[FILENAMELENGTH];    y=matrix(1,npar,1,npar);
     x=vector(1,npar);
   if(popbased==1)    indx=ivector(1,npar);
     strcpy(digitp,"-populbased-");    for (i=1;i<=npar;i++)
   else      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
     strcpy(digitp,"-stablbased-");    ludcmp(a,npar,indx,&pd);
   
   strcpy(fileresprobmorprev,"prmorprev");    for (j=1;j<=npar;j++) {
   sprintf(digit,"%-d",ij);      for (i=1;i<=npar;i++) x[i]=0;
   /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/      x[j]=1;
   strcat(fileresprobmorprev,digit); /* Tvar to be done */      lubksb(a,npar,indx,x);
   strcat(fileresprobmorprev,digitp); /* Popbased or not */      for (i=1;i<=npar;i++){ 
   strcat(fileresprobmorprev,fileres);        matcov[i][j]=x[i];
   if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {      }
     printf("Problem with resultfile: %s\n", fileresprobmorprev);    }
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);  
   }    printf("\n#Hessian matrix#\n");
   printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);    fprintf(ficlog,"\n#Hessian matrix#\n");
   fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);    for (i=1;i<=npar;i++) { 
   fprintf(ficresprobmorprev,"# probabilities of dying during a year and weighted mean w1*p1j+w2*p2j+... stand dev in()\n");      for (j=1;j<=npar;j++) { 
   fprintf(ficresprobmorprev,"# Age cov=%-d",ij);        printf("%.3e ",hess[i][j]);
   for(j=nlstate+1; j<=(nlstate+ndeath);j++){        fprintf(ficlog,"%.3e ",hess[i][j]);
     fprintf(ficresprobmorprev," p.%-d SE",j);      }
     for(i=1; i<=nlstate;i++)      printf("\n");
       fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);      fprintf(ficlog,"\n");
   }      }
   fprintf(ficresprobmorprev,"\n");  
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {    /* Recompute Inverse */
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);    for (i=1;i<=npar;i++)
     fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
     exit(0);    ludcmp(a,npar,indx,&pd);
   }  
   else{    /*  printf("\n#Hessian matrix recomputed#\n");
     fprintf(ficgp,"\n# Routine varevsij");  
   }    for (j=1;j<=npar;j++) {
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {      for (i=1;i<=npar;i++) x[i]=0;
     printf("Problem with html file: %s\n", optionfilehtm);      x[j]=1;
     fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);      lubksb(a,npar,indx,x);
     exit(0);      for (i=1;i<=npar;i++){ 
   }        y[i][j]=x[i];
   else{        printf("%.3e ",y[i][j]);
     fprintf(fichtm,"\n<li><h4> Computing step probabilities of dying and weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");        fprintf(ficlog,"%.3e ",y[i][j]);
   }      }
   varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);      printf("\n");
       fprintf(ficlog,"\n");
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");    }
   fprintf(ficresvij,"# Age");    */
   for(i=1; i<=nlstate;i++)  
     for(j=1; j<=nlstate;j++)    free_matrix(a,1,npar,1,npar);
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);    free_matrix(y,1,npar,1,npar);
   fprintf(ficresvij,"\n");    free_vector(x,1,npar);
     free_ivector(indx,1,npar);
   xp=vector(1,npar);    free_matrix(hess,1,npar,1,npar);
   dnewm=matrix(1,nlstate,1,npar);  
   doldm=matrix(1,nlstate,1,nlstate);  
   dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);  }
   doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);  
   /*************** hessian matrix ****************/
   gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
   gpp=vector(nlstate+1,nlstate+ndeath);  {
   gmp=vector(nlstate+1,nlstate+ndeath);    int i;
   trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/    int l=1, lmax=20;
      double k1,k2;
   if(estepm < stepm){    double p2[NPARMAX+1];
     printf ("Problem %d lower than %d\n",estepm, stepm);    double res;
   }    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
   else  hstepm=estepm;      double fx;
   /* For example we decided to compute the life expectancy with the smallest unit */    int k=0,kmax=10;
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.    double l1;
      nhstepm is the number of hstepm from age to agelim  
      nstepm is the number of stepm from age to agelin.    fx=func(x);
      Look at hpijx to understand the reason of that which relies in memory size    for (i=1;i<=npar;i++) p2[i]=x[i];
      and note for a fixed period like k years */    for(l=0 ; l <=lmax; l++){
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the      l1=pow(10,l);
      survival function given by stepm (the optimization length). Unfortunately it      delts=delt;
      means that if the survival funtion is printed only each two years of age and if      for(k=1 ; k <kmax; k=k+1){
      you sum them up and add 1 year (area under the trapezoids) you won't get the same        delt = delta*(l1*k);
      results. So we changed our mind and took the option of the best precision.        p2[theta]=x[theta] +delt;
   */        k1=func(p2)-fx;
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */        p2[theta]=x[theta]-delt;
   agelim = AGESUP;        k2=func(p2)-fx;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */        /*res= (k1-2.0*fx+k2)/delt/delt; */
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */        
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  #ifdef DEBUG
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
     gp=matrix(0,nhstepm,1,nlstate);        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
     gm=matrix(0,nhstepm,1,nlstate);  #endif
         /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
         if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
     for(theta=1; theta <=npar; theta++){          k=kmax;
       for(i=1; i<=npar; i++){ /* Computes gradient */        }
         xp[i] = x[i] + (i==theta ?delti[theta]:0);        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
       }          k=kmax; l=lmax*10.;
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);          }
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
           delts=delt;
       if (popbased==1) {        }
         for(i=1; i<=nlstate;i++)      }
           prlim[i][i]=probs[(int)age][i][ij];    }
       }    delti[theta]=delts;
      return res; 
       for(j=1; j<= nlstate; j++){    
         for(h=0; h<=nhstepm; h++){  }
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)  
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
         }  {
       }    int i;
       /* This for computing forces of mortality (h=1)as a weighted average */    int l=1, l1, lmax=20;
       for(j=nlstate+1,gpp[j]=0.;j<=nlstate+ndeath;j++){    double k1,k2,k3,k4,res,fx;
         for(i=1; i<= nlstate; i++)    double p2[NPARMAX+1];
           gpp[j] += prlim[i][i]*p3mat[i][j][1];    int k;
       }      
       /* end force of mortality */    fx=func(x);
     for (k=1; k<=2; k++) {
       for(i=1; i<=npar; i++) /* Computes gradient */      for (i=1;i<=npar;i++) p2[i]=x[i];
         xp[i] = x[i] - (i==theta ?delti[theta]:0);      p2[thetai]=x[thetai]+delti[thetai]/k;
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        p2[thetaj]=x[thetaj]+delti[thetaj]/k;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      k1=func(p2)-fx;
      
       if (popbased==1) {      p2[thetai]=x[thetai]+delti[thetai]/k;
         for(i=1; i<=nlstate;i++)      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
           prlim[i][i]=probs[(int)age][i][ij];      k2=func(p2)-fx;
       }    
       p2[thetai]=x[thetai]-delti[thetai]/k;
       for(j=1; j<= nlstate; j++){      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
         for(h=0; h<=nhstepm; h++){      k3=func(p2)-fx;
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)    
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];      p2[thetai]=x[thetai]-delti[thetai]/k;
         }      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
       }      k4=func(p2)-fx;
       /* This for computing force of mortality (h=1)as a weighted average */      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
       for(j=nlstate+1,gmp[j]=0.;j<=nlstate+ndeath;j++){  #ifdef DEBUG
         for(i=1; i<= nlstate; i++)      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
           gmp[j] += prlim[i][i]*p3mat[i][j][1];      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
       }      #endif
       /* end force of mortality */    }
     return res;
       for(j=1; j<= nlstate; j++) /* vareij */  }
         for(h=0; h<=nhstepm; h++){  
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];  /************** Inverse of matrix **************/
         }  void ludcmp(double **a, int n, int *indx, double *d) 
       for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */  { 
         gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];    int i,imax,j,k; 
       }    double big,dum,sum,temp; 
     double *vv; 
     } /* End theta */   
     vv=vector(1,n); 
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */    *d=1.0; 
     for (i=1;i<=n;i++) { 
     for(h=0; h<=nhstepm; h++) /* veij */      big=0.0; 
       for(j=1; j<=nlstate;j++)      for (j=1;j<=n;j++) 
         for(theta=1; theta <=npar; theta++)        if ((temp=fabs(a[i][j])) > big) big=temp; 
           trgradg[h][j][theta]=gradg[h][theta][j];      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
       vv[i]=1.0/big; 
     for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */    } 
       for(theta=1; theta <=npar; theta++)    for (j=1;j<=n;j++) { 
         trgradgp[j][theta]=gradgp[theta][j];      for (i=1;i<j;i++) { 
         sum=a[i][j]; 
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
     for(i=1;i<=nlstate;i++)        a[i][j]=sum; 
       for(j=1;j<=nlstate;j++)      } 
         vareij[i][j][(int)age] =0.;      big=0.0; 
       for (i=j;i<=n;i++) { 
     for(h=0;h<=nhstepm;h++){        sum=a[i][j]; 
       for(k=0;k<=nhstepm;k++){        for (k=1;k<j;k++) 
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);          sum -= a[i][k]*a[k][j]; 
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);        a[i][j]=sum; 
         for(i=1;i<=nlstate;i++)        if ( (dum=vv[i]*fabs(sum)) >= big) { 
           for(j=1;j<=nlstate;j++)          big=dum; 
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;          imax=i; 
       }        } 
     }      } 
       if (j != imax) { 
     /* pptj */        for (k=1;k<=n;k++) { 
     matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);          dum=a[imax][k]; 
     matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);          a[imax][k]=a[j][k]; 
     for(j=nlstate+1;j<=nlstate+ndeath;j++)          a[j][k]=dum; 
       for(i=nlstate+1;i<=nlstate+ndeath;i++)        } 
         varppt[j][i]=doldmp[j][i];        *d = -(*d); 
     /* end ppptj */        vv[imax]=vv[j]; 
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);        } 
     prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);      indx[j]=imax; 
        if (a[j][j] == 0.0) a[j][j]=TINY; 
     if (popbased==1) {      if (j != n) { 
       for(i=1; i<=nlstate;i++)        dum=1.0/(a[j][j]); 
         prlim[i][i]=probs[(int)age][i][ij];        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
     }      } 
        } 
     /* This for computing force of mortality (h=1)as a weighted average */    free_vector(vv,1,n);  /* Doesn't work */
     for(j=nlstate+1,gmp[j]=0.;j<=nlstate+ndeath;j++){  ;
       for(i=1; i<= nlstate; i++)  } 
         gmp[j] += prlim[i][i]*p3mat[i][j][1];  
     }      void lubksb(double **a, int n, int *indx, double b[]) 
     /* end force of mortality */  { 
     int i,ii=0,ip,j; 
     fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);    double sum; 
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){   
       fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));    for (i=1;i<=n;i++) { 
       for(i=1; i<=nlstate;i++){      ip=indx[i]; 
         fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);      sum=b[ip]; 
       }      b[ip]=b[i]; 
     }      if (ii) 
     fprintf(ficresprobmorprev,"\n");        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
       else if (sum) ii=i; 
     fprintf(ficresvij,"%.0f ",age );      b[i]=sum; 
     for(i=1; i<=nlstate;i++)    } 
       for(j=1; j<=nlstate;j++){    for (i=n;i>=1;i--) { 
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);      sum=b[i]; 
       }      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
     fprintf(ficresvij,"\n");      b[i]=sum/a[i][i]; 
     free_matrix(gp,0,nhstepm,1,nlstate);    } 
     free_matrix(gm,0,nhstepm,1,nlstate);  } 
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);  
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);  void pstamp(FILE *fichier)
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  {
   } /* End age */    fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
   free_vector(gpp,nlstate+1,nlstate+ndeath);  }
   free_vector(gmp,nlstate+1,nlstate+ndeath);  
   free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);  /************ Frequencies ********************/
   free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
   fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");  {  /* Some frequencies */
   /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */    
   fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm);    int first;
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm);    double ***freq; /* Frequencies */
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm);    double *pp, **prop;
   fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",fileresprobmorprev,fileresprobmorprev);    double pos,posprop, k2, dateintsum=0,k2cpt=0;
   fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);    char fileresp[FILENAMELENGTH];
   fprintf(ficgp,"\nset out \"varmuptjgr%s%s.png\";replot;",digitp,digit);    
     pp=vector(1,nlstate);
   free_vector(xp,1,npar);    prop=matrix(1,nlstate,iagemin,iagemax+3);
   free_matrix(doldm,1,nlstate,1,nlstate);    strcpy(fileresp,"p");
   free_matrix(dnewm,1,nlstate,1,npar);    strcat(fileresp,fileres);
   free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);    if((ficresp=fopen(fileresp,"w"))==NULL) {
   free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);      printf("Problem with prevalence resultfile: %s\n", fileresp);
   free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
   fclose(ficresprobmorprev);      exit(0);
   fclose(ficgp);    }
   fclose(fichtm);    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
     j1=0;
 }    
     j=cptcoveff;
 /************ Variance of prevlim ******************/    if (cptcovn<1) {j=1;ncodemax[1]=1;}
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)  
 {    first=1;
   /* Variance of prevalence limit */  
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    for(k1=1; k1<=j;k1++){
   double **newm;      for(i1=1; i1<=ncodemax[k1];i1++){
   double **dnewm,**doldm;        j1++;
   int i, j, nhstepm, hstepm;        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
   int k, cptcode;          scanf("%d", i);*/
   double *xp;        for (i=-5; i<=nlstate+ndeath; i++)  
   double *gp, *gm;          for (jk=-5; jk<=nlstate+ndeath; jk++)  
   double **gradg, **trgradg;            for(m=iagemin; m <= iagemax+3; m++)
   double age,agelim;              freq[i][jk][m]=0;
   int theta;  
          for (i=1; i<=nlstate; i++)  
   fprintf(ficresvpl,"# Standard deviation of prevalence's limit\n");        for(m=iagemin; m <= iagemax+3; m++)
   fprintf(ficresvpl,"# Age");          prop[i][m]=0;
   for(i=1; i<=nlstate;i++)        
       fprintf(ficresvpl," %1d-%1d",i,i);        dateintsum=0;
   fprintf(ficresvpl,"\n");        k2cpt=0;
         for (i=1; i<=imx; i++) {
   xp=vector(1,npar);          bool=1;
   dnewm=matrix(1,nlstate,1,npar);          if  (cptcovn>0) {
   doldm=matrix(1,nlstate,1,nlstate);            for (z1=1; z1<=cptcoveff; z1++) 
                if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
   hstepm=1*YEARM; /* Every year of age */                bool=0;
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */          }
   agelim = AGESUP;          if (bool==1){
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */            for(m=firstpass; m<=lastpass; m++){
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */              k2=anint[m][i]+(mint[m][i]/12.);
     if (stepm >= YEARM) hstepm=1;              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */                if(agev[m][i]==0) agev[m][i]=iagemax+1;
     gradg=matrix(1,npar,1,nlstate);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
     gp=vector(1,nlstate);                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
     gm=vector(1,nlstate);                if (m<lastpass) {
                   freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
     for(theta=1; theta <=npar; theta++){                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
       for(i=1; i<=npar; i++){ /* Computes gradient */                }
         xp[i] = x[i] + (i==theta ?delti[theta]:0);                
       }                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);                  dateintsum=dateintsum+k2;
       for(i=1;i<=nlstate;i++)                  k2cpt++;
         gp[i] = prlim[i][i];                }
                    /*}*/
       for(i=1; i<=npar; i++) /* Computes gradient */            }
         xp[i] = x[i] - (i==theta ?delti[theta]:0);          }
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        }
       for(i=1;i<=nlstate;i++)         
         gm[i] = prlim[i][i];        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
         pstamp(ficresp);
       for(i=1;i<=nlstate;i++)        if  (cptcovn>0) {
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];          fprintf(ficresp, "\n#********** Variable "); 
     } /* End theta */          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresp, "**********\n#");
     trgradg =matrix(1,nlstate,1,npar);        }
         for(i=1; i<=nlstate;i++) 
     for(j=1; j<=nlstate;j++)          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
       for(theta=1; theta <=npar; theta++)        fprintf(ficresp, "\n");
         trgradg[j][theta]=gradg[theta][j];        
         for(i=iagemin; i <= iagemax+3; i++){
     for(i=1;i<=nlstate;i++)          if(i==iagemax+3){
       varpl[i][(int)age] =0.;            fprintf(ficlog,"Total");
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);          }else{
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);            if(first==1){
     for(i=1;i<=nlstate;i++)              first=0;
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */              printf("See log file for details...\n");
             }
     fprintf(ficresvpl,"%.0f ",age );            fprintf(ficlog,"Age %d", i);
     for(i=1; i<=nlstate;i++)          }
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));          for(jk=1; jk <=nlstate ; jk++){
     fprintf(ficresvpl,"\n");            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
     free_vector(gp,1,nlstate);              pp[jk] += freq[jk][m][i]; 
     free_vector(gm,1,nlstate);          }
     free_matrix(gradg,1,npar,1,nlstate);          for(jk=1; jk <=nlstate ; jk++){
     free_matrix(trgradg,1,nlstate,1,npar);            for(m=-1, pos=0; m <=0 ; m++)
   } /* End age */              pos += freq[jk][m][i];
             if(pp[jk]>=1.e-10){
   free_vector(xp,1,npar);              if(first==1){
   free_matrix(doldm,1,nlstate,1,npar);              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
   free_matrix(dnewm,1,nlstate,1,nlstate);              }
               fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
 }            }else{
               if(first==1)
 /************ Variance of one-step probabilities  ******************/                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
 {            }
   int i, j=0,  i1, k1, l1, t, tj;          }
   int k2, l2, j1,  z1;  
   int k=0,l, cptcode;          for(jk=1; jk <=nlstate ; jk++){
   int first=1, first1;            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2;              pp[jk] += freq[jk][m][i];
   double **dnewm,**doldm;          }       
   double *xp;          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
   double *gp, *gm;            pos += pp[jk];
   double **gradg, **trgradg;            posprop += prop[jk][i];
   double **mu;          }
   double age,agelim, cov[NCOVMAX];          for(jk=1; jk <=nlstate ; jk++){
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */            if(pos>=1.e-5){
   int theta;              if(first==1)
   char fileresprob[FILENAMELENGTH];                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   char fileresprobcov[FILENAMELENGTH];              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   char fileresprobcor[FILENAMELENGTH];            }else{
               if(first==1)
   double ***varpij;                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
               fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
   strcpy(fileresprob,"prob");            }
   strcat(fileresprob,fileres);            if( i <= iagemax){
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {              if(pos>=1.e-5){
     printf("Problem with resultfile: %s\n", fileresprob);                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);                /*probs[i][jk][j1]= pp[jk]/pos;*/
   }                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
   strcpy(fileresprobcov,"probcov");              }
   strcat(fileresprobcov,fileres);              else
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
     printf("Problem with resultfile: %s\n", fileresprobcov);            }
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);          }
   }          
   strcpy(fileresprobcor,"probcor");          for(jk=-1; jk <=nlstate+ndeath; jk++)
   strcat(fileresprobcor,fileres);            for(m=-1; m <=nlstate+ndeath; m++)
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {              if(freq[jk][m][i] !=0 ) {
     printf("Problem with resultfile: %s\n", fileresprobcor);              if(first==1)
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
   }                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);              }
   fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);          if(i <= iagemax)
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);            fprintf(ficresp,"\n");
   fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);          if(first==1)
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);            printf("Others in log...\n");
   fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);          fprintf(ficlog,"\n");
          }
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");      }
   fprintf(ficresprob,"# Age");    }
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");    dateintmean=dateintsum/k2cpt; 
   fprintf(ficresprobcov,"# Age");   
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");    fclose(ficresp);
   fprintf(ficresprobcov,"# Age");    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
     free_vector(pp,1,nlstate);
     free_matrix(prop,1,nlstate,iagemin, iagemax+3);
   for(i=1; i<=nlstate;i++)    /* End of Freq */
     for(j=1; j<=(nlstate+ndeath);j++){  }
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);  
       fprintf(ficresprobcov," p%1d-%1d ",i,j);  /************ Prevalence ********************/
       fprintf(ficresprobcor," p%1d-%1d ",i,j);  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
     }    {  
   fprintf(ficresprob,"\n");    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
   fprintf(ficresprobcov,"\n");       in each health status at the date of interview (if between dateprev1 and dateprev2).
   fprintf(ficresprobcor,"\n");       We still use firstpass and lastpass as another selection.
   xp=vector(1,npar);    */
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);   
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);    double ***freq; /* Frequencies */
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);    double *pp, **prop;
   first=1;    double pos,posprop; 
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {    double  y2; /* in fractional years */
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);    int iagemin, iagemax;
     fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);  
     exit(0);    iagemin= (int) agemin;
   }    iagemax= (int) agemax;
   else{    /*pp=vector(1,nlstate);*/
     fprintf(ficgp,"\n# Routine varprob");    prop=matrix(1,nlstate,iagemin,iagemax+3); 
   }    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {    j1=0;
     printf("Problem with html file: %s\n", optionfilehtm);    
     fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);    j=cptcoveff;
     exit(0);    if (cptcovn<1) {j=1;ncodemax[1]=1;}
   }    
   else{    for(k1=1; k1<=j;k1++){
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");      for(i1=1; i1<=ncodemax[k1];i1++){
     fprintf(fichtm,"\n");        j1++;
         
     fprintf(fichtm,"\n<li><h4> Computing matrix of variance-covariance of step probabilities</h4></li>\n");        for (i=1; i<=nlstate; i++)  
     fprintf(fichtm,"\nWe have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");          for(m=iagemin; m <= iagemax+3; m++)
     fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");            prop[i][m]=0.0;
        
   }        for (i=1; i<=imx; i++) { /* Each individual */
           bool=1;
            if  (cptcovn>0) {
   cov[1]=1;            for (z1=1; z1<=cptcoveff; z1++) 
   tj=cptcoveff;              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
   if (cptcovn<1) {tj=1;ncodemax[1]=1;}                bool=0;
   j1=0;          } 
   for(t=1; t<=tj;t++){          if (bool==1) { 
     for(i1=1; i1<=ncodemax[t];i1++){            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
       j1++;              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
                    if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
       if  (cptcovn>0) {                if(agev[m][i]==0) agev[m][i]=iagemax+1;
         fprintf(ficresprob, "\n#********** Variable ");                if(agev[m][i]==1) agev[m][i]=iagemax+2;
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
         fprintf(ficresprob, "**********\n#");                if (s[m][i]>0 && s[m][i]<=nlstate) { 
         fprintf(ficresprobcov, "\n#********** Variable ");                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
         fprintf(ficresprobcov, "**********\n#");                  prop[s[m][i]][iagemax+3] += weight[i]; 
                        } 
         fprintf(ficgp, "\n#********** Variable ");              }
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, "# V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);            } /* end selection of waves */
         fprintf(ficgp, "**********\n#");          }
                }
                for(i=iagemin; i <= iagemax+3; i++){  
         fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable ");          
         for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
         fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");            posprop += prop[jk][i]; 
                  } 
         fprintf(ficresprobcor, "\n#********** Variable ");      
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          for(jk=1; jk <=nlstate ; jk++){     
         fprintf(ficgp, "**********\n#");                if( i <=  iagemax){ 
       }              if(posprop>=1.e-5){ 
                      probs[i][jk][j1]= prop[jk][i]/posprop;
       for (age=bage; age<=fage; age ++){              } else
         cov[2]=age;                printf("Warning Observed prevalence probs[%d][%d][%d]=%lf because of lack of cases\n",jk,i,j1,probs[i][jk][j1]);
         for (k=1; k<=cptcovn;k++) {            } 
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];          }/* end jk */ 
         }        }/* end i */ 
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];      } /* end i1 */
         for (k=1; k<=cptcovprod;k++)    } /* end k1 */
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    
            /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));    /*free_vector(pp,1,nlstate);*/
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
         gp=vector(1,(nlstate)*(nlstate+ndeath));  }  /* End of prevalence */
         gm=vector(1,(nlstate)*(nlstate+ndeath));  
      /************* Waves Concatenation ***************/
         for(theta=1; theta <=npar; theta++){  
           for(i=1; i<=npar; i++)  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
             xp[i] = x[i] + (i==theta ?delti[theta]:0);  {
              /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
           pmij(pmmij,cov,ncovmodel,xp,nlstate);       Death is a valid wave (if date is known).
                 mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
           k=0;       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
           for(i=1; i<= (nlstate); i++){       and mw[mi+1][i]. dh depends on stepm.
             for(j=1; j<=(nlstate+ndeath);j++){       */
               k=k+1;  
               gp[k]=pmmij[i][j];    int i, mi, m;
             }    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
           }       double sum=0., jmean=0.;*/
              int first;
           for(i=1; i<=npar; i++)    int j, k=0,jk, ju, jl;
             xp[i] = x[i] - (i==theta ?delti[theta]:0);    double sum=0.;
        first=0;
           pmij(pmmij,cov,ncovmodel,xp,nlstate);    jmin=1e+5;
           k=0;    jmax=-1;
           for(i=1; i<=(nlstate); i++){    jmean=0.;
             for(j=1; j<=(nlstate+ndeath);j++){    for(i=1; i<=imx; i++){
               k=k+1;      mi=0;
               gm[k]=pmmij[i][j];      m=firstpass;
             }      while(s[m][i] <= nlstate){
           }        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
                mw[++mi][i]=m;
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)        if(m >=lastpass)
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];            break;
         }        else
           m++;
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)      }/* end while */
           for(theta=1; theta <=npar; theta++)      if (s[m][i] > nlstate){
             trgradg[j][theta]=gradg[theta][j];        mi++;     /* Death is another wave */
                /* if(mi==0)  never been interviewed correctly before death */
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);           /* Only death is a correct wave */
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);        mw[mi][i]=m;
              }
         pmij(pmmij,cov,ncovmodel,x,nlstate);  
              wav[i]=mi;
         k=0;      if(mi==0){
         for(i=1; i<=(nlstate); i++){        nbwarn++;
           for(j=1; j<=(nlstate+ndeath);j++){        if(first==0){
             k=k+1;          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
             mu[k][(int) age]=pmmij[i][j];          first=1;
           }        }
         }        if(first==1){
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)        }
             varpij[i][j][(int)age] = doldm[i][j];      } /* end mi==0 */
     } /* End individuals */
         /*printf("\n%d ",(int)age);  
      for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){    for(i=1; i<=imx; i++){
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));      for(mi=1; mi<wav[i];mi++){
        fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));        if (stepm <=0)
      }*/          dh[mi][i]=1;
         else{
         fprintf(ficresprob,"\n%d ",(int)age);          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
         fprintf(ficresprobcov,"\n%d ",(int)age);            if (agedc[i] < 2*AGESUP) {
         fprintf(ficresprobcor,"\n%d ",(int)age);              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
               if(j==0) j=1;  /* Survives at least one month after exam */
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)              else if(j<0){
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));                nberr++;
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);                j=1; /* Temporary Dangerous patch */
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
         }                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
         i=0;                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
         for (k=1; k<=(nlstate);k++){              }
           for (l=1; l<=(nlstate+ndeath);l++){              k=k+1;
             i=i++;              if (j >= jmax){
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);                jmax=j;
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);                ijmax=i;
             for (j=1; j<=i;j++){              }
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);              if (j <= jmin){
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));                jmin=j;
             }                ijmin=i;
           }              }
         }/* end of loop for state */              sum=sum+j;
       } /* end of loop for age */              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
               /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
       /* Confidence intervalle of pij  */            }
       /*          }
       fprintf(ficgp,"\nset noparametric;unset label");          else{
       fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
       fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
       fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);  
       fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);            k=k+1;
       fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);            if (j >= jmax) {
       fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);              jmax=j;
       */              ijmax=i;
             }
       /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/            else if (j <= jmin){
       first1=1;              jmin=j;
       for (k1=1; k1<=(nlstate);k1++){              ijmin=i;
         for (l1=1; l1<=(nlstate+ndeath);l1++){            }
           if(l1==k1) continue;            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
           i=(k1-1)*(nlstate+ndeath)+l1;            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
           for (k2=1; k2<=(nlstate);k2++){            if(j<0){
             for (l2=1; l2<=(nlstate+ndeath);l2++){              nberr++;
               if(l2==k2) continue;              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
               j=(k2-1)*(nlstate+ndeath)+l2;              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
               if(j<=i) continue;            }
               for (age=bage; age<=fage; age ++){            sum=sum+j;
                 if ((int)age %5==0){          }
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;          jk= j/stepm;
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;          jl= j -jk*stepm;
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;          ju= j -(jk+1)*stepm;
                   mu1=mu[i][(int) age]/stepm*YEARM ;          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
                   mu2=mu[j][(int) age]/stepm*YEARM;            if(jl==0){
                   /* Computing eigen value of matrix of covariance */              dh[mi][i]=jk;
                   lc1=(v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12));              bh[mi][i]=0;
                   lc2=(v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12));            }else{ /* We want a negative bias in order to only have interpolation ie
                   if(first1==1){                    * at the price of an extra matrix product in likelihood */
                     first1=0;              dh[mi][i]=jk+1;
                     printf("Var %.4e %.4e cov %.4e Eigen %.3e %.3e\nOthers in log...\n",v1,v2,cv12,lc1,lc2);              bh[mi][i]=ju;
                   }            }
                   fprintf(ficlog,"Var %.4e %.4e cov %.4e Eigen %.3e %.3e\n",v1,v2,cv12,lc1,lc2);          }else{
                   /* Eigen vectors */            if(jl <= -ju){
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));              dh[mi][i]=jk;
                   v21=sqrt(1.-v11*v11);              bh[mi][i]=jl;       /* bias is positive if real duration
                   v12=-v21;                                   * is higher than the multiple of stepm and negative otherwise.
                   v22=v11;                                   */
                   /*printf(fignu*/            }
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */            else{
                   /* mu2+ v21*lc1*cost + v21*lc2*sin(t) */              dh[mi][i]=jk+1;
                   if(first==1){              bh[mi][i]=ju;
                     first=0;            }
                     fprintf(ficgp,"\nset parametric;set nolabel");            if(dh[mi][i]==0){
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k2,l2,k1,l1);              dh[mi][i]=1; /* At least one step */
                     fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");              bh[mi][i]=ju; /* At least one step */
                     fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%d%1d%1d-%1d%1d.png\">varpijgr%s%d%1d%1d-%1d%1d.png</A>, ",k2,l2,k1,l1,optionfilefiname, j1,k2,l2,k1,l1,optionfilefiname, j1,k2,l2,k1,l1);              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
                     fprintf(fichtm,"\n<br><img src=\"varpijgr%s%d%1d%1d-%1d%1d.png\"> ",optionfilefiname, j1,k2,l2,k1,l1);            }
                     fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\"",optionfilefiname, j1,k2,l2,k1,l1);          } /* end if mle */
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu2,mu1);        }
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k2,l2,k1,l1);      } /* end wave */
                     /*              fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) t \"%d\"",\    }
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \    jmean=sum/k;
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),(int) age);    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
                     */    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\   }
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \  
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2));  /*********** Tricode ****************************/
                   }else{  void tricode(int *Tvar, int **nbcode, int imx)
                     first=0;  {
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k2,l2,k1,l1);    
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu2,mu1);    int Ndum[20],ij=1, k, j, i, maxncov=19;
                     /*    int cptcode=0;
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) t \"%d\"",\    cptcoveff=0; 
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \   
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),(int) age);    for (k=0; k<maxncov; k++) Ndum[k]=0;
                     */    for (k=1; k<=7; k++) ncodemax[k]=0;
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\  
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2));      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
                   }/* if first */                                 modality*/ 
                 } /* age mod 5 */        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
               } /* end loop age */        Ndum[ij]++; /*store the modality */
               fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\";replot;",optionfilefiname, j1,k2,l2,k1,l1);        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
               first=1;        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
             } /*l12 */                                         Tvar[j]. If V=sex and male is 0 and 
           } /* k12 */                                         female is 1, then  cptcode=1.*/
         } /*l1 */      }
       }/* k1 */  
     } /* loop covariates */      for (i=0; i<=cptcode; i++) {
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));      }
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));  
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);      ij=1; 
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);      for (i=1; i<=ncodemax[j]; i++) {
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);        for (k=0; k<= maxncov; k++) {
   }          if (Ndum[k] != 0) {
   free_vector(xp,1,npar);            nbcode[Tvar[j]][ij]=k; 
   fclose(ficresprob);            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
   fclose(ficresprobcov);            
   fclose(ficresprobcor);            ij++;
   fclose(ficgp);          }
   fclose(fichtm);          if (ij > ncodemax[j]) break; 
 }        }  
       } 
     }  
 /******************* Printing html file ***********/  
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \   for (k=0; k< maxncov; k++) Ndum[k]=0;
                   int lastpass, int stepm, int weightopt, char model[],\  
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\   for (i=1; i<=ncovmodel-2; i++) { 
                   int popforecast, int estepm ,\     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
                   double jprev1, double mprev1,double anprev1, \     ij=Tvar[i];
                   double jprev2, double mprev2,double anprev2){     Ndum[ij]++;
   int jj1, k1, i1, cpt;   }
   /*char optionfilehtm[FILENAMELENGTH];*/  
   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {   ij=1;
     printf("Problem with %s \n",optionfilehtm), exit(0);   for (i=1; i<= maxncov; i++) {
     fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0);     if((Ndum[i]!=0) && (i<=ncovcol)){
   }       Tvaraff[ij]=i; /*For printing */
        ij++;
    fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n     }
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n   }
  - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n   
  - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n   cptcoveff=ij-1; /*Number of simple covariates*/
  - Life expectancies by age and initial health status (estepm=%2d months):  }
    <a href=\"e%s\">e%s</a> <br>\n</li>", \  
   jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);  /*********** Health Expectancies ****************/
   
 fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");  void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
   
  m=cptcoveff;  {
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}    /* Health expectancies, no variances */
     int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;
  jj1=0;    int nhstepma, nstepma; /* Decreasing with age */
  for(k1=1; k1<=m;k1++){    double age, agelim, hf;
    for(i1=1; i1<=ncodemax[k1];i1++){    double ***p3mat;
      jj1++;    double eip;
      if (cptcovn > 0) {  
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");    pstamp(ficreseij);
        for (cpt=1; cpt<=cptcoveff;cpt++)    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);    fprintf(ficreseij,"# Age");
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");    for(i=1; i<=nlstate;i++){
      }      for(j=1; j<=nlstate;j++){
      /* Pij */        fprintf(ficreseij," e%1d%1d ",i,j);
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before: pe%s%d1.png<br>      }
 <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);          fprintf(ficreseij," e%1d. ",i);
      /* Quasi-incidences */    }
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>    fprintf(ficreseij,"\n");
 <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);  
        /* Stable prevalence in each health state */    
        for(cpt=1; cpt<nlstate;cpt++){    if(estepm < stepm){
          fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>      printf ("Problem %d lower than %d\n",estepm, stepm);
 <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);    }
        }    else  hstepm=estepm;   
      for(cpt=1; cpt<=nlstate;cpt++) {    /* We compute the life expectancy from trapezoids spaced every estepm months
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>     * This is mainly to measure the difference between two models: for example
 <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);     * if stepm=24 months pijx are given only every 2 years and by summing them
      }     * we are calculating an estimate of the Life Expectancy assuming a linear 
      fprintf(fichtm,"\n<br>- Total life expectancy by age and     * progression in between and thus overestimating or underestimating according
 health expectancies in states (1) and (2): e%s%d.png<br>     * to the curvature of the survival function. If, for the same date, we 
 <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);     * estimate the model with stepm=1 month, we can keep estepm to 24 months
    } /* end i1 */     * to compare the new estimate of Life expectancy with the same linear 
  }/* End k1 */     * hypothesis. A more precise result, taking into account a more precise
  fprintf(fichtm,"</ul>");     * curvature will be obtained if estepm is as small as stepm. */
   
     /* For example we decided to compute the life expectancy with the smallest unit */
  fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n       nhstepm is the number of hstepm from age to agelim 
  - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n       nstepm is the number of stepm from age to agelin. 
  - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n       Look at hpijx to understand the reason of that which relies in memory size
  - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n       and note for a fixed period like estepm months */
  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
  - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n       survival function given by stepm (the optimization length). Unfortunately it
  - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);       means that if the survival funtion is printed only each two years of age and if
        you sum them up and add 1 year (area under the trapezoids) you won't get the same 
  if(popforecast==1) fprintf(fichtm,"\n       results. So we changed our mind and took the option of the best precision.
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n    */
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
         <br>",fileres,fileres,fileres,fileres);  
  else    agelim=AGESUP;
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);    /* If stepm=6 months */
 fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");      /* Computed by stepm unit matrices, product of hstepm matrices, stored
          in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
  m=cptcoveff;      
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}  /* nhstepm age range expressed in number of stepm */
     nstepm=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
  jj1=0;    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
  for(k1=1; k1<=m;k1++){    /* if (stepm >= YEARM) hstepm=1;*/
    for(i1=1; i1<=ncodemax[k1];i1++){    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
      jj1++;    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
      if (cptcovn > 0) {  
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");    for (age=bage; age<=fage; age ++){ 
        for (cpt=1; cpt<=cptcoveff;cpt++)      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");      /* if (stepm >= YEARM) hstepm=1;*/
      }      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
      for(cpt=1; cpt<=nlstate;cpt++) {  
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident      /* If stepm=6 months */
 interval) in state (%d): v%s%d%d.png <br>      /* Computed by stepm unit matrices, product of hstepma matrices, stored
 <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);           in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
      }      
    } /* end i1 */      hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
  }/* End k1 */      
  fprintf(fichtm,"</ul>");      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
 fclose(fichtm);      
 }      printf("%d|",(int)age);fflush(stdout);
       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
 /******************* Gnuplot file **************/      
 void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){      /* Computing expectancies */
       for(i=1; i<=nlstate;i++)
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;        for(j=1; j<=nlstate;j++)
   int ng;          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
     printf("Problem with file %s",optionfilegnuplot);            
     fprintf(ficlog,"Problem with file %s",optionfilegnuplot);            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   }  
           }
 #ifdef windows  
     fprintf(ficgp,"cd \"%s\" \n",pathc);      fprintf(ficreseij,"%3.0f",age );
 #endif      for(i=1; i<=nlstate;i++){
 m=pow(2,cptcoveff);        eip=0;
          for(j=1; j<=nlstate;j++){
  /* 1eme*/          eip +=eij[i][j][(int)age];
   for (cpt=1; cpt<= nlstate ; cpt ++) {          fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
    for (k1=1; k1<= m ; k1 ++) {        }
         fprintf(ficreseij,"%9.4f", eip );
 #ifdef windows      }
      fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);      fprintf(ficreseij,"\n");
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);      
 #endif    }
 #ifdef unix    free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);    printf("\n");
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);    fprintf(ficlog,"\n");
 #endif    
   }
 for (i=1; i<= nlstate ; i ++) {  
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");  void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
   else fprintf(ficgp," \%%*lf (\%%*lf)");  
 }  {
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);    /* Covariances of health expectancies eij and of total life expectancies according
     for (i=1; i<= nlstate ; i ++) {     to initial status i, ei. .
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    */
   else fprintf(ficgp," \%%*lf (\%%*lf)");    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
 }    int nhstepma, nstepma; /* Decreasing with age */
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);    double age, agelim, hf;
      for (i=1; i<= nlstate ; i ++) {    double ***p3matp, ***p3matm, ***varhe;
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    double **dnewm,**doldm;
   else fprintf(ficgp," \%%*lf (\%%*lf)");    double *xp, *xm;
 }      double **gp, **gm;
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));    double ***gradg, ***trgradg;
 #ifdef unix    int theta;
 fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\n");  
 #endif    double eip, vip;
    }  
   }    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
   /*2 eme*/    xp=vector(1,npar);
     xm=vector(1,npar);
   for (k1=1; k1<= m ; k1 ++) {    dnewm=matrix(1,nlstate*nlstate,1,npar);
     fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);    
        pstamp(ficresstdeij);
     for (i=1; i<= nlstate+1 ; i ++) {    fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
       k=2*i;    fprintf(ficresstdeij,"# Age");
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);    for(i=1; i<=nlstate;i++){
       for (j=1; j<= nlstate+1 ; j ++) {      for(j=1; j<=nlstate;j++)
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");        fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
   else fprintf(ficgp," \%%*lf (\%%*lf)");      fprintf(ficresstdeij," e%1d. ",i);
 }      }
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");    fprintf(ficresstdeij,"\n");
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);  
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);    pstamp(ficrescveij);
       for (j=1; j<= nlstate+1 ; j ++) {    fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    fprintf(ficrescveij,"# Age");
         else fprintf(ficgp," \%%*lf (\%%*lf)");    for(i=1; i<=nlstate;i++)
 }        for(j=1; j<=nlstate;j++){
       fprintf(ficgp,"\" t\"\" w l 0,");        cptj= (j-1)*nlstate+i;
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);        for(i2=1; i2<=nlstate;i2++)
       for (j=1; j<= nlstate+1 ; j ++) {          for(j2=1; j2<=nlstate;j2++){
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");            cptj2= (j2-1)*nlstate+i2;
   else fprintf(ficgp," \%%*lf (\%%*lf)");            if(cptj2 <= cptj)
 }                fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");          }
       else fprintf(ficgp,"\" t\"\" w l 0,");      }
     }    fprintf(ficrescveij,"\n");
   }    
      if(estepm < stepm){
   /*3eme*/      printf ("Problem %d lower than %d\n",estepm, stepm);
     }
   for (k1=1; k1<= m ; k1 ++) {    else  hstepm=estepm;   
     for (cpt=1; cpt<= nlstate ; cpt ++) {    /* We compute the life expectancy from trapezoids spaced every estepm months
       k=2+nlstate*(2*cpt-2);     * This is mainly to measure the difference between two models: for example
       fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);     * if stepm=24 months pijx are given only every 2 years and by summing them
       fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);     * we are calculating an estimate of the Life Expectancy assuming a linear 
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);     * progression in between and thus overestimating or underestimating according
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");     * to the curvature of the survival function. If, for the same date, we 
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);     * estimate the model with stepm=1 month, we can keep estepm to 24 months
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);     * to compare the new estimate of Life expectancy with the same linear 
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");     * hypothesis. A more precise result, taking into account a more precise
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);     * curvature will be obtained if estepm is as small as stepm. */
   
 */    /* For example we decided to compute the life expectancy with the smallest unit */
       for (i=1; i< nlstate ; i ++) {    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);       nhstepm is the number of hstepm from age to agelim 
        nstepm is the number of stepm from age to agelin. 
       }       Look at hpijx to understand the reason of that which relies in memory size
     }       and note for a fixed period like estepm months */
   }    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
         survival function given by stepm (the optimization length). Unfortunately it
   /* CV preval stat */       means that if the survival funtion is printed only each two years of age and if
     for (k1=1; k1<= m ; k1 ++) {       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
     for (cpt=1; cpt<nlstate ; cpt ++) {       results. So we changed our mind and took the option of the best precision.
       k=3;    */
       fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);  
     /* If stepm=6 months */
       for (i=1; i< nlstate ; i ++)    /* nhstepm age range expressed in number of stepm */
         fprintf(ficgp,"+$%d",k+i+1);    agelim=AGESUP;
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);    nstepm=(int) rint((agelim-bage)*YEARM/stepm); 
          /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
       l=3+(nlstate+ndeath)*cpt;    /* if (stepm >= YEARM) hstepm=1;*/
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       for (i=1; i< nlstate ; i ++) {    
         l=3+(nlstate+ndeath)*cpt;    p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         fprintf(ficgp,"+$%d",l+i+1);    p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       }    gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);      trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
     }    gp=matrix(0,nhstepm,1,nlstate*nlstate);
   }      gm=matrix(0,nhstepm,1,nlstate*nlstate);
    
   /* proba elementaires */    for (age=bage; age<=fage; age ++){ 
    for(i=1,jk=1; i <=nlstate; i++){      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
     for(k=1; k <=(nlstate+ndeath); k++){      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
       if (k != i) {      /* if (stepm >= YEARM) hstepm=1;*/
         for(j=1; j <=ncovmodel; j++){      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);  
           jk++;      /* If stepm=6 months */
           fprintf(ficgp,"\n");      /* Computed by stepm unit matrices, product of hstepma matrices, stored
         }         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
       }      
     }      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
    }  
       /* Computing  Variances of health expectancies */
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/      /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
      for(jk=1; jk <=m; jk++) {         decrease memory allocation */
        fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng);      for(theta=1; theta <=npar; theta++){
        if (ng==2)        for(i=1; i<=npar; i++){ 
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");          xp[i] = x[i] + (i==theta ?delti[theta]:0);
        else          xm[i] = x[i] - (i==theta ?delti[theta]:0);
          fprintf(ficgp,"\nset title \"Probability\"\n");        }
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);        hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
        i=1;        hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
        for(k2=1; k2<=nlstate; k2++) {    
          k3=i;        for(j=1; j<= nlstate; j++){
          for(k=1; k<=(nlstate+ndeath); k++) {          for(i=1; i<=nlstate; i++){
            if (k != k2){            for(h=0; h<=nhstepm-1; h++){
              if(ng==2)              gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);              gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
              else            }
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);          }
              ij=1;        }
              for(j=3; j <=ncovmodel; j++) {       
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {        for(ij=1; ij<= nlstate*nlstate; ij++)
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);          for(h=0; h<=nhstepm-1; h++){
                  ij++;            gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
                }          }
                else      }/* End theta */
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);      
              }      
              fprintf(ficgp,")/(1");      for(h=0; h<=nhstepm-1; h++)
                      for(j=1; j<=nlstate*nlstate;j++)
              for(k1=1; k1 <=nlstate; k1++){            for(theta=1; theta <=npar; theta++)
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);            trgradg[h][j][theta]=gradg[h][theta][j];
                ij=1;      
                for(j=3; j <=ncovmodel; j++){  
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {       for(ij=1;ij<=nlstate*nlstate;ij++)
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);        for(ji=1;ji<=nlstate*nlstate;ji++)
                    ij++;          varhe[ij][ji][(int)age] =0.;
                  }  
                  else       printf("%d|",(int)age);fflush(stdout);
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
                }       for(h=0;h<=nhstepm-1;h++){
                fprintf(ficgp,")");        for(k=0;k<=nhstepm-1;k++){
              }          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");          for(ij=1;ij<=nlstate*nlstate;ij++)
              i=i+ncovmodel;            for(ji=1;ji<=nlstate*nlstate;ji++)
            }              varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
          } /* end k */        }
        } /* end k2 */      }
      } /* end jk */  
    } /* end ng */      /* Computing expectancies */
    fclose(ficgp);      hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
 }  /* end gnuplot */      for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++)
           for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
 /*************** Moving average **************/            eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){            
             /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   int i, cpt, cptcod;  
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)          }
       for (i=1; i<=nlstate;i++)  
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)      fprintf(ficresstdeij,"%3.0f",age );
           mobaverage[(int)agedeb][i][cptcod]=0.;      for(i=1; i<=nlstate;i++){
            eip=0.;
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){        vip=0.;
       for (i=1; i<=nlstate;i++){        for(j=1; j<=nlstate;j++){
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){          eip += eij[i][j][(int)age];
           for (cpt=0;cpt<=4;cpt++){          for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];            vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
           }          fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;        }
         }        fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
       }      }
     }      fprintf(ficresstdeij,"\n");
      
 }      fprintf(ficrescveij,"%3.0f",age );
       for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++){
 /************** Forecasting ******************/          cptj= (j-1)*nlstate+i;
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){          for(i2=1; i2<=nlstate;i2++)
              for(j2=1; j2<=nlstate;j2++){
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;              cptj2= (j2-1)*nlstate+i2;
   int *popage;              if(cptj2 <= cptj)
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;                fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
   double *popeffectif,*popcount;            }
   double ***p3mat;        }
   char fileresf[FILENAMELENGTH];      fprintf(ficrescveij,"\n");
      
  agelim=AGESUP;    }
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;    free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
     free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
      free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
      free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   strcpy(fileresf,"f");    free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   strcat(fileresf,fileres);    printf("\n");
   if((ficresf=fopen(fileresf,"w"))==NULL) {    fprintf(ficlog,"\n");
     printf("Problem with forecast resultfile: %s\n", fileresf);  
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);    free_vector(xm,1,npar);
   }    free_vector(xp,1,npar);
   printf("Computing forecasting: result on file '%s' \n", fileresf);    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
     free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
   if (cptcoveff==0) ncodemax[cptcoveff]=1;  }
   
   if (mobilav==1) {  /************ Variance ******************/
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
     movingaverage(agedeb, fage, ageminpar, mobaverage);  {
   }    /* Variance of health expectancies */
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
   stepsize=(int) (stepm+YEARM-1)/YEARM;    /* double **newm;*/
   if (stepm<=12) stepsize=1;    double **dnewm,**doldm;
      double **dnewmp,**doldmp;
   agelim=AGESUP;    int i, j, nhstepm, hstepm, h, nstepm ;
      int k, cptcode;
   hstepm=1;    double *xp;
   hstepm=hstepm/stepm;    double **gp, **gm;  /* for var eij */
   yp1=modf(dateintmean,&yp);    double ***gradg, ***trgradg; /*for var eij */
   anprojmean=yp;    double **gradgp, **trgradgp; /* for var p point j */
   yp2=modf((yp1*12),&yp);    double *gpp, *gmp; /* for var p point j */
   mprojmean=yp;    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
   yp1=modf((yp2*30.5),&yp);    double ***p3mat;
   jprojmean=yp;    double age,agelim, hf;
   if(jprojmean==0) jprojmean=1;    double ***mobaverage;
   if(mprojmean==0) jprojmean=1;    int theta;
      char digit[4];
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);    char digitp[25];
    
   for(cptcov=1;cptcov<=i2;cptcov++){    char fileresprobmorprev[FILENAMELENGTH];
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){  
       k=k+1;    if(popbased==1){
       fprintf(ficresf,"\n#******");      if(mobilav!=0)
       for(j=1;j<=cptcoveff;j++) {        strcpy(digitp,"-populbased-mobilav-");
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      else strcpy(digitp,"-populbased-nomobil-");
       }    }
       fprintf(ficresf,"******\n");    else 
       fprintf(ficresf,"# StartingAge FinalAge");      strcpy(digitp,"-stablbased-");
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);  
          if (mobilav!=0) {
            mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         fprintf(ficresf,"\n");        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);          printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    }
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);  
           nhstepm = nhstepm/hstepm;    strcpy(fileresprobmorprev,"prmorprev"); 
              sprintf(digit,"%-d",ij);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
           oldm=oldms;savm=savms;    strcat(fileresprobmorprev,digit); /* Tvar to be done */
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
            strcat(fileresprobmorprev,fileres);
           for (h=0; h<=nhstepm; h++){    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
             if (h==(int) (calagedate+YEARM*cpt)) {      printf("Problem with resultfile: %s\n", fileresprobmorprev);
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
             }    }
             for(j=1; j<=nlstate+ndeath;j++) {    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
               kk1=0.;kk2=0;   
               for(i=1; i<=nlstate;i++) {                  fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
                 if (mobilav==1)    pstamp(ficresprobmorprev);
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
                 else {    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
                 }      fprintf(ficresprobmorprev," p.%-d SE",j);
                      for(i=1; i<=nlstate;i++)
               }        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
               if (h==(int)(calagedate+12*cpt)){    }  
                 fprintf(ficresf," %.3f", kk1);    fprintf(ficresprobmorprev,"\n");
                            fprintf(ficgp,"\n# Routine varevsij");
               }    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
             }    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
           }    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  /*   } */
         }    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
       }    pstamp(ficresvij);
     }    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
   }    if(popbased==1)
              fprintf(ficresvij,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d\n",mobilav);
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    else
       fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
   fclose(ficresf);    fprintf(ficresvij,"# Age");
 }    for(i=1; i<=nlstate;i++)
 /************** Forecasting ******************/      for(j=1; j<=nlstate;j++)
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){        fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
      fprintf(ficresvij,"\n");
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;  
   int *popage;    xp=vector(1,npar);
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;    dnewm=matrix(1,nlstate,1,npar);
   double *popeffectif,*popcount;    doldm=matrix(1,nlstate,1,nlstate);
   double ***p3mat,***tabpop,***tabpopprev;    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
   char filerespop[FILENAMELENGTH];    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    gpp=vector(nlstate+1,nlstate+ndeath);
   agelim=AGESUP;    gmp=vector(nlstate+1,nlstate+ndeath);
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
      
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    if(estepm < stepm){
        printf ("Problem %d lower than %d\n",estepm, stepm);
      }
   strcpy(filerespop,"pop");    else  hstepm=estepm;   
   strcat(filerespop,fileres);    /* For example we decided to compute the life expectancy with the smallest unit */
   if((ficrespop=fopen(filerespop,"w"))==NULL) {    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
     printf("Problem with forecast resultfile: %s\n", filerespop);       nhstepm is the number of hstepm from age to agelim 
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);       nstepm is the number of stepm from age to agelin. 
   }       Look at function hpijx to understand why (it is linked to memory size questions) */
   printf("Computing forecasting: result on file '%s' \n", filerespop);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);       survival function given by stepm (the optimization length). Unfortunately it
        means that if the survival funtion is printed every two years of age and if
   if (cptcoveff==0) ncodemax[cptcoveff]=1;       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
        results. So we changed our mind and took the option of the best precision.
   if (mobilav==1) {    */
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     movingaverage(agedeb, fage, ageminpar, mobaverage);    agelim = AGESUP;
   }    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
   stepsize=(int) (stepm+YEARM-1)/YEARM;      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   if (stepm<=12) stepsize=1;      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
        gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
   agelim=AGESUP;      gp=matrix(0,nhstepm,1,nlstate);
        gm=matrix(0,nhstepm,1,nlstate);
   hstepm=1;  
   hstepm=hstepm/stepm;  
        for(theta=1; theta <=npar; theta++){
   if (popforecast==1) {        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
     if((ficpop=fopen(popfile,"r"))==NULL) {          xp[i] = x[i] + (i==theta ?delti[theta]:0);
       printf("Problem with population file : %s\n",popfile);exit(0);        }
       fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
     }        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     popage=ivector(0,AGESUP);  
     popeffectif=vector(0,AGESUP);        if (popbased==1) {
     popcount=vector(0,AGESUP);          if(mobilav ==0){
                for(i=1; i<=nlstate;i++)
     i=1;                prlim[i][i]=probs[(int)age][i][ij];
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;          }else{ /* mobilav */ 
                for(i=1; i<=nlstate;i++)
     imx=i;              prlim[i][i]=mobaverage[(int)age][i][ij];
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];          }
   }        }
     
   for(cptcov=1;cptcov<=i2;cptcov++){        for(j=1; j<= nlstate; j++){
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){          for(h=0; h<=nhstepm; h++){
       k=k+1;            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
       fprintf(ficrespop,"\n#******");              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
       for(j=1;j<=cptcoveff;j++) {          }
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        }
       }        /* This for computing probability of death (h=1 means
       fprintf(ficrespop,"******\n");           computed over hstepm matrices product = hstepm*stepm months) 
       fprintf(ficrespop,"# Age");           as a weighted average of prlim.
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);        */
       if (popforecast==1)  fprintf(ficrespop," [Population]");        for(j=nlstate+1;j<=nlstate+ndeath;j++){
                for(i=1,gpp[j]=0.; i<= nlstate; i++)
       for (cpt=0; cpt<=0;cpt++) {            gpp[j] += prlim[i][i]*p3mat[i][j][1];
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);          }    
                /* end probability of death */
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){  
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
           nhstepm = nhstepm/hstepm;          xp[i] = x[i] - (i==theta ?delti[theta]:0);
                  hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
           oldm=oldms;savm=savms;   
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);          if (popbased==1) {
                  if(mobilav ==0){
           for (h=0; h<=nhstepm; h++){            for(i=1; i<=nlstate;i++)
             if (h==(int) (calagedate+YEARM*cpt)) {              prlim[i][i]=probs[(int)age][i][ij];
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);          }else{ /* mobilav */ 
             }            for(i=1; i<=nlstate;i++)
             for(j=1; j<=nlstate+ndeath;j++) {              prlim[i][i]=mobaverage[(int)age][i][ij];
               kk1=0.;kk2=0;          }
               for(i=1; i<=nlstate;i++) {                      }
                 if (mobilav==1)  
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];        for(j=1; j<= nlstate; j++){  /* Sum of wi * eij = e.j */
                 else {          for(h=0; h<=nhstepm; h++){
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
                 }              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
               }          }
               if (h==(int)(calagedate+12*cpt)){        }
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;        /* This for computing probability of death (h=1 means
                   /*fprintf(ficrespop," %.3f", kk1);           computed over hstepm matrices product = hstepm*stepm months) 
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/           as a weighted average of prlim.
               }        */
             }        for(j=nlstate+1;j<=nlstate+ndeath;j++){
             for(i=1; i<=nlstate;i++){          for(i=1,gmp[j]=0.; i<= nlstate; i++)
               kk1=0.;           gmp[j] += prlim[i][i]*p3mat[i][j][1];
                 for(j=1; j<=nlstate;j++){        }    
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];        /* end probability of death */
                 }  
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];        for(j=1; j<= nlstate; j++) /* vareij */
             }          for(h=0; h<=nhstepm; h++){
             gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)          }
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);  
           }        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
         }        }
       }  
        } /* End theta */
   /******/  
       trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {  
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);        for(h=0; h<=nhstepm; h++) /* veij */
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){        for(j=1; j<=nlstate;j++)
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);          for(theta=1; theta <=npar; theta++)
           nhstepm = nhstepm/hstepm;            trgradg[h][j][theta]=gradg[h][theta][j];
            
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
           oldm=oldms;savm=savms;        for(theta=1; theta <=npar; theta++)
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);            trgradgp[j][theta]=gradgp[theta][j];
           for (h=0; h<=nhstepm; h++){    
             if (h==(int) (calagedate+YEARM*cpt)) {  
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
             }      for(i=1;i<=nlstate;i++)
             for(j=1; j<=nlstate+ndeath;j++) {        for(j=1;j<=nlstate;j++)
               kk1=0.;kk2=0;          vareij[i][j][(int)age] =0.;
               for(i=1; i<=nlstate;i++) {                
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];          for(h=0;h<=nhstepm;h++){
               }        for(k=0;k<=nhstepm;k++){
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
             }          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
           }          for(i=1;i<=nlstate;i++)
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            for(j=1;j<=nlstate;j++)
         }              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
       }        }
    }      }
   }    
        /* pptj */
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
       matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
   if (popforecast==1) {      for(j=nlstate+1;j<=nlstate+ndeath;j++)
     free_ivector(popage,0,AGESUP);        for(i=nlstate+1;i<=nlstate+ndeath;i++)
     free_vector(popeffectif,0,AGESUP);          varppt[j][i]=doldmp[j][i];
     free_vector(popcount,0,AGESUP);      /* end ppptj */
   }      /*  x centered again */
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
   fclose(ficrespop);   
 }      if (popbased==1) {
         if(mobilav ==0){
 /***********************************************/          for(i=1; i<=nlstate;i++)
 /**************** Main Program *****************/            prlim[i][i]=probs[(int)age][i][ij];
 /***********************************************/        }else{ /* mobilav */ 
           for(i=1; i<=nlstate;i++)
 int main(int argc, char *argv[])            prlim[i][i]=mobaverage[(int)age][i][ij];
 {        }
       }
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;               
   double agedeb, agefin,hf;      /* This for computing probability of death (h=1 means
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
          as a weighted average of prlim.
   double fret;      */
   double **xi,tmp,delta;      for(j=nlstate+1;j<=nlstate+ndeath;j++){
         for(i=1,gmp[j]=0.;i<= nlstate; i++) 
   double dum; /* Dummy variable */          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
   double ***p3mat;      }    
   int *indx;      /* end probability of death */
   char line[MAXLINE], linepar[MAXLINE];  
   char path[80],pathc[80],pathcd[80],pathtot[80],model[80];      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
   int firstobs=1, lastobs=10;      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
   int sdeb, sfin; /* Status at beginning and end */        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
   int c,  h , cpt,l;        for(i=1; i<=nlstate;i++){
   int ju,jl, mi;          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;        }
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;      } 
   int mobilav=0,popforecast=0;      fprintf(ficresprobmorprev,"\n");
   int hstepm, nhstepm;  
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;      fprintf(ficresvij,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
   double bage, fage, age, agelim, agebase;        for(j=1; j<=nlstate;j++){
   double ftolpl=FTOL;          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
   double **prlim;        }
   double *severity;      fprintf(ficresvij,"\n");
   double ***param; /* Matrix of parameters */      free_matrix(gp,0,nhstepm,1,nlstate);
   double  *p;      free_matrix(gm,0,nhstepm,1,nlstate);
   double **matcov; /* Matrix of covariance */      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
   double ***delti3; /* Scale */      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
   double *delti; /* Scale */      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   double ***eij, ***vareij;    } /* End age */
   double **varpl; /* Variances of prevalence limits by age */    free_vector(gpp,nlstate+1,nlstate+ndeath);
   double *epj, vepp;    free_vector(gmp,nlstate+1,nlstate+ndeath);
   double kk1, kk2;    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
      fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
     /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
   char *alph[]={"a","a","b","c","d","e"}, str[4];    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
   /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
   char z[1]="c", occ;  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
 #include <sys/time.h>    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
 #include <time.h>    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
      fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
   /* long total_usecs;    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   struct timeval start_time, end_time;    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
    */
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
   getcwd(pathcd, size);    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   
   printf("\n%s",version);    free_vector(xp,1,npar);
   if(argc <=1){    free_matrix(doldm,1,nlstate,1,nlstate);
     printf("\nEnter the parameter file name: ");    free_matrix(dnewm,1,nlstate,1,npar);
     scanf("%s",pathtot);    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   }    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
   else{    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     strcpy(pathtot,argv[1]);    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   }    fclose(ficresprobmorprev);
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/    fflush(ficgp);
   /*cygwin_split_path(pathtot,path,optionfile);    fflush(fichtm); 
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/  }  /* end varevsij */
   /* cutv(path,optionfile,pathtot,'\\');*/  
   /************ Variance of prevlim ******************/
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);  {
   chdir(path);    /* Variance of prevalence limit */
   replace(pathc,path);    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
     double **newm;
 /*-------- arguments in the command line --------*/    double **dnewm,**doldm;
     int i, j, nhstepm, hstepm;
   /* Log file */    int k, cptcode;
   strcat(filelog, optionfilefiname);    double *xp;
   strcat(filelog,".log");    /* */    double *gp, *gm;
   if((ficlog=fopen(filelog,"w"))==NULL)    {    double **gradg, **trgradg;
     printf("Problem with logfile %s\n",filelog);    double age,agelim;
     goto end;    int theta;
   }    
   fprintf(ficlog,"Log filename:%s\n",filelog);    pstamp(ficresvpl);
   fprintf(ficlog,"\n%s",version);    fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
   fprintf(ficlog,"\nEnter the parameter file name: ");    fprintf(ficresvpl,"# Age");
   fprintf(ficlog,"pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);    for(i=1; i<=nlstate;i++)
   fflush(ficlog);        fprintf(ficresvpl," %1d-%1d",i,i);
     fprintf(ficresvpl,"\n");
   /* */  
   strcpy(fileres,"r");    xp=vector(1,npar);
   strcat(fileres, optionfilefiname);    dnewm=matrix(1,nlstate,1,npar);
   strcat(fileres,".txt");    /* Other files have txt extension */    doldm=matrix(1,nlstate,1,nlstate);
     
   /*---------arguments file --------*/    hstepm=1*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
   if((ficpar=fopen(optionfile,"r"))==NULL)    {    agelim = AGESUP;
     printf("Problem with optionfile %s\n",optionfile);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
     fprintf(ficlog,"Problem with optionfile %s\n",optionfile);      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
     goto end;      if (stepm >= YEARM) hstepm=1;
   }      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
       gradg=matrix(1,npar,1,nlstate);
   strcpy(filereso,"o");      gp=vector(1,nlstate);
   strcat(filereso,fileres);      gm=vector(1,nlstate);
   if((ficparo=fopen(filereso,"w"))==NULL) {  
     printf("Problem with Output resultfile: %s\n", filereso);      for(theta=1; theta <=npar; theta++){
     fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);        for(i=1; i<=npar; i++){ /* Computes gradient */
     goto end;          xp[i] = x[i] + (i==theta ?delti[theta]:0);
   }        }
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   /* Reads comments: lines beginning with '#' */        for(i=1;i<=nlstate;i++)
   while((c=getc(ficpar))=='#' && c!= EOF){          gp[i] = prlim[i][i];
     ungetc(c,ficpar);      
     fgets(line, MAXLINE, ficpar);        for(i=1; i<=npar; i++) /* Computes gradient */
     puts(line);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
     fputs(line,ficparo);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   }        for(i=1;i<=nlstate;i++)
   ungetc(c,ficpar);          gm[i] = prlim[i][i];
   
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);        for(i=1;i<=nlstate;i++)
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);      } /* End theta */
 while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);      trgradg =matrix(1,nlstate,1,npar);
     fgets(line, MAXLINE, ficpar);  
     puts(line);      for(j=1; j<=nlstate;j++)
     fputs(line,ficparo);        for(theta=1; theta <=npar; theta++)
   }          trgradg[j][theta]=gradg[theta][j];
   ungetc(c,ficpar);  
        for(i=1;i<=nlstate;i++)
            varpl[i][(int)age] =0.;
   covar=matrix(0,NCOVMAX,1,n);      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
   cptcovn=0;      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;      for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   ncovmodel=2+cptcovn;  
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */      fprintf(ficresvpl,"%.0f ",age );
        for(i=1; i<=nlstate;i++)
   /* Read guess parameters */        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
   /* Reads comments: lines beginning with '#' */      fprintf(ficresvpl,"\n");
   while((c=getc(ficpar))=='#' && c!= EOF){      free_vector(gp,1,nlstate);
     ungetc(c,ficpar);      free_vector(gm,1,nlstate);
     fgets(line, MAXLINE, ficpar);      free_matrix(gradg,1,npar,1,nlstate);
     puts(line);      free_matrix(trgradg,1,nlstate,1,npar);
     fputs(line,ficparo);    } /* End age */
   }  
   ungetc(c,ficpar);    free_vector(xp,1,npar);
      free_matrix(doldm,1,nlstate,1,npar);
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    free_matrix(dnewm,1,nlstate,1,nlstate);
     for(i=1; i <=nlstate; i++)  
     for(j=1; j <=nlstate+ndeath-1; j++){  }
       fscanf(ficpar,"%1d%1d",&i1,&j1);  
       fprintf(ficparo,"%1d%1d",i1,j1);  /************ Variance of one-step probabilities  ******************/
       if(mle==1)  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
         printf("%1d%1d",i,j);  {
       fprintf(ficlog,"%1d%1d",i,j);    int i, j=0,  i1, k1, l1, t, tj;
       for(k=1; k<=ncovmodel;k++){    int k2, l2, j1,  z1;
         fscanf(ficpar," %lf",&param[i][j][k]);    int k=0,l, cptcode;
         if(mle==1){    int first=1, first1;
           printf(" %lf",param[i][j][k]);    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
           fprintf(ficlog," %lf",param[i][j][k]);    double **dnewm,**doldm;
         }    double *xp;
         else    double *gp, *gm;
           fprintf(ficlog," %lf",param[i][j][k]);    double **gradg, **trgradg;
         fprintf(ficparo," %lf",param[i][j][k]);    double **mu;
       }    double age,agelim, cov[NCOVMAX];
       fscanf(ficpar,"\n");    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
       if(mle==1)    int theta;
         printf("\n");    char fileresprob[FILENAMELENGTH];
       fprintf(ficlog,"\n");    char fileresprobcov[FILENAMELENGTH];
       fprintf(ficparo,"\n");    char fileresprobcor[FILENAMELENGTH];
     }  
      double ***varpij;
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;  
     strcpy(fileresprob,"prob"); 
   p=param[1][1];    strcat(fileresprob,fileres);
      if((ficresprob=fopen(fileresprob,"w"))==NULL) {
   /* Reads comments: lines beginning with '#' */      printf("Problem with resultfile: %s\n", fileresprob);
   while((c=getc(ficpar))=='#' && c!= EOF){      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     ungetc(c,ficpar);    }
     fgets(line, MAXLINE, ficpar);    strcpy(fileresprobcov,"probcov"); 
     puts(line);    strcat(fileresprobcov,fileres);
     fputs(line,ficparo);    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
   }      printf("Problem with resultfile: %s\n", fileresprobcov);
   ungetc(c,ficpar);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     }
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    strcpy(fileresprobcor,"probcor"); 
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */    strcat(fileresprobcor,fileres);
   for(i=1; i <=nlstate; i++){    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
     for(j=1; j <=nlstate+ndeath-1; j++){      printf("Problem with resultfile: %s\n", fileresprobcor);
       fscanf(ficpar,"%1d%1d",&i1,&j1);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
       printf("%1d%1d",i,j);    }
       fprintf(ficparo,"%1d%1d",i1,j1);    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
       for(k=1; k<=ncovmodel;k++){    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
         fscanf(ficpar,"%le",&delti3[i][j][k]);    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
         printf(" %le",delti3[i][j][k]);    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
         fprintf(ficparo," %le",delti3[i][j][k]);    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
       }    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
       fscanf(ficpar,"\n");    pstamp(ficresprob);
       printf("\n");    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
       fprintf(ficparo,"\n");    fprintf(ficresprob,"# Age");
     }    pstamp(ficresprobcov);
   }    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
   delti=delti3[1][1];    fprintf(ficresprobcov,"# Age");
      pstamp(ficresprobcor);
   /* Reads comments: lines beginning with '#' */    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
   while((c=getc(ficpar))=='#' && c!= EOF){    fprintf(ficresprobcor,"# Age");
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);  
     puts(line);    for(i=1; i<=nlstate;i++)
     fputs(line,ficparo);      for(j=1; j<=(nlstate+ndeath);j++){
   }        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
   ungetc(c,ficpar);        fprintf(ficresprobcov," p%1d-%1d ",i,j);
          fprintf(ficresprobcor," p%1d-%1d ",i,j);
   matcov=matrix(1,npar,1,npar);      }  
   for(i=1; i <=npar; i++){   /* fprintf(ficresprob,"\n");
     fscanf(ficpar,"%s",&str);    fprintf(ficresprobcov,"\n");
     if(mle==1)    fprintf(ficresprobcor,"\n");
       printf("%s",str);   */
     fprintf(ficlog,"%s",str);   xp=vector(1,npar);
     fprintf(ficparo,"%s",str);    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     for(j=1; j <=i; j++){    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
       fscanf(ficpar," %le",&matcov[i][j]);    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
       if(mle==1){    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
         printf(" %.5le",matcov[i][j]);    first=1;
         fprintf(ficlog," %.5le",matcov[i][j]);    fprintf(ficgp,"\n# Routine varprob");
       }    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
       else    fprintf(fichtm,"\n");
         fprintf(ficlog," %.5le",matcov[i][j]);  
       fprintf(ficparo," %.5le",matcov[i][j]);    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
     }    fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
     fscanf(ficpar,"\n");    file %s<br>\n",optionfilehtmcov);
     if(mle==1)    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
       printf("\n");  and drawn. It helps understanding how is the covariance between two incidences.\
     fprintf(ficlog,"\n");   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
     fprintf(ficparo,"\n");    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
   }  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
   for(i=1; i <=npar; i++)  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
     for(j=i+1;j<=npar;j++)  standard deviations wide on each axis. <br>\
       matcov[i][j]=matcov[j][i];   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
       and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
   if(mle==1)  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
     printf("\n");  
   fprintf(ficlog,"\n");    cov[1]=1;
     tj=cptcoveff;
     if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     /*-------- Rewriting paramater file ----------*/    j1=0;
      strcpy(rfileres,"r");    /* "Rparameterfile */    for(t=1; t<=tj;t++){
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/      for(i1=1; i1<=ncodemax[t];i1++){ 
      strcat(rfileres,".");    /* */        j1++;
      strcat(rfileres,optionfilext);    /* Other files have txt extension */        if  (cptcovn>0) {
     if((ficres =fopen(rfileres,"w"))==NULL) {          fprintf(ficresprob, "\n#********** Variable "); 
       printf("Problem writing new parameter file: %s\n", fileres);goto end;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;          fprintf(ficresprob, "**********\n#\n");
     }          fprintf(ficresprobcov, "\n#********** Variable "); 
     fprintf(ficres,"#%s\n",version);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
              fprintf(ficresprobcov, "**********\n#\n");
     /*-------- data file ----------*/          
     if((fic=fopen(datafile,"r"))==NULL)    {          fprintf(ficgp, "\n#********** Variable "); 
       printf("Problem with datafile: %s\n", datafile);goto end;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;          fprintf(ficgp, "**********\n#\n");
     }          
           
     n= lastobs;          fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
     severity = vector(1,maxwav);          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     outcome=imatrix(1,maxwav+1,1,n);          fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
     num=ivector(1,n);          
     moisnais=vector(1,n);          fprintf(ficresprobcor, "\n#********** Variable ");    
     annais=vector(1,n);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     moisdc=vector(1,n);          fprintf(ficresprobcor, "**********\n#");    
     andc=vector(1,n);        }
     agedc=vector(1,n);        
     cod=ivector(1,n);        for (age=bage; age<=fage; age ++){ 
     weight=vector(1,n);          cov[2]=age;
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */          for (k=1; k<=cptcovn;k++) {
     mint=matrix(1,maxwav,1,n);            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
     anint=matrix(1,maxwav,1,n);          }
     s=imatrix(1,maxwav+1,1,n);          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
     adl=imatrix(1,maxwav+1,1,n);              for (k=1; k<=cptcovprod;k++)
     tab=ivector(1,NCOVMAX);            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
     ncodemax=ivector(1,8);          
           gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
     i=1;          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     while (fgets(line, MAXLINE, fic) != NULL)    {          gp=vector(1,(nlstate)*(nlstate+ndeath));
       if ((i >= firstobs) && (i <=lastobs)) {          gm=vector(1,(nlstate)*(nlstate+ndeath));
              
         for (j=maxwav;j>=1;j--){          for(theta=1; theta <=npar; theta++){
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);            for(i=1; i<=npar; i++)
           strcpy(line,stra);              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);            
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);            pmij(pmmij,cov,ncovmodel,xp,nlstate);
         }            
                    k=0;
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);            for(i=1; i<= (nlstate); i++){
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);              for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);                gp[k]=pmmij[i][j];
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);              }
             }
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);            
         for (j=ncovcol;j>=1;j--){            for(i=1; i<=npar; i++)
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
         }      
         num[i]=atol(stra);            pmij(pmmij,cov,ncovmodel,xp,nlstate);
                    k=0;
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){            for(i=1; i<=(nlstate); i++){
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/              for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
         i=i+1;                gm[k]=pmmij[i][j];
       }              }
     }            }
     /* printf("ii=%d", ij);       
        scanf("%d",i);*/            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
   imx=i-1; /* Number of individuals */              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
           }
   /* for (i=1; i<=imx; i++){  
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;            for(theta=1; theta <=npar; theta++)
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;              trgradg[j][theta]=gradg[theta][j];
     }*/          
    /*  for (i=1; i<=imx; i++){          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
      if (s[4][i]==9)  s[4][i]=-1;          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
            free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
            free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   /* Calculation of the number of parameter from char model*/          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */  
   Tprod=ivector(1,15);          pmij(pmmij,cov,ncovmodel,x,nlstate);
   Tvaraff=ivector(1,15);          
   Tvard=imatrix(1,15,1,2);          k=0;
   Tage=ivector(1,15);                for(i=1; i<=(nlstate); i++){
                for(j=1; j<=(nlstate+ndeath);j++){
   if (strlen(model) >1){              k=k+1;
     j=0, j1=0, k1=1, k2=1;              mu[k][(int) age]=pmmij[i][j];
     j=nbocc(model,'+');            }
     j1=nbocc(model,'*');          }
     cptcovn=j+1;          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
     cptcovprod=j1;            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
                  varpij[i][j][(int)age] = doldm[i][j];
     strcpy(modelsav,model);  
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){          /*printf("\n%d ",(int)age);
       printf("Error. Non available option model=%s ",model);            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
       fprintf(ficlog,"Error. Non available option model=%s ",model);            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
       goto end;            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
     }            }*/
      
     for(i=(j+1); i>=1;i--){          fprintf(ficresprob,"\n%d ",(int)age);
       cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */          fprintf(ficresprobcov,"\n%d ",(int)age);
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyze it */          fprintf(ficresprobcor,"\n%d ",(int)age);
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/  
       /*scanf("%d",i);*/          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
       if (strchr(strb,'*')) {  /* Model includes a product */            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
         cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
         if (strcmp(strc,"age")==0) { /* Vn*age */            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
           cptcovprod--;            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
           cutv(strb,stre,strd,'V');          }
           Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/          i=0;
           cptcovage++;          for (k=1; k<=(nlstate);k++){
             Tage[cptcovage]=i;            for (l=1; l<=(nlstate+ndeath);l++){ 
             /*printf("stre=%s ", stre);*/              i=i++;
         }              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
         else if (strcmp(strd,"age")==0) { /* or age*Vn */              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
           cptcovprod--;              for (j=1; j<=i;j++){
           cutv(strb,stre,strc,'V');                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
           Tvar[i]=atoi(stre);                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
           cptcovage++;              }
           Tage[cptcovage]=i;            }
         }          }/* end of loop for state */
         else {  /* Age is not in the model */        } /* end of loop for age */
           cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/  
           Tvar[i]=ncovcol+k1;        /* Confidence intervalle of pij  */
           cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */        /*
           Tprod[k1]=i;          fprintf(ficgp,"\nset noparametric;unset label");
           Tvard[k1][1]=atoi(strc); /* m*/          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
           Tvard[k1][2]=atoi(stre); /* n */          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           Tvar[cptcovn+k2]=Tvard[k1][1];          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           Tvar[cptcovn+k2+1]=Tvard[k1][2];          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
           for (k=1; k<=lastobs;k++)          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
           k1++;        */
           k2=k2+2;  
         }        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
       }        first1=1;
       else { /* no more sum */        for (k2=1; k2<=(nlstate);k2++){
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
        /*  scanf("%d",i);*/            if(l2==k2) continue;
       cutv(strd,strc,strb,'V');            j=(k2-1)*(nlstate+ndeath)+l2;
       Tvar[i]=atoi(strc);            for (k1=1; k1<=(nlstate);k1++){
       }              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
       strcpy(modelsav,stra);                  if(l1==k1) continue;
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);                i=(k1-1)*(nlstate+ndeath)+l1;
         scanf("%d",i);*/                if(i<=j) continue;
     } /* end of loop + */                for (age=bage; age<=fage; age ++){ 
   } /* end model */                  if ((int)age %5==0){
                      v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
   printf("cptcovprod=%d ", cptcovprod);                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
   fprintf(ficlog,"cptcovprod=%d ", cptcovprod);                    mu1=mu[i][(int) age]/stepm*YEARM ;
   scanf("%d ",i);*/                    mu2=mu[j][(int) age]/stepm*YEARM;
     fclose(fic);                    c12=cv12/sqrt(v1*v2);
                     /* Computing eigen value of matrix of covariance */
     /*  if(mle==1){*/                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
     if (weightopt != 1) { /* Maximisation without weights*/                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
       for(i=1;i<=n;i++) weight[i]=1.0;                    /* Eigen vectors */
     }                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
     /*-calculation of age at interview from date of interview and age at death -*/                    /*v21=sqrt(1.-v11*v11); *//* error */
     agev=matrix(1,maxwav,1,imx);                    v21=(lc1-v1)/cv12*v11;
                     v12=-v21;
     for (i=1; i<=imx; i++) {                    v22=v11;
       for(m=2; (m<= maxwav); m++) {                    tnalp=v21/v11;
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){                    if(first1==1){
          anint[m][i]=9999;                      first1=0;
          s[m][i]=-1;                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
        }                    }
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
       }                    /*printf(fignu*/
     }                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                     /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
     for (i=1; i<=imx; i++)  {                    if(first==1){
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);                      first=0;
       for(m=1; (m<= maxwav); m++){                      fprintf(ficgp,"\nset parametric;unset label");
         if(s[m][i] >0){                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
           if (s[m][i] >= nlstate+1) {                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
             if(agedc[i]>0)                      fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
               if(moisdc[i]!=99 && andc[i]!=9999)   :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
                 agev[m][i]=agedc[i];  %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
            else {                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
               if (andc[i]!=9999){                      fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
               printf("Warning negative age at death: %d line:%d\n",num[i],i);                      fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
               fprintf(ficlog,"Warning negative age at death: %d line:%d\n",num[i],i);                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
               agev[m][i]=-1;                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
               }                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
             }                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
           }                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
           else if(s[m][i] !=9){ /* Should no more exist */                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);                    }else{
             if(mint[m][i]==99 || anint[m][i]==9999)                      first=0;
               agev[m][i]=1;                      fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
             else if(agev[m][i] <agemin){                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
               agemin=agev[m][i];                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
             }                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
             else if(agev[m][i] >agemax){                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
               agemax=agev[m][i];                    }/* if first */
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/                  } /* age mod 5 */
             }                } /* end loop age */
             /*agev[m][i]=anint[m][i]-annais[i];*/                fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
             /*   agev[m][i] = age[i]+2*m;*/                first=1;
           }              } /*l12 */
           else { /* =9 */            } /* k12 */
             agev[m][i]=1;          } /*l1 */
             s[m][i]=-1;        }/* k1 */
           }      } /* loop covariates */
         }    }
         else /*= 0 Unknown */    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
           agev[m][i]=1;    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
       }    free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
        free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
     }    free_vector(xp,1,npar);
     for (i=1; i<=imx; i++)  {    fclose(ficresprob);
       for(m=1; (m<= maxwav); m++){    fclose(ficresprobcov);
         if (s[m][i] > (nlstate+ndeath)) {    fclose(ficresprobcor);
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);      fflush(ficgp);
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);      fflush(fichtmcov);
           goto end;  }
         }  
       }  
     }  /******************* Printing html file ***********/
   void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);                    int lastpass, int stepm, int weightopt, char model[],\
  fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int estepm ,\
     free_vector(severity,1,maxwav);                    double jprev1, double mprev1,double anprev1, \
     free_imatrix(outcome,1,maxwav+1,1,n);                    double jprev2, double mprev2,double anprev2){
     free_vector(moisnais,1,n);    int jj1, k1, i1, cpt;
     free_vector(annais,1,n);  
     /* free_matrix(mint,1,maxwav,1,n);     fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
        free_matrix(anint,1,maxwav,1,n);*/     <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
     free_vector(moisdc,1,n);  </ul>");
     free_vector(andc,1,n);     fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
                 jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
     wav=ivector(1,imx);     fprintf(fichtm,"\
     dh=imatrix(1,lastpass-firstpass+1,1,imx);   - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
     mw=imatrix(1,lastpass-firstpass+1,1,imx);             stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
         fprintf(fichtm,"\
     /* Concatenates waves */   - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);             subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
      fprintf(fichtm,"\
    - (a) Life expectancies by health status at initial age, ei. (b) health expectancies by health status at initial age, eij . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
       Tcode=ivector(1,100);     <a href=\"%s\">%s</a> <br>\n",
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);             estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
       ncodemax[1]=1;     fprintf(fichtm,"\
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);   - Population projections by age and states: \
           <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
    codtab=imatrix(1,100,1,10);  
    h=0;  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
    m=pow(2,cptcoveff);  
     m=cptcoveff;
    for(k=1;k<=cptcoveff; k++){   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
      for(i=1; i <=(m/pow(2,k));i++){  
        for(j=1; j <= ncodemax[k]; j++){   jj1=0;
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){   for(k1=1; k1<=m;k1++){
            h++;     for(i1=1; i1<=ncodemax[k1];i1++){
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;       jj1++;
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/       if (cptcovn > 0) {
          }         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
        }         for (cpt=1; cpt<=cptcoveff;cpt++) 
      }           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
    }         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);       }
       codtab[1][2]=1;codtab[2][2]=2; */       /* Pij */
    /* for(i=1; i <=m ;i++){       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d1.png\">%s%d1.png</a><br> \
       for(k=1; k <=cptcovn; k++){  <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);       /* Quasi-incidences */
       }       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
       printf("\n");   before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d2.png\">%s%d2.png</a><br> \
       }  <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
       scanf("%d",i);*/         /* Period (stable) prevalence in each health state */
             for(cpt=1; cpt<nlstate;cpt++){
    /* Calculates basic frequencies. Computes observed prevalence at single age           fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d%d.png\">%s%d%d.png</a><br> \
        and prints on file fileres'p'. */  <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
          }
           for(cpt=1; cpt<=nlstate;cpt++) {
              fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */       }
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */     } /* end i1 */
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */   }/* End k1 */
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */   fprintf(fichtm,"</ul>");
        
     /* For Powell, parameters are in a vector p[] starting at p[1]  
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */   fprintf(fichtm,"\
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */  \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
     if(mle==1){  
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);   fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
     }           subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
       fprintf(fichtm,"\
     /*--------- results files --------------*/   - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);           subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
    
    fprintf(fichtm,"\
    jk=1;   - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");           subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");   fprintf(fichtm,"\
    fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");   - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
    for(i=1,jk=1; i <=nlstate; i++){     <a href=\"%s\">%s</a> <br>\n</li>",
      for(k=1; k <=(nlstate+ndeath); k++){             estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
        if (k != i)   fprintf(fichtm,"\
          {   - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
            printf("%d%d ",i,k);     <a href=\"%s\">%s</a> <br>\n</li>",
            fprintf(ficlog,"%d%d ",i,k);             estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
            fprintf(ficres,"%1d%1d ",i,k);   fprintf(fichtm,"\
            for(j=1; j <=ncovmodel; j++){   - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
              printf("%f ",p[jk]);           estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
              fprintf(ficlog,"%f ",p[jk]);   fprintf(fichtm,"\
              fprintf(ficres,"%f ",p[jk]);   - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n",
              jk++;           estepm, subdirf2(fileres,"t"),subdirf2(fileres,"t"));
            }   fprintf(fichtm,"\
            printf("\n");   - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
            fprintf(ficlog,"\n");           subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
            fprintf(ficres,"\n");  
          }  /*  if(popforecast==1) fprintf(fichtm,"\n */
      }  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
    }  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
    if(mle==1){  /*      <br>",fileres,fileres,fileres,fileres); */
      /* Computing hessian and covariance matrix */  /*  else  */
      ftolhess=ftol; /* Usually correct */  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
      hesscov(matcov, p, npar, delti, ftolhess, func);   fflush(fichtm);
    }   fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
    fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");  
    printf("# Scales (for hessian or gradient estimation)\n");   m=cptcoveff;
    fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
    for(i=1,jk=1; i <=nlstate; i++){  
      for(j=1; j <=nlstate+ndeath; j++){   jj1=0;
        if (j!=i) {   for(k1=1; k1<=m;k1++){
          fprintf(ficres,"%1d%1d",i,j);     for(i1=1; i1<=ncodemax[k1];i1++){
          printf("%1d%1d",i,j);       jj1++;
          fprintf(ficlog,"%1d%1d",i,j);       if (cptcovn > 0) {
          for(k=1; k<=ncovmodel;k++){         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
            printf(" %.5e",delti[jk]);         for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(ficlog," %.5e",delti[jk]);           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
            fprintf(ficres," %.5e",delti[jk]);         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
            jk++;       }
          }       for(cpt=1; cpt<=nlstate;cpt++) {
          printf("\n");         fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
          fprintf(ficlog,"\n");  prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
          fprintf(ficres,"\n");  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
        }       }
      }       fprintf(fichtm,"\n<br>- Total life expectancy by age and \
    }  health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \
      true period expectancies (those weighted with period prevalences are also\
    k=1;   drawn in addition to the population based expectancies computed using\
    fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");   observed and cahotic prevalences: %s%d.png<br>\
    if(mle==1)  <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
      printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");     } /* end i1 */
    fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");   }/* End k1 */
    for(i=1;i<=npar;i++){   fprintf(fichtm,"</ul>");
      /*  if (k>nlstate) k=1;   fflush(fichtm);
          i1=(i-1)/(ncovmodel*nlstate)+1;  }
          fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);  
          printf("%s%d%d",alph[k],i1,tab[i]);*/  /******************* Gnuplot file **************/
      fprintf(ficres,"%3d",i);  void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
      if(mle==1)  
        printf("%3d",i);    char dirfileres[132],optfileres[132];
      fprintf(ficlog,"%3d",i);    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
      for(j=1; j<=i;j++){    int ng;
        fprintf(ficres," %.5e",matcov[i][j]);  /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
        if(mle==1)  /*     printf("Problem with file %s",optionfilegnuplot); */
          printf(" %.5e",matcov[i][j]);  /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
        fprintf(ficlog," %.5e",matcov[i][j]);  /*   } */
      }  
      fprintf(ficres,"\n");    /*#ifdef windows */
      if(mle==1)    fprintf(ficgp,"cd \"%s\" \n",pathc);
        printf("\n");      /*#endif */
      fprintf(ficlog,"\n");    m=pow(2,cptcoveff);
      k++;  
    }    strcpy(dirfileres,optionfilefiname);
        strcpy(optfileres,"vpl");
    while((c=getc(ficpar))=='#' && c!= EOF){   /* 1eme*/
      ungetc(c,ficpar);    for (cpt=1; cpt<= nlstate ; cpt ++) {
      fgets(line, MAXLINE, ficpar);     for (k1=1; k1<= m ; k1 ++) {
      puts(line);       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
      fputs(line,ficparo);       fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
    }       fprintf(ficgp,"set xlabel \"Age\" \n\
    ungetc(c,ficpar);  set ylabel \"Probability\" \n\
    estepm=0;  set ter png small\n\
    fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);  set size 0.65,0.65\n\
    if (estepm==0 || estepm < stepm) estepm=stepm;  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
    if (fage <= 2) {  
      bage = ageminpar;       for (i=1; i<= nlstate ; i ++) {
      fage = agemaxpar;         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
    }         else fprintf(ficgp," \%%*lf (\%%*lf)");
           }
    fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");       fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
    fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);       for (i=1; i<= nlstate ; i ++) {
    fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
             else fprintf(ficgp," \%%*lf (\%%*lf)");
    while((c=getc(ficpar))=='#' && c!= EOF){       } 
      ungetc(c,ficpar);       fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
      fgets(line, MAXLINE, ficpar);       for (i=1; i<= nlstate ; i ++) {
      puts(line);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
      fputs(line,ficparo);         else fprintf(ficgp," \%%*lf (\%%*lf)");
    }       }  
    ungetc(c,ficpar);       fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
       }
    fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);    }
    fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    /*2 eme*/
    fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    
        for (k1=1; k1<= m ; k1 ++) { 
    while((c=getc(ficpar))=='#' && c!= EOF){      fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
      ungetc(c,ficpar);      fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
      fgets(line, MAXLINE, ficpar);      
      puts(line);      for (i=1; i<= nlstate+1 ; i ++) {
      fputs(line,ficparo);        k=2*i;
    }        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
    ungetc(c,ficpar);        for (j=1; j<= nlstate+1 ; j ++) {
            if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
    dateprev1=anprev1+mprev1/12.+jprev1/365.;        }   
    dateprev2=anprev2+mprev2/12.+jprev2/365.;        if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
   fscanf(ficpar,"pop_based=%d\n",&popbased);        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
   fprintf(ficparo,"pop_based=%d\n",popbased);          for (j=1; j<= nlstate+1 ; j ++) {
   fprintf(ficres,"pop_based=%d\n",popbased);            if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
            else fprintf(ficgp," \%%*lf (\%%*lf)");
   while((c=getc(ficpar))=='#' && c!= EOF){        }   
     ungetc(c,ficpar);        fprintf(ficgp,"\" t\"\" w l 0,");
     fgets(line, MAXLINE, ficpar);        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
     puts(line);        for (j=1; j<= nlstate+1 ; j ++) {
     fputs(line,ficparo);          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
   }          else fprintf(ficgp," \%%*lf (\%%*lf)");
   ungetc(c,ficpar);        }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);        else fprintf(ficgp,"\" t\"\" w l 0,");
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);      }
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);    }
     
     /*3eme*/
 while((c=getc(ficpar))=='#' && c!= EOF){    
     ungetc(c,ficpar);    for (k1=1; k1<= m ; k1 ++) { 
     fgets(line, MAXLINE, ficpar);      for (cpt=1; cpt<= nlstate ; cpt ++) {
     puts(line);        /*       k=2+nlstate*(2*cpt-2); */
     fputs(line,ficparo);        k=2+(nlstate+1)*(cpt-1);
   }        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
   ungetc(c,ficpar);        fprintf(ficgp,"set ter png small\n\
   set size 0.65,0.65\n\
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);        /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);          fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
 /*------------ gnuplot -------------*/          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
   strcpy(optionfilegnuplot,optionfilefiname);          
   strcat(optionfilegnuplot,".gp");        */
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {        for (i=1; i< nlstate ; i ++) {
     printf("Problem with file %s",optionfilegnuplot);          fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
   }          /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
   fclose(ficgp);          
  printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);        } 
 /*--------- index.htm --------*/        fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
       }
   strcpy(optionfilehtm,optionfile);    }
   strcat(optionfilehtm,".htm");    
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {    /* CV preval stable (period) */
     printf("Problem with %s \n",optionfilehtm), exit(0);    for (k1=1; k1<= m ; k1 ++) { 
   }      for (cpt=1; cpt<=nlstate ; cpt ++) {
         k=3;
   fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
 \n  set ter png small\nset size 0.65,0.65\n\
 Total number of observations=%d <br>\n  unset log y\n\
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n  plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
 <hr  size=\"2\" color=\"#EC5E5E\">        
  <ul><li><h4>Parameter files</h4>\n        for (i=1; i< nlstate ; i ++)
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n          fprintf(ficgp,"+$%d",k+i+1);
  - Log file of the run: <a href=\"%s\">%s</a><br>\n        fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
  - Gnuplot file name: <a href=\"%s\">%s</a></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,filelog,filelog,optionfilegnuplot,optionfilegnuplot);        
   fclose(fichtm);        l=3+(nlstate+ndeath)*cpt;
         fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
  printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);        for (i=1; i< nlstate ; i ++) {
            l=3+(nlstate+ndeath)*cpt;
 /*------------ free_vector  -------------*/          fprintf(ficgp,"+$%d",l+i+1);
  chdir(path);        }
          fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
  free_ivector(wav,1,imx);      } 
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);    }  
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);      
  free_ivector(num,1,n);    /* proba elementaires */
  free_vector(agedc,1,n);    for(i=1,jk=1; i <=nlstate; i++){
  /*free_matrix(covar,1,NCOVMAX,1,n);*/      for(k=1; k <=(nlstate+ndeath); k++){
  fclose(ficparo);        if (k != i) {
  fclose(ficres);          for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
   /*--------------- Prevalence limit --------------*/            fprintf(ficgp,"\n");
            }
   strcpy(filerespl,"pl");        }
   strcat(filerespl,fileres);      }
   if((ficrespl=fopen(filerespl,"w"))==NULL) {     }
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;  
     fprintf(ficlog,"Problem with Prev limit resultfile: %s\n", filerespl);goto end;     for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
   }       for(jk=1; jk <=m; jk++) {
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
   fprintf(ficlog,"Computing prevalence limit: result on file '%s' \n", filerespl);         if (ng==2)
   fprintf(ficrespl,"#Prevalence limit\n");           fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
   fprintf(ficrespl,"#Age ");         else
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);           fprintf(ficgp,"\nset title \"Probability\"\n");
   fprintf(ficrespl,"\n");         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
           i=1;
   prlim=matrix(1,nlstate,1,nlstate);         for(k2=1; k2<=nlstate; k2++) {
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */           k3=i;
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */           for(k=1; k<=(nlstate+ndeath); k++) {
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */             if (k != k2){
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */               if(ng==2)
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */                 fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
   k=0;               else
   agebase=ageminpar;                 fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
   agelim=agemaxpar;               ij=1;
   ftolpl=1.e-10;               for(j=3; j <=ncovmodel; j++) {
   i1=cptcoveff;                 if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
   if (cptcovn < 1){i1=1;}                   fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                    ij++;
   for(cptcov=1;cptcov<=i1;cptcov++){                 }
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){                 else
         k=k+1;                   fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/               }
         fprintf(ficrespl,"\n#******");               fprintf(ficgp,")/(1");
         printf("\n#******");               
         fprintf(ficlog,"\n#******");               for(k1=1; k1 <=nlstate; k1++){   
         for(j=1;j<=cptcoveff;j++) {                 fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                 ij=1;
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                 for(j=3; j <=ncovmodel; j++){
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                   if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
         }                     fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
         fprintf(ficrespl,"******\n");                     ij++;
         printf("******\n");                   }
         fprintf(ficlog,"******\n");                   else
                             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
         for (age=agebase; age<=agelim; age++){                 }
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);                 fprintf(ficgp,")");
           fprintf(ficrespl,"%.0f",age );               }
           for(i=1; i<=nlstate;i++)               fprintf(ficgp,") t \"p%d%d\" ", k2,k);
           fprintf(ficrespl," %.5f", prlim[i][i]);               if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
           fprintf(ficrespl,"\n");               i=i+ncovmodel;
         }             }
       }           } /* end k */
     }         } /* end k2 */
   fclose(ficrespl);       } /* end jk */
      } /* end ng */
   /*------------- h Pij x at various ages ------------*/     fflush(ficgp); 
    }  /* end gnuplot */
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);  
   if((ficrespij=fopen(filerespij,"w"))==NULL) {  
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;  /*************** Moving average **************/
     fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;  int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   }  
   printf("Computing pij: result on file '%s' \n", filerespij);    int i, cpt, cptcod;
   fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);    int modcovmax =1;
      int mobilavrange, mob;
   stepsize=(int) (stepm+YEARM-1)/YEARM;    double age;
   /*if (stepm<=24) stepsize=2;*/  
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
   agelim=AGESUP;                             a covariate has 2 modalities */
   hstepm=stepsize*YEARM; /* Every year of age */    if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */  
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
   /* hstepm=1;   aff par mois*/      if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
   k=0;      for (age=bage; age<=fage; age++)
   for(cptcov=1;cptcov<=i1;cptcov++){        for (i=1; i<=nlstate;i++)
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){          for (cptcod=1;cptcod<=modcovmax;cptcod++)
       k=k+1;            mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
         fprintf(ficrespij,"\n#****** ");      /* We keep the original values on the extreme ages bage, fage and for 
         for(j=1;j<=cptcoveff;j++)         fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);         we use a 5 terms etc. until the borders are no more concerned. 
         fprintf(ficrespij,"******\n");      */ 
              for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */        for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */          for (i=1; i<=nlstate;i++){
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */            for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
           /*      nhstepm=nhstepm*YEARM; aff par mois*/                for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                  mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
           oldm=oldms;savm=savms;                }
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);                mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
           fprintf(ficrespij,"# Age");            }
           for(i=1; i<=nlstate;i++)          }
             for(j=1; j<=nlstate+ndeath;j++)        }/* end age */
               fprintf(ficrespij," %1d-%1d",i,j);      }/* end mob */
           fprintf(ficrespij,"\n");    }else return -1;
            for (h=0; h<=nhstepm; h++){    return 0;
             fprintf(ficrespij,"%d %f %f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );  }/* End movingaverage */
             for(i=1; i<=nlstate;i++)  
               for(j=1; j<=nlstate+ndeath;j++)  
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);  /************** Forecasting ******************/
             fprintf(ficrespij,"\n");  prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
              }    /* proj1, year, month, day of starting projection 
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);       agemin, agemax range of age
           fprintf(ficrespij,"\n");       dateprev1 dateprev2 range of dates during which prevalence is computed
         }       anproj2 year of en of projection (same day and month as proj1).
     }    */
   }    int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
   varprob(optionfilefiname, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);    double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
   fclose(ficrespij);    double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
   /*---------- Forecasting ------------------*/    char fileresf[FILENAMELENGTH];
   if((stepm == 1) && (strcmp(model,".")==0)){  
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);    agelim=AGESUP;
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
   }   
   else{    strcpy(fileresf,"f"); 
     erreur=108;    strcat(fileresf,fileres);
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);    if((ficresf=fopen(fileresf,"w"))==NULL) {
     fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);      printf("Problem with forecast resultfile: %s\n", fileresf);
   }      fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
      }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
   /*---------- Health expectancies and variances ------------*/    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
   strcpy(filerest,"t");    if (cptcoveff==0) ncodemax[cptcoveff]=1;
   strcat(filerest,fileres);  
   if((ficrest=fopen(filerest,"w"))==NULL) {    if (mobilav!=0) {
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
   }        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
   printf("Computing Total LEs with variances: file '%s' \n", filerest);        printf(" Error in movingaverage mobilav=%d\n",mobilav);
   fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest);      }
     }
   
   strcpy(filerese,"e");    stepsize=(int) (stepm+YEARM-1)/YEARM;
   strcat(filerese,fileres);    if (stepm<=12) stepsize=1;
   if((ficreseij=fopen(filerese,"w"))==NULL) {    if(estepm < stepm){
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);      printf ("Problem %d lower than %d\n",estepm, stepm);
     fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);    }
   }    else  hstepm=estepm;   
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);  
   fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);    hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
   strcpy(fileresv,"v");                                 fractional in yp1 */
   strcat(fileresv,fileres);    anprojmean=yp;
   if((ficresvij=fopen(fileresv,"w"))==NULL) {    yp2=modf((yp1*12),&yp);
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);    mprojmean=yp;
     fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);    yp1=modf((yp2*30.5),&yp);
   }    jprojmean=yp;
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);    if(jprojmean==0) jprojmean=1;
   fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);    if(mprojmean==0) jprojmean=1;
   calagedate=-1;  
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
   k=0;    
   for(cptcov=1;cptcov<=i1;cptcov++){    fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    
       k=k+1;    fprintf(ficresf,"#****** Routine prevforecast **\n");
       fprintf(ficrest,"\n#****** ");  
       for(j=1;j<=cptcoveff;j++)  /*            if (h==(int)(YEARM*yearp)){ */
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       fprintf(ficrest,"******\n");      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
       fprintf(ficreseij,"\n#****** ");        fprintf(ficresf,"\n#******");
       for(j=1;j<=cptcoveff;j++)        for(j=1;j<=cptcoveff;j++) {
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
       fprintf(ficreseij,"******\n");        }
         fprintf(ficresf,"******\n");
       fprintf(ficresvij,"\n#****** ");        fprintf(ficresf,"# Covariate valuofcovar yearproj age");
       for(j=1;j<=cptcoveff;j++)        for(j=1; j<=nlstate+ndeath;j++){ 
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          for(i=1; i<=nlstate;i++)              
       fprintf(ficresvij,"******\n");            fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);        }
       oldm=oldms;savm=savms;        for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);            fprintf(ficresf,"\n");
            fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);  
       oldm=oldms;savm=savms;          for (agec=fage; agec>=(ageminpar-1); agec--){ 
       varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0);            nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
       if(popbased==1){            nhstepm = nhstepm/hstepm; 
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased);            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
        }            oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
            
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");            for (h=0; h<=nhstepm; h++){
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);              if (h*hstepm/YEARM*stepm ==yearp) {
       fprintf(ficrest,"\n");                fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
       epj=vector(1,nlstate+1);                  fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
       for(age=bage; age <=fage ;age++){                fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);              } 
         if (popbased==1) {              for(j=1; j<=nlstate+ndeath;j++) {
           for(i=1; i<=nlstate;i++)                ppij=0.;
             prlim[i][i]=probs[(int)age][i][k];                for(i=1; i<=nlstate;i++) {
         }                  if (mobilav==1) 
                            ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
         fprintf(ficrest," %4.0f",age);                  else {
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){                    ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
           for(i=1, epj[j]=0.;i <=nlstate;i++) {                  }
             epj[j] += prlim[i][i]*eij[i][j][(int)age];                  if (h*hstepm/YEARM*stepm== yearp) {
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/                    fprintf(ficresf," %.3f", p3mat[i][j][h]);
           }                  }
           epj[nlstate+1] +=epj[j];                } /* end i */
         }                if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
         for(i=1, vepp=0.;i <=nlstate;i++)                }
           for(j=1;j <=nlstate;j++)              }/* end j */
             vepp += vareij[i][j][(int)age];            } /* end h */
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         for(j=1;j <=nlstate;j++){          } /* end agec */
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));        } /* end yearp */
         }      } /* end cptcod */
         fprintf(ficrest,"\n");    } /* end  cptcov */
       }         
     }    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   }  
 free_matrix(mint,1,maxwav,1,n);    fclose(ficresf);
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);  }
     free_vector(weight,1,n);  
   fclose(ficreseij);  /************** Forecasting *****not tested NB*************/
   fclose(ficresvij);  populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
   fclose(ficrest);    
   fclose(ficpar);    int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
   free_vector(epj,1,nlstate+1);    int *popage;
      double calagedatem, agelim, kk1, kk2;
   /*------- Variance limit prevalence------*/      double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
   strcpy(fileresvpl,"vpl");    double ***mobaverage;
   strcat(fileresvpl,fileres);    char filerespop[FILENAMELENGTH];
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {  
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);    tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     exit(0);    tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   }    agelim=AGESUP;
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);    calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
   k=0;    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
   for(cptcov=1;cptcov<=i1;cptcov++){    
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    
       k=k+1;    strcpy(filerespop,"pop"); 
       fprintf(ficresvpl,"\n#****** ");    strcat(filerespop,fileres);
       for(j=1;j<=cptcoveff;j++)    if((ficrespop=fopen(filerespop,"w"))==NULL) {
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficresvpl,"******\n");      fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
          }
       varpl=matrix(1,nlstate,(int) bage, (int) fage);    printf("Computing forecasting: result on file '%s' \n", filerespop);
       oldm=oldms;savm=savms;    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);  
     }    if (cptcoveff==0) ncodemax[cptcoveff]=1;
  }  
     if (mobilav!=0) {
   fclose(ficresvpl);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
   /*---------- End : free ----------------*/        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);        printf(" Error in movingaverage mobilav=%d\n",mobilav);
        }
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);    }
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);  
      stepsize=(int) (stepm+YEARM-1)/YEARM;
      if (stepm<=12) stepsize=1;
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);    
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);    agelim=AGESUP;
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);    
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);    hstepm=1;
      hstepm=hstepm/stepm; 
   free_matrix(matcov,1,npar,1,npar);    
   free_vector(delti,1,npar);    if (popforecast==1) {
   free_matrix(agev,1,maxwav,1,imx);      if((ficpop=fopen(popfile,"r"))==NULL) {
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);        printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
   fprintf(fichtm,"\n</body>");      } 
   fclose(fichtm);      popage=ivector(0,AGESUP);
   fclose(ficgp);      popeffectif=vector(0,AGESUP);
        popcount=vector(0,AGESUP);
       
   if(erreur >0){      i=1;   
     printf("End of Imach with error or warning %d\n",erreur);      while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
     fprintf(ficlog,"End of Imach with error or warning %d\n",erreur);     
   }else{      imx=i;
    printf("End of Imach\n");      for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
    fprintf(ficlog,"End of Imach\n");    }
   }  
   printf("See log file on %s\n",filelog);    for(cptcov=1,k=0;cptcov<=i2;cptcov++){
   fclose(ficlog);     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */        k=k+1;
          fprintf(ficrespop,"\n#******");
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/        for(j=1;j<=cptcoveff;j++) {
   /*printf("Total time was %d uSec.\n", total_usecs);*/          fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
   /*------ End -----------*/        }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
  end:        for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
 #ifdef windows        if (popforecast==1)  fprintf(ficrespop," [Population]");
   /* chdir(pathcd);*/        
 #endif        for (cpt=0; cpt<=0;cpt++) { 
  /*system("wgnuplot graph.plt");*/          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
  /*system("../gp37mgw/wgnuplot graph.plt");*/          
  /*system("cd ../gp37mgw");*/          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
  strcpy(plotcmd,GNUPLOTPROGRAM);            nhstepm = nhstepm/hstepm; 
  strcat(plotcmd," ");            
  strcat(plotcmd,optionfilegnuplot);            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
  system(plotcmd);            oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
 #ifdef windows          
   while (z[0] != 'q') {            for (h=0; h<=nhstepm; h++){
     /* chdir(path); */              if (h==(int) (calagedatem+YEARM*cpt)) {
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");                fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
     scanf("%s",z);              } 
     if (z[0] == 'c') system("./imach");              for(j=1; j<=nlstate+ndeath;j++) {
     else if (z[0] == 'e') system(optionfilehtm);                kk1=0.;kk2=0;
     else if (z[0] == 'g') system(plotcmd);                for(i=1; i<=nlstate;i++) {              
     else if (z[0] == 'q') exit(0);                  if (mobilav==1) 
   }                    kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
 #endif                  else {
 }                    kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small\n set log y\n"); 
     fprintf(ficgp, "set size 0.65,0.65\n");
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   
   
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int linei, month, year,iout;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
     int vpopbased=0;
   
     char ca[32], cb[32], cc[32];
     char dummy[]="                         ";
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char **bp, *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char  *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Dirty */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path); /* Can be a relative path */
     if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
       printf("Current directory %s!\n",pathcd);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       goto end;
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
   It might be a problem of design; if ncovcol and the model are correct\n \
   run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %d %s for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
           exit(1);
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }
         else  if(iout=sscanf(strb,"%s.") != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           exit(1);
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.",dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         exit(1);
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.") != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line,j);
         exit(1);
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       dval=strtod(strb,&endptr); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%f' at line number %ld, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         exit(1);
       }
       weight[i]=dval; 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a covar (meaning 0 for the reference or 1).  Exiting.\n",lval, linei,i, line);
           exit(1);
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%d' at line number %ld for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);
           goto end;
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       }  
       lstra=strlen(stra);
        
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
     fclose(fic);
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
     /* for (i=1; i<=imx; i++) */
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameters from char model */
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     agegomp=(int)agemin;
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       p[1]=0.0268; p[NDIM]=0.083;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
       
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
     
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%lf ",p[jk]);
               fprintf(ficlog,"%lf ",p[jk]);
               fprintf(ficres,"%lf ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       pstamp(ficrespl);
       fprintf(ficrespl,"# Period (stable) prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       pstamp(ficrespij);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
   
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
   
       /*---------- Health expectancies, no variances ------------*/
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
         
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         }
       }
       fclose(ficreseij);
   
   
       /*---------- Health expectancies and variances ------------*/
   
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
   
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           pstamp(ficrest);
           for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
             oldm=oldms;savm=savms;
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart);   fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n#  (weighted average of eij where weights are ");
             if(vpopbased==1)
               fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav);
             else
               fprintf(ficrest,"the age specific period (stable) prevalences in each health state \n");
             fprintf(ficrest,"# Age e.. (std) ");
             for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
             fprintf(ficrest,"\n");
   
             epj=vector(1,nlstate+1);
             for(age=bage; age <=fage ;age++){
               prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
               if (vpopbased==1) {
                 if(mobilav ==0){
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=probs[(int)age][i][k];
                 }else{ /* mobilav */ 
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=mobaverage[(int)age][i][k];
                 }
               }
           
               fprintf(ficrest," %4.0f",age);
               for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
                 for(i=1, epj[j]=0.;i <=nlstate;i++) {
                   epj[j] += prlim[i][i]*eij[i][j][(int)age];
                   /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
                 }
                 epj[nlstate+1] +=epj[j];
               }
   
               for(i=1, vepp=0.;i <=nlstate;i++)
                 for(j=1;j <=nlstate;j++)
                   vepp += vareij[i][j][(int)age];
               fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
               for(j=1;j <=nlstate;j++){
                 fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
               }
               fprintf(ficrest,"\n");
             }
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
     free_matrix(prlim,1,nlstate,1,nlstate);
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
       free_ivector(Tcode,1,100);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.50  
changed lines
  Added in v.1.129


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>