Diff for /imach/src/imach.c between versions 1.82 and 1.125

version 1.82, 2003/06/05 15:57:20 version 1.125, 2006/04/04 15:20:31
Line 1 Line 1
 /* $Id$  /* $Id$
   $State$    $State$
   $Log$    $Log$
   Revision 1.82  2003/06/05 15:57:20  brouard    Revision 1.125  2006/04/04 15:20:31  lievre
   Add log in  imach.c and  fullversion number is now printed.    Errors in calculation of health expectancies. Age was not initialized.
     Forecasting file added.
 */  
 /*    Revision 1.124  2006/03/22 17:13:53  lievre
    Interpolated Markov Chain    Parameters are printed with %lf instead of %f (more numbers after the comma).
     The log-likelihood is printed in the log file
   Short summary of the programme:  
       Revision 1.123  2006/03/20 10:52:43  brouard
   This program computes Healthy Life Expectancies from    * imach.c (Module): <title> changed, corresponds to .htm file
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    name. <head> headers where missing.
   first survey ("cross") where individuals from different ages are  
   interviewed on their health status or degree of disability (in the    * imach.c (Module): Weights can have a decimal point as for
   case of a health survey which is our main interest) -2- at least a    English (a comma might work with a correct LC_NUMERIC environment,
   second wave of interviews ("longitudinal") which measure each change    otherwise the weight is truncated).
   (if any) in individual health status.  Health expectancies are    Modification of warning when the covariates values are not 0 or
   computed from the time spent in each health state according to a    1.
   model. More health states you consider, more time is necessary to reach the    Version 0.98g
   Maximum Likelihood of the parameters involved in the model.  The  
   simplest model is the multinomial logistic model where pij is the    Revision 1.122  2006/03/20 09:45:41  brouard
   probability to be observed in state j at the second wave    (Module): Weights can have a decimal point as for
   conditional to be observed in state i at the first wave. Therefore    English (a comma might work with a correct LC_NUMERIC environment,
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    otherwise the weight is truncated).
   'age' is age and 'sex' is a covariate. If you want to have a more    Modification of warning when the covariates values are not 0 or
   complex model than "constant and age", you should modify the program    1.
   where the markup *Covariates have to be included here again* invites    Version 0.98g
   you to do it.  More covariates you add, slower the  
   convergence.    Revision 1.121  2006/03/16 17:45:01  lievre
     * imach.c (Module): Comments concerning covariates added
   The advantage of this computer programme, compared to a simple  
   multinomial logistic model, is clear when the delay between waves is not    * imach.c (Module): refinements in the computation of lli if
   identical for each individual. Also, if a individual missed an    status=-2 in order to have more reliable computation if stepm is
   intermediate interview, the information is lost, but taken into    not 1 month. Version 0.98f
   account using an interpolation or extrapolation.    
     Revision 1.120  2006/03/16 15:10:38  lievre
   hPijx is the probability to be observed in state i at age x+h    (Module): refinements in the computation of lli if
   conditional to the observed state i at age x. The delay 'h' can be    status=-2 in order to have more reliable computation if stepm is
   split into an exact number (nh*stepm) of unobserved intermediate    not 1 month. Version 0.98f
   states. This elementary transition (by month, quarter,  
   semester or year) is modelled as a multinomial logistic.  The hPx    Revision 1.119  2006/03/15 17:42:26  brouard
   matrix is simply the matrix product of nh*stepm elementary matrices    (Module): Bug if status = -2, the loglikelihood was
   and the contribution of each individual to the likelihood is simply    computed as likelihood omitting the logarithm. Version O.98e
   hPijx.  
     Revision 1.118  2006/03/14 18:20:07  brouard
   Also this programme outputs the covariance matrix of the parameters but also    (Module): varevsij Comments added explaining the second
   of the life expectancies. It also computes the stable prevalence.     table of variances if popbased=1 .
       (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    (Module): Function pstamp added
            Institut national d'études démographiques, Paris.    (Module): Version 0.98d
   This software have been partly granted by Euro-REVES, a concerted action  
   from the European Union.    Revision 1.117  2006/03/14 17:16:22  brouard
   It is copyrighted identically to a GNU software product, ie programme and    (Module): varevsij Comments added explaining the second
   software can be distributed freely for non commercial use. Latest version    table of variances if popbased=1 .
   can be accessed at http://euroreves.ined.fr/imach .    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
     (Module): Function pstamp added
   Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach    (Module): Version 0.98d
   or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so  
       Revision 1.116  2006/03/06 10:29:27  brouard
   **********************************************************************/    (Module): Variance-covariance wrong links and
 /*    varian-covariance of ej. is needed (Saito).
   main  
   read parameterfile    Revision 1.115  2006/02/27 12:17:45  brouard
   read datafile    (Module): One freematrix added in mlikeli! 0.98c
   concatwav  
   if (mle >= 1)    Revision 1.114  2006/02/26 12:57:58  brouard
     mlikeli    (Module): Some improvements in processing parameter
   print results files    filename with strsep.
   if mle==1   
      computes hessian    Revision 1.113  2006/02/24 14:20:24  brouard
   read end of parameter file: agemin, agemax, bage, fage, estepm    (Module): Memory leaks checks with valgrind and:
       begin-prev-date,...    datafile was not closed, some imatrix were not freed and on matrix
   open gnuplot file    allocation too.
   open html file  
   stable prevalence    Revision 1.112  2006/01/30 09:55:26  brouard
    for age prevalim()    (Module): Back to gnuplot.exe instead of wgnuplot.exe
   h Pij x  
   variance of p varprob    Revision 1.111  2006/01/25 20:38:18  brouard
   forecasting if prevfcast==1 prevforecast call prevalence()    (Module): Lots of cleaning and bugs added (Gompertz)
   health expectancies    (Module): Comments can be added in data file. Missing date values
   Variance-covariance of DFLE    can be a simple dot '.'.
   prevalence()  
    movingaverage()    Revision 1.110  2006/01/25 00:51:50  brouard
   varevsij()     (Module): Lots of cleaning and bugs added (Gompertz)
   if popbased==1 varevsij(,popbased)  
   total life expectancies    Revision 1.109  2006/01/24 19:37:15  brouard
   Variance of stable prevalence    (Module): Comments (lines starting with a #) are allowed in data.
  end  
 */    Revision 1.108  2006/01/19 18:05:42  lievre
     Gnuplot problem appeared...
     To be fixed
   
      Revision 1.107  2006/01/19 16:20:37  brouard
 #include <math.h>    Test existence of gnuplot in imach path
 #include <stdio.h>  
 #include <stdlib.h>    Revision 1.106  2006/01/19 13:24:36  brouard
 #include <unistd.h>    Some cleaning and links added in html output
   
 #define MAXLINE 256    Revision 1.105  2006/01/05 20:23:19  lievre
 #define GNUPLOTPROGRAM "gnuplot"    *** empty log message ***
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/  
 #define FILENAMELENGTH 80    Revision 1.104  2005/09/30 16:11:43  lievre
 /*#define DEBUG*/    (Module): sump fixed, loop imx fixed, and simplifications.
 #define windows    (Module): If the status is missing at the last wave but we know
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    that the person is alive, then we can code his/her status as -2
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    (instead of missing=-1 in earlier versions) and his/her
     contributions to the likelihood is 1 - Prob of dying from last
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    health status (= 1-p13= p11+p12 in the easiest case of somebody in
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    the healthy state at last known wave). Version is 0.98
   
 #define NINTERVMAX 8    Revision 1.103  2005/09/30 15:54:49  lievre
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    (Module): sump fixed, loop imx fixed, and simplifications.
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */  
 #define NCOVMAX 8 /* Maximum number of covariates */    Revision 1.102  2004/09/15 17:31:30  brouard
 #define MAXN 20000    Add the possibility to read data file including tab characters.
 #define YEARM 12. /* Number of months per year */  
 #define AGESUP 130    Revision 1.101  2004/09/15 10:38:38  brouard
 #define AGEBASE 40    Fix on curr_time
 #ifdef windows  
 #define DIRSEPARATOR '\\'    Revision 1.100  2004/07/12 18:29:06  brouard
 #define ODIRSEPARATOR '/'    Add version for Mac OS X. Just define UNIX in Makefile
 #else  
 #define DIRSEPARATOR '/'    Revision 1.99  2004/06/05 08:57:40  brouard
 #define ODIRSEPARATOR '\\'    *** empty log message ***
 #endif  
     Revision 1.98  2004/05/16 15:05:56  brouard
 /* $Id$ */    New version 0.97 . First attempt to estimate force of mortality
 /* $State$ */    directly from the data i.e. without the need of knowing the health
     state at each age, but using a Gompertz model: log u =a + b*age .
 char version[]="Imach version 0.95a1, June 2003, INED-EUROREVES ";    This is the basic analysis of mortality and should be done before any
 char fullversion[]="$Revision$ $Date$";     other analysis, in order to test if the mortality estimated from the
 int erreur; /* Error number */    cross-longitudinal survey is different from the mortality estimated
 int nvar;    from other sources like vital statistic data.
 int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;  
 int npar=NPARMAX;    The same imach parameter file can be used but the option for mle should be -3.
 int nlstate=2; /* Number of live states */  
 int ndeath=1; /* Number of dead states */    Agnès, who wrote this part of the code, tried to keep most of the
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    former routines in order to include the new code within the former code.
 int popbased=0;  
     The output is very simple: only an estimate of the intercept and of
 int *wav; /* Number of waves for this individuual 0 is possible */    the slope with 95% confident intervals.
 int maxwav; /* Maxim number of waves */  
 int jmin, jmax; /* min, max spacing between 2 waves */    Current limitations:
 int mle, weightopt;    A) Even if you enter covariates, i.e. with the
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    B) There is no computation of Life Expectancy nor Life Table.
 int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between  
            * wave mi and wave mi+1 is not an exact multiple of stepm. */    Revision 1.97  2004/02/20 13:25:42  lievre
 double jmean; /* Mean space between 2 waves */    Version 0.96d. Population forecasting command line is (temporarily)
 double **oldm, **newm, **savm; /* Working pointers to matrices */    suppressed.
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */  
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    Revision 1.96  2003/07/15 15:38:55  brouard
 FILE *ficlog, *ficrespow;    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;    rewritten within the same printf. Workaround: many printfs.
 FILE *ficresprobmorprev;  
 FILE *fichtm; /* Html File */    Revision 1.95  2003/07/08 07:54:34  brouard
 FILE *ficreseij;    * imach.c (Repository):
 char filerese[FILENAMELENGTH];    (Repository): Using imachwizard code to output a more meaningful covariance
 FILE  *ficresvij;    matrix (cov(a12,c31) instead of numbers.
 char fileresv[FILENAMELENGTH];  
 FILE  *ficresvpl;    Revision 1.94  2003/06/27 13:00:02  brouard
 char fileresvpl[FILENAMELENGTH];    Just cleaning
 char title[MAXLINE];  
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];    Revision 1.93  2003/06/25 16:33:55  brouard
 char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];    (Module): On windows (cygwin) function asctime_r doesn't
     exist so I changed back to asctime which exists.
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];    (Module): Version 0.96b
 char filelog[FILENAMELENGTH]; /* Log file */  
 char filerest[FILENAMELENGTH];    Revision 1.92  2003/06/25 16:30:45  brouard
 char fileregp[FILENAMELENGTH];    (Module): On windows (cygwin) function asctime_r doesn't
 char popfile[FILENAMELENGTH];    exist so I changed back to asctime which exists.
   
 char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];    Revision 1.91  2003/06/25 15:30:29  brouard
     * imach.c (Repository): Duplicated warning errors corrected.
 #define NR_END 1    (Repository): Elapsed time after each iteration is now output. It
 #define FREE_ARG char*    helps to forecast when convergence will be reached. Elapsed time
 #define FTOL 1.0e-10    is stamped in powell.  We created a new html file for the graphs
     concerning matrix of covariance. It has extension -cov.htm.
 #define NRANSI   
 #define ITMAX 200     Revision 1.90  2003/06/24 12:34:15  brouard
     (Module): Some bugs corrected for windows. Also, when
 #define TOL 2.0e-4     mle=-1 a template is output in file "or"mypar.txt with the design
     of the covariance matrix to be input.
 #define CGOLD 0.3819660   
 #define ZEPS 1.0e-10     Revision 1.89  2003/06/24 12:30:52  brouard
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);     (Module): Some bugs corrected for windows. Also, when
     mle=-1 a template is output in file "or"mypar.txt with the design
 #define GOLD 1.618034     of the covariance matrix to be input.
 #define GLIMIT 100.0   
 #define TINY 1.0e-20     Revision 1.88  2003/06/23 17:54:56  brouard
     * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
 static double maxarg1,maxarg2;  
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    Revision 1.87  2003/06/18 12:26:01  brouard
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    Version 0.96
     
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    Revision 1.86  2003/06/17 20:04:08  brouard
 #define rint(a) floor(a+0.5)    (Module): Change position of html and gnuplot routines and added
     routine fileappend.
 static double sqrarg;  
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    Revision 1.85  2003/06/17 13:12:43  brouard
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}     * imach.c (Repository): Check when date of death was earlier that
     current date of interview. It may happen when the death was just
 int imx;     prior to the death. In this case, dh was negative and likelihood
 int stepm;    was wrong (infinity). We still send an "Error" but patch by
 /* Stepm, step in month: minimum step interpolation*/    assuming that the date of death was just one stepm after the
     interview.
 int estepm;    (Repository): Because some people have very long ID (first column)
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/    we changed int to long in num[] and we added a new lvector for
     memory allocation. But we also truncated to 8 characters (left
 int m,nb;    truncation)
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    (Repository): No more line truncation errors.
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;  
 double **pmmij, ***probs;    Revision 1.84  2003/06/13 21:44:43  brouard
 double dateintmean=0;    * imach.c (Repository): Replace "freqsummary" at a correct
     place. It differs from routine "prevalence" which may be called
 double *weight;    many times. Probs is memory consuming and must be used with
 int **s; /* Status */    parcimony.
 double *agedc, **covar, idx;    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;  
     Revision 1.83  2003/06/10 13:39:11  lievre
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    *** empty log message ***
 double ftolhess; /* Tolerance for computing hessian */  
     Revision 1.82  2003/06/05 15:57:20  brouard
 /**************** split *************************/    Add log in  imach.c and  fullversion number is now printed.
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )  
 {  */
   char  *ss;                            /* pointer */  /*
   int   l1, l2;                         /* length counters */     Interpolated Markov Chain
   
   l1 = strlen(path );                   /* length of path */    Short summary of the programme:
   if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );   
   ss= strrchr( path, DIRSEPARATOR );            /* find last / */    This program computes Healthy Life Expectancies from
   if ( ss == NULL ) {                   /* no directory, so use current */    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
     /*if(strrchr(path, ODIRSEPARATOR )==NULL)    first survey ("cross") where individuals from different ages are
       printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/    interviewed on their health status or degree of disability (in the
     /* get current working directory */    case of a health survey which is our main interest) -2- at least a
     /*    extern  char* getcwd ( char *buf , int len);*/    second wave of interviews ("longitudinal") which measure each change
     if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    (if any) in individual health status.  Health expectancies are
       return( GLOCK_ERROR_GETCWD );    computed from the time spent in each health state according to a
     }    model. More health states you consider, more time is necessary to reach the
     strcpy( name, path );               /* we've got it */    Maximum Likelihood of the parameters involved in the model.  The
   } else {                              /* strip direcotry from path */    simplest model is the multinomial logistic model where pij is the
     ss++;                               /* after this, the filename */    probability to be observed in state j at the second wave
     l2 = strlen( ss );                  /* length of filename */    conditional to be observed in state i at the first wave. Therefore
     if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
     strcpy( name, ss );         /* save file name */    'age' is age and 'sex' is a covariate. If you want to have a more
     strncpy( dirc, path, l1 - l2 );     /* now the directory */    complex model than "constant and age", you should modify the program
     dirc[l1-l2] = 0;                    /* add zero */    where the markup *Covariates have to be included here again* invites
   }    you to do it.  More covariates you add, slower the
   l1 = strlen( dirc );                  /* length of directory */    convergence.
 #ifdef windows  
   if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    The advantage of this computer programme, compared to a simple
 #else    multinomial logistic model, is clear when the delay between waves is not
   if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }    identical for each individual. Also, if a individual missed an
 #endif    intermediate interview, the information is lost, but taken into
   ss = strrchr( name, '.' );            /* find last / */    account using an interpolation or extrapolation.  
   ss++;  
   strcpy(ext,ss);                       /* save extension */    hPijx is the probability to be observed in state i at age x+h
   l1= strlen( name);    conditional to the observed state i at age x. The delay 'h' can be
   l2= strlen(ss)+1;    split into an exact number (nh*stepm) of unobserved intermediate
   strncpy( finame, name, l1-l2);    states. This elementary transition (by month, quarter,
   finame[l1-l2]= 0;    semester or year) is modelled as a multinomial logistic.  The hPx
   return( 0 );                          /* we're done */    matrix is simply the matrix product of nh*stepm elementary matrices
 }    and the contribution of each individual to the likelihood is simply
     hPijx.
   
 /******************************************/    Also this programme outputs the covariance matrix of the parameters but also
     of the life expectancies. It also computes the period (stable) prevalence.
 void replace(char *s, char*t)   
 {    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
   int i;             Institut national d'études démographiques, Paris.
   int lg=20;    This software have been partly granted by Euro-REVES, a concerted action
   i=0;    from the European Union.
   lg=strlen(t);    It is copyrighted identically to a GNU software product, ie programme and
   for(i=0; i<= lg; i++) {    software can be distributed freely for non commercial use. Latest version
     (s[i] = t[i]);    can be accessed at http://euroreves.ined.fr/imach .
     if (t[i]== '\\') s[i]='/';  
   }    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
 }    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
    
 int nbocc(char *s, char occ)    **********************************************************************/
 {  /*
   int i,j=0;    main
   int lg=20;    read parameterfile
   i=0;    read datafile
   lg=strlen(s);    concatwav
   for(i=0; i<= lg; i++) {    freqsummary
   if  (s[i] == occ ) j++;    if (mle >= 1)
   }      mlikeli
   return j;    print results files
 }    if mle==1
        computes hessian
 void cutv(char *u,char *v, char*t, char occ)    read end of parameter file: agemin, agemax, bage, fage, estepm
 {        begin-prev-date,...
   /* cuts string t into u and v where u is ended by char occ excluding it    open gnuplot file
      and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)    open html file
      gives u="abcedf" and v="ghi2j" */    period (stable) prevalence
   int i,lg,j,p=0;     for age prevalim()
   i=0;    h Pij x
   for(j=0; j<=strlen(t)-1; j++) {    variance of p varprob
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;    forecasting if prevfcast==1 prevforecast call prevalence()
   }    health expectancies
     Variance-covariance of DFLE
   lg=strlen(t);    prevalence()
   for(j=0; j<p; j++) {     movingaverage()
     (u[j] = t[j]);    varevsij()
   }    if popbased==1 varevsij(,popbased)
      u[p]='\0';    total life expectancies
     Variance of period (stable) prevalence
    for(j=0; j<= lg; j++) {   end
     if (j>=(p+1))(v[j-p-1] = t[j]);  */
   }  
 }  
   
 /********************** nrerror ********************/   
   #include <math.h>
 void nrerror(char error_text[])  #include <stdio.h>
 {  #include <stdlib.h>
   fprintf(stderr,"ERREUR ...\n");  #include <string.h>
   fprintf(stderr,"%s\n",error_text);  #include <unistd.h>
   exit(EXIT_FAILURE);  
 }  #include <limits.h>
 /*********************** vector *******************/  #include <sys/types.h>
 double *vector(int nl, int nh)  #include <sys/stat.h>
 {  #include <errno.h>
   double *v;  extern int errno;
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  
   if (!v) nrerror("allocation failure in vector");  /* #include <sys/time.h> */
   return v-nl+NR_END;  #include <time.h>
 }  #include "timeval.h"
   
 /************************ free vector ******************/  /* #include <libintl.h> */
 void free_vector(double*v, int nl, int nh)  /* #define _(String) gettext (String) */
 {  
   free((FREE_ARG)(v+nl-NR_END));  #define MAXLINE 256
 }  
   #define GNUPLOTPROGRAM "gnuplot"
 /************************ivector *******************************/  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
 char *cvector(long nl,long nh)  #define FILENAMELENGTH 132
 {  
   char *v;  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
   v=(char *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(char)));  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
   if (!v) nrerror("allocation failure in cvector");  
   return v-nl+NR_END;  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
 }  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
   
 /******************free ivector **************************/  #define NINTERVMAX 8
 void free_cvector(char *v, long nl, long nh)  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
 {  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
   free((FREE_ARG)(v+nl-NR_END));  #define NCOVMAX 8 /* Maximum number of covariates */
 }  #define MAXN 20000
   #define YEARM 12. /* Number of months per year */
 /************************ivector *******************************/  #define AGESUP 130
 int *ivector(long nl,long nh)  #define AGEBASE 40
 {  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
   int *v;  #ifdef UNIX
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  #define DIRSEPARATOR '/'
   if (!v) nrerror("allocation failure in ivector");  #define CHARSEPARATOR "/"
   return v-nl+NR_END;  #define ODIRSEPARATOR '\\'
 }  #else
   #define DIRSEPARATOR '\\'
 /******************free ivector **************************/  #define CHARSEPARATOR "\\"
 void free_ivector(int *v, long nl, long nh)  #define ODIRSEPARATOR '/'
 {  #endif
   free((FREE_ARG)(v+nl-NR_END));  
 }  /* $Id$ */
   /* $State$ */
 /******************* imatrix *******************************/  
 int **imatrix(long nrl, long nrh, long ncl, long nch)   char version[]="Imach version 0.98g, March 2006, INED-EUROREVES-Institut de longevite ";
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */   char fullversion[]="$Revision$ $Date$";
 {   char strstart[80];
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;   char optionfilext[10], optionfilefiname[FILENAMELENGTH];
   int **m;   int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
     int nvar;
   /* allocate pointers to rows */   int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));   int npar=NPARMAX;
   if (!m) nrerror("allocation failure 1 in matrix()");   int nlstate=2; /* Number of live states */
   m += NR_END;   int ndeath=1; /* Number of dead states */
   m -= nrl;   int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
     int popbased=0;
     
   /* allocate rows and set pointers to them */   int *wav; /* Number of waves for this individuual 0 is possible */
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));   int maxwav; /* Maxim number of waves */
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");   int jmin, jmax; /* min, max spacing between 2 waves */
   m[nrl] += NR_END;   int ijmin, ijmax; /* Individuals having jmin and jmax */
   m[nrl] -= ncl;   int gipmx, gsw; /* Global variables on the number of contributions
                        to the likelihood and the sum of weights (done by funcone)*/
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;   int mle, weightopt;
     int **mw; /* mw[mi][i] is number of the mi wave for this individual */
   /* return pointer to array of pointers to rows */   int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
   return m;   int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
 }              * wave mi and wave mi+1 is not an exact multiple of stepm. */
   double jmean; /* Mean space between 2 waves */
 /****************** free_imatrix *************************/  double **oldm, **newm, **savm; /* Working pointers to matrices */
 void free_imatrix(m,nrl,nrh,ncl,nch)  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
       int **m;  FILE *fic,*ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
       long nch,ncl,nrh,nrl;   FILE *ficlog, *ficrespow;
      /* free an int matrix allocated by imatrix() */   int globpr; /* Global variable for printing or not */
 {   double fretone; /* Only one call to likelihood */
   free((FREE_ARG) (m[nrl]+ncl-NR_END));   long ipmx; /* Number of contributions */
   free((FREE_ARG) (m+nrl-NR_END));   double sw; /* Sum of weights */
 }   char filerespow[FILENAMELENGTH];
   char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
 /******************* matrix *******************************/  FILE *ficresilk;
 double **matrix(long nrl, long nrh, long ncl, long nch)  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
 {  FILE *ficresprobmorprev;
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  FILE *fichtm, *fichtmcov; /* Html File */
   double **m;  FILE *ficreseij;
   char filerese[FILENAMELENGTH];
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  FILE *ficresstdeij;
   if (!m) nrerror("allocation failure 1 in matrix()");  char fileresstde[FILENAMELENGTH];
   m += NR_END;  FILE *ficrescveij;
   m -= nrl;  char filerescve[FILENAMELENGTH];
   FILE  *ficresvij;
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  char fileresv[FILENAMELENGTH];
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  FILE  *ficresvpl;
   m[nrl] += NR_END;  char fileresvpl[FILENAMELENGTH];
   m[nrl] -= ncl;  char title[MAXLINE];
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
   return m;  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH];
   /* print *(*(m+1)+70) ou print m[1][70]; print m+1 or print &(m[1])   char command[FILENAMELENGTH];
    */  int  outcmd=0;
 }  
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
 /*************************free matrix ************************/  
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  char filelog[FILENAMELENGTH]; /* Log file */
 {  char filerest[FILENAMELENGTH];
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  char fileregp[FILENAMELENGTH];
   free((FREE_ARG)(m+nrl-NR_END));  char popfile[FILENAMELENGTH];
 }  
   char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
 /******************* ma3x *******************************/  
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
 {  struct timezone tzp;
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  extern int gettimeofday();
   double ***m;  struct tm tmg, tm, tmf, *gmtime(), *localtime();
   long time_value;
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  extern long time();
   if (!m) nrerror("allocation failure 1 in matrix()");  char strcurr[80], strfor[80];
   m += NR_END;  
   m -= nrl;  char *endptr;
   long lval;
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  double dval;
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  
   m[nrl] += NR_END;  #define NR_END 1
   m[nrl] -= ncl;  #define FREE_ARG char*
   #define FTOL 1.0e-10
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  
   #define NRANSI
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  #define ITMAX 200
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  
   m[nrl][ncl] += NR_END;  #define TOL 2.0e-4
   m[nrl][ncl] -= nll;  
   for (j=ncl+1; j<=nch; j++)   #define CGOLD 0.3819660
     m[nrl][j]=m[nrl][j-1]+nlay;  #define ZEPS 1.0e-10
     #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);
   for (i=nrl+1; i<=nrh; i++) {  
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  #define GOLD 1.618034
     for (j=ncl+1; j<=nch; j++)   #define GLIMIT 100.0
       m[i][j]=m[i][j-1]+nlay;  #define TINY 1.0e-20
   }  
   return m;   static double maxarg1,maxarg2;
   /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
            &(m[i][j][k]) <=> *((*(m+i) + j)+k)  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
   */   
 }  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
   #define rint(a) floor(a+0.5)
 /*************************free ma3x ************************/  
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  static double sqrarg;
 {  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  int agegomp= AGEGOMP;
   free((FREE_ARG)(m+nrl-NR_END));  
 }  int imx;
   int stepm=1;
 /***************** f1dim *************************/  /* Stepm, step in month: minimum step interpolation*/
 extern int ncom;   
 extern double *pcom,*xicom;  int estepm;
 extern double (*nrfunc)(double []);   /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
    
 double f1dim(double x)   int m,nb;
 {   long *num;
   int j;   int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
   double f;  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
   double *xt;   double **pmmij, ***probs;
    double *ageexmed,*agecens;
   xt=vector(1,ncom);   double dateintmean=0;
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];   
   f=(*nrfunc)(xt);   double *weight;
   free_vector(xt,1,ncom);   int **s; /* Status */
   return f;   double *agedc, **covar, idx;
 }   int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
   double *lsurv, *lpop, *tpop;
 /*****************brent *************************/  
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)   double ftol=FTOL; /* Tolerance for computing Max Likelihood */
 {   double ftolhess; /* Tolerance for computing hessian */
   int iter;   
   double a,b,d,etemp;  /**************** split *************************/
   double fu,fv,fw,fx;  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   double ftemp;  {
   double p,q,r,tol1,tol2,u,v,w,x,xm;     /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
   double e=0.0;        the name of the file (name), its extension only (ext) and its first part of the name (finame)
      */
   a=(ax < cx ? ax : cx);     char  *ss;                            /* pointer */
   b=(ax > cx ? ax : cx);     int   l1, l2;                         /* length counters */
   x=w=v=bx;   
   fw=fv=fx=(*f)(x);     l1 = strlen(path );                   /* length of path */
   for (iter=1;iter<=ITMAX;iter++) {     if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
     xm=0.5*(a+b);     ss= strrchr( path, DIRSEPARATOR );            /* find last / */
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);     if ( ss == NULL ) {                   /* no directory, so determine current directory */
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/      strcpy( name, path );               /* we got the fullname name because no directory */
     printf(".");fflush(stdout);      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
     fprintf(ficlog,".");fflush(ficlog);        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
 #ifdef DEBUG      /* get current working directory */
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);      /*    extern  char* getcwd ( char *buf , int len);*/
     fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */        return( GLOCK_ERROR_GETCWD );
 #endif      }
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){       /* got dirc from getcwd*/
       *xmin=x;       printf(" DIRC = %s \n",dirc);
       return fx;     } else {                              /* strip direcotry from path */
     }       ss++;                               /* after this, the filename */
     ftemp=fu;      l2 = strlen( ss );                  /* length of filename */
     if (fabs(e) > tol1) {       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
       r=(x-w)*(fx-fv);       strcpy( name, ss );         /* save file name */
       q=(x-v)*(fx-fw);       strncpy( dirc, path, l1 - l2 );     /* now the directory */
       p=(x-v)*q-(x-w)*r;       dirc[l1-l2] = 0;                    /* add zero */
       q=2.0*(q-r);       printf(" DIRC2 = %s \n",dirc);
       if (q > 0.0) p = -p;     }
       q=fabs(q);     /* We add a separator at the end of dirc if not exists */
       etemp=e;     l1 = strlen( dirc );                  /* length of directory */
       e=d;     if( dirc[l1-1] != DIRSEPARATOR ){
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))       dirc[l1] =  DIRSEPARATOR;
         d=CGOLD*(e=(x >= xm ? a-x : b-x));       dirc[l1+1] = 0;
       else {       printf(" DIRC3 = %s \n",dirc);
         d=p/q;     }
         u=x+d;     ss = strrchr( name, '.' );            /* find last / */
         if (u-a < tol2 || b-u < tol2)     if (ss >0){
           d=SIGN(tol1,xm-x);       ss++;
       }       strcpy(ext,ss);                     /* save extension */
     } else {       l1= strlen( name);
       d=CGOLD*(e=(x >= xm ? a-x : b-x));       l2= strlen(ss)+1;
     }       strncpy( finame, name, l1-l2);
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));       finame[l1-l2]= 0;
     fu=(*f)(u);     }
     if (fu <= fx) {   
       if (u >= x) a=x; else b=x;     return( 0 );                          /* we're done */
       SHFT(v,w,x,u)   }
         SHFT(fv,fw,fx,fu)   
         } else {   
           if (u < x) a=u; else b=u;   /******************************************/
           if (fu <= fw || w == x) {   
             v=w;   void replace_back_to_slash(char *s, char*t)
             w=u;   {
             fv=fw;     int i;
             fw=fu;     int lg=0;
           } else if (fu <= fv || v == x || v == w) {     i=0;
             v=u;     lg=strlen(t);
             fv=fu;     for(i=0; i<= lg; i++) {
           }       (s[i] = t[i]);
         }       if (t[i]== '\\') s[i]='/';
   }     }
   nrerror("Too many iterations in brent");   }
   *xmin=x;   
   return fx;   int nbocc(char *s, char occ)
 }   {
     int i,j=0;
 /****************** mnbrak ***********************/    int lg=20;
     i=0;
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,     lg=strlen(s);
             double (*func)(double))     for(i=0; i<= lg; i++) {
 {     if  (s[i] == occ ) j++;
   double ulim,u,r,q, dum;    }
   double fu;     return j;
    }
   *fa=(*func)(*ax);   
   *fb=(*func)(*bx);   void cutv(char *u,char *v, char*t, char occ)
   if (*fb > *fa) {   {
     SHFT(dum,*ax,*bx,dum)     /* cuts string t into u and v where u ends before first occurence of char 'occ'
       SHFT(dum,*fb,*fa,dum)        and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
       }        gives u="abcedf" and v="ghi2j" */
   *cx=(*bx)+GOLD*(*bx-*ax);     int i,lg,j,p=0;
   *fc=(*func)(*cx);     i=0;
   while (*fb > *fc) {     for(j=0; j<=strlen(t)-1; j++) {
     r=(*bx-*ax)*(*fb-*fc);       if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
     q=(*bx-*cx)*(*fb-*fa);     }
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/   
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));     lg=strlen(t);
     ulim=(*bx)+GLIMIT*(*cx-*bx);     for(j=0; j<p; j++) {
     if ((*bx-u)*(u-*cx) > 0.0) {       (u[j] = t[j]);
       fu=(*func)(u);     }
     } else if ((*cx-u)*(u-ulim) > 0.0) {        u[p]='\0';
       fu=(*func)(u);   
       if (fu < *fc) {      for(j=0; j<= lg; j++) {
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))       if (j>=(p+1))(v[j-p-1] = t[j]);
           SHFT(*fb,*fc,fu,(*func)(u))     }
           }   }
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {   
       u=ulim;   /********************** nrerror ********************/
       fu=(*func)(u);   
     } else {   void nrerror(char error_text[])
       u=(*cx)+GOLD*(*cx-*bx);   {
       fu=(*func)(u);     fprintf(stderr,"ERREUR ...\n");
     }     fprintf(stderr,"%s\n",error_text);
     SHFT(*ax,*bx,*cx,u)     exit(EXIT_FAILURE);
       SHFT(*fa,*fb,*fc,fu)   }
       }   /*********************** vector *******************/
 }   double *vector(int nl, int nh)
   {
 /*************** linmin ************************/    double *v;
     v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
 int ncom;     if (!v) nrerror("allocation failure in vector");
 double *pcom,*xicom;    return v-nl+NR_END;
 double (*nrfunc)(double []);   }
    
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))   /************************ free vector ******************/
 {   void free_vector(double*v, int nl, int nh)
   double brent(double ax, double bx, double cx,   {
                double (*f)(double), double tol, double *xmin);     free((FREE_ARG)(v+nl-NR_END));
   double f1dim(double x);   }
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,   
               double *fc, double (*func)(double));   /************************ivector *******************************/
   int j;   int *ivector(long nl,long nh)
   double xx,xmin,bx,ax;   {
   double fx,fb,fa;    int *v;
      v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
   ncom=n;     if (!v) nrerror("allocation failure in ivector");
   pcom=vector(1,n);     return v-nl+NR_END;
   xicom=vector(1,n);   }
   nrfunc=func;   
   for (j=1;j<=n;j++) {   /******************free ivector **************************/
     pcom[j]=p[j];   void free_ivector(int *v, long nl, long nh)
     xicom[j]=xi[j];   {
   }     free((FREE_ARG)(v+nl-NR_END));
   ax=0.0;   }
   xx=1.0;   
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);   /************************lvector *******************************/
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);   long *lvector(long nl,long nh)
 #ifdef DEBUG  {
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    long *v;
   fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
 #endif    if (!v) nrerror("allocation failure in ivector");
   for (j=1;j<=n;j++) {     return v-nl+NR_END;
     xi[j] *= xmin;   }
     p[j] += xi[j];   
   }   /******************free lvector **************************/
   free_vector(xicom,1,n);   void free_lvector(long *v, long nl, long nh)
   free_vector(pcom,1,n);   {
 }     free((FREE_ARG)(v+nl-NR_END));
   }
 /*************** powell ************************/  
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,   /******************* imatrix *******************************/
             double (*func)(double []))   int **imatrix(long nrl, long nrh, long ncl, long nch)
 {        /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */
   void linmin(double p[], double xi[], int n, double *fret,   {
               double (*func)(double []));     long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;
   int i,ibig,j;     int **m;
   double del,t,*pt,*ptt,*xit;   
   double fp,fptt;    /* allocate pointers to rows */
   double *xits;    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));
   pt=vector(1,n);     if (!m) nrerror("allocation failure 1 in matrix()");
   ptt=vector(1,n);     m += NR_END;
   xit=vector(1,n);     m -= nrl;
   xits=vector(1,n);    
   *fret=(*func)(p);    
   for (j=1;j<=n;j++) pt[j]=p[j];     /* allocate rows and set pointers to them */
   for (*iter=1;;++(*iter)) {     m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));
     fp=(*fret);     if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     ibig=0;     m[nrl] += NR_END;
     del=0.0;     m[nrl] -= ncl;
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);   
     fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f",*iter,*fret);    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;
     fprintf(ficrespow,"%d %.12f",*iter,*fret);   
     for (i=1;i<=n;i++) {    /* return pointer to array of pointers to rows */
       printf(" %d %.12f",i, p[i]);    return m;
       fprintf(ficlog," %d %.12lf",i, p[i]);  }
       fprintf(ficrespow," %.12lf", p[i]);  
     }  /****************** free_imatrix *************************/
     printf("\n");  void free_imatrix(m,nrl,nrh,ncl,nch)
     fprintf(ficlog,"\n");        int **m;
     fprintf(ficrespow,"\n");        long nch,ncl,nrh,nrl;
     for (i=1;i<=n;i++) {        /* free an int matrix allocated by imatrix() */
       for (j=1;j<=n;j++) xit[j]=xi[j][i];   {
       fptt=(*fret);     free((FREE_ARG) (m[nrl]+ncl-NR_END));
 #ifdef DEBUG    free((FREE_ARG) (m+nrl-NR_END));
       printf("fret=%lf \n",*fret);  }
       fprintf(ficlog,"fret=%lf \n",*fret);  
 #endif  /******************* matrix *******************************/
       printf("%d",i);fflush(stdout);  double **matrix(long nrl, long nrh, long ncl, long nch)
       fprintf(ficlog,"%d",i);fflush(ficlog);  {
       linmin(p,xit,n,fret,func);     long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
       if (fabs(fptt-(*fret)) > del) {     double **m;
         del=fabs(fptt-(*fret));   
         ibig=i;     m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
       }     if (!m) nrerror("allocation failure 1 in matrix()");
 #ifdef DEBUG    m += NR_END;
       printf("%d %.12e",i,(*fret));    m -= nrl;
       fprintf(ficlog,"%d %.12e",i,(*fret));  
       for (j=1;j<=n;j++) {    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
         printf(" x(%d)=%.12e",j,xit[j]);    m[nrl] += NR_END;
         fprintf(ficlog," x(%d)=%.12e",j,xit[j]);    m[nrl] -= ncl;
       }  
       for(j=1;j<=n;j++) {    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
         printf(" p=%.12e",p[j]);    return m;
         fprintf(ficlog," p=%.12e",p[j]);    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1])
       }     */
       printf("\n");  }
       fprintf(ficlog,"\n");  
 #endif  /*************************free matrix ************************/
     }   void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {  {
 #ifdef DEBUG    free((FREE_ARG)(m[nrl]+ncl-NR_END));
       int k[2],l;    free((FREE_ARG)(m+nrl-NR_END));
       k[0]=1;  }
       k[1]=-1;  
       printf("Max: %.12e",(*func)(p));  /******************* ma3x *******************************/
       fprintf(ficlog,"Max: %.12e",(*func)(p));  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
       for (j=1;j<=n;j++) {  {
         printf(" %.12e",p[j]);    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
         fprintf(ficlog," %.12e",p[j]);    double ***m;
       }  
       printf("\n");    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
       fprintf(ficlog,"\n");    if (!m) nrerror("allocation failure 1 in matrix()");
       for(l=0;l<=1;l++) {    m += NR_END;
         for (j=1;j<=n;j++) {    m -= nrl;
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];  
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
           fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
         }    m[nrl] += NR_END;
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    m[nrl] -= ncl;
         fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  
       }    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
 #endif  
     m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
     if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
       free_vector(xit,1,n);     m[nrl][ncl] += NR_END;
       free_vector(xits,1,n);     m[nrl][ncl] -= nll;
       free_vector(ptt,1,n);     for (j=ncl+1; j<=nch; j++)
       free_vector(pt,1,n);       m[nrl][j]=m[nrl][j-1]+nlay;
       return;    
     }     for (i=nrl+1; i<=nrh; i++) {
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");       m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
     for (j=1;j<=n;j++) {       for (j=ncl+1; j<=nch; j++)
       ptt[j]=2.0*p[j]-pt[j];         m[i][j]=m[i][j-1]+nlay;
       xit[j]=p[j]-pt[j];     }
       pt[j]=p[j];     return m;
     }     /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
     fptt=(*func)(ptt);              &(m[i][j][k]) <=> *((*(m+i) + j)+k)
     if (fptt < fp) {     */
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);   }
       if (t < 0.0) {   
         linmin(p,xit,n,fret,func);   /*************************free ma3x ************************/
         for (j=1;j<=n;j++) {   void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
           xi[j][ibig]=xi[j][n];   {
           xi[j][n]=xit[j];     free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
         }    free((FREE_ARG)(m[nrl]+ncl-NR_END));
 #ifdef DEBUG    free((FREE_ARG)(m+nrl-NR_END));
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  }
         fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  
         for(j=1;j<=n;j++){  /*************** function subdirf ***********/
           printf(" %.12e",xit[j]);  char *subdirf(char fileres[])
           fprintf(ficlog," %.12e",xit[j]);  {
         }    /* Caution optionfilefiname is hidden */
         printf("\n");    strcpy(tmpout,optionfilefiname);
         fprintf(ficlog,"\n");    strcat(tmpout,"/"); /* Add to the right */
 #endif    strcat(tmpout,fileres);
       }    return tmpout;
     }   }
   }   
 }   /*************** function subdirf2 ***********/
   char *subdirf2(char fileres[], char *preop)
 /**** Prevalence limit (stable prevalence)  ****************/  {
    
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)    /* Caution optionfilefiname is hidden */
 {    strcpy(tmpout,optionfilefiname);
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit    strcat(tmpout,"/");
      matrix by transitions matrix until convergence is reached */    strcat(tmpout,preop);
     strcat(tmpout,fileres);
   int i, ii,j,k;    return tmpout;
   double min, max, maxmin, maxmax,sumnew=0.;  }
   double **matprod2();  
   double **out, cov[NCOVMAX], **pmij();  /*************** function subdirf3 ***********/
   double **newm;  char *subdirf3(char fileres[], char *preop, char *preop2)
   double agefin, delaymax=50 ; /* Max number of years to converge */  {
    
   for (ii=1;ii<=nlstate+ndeath;ii++)    /* Caution optionfilefiname is hidden */
     for (j=1;j<=nlstate+ndeath;j++){    strcpy(tmpout,optionfilefiname);
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);    strcat(tmpout,"/");
     }    strcat(tmpout,preop);
     strcat(tmpout,preop2);
    cov[1]=1.;    strcat(tmpout,fileres);
      return tmpout;
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */  }
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){  
     newm=savm;  /***************** f1dim *************************/
     /* Covariates have to be included here again */  extern int ncom;
      cov[2]=agefin;  extern double *pcom,*xicom;
     extern double (*nrfunc)(double []);
       for (k=1; k<=cptcovn;k++) {   
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  double f1dim(double x)
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/  {
       }    int j;
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    double f;
       for (k=1; k<=cptcovprod;k++)    double *xt;
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];   
     xt=vector(1,ncom);
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/    f=(*nrfunc)(xt);
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/    free_vector(xt,1,ncom);
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);    return f;
   }
     savm=oldm;  
     oldm=newm;  /*****************brent *************************/
     maxmax=0.;  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)
     for(j=1;j<=nlstate;j++){  {
       min=1.;    int iter;
       max=0.;    double a,b,d,etemp;
       for(i=1; i<=nlstate; i++) {    double fu,fv,fw,fx;
         sumnew=0;    double ftemp;
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];    double p,q,r,tol1,tol2,u,v,w,x,xm;
         prlim[i][j]= newm[i][j]/(1-sumnew);    double e=0.0;
         max=FMAX(max,prlim[i][j]);   
         min=FMIN(min,prlim[i][j]);    a=(ax < cx ? ax : cx);
       }    b=(ax > cx ? ax : cx);
       maxmin=max-min;    x=w=v=bx;
       maxmax=FMAX(maxmax,maxmin);    fw=fv=fx=(*f)(x);
     }    for (iter=1;iter<=ITMAX;iter++) {
     if(maxmax < ftolpl){      xm=0.5*(a+b);
       return prlim;      tol2=2.0*(tol1=tol*fabs(x)+ZEPS);
     }      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
   }      printf(".");fflush(stdout);
 }      fprintf(ficlog,".");fflush(ficlog);
   #ifdef DEBUG
 /*************** transition probabilities ***************/       printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
 {  #endif
   double s1, s2;      if (fabs(x-xm) <= (tol2-0.5*(b-a))){
   /*double t34;*/        *xmin=x;
   int i,j,j1, nc, ii, jj;        return fx;
       }
     for(i=1; i<= nlstate; i++){      ftemp=fu;
     for(j=1; j<i;j++){      if (fabs(e) > tol1) {
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){        r=(x-w)*(fx-fv);
         /*s2 += param[i][j][nc]*cov[nc];*/        q=(x-v)*(fx-fw);
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];        p=(x-v)*q-(x-w)*r;
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/        q=2.0*(q-r);
       }        if (q > 0.0) p = -p;
       ps[i][j]=s2;        q=fabs(q);
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/        etemp=e;
     }        e=d;
     for(j=i+1; j<=nlstate+ndeath;j++){        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){          d=CGOLD*(e=(x >= xm ? a-x : b-x));
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];        else {
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/          d=p/q;
       }          u=x+d;
       ps[i][j]=s2;          if (u-a < tol2 || b-u < tol2)
     }            d=SIGN(tol1,xm-x);
   }        }
     /*ps[3][2]=1;*/      } else {
         d=CGOLD*(e=(x >= xm ? a-x : b-x));
   for(i=1; i<= nlstate; i++){      }
      s1=0;      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));
     for(j=1; j<i; j++)      fu=(*f)(u);
       s1+=exp(ps[i][j]);      if (fu <= fx) {
     for(j=i+1; j<=nlstate+ndeath; j++)        if (u >= x) a=x; else b=x;
       s1+=exp(ps[i][j]);        SHFT(v,w,x,u)
     ps[i][i]=1./(s1+1.);          SHFT(fv,fw,fx,fu)
     for(j=1; j<i; j++)          } else {
       ps[i][j]= exp(ps[i][j])*ps[i][i];            if (u < x) a=u; else b=u;
     for(j=i+1; j<=nlstate+ndeath; j++)            if (fu <= fw || w == x) {
       ps[i][j]= exp(ps[i][j])*ps[i][i];              v=w;
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */              w=u;
   } /* end i */              fv=fw;
               fw=fu;
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){            } else if (fu <= fv || v == x || v == w) {
     for(jj=1; jj<= nlstate+ndeath; jj++){              v=u;
       ps[ii][jj]=0;              fv=fu;
       ps[ii][ii]=1;            }
     }          }
   }    }
     nrerror("Too many iterations in brent");
     *xmin=x;
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){    return fx;
     for(jj=1; jj<= nlstate+ndeath; jj++){  }
      printf("%lf ",ps[ii][jj]);  
    }  /****************** mnbrak ***********************/
     printf("\n ");  
     }  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,
     printf("\n ");printf("%lf ",cov[2]);*/              double (*func)(double))
 /*  {
   for(i=1; i<= npar; i++) printf("%f ",x[i]);    double ulim,u,r,q, dum;
   goto end;*/    double fu;
     return ps;   
 }    *fa=(*func)(*ax);
     *fb=(*func)(*bx);
 /**************** Product of 2 matrices ******************/    if (*fb > *fa) {
       SHFT(dum,*ax,*bx,dum)
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)        SHFT(dum,*fb,*fa,dum)
 {        }
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times    *cx=(*bx)+GOLD*(*bx-*ax);
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */    *fc=(*func)(*cx);
   /* in, b, out are matrice of pointers which should have been initialized     while (*fb > *fc) {
      before: only the contents of out is modified. The function returns      r=(*bx-*ax)*(*fb-*fc);
      a pointer to pointers identical to out */      q=(*bx-*cx)*(*fb-*fa);
   long i, j, k;      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/
   for(i=nrl; i<= nrh; i++)        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));
     for(k=ncolol; k<=ncoloh; k++)      ulim=(*bx)+GLIMIT*(*cx-*bx);
       for(j=ncl,out[i][k]=0.; j<=nch; j++)      if ((*bx-u)*(u-*cx) > 0.0) {
         out[i][k] +=in[i][j]*b[j][k];        fu=(*func)(u);
       } else if ((*cx-u)*(u-ulim) > 0.0) {
   return out;        fu=(*func)(u);
 }        if (fu < *fc) {
           SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))
             SHFT(*fb,*fc,fu,(*func)(u))
 /************* Higher Matrix Product ***************/            }
       } else if ((u-ulim)*(ulim-*cx) >= 0.0) {
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )        u=ulim;
 {        fu=(*func)(u);
   /* Computes the transition matrix starting at age 'age' over       } else {
      'nhstepm*hstepm*stepm' months (i.e. until        u=(*cx)+GOLD*(*cx-*bx);
      age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying         fu=(*func)(u);
      nhstepm*hstepm matrices.       }
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step       SHFT(*ax,*bx,*cx,u)
      (typically every 2 years instead of every month which is too big         SHFT(*fa,*fb,*fc,fu)
      for the memory).        }
      Model is determined by parameters x and covariates have to be   }
      included manually here.   
   /*************** linmin ************************/
      */  
   int ncom;
   int i, j, d, h, k;  double *pcom,*xicom;
   double **out, cov[NCOVMAX];  double (*nrfunc)(double []);
   double **newm;   
   void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))
   /* Hstepm could be zero and should return the unit matrix */  {
   for (i=1;i<=nlstate+ndeath;i++)    double brent(double ax, double bx, double cx,
     for (j=1;j<=nlstate+ndeath;j++){                 double (*f)(double), double tol, double *xmin);
       oldm[i][j]=(i==j ? 1.0 : 0.0);    double f1dim(double x);
       po[i][j][0]=(i==j ? 1.0 : 0.0);    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,
     }                double *fc, double (*func)(double));
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */    int j;
   for(h=1; h <=nhstepm; h++){    double xx,xmin,bx,ax;
     for(d=1; d <=hstepm; d++){    double fx,fb,fa;
       newm=savm;   
       /* Covariates have to be included here again */    ncom=n;
       cov[1]=1.;    pcom=vector(1,n);
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;    xicom=vector(1,n);
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    nrfunc=func;
       for (k=1; k<=cptcovage;k++)    for (j=1;j<=n;j++) {
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];      pcom[j]=p[j];
       for (k=1; k<=cptcovprod;k++)      xicom[j]=xi[j];
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    }
     ax=0.0;
     xx=1.0;
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,   #ifdef DEBUG
                    pmij(pmmij,cov,ncovmodel,x,nlstate));    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
       savm=oldm;    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
       oldm=newm;  #endif
     }    for (j=1;j<=n;j++) {
     for(i=1; i<=nlstate+ndeath; i++)      xi[j] *= xmin;
       for(j=1;j<=nlstate+ndeath;j++) {      p[j] += xi[j];
         po[i][j][h]=newm[i][j];    }
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);    free_vector(xicom,1,n);
          */    free_vector(pcom,1,n);
       }  }
   } /* end h */  
   return po;  char *asc_diff_time(long time_sec, char ascdiff[])
 }  {
     long sec_left, days, hours, minutes;
     days = (time_sec) / (60*60*24);
 /*************** log-likelihood *************/    sec_left = (time_sec) % (60*60*24);
 double func( double *x)    hours = (sec_left) / (60*60) ;
 {    sec_left = (sec_left) %(60*60);
   int i, ii, j, k, mi, d, kk;    minutes = (sec_left) /60;
   double l, ll[NLSTATEMAX], cov[NCOVMAX];    sec_left = (sec_left) % (60);
   double **out;    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
   double sw; /* Sum of weights */    return ascdiff;
   double lli; /* Individual log likelihood */  }
   int s1, s2;  
   double bbh, survp;  /*************** powell ************************/
   long ipmx;  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,
   /*extern weight */              double (*func)(double []))
   /* We are differentiating ll according to initial status */  {
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/    void linmin(double p[], double xi[], int n, double *fret,
   /*for(i=1;i<imx;i++)                 double (*func)(double []));
     printf(" %d\n",s[4][i]);    int i,ibig,j;
   */    double del,t,*pt,*ptt,*xit;
   cov[1]=1.;    double fp,fptt;
     double *xits;
   for(k=1; k<=nlstate; k++) ll[k]=0.;    int niterf, itmp;
   
   if(mle==1){    pt=vector(1,n);
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){    ptt=vector(1,n);
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];    xit=vector(1,n);
       for(mi=1; mi<= wav[i]-1; mi++){    xits=vector(1,n);
         for (ii=1;ii<=nlstate+ndeath;ii++)    *fret=(*func)(p);
           for (j=1;j<=nlstate+ndeath;j++){    for (j=1;j<=n;j++) pt[j]=p[j];
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);    for (*iter=1;;++(*iter)) {
             savm[ii][j]=(ii==j ? 1.0 : 0.0);      fp=(*fret);
           }      ibig=0;
         for(d=0; d<dh[mi][i]; d++){      del=0.0;
           newm=savm;      last_time=curr_time;
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;      (void) gettimeofday(&curr_time,&tzp);
           for (kk=1; kk<=cptcovage;kk++) {      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec); fflush(ficlog);
           }  /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec); */
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,     for (i=1;i<=n;i++) {
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));        printf(" %d %.12f",i, p[i]);
           savm=oldm;        fprintf(ficlog," %d %.12lf",i, p[i]);
           oldm=newm;        fprintf(ficrespow," %.12lf", p[i]);
         } /* end mult */      }
             printf("\n");
         /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */      fprintf(ficlog,"\n");
         /* But now since version 0.9 we anticipate for bias and large stepm.      fprintf(ficrespow,"\n");fflush(ficrespow);
          * If stepm is larger than one month (smallest stepm) and if the exact delay       if(*iter <=3){
          * (in months) between two waves is not a multiple of stepm, we rounded to         tm = *localtime(&curr_time.tv_sec);
          * the nearest (and in case of equal distance, to the lowest) interval but now        strcpy(strcurr,asctime(&tm));
          * we keep into memory the bias bh[mi][i] and also the previous matrix product  /*       asctime_r(&tm,strcurr); */
          * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the        forecast_time=curr_time;
          * probability in order to take into account the bias as a fraction of the way        itmp = strlen(strcurr);
          * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
          * -stepm/2 to stepm/2 .          strcurr[itmp-1]='\0';
          * For stepm=1 the results are the same as for previous versions of Imach.        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
          * For stepm > 1 the results are less biased than in previous versions.         fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
          */        for(niterf=10;niterf<=30;niterf+=10){
         s1=s[mw[mi][i]][i];          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
         s2=s[mw[mi+1][i]][i];          tmf = *localtime(&forecast_time.tv_sec);
         bbh=(double)bh[mi][i]/(double)stepm;   /*      asctime_r(&tmf,strfor); */
         /* bias is positive if real duration          strcpy(strfor,asctime(&tmf));
          * is higher than the multiple of stepm and negative otherwise.          itmp = strlen(strfor);
          */          if(strfor[itmp-1]=='\n')
         /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/          strfor[itmp-1]='\0';
         if( s2 > nlstate){           printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
           /* i.e. if s2 is a death state and if the date of death is known then the contribution          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
              to the likelihood is the probability to die between last step unit time and current         }
              step unit time, which is also the differences between probability to die before dh       }
              and probability to die before dh-stepm .       for (i=1;i<=n;i++) {
              In version up to 0.92 likelihood was computed        for (j=1;j<=n;j++) xit[j]=xi[j][i];
         as if date of death was unknown. Death was treated as any other        fptt=(*fret);
         health state: the date of the interview describes the actual state  #ifdef DEBUG
         and not the date of a change in health state. The former idea was        printf("fret=%lf \n",*fret);
         to consider that at each interview the state was recorded        fprintf(ficlog,"fret=%lf \n",*fret);
         (healthy, disable or death) and IMaCh was corrected; but when we  #endif
         introduced the exact date of death then we should have modified        printf("%d",i);fflush(stdout);
         the contribution of an exact death to the likelihood. This new        fprintf(ficlog,"%d",i);fflush(ficlog);
         contribution is smaller and very dependent of the step unit        linmin(p,xit,n,fret,func);
         stepm. It is no more the probability to die between last interview        if (fabs(fptt-(*fret)) > del) {
         and month of death but the probability to survive from last          del=fabs(fptt-(*fret));
         interview up to one month before death multiplied by the          ibig=i;
         probability to die within a month. Thanks to Chris        }
         Jackson for correcting this bug.  Former versions increased  #ifdef DEBUG
         mortality artificially. The bad side is that we add another loop        printf("%d %.12e",i,(*fret));
         which slows down the processing. The difference can be up to 10%        fprintf(ficlog,"%d %.12e",i,(*fret));
         lower mortality.        for (j=1;j<=n;j++) {
           */          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
           lli=log(out[s1][s2] - savm[s1][s2]);          printf(" x(%d)=%.12e",j,xit[j]);
         }else{          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
           lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */        }
           /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */        for(j=1;j<=n;j++) {
         }           printf(" p=%.12e",p[j]);
         /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/          fprintf(ficlog," p=%.12e",p[j]);
         /*if(lli ==000.0)*/        }
         /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */        printf("\n");
         ipmx +=1;        fprintf(ficlog,"\n");
         sw += weight[i];  #endif
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;      }
       } /* end of wave */      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
     } /* end of individual */  #ifdef DEBUG
   }  else if(mle==2){        int k[2],l;
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){        k[0]=1;
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];        k[1]=-1;
       for(mi=1; mi<= wav[i]-1; mi++){        printf("Max: %.12e",(*func)(p));
         for (ii=1;ii<=nlstate+ndeath;ii++)        fprintf(ficlog,"Max: %.12e",(*func)(p));
           for (j=1;j<=nlstate+ndeath;j++){        for (j=1;j<=n;j++) {
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);          printf(" %.12e",p[j]);
             savm[ii][j]=(ii==j ? 1.0 : 0.0);          fprintf(ficlog," %.12e",p[j]);
           }        }
         for(d=0; d<=dh[mi][i]; d++){        printf("\n");
           newm=savm;        fprintf(ficlog,"\n");
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;        for(l=0;l<=1;l++) {
           for (kk=1; kk<=cptcovage;kk++) {          for (j=1;j<=n;j++) {
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
           }            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));          }
           savm=oldm;          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
           oldm=newm;          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
         } /* end mult */        }
         #endif
         /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */  
         /* But now since version 0.9 we anticipate for bias and large stepm.  
          * If stepm is larger than one month (smallest stepm) and if the exact delay         free_vector(xit,1,n);
          * (in months) between two waves is not a multiple of stepm, we rounded to         free_vector(xits,1,n);
          * the nearest (and in case of equal distance, to the lowest) interval but now        free_vector(ptt,1,n);
          * we keep into memory the bias bh[mi][i] and also the previous matrix product        free_vector(pt,1,n);
          * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the        return;
          * probability in order to take into account the bias as a fraction of the way      }
          * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");
          * -stepm/2 to stepm/2 .      for (j=1;j<=n;j++) {
          * For stepm=1 the results are the same as for previous versions of Imach.        ptt[j]=2.0*p[j]-pt[j];
          * For stepm > 1 the results are less biased than in previous versions.         xit[j]=p[j]-pt[j];
          */        pt[j]=p[j];
         s1=s[mw[mi][i]][i];      }
         s2=s[mw[mi+1][i]][i];      fptt=(*func)(ptt);
         bbh=(double)bh[mi][i]/(double)stepm;       if (fptt < fp) {
         /* bias is positive if real duration        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);
          * is higher than the multiple of stepm and negative otherwise.        if (t < 0.0) {
          */          linmin(p,xit,n,fret,func);
         lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */          for (j=1;j<=n;j++) {
         /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/            xi[j][ibig]=xi[j][n];
         /*lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.-+bh)*out[s1][s2])); */ /* exponential interpolation */            xi[j][n]=xit[j];
         /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/          }
         /*if(lli ==000.0)*/  #ifdef DEBUG
         /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
         ipmx +=1;          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
         sw += weight[i];          for(j=1;j<=n;j++){
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;            printf(" %.12e",xit[j]);
       } /* end of wave */            fprintf(ficlog," %.12e",xit[j]);
     } /* end of individual */          }
   }  else if(mle==3){  /* exponential inter-extrapolation */          printf("\n");
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){          fprintf(ficlog,"\n");
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];  #endif
       for(mi=1; mi<= wav[i]-1; mi++){        }
         for (ii=1;ii<=nlstate+ndeath;ii++)      }
           for (j=1;j<=nlstate+ndeath;j++){    }
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);  }
             savm[ii][j]=(ii==j ? 1.0 : 0.0);  
           }  /**** Prevalence limit (stable or period prevalence)  ****************/
         for(d=0; d<dh[mi][i]; d++){  
           newm=savm;  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;  {
           for (kk=1; kk<=cptcovage;kk++) {    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];       matrix by transitions matrix until convergence is reached */
           }  
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,    int i, ii,j,k;
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));    double min, max, maxmin, maxmax,sumnew=0.;
           savm=oldm;    double **matprod2();
           oldm=newm;    double **out, cov[NCOVMAX], **pmij();
         } /* end mult */    double **newm;
           double agefin, delaymax=50 ; /* Max number of years to converge */
         /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */  
         /* But now since version 0.9 we anticipate for bias and large stepm.    for (ii=1;ii<=nlstate+ndeath;ii++)
          * If stepm is larger than one month (smallest stepm) and if the exact delay       for (j=1;j<=nlstate+ndeath;j++){
          * (in months) between two waves is not a multiple of stepm, we rounded to         oldm[ii][j]=(ii==j ? 1.0 : 0.0);
          * the nearest (and in case of equal distance, to the lowest) interval but now      }
          * we keep into memory the bias bh[mi][i] and also the previous matrix product  
          * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the     cov[1]=1.;
          * probability in order to take into account the bias as a fraction of the way   
          * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
          * -stepm/2 to stepm/2 .    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
          * For stepm=1 the results are the same as for previous versions of Imach.      newm=savm;
          * For stepm > 1 the results are less biased than in previous versions.       /* Covariates have to be included here again */
          */       cov[2]=agefin;
         s1=s[mw[mi][i]][i];   
         s2=s[mw[mi+1][i]][i];        for (k=1; k<=cptcovn;k++) {
         bbh=(double)bh[mi][i]/(double)stepm;           cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
         /* bias is positive if real duration          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
          * is higher than the multiple of stepm and negative otherwise.        }
          */        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
         /* lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); */ /* linear interpolation */        for (k=1; k<=cptcovprod;k++)
         lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
         /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/  
         /*if(lli ==000.0)*/        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
         /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
         ipmx +=1;        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
         sw += weight[i];      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;  
       } /* end of wave */      savm=oldm;
     } /* end of individual */      oldm=newm;
   }else{  /* ml=4 no inter-extrapolation */      maxmax=0.;
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){      for(j=1;j<=nlstate;j++){
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];        min=1.;
       for(mi=1; mi<= wav[i]-1; mi++){        max=0.;
         for (ii=1;ii<=nlstate+ndeath;ii++)        for(i=1; i<=nlstate; i++) {
           for (j=1;j<=nlstate+ndeath;j++){          sumnew=0;
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
             savm[ii][j]=(ii==j ? 1.0 : 0.0);          prlim[i][j]= newm[i][j]/(1-sumnew);
           }          max=FMAX(max,prlim[i][j]);
         for(d=0; d<dh[mi][i]; d++){          min=FMIN(min,prlim[i][j]);
           newm=savm;        }
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;        maxmin=max-min;
           for (kk=1; kk<=cptcovage;kk++) {        maxmax=FMAX(maxmax,maxmin);
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];      }
           }      if(maxmax < ftolpl){
                 return prlim;
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,      }
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));    }
           savm=oldm;  }
           oldm=newm;  
         } /* end mult */  /*************** transition probabilities ***************/
         
         lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
         ipmx +=1;  {
         sw += weight[i];    double s1, s2;
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;    /*double t34;*/
       } /* end of wave */    int i,j,j1, nc, ii, jj;
     } /* end of individual */  
   } /* End of if */      for(i=1; i<= nlstate; i++){
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];        for(j=1; j<i;j++){
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */            /*s2 += param[i][j][nc]*cov[nc];*/
   return -l;            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
 }  /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
           }
           ps[i][j]=s2;
 /*********** Maximum Likelihood Estimation ***************/  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
         }
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))        for(j=i+1; j<=nlstate+ndeath;j++){
 {          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
   int i,j, iter;            s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
   double **xi;  /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
   double fret;          }
   char filerespow[FILENAMELENGTH];          ps[i][j]=s2;
   xi=matrix(1,npar,1,npar);        }
   for (i=1;i<=npar;i++)      }
     for (j=1;j<=npar;j++)      /*ps[3][2]=1;*/
       xi[i][j]=(i==j ? 1.0 : 0.0);     
   printf("Powell\n");  fprintf(ficlog,"Powell\n");      for(i=1; i<= nlstate; i++){
   strcpy(filerespow,"pow");         s1=0;
   strcat(filerespow,fileres);        for(j=1; j<i; j++)
   if((ficrespow=fopen(filerespow,"w"))==NULL) {          s1+=exp(ps[i][j]);
     printf("Problem with resultfile: %s\n", filerespow);        for(j=i+1; j<=nlstate+ndeath; j++)
     fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);          s1+=exp(ps[i][j]);
   }        ps[i][i]=1./(s1+1.);
   fprintf(ficrespow,"# Powell\n# iter -2*LL");        for(j=1; j<i; j++)
   for (i=1;i<=nlstate;i++)          ps[i][j]= exp(ps[i][j])*ps[i][i];
     for(j=1;j<=nlstate+ndeath;j++)        for(j=i+1; j<=nlstate+ndeath; j++)
       if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);          ps[i][j]= exp(ps[i][j])*ps[i][i];
   fprintf(ficrespow,"\n");        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
   powell(p,xi,npar,ftol,&iter,&fret,func);      } /* end i */
      
   fclose(ficrespow);      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
   printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));        for(jj=1; jj<= nlstate+ndeath; jj++){
   fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));          ps[ii][jj]=0;
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));          ps[ii][ii]=1;
         }
 }      }
      
 /**** Computes Hessian and covariance matrix ***/  
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
 {  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
   double  **a,**y,*x,pd;  /*         printf("ddd %lf ",ps[ii][jj]); */
   double **hess;  /*       } */
   int i, j,jk;  /*       printf("\n "); */
   int *indx;  /*        } */
   /*        printf("\n ");printf("%lf ",cov[2]); */
   double hessii(double p[], double delta, int theta, double delti[]);         /*
   double hessij(double p[], double delti[], int i, int j);        for(i=1; i<= npar; i++) printf("%f ",x[i]);
   void lubksb(double **a, int npar, int *indx, double b[]) ;        goto end;*/
   void ludcmp(double **a, int npar, int *indx, double *d) ;      return ps;
   }
   hess=matrix(1,npar,1,npar);  
   /**************** Product of 2 matrices ******************/
   printf("\nCalculation of the hessian matrix. Wait...\n");  
   fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
   for (i=1;i<=npar;i++){  {
     printf("%d",i);fflush(stdout);    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
     fprintf(ficlog,"%d",i);fflush(ficlog);       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
     hess[i][i]=hessii(p,ftolhess,i,delti);    /* in, b, out are matrice of pointers which should have been initialized
     /*printf(" %f ",p[i]);*/       before: only the contents of out is modified. The function returns
     /*printf(" %lf ",hess[i][i]);*/       a pointer to pointers identical to out */
   }    long i, j, k;
       for(i=nrl; i<= nrh; i++)
   for (i=1;i<=npar;i++) {      for(k=ncolol; k<=ncoloh; k++)
     for (j=1;j<=npar;j++)  {        for(j=ncl,out[i][k]=0.; j<=nch; j++)
       if (j>i) {           out[i][k] +=in[i][j]*b[j][k];
         printf(".%d%d",i,j);fflush(stdout);  
         fprintf(ficlog,".%d%d",i,j);fflush(ficlog);    return out;
         hess[i][j]=hessij(p,delti,i,j);  }
         hess[j][i]=hess[i][j];      
         /*printf(" %lf ",hess[i][j]);*/  
       }  /************* Higher Matrix Product ***************/
     }  
   }  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
   printf("\n");  {
   fprintf(ficlog,"\n");    /* Computes the transition matrix starting at age 'age' over
        'nhstepm*hstepm*stepm' months (i.e. until
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying
   fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");       nhstepm*hstepm matrices.
          Output is stored in matrix po[i][j][h] for h every 'hstepm' step
   a=matrix(1,npar,1,npar);       (typically every 2 years instead of every month which is too big
   y=matrix(1,npar,1,npar);       for the memory).
   x=vector(1,npar);       Model is determined by parameters x and covariates have to be
   indx=ivector(1,npar);       included manually here.
   for (i=1;i<=npar;i++)  
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];       */
   ludcmp(a,npar,indx,&pd);  
     int i, j, d, h, k;
   for (j=1;j<=npar;j++) {    double **out, cov[NCOVMAX];
     for (i=1;i<=npar;i++) x[i]=0;    double **newm;
     x[j]=1;  
     lubksb(a,npar,indx,x);    /* Hstepm could be zero and should return the unit matrix */
     for (i=1;i<=npar;i++){     for (i=1;i<=nlstate+ndeath;i++)
       matcov[i][j]=x[i];      for (j=1;j<=nlstate+ndeath;j++){
     }        oldm[i][j]=(i==j ? 1.0 : 0.0);
   }        po[i][j][0]=(i==j ? 1.0 : 0.0);
       }
   printf("\n#Hessian matrix#\n");    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   fprintf(ficlog,"\n#Hessian matrix#\n");    for(h=1; h <=nhstepm; h++){
   for (i=1;i<=npar;i++) {       for(d=1; d <=hstepm; d++){
     for (j=1;j<=npar;j++) {         newm=savm;
       printf("%.3e ",hess[i][j]);        /* Covariates have to be included here again */
       fprintf(ficlog,"%.3e ",hess[i][j]);        cov[1]=1.;
     }        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
     printf("\n");        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
     fprintf(ficlog,"\n");        for (k=1; k<=cptcovage;k++)
   }          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
         for (k=1; k<=cptcovprod;k++)
   /* Recompute Inverse */          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   for (i=1;i<=npar;i++)  
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];  
   ludcmp(a,npar,indx,&pd);        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
         /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
   /*  printf("\n#Hessian matrix recomputed#\n");        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,
                      pmij(pmmij,cov,ncovmodel,x,nlstate));
   for (j=1;j<=npar;j++) {        savm=oldm;
     for (i=1;i<=npar;i++) x[i]=0;        oldm=newm;
     x[j]=1;      }
     lubksb(a,npar,indx,x);      for(i=1; i<=nlstate+ndeath; i++)
     for (i=1;i<=npar;i++){         for(j=1;j<=nlstate+ndeath;j++) {
       y[i][j]=x[i];          po[i][j][h]=newm[i][j];
       printf("%.3e ",y[i][j]);          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
       fprintf(ficlog,"%.3e ",y[i][j]);           */
     }        }
     printf("\n");    } /* end h */
     fprintf(ficlog,"\n");    return po;
   }  }
   */  
   
   free_matrix(a,1,npar,1,npar);  /*************** log-likelihood *************/
   free_matrix(y,1,npar,1,npar);  double func( double *x)
   free_vector(x,1,npar);  {
   free_ivector(indx,1,npar);    int i, ii, j, k, mi, d, kk;
   free_matrix(hess,1,npar,1,npar);    double l, ll[NLSTATEMAX], cov[NCOVMAX];
     double **out;
     double sw; /* Sum of weights */
 }    double lli; /* Individual log likelihood */
     int s1, s2;
 /*************** hessian matrix ****************/    double bbh, survp;
 double hessii( double x[], double delta, int theta, double delti[])    long ipmx;
 {    /*extern weight */
   int i;    /* We are differentiating ll according to initial status */
   int l=1, lmax=20;    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   double k1,k2;    /*for(i=1;i<imx;i++)
   double p2[NPARMAX+1];      printf(" %d\n",s[4][i]);
   double res;    */
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;    cov[1]=1.;
   double fx;  
   int k=0,kmax=10;    for(k=1; k<=nlstate; k++) ll[k]=0.;
   double l1;  
     if(mle==1){
   fx=func(x);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   for (i=1;i<=npar;i++) p2[i]=x[i];        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   for(l=0 ; l <=lmax; l++){        for(mi=1; mi<= wav[i]-1; mi++){
     l1=pow(10,l);          for (ii=1;ii<=nlstate+ndeath;ii++)
     delts=delt;            for (j=1;j<=nlstate+ndeath;j++){
     for(k=1 ; k <kmax; k=k+1){              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       delt = delta*(l1*k);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       p2[theta]=x[theta] +delt;            }
       k1=func(p2)-fx;          for(d=0; d<dh[mi][i]; d++){
       p2[theta]=x[theta]-delt;            newm=savm;
       k2=func(p2)-fx;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       /*res= (k1-2.0*fx+k2)/delt/delt; */            for (kk=1; kk<=cptcovage;kk++) {
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
                   }
 #ifdef DEBUG            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);            savm=oldm;
 #endif            oldm=newm;
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */          } /* end mult */
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){       
         k=kmax;          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
       }          /* But now since version 0.9 we anticipate for bias at large stepm.
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */           * If stepm is larger than one month (smallest stepm) and if the exact delay
         k=kmax; l=lmax*10.;           * (in months) between two waves is not a multiple of stepm, we rounded to
       }           * the nearest (and in case of equal distance, to the lowest) interval but now
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){            * we keep into memory the bias bh[mi][i] and also the previous matrix product
         delts=delt;           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
       }           * probability in order to take into account the bias as a fraction of the way
     }           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
   }           * -stepm/2 to stepm/2 .
   delti[theta]=delts;           * For stepm=1 the results are the same as for previous versions of Imach.
   return res;            * For stepm > 1 the results are less biased than in previous versions.
              */
 }          s1=s[mw[mi][i]][i];
           s2=s[mw[mi+1][i]][i];
 double hessij( double x[], double delti[], int thetai,int thetaj)          bbh=(double)bh[mi][i]/(double)stepm;
 {          /* bias bh is positive if real duration
   int i;           * is higher than the multiple of stepm and negative otherwise.
   int l=1, l1, lmax=20;           */
   double k1,k2,k3,k4,res,fx;          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
   double p2[NPARMAX+1];          if( s2 > nlstate){
   int k;            /* i.e. if s2 is a death state and if the date of death is known
                then the contribution to the likelihood is the probability to
   fx=func(x);               die between last step unit time and current  step unit time,
   for (k=1; k<=2; k++) {               which is also equal to probability to die before dh
     for (i=1;i<=npar;i++) p2[i]=x[i];               minus probability to die before dh-stepm .
     p2[thetai]=x[thetai]+delti[thetai]/k;               In version up to 0.92 likelihood was computed
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;          as if date of death was unknown. Death was treated as any other
     k1=func(p2)-fx;          health state: the date of the interview describes the actual state
             and not the date of a change in health state. The former idea was
     p2[thetai]=x[thetai]+delti[thetai]/k;          to consider that at each interview the state was recorded
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;          (healthy, disable or death) and IMaCh was corrected; but when we
     k2=func(p2)-fx;          introduced the exact date of death then we should have modified
             the contribution of an exact death to the likelihood. This new
     p2[thetai]=x[thetai]-delti[thetai]/k;          contribution is smaller and very dependent of the step unit
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;          stepm. It is no more the probability to die between last interview
     k3=func(p2)-fx;          and month of death but the probability to survive from last
             interview up to one month before death multiplied by the
     p2[thetai]=x[thetai]-delti[thetai]/k;          probability to die within a month. Thanks to Chris
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;          Jackson for correcting this bug.  Former versions increased
     k4=func(p2)-fx;          mortality artificially. The bad side is that we add another loop
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */          which slows down the processing. The difference can be up to 10%
 #ifdef DEBUG          lower mortality.
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);            */
     fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);            lli=log(out[s1][s2] - savm[s1][s2]);
 #endif  
   }  
   return res;          } else if  (s2==-2) {
 }            for (j=1,survp=0. ; j<=nlstate; j++)
               survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
 /************** Inverse of matrix **************/            /*survp += out[s1][j]; */
 void ludcmp(double **a, int n, int *indx, double *d)             lli= log(survp);
 {           }
   int i,imax,j,k;          
   double big,dum,sum,temp;           else if  (s2==-4) {
   double *vv;             for (j=3,survp=0. ; j<=nlstate; j++)  
                survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   vv=vector(1,n);             lli= log(survp);
   *d=1.0;           }
   for (i=1;i<=n;i++) {   
     big=0.0;           else if  (s2==-5) {
     for (j=1;j<=n;j++)             for (j=1,survp=0. ; j<=2; j++)  
       if ((temp=fabs(a[i][j])) > big) big=temp;               survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");             lli= log(survp);
     vv[i]=1.0/big;           }
   }          
   for (j=1;j<=n;j++) {           else{
     for (i=1;i<j;i++) {             lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
       sum=a[i][j];             /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];           }
       a[i][j]=sum;           /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
     }           /*if(lli ==000.0)*/
     big=0.0;           /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
     for (i=j;i<=n;i++) {           ipmx +=1;
       sum=a[i][j];           sw += weight[i];
       for (k=1;k<j;k++)           ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         sum -= a[i][k]*a[k][j];         } /* end of wave */
       a[i][j]=sum;       } /* end of individual */
       if ( (dum=vv[i]*fabs(sum)) >= big) {     }  else if(mle==2){
         big=dum;       for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         imax=i;         for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       }         for(mi=1; mi<= wav[i]-1; mi++){
     }           for (ii=1;ii<=nlstate+ndeath;ii++)
     if (j != imax) {             for (j=1;j<=nlstate+ndeath;j++){
       for (k=1;k<=n;k++) {               oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         dum=a[imax][k];               savm[ii][j]=(ii==j ? 1.0 : 0.0);
         a[imax][k]=a[j][k];             }
         a[j][k]=dum;           for(d=0; d<=dh[mi][i]; d++){
       }             newm=savm;
       *d = -(*d);             cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       vv[imax]=vv[j];             for (kk=1; kk<=cptcovage;kk++) {
     }               cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     indx[j]=imax;             }
     if (a[j][j] == 0.0) a[j][j]=TINY;             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     if (j != n) {                          1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       dum=1.0/(a[j][j]);             savm=oldm;
       for (i=j+1;i<=n;i++) a[i][j] *= dum;             oldm=newm;
     }           } /* end mult */
   }        
   free_vector(vv,1,n);  /* Doesn't work */          s1=s[mw[mi][i]][i];
 ;          s2=s[mw[mi+1][i]][i];
 }           bbh=(double)bh[mi][i]/(double)stepm;
           lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
 void lubksb(double **a, int n, int *indx, double b[])           ipmx +=1;
 {           sw += weight[i];
   int i,ii=0,ip,j;           ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   double sum;         } /* end of wave */
        } /* end of individual */
   for (i=1;i<=n;i++) {     }  else if(mle==3){  /* exponential inter-extrapolation */
     ip=indx[i];       for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     sum=b[ip];         for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     b[ip]=b[i];         for(mi=1; mi<= wav[i]-1; mi++){
     if (ii)           for (ii=1;ii<=nlstate+ndeath;ii++)
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];             for (j=1;j<=nlstate+ndeath;j++){
     else if (sum) ii=i;               oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     b[i]=sum;               savm[ii][j]=(ii==j ? 1.0 : 0.0);
   }             }
   for (i=n;i>=1;i--) {           for(d=0; d<dh[mi][i]; d++){
     sum=b[i];             newm=savm;
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];             cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     b[i]=sum/a[i][i];             for (kk=1; kk<=cptcovage;kk++) {
   }               cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 }             }
             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 /************ Frequencies ********************/                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)            savm=oldm;
 {  /* Some frequencies */            oldm=newm;
             } /* end mult */
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;       
   int first;          s1=s[mw[mi][i]][i];
   double ***freq; /* Frequencies */          s2=s[mw[mi+1][i]][i];
   double *pp, **prop;          bbh=(double)bh[mi][i]/(double)stepm;
   double pos,posprop, k2, dateintsum=0,k2cpt=0;          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   FILE *ficresp;          ipmx +=1;
   char fileresp[FILENAMELENGTH];          sw += weight[i];
             ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   pp=vector(1,nlstate);        } /* end of wave */
   prop=matrix(1,nlstate,iagemin,iagemax+3);      } /* end of individual */
   strcpy(fileresp,"p");    }else if (mle==4){  /* ml=4 no inter-extrapolation */
   strcat(fileresp,fileres);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   if((ficresp=fopen(fileresp,"w"))==NULL) {        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     printf("Problem with prevalence resultfile: %s\n", fileresp);        for(mi=1; mi<= wav[i]-1; mi++){
     fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);          for (ii=1;ii<=nlstate+ndeath;ii++)
     exit(0);            for (j=1;j<=nlstate+ndeath;j++){
   }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   j1=0;            }
             for(d=0; d<dh[mi][i]; d++){
   j=cptcoveff;            newm=savm;
   if (cptcovn<1) {j=1;ncodemax[1]=1;}            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             for (kk=1; kk<=cptcovage;kk++) {
   first=1;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             }
   for(k1=1; k1<=j;k1++){         
     for(i1=1; i1<=ncodemax[k1];i1++){            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       j1++;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);            savm=oldm;
         scanf("%d", i);*/            oldm=newm;
       for (i=-1; i<=nlstate+ndeath; i++)            } /* end mult */
         for (jk=-1; jk<=nlstate+ndeath; jk++)         
           for(m=iagemin; m <= iagemax+3; m++)          s1=s[mw[mi][i]][i];
             freq[i][jk][m]=0;          s2=s[mw[mi+1][i]][i];
           if( s2 > nlstate){
     for (i=1; i<=nlstate; i++)              lli=log(out[s1][s2] - savm[s1][s2]);
       for(m=iagemin; m <= iagemax+3; m++)          }else{
         prop[i][m]=0;            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
                 }
       dateintsum=0;          ipmx +=1;
       k2cpt=0;          sw += weight[i];
       for (i=1; i<=imx; i++) {          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         bool=1;  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
         if  (cptcovn>0) {        } /* end of wave */
           for (z1=1; z1<=cptcoveff; z1++)       } /* end of individual */
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])     }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
               bool=0;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         if (bool==1){        for(mi=1; mi<= wav[i]-1; mi++){
           for(m=firstpass; m<=lastpass; m++){          for (ii=1;ii<=nlstate+ndeath;ii++)
             k2=anint[m][i]+(mint[m][i]/12.);            for (j=1;j<=nlstate+ndeath;j++){
             if ((k2>=dateprev1) && (k2<=dateprev2)) {              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               if(agev[m][i]==0) agev[m][i]=iagemax+1;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
               if(agev[m][i]==1) agev[m][i]=iagemax+2;            }
               if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];          for(d=0; d<dh[mi][i]; d++){
               if (m<lastpass) {            newm=savm;
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
                 freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];            for (kk=1; kk<=cptcovage;kk++) {
               }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
                           }
               if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {         
                 dateintsum=dateintsum+k2;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                 k2cpt++;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
               }            savm=oldm;
             }            oldm=newm;
           }          } /* end mult */
         }       
       }          s1=s[mw[mi][i]][i];
                  s2=s[mw[mi+1][i]][i];
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
           ipmx +=1;
       if  (cptcovn>0) {          sw += weight[i];
         fprintf(ficresp, "\n#********** Variable ");           ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
         fprintf(ficresp, "**********\n#");        } /* end of wave */
       }      } /* end of individual */
       for(i=1; i<=nlstate;i++)     } /* End of if */
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
       fprintf(ficresp, "\n");    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
           l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
       for(i=iagemin; i <= iagemax+3; i++){    return -l;
         if(i==iagemax+3){  }
           fprintf(ficlog,"Total");  
         }else{  /*************** log-likelihood *************/
           if(first==1){  double funcone( double *x)
             first=0;  {
             printf("See log file for details...\n");    /* Same as likeli but slower because of a lot of printf and if */
           }    int i, ii, j, k, mi, d, kk;
           fprintf(ficlog,"Age %d", i);    double l, ll[NLSTATEMAX], cov[NCOVMAX];
         }    double **out;
         for(jk=1; jk <=nlstate ; jk++){    double lli; /* Individual log likelihood */
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)    double llt;
             pp[jk] += freq[jk][m][i];     int s1, s2;
         }    double bbh, survp;
         for(jk=1; jk <=nlstate ; jk++){    /*extern weight */
           for(m=-1, pos=0; m <=0 ; m++)    /* We are differentiating ll according to initial status */
             pos += freq[jk][m][i];    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
           if(pp[jk]>=1.e-10){    /*for(i=1;i<imx;i++)
             if(first==1){      printf(" %d\n",s[4][i]);
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);    */
             }    cov[1]=1.;
             fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);  
           }else{    for(k=1; k<=nlstate; k++) ll[k]=0.;
             if(first==1)  
               printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
             fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
           }      for(mi=1; mi<= wav[i]-1; mi++){
         }        for (ii=1;ii<=nlstate+ndeath;ii++)
           for (j=1;j<=nlstate+ndeath;j++){
         for(jk=1; jk <=nlstate ; jk++){            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)            savm[ii][j]=(ii==j ? 1.0 : 0.0);
             pp[jk] += freq[jk][m][i];          }
         }               for(d=0; d<dh[mi][i]; d++){
         for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){          newm=savm;
           pos += pp[jk];          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           posprop += prop[jk][i];          for (kk=1; kk<=cptcovage;kk++) {
         }            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         for(jk=1; jk <=nlstate ; jk++){          }
           if(pos>=1.e-5){          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
             if(first==1)                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
               printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);          savm=oldm;
             fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);          oldm=newm;
           }else{        } /* end mult */
             if(first==1)       
               printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);        s1=s[mw[mi][i]][i];
             fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);        s2=s[mw[mi+1][i]][i];
           }        bbh=(double)bh[mi][i]/(double)stepm;
           if( i <= iagemax){        /* bias is positive if real duration
             if(pos>=1.e-5){         * is higher than the multiple of stepm and negative otherwise.
               fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);         */
               probs[i][jk][j1]= pp[jk]/pos;        if( s2 > nlstate && (mle <5) ){  /* Jackson */
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/          lli=log(out[s1][s2] - savm[s1][s2]);
             }        } else if  (s2==-2) {
             else          for (j=1,survp=0. ; j<=nlstate; j++)
               fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
           }          lli= log(survp);
         }        }else if (mle==1){
                   lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
         for(jk=-1; jk <=nlstate+ndeath; jk++)        } else if(mle==2){
           for(m=-1; m <=nlstate+ndeath; m++)          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
             if(freq[jk][m][i] !=0 ) {        } else if(mle==3){  /* exponential inter-extrapolation */
             if(first==1)          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
               printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);        } else if (mle==4){  /* mle=4 no inter-extrapolation */
               fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);          lli=log(out[s1][s2]); /* Original formula */
             }        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
         if(i <= iagemax)          lli=log(out[s1][s2]); /* Original formula */
           fprintf(ficresp,"\n");        } /* End of if */
         if(first==1)        ipmx +=1;
           printf("Others in log...\n");        sw += weight[i];
         fprintf(ficlog,"\n");        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       }  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
     }        if(globpr){
   }          fprintf(ficresilk,"%9d %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
   dateintmean=dateintsum/k2cpt;    %11.6f %11.6f %11.6f ", \
                    num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
   fclose(ficresp);                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
   free_vector(pp,1,nlstate);            llt +=ll[k]*gipmx/gsw;
   free_matrix(prop,1,nlstate,iagemin, iagemax+3);            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
   /* End of Freq */          }
 }          fprintf(ficresilk," %10.6f\n", -llt);
         }
 /************ Prevalence ********************/      } /* end of wave */
 void prevalence(double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)    } /* end of individual */
 {      for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
      in each health status at the date of interview (if between dateprev1 and dateprev2).    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
      We still use firstpass and lastpass as another selection.    if(globpr==0){ /* First time we count the contributions and weights */
   */      gipmx=ipmx;
        gsw=sw;
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;    }
   double ***freq; /* Frequencies */    return -l;
   double *pp, **prop;  }
   double pos,posprop;   
   double  y2; /* in fractional years */  
   int iagemin, iagemax;  /*************** function likelione ***********/
   void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
   iagemin= (int) agemin;  {
   iagemax= (int) agemax;    /* This routine should help understanding what is done with
   /*pp=vector(1,nlstate);*/       the selection of individuals/waves and
   prop=matrix(1,nlstate,iagemin,iagemax+3);        to check the exact contribution to the likelihood.
   /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/       Plotting could be done.
   j1=0;     */
       int k;
   j=cptcoveff;  
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    if(*globpri !=0){ /* Just counts and sums, no printings */
         strcpy(fileresilk,"ilk");
   for(k1=1; k1<=j;k1++){      strcat(fileresilk,fileres);
     for(i1=1; i1<=ncodemax[k1];i1++){      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
       j1++;        printf("Problem with resultfile: %s\n", fileresilk);
               fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
       for (i=1; i<=nlstate; i++)        }
         for(m=iagemin; m <= iagemax+3; m++)      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
           prop[i][m]=0.0;      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
            /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
       for (i=1; i<=imx; i++) { /* Each individual */      for(k=1; k<=nlstate; k++)
         bool=1;        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
         if  (cptcovn>0) {      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
           for (z1=1; z1<=cptcoveff; z1++)     }
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])   
               bool=0;    *fretone=(*funcone)(p);
         }     if(*globpri !=0){
         if (bool==1) {       fclose(ficresilk);
           for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
             y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */      fflush(fichtm);
             if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */    }
               if(agev[m][i]==0) agev[m][i]=iagemax+1;    return;
               if(agev[m][i]==1) agev[m][i]=iagemax+2;  }
               if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m);   
               if (s[m][i]>0 && s[m][i]<=nlstate) {   
                 /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/  /*********** Maximum Likelihood Estimation ***************/
                 prop[s[m][i]][(int)agev[m][i]] += weight[i];  
                 prop[s[m][i]][iagemax+3] += weight[i];   void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
               }   {
             }    int i,j, iter;
           } /* end selection of waves */    double **xi;
         }    double fret;
       }    double fretone; /* Only one call to likelihood */
       for(i=iagemin; i <= iagemax+3; i++){      /*  char filerespow[FILENAMELENGTH];*/
             xi=matrix(1,npar,1,npar);
         for(jk=1,posprop=0; jk <=nlstate ; jk++) {     for (i=1;i<=npar;i++)
           posprop += prop[jk][i];       for (j=1;j<=npar;j++)
         }         xi[i][j]=(i==j ? 1.0 : 0.0);
     printf("Powell\n");  fprintf(ficlog,"Powell\n");
         for(jk=1; jk <=nlstate ; jk++){         strcpy(filerespow,"pow");
           if( i <=  iagemax){     strcat(filerespow,fileres);
             if(posprop>=1.e-5){     if((ficrespow=fopen(filerespow,"w"))==NULL) {
               probs[i][jk][j1]= prop[jk][i]/posprop;      printf("Problem with resultfile: %s\n", filerespow);
             }       fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
           }     }
         }/* end jk */     fprintf(ficrespow,"# Powell\n# iter -2*LL");
       }/* end i */     for (i=1;i<=nlstate;i++)
     } /* end i1 */      for(j=1;j<=nlstate+ndeath;j++)
   } /* end k1 */        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       fprintf(ficrespow,"\n");
   /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/  
   /*free_vector(pp,1,nlstate);*/    powell(p,xi,npar,ftol,&iter,&fret,func);
   free_matrix(prop,1,nlstate, iagemin,iagemax+3);  
 }  /* End of prevalence */    free_matrix(xi,1,npar,1,npar);
     fclose(ficrespow);
 /************* Waves Concatenation ***************/    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
     fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
 void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
 {  
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.  }
      Death is a valid wave (if date is known).  
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i  /**** Computes Hessian and covariance matrix ***/
      dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
      and mw[mi+1][i]. dh depends on stepm.  {
      */    double  **a,**y,*x,pd;
     double **hess;
   int i, mi, m;    int i, j,jk;
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;    int *indx;
      double sum=0., jmean=0.;*/  
   int first;    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
   int j, k=0,jk, ju, jl;    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
   double sum=0.;    void lubksb(double **a, int npar, int *indx, double b[]) ;
   first=0;    void ludcmp(double **a, int npar, int *indx, double *d) ;
   jmin=1e+5;    double gompertz(double p[]);
   jmax=-1;    hess=matrix(1,npar,1,npar);
   jmean=0.;  
   for(i=1; i<=imx; i++){    printf("\nCalculation of the hessian matrix. Wait...\n");
     mi=0;    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
     m=firstpass;    for (i=1;i<=npar;i++){
     while(s[m][i] <= nlstate){      printf("%d",i);fflush(stdout);
       if(s[m][i]>=1)      fprintf(ficlog,"%d",i);fflush(ficlog);
         mw[++mi][i]=m;     
       if(m >=lastpass)       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
         break;     
       else      /*  printf(" %f ",p[i]);
         m++;          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
     }/* end while */    }
     if (s[m][i] > nlstate){   
       mi++;     /* Death is another wave */    for (i=1;i<=npar;i++) {
       /* if(mi==0)  never been interviewed correctly before death */      for (j=1;j<=npar;j++)  {
          /* Only death is a correct wave */        if (j>i) {
       mw[mi][i]=m;          printf(".%d%d",i,j);fflush(stdout);
     }          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
           hess[i][j]=hessij(p,delti,i,j,func,npar);
     wav[i]=mi;         
     if(mi==0){          hess[j][i]=hess[i][j];    
       if(first==0){          /*printf(" %lf ",hess[i][j]);*/
         printf("Warning! None valid information for:%d line=%d (skipped) and may be others, see log file\n",num[i],i);        }
         first=1;      }
       }    }
       if(first==1){    printf("\n");
         fprintf(ficlog,"Warning! None valid information for:%d line=%d (skipped)\n",num[i],i);    fprintf(ficlog,"\n");
       }  
     } /* end mi==0 */    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
   } /* End individuals */    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
    
   for(i=1; i<=imx; i++){    a=matrix(1,npar,1,npar);
     for(mi=1; mi<wav[i];mi++){    y=matrix(1,npar,1,npar);
       if (stepm <=0)    x=vector(1,npar);
         dh[mi][i]=1;    indx=ivector(1,npar);
       else{    for (i=1;i<=npar;i++)
         if (s[mw[mi+1][i]][i] > nlstate) { /* A death */      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
           if (agedc[i] < 2*AGESUP) {    ludcmp(a,npar,indx,&pd);
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);   
           if(j==0) j=1;  /* Survives at least one month after exam */    for (j=1;j<=npar;j++) {
           k=k+1;      for (i=1;i<=npar;i++) x[i]=0;
           if (j >= jmax) jmax=j;      x[j]=1;
           if (j <= jmin) jmin=j;      lubksb(a,npar,indx,x);
           sum=sum+j;      for (i=1;i<=npar;i++){
           /*if (j<0) printf("j=%d num=%d \n",j,i);*/        matcov[i][j]=x[i];
           /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/      }
           if(j<0)printf("Error! Negative delay (%d to death) between waves %d and %d of individual %d at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);    }
           }  
         }    printf("\n#Hessian matrix#\n");
         else{    fprintf(ficlog,"\n#Hessian matrix#\n");
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));    for (i=1;i<=npar;i++) {
           /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/      for (j=1;j<=npar;j++) {
           k=k+1;        printf("%.3e ",hess[i][j]);
           if (j >= jmax) jmax=j;        fprintf(ficlog,"%.3e ",hess[i][j]);
           else if (j <= jmin)jmin=j;      }
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */      printf("\n");
           /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/      fprintf(ficlog,"\n");
           if(j<0)printf("Error! Negative delay (%d) between waves %d and %d of individual %d at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);    }
           sum=sum+j;  
         }    /* Recompute Inverse */
         jk= j/stepm;    for (i=1;i<=npar;i++)
         jl= j -jk*stepm;      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
         ju= j -(jk+1)*stepm;    ludcmp(a,npar,indx,&pd);
         if(mle <=1){   
           if(jl==0){    /*  printf("\n#Hessian matrix recomputed#\n");
             dh[mi][i]=jk;  
             bh[mi][i]=0;    for (j=1;j<=npar;j++) {
           }else{ /* We want a negative bias in order to only have interpolation ie      for (i=1;i<=npar;i++) x[i]=0;
                   * at the price of an extra matrix product in likelihood */      x[j]=1;
             dh[mi][i]=jk+1;      lubksb(a,npar,indx,x);
             bh[mi][i]=ju;      for (i=1;i<=npar;i++){
           }        y[i][j]=x[i];
         }else{        printf("%.3e ",y[i][j]);
           if(jl <= -ju){        fprintf(ficlog,"%.3e ",y[i][j]);
             dh[mi][i]=jk;      }
             bh[mi][i]=jl;       /* bias is positive if real duration      printf("\n");
                                  * is higher than the multiple of stepm and negative otherwise.      fprintf(ficlog,"\n");
                                  */    }
           }    */
           else{  
             dh[mi][i]=jk+1;    free_matrix(a,1,npar,1,npar);
             bh[mi][i]=ju;    free_matrix(y,1,npar,1,npar);
           }    free_vector(x,1,npar);
           if(dh[mi][i]==0){    free_ivector(indx,1,npar);
             dh[mi][i]=1; /* At least one step */    free_matrix(hess,1,npar,1,npar);
             bh[mi][i]=ju; /* At least one step */  
             /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/  
           }  }
         }  
       } /* end if mle */  /*************** hessian matrix ****************/
     } /* end wave */  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
   }  {
   jmean=sum/k;    int i;
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);    int l=1, lmax=20;
   fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);    double k1,k2;
  }    double p2[NPARMAX+1];
     double res;
 /*********** Tricode ****************************/    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
 void tricode(int *Tvar, int **nbcode, int imx)    double fx;
 {    int k=0,kmax=10;
       double l1;
   int Ndum[20],ij=1, k, j, i, maxncov=19;  
   int cptcode=0;    fx=func(x);
   cptcoveff=0;     for (i=1;i<=npar;i++) p2[i]=x[i];
      for(l=0 ; l <=lmax; l++){
   for (k=0; k<maxncov; k++) Ndum[k]=0;      l1=pow(10,l);
   for (k=1; k<=7; k++) ncodemax[k]=0;      delts=delt;
       for(k=1 ; k <kmax; k=k+1){
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {        delt = delta*(l1*k);
     for (i=1; i<=imx; i++) { /*reads the data file to get the maximum         p2[theta]=x[theta] +delt;
                                modality*/         k1=func(p2)-fx;
       ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/        p2[theta]=x[theta]-delt;
       Ndum[ij]++; /*store the modality */        k2=func(p2)-fx;
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/        /*res= (k1-2.0*fx+k2)/delt/delt; */
       if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable         res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
                                        Tvar[j]. If V=sex and male is 0 and        
                                        female is 1, then  cptcode=1.*/  #ifdef DEBUG
     }        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
         fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
     for (i=0; i<=cptcode; i++) {  #endif
       if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
     }        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
           k=kmax;
     ij=1;         }
     for (i=1; i<=ncodemax[j]; i++) {        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
       for (k=0; k<= maxncov; k++) {          k=kmax; l=lmax*10.;
         if (Ndum[k] != 0) {        }
           nbcode[Tvar[j]][ij]=k;         else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){
           /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */          delts=delt;
                   }
           ij++;      }
         }    }
         if (ij > ncodemax[j]) break;     delti[theta]=delts;
       }      return res;
     }    
   }    }
   
  for (k=0; k< maxncov; k++) Ndum[k]=0;  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
   {
  for (i=1; i<=ncovmodel-2; i++) {     int i;
    /* Listing of all covariables in staement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/    int l=1, l1, lmax=20;
    ij=Tvar[i];    double k1,k2,k3,k4,res,fx;
    Ndum[ij]++;    double p2[NPARMAX+1];
  }    int k;
   
  ij=1;    fx=func(x);
  for (i=1; i<= maxncov; i++) {    for (k=1; k<=2; k++) {
    if((Ndum[i]!=0) && (i<=ncovcol)){      for (i=1;i<=npar;i++) p2[i]=x[i];
      Tvaraff[ij]=i; /*For printing */      p2[thetai]=x[thetai]+delti[thetai]/k;
      ij++;      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
    }      k1=func(p2)-fx;
  }   
        p2[thetai]=x[thetai]+delti[thetai]/k;
  cptcoveff=ij-1; /*Number of simple covariates*/      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
 }      k2=func(p2)-fx;
    
 /*********** Health Expectancies ****************/      p2[thetai]=x[thetai]-delti[thetai]/k;
       p2[thetaj]=x[thetaj]+delti[thetaj]/k;
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )      k3=func(p2)-fx;
    
 {      p2[thetai]=x[thetai]-delti[thetai]/k;
   /* Health expectancies */      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;      k4=func(p2)-fx;
   double age, agelim, hf;      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
   double ***p3mat,***varhe;  #ifdef DEBUG
   double **dnewm,**doldm;      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   double *xp;      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   double **gp, **gm;  #endif
   double ***gradg, ***trgradg;    }
   int theta;    return res;
   }
   varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);  
   xp=vector(1,npar);  /************** Inverse of matrix **************/
   dnewm=matrix(1,nlstate*nlstate,1,npar);  void ludcmp(double **a, int n, int *indx, double *d)
   doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);  {
       int i,imax,j,k;
   fprintf(ficreseij,"# Health expectancies\n");    double big,dum,sum,temp;
   fprintf(ficreseij,"# Age");    double *vv;
   for(i=1; i<=nlstate;i++)   
     for(j=1; j<=nlstate;j++)    vv=vector(1,n);
       fprintf(ficreseij," %1d-%1d (SE)",i,j);    *d=1.0;
   fprintf(ficreseij,"\n");    for (i=1;i<=n;i++) {
       big=0.0;
   if(estepm < stepm){      for (j=1;j<=n;j++)
     printf ("Problem %d lower than %d\n",estepm, stepm);        if ((temp=fabs(a[i][j])) > big) big=temp;
   }      if (big == 0.0) nrerror("Singular matrix in routine ludcmp");
   else  hstepm=estepm;         vv[i]=1.0/big;
   /* We compute the life expectancy from trapezoids spaced every estepm months    }
    * This is mainly to measure the difference between two models: for example    for (j=1;j<=n;j++) {
    * if stepm=24 months pijx are given only every 2 years and by summing them      for (i=1;i<j;i++) {
    * we are calculating an estimate of the Life Expectancy assuming a linear         sum=a[i][j];
    * progression in between and thus overestimating or underestimating according        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];
    * to the curvature of the survival function. If, for the same date, we         a[i][j]=sum;
    * estimate the model with stepm=1 month, we can keep estepm to 24 months      }
    * to compare the new estimate of Life expectancy with the same linear       big=0.0;
    * hypothesis. A more precise result, taking into account a more precise      for (i=j;i<=n;i++) {
    * curvature will be obtained if estepm is as small as stepm. */        sum=a[i][j];
         for (k=1;k<j;k++)
   /* For example we decided to compute the life expectancy with the smallest unit */          sum -= a[i][k]*a[k][j];
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.         a[i][j]=sum;
      nhstepm is the number of hstepm from age to agelim         if ( (dum=vv[i]*fabs(sum)) >= big) {
      nstepm is the number of stepm from age to agelin.           big=dum;
      Look at hpijx to understand the reason of that which relies in memory size          imax=i;
      and note for a fixed period like estepm months */        }
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the      }
      survival function given by stepm (the optimization length). Unfortunately it      if (j != imax) {
      means that if the survival funtion is printed only each two years of age and if        for (k=1;k<=n;k++) {
      you sum them up and add 1 year (area under the trapezoids) you won't get the same           dum=a[imax][k];
      results. So we changed our mind and took the option of the best precision.          a[imax][k]=a[j][k];
   */          a[j][k]=dum;
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */         }
         *d = -(*d);
   agelim=AGESUP;        vv[imax]=vv[j];
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */      }
     /* nhstepm age range expressed in number of stepm */      indx[j]=imax;
     nstepm=(int) rint((agelim-age)*YEARM/stepm);       if (a[j][j] == 0.0) a[j][j]=TINY;
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */       if (j != n) {
     /* if (stepm >= YEARM) hstepm=1;*/        dum=1.0/(a[j][j]);
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */        for (i=j+1;i<=n;i++) a[i][j] *= dum;
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      }
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);    }
     gp=matrix(0,nhstepm,1,nlstate*nlstate);    free_vector(vv,1,n);  /* Doesn't work */
     gm=matrix(0,nhstepm,1,nlstate*nlstate);  ;
   }
     /* Computed by stepm unit matrices, product of hstepm matrices, stored  
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */  void lubksb(double **a, int n, int *indx, double b[])
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);    {
      int i,ii=0,ip,j;
     double sum;
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */   
     for (i=1;i<=n;i++) {
     /* Computing Variances of health expectancies */      ip=indx[i];
       sum=b[ip];
      for(theta=1; theta <=npar; theta++){      b[ip]=b[i];
       for(i=1; i<=npar; i++){       if (ii)
         xp[i] = x[i] + (i==theta ?delti[theta]:0);        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];
       }      else if (sum) ii=i;
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        b[i]=sum;
       }
       cptj=0;    for (i=n;i>=1;i--) {
       for(j=1; j<= nlstate; j++){      sum=b[i];
         for(i=1; i<=nlstate; i++){      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];
           cptj=cptj+1;      b[i]=sum/a[i][i];
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){    }
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;  }
           }  
         }  void pstamp(FILE *fichier)
       }  {
          fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
        }
       for(i=1; i<=npar; i++)   
         xp[i] = x[i] - (i==theta ?delti[theta]:0);  /************ Frequencies ********************/
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);    void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
         {  /* Some frequencies */
       cptj=0;   
       for(j=1; j<= nlstate; j++){    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
         for(i=1;i<=nlstate;i++){    int first;
           cptj=cptj+1;    double ***freq; /* Frequencies */
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){    double *pp, **prop;
     double pos,posprop, k2, dateintsum=0,k2cpt=0;
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;    char fileresp[FILENAMELENGTH];
           }   
         }    pp=vector(1,nlstate);
       }    prop=matrix(1,nlstate,iagemin,iagemax+3);
       for(j=1; j<= nlstate*nlstate; j++)    strcpy(fileresp,"p");
         for(h=0; h<=nhstepm-1; h++){    strcat(fileresp,fileres);
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];    if((ficresp=fopen(fileresp,"w"))==NULL) {
         }      printf("Problem with prevalence resultfile: %s\n", fileresp);
      }       fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
          exit(0);
 /* End theta */    }
     freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
      trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);    j1=0;
    
      for(h=0; h<=nhstepm-1; h++)    j=cptcoveff;
       for(j=1; j<=nlstate*nlstate;j++)    if (cptcovn<1) {j=1;ncodemax[1]=1;}
         for(theta=1; theta <=npar; theta++)  
           trgradg[h][j][theta]=gradg[h][theta][j];    first=1;
        
     for(k1=1; k1<=j;k1++){
      for(i=1;i<=nlstate*nlstate;i++)      for(i1=1; i1<=ncodemax[k1];i1++){
       for(j=1;j<=nlstate*nlstate;j++)        j1++;
         varhe[i][j][(int)age] =0.;        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
           scanf("%d", i);*/
      printf("%d|",(int)age);fflush(stdout);        for (i=-5; i<=nlstate+ndeath; i++)  
      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);          for (jk=-5; jk<=nlstate+ndeath; jk++)  
      for(h=0;h<=nhstepm-1;h++){            for(m=iagemin; m <= iagemax+3; m++)
       for(k=0;k<=nhstepm-1;k++){              freq[i][jk][m]=0;
         matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);  
         matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);      for (i=1; i<=nlstate; i++)  
         for(i=1;i<=nlstate*nlstate;i++)        for(m=iagemin; m <= iagemax+3; m++)
           for(j=1;j<=nlstate*nlstate;j++)          prop[i][m]=0;
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;       
       }        dateintsum=0;
     }        k2cpt=0;
     /* Computing expectancies */        for (i=1; i<=imx; i++) {
     for(i=1; i<=nlstate;i++)          bool=1;
       for(j=1; j<=nlstate;j++)          if  (cptcovn>0) {
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){            for (z1=1; z1<=cptcoveff; z1++)
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])
                           bool=0;
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/          }
           if (bool==1){
         }            for(m=firstpass; m<=lastpass; m++){
               k2=anint[m][i]+(mint[m][i]/12.);
     fprintf(ficreseij,"%3.0f",age );              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
     cptj=0;                if(agev[m][i]==0) agev[m][i]=iagemax+1;
     for(i=1; i<=nlstate;i++)                if(agev[m][i]==1) agev[m][i]=iagemax+2;
       for(j=1; j<=nlstate;j++){                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
         cptj++;                if (m<lastpass) {
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
       }                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
     fprintf(ficreseij,"\n");                }
                   
     free_matrix(gm,0,nhstepm,1,nlstate*nlstate);                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
     free_matrix(gp,0,nhstepm,1,nlstate*nlstate);                  dateintsum=dateintsum+k2;
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);                  k2cpt++;
     free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);                }
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                /*}*/
   }            }
   printf("\n");          }
   fprintf(ficlog,"\n");        }
          
   free_vector(xp,1,npar);        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
   free_matrix(dnewm,1,nlstate*nlstate,1,npar);        pstamp(ficresp);
   free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);        if  (cptcovn>0) {
   free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);          fprintf(ficresp, "\n#********** Variable ");
 }          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresp, "**********\n#");
 /************ Variance ******************/        }
 void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav)        for(i=1; i<=nlstate;i++)
 {          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
   /* Variance of health expectancies */        fprintf(ficresp, "\n");
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/       
   /* double **newm;*/        for(i=iagemin; i <= iagemax+3; i++){
   double **dnewm,**doldm;          if(i==iagemax+3){
   double **dnewmp,**doldmp;            fprintf(ficlog,"Total");
   int i, j, nhstepm, hstepm, h, nstepm ;          }else{
   int k, cptcode;            if(first==1){
   double *xp;              first=0;
   double **gp, **gm;  /* for var eij */              printf("See log file for details...\n");
   double ***gradg, ***trgradg; /*for var eij */            }
   double **gradgp, **trgradgp; /* for var p point j */            fprintf(ficlog,"Age %d", i);
   double *gpp, *gmp; /* for var p point j */          }
   double **varppt; /* for var p point j nlstate to nlstate+ndeath */          for(jk=1; jk <=nlstate ; jk++){
   double ***p3mat;            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
   double age,agelim, hf;              pp[jk] += freq[jk][m][i];
   double ***mobaverage;          }
   int theta;          for(jk=1; jk <=nlstate ; jk++){
   char digit[4];            for(m=-1, pos=0; m <=0 ; m++)
   char digitp[25];              pos += freq[jk][m][i];
             if(pp[jk]>=1.e-10){
   char fileresprobmorprev[FILENAMELENGTH];              if(first==1){
               printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
   if(popbased==1){              }
     if(mobilav!=0)              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
       strcpy(digitp,"-populbased-mobilav-");            }else{
     else strcpy(digitp,"-populbased-nomobil-");              if(first==1)
   }                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
   else               fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
     strcpy(digitp,"-stablbased-");            }
           }
   if (mobilav!=0) {  
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          for(jk=1; jk <=nlstate ; jk++){
     if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);              pp[jk] += freq[jk][m][i];
       printf(" Error in movingaverage mobilav=%d\n",mobilav);          }      
     }          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
   }            pos += pp[jk];
             posprop += prop[jk][i];
   strcpy(fileresprobmorprev,"prmorprev");           }
   sprintf(digit,"%-d",ij);          for(jk=1; jk <=nlstate ; jk++){
   /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/            if(pos>=1.e-5){
   strcat(fileresprobmorprev,digit); /* Tvar to be done */              if(first==1)
   strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   strcat(fileresprobmorprev,fileres);              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {            }else{
     printf("Problem with resultfile: %s\n", fileresprobmorprev);              if(first==1)
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
   }              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
   printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);            }
   fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);            if( i <= iagemax){
   fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);              if(pos>=1.e-5){
   fprintf(ficresprobmorprev,"# Age cov=%-d",ij);                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
   for(j=nlstate+1; j<=(nlstate+ndeath);j++){                /*probs[i][jk][j1]= pp[jk]/pos;*/
     fprintf(ficresprobmorprev," p.%-d SE",j);                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
     for(i=1; i<=nlstate;i++)              }
       fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);              else
   }                  fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
   fprintf(ficresprobmorprev,"\n");            }
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {          }
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);         
     fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);          for(jk=-1; jk <=nlstate+ndeath; jk++)
     exit(0);            for(m=-1; m <=nlstate+ndeath; m++)
   }              if(freq[jk][m][i] !=0 ) {
   else{              if(first==1)
     fprintf(ficgp,"\n# Routine varevsij");                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
   }                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {              }
     printf("Problem with html file: %s\n", optionfilehtm);          if(i <= iagemax)
     fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);            fprintf(ficresp,"\n");
     exit(0);          if(first==1)
   }            printf("Others in log...\n");
   else{          fprintf(ficlog,"\n");
     fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");        }
     fprintf(fichtm,"\n<br>%s  <br>\n",digitp);      }
   }    }
   varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);    dateintmean=dateintsum/k2cpt;
    
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");    fclose(ficresp);
   fprintf(ficresvij,"# Age");    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
   for(i=1; i<=nlstate;i++)    free_vector(pp,1,nlstate);
     for(j=1; j<=nlstate;j++)    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);    /* End of Freq */
   fprintf(ficresvij,"\n");  }
   
   xp=vector(1,npar);  /************ Prevalence ********************/
   dnewm=matrix(1,nlstate,1,npar);  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
   doldm=matrix(1,nlstate,1,nlstate);  {  
   dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
   doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);       in each health status at the date of interview (if between dateprev1 and dateprev2).
        We still use firstpass and lastpass as another selection.
   gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);    */
   gpp=vector(nlstate+1,nlstate+ndeath);   
   gmp=vector(nlstate+1,nlstate+ndeath);    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
   trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/    double ***freq; /* Frequencies */
       double *pp, **prop;
   if(estepm < stepm){    double pos,posprop;
     printf ("Problem %d lower than %d\n",estepm, stepm);    double  y2; /* in fractional years */
   }    int iagemin, iagemax;
   else  hstepm=estepm;     
   /* For example we decided to compute the life expectancy with the smallest unit */    iagemin= (int) agemin;
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.     iagemax= (int) agemax;
      nhstepm is the number of hstepm from age to agelim     /*pp=vector(1,nlstate);*/
      nstepm is the number of stepm from age to agelin.     prop=matrix(1,nlstate,iagemin,iagemax+3);
      Look at hpijx to understand the reason of that which relies in memory size    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
      and note for a fixed period like k years */    j1=0;
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the   
      survival function given by stepm (the optimization length). Unfortunately it    j=cptcoveff;
      means that if the survival funtion is printed every two years of age and if    if (cptcovn<1) {j=1;ncodemax[1]=1;}
      you sum them up and add 1 year (area under the trapezoids) you won't get the same    
      results. So we changed our mind and took the option of the best precision.    for(k1=1; k1<=j;k1++){
   */      for(i1=1; i1<=ncodemax[k1];i1++){
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */         j1++;
   agelim = AGESUP;       
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */        for (i=1; i<=nlstate; i++)  
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */           for(m=iagemin; m <= iagemax+3; m++)
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */            prop[i][m]=0.0;
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);       
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);        for (i=1; i<=imx; i++) { /* Each individual */
     gp=matrix(0,nhstepm,1,nlstate);          bool=1;
     gm=matrix(0,nhstepm,1,nlstate);          if  (cptcovn>0) {
             for (z1=1; z1<=cptcoveff; z1++)
               if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])
     for(theta=1; theta <=npar; theta++){                bool=0;
       for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/          }
         xp[i] = x[i] + (i==theta ?delti[theta]:0);          if (bool==1) {
       }            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);                y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
                 if(agev[m][i]==0) agev[m][i]=iagemax+1;
       if (popbased==1) {                if(agev[m][i]==1) agev[m][i]=iagemax+2;
         if(mobilav ==0){                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m);
           for(i=1; i<=nlstate;i++)                if (s[m][i]>0 && s[m][i]<=nlstate) {
             prlim[i][i]=probs[(int)age][i][ij];                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
         }else{ /* mobilav */                   prop[s[m][i]][(int)agev[m][i]] += weight[i];
           for(i=1; i<=nlstate;i++)                  prop[s[m][i]][iagemax+3] += weight[i];
             prlim[i][i]=mobaverage[(int)age][i][ij];                }
         }              }
       }            } /* end selection of waves */
             }
       for(j=1; j<= nlstate; j++){        }
         for(h=0; h<=nhstepm; h++){        for(i=iagemin; i <= iagemax+3; i++){  
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)         
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];          for(jk=1,posprop=0; jk <=nlstate ; jk++) {
         }            posprop += prop[jk][i];
       }          }
       /* This for computing probability of death (h=1 means  
          computed over hstepm matrices product = hstepm*stepm months)           for(jk=1; jk <=nlstate ; jk++){    
          as a weighted average of prlim.            if( i <=  iagemax){
       */              if(posprop>=1.e-5){
       for(j=nlstate+1;j<=nlstate+ndeath;j++){                probs[i][jk][j1]= prop[jk][i]/posprop;
         for(i=1,gpp[j]=0.; i<= nlstate; i++)              }
           gpp[j] += prlim[i][i]*p3mat[i][j][1];            }
       }              }/* end jk */
       /* end probability of death */        }/* end i */
       } /* end i1 */
       for(i=1; i<=npar; i++) /* Computes gradient x - delta */    } /* end k1 */
         xp[i] = x[i] - (i==theta ?delti[theta]:0);   
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    /*free_vector(pp,1,nlstate);*/
      free_matrix(prop,1,nlstate, iagemin,iagemax+3);
       if (popbased==1) {  }  /* End of prevalence */
         if(mobilav ==0){  
           for(i=1; i<=nlstate;i++)  /************* Waves Concatenation ***************/
             prlim[i][i]=probs[(int)age][i][ij];  
         }else{ /* mobilav */   void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
           for(i=1; i<=nlstate;i++)  {
             prlim[i][i]=mobaverage[(int)age][i][ij];    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
         }       Death is a valid wave (if date is known).
       }       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
        dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
       for(j=1; j<= nlstate; j++){       and mw[mi+1][i]. dh depends on stepm.
         for(h=0; h<=nhstepm; h++){       */
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)  
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];    int i, mi, m;
         }    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
       }       double sum=0., jmean=0.;*/
       /* This for computing probability of death (h=1 means    int first;
          computed over hstepm matrices product = hstepm*stepm months)     int j, k=0,jk, ju, jl;
          as a weighted average of prlim.    double sum=0.;
       */    first=0;
       for(j=nlstate+1;j<=nlstate+ndeath;j++){    jmin=1e+5;
         for(i=1,gmp[j]=0.; i<= nlstate; i++)    jmax=-1;
          gmp[j] += prlim[i][i]*p3mat[i][j][1];    jmean=0.;
       }        for(i=1; i<=imx; i++){
       /* end probability of death */      mi=0;
       m=firstpass;
       for(j=1; j<= nlstate; j++) /* vareij */      while(s[m][i] <= nlstate){
         for(h=0; h<=nhstepm; h++){        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];          mw[++mi][i]=m;
         }        if(m >=lastpass)
           break;
       for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */        else
         gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];          m++;
       }      }/* end while */
       if (s[m][i] > nlstate){
     } /* End theta */        mi++;     /* Death is another wave */
         /* if(mi==0)  never been interviewed correctly before death */
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */           /* Only death is a correct wave */
         mw[mi][i]=m;
     for(h=0; h<=nhstepm; h++) /* veij */      }
       for(j=1; j<=nlstate;j++)  
         for(theta=1; theta <=npar; theta++)      wav[i]=mi;
           trgradg[h][j][theta]=gradg[h][theta][j];      if(mi==0){
         nbwarn++;
     for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */        if(first==0){
       for(theta=1; theta <=npar; theta++)          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
         trgradgp[j][theta]=gradgp[theta][j];          first=1;
           }
         if(first==1){
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
     for(i=1;i<=nlstate;i++)        }
       for(j=1;j<=nlstate;j++)      } /* end mi==0 */
         vareij[i][j][(int)age] =0.;    } /* End individuals */
   
     for(h=0;h<=nhstepm;h++){    for(i=1; i<=imx; i++){
       for(k=0;k<=nhstepm;k++){      for(mi=1; mi<wav[i];mi++){
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);        if (stepm <=0)
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);          dh[mi][i]=1;
         for(i=1;i<=nlstate;i++)        else{
           for(j=1;j<=nlstate;j++)          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;            if (agedc[i] < 2*AGESUP) {
       }              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);
     }              if(j==0) j=1;  /* Survives at least one month after exam */
                 else if(j<0){
     /* pptj */                nberr++;
     matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);                j=1; /* Temporary Dangerous patch */
     for(j=nlstate+1;j<=nlstate+ndeath;j++)                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
       for(i=nlstate+1;i<=nlstate+ndeath;i++)                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
         varppt[j][i]=doldmp[j][i];                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
     /* end ppptj */              }
     /*  x centered again */              k=k+1;
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);                if (j >= jmax){
     prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);                jmax=j;
                  ijmax=i;
     if (popbased==1) {              }
       if(mobilav ==0){              if (j <= jmin){
         for(i=1; i<=nlstate;i++)                jmin=j;
           prlim[i][i]=probs[(int)age][i][ij];                ijmin=i;
       }else{ /* mobilav */               }
         for(i=1; i<=nlstate;i++)              sum=sum+j;
           prlim[i][i]=mobaverage[(int)age][i][ij];              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
       }              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
     }            }
                        }
     /* This for computing probability of death (h=1 means          else{
        computed over hstepm (estepm) matrices product = hstepm*stepm months)             j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
        as a weighted average of prlim.  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
     */  
     for(j=nlstate+1;j<=nlstate+ndeath;j++){            k=k+1;
       for(i=1,gmp[j]=0.;i<= nlstate; i++)             if (j >= jmax) {
         gmp[j] += prlim[i][i]*p3mat[i][j][1];               jmax=j;
     }                  ijmax=i;
     /* end probability of death */            }
             else if (j <= jmin){
     fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);              jmin=j;
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){              ijmin=i;
       fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));            }
       for(i=1; i<=nlstate;i++){            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
         fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
       }            if(j<0){
     }               nberr++;
     fprintf(ficresprobmorprev,"\n");              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
               fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     fprintf(ficresvij,"%.0f ",age );            }
     for(i=1; i<=nlstate;i++)            sum=sum+j;
       for(j=1; j<=nlstate;j++){          }
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);          jk= j/stepm;
       }          jl= j -jk*stepm;
     fprintf(ficresvij,"\n");          ju= j -(jk+1)*stepm;
     free_matrix(gp,0,nhstepm,1,nlstate);          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
     free_matrix(gm,0,nhstepm,1,nlstate);            if(jl==0){
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);              dh[mi][i]=jk;
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);              bh[mi][i]=0;
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            }else{ /* We want a negative bias in order to only have interpolation ie
   } /* End age */                    * at the price of an extra matrix product in likelihood */
   free_vector(gpp,nlstate+1,nlstate+ndeath);              dh[mi][i]=jk+1;
   free_vector(gmp,nlstate+1,nlstate+ndeath);              bh[mi][i]=ju;
   free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);            }
   free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/          }else{
   fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");            if(jl <= -ju){
   /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */              dh[mi][i]=jk;
   fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");              bh[mi][i]=jl;       /* bias is positive if real duration
 /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */                                   * is higher than the multiple of stepm and negative otherwise.
 /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */                                   */
 /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */            }
   fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",fileresprobmorprev);            else{
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",fileresprobmorprev);              dh[mi][i]=jk+1;
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",fileresprobmorprev);              bh[mi][i]=ju;
   fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",fileresprobmorprev,fileresprobmorprev);            }
   fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"varmuptjgr%s%s%s.png\"> <br>\n", estepm,digitp,optionfilefiname,digit);            if(dh[mi][i]==0){
   /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);              dh[mi][i]=1; /* At least one step */
 */              bh[mi][i]=ju; /* At least one step */
   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit);              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
             }
   free_vector(xp,1,npar);          } /* end if mle */
   free_matrix(doldm,1,nlstate,1,nlstate);        }
   free_matrix(dnewm,1,nlstate,1,npar);      } /* end wave */
   free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);    }
   free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);    jmean=sum/k;
   free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
   fclose(ficresprobmorprev);   }
   fclose(ficgp);  
   fclose(fichtm);  /*********** Tricode ****************************/
 }    void tricode(int *Tvar, int **nbcode, int imx)
   {
 /************ Variance of prevlim ******************/   
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)    int Ndum[20],ij=1, k, j, i, maxncov=19;
 {    int cptcode=0;
   /* Variance of prevalence limit */    cptcoveff=0;
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/   
   double **newm;    for (k=0; k<maxncov; k++) Ndum[k]=0;
   double **dnewm,**doldm;    for (k=1; k<=7; k++) ncodemax[k]=0;
   int i, j, nhstepm, hstepm;  
   int k, cptcode;    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
   double *xp;      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum
   double *gp, *gm;                                 modality*/
   double **gradg, **trgradg;        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
   double age,agelim;        Ndum[ij]++; /*store the modality */
   int theta;        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
            if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable
   fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");                                         Tvar[j]. If V=sex and male is 0 and
   fprintf(ficresvpl,"# Age");                                         female is 1, then  cptcode=1.*/
   for(i=1; i<=nlstate;i++)      }
       fprintf(ficresvpl," %1d-%1d",i,i);  
   fprintf(ficresvpl,"\n");      for (i=0; i<=cptcode; i++) {
         if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
   xp=vector(1,npar);      }
   dnewm=matrix(1,nlstate,1,npar);  
   doldm=matrix(1,nlstate,1,nlstate);      ij=1;
         for (i=1; i<=ncodemax[j]; i++) {
   hstepm=1*YEARM; /* Every year of age */        for (k=0; k<= maxncov; k++) {
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */           if (Ndum[k] != 0) {
   agelim = AGESUP;            nbcode[Tvar[j]][ij]=k;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */            
     if (stepm >= YEARM) hstepm=1;            ij++;
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */          }
     gradg=matrix(1,npar,1,nlstate);          if (ij > ncodemax[j]) break;
     gp=vector(1,nlstate);        }  
     gm=vector(1,nlstate);      }
     }  
     for(theta=1; theta <=npar; theta++){  
       for(i=1; i<=npar; i++){ /* Computes gradient */   for (k=0; k< maxncov; k++) Ndum[k]=0;
         xp[i] = x[i] + (i==theta ?delti[theta]:0);  
       }   for (i=1; i<=ncovmodel-2; i++) {
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
       for(i=1;i<=nlstate;i++)     ij=Tvar[i];
         gp[i] = prlim[i][i];     Ndum[ij]++;
        }
       for(i=1; i<=npar; i++) /* Computes gradient */  
         xp[i] = x[i] - (i==theta ?delti[theta]:0);   ij=1;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);   for (i=1; i<= maxncov; i++) {
       for(i=1;i<=nlstate;i++)     if((Ndum[i]!=0) && (i<=ncovcol)){
         gm[i] = prlim[i][i];       Tvaraff[ij]=i; /*For printing */
        ij++;
       for(i=1;i<=nlstate;i++)     }
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];   }
     } /* End theta */   
    cptcoveff=ij-1; /*Number of simple covariates*/
     trgradg =matrix(1,nlstate,1,npar);  }
   
     for(j=1; j<=nlstate;j++)  /*********** Health Expectancies ****************/
       for(theta=1; theta <=npar; theta++)  
         trgradg[j][theta]=gradg[theta][j];  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
   
     for(i=1;i<=nlstate;i++)  {
       varpl[i][(int)age] =0.;    /* Health expectancies, no variances */
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);    double age, agelim, hf;
     for(i=1;i<=nlstate;i++)    double ***p3mat;
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */    double eip;
   
     fprintf(ficresvpl,"%.0f ",age );    pstamp(ficreseij);
     for(i=1; i<=nlstate;i++)    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));    fprintf(ficreseij,"# Age");
     fprintf(ficresvpl,"\n");    for(i=1; i<=nlstate;i++){
     free_vector(gp,1,nlstate);      for(j=1; j<=nlstate;j++){
     free_vector(gm,1,nlstate);        fprintf(ficreseij," e%1d%1d ",i,j);
     free_matrix(gradg,1,npar,1,nlstate);      }
     free_matrix(trgradg,1,nlstate,1,npar);      fprintf(ficreseij," e%1d. ",i);
   } /* End age */    }
     fprintf(ficreseij,"\n");
   free_vector(xp,1,npar);  
   free_matrix(doldm,1,nlstate,1,npar);   
   free_matrix(dnewm,1,nlstate,1,nlstate);    if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
 }    }
     else  hstepm=estepm;  
 /************ Variance of one-step probabilities  ******************/    /* We compute the life expectancy from trapezoids spaced every estepm months
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)     * This is mainly to measure the difference between two models: for example
 {     * if stepm=24 months pijx are given only every 2 years and by summing them
   int i, j=0,  i1, k1, l1, t, tj;     * we are calculating an estimate of the Life Expectancy assuming a linear
   int k2, l2, j1,  z1;     * progression in between and thus overestimating or underestimating according
   int k=0,l, cptcode;     * to the curvature of the survival function. If, for the same date, we
   int first=1, first1;     * estimate the model with stepm=1 month, we can keep estepm to 24 months
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;     * to compare the new estimate of Life expectancy with the same linear
   double **dnewm,**doldm;     * hypothesis. A more precise result, taking into account a more precise
   double *xp;     * curvature will be obtained if estepm is as small as stepm. */
   double *gp, *gm;  
   double **gradg, **trgradg;    /* For example we decided to compute the life expectancy with the smallest unit */
   double **mu;    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.
   double age,agelim, cov[NCOVMAX];       nhstepm is the number of hstepm from age to agelim
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */       nstepm is the number of stepm from age to agelin.
   int theta;       Look at hpijx to understand the reason of that which relies in memory size
   char fileresprob[FILENAMELENGTH];       and note for a fixed period like estepm months */
   char fileresprobcov[FILENAMELENGTH];    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   char fileresprobcor[FILENAMELENGTH];       survival function given by stepm (the optimization length). Unfortunately it
        means that if the survival funtion is printed only each two years of age and if
   double ***varpij;       you sum them up and add 1 year (area under the trapezoids) you won't get the same
        results. So we changed our mind and took the option of the best precision.
   strcpy(fileresprob,"prob");     */
   strcat(fileresprob,fileres);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {  
     printf("Problem with resultfile: %s\n", fileresprob);    agelim=AGESUP;
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);    /* If stepm=6 months */
   }      /* Computed by stepm unit matrices, product of hstepm matrices, stored
   strcpy(fileresprobcov,"probcov");          in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
   strcat(fileresprobcov,fileres);     
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {  /* nhstepm age range expressed in number of stepm */
     printf("Problem with resultfile: %s\n", fileresprobcov);    nstepm=(int) rint((agelim-bage)*YEARM/stepm);
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);    /* Typically if 20 years nstepm = 20*12/6=40 stepm */
   }    /* if (stepm >= YEARM) hstepm=1;*/
   strcpy(fileresprobcor,"probcor");     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   strcat(fileresprobcor,fileres);    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {  
     printf("Problem with resultfile: %s\n", fileresprobcor);    for (age=bage; age<=fage; age ++){
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);  
   }  
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
   fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);     
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);     
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);      printf("%d|",(int)age);fflush(stdout);
   fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
        
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");  
   fprintf(ficresprob,"# Age");      /* Computing expectancies */
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");      for(i=1; i<=nlstate;i++)
   fprintf(ficresprobcov,"# Age");        for(j=1; j<=nlstate;j++)
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
   fprintf(ficresprobcov,"# Age");            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
            
             /*if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   for(i=1; i<=nlstate;i++)  
     for(j=1; j<=(nlstate+ndeath);j++){          }
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);     
       fprintf(ficresprobcov," p%1d-%1d ",i,j);      fprintf(ficreseij,"%3.0f",age );
       fprintf(ficresprobcor," p%1d-%1d ",i,j);      for(i=1; i<=nlstate;i++){
     }          eip=0;
  /* fprintf(ficresprob,"\n");        for(j=1; j<=nlstate;j++){
   fprintf(ficresprobcov,"\n");          eip +=eij[i][j][(int)age];
   fprintf(ficresprobcor,"\n");          fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
  */        }
  xp=vector(1,npar);        fprintf(ficreseij,"%9.4f", eip );
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);      }
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));      fprintf(ficreseij,"\n");
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);     
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);    }
   first=1;    free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {    printf("\n");
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);    fprintf(ficlog,"\n");
     fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);   
     exit(0);  }
   }  
   else{  void cvevsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
     fprintf(ficgp,"\n# Routine varprob");  
   }  {
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {    /* Covariances of health expectancies eij and of total life expectancies according
     printf("Problem with html file: %s\n", optionfilehtm);     to initial status i, ei. .
     fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);    */
     exit(0);    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
   }    double age, agelim, hf;
   else{    double ***p3matp, ***p3matm, ***varhe;
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");    double **dnewm,**doldm;
     fprintf(fichtm,"\n");    double *xp, *xm;
     double **gp, **gm;
     fprintf(fichtm,"\n<li><h4> Computing matrix of variance-covariance of step probabilities</h4></li>\n");    double ***gradg, ***trgradg;
     fprintf(fichtm,"\nWe have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");    int theta;
     fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");  
     double eip, vip;
   }  
     varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
   cov[1]=1;    xp=vector(1,npar);
   tj=cptcoveff;    xm=vector(1,npar);
   if (cptcovn<1) {tj=1;ncodemax[1]=1;}    dnewm=matrix(1,nlstate*nlstate,1,npar);
   j1=0;    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
   for(t=1; t<=tj;t++){   
     for(i1=1; i1<=ncodemax[t];i1++){     pstamp(ficresstdeij);
       j1++;    fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
       if  (cptcovn>0) {    fprintf(ficresstdeij,"# Age");
         fprintf(ficresprob, "\n#********** Variable ");     for(i=1; i<=nlstate;i++){
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);      for(j=1; j<=nlstate;j++)
         fprintf(ficresprob, "**********\n#\n");        fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
         fprintf(ficresprobcov, "\n#********** Variable ");       fprintf(ficresstdeij," e%1d. ",i);
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    }
         fprintf(ficresprobcov, "**********\n#\n");    fprintf(ficresstdeij,"\n");
           
         fprintf(ficgp, "\n#********** Variable ");     pstamp(ficrescveij);
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
         fprintf(ficgp, "**********\n#\n");    fprintf(ficrescveij,"# Age");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate;j++){
         fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable ");         cptj= (j-1)*nlstate+i;
         for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        for(i2=1; i2<=nlstate;i2++)
         fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");          for(j2=1; j2<=nlstate;j2++){
                     cptj2= (j2-1)*nlstate+i2;
         fprintf(ficresprobcor, "\n#********** Variable ");                if(cptj2 <= cptj)
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);              fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
         fprintf(ficresprobcor, "**********\n#");              }
       }      }
           fprintf(ficrescveij,"\n");
       for (age=bage; age<=fage; age ++){    
         cov[2]=age;    if(estepm < stepm){
         for (k=1; k<=cptcovn;k++) {      printf ("Problem %d lower than %d\n",estepm, stepm);
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];    }
         }    else  hstepm=estepm;  
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    /* We compute the life expectancy from trapezoids spaced every estepm months
         for (k=1; k<=cptcovprod;k++)     * This is mainly to measure the difference between two models: for example
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];     * if stepm=24 months pijx are given only every 2 years and by summing them
              * we are calculating an estimate of the Life Expectancy assuming a linear
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));     * progression in between and thus overestimating or underestimating according
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);     * to the curvature of the survival function. If, for the same date, we
         gp=vector(1,(nlstate)*(nlstate+ndeath));     * estimate the model with stepm=1 month, we can keep estepm to 24 months
         gm=vector(1,(nlstate)*(nlstate+ndeath));     * to compare the new estimate of Life expectancy with the same linear
          * hypothesis. A more precise result, taking into account a more precise
         for(theta=1; theta <=npar; theta++){     * curvature will be obtained if estepm is as small as stepm. */
           for(i=1; i<=npar; i++)  
             xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);    /* For example we decided to compute the life expectancy with the smallest unit */
               /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.
           pmij(pmmij,cov,ncovmodel,xp,nlstate);       nhstepm is the number of hstepm from age to agelim
                  nstepm is the number of stepm from age to agelin.
           k=0;       Look at hpijx to understand the reason of that which relies in memory size
           for(i=1; i<= (nlstate); i++){       and note for a fixed period like estepm months */
             for(j=1; j<=(nlstate+ndeath);j++){    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
               k=k+1;       survival function given by stepm (the optimization length). Unfortunately it
               gp[k]=pmmij[i][j];       means that if the survival funtion is printed only each two years of age and if
             }       you sum them up and add 1 year (area under the trapezoids) you won't get the same
           }       results. So we changed our mind and took the option of the best precision.
               */
           for(i=1; i<=npar; i++)    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */
             xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);  
         /* If stepm=6 months */
           pmij(pmmij,cov,ncovmodel,xp,nlstate);    /* nhstepm age range expressed in number of stepm */
           k=0;    agelim=AGESUP;
           for(i=1; i<=(nlstate); i++){    nstepm=(int) rint((agelim-bage)*YEARM/stepm);
             for(j=1; j<=(nlstate+ndeath);j++){    /* Typically if 20 years nstepm = 20*12/6=40 stepm */
               k=k+1;    /* if (stepm >= YEARM) hstepm=1;*/
               gm[k]=pmmij[i][j];    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
             }   
           }    p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
          p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
             gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];      trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
         }    gp=matrix(0,nhstepm,1,nlstate*nlstate);
     gm=matrix(0,nhstepm,1,nlstate*nlstate);
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)  
           for(theta=1; theta <=npar; theta++)    for (age=bage; age<=fage; age ++){
             trgradg[j][theta]=gradg[theta][j];  
               /* Computed by stepm unit matrices, product of hstepm matrices, stored
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);          in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);   
         free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
         free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));  
         free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);      /* Computing  Variances of health expectancies */
         free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);      /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
          decrease memory allocation */
         pmij(pmmij,cov,ncovmodel,x,nlstate);      for(theta=1; theta <=npar; theta++){
                 for(i=1; i<=npar; i++){
         k=0;          xp[i] = x[i] + (i==theta ?delti[theta]:0);
         for(i=1; i<=(nlstate); i++){          xm[i] = x[i] - (i==theta ?delti[theta]:0);
           for(j=1; j<=(nlstate+ndeath);j++){        }
             k=k+1;        hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
             mu[k][(int) age]=pmmij[i][j];        hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
           }   
         }        for(j=1; j<= nlstate; j++){
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)          for(i=1; i<=nlstate; i++){
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)            for(h=0; h<=nhstepm-1; h++){
             varpij[i][j][(int)age] = doldm[i][j];              gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
               gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
         /*printf("\n%d ",(int)age);            }
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){          }
           printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));        }
           fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));       
           }*/        for(ij=1; ij<= nlstate*nlstate; ij++)
           for(h=0; h<=nhstepm-1; h++){
         fprintf(ficresprob,"\n%d ",(int)age);            gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
         fprintf(ficresprobcov,"\n%d ",(int)age);          }
         fprintf(ficresprobcor,"\n%d ",(int)age);      }/* End theta */
      
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)     
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));      for(h=0; h<=nhstepm-1; h++)
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){        for(j=1; j<=nlstate*nlstate;j++)
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);          for(theta=1; theta <=npar; theta++)
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);            trgradg[h][j][theta]=gradg[h][theta][j];
         }     
         i=0;  
         for (k=1; k<=(nlstate);k++){       for(ij=1;ij<=nlstate*nlstate;ij++)
           for (l=1; l<=(nlstate+ndeath);l++){         for(ji=1;ji<=nlstate*nlstate;ji++)
             i=i++;          varhe[ij][ji][(int)age] =0.;
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);  
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);       printf("%d|",(int)age);fflush(stdout);
             for (j=1; j<=i;j++){       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);       for(h=0;h<=nhstepm-1;h++){
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));        for(k=0;k<=nhstepm-1;k++){
             }          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
           }          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
         }/* end of loop for state */          for(ij=1;ij<=nlstate*nlstate;ij++)
       } /* end of loop for age */            for(ji=1;ji<=nlstate*nlstate;ji++)
               varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
       /* Confidence intervalle of pij  */        }
       /*      }
         fprintf(ficgp,"\nset noparametric;unset label");  
         fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");      /* Computing expectancies */
         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");      hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
         fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);      for(i=1; i<=nlstate;i++)
         fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);        for(j=1; j<=nlstate;j++)
         fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
         fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);            eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
       */           
             /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
       /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/  
       first1=1;          }
       for (k2=1; k2<=(nlstate);k2++){  
         for (l2=1; l2<=(nlstate+ndeath);l2++){       fprintf(ficresstdeij,"%3.0f",age );
           if(l2==k2) continue;      for(i=1; i<=nlstate;i++){
           j=(k2-1)*(nlstate+ndeath)+l2;        eip=0.;
           for (k1=1; k1<=(nlstate);k1++){        vip=0.;
             for (l1=1; l1<=(nlstate+ndeath);l1++){         for(j=1; j<=nlstate;j++){
               if(l1==k1) continue;          eip += eij[i][j][(int)age];
               i=(k1-1)*(nlstate+ndeath)+l1;          for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
               if(i<=j) continue;            vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
               for (age=bage; age<=fage; age ++){           fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
                 if ((int)age %5==0){        }
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;        fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;      }
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;      fprintf(ficresstdeij,"\n");
                   mu1=mu[i][(int) age]/stepm*YEARM ;  
                   mu2=mu[j][(int) age]/stepm*YEARM;      fprintf(ficrescveij,"%3.0f",age );
                   c12=cv12/sqrt(v1*v2);      for(i=1; i<=nlstate;i++)
                   /* Computing eigen value of matrix of covariance */        for(j=1; j<=nlstate;j++){
                   lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;          cptj= (j-1)*nlstate+i;
                   lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;          for(i2=1; i2<=nlstate;i2++)
                   /* Eigen vectors */            for(j2=1; j2<=nlstate;j2++){
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));              cptj2= (j2-1)*nlstate+i2;
                   /*v21=sqrt(1.-v11*v11); *//* error */              if(cptj2 <= cptj)
                   v21=(lc1-v1)/cv12*v11;                fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
                   v12=-v21;            }
                   v22=v11;        }
                   tnalp=v21/v11;      fprintf(ficrescveij,"\n");
                   if(first1==1){     
                     first1=0;    }
                     printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);    free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
                   }    free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
                   fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);    free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
                   /*printf(fignu*/    free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */    free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                   /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */    free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                   if(first==1){    printf("\n");
                     first=0;    fprintf(ficlog,"\n");
                     fprintf(ficgp,"\nset parametric;unset label");  
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);    free_vector(xm,1,npar);
                     fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");    free_vector(xp,1,npar);
                     fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%d%1d%1d-%1d%1d.png\">varpijgr%s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2);    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
                     fprintf(fichtm,"\n<br><img src=\"varpijgr%s%d%1d%1d-%1d%1d.png\"> ",optionfilefiname, j1,k1,l1,k2,l2);    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
                     fprintf(fichtm,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
                     fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\"",optionfilefiname, j1,k1,l1,k2,l2);  }
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);  
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);  /************ Variance ******************/
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\  {
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));    /* Variance of health expectancies */
                   }else{    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
                     first=0;    /* double **newm;*/
                     fprintf(fichtm," %d (%.3f),",(int) age, c12);    double **dnewm,**doldm;
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);    double **dnewmp,**doldmp;
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);    int i, j, nhstepm, hstepm, h, nstepm ;
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\    int k, cptcode;
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\    double *xp;
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));    double **gp, **gm;  /* for var eij */
                   }/* if first */    double ***gradg, ***trgradg; /*for var eij */
                 } /* age mod 5 */    double **gradgp, **trgradgp; /* for var p point j */
               } /* end loop age */    double *gpp, *gmp; /* for var p point j */
               fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\";replot;",optionfilefiname, j1,k1,l1,k2,l2);    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
               first=1;    double ***p3mat;
             } /*l12 */    double age,agelim, hf;
           } /* k12 */    double ***mobaverage;
         } /*l1 */    int theta;
       }/* k1 */    char digit[4];
     } /* loop covariates */    char digitp[25];
   }  
   free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);    char fileresprobmorprev[FILENAMELENGTH];
   free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);  
   free_vector(xp,1,npar);    if(popbased==1){
   fclose(ficresprob);      if(mobilav!=0)
   fclose(ficresprobcov);        strcpy(digitp,"-populbased-mobilav-");
   fclose(ficresprobcor);      else strcpy(digitp,"-populbased-nomobil-");
   fclose(ficgp);    }
   fclose(fichtm);    else
 }      strcpy(digitp,"-stablbased-");
   
     if (mobilav!=0) {
 /******************* Printing html file ***********/      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
                   int lastpass, int stepm, int weightopt, char model[],\        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\        printf(" Error in movingaverage mobilav=%d\n",mobilav);
                   int popforecast, int estepm ,\      }
                   double jprev1, double mprev1,double anprev1, \    }
                   double jprev2, double mprev2,double anprev2){  
   int jj1, k1, i1, cpt;    strcpy(fileresprobmorprev,"prmorprev");
   /*char optionfilehtm[FILENAMELENGTH];*/    sprintf(digit,"%-d",ij);
   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
     printf("Problem with %s \n",optionfilehtm), exit(0);    strcat(fileresprobmorprev,digit); /* Tvar to be done */
     fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0);    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
   }    strcat(fileresprobmorprev,fileres);
     if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
    fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n      printf("Problem with resultfile: %s\n", fileresprobmorprev);
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
  - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n    }
  - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
  - Life expectancies by age and initial health status (estepm=%2d months):    
    <a href=\"e%s\">e%s</a> <br>\n</li>", \    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);    pstamp(ficresprobmorprev);
     fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
 fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){
  m=cptcoveff;      fprintf(ficresprobmorprev," p.%-d SE",j);
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}      for(i=1; i<=nlstate;i++)
         fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
  jj1=0;    }  
  for(k1=1; k1<=m;k1++){    fprintf(ficresprobmorprev,"\n");
    for(i1=1; i1<=ncodemax[k1];i1++){    fprintf(ficgp,"\n# Routine varevsij");
      jj1++;    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
      if (cptcovn > 0) {    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
        for (cpt=1; cpt<=cptcoveff;cpt++)   /*   } */
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");    pstamp(ficresvij);
      }    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
      /* Pij */    if(popbased==1)
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: pe%s%d1.png<br>      fprintf(ficresvij,"the age specific prevalence observed in the population i.e cross-sectionally\n in each health state (popbased=1)");
 <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);         else
      /* Quasi-incidences */      fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>    fprintf(ficresvij,"# Age");
 <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);     for(i=1; i<=nlstate;i++)
        /* Stable prevalence in each health state */      for(j=1; j<=nlstate;j++)
        for(cpt=1; cpt<nlstate;cpt++){        fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
          fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>    fprintf(ficresvij,"\n");
 <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);  
        }    xp=vector(1,npar);
      for(cpt=1; cpt<=nlstate;cpt++) {    dnewm=matrix(1,nlstate,1,npar);
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>    doldm=matrix(1,nlstate,1,nlstate);
 <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
      }    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
      fprintf(fichtm,"\n<br>- Total life expectancy by age and  
 health expectancies in states (1) and (2): e%s%d.png<br>    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
 <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);    gpp=vector(nlstate+1,nlstate+ndeath);
    } /* end i1 */    gmp=vector(nlstate+1,nlstate+ndeath);
  }/* End k1 */    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
  fprintf(fichtm,"</ul>");   
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
  fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n    }
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n    else  hstepm=estepm;  
  - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n    /* For example we decided to compute the life expectancy with the smallest unit */
  - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.
  - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n       nhstepm is the number of hstepm from age to agelim
  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n        nstepm is the number of stepm from age to agelin.
  - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n       Look at hpijx to understand the reason of that which relies in memory size
  - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);       and note for a fixed period like k years */
     /* We decided (b) to get a life expectancy respecting the most precise curvature of the
 /*  if(popforecast==1) fprintf(fichtm,"\n */       survival function given by stepm (the optimization length). Unfortunately it
 /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */       means that if the survival funtion is printed every two years of age and if
 /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */       you sum them up and add 1 year (area under the trapezoids) you won't get the same
 /*      <br>",fileres,fileres,fileres,fileres); */       results. So we changed our mind and took the option of the best precision.
 /*  else  */    */
 /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */
 fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");    agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
  m=cptcoveff;      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
  jj1=0;      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
  for(k1=1; k1<=m;k1++){      gp=matrix(0,nhstepm,1,nlstate);
    for(i1=1; i1<=ncodemax[k1];i1++){      gm=matrix(0,nhstepm,1,nlstate);
      jj1++;  
      if (cptcovn > 0) {  
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");      for(theta=1; theta <=npar; theta++){
        for (cpt=1; cpt<=cptcoveff;cpt++)         for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");        }
      }        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
      for(cpt=1; cpt<=nlstate;cpt++) {        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
        fprintf(fichtm,"<br>- Observed and period prevalence (with confident  
 interval) in state (%d): v%s%d%d.png <br>        if (popbased==1) {
 <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);            if(mobilav ==0){
      }            for(i=1; i<=nlstate;i++)
    } /* end i1 */              prlim[i][i]=probs[(int)age][i][ij];
  }/* End k1 */          }else{ /* mobilav */
  fprintf(fichtm,"</ul>");            for(i=1; i<=nlstate;i++)
 fclose(fichtm);              prlim[i][i]=mobaverage[(int)age][i][ij];
 }          }
         }
 /******************* Gnuplot file **************/   
 void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){        for(j=1; j<= nlstate; j++){
           for(h=0; h<=nhstepm; h++){
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
   int ng;              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {          }
     printf("Problem with file %s",optionfilegnuplot);        }
     fprintf(ficlog,"Problem with file %s",optionfilegnuplot);        /* This for computing probability of death (h=1 means
   }           computed over hstepm matrices product = hstepm*stepm months)
            as a weighted average of prlim.
   /*#ifdef windows */        */
     fprintf(ficgp,"cd \"%s\" \n",pathc);        for(j=nlstate+1;j<=nlstate+ndeath;j++){
     /*#endif */          for(i=1,gpp[j]=0.; i<= nlstate; i++)
 m=pow(2,cptcoveff);            gpp[j] += prlim[i][i]*p3mat[i][j][1];
           }    
  /* 1eme*/        /* end probability of death */
   for (cpt=1; cpt<= nlstate ; cpt ++) {  
    for (k1=1; k1<= m ; k1 ++) {        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
      fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
      for (i=1; i<= nlstate ; i ++) {   
        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");        if (popbased==1) {
        else fprintf(ficgp," \%%*lf (\%%*lf)");          if(mobilav ==0){
      }            for(i=1; i<=nlstate;i++)
      fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",fileres,k1-1,k1-1);              prlim[i][i]=probs[(int)age][i][ij];
      for (i=1; i<= nlstate ; i ++) {          }else{ /* mobilav */
        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");            for(i=1; i<=nlstate;i++)
        else fprintf(ficgp," \%%*lf (\%%*lf)");              prlim[i][i]=mobaverage[(int)age][i][ij];
      }           }
      fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",fileres,k1-1,k1-1);         }
      for (i=1; i<= nlstate ; i ++) {  
        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");        for(j=1; j<= nlstate; j++){
        else fprintf(ficgp," \%%*lf (\%%*lf)");          for(h=0; h<=nhstepm; h++){
      }              for(i=1, gm[h][j]=0.;i<=nlstate;i++)
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
    }          }
   }        }
   /*2 eme*/        /* This for computing probability of death (h=1 means
              computed over hstepm matrices product = hstepm*stepm months)
   for (k1=1; k1<= m ; k1 ++) {            as a weighted average of prlim.
     fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);        */
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);        for(j=nlstate+1;j<=nlstate+ndeath;j++){
               for(i=1,gmp[j]=0.; i<= nlstate; i++)
     for (i=1; i<= nlstate+1 ; i ++) {           gmp[j] += prlim[i][i]*p3mat[i][j][1];
       k=2*i;        }    
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);        /* end probability of death */
       for (j=1; j<= nlstate+1 ; j ++) {  
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");        for(j=1; j<= nlstate; j++) /* vareij */
         else fprintf(ficgp," \%%*lf (\%%*lf)");          for(h=0; h<=nhstepm; h++){
       }               gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");          }
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);  
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
       for (j=1; j<= nlstate+1 ; j ++) {          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");        }
         else fprintf(ficgp," \%%*lf (\%%*lf)");  
       }         } /* End theta */
       fprintf(ficgp,"\" t\"\" w l 0,");  
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
       for (j=1; j<= nlstate+1 ; j ++) {  
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");      for(h=0; h<=nhstepm; h++) /* veij */
         else fprintf(ficgp," \%%*lf (\%%*lf)");        for(j=1; j<=nlstate;j++)
       }             for(theta=1; theta <=npar; theta++)
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");            trgradg[h][j][theta]=gradg[h][theta][j];
       else fprintf(ficgp,"\" t\"\" w l 0,");  
     }      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
   }        for(theta=1; theta <=npar; theta++)
             trgradgp[j][theta]=gradgp[theta][j];
   /*3eme*/   
     
   for (k1=1; k1<= m ; k1 ++) {       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
     for (cpt=1; cpt<= nlstate ; cpt ++) {      for(i=1;i<=nlstate;i++)
       k=2+nlstate*(2*cpt-2);        for(j=1;j<=nlstate;j++)
       fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);          vareij[i][j][(int)age] =0.;
       fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);  
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);      for(h=0;h<=nhstepm;h++){
         for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");        for(k=0;k<=nhstepm;k++){
         fprintf(ficgp,"\" t \"e%d1\" w l",cpt);          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
         for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");          for(i=1;i<=nlstate;i++)
         fprintf(ficgp,"\" t \"e%d1\" w l",cpt);            for(j=1;j<=nlstate;j++)
                       vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
       */        }
       for (i=1; i< nlstate ; i ++) {      }
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);   
               /* pptj */
       }       matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
     }      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
   }      for(j=nlstate+1;j<=nlstate+ndeath;j++)
           for(i=nlstate+1;i<=nlstate+ndeath;i++)
   /* CV preval stable (period) */          varppt[j][i]=doldmp[j][i];
   for (k1=1; k1<= m ; k1 ++) {       /* end ppptj */
     for (cpt=1; cpt<=nlstate ; cpt ++) {      /*  x centered again */
       k=3;      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
       fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);   
             if (popbased==1) {
       for (i=1; i<= nlstate ; i ++)        if(mobilav ==0){
         fprintf(ficgp,"+$%d",k+i+1);          for(i=1; i<=nlstate;i++)
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);            prlim[i][i]=probs[(int)age][i][ij];
               }else{ /* mobilav */
       l=3+(nlstate+ndeath)*cpt;          for(i=1; i<=nlstate;i++)
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);            prlim[i][i]=mobaverage[(int)age][i][ij];
       for (i=1; i< nlstate ; i ++) {        }
         l=3+(nlstate+ndeath)*cpt;      }
         fprintf(ficgp,"+$%d",l+i+1);               
       }      /* This for computing probability of death (h=1 means
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);            computed over hstepm (estepm) matrices product = hstepm*stepm months)
     }          as a weighted average of prlim.
   }        */
         for(j=nlstate+1;j<=nlstate+ndeath;j++){
   /* proba elementaires */        for(i=1,gmp[j]=0.;i<= nlstate; i++)
   for(i=1,jk=1; i <=nlstate; i++){          gmp[j] += prlim[i][i]*p3mat[i][j][1];
     for(k=1; k <=(nlstate+ndeath); k++){      }    
       if (k != i) {      /* end probability of death */
         for(j=1; j <=ncovmodel; j++){  
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
           jk++;       for(j=nlstate+1; j<=(nlstate+ndeath);j++){
           fprintf(ficgp,"\n");        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
         }        for(i=1; i<=nlstate;i++){
       }          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
     }        }
    }      }
       fprintf(ficresprobmorprev,"\n");
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/  
      for(jk=1; jk <=m; jk++) {      fprintf(ficresvij,"%.0f ",age );
        fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng);       for(i=1; i<=nlstate;i++)
        if (ng==2)        for(j=1; j<=nlstate;j++){
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
        else        }
          fprintf(ficgp,"\nset title \"Probability\"\n");      fprintf(ficresvij,"\n");
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);      free_matrix(gp,0,nhstepm,1,nlstate);
        i=1;      free_matrix(gm,0,nhstepm,1,nlstate);
        for(k2=1; k2<=nlstate; k2++) {      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
          k3=i;      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
          for(k=1; k<=(nlstate+ndeath); k++) {      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
            if (k != k2){    } /* End age */
              if(ng==2)    free_vector(gpp,nlstate+1,nlstate+ndeath);
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);    free_vector(gmp,nlstate+1,nlstate+ndeath);
              else    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
              ij=1;    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
              for(j=3; j <=ncovmodel; j++) {    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
                  ij++;  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
                }  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
                else    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
              }    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
              fprintf(ficgp,")/(1");    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
                  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
              for(k1=1; k1 <=nlstate; k1++){       /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);  */
                ij=1;  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
                for(j=3; j <=ncovmodel; j++){    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {  
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);    free_vector(xp,1,npar);
                    ij++;    free_matrix(doldm,1,nlstate,1,nlstate);
                  }    free_matrix(dnewm,1,nlstate,1,npar);
                  else    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
                }    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
                fprintf(ficgp,")");    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
              }    fclose(ficresprobmorprev);
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);    fflush(ficgp);
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");    fflush(fichtm);
              i=i+ncovmodel;  }  /* end varevsij */
            }  
          } /* end k */  /************ Variance of prevlim ******************/
        } /* end k2 */  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
      } /* end jk */  {
    } /* end ng */    /* Variance of prevalence limit */
    fclose(ficgp);     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
 }  /* end gnuplot */    double **newm;
     double **dnewm,**doldm;
     int i, j, nhstepm, hstepm;
 /*************** Moving average **************/    int k, cptcode;
 int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){    double *xp;
     double *gp, *gm;
   int i, cpt, cptcod;    double **gradg, **trgradg;
   int modcovmax =1;    double age,agelim;
   int mobilavrange, mob;    int theta;
   double age;   
     pstamp(ficresvpl);
   modcovmax=2*cptcoveff;/* Max number of modalities. We suppose     fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
                            a covariate has 2 modalities */    fprintf(ficresvpl,"# Age");
   if (cptcovn<1) modcovmax=1; /* At least 1 pass */    for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %1d-%1d",i,i);
   if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){    fprintf(ficresvpl,"\n");
     if(mobilav==1) mobilavrange=5; /* default */  
     else mobilavrange=mobilav;    xp=vector(1,npar);
     for (age=bage; age<=fage; age++)    dnewm=matrix(1,nlstate,1,npar);
       for (i=1; i<=nlstate;i++)    doldm=matrix(1,nlstate,1,nlstate);
         for (cptcod=1;cptcod<=modcovmax;cptcod++)   
           mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];    hstepm=1*YEARM; /* Every year of age */
     /* We keep the original values on the extreme ages bage, fage and for     hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */
        fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2    agelim = AGESUP;
        we use a 5 terms etc. until the borders are no more concerned.     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
     */       nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */
     for (mob=3;mob <=mobilavrange;mob=mob+2){      if (stepm >= YEARM) hstepm=1;
       for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
         for (i=1; i<=nlstate;i++){      gradg=matrix(1,npar,1,nlstate);
           for (cptcod=1;cptcod<=modcovmax;cptcod++){      gp=vector(1,nlstate);
             mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];      gm=vector(1,nlstate);
               for (cpt=1;cpt<=(mob-1)/2;cpt++){  
                 mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];      for(theta=1; theta <=npar; theta++){
                 mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];        for(i=1; i<=npar; i++){ /* Computes gradient */
               }          xp[i] = x[i] + (i==theta ?delti[theta]:0);
             mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;        }
           }        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         }        for(i=1;i<=nlstate;i++)
       }/* end age */          gp[i] = prlim[i][i];
     }/* end mob */     
   }else return -1;        for(i=1; i<=npar; i++) /* Computes gradient */
   return 0;          xp[i] = x[i] - (i==theta ?delti[theta]:0);
 }/* End movingaverage */        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
           gm[i] = prlim[i][i];
 /************** Forecasting ******************/  
 prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){        for(i=1;i<=nlstate;i++)
   /* proj1, year, month, day of starting projection           gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
      agemin, agemax range of age      } /* End theta */
      dateprev1 dateprev2 range of dates during which prevalence is computed  
      anproj2 year of en of projection (same day and month as proj1).      trgradg =matrix(1,nlstate,1,npar);
   */  
   int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;      for(j=1; j<=nlstate;j++)
   int *popage;        for(theta=1; theta <=npar; theta++)
   double agec; /* generic age */          trgradg[j][theta]=gradg[theta][j];
   double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;  
   double *popeffectif,*popcount;      for(i=1;i<=nlstate;i++)
   double ***p3mat;        varpl[i][(int)age] =0.;
   double ***mobaverage;      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
   char fileresf[FILENAMELENGTH];      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
       for(i=1;i<=nlstate;i++)
   agelim=AGESUP;        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   prevalence(ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);  
        fprintf(ficresvpl,"%.0f ",age );
   strcpy(fileresf,"f");       for(i=1; i<=nlstate;i++)
   strcat(fileresf,fileres);        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
   if((ficresf=fopen(fileresf,"w"))==NULL) {      fprintf(ficresvpl,"\n");
     printf("Problem with forecast resultfile: %s\n", fileresf);      free_vector(gp,1,nlstate);
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);      free_vector(gm,1,nlstate);
   }      free_matrix(gradg,1,npar,1,nlstate);
   printf("Computing forecasting: result on file '%s' \n", fileresf);      free_matrix(trgradg,1,nlstate,1,npar);
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);    } /* End age */
   
   if (cptcoveff==0) ncodemax[cptcoveff]=1;    free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,npar);
   if (mobilav!=0) {    free_matrix(dnewm,1,nlstate,1,nlstate);
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
     if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){  }
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);  
       printf(" Error in movingaverage mobilav=%d\n",mobilav);  /************ Variance of one-step probabilities  ******************/
     }  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
   }  {
     int i, j=0,  i1, k1, l1, t, tj;
   stepsize=(int) (stepm+YEARM-1)/YEARM;    int k2, l2, j1,  z1;
   if (stepm<=12) stepsize=1;    int k=0,l, cptcode;
   if(estepm < stepm){    int first=1, first1;
     printf ("Problem %d lower than %d\n",estepm, stepm);    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
   }    double **dnewm,**doldm;
   else  hstepm=estepm;       double *xp;
     double *gp, *gm;
   hstepm=hstepm/stepm;     double **gradg, **trgradg;
   yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and    double **mu;
                                fractional in yp1 */    double age,agelim, cov[NCOVMAX];
   anprojmean=yp;    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
   yp2=modf((yp1*12),&yp);    int theta;
   mprojmean=yp;    char fileresprob[FILENAMELENGTH];
   yp1=modf((yp2*30.5),&yp);    char fileresprobcov[FILENAMELENGTH];
   jprojmean=yp;    char fileresprobcor[FILENAMELENGTH];
   if(jprojmean==0) jprojmean=1;  
   if(mprojmean==0) jprojmean=1;    double ***varpij;
   
   i1=cptcoveff;    strcpy(fileresprob,"prob");
   if (cptcovn < 1){i1=1;}    strcat(fileresprob,fileres);
       if((ficresprob=fopen(fileresprob,"w"))==NULL) {
   fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2);       printf("Problem with resultfile: %s\n", fileresprob);
         fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
   fprintf(ficresf,"#****** Routine prevforecast **\n");    }
     strcpy(fileresprobcov,"probcov");
 /*            if (h==(int)(YEARM*yearp)){ */    strcat(fileresprobcov,fileres);
   for(cptcov=1, k=0;cptcov<=i1;cptcov++){    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){      printf("Problem with resultfile: %s\n", fileresprobcov);
       k=k+1;      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
       fprintf(ficresf,"\n#******");    }
       for(j=1;j<=cptcoveff;j++) {    strcpy(fileresprobcor,"probcor");
         fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    strcat(fileresprobcor,fileres);
       }    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
       fprintf(ficresf,"******\n");      printf("Problem with resultfile: %s\n", fileresprobcor);
       fprintf(ficresf,"# Covariate valuofcovar yearproj age");      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
       for(j=1; j<=nlstate+ndeath;j++){     }
         for(i=1; i<=nlstate;i++)                  printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
           fprintf(ficresf," p%d%d",i,j);    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
         fprintf(ficresf," p.%d",j);    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
       }    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
       for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) {     printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
         fprintf(ficresf,"\n");    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);       pstamp(ficresprob);
     fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
         for (agec=fage; agec>=(ageminpar-1); agec--){     fprintf(ficresprob,"# Age");
           nhstepm=(int) rint((agelim-agec)*YEARM/stepm);     pstamp(ficresprobcov);
           nhstepm = nhstepm/hstepm;     fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    fprintf(ficresprobcov,"# Age");
           oldm=oldms;savm=savms;    pstamp(ficresprobcor);
           hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);      fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
             fprintf(ficresprobcor,"# Age");
           for (h=0; h<=nhstepm; h++){  
             if (h*hstepm/YEARM*stepm ==yearp) {  
               fprintf(ficresf,"\n");    for(i=1; i<=nlstate;i++)
               for(j=1;j<=cptcoveff;j++)       for(j=1; j<=(nlstate+ndeath);j++){
                 fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
               fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);        fprintf(ficresprobcov," p%1d-%1d ",i,j);
             }         fprintf(ficresprobcor," p%1d-%1d ",i,j);
             for(j=1; j<=nlstate+ndeath;j++) {      }  
               ppij=0.;   /* fprintf(ficresprob,"\n");
               for(i=1; i<=nlstate;i++) {    fprintf(ficresprobcov,"\n");
                 if (mobilav==1)     fprintf(ficresprobcor,"\n");
                   ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];   */
                 else {   xp=vector(1,npar);
                   ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
                 }    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
                 if (h*hstepm/YEARM*stepm== yearp) {    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
                   fprintf(ficresf," %.3f", p3mat[i][j][h]);    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
                 }    first=1;
               } /* end i */    fprintf(ficgp,"\n# Routine varprob");
               if (h*hstepm/YEARM*stepm==yearp) {    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
                 fprintf(ficresf," %.3f", ppij);    fprintf(fichtm,"\n");
               }  
             }/* end j */    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
           } /* end h */    fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    file %s<br>\n",optionfilehtmcov);
         } /* end agec */    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
       } /* end yearp */  and drawn. It helps understanding how is the covariance between two incidences.\
     } /* end cptcod */   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
   } /* end  cptcov */    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
          It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
   standard deviations wide on each axis. <br>\
   fclose(ficresf);   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
 }   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
   To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
 /************** Forecasting *****not tested NB*************/  
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){    cov[1]=1;
       tj=cptcoveff;
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
   int *popage;    j1=0;
   double calagedatem, agelim, kk1, kk2;    for(t=1; t<=tj;t++){
   double *popeffectif,*popcount;      for(i1=1; i1<=ncodemax[t];i1++){
   double ***p3mat,***tabpop,***tabpopprev;        j1++;
   double ***mobaverage;        if  (cptcovn>0) {
   char filerespop[FILENAMELENGTH];          fprintf(ficresprob, "\n#********** Variable ");
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          fprintf(ficresprob, "**********\n#\n");
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          fprintf(ficresprobcov, "\n#********** Variable ");
   agelim=AGESUP;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;          fprintf(ficresprobcov, "**********\n#\n");
            
   prevalence(ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);          fprintf(ficgp, "\n#********** Variable ");
             for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
             fprintf(ficgp, "**********\n#\n");
   strcpy(filerespop,"pop");          
   strcat(filerespop,fileres);         
   if((ficrespop=fopen(filerespop,"w"))==NULL) {          fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable ");
     printf("Problem with forecast resultfile: %s\n", filerespop);          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);          fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
   }         
   printf("Computing forecasting: result on file '%s' \n", filerespop);          fprintf(ficresprobcor, "\n#********** Variable ");    
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcor, "**********\n#");    
   if (cptcoveff==0) ncodemax[cptcoveff]=1;        }
        
   if (mobilav!=0) {        for (age=bage; age<=fage; age ++){
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          cov[2]=age;
     if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){          for (k=1; k<=cptcovn;k++) {
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
       printf(" Error in movingaverage mobilav=%d\n",mobilav);          }
     }          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   }          for (k=1; k<=cptcovprod;k++)
             cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   stepsize=(int) (stepm+YEARM-1)/YEARM;         
   if (stepm<=12) stepsize=1;          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
             trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
   agelim=AGESUP;          gp=vector(1,(nlstate)*(nlstate+ndeath));
             gm=vector(1,(nlstate)*(nlstate+ndeath));
   hstepm=1;     
   hstepm=hstepm/stepm;           for(theta=1; theta <=npar; theta++){
               for(i=1; i<=npar; i++)
   if (popforecast==1) {              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
     if((ficpop=fopen(popfile,"r"))==NULL) {           
       printf("Problem with population file : %s\n",popfile);exit(0);            pmij(pmmij,cov,ncovmodel,xp,nlstate);
       fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);           
     }             k=0;
     popage=ivector(0,AGESUP);            for(i=1; i<= (nlstate); i++){
     popeffectif=vector(0,AGESUP);              for(j=1; j<=(nlstate+ndeath);j++){
     popcount=vector(0,AGESUP);                k=k+1;
                     gp[k]=pmmij[i][j];
     i=1;                 }
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;            }
               
     imx=i;            for(i=1; i<=npar; i++)
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
   }     
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
   for(cptcov=1,k=0;cptcov<=i2;cptcov++){            k=0;
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){            for(i=1; i<=(nlstate); i++){
       k=k+1;              for(j=1; j<=(nlstate+ndeath);j++){
       fprintf(ficrespop,"\n#******");                k=k+1;
       for(j=1;j<=cptcoveff;j++) {                gm[k]=pmmij[i][j];
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);              }
       }            }
       fprintf(ficrespop,"******\n");       
       fprintf(ficrespop,"# Age");            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
       if (popforecast==1)  fprintf(ficrespop," [Population]");          }
         
       for (cpt=0; cpt<=0;cpt++) {           for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);               for(theta=1; theta <=npar; theta++)
                       trgradg[j][theta]=gradg[theta][j];
         for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){          
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);           matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);
           nhstepm = nhstepm/hstepm;           matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
                     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
           oldm=oldms;savm=savms;          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);            free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
           
           for (h=0; h<=nhstepm; h++){          pmij(pmmij,cov,ncovmodel,x,nlstate);
             if (h==(int) (calagedatem+YEARM*cpt)) {         
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);          k=0;
             }           for(i=1; i<=(nlstate); i++){
             for(j=1; j<=nlstate+ndeath;j++) {            for(j=1; j<=(nlstate+ndeath);j++){
               kk1=0.;kk2=0;              k=k+1;
               for(i=1; i<=nlstate;i++) {                            mu[k][(int) age]=pmmij[i][j];
                 if (mobilav==1)             }
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];          }
                 else {          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
                 }              varpij[i][j][(int)age] = doldm[i][j];
               }  
               if (h==(int)(calagedatem+12*cpt)){          /*printf("\n%d ",(int)age);
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
                   /*fprintf(ficrespop," %.3f", kk1);            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
               }            }*/
             }  
             for(i=1; i<=nlstate;i++){          fprintf(ficresprob,"\n%d ",(int)age);
               kk1=0.;          fprintf(ficresprobcov,"\n%d ",(int)age);
                 for(j=1; j<=nlstate;j++){          fprintf(ficresprobcor,"\n%d ",(int)age);
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];   
                 }          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
             }          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
             if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++)             fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);          }
           }          i=0;
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          for (k=1; k<=(nlstate);k++){
         }            for (l=1; l<=(nlstate+ndeath);l++){
       }              i=i++;
                fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
   /******/              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
               for (j=1; j<=i;j++){
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {                 fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);                   fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
         for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){               }
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);             }
           nhstepm = nhstepm/hstepm;           }/* end of loop for state */
                   } /* end of loop for age */
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
           oldm=oldms;savm=savms;        /* Confidence intervalle of pij  */
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);          /*
           for (h=0; h<=nhstepm; h++){          fprintf(ficgp,"\nset noparametric;unset label");
             if (h==(int) (calagedatem+YEARM*cpt)) {          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
             }           fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
             for(j=1; j<=nlstate+ndeath;j++) {          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
               kk1=0.;kk2=0;          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
               for(i=1; i<=nlstate;i++) {                        fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];            */
               }  
               if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);                /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
             }        first1=1;
           }        for (k2=1; k2<=(nlstate);k2++){
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          for (l2=1; l2<=(nlstate+ndeath);l2++){
         }            if(l2==k2) continue;
       }            j=(k2-1)*(nlstate+ndeath)+l2;
    }             for (k1=1; k1<=(nlstate);k1++){
   }              for (l1=1; l1<=(nlstate+ndeath);l1++){
                  if(l1==k1) continue;
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);                i=(k1-1)*(nlstate+ndeath)+l1;
                 if(i<=j) continue;
   if (popforecast==1) {                for (age=bage; age<=fage; age ++){
     free_ivector(popage,0,AGESUP);                  if ((int)age %5==0){
     free_vector(popeffectif,0,AGESUP);                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
     free_vector(popcount,0,AGESUP);                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
   }                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);                    mu1=mu[i][(int) age]/stepm*YEARM ;
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);                    mu2=mu[j][(int) age]/stepm*YEARM;
   fclose(ficrespop);                    c12=cv12/sqrt(v1*v2);
 }                    /* Computing eigen value of matrix of covariance */
                     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
 /***********************************************/                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
 /**************** Main Program *****************/                    /* Eigen vectors */
 /***********************************************/                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                     /*v21=sqrt(1.-v11*v11); *//* error */
 int main(int argc, char *argv[])                    v21=(lc1-v1)/cv12*v11;
 {                    v12=-v21;
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);                    v22=v11;
   int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;                    tnalp=v21/v11;
   double agedeb, agefin,hf;                    if(first1==1){
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;                      first1=0;
                       printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
   double fret;                    }
   double **xi,tmp,delta;                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     /*printf(fignu*/
   double dum; /* Dummy variable */                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
   double ***p3mat;                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
   double ***mobaverage;                    if(first==1){
   int *indx;                      first=0;
   char line[MAXLINE], linepar[MAXLINE];                      fprintf(ficgp,"\nset parametric;unset label");
   char path[80],pathc[80],pathcd[80],pathtot[80],model[80];                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
   int firstobs=1, lastobs=10;                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
   int sdeb, sfin; /* Status at beginning and end */                      fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
   int c,  h , cpt,l;   :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   int ju,jl, mi;  %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab;                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
   int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */                      fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
   int mobilav=0,popforecast=0;                      fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
   int hstepm, nhstepm;                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
   double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
   double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
   double bage, fage, age, agelim, agebase;                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
   double ftolpl=FTOL;                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
   double **prlim;                    }else{
   double *severity;                      first=0;
   double ***param; /* Matrix of parameters */                      fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
   double  *p;                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
   double **matcov; /* Matrix of covariance */                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
   double ***delti3; /* Scale */                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
   double *delti; /* Scale */                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
   double ***eij, ***vareij;                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
   double **varpl; /* Variances of prevalence limits by age */                    }/* if first */
   double *epj, vepp;                  } /* age mod 5 */
   double kk1, kk2;                } /* end loop age */
   double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;                fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                 first=1;
   char *alph[]={"a","a","b","c","d","e"}, str[4];              } /*l12 */
             } /* k12 */
           } /*l1 */
   char z[1]="c", occ;        }/* k1 */
 #include <sys/time.h>      } /* loop covariates */
 #include <time.h>    }
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
      free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
   /* long total_usecs;    free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
      struct timeval start_time, end_time;    free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
       free_vector(xp,1,npar);
      gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */    fclose(ficresprob);
   getcwd(pathcd, size);    fclose(ficresprobcov);
     fclose(ficresprobcor);
   printf("\n%s\n%s",version,fullversion);    fflush(ficgp);
   if(argc <=1){    fflush(fichtmcov);
     printf("\nEnter the parameter file name: ");  }
     scanf("%s",pathtot);  
   }  
   else{  /******************* Printing html file ***********/
     strcpy(pathtot,argv[1]);  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
   }                    int lastpass, int stepm, int weightopt, char model[],\
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
   /*cygwin_split_path(pathtot,path,optionfile);                    int popforecast, int estepm ,\
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/                    double jprev1, double mprev1,double anprev1, \
   /* cutv(path,optionfile,pathtot,'\\');*/                    double jprev2, double mprev2,double anprev2){
     int jj1, k1, i1, cpt;
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);  
   printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);     fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
   chdir(path);     <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   replace(pathc,path);  </ul>");
      fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
   /*-------- arguments in the command line --------*/   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
   /* Log file */     fprintf(fichtm,"\
   strcat(filelog, optionfilefiname);   - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
   strcat(filelog,".log");    /* */             stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
   if((ficlog=fopen(filelog,"w"))==NULL)    {     fprintf(fichtm,"\
     printf("Problem with logfile %s\n",filelog);   - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
     goto end;             subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
   }     fprintf(fichtm,"\
   fprintf(ficlog,"Log filename:%s\n",filelog);   - (a) Life expectancies by health status at initial age, (b) health expectancies by health status at initial age:  ei., eij . If one or more covariate are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
   fprintf(ficlog,"\n%s",version);     <a href=\"%s\">%s</a> <br>\n",
   fprintf(ficlog,"\nEnter the parameter file name: ");             estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
   fprintf(ficlog,"pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);     fprintf(fichtm,"\
   fflush(ficlog);   - Population projections by age and states: \
      <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
   /* */  
   strcpy(fileres,"r");  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   strcat(fileres, optionfilefiname);  
   strcat(fileres,".txt");    /* Other files have txt extension */   m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   /*---------arguments file --------*/  
    jj1=0;
   if((ficpar=fopen(optionfile,"r"))==NULL)    {   for(k1=1; k1<=m;k1++){
     printf("Problem with optionfile %s\n",optionfile);     for(i1=1; i1<=ncodemax[k1];i1++){
     fprintf(ficlog,"Problem with optionfile %s\n",optionfile);       jj1++;
     goto end;       if (cptcovn > 0) {
   }         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++)
   strcpy(filereso,"o");           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
   strcat(filereso,fileres);         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
   if((ficparo=fopen(filereso,"w"))==NULL) {       }
     printf("Problem with Output resultfile: %s\n", filereso);       /* Pij */
     fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d1.png\">%s%d1.png</a><br> \
     goto end;  <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);    
   }       /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
   /* Reads comments: lines beginning with '#' */   before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d2.png\">%s%d2.png</a><br> \
   while((c=getc(ficpar))=='#' && c!= EOF){  <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);
     ungetc(c,ficpar);         /* Period (stable) prevalence in each health state */
     fgets(line, MAXLINE, ficpar);         for(cpt=1; cpt<nlstate;cpt++){
     puts(line);           fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d%d.png\">%s%d%d.png</a><br> \
     fputs(line,ficparo);  <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
   }         }
   ungetc(c,ficpar);       for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);       }
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);     } /* end i1 */
   while((c=getc(ficpar))=='#' && c!= EOF){   }/* End k1 */
     ungetc(c,ficpar);   fprintf(fichtm,"</ul>");
     fgets(line, MAXLINE, ficpar);  
     puts(line);  
     fputs(line,ficparo);   fprintf(fichtm,"\
   }  \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
   ungetc(c,ficpar);   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
     
       fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
   covar=matrix(0,NCOVMAX,1,n);            subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
   cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/   fprintf(fichtm,"\
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;   - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */  
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */   fprintf(fichtm,"\
      - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
   /* Read guess parameters */           subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
   /* Reads comments: lines beginning with '#' */   fprintf(fichtm,"\
   while((c=getc(ficpar))=='#' && c!= EOF){   - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
     ungetc(c,ficpar);     <a href=\"%s\">%s</a> <br>\n</li>",
     fgets(line, MAXLINE, ficpar);             estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
     puts(line);   fprintf(fichtm,"\
     fputs(line,ficparo);   - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
   }     <a href=\"%s\">%s</a> <br>\n</li>",
   ungetc(c,ficpar);             estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
      fprintf(fichtm,"\
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);   - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), eij are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences (i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
   for(i=1; i <=nlstate; i++)           estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
     for(j=1; j <=nlstate+ndeath-1; j++){   fprintf(fichtm,"\
       fscanf(ficpar,"%1d%1d",&i1,&j1);   - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors: <a href=\"%s\">%s</a> <br>\n",
       fprintf(ficparo,"%1d%1d",i1,j1);           subdirf2(fileres,"t"),subdirf2(fileres,"t"));
       if(mle==1)   fprintf(fichtm,"\
         printf("%1d%1d",i,j);   - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
       fprintf(ficlog,"%1d%1d",i,j);           subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
       for(k=1; k<=ncovmodel;k++){  
         fscanf(ficpar," %lf",&param[i][j][k]);  /*  if(popforecast==1) fprintf(fichtm,"\n */
         if(mle==1){  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
           printf(" %lf",param[i][j][k]);  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
           fprintf(ficlog," %lf",param[i][j][k]);  /*      <br>",fileres,fileres,fileres,fileres); */
         }  /*  else  */
         else  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
           fprintf(ficlog," %lf",param[i][j][k]);   fflush(fichtm);
         fprintf(ficparo," %lf",param[i][j][k]);   fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
       }  
       fscanf(ficpar,"\n");   m=cptcoveff;
       if(mle==1)   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
         printf("\n");  
       fprintf(ficlog,"\n");   jj1=0;
       fprintf(ficparo,"\n");   for(k1=1; k1<=m;k1++){
     }     for(i1=1; i1<=ncodemax[k1];i1++){
          jj1++;
   npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/       if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
   p=param[1][1];         for (cpt=1; cpt<=cptcoveff;cpt++)
              fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
   /* Reads comments: lines beginning with '#' */         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
   while((c=getc(ficpar))=='#' && c!= EOF){       }
     ungetc(c,ficpar);       for(cpt=1; cpt<=nlstate;cpt++) {
     fgets(line, MAXLINE, ficpar);         fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
     puts(line);  prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
     fputs(line,ficparo);  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
   }       }
   ungetc(c,ficpar);       fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2): %s%d.png<br>\
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);  <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
   /* delti=vector(1,npar); *//* Scale of each paramater (output from hesscov) */     } /* end i1 */
   for(i=1; i <=nlstate; i++){   }/* End k1 */
     for(j=1; j <=nlstate+ndeath-1; j++){   fprintf(fichtm,"</ul>");
       fscanf(ficpar,"%1d%1d",&i1,&j1);   fflush(fichtm);
       printf("%1d%1d",i,j);  }
       fprintf(ficparo,"%1d%1d",i1,j1);  
       for(k=1; k<=ncovmodel;k++){  /******************* Gnuplot file **************/
         fscanf(ficpar,"%le",&delti3[i][j][k]);  void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
         printf(" %le",delti3[i][j][k]);  
         fprintf(ficparo," %le",delti3[i][j][k]);    char dirfileres[132],optfileres[132];
       }    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
       fscanf(ficpar,"\n");    int ng;
       printf("\n");  /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
       fprintf(ficparo,"\n");  /*     printf("Problem with file %s",optionfilegnuplot); */
     }  /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   }  /*   } */
   delti=delti3[1][1];  
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
   /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */      /*#endif */
       m=pow(2,cptcoveff);
   /* Reads comments: lines beginning with '#' */  
   while((c=getc(ficpar))=='#' && c!= EOF){    strcpy(dirfileres,optionfilefiname);
     ungetc(c,ficpar);    strcpy(optfileres,"vpl");
     fgets(line, MAXLINE, ficpar);   /* 1eme*/
     puts(line);    for (cpt=1; cpt<= nlstate ; cpt ++) {
     fputs(line,ficparo);     for (k1=1; k1<= m ; k1 ++) {
   }       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
   ungetc(c,ficpar);       fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
          fprintf(ficgp,"set xlabel \"Age\" \n\
   matcov=matrix(1,npar,1,npar);  set ylabel \"Probability\" \n\
   for(i=1; i <=npar; i++){  set ter png small\n\
     fscanf(ficpar,"%s",&str);  set size 0.65,0.65\n\
     if(mle==1)  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
       printf("%s",str);  
     fprintf(ficlog,"%s",str);       for (i=1; i<= nlstate ; i ++) {
     fprintf(ficparo,"%s",str);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
     for(j=1; j <=i; j++){         else fprintf(ficgp," \%%*lf (\%%*lf)");
       fscanf(ficpar," %le",&matcov[i][j]);       }
       if(mle==1){       fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
         printf(" %.5le",matcov[i][j]);       for (i=1; i<= nlstate ; i ++) {
         fprintf(ficlog," %.5le",matcov[i][j]);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
       }         else fprintf(ficgp," \%%*lf (\%%*lf)");
       else       }
         fprintf(ficlog," %.5le",matcov[i][j]);       fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
       fprintf(ficparo," %.5le",matcov[i][j]);       for (i=1; i<= nlstate ; i ++) {
     }         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
     fscanf(ficpar,"\n");         else fprintf(ficgp," \%%*lf (\%%*lf)");
     if(mle==1)       }  
       printf("\n");       fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
     fprintf(ficlog,"\n");     }
     fprintf(ficparo,"\n");    }
   }    /*2 eme*/
   for(i=1; i <=npar; i++)   
     for(j=i+1;j<=npar;j++)    for (k1=1; k1<= m ; k1 ++) {
       matcov[i][j]=matcov[j][i];      fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
          fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
   if(mle==1)     
     printf("\n");      for (i=1; i<= nlstate+1 ; i ++) {
   fprintf(ficlog,"\n");        k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
   /*-------- Rewriting paramater file ----------*/          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
   strcpy(rfileres,"r");    /* "Rparameterfile */          else fprintf(ficgp," \%%*lf (\%%*lf)");
   strcat(rfileres,optionfilefiname);    /* Parameter file first name*/        }  
   strcat(rfileres,".");    /* */        if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
   strcat(rfileres,optionfilext);    /* Other files have txt extension */        else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
   if((ficres =fopen(rfileres,"w"))==NULL) {        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
     printf("Problem writing new parameter file: %s\n", fileres);goto end;        for (j=1; j<= nlstate+1 ; j ++) {
     fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
   }          else fprintf(ficgp," \%%*lf (\%%*lf)");
   fprintf(ficres,"#%s\n",version);        }  
             fprintf(ficgp,"\" t\"\" w l 0,");
   /*-------- data file ----------*/        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
   if((fic=fopen(datafile,"r"))==NULL)    {        for (j=1; j<= nlstate+1 ; j ++) {
     printf("Problem with datafile: %s\n", datafile);goto end;          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
     fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;          else fprintf(ficgp," \%%*lf (\%%*lf)");
   }        }  
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
   n= lastobs;        else fprintf(ficgp,"\" t\"\" w l 0,");
   severity = vector(1,maxwav);      }
   outcome=imatrix(1,maxwav+1,1,n);    }
   num=ivector(1,n);   
   moisnais=vector(1,n);    /*3eme*/
   annais=vector(1,n);   
   moisdc=vector(1,n);    for (k1=1; k1<= m ; k1 ++) {
   andc=vector(1,n);      for (cpt=1; cpt<= nlstate ; cpt ++) {
   agedc=vector(1,n);        /*       k=2+nlstate*(2*cpt-2); */
   cod=ivector(1,n);        k=2+(nlstate+1)*(cpt-1);
   weight=vector(1,n);        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
   for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */        fprintf(ficgp,"set ter png small\n\
   mint=matrix(1,maxwav,1,n);  set size 0.65,0.65\n\
   anint=matrix(1,maxwav,1,n);  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
   s=imatrix(1,maxwav+1,1,n);        /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
   tab=ivector(1,NCOVMAX);          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
   ncodemax=ivector(1,8);          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
   i=1;          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
   while (fgets(line, MAXLINE, fic) != NULL)    {          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
     if ((i >= firstobs) && (i <=lastobs)) {         
                 */
       for (j=maxwav;j>=1;j--){        for (i=1; i< nlstate ; i ++) {
         cutv(stra, strb,line,' '); s[j][i]=atoi(strb);           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
         strcpy(line,stra);          /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
         cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);         
         cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);        }
       }        fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
               }
       cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);    }
       cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);   
     /* CV preval stable (period) */
       cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);    for (k1=1; k1<= m ; k1 ++) {
       cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);      for (cpt=1; cpt<=nlstate ; cpt ++) {
         k=3;
       cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
       for (j=ncovcol;j>=1;j--){        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
         cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);  set ter png small\nset size 0.65,0.65\n\
       }   unset log y\n\
       num[i]=atol(stra);  plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
                
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){        for (i=1; i< nlstate ; i ++)
         printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/          fprintf(ficgp,"+$%d",k+i+1);
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
       i=i+1;       
     }        l=3+(nlstate+ndeath)*cpt;
   }        fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
   /* printf("ii=%d", ij);        for (i=1; i< nlstate ; i ++) {
      scanf("%d",i);*/          l=3+(nlstate+ndeath)*cpt;
   imx=i-1; /* Number of individuals */          fprintf(ficgp,"+$%d",l+i+1);
         }
   /* for (i=1; i<=imx; i++){        fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);  
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;      }
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;    }  
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;   
     }*/    /* proba elementaires */
    /*  for (i=1; i<=imx; i++){    for(i=1,jk=1; i <=nlstate; i++){
      if (s[4][i]==9)  s[4][i]=-1;       for(k=1; k <=(nlstate+ndeath); k++){
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/        if (k != i) {
             for(j=1; j <=ncovmodel; j++){
  for (i=1; i<=imx; i++)            fprintf(ficgp,"p%d=%f ",jk,p[jk]);
              jk++;
    /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;            fprintf(ficgp,"\n");
      else weight[i]=1;*/          }
         }
   /* Calculation of the number of parameter from char model*/      }
   Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */     }
   Tprod=ivector(1,15);   
   Tvaraff=ivector(1,15);      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
   Tvard=imatrix(1,15,1,2);       for(jk=1; jk <=m; jk++) {
   Tage=ivector(1,15);               fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng);
             if (ng==2)
   if (strlen(model) >1){ /* If there is at least 1 covariate */           fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
     j=0, j1=0, k1=1, k2=1;         else
     j=nbocc(model,'+'); /* j=Number of '+' */           fprintf(ficgp,"\nset title \"Probability\"\n");
     j1=nbocc(model,'*'); /* j1=Number of '*' */         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
     cptcovn=j+1;          i=1;
     cptcovprod=j1; /*Number of products */         for(k2=1; k2<=nlstate; k2++) {
                k3=i;
     strcpy(modelsav,model);            for(k=1; k<=(nlstate+ndeath); k++) {
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){             if (k != k2){
       printf("Error. Non available option model=%s ",model);               if(ng==2)
       fprintf(ficlog,"Error. Non available option model=%s ",model);                 fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
       goto end;               else
     }                 fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                    ij=1;
     /* This loop fills the array Tvar from the string 'model'.*/               for(j=3; j <=ncovmodel; j++) {
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
     for(i=(j+1); i>=1;i--){                   fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
       cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */                    ij++;
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */                 }
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/                 else
       /*scanf("%d",i);*/                   fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
       if (strchr(strb,'*')) {  /* Model includes a product */               }
         cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/               fprintf(ficgp,")/(1");
         if (strcmp(strc,"age")==0) { /* Vn*age */               
           cptcovprod--;               for(k1=1; k1 <=nlstate; k1++){  
           cutv(strb,stre,strd,'V');                 fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
           Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/                 ij=1;
           cptcovage++;                 for(j=3; j <=ncovmodel; j++){
             Tage[cptcovage]=i;                   if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
             /*printf("stre=%s ", stre);*/                     fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
         }                     ij++;
         else if (strcmp(strd,"age")==0) { /* or age*Vn */                   }
           cptcovprod--;                   else
           cutv(strb,stre,strc,'V');                     fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
           Tvar[i]=atoi(stre);                 }
           cptcovage++;                 fprintf(ficgp,")");
           Tage[cptcovage]=i;               }
         }               fprintf(ficgp,") t \"p%d%d\" ", k2,k);
         else {  /* Age is not in the model */               if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
           cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/               i=i+ncovmodel;
           Tvar[i]=ncovcol+k1;             }
           cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */           } /* end k */
           Tprod[k1]=i;         } /* end k2 */
           Tvard[k1][1]=atoi(strc); /* m*/       } /* end jk */
           Tvard[k1][2]=atoi(stre); /* n */     } /* end ng */
           Tvar[cptcovn+k2]=Tvard[k1][1];     fflush(ficgp);
           Tvar[cptcovn+k2+1]=Tvard[k1][2];   }  /* end gnuplot */
           for (k=1; k<=lastobs;k++)   
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];  
           k1++;  /*************** Moving average **************/
           k2=k2+2;  int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
         }  
       }    int i, cpt, cptcod;
       else { /* no more sum */    int modcovmax =1;
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/    int mobilavrange, mob;
        /*  scanf("%d",i);*/    double age;
       cutv(strd,strc,strb,'V');  
       Tvar[i]=atoi(strc);    modcovmax=2*cptcoveff;/* Max number of modalities. We suppose
       }                             a covariate has 2 modalities */
       strcpy(modelsav,stra);      if (cptcovn<1) modcovmax=1; /* At least 1 pass */
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);  
         scanf("%d",i);*/    if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
     } /* end of loop + */      if(mobilav==1) mobilavrange=5; /* default */
   } /* end model */      else mobilavrange=mobilav;
         for (age=bage; age<=fage; age++)
   /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.        for (i=1; i<=nlstate;i++)
     If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/          for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);      /* We keep the original values on the extreme ages bage, fage and for
   printf("cptcovprod=%d ", cptcovprod);         fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
   fprintf(ficlog,"cptcovprod=%d ", cptcovprod);         we use a 5 terms etc. until the borders are no more concerned.
       */
   scanf("%d ",i);      for (mob=3;mob <=mobilavrange;mob=mob+2){
   fclose(fic);*/        for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
     /*  if(mle==1){*/            for (cptcod=1;cptcod<=modcovmax;cptcod++){
   if (weightopt != 1) { /* Maximisation without weights*/              mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
     for(i=1;i<=n;i++) weight[i]=1.0;                for (cpt=1;cpt<=(mob-1)/2;cpt++){
   }                  mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
     /*-calculation of age at interview from date of interview and age at death -*/                  mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
   agev=matrix(1,maxwav,1,imx);                }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
   for (i=1; i<=imx; i++) {            }
     for(m=2; (m<= maxwav); m++) {          }
       if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){        }/* end age */
         anint[m][i]=9999;      }/* end mob */
         s[m][i]=-1;    }else return -1;
       }    return 0;
       if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){  }/* End movingaverage */
         printf("Error! Date of death (month %2d and year %4d) of individual %d on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);  
         fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %d on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);  
         s[m][i]=-1;  /************** Forecasting ******************/
       }  prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
       if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){    /* proj1, year, month, day of starting projection
         printf("Error! Month of death of individual %d on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]);        agemin, agemax range of age
         fprintf(ficlog,"Error! Month of death of individual %d on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]);        dateprev1 dateprev2 range of dates during which prevalence is computed
         s[m][i]=-1;       anproj2 year of en of projection (same day and month as proj1).
       }    */
     }    int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
   }    int *popage;
     double agec; /* generic age */
   for (i=1; i<=imx; i++)  {    double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);    double *popeffectif,*popcount;
     for(m=firstpass; (m<= lastpass); m++){    double ***p3mat;
       if(s[m][i] >0){    double ***mobaverage;
         if (s[m][i] >= nlstate+1) {    char fileresf[FILENAMELENGTH];
           if(agedc[i]>0)  
             if((int)moisdc[i]!=99 && (int)andc[i]!=9999)    agelim=AGESUP;
               agev[m][i]=agedc[i];    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
           /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/   
             else {    strcpy(fileresf,"f");
               if ((int)andc[i]!=9999){    strcat(fileresf,fileres);
                 printf("Warning negative age at death: %d line:%d\n",num[i],i);    if((ficresf=fopen(fileresf,"w"))==NULL) {
                 fprintf(ficlog,"Warning negative age at death: %d line:%d\n",num[i],i);      printf("Problem with forecast resultfile: %s\n", fileresf);
                 agev[m][i]=-1;      fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
               }    }
             }    printf("Computing forecasting: result on file '%s' \n", fileresf);
         }    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
         else if(s[m][i] !=9){ /* Standard case, age in fractional  
                                  years but with the precision of a    if (cptcoveff==0) ncodemax[cptcoveff]=1;
                                  month */  
           agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);    if (mobilav!=0) {
           if((int)mint[m][i]==99 || (int)anint[m][i]==9999)      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
             agev[m][i]=1;      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
           else if(agev[m][i] <agemin){         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
             agemin=agev[m][i];        printf(" Error in movingaverage mobilav=%d\n",mobilav);
             /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/      }
           }    }
           else if(agev[m][i] >agemax){  
             agemax=agev[m][i];    stepsize=(int) (stepm+YEARM-1)/YEARM;
             /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/    if (stepm<=12) stepsize=1;
           }    if(estepm < stepm){
           /*agev[m][i]=anint[m][i]-annais[i];*/      printf ("Problem %d lower than %d\n",estepm, stepm);
           /*     agev[m][i] = age[i]+2*m;*/    }
         }    else  hstepm=estepm;  
         else { /* =9 */  
           agev[m][i]=1;    hstepm=hstepm/stepm;
           s[m][i]=-1;    yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
         }                                 fractional in yp1 */
       }    anprojmean=yp;
       else /*= 0 Unknown */    yp2=modf((yp1*12),&yp);
         agev[m][i]=1;    mprojmean=yp;
     }    yp1=modf((yp2*30.5),&yp);
         jprojmean=yp;
   }    if(jprojmean==0) jprojmean=1;
   for (i=1; i<=imx; i++)  {    if(mprojmean==0) jprojmean=1;
     for(m=firstpass; (m<=lastpass); m++){  
       if (s[m][i] > (nlstate+ndeath)) {    i1=cptcoveff;
         printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);         if (cptcovn < 1){i1=1;}
         fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);        
         goto end;    fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2);
       }   
     }    fprintf(ficresf,"#****** Routine prevforecast **\n");
   }  
   /*            if (h==(int)(YEARM*yearp)){ */
   /*for (i=1; i<=imx; i++){    for(cptcov=1, k=0;cptcov<=i1;cptcov++){
   for (m=firstpass; (m<lastpass); m++){      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
      printf("%d %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);        k=k+1;
 }        fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
 }*/          fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
   printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);        fprintf(ficresf,"******\n");
   fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){
   free_vector(severity,1,maxwav);          for(i=1; i<=nlstate;i++)              
   free_imatrix(outcome,1,maxwav+1,1,n);            fprintf(ficresf," p%d%d",i,j);
   free_vector(moisnais,1,n);          fprintf(ficresf," p.%d",j);
   free_vector(annais,1,n);        }
   /* free_matrix(mint,1,maxwav,1,n);        for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) {
      free_matrix(anint,1,maxwav,1,n);*/          fprintf(ficresf,"\n");
   free_vector(moisdc,1,n);          fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);  
   free_vector(andc,1,n);  
           for (agec=fage; agec>=(ageminpar-1); agec--){
                nhstepm=(int) rint((agelim-agec)*YEARM/stepm);
   wav=ivector(1,imx);            nhstepm = nhstepm/hstepm;
   dh=imatrix(1,lastpass-firstpass+1,1,imx);            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   bh=imatrix(1,lastpass-firstpass+1,1,imx);            oldm=oldms;savm=savms;
   mw=imatrix(1,lastpass-firstpass+1,1,imx);            hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
             
   /* Concatenates waves */            for (h=0; h<=nhstepm; h++){
   concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);              if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
   /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */                for(j=1;j<=cptcoveff;j++)
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
   Tcode=ivector(1,100);                fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
   nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);               }
   ncodemax[1]=1;              for(j=1; j<=nlstate+ndeath;j++) {
   if (cptcovn > 0) tricode(Tvar,nbcode,imx);                ppij=0.;
                       for(i=1; i<=nlstate;i++) {
   codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of                   if (mobilav==1)
                                  the estimations*/                    ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
   h=0;                  else {
   m=pow(2,cptcoveff);                    ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                    }
   for(k=1;k<=cptcoveff; k++){                  if (h*hstepm/YEARM*stepm== yearp) {
     for(i=1; i <=(m/pow(2,k));i++){                    fprintf(ficresf," %.3f", p3mat[i][j][h]);
       for(j=1; j <= ncodemax[k]; j++){                  }
         for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){                } /* end i */
           h++;                if (h*hstepm/YEARM*stepm==yearp) {
           if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;                  fprintf(ficresf," %.3f", ppij);
           /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/                }
         }               }/* end j */
       }            } /* end h */
     }            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   }           } /* end agec */
   /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);         } /* end yearp */
      codtab[1][2]=1;codtab[2][2]=2; */      } /* end cptcod */
   /* for(i=1; i <=m ;i++){     } /* end  cptcov */
      for(k=1; k <=cptcovn; k++){         
      printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
      }  
      printf("\n");    fclose(ficresf);
      }  }
      scanf("%d",i);*/  
       /************** Forecasting *****not tested NB*************/
   /* Calculates basic frequencies. Computes observed prevalence at single age  populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
      and prints on file fileres'p'. */   
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    int *popage;
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    double calagedatem, agelim, kk1, kk2;
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    double *popeffectif,*popcount;
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    double ***p3mat,***tabpop,***tabpopprev;
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    double ***mobaverage;
         char filerespop[FILENAMELENGTH];
      
   /* For Powell, parameters are in a vector p[] starting at p[1]    tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
      so we point p on param[1][1] so that p[1] maps on param[1][1][1] */    tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   p=param[1][1]; /* *(*(*(param +1)+1)+0) */    agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
   if(mle>=1){ /* Could be 1 or 2 */   
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
   }   
        
   /*--------- results files --------------*/    strcpy(filerespop,"pop");
   fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);    strcat(filerespop,fileres);
       if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
   jk=1;      fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
   fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    }
   printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    printf("Computing forecasting: result on file '%s' \n", filerespop);
   fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   for(i=1,jk=1; i <=nlstate; i++){  
     for(k=1; k <=(nlstate+ndeath); k++){    if (cptcoveff==0) ncodemax[cptcoveff]=1;
       if (k != i)   
         {    if (mobilav!=0) {
           printf("%d%d ",i,k);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
           fprintf(ficlog,"%d%d ",i,k);      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
           fprintf(ficres,"%1d%1d ",i,k);        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           for(j=1; j <=ncovmodel; j++){        printf(" Error in movingaverage mobilav=%d\n",mobilav);
             printf("%f ",p[jk]);      }
             fprintf(ficlog,"%f ",p[jk]);    }
             fprintf(ficres,"%f ",p[jk]);  
             jk++;     stepsize=(int) (stepm+YEARM-1)/YEARM;
           }    if (stepm<=12) stepsize=1;
           printf("\n");   
           fprintf(ficlog,"\n");    agelim=AGESUP;
           fprintf(ficres,"\n");   
         }    hstepm=1;
     }    hstepm=hstepm/stepm;
   }   
   if(mle==1){    if (popforecast==1) {
     /* Computing hessian and covariance matrix */      if((ficpop=fopen(popfile,"r"))==NULL) {
     ftolhess=ftol; /* Usually correct */        printf("Problem with population file : %s\n",popfile);exit(0);
     hesscov(matcov, p, npar, delti, ftolhess, func);        fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
   }      }
   fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");      popage=ivector(0,AGESUP);
   printf("# Scales (for hessian or gradient estimation)\n");      popeffectif=vector(0,AGESUP);
   fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");      popcount=vector(0,AGESUP);
   for(i=1,jk=1; i <=nlstate; i++){     
     for(j=1; j <=nlstate+ndeath; j++){      i=1;  
       if (j!=i) {      while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
         fprintf(ficres,"%1d%1d",i,j);     
         printf("%1d%1d",i,j);      imx=i;
         fprintf(ficlog,"%1d%1d",i,j);      for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
         for(k=1; k<=ncovmodel;k++){    }
           printf(" %.5e",delti[jk]);  
           fprintf(ficlog," %.5e",delti[jk]);    for(cptcov=1,k=0;cptcov<=i2;cptcov++){
           fprintf(ficres," %.5e",delti[jk]);     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
           jk++;        k=k+1;
         }        fprintf(ficrespop,"\n#******");
         printf("\n");        for(j=1;j<=cptcoveff;j++) {
         fprintf(ficlog,"\n");          fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficres,"\n");        }
       }        fprintf(ficrespop,"******\n");
     }        fprintf(ficrespop,"# Age");
   }        for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
            if (popforecast==1)  fprintf(ficrespop," [Population]");
   fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");       
   if(mle==1)        for (cpt=0; cpt<=0;cpt++) {
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);  
   fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");         
   for(i=1,k=1;i<=npar;i++){          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){
     /*  if (k>nlstate) k=1;            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);
         i1=(i-1)/(ncovmodel*nlstate)+1;             nhstepm = nhstepm/hstepm;
         fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);           
         printf("%s%d%d",alph[k],i1,tab[i]);            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     */            oldm=oldms;savm=savms;
     fprintf(ficres,"%3d",i);            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
     if(mle==1)         
       printf("%3d",i);            for (h=0; h<=nhstepm; h++){
     fprintf(ficlog,"%3d",i);              if (h==(int) (calagedatem+YEARM*cpt)) {
     for(j=1; j<=i;j++){                fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
       fprintf(ficres," %.5e",matcov[i][j]);              }
       if(mle==1)              for(j=1; j<=nlstate+ndeath;j++) {
         printf(" %.5e",matcov[i][j]);                kk1=0.;kk2=0;
       fprintf(ficlog," %.5e",matcov[i][j]);                for(i=1; i<=nlstate;i++) {              
     }                  if (mobilav==1)
     fprintf(ficres,"\n");                    kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
     if(mle==1)                  else {
       printf("\n");                    kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
     fprintf(ficlog,"\n");                  }
     k++;                }
   }                if (h==(int)(calagedatem+12*cpt)){
                      tabpop[(int)(agedeb)][j][cptcod]=kk1;
   while((c=getc(ficpar))=='#' && c!= EOF){                    /*fprintf(ficrespop," %.3f", kk1);
     ungetc(c,ficpar);                      if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
     fgets(line, MAXLINE, ficpar);                }
     puts(line);              }
     fputs(line,ficparo);              for(i=1; i<=nlstate;i++){
   }                kk1=0.;
   ungetc(c,ficpar);                  for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];
   estepm=0;                  }
   fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);                    tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
   if (estepm==0 || estepm < stepm) estepm=stepm;              }
   if (fage <= 2) {  
     bage = ageminpar;              if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++)
     fage = agemaxpar;                fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
   }            }
                free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");          }
   fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);        }
   fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);   
        /******/
   while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);        for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {
     fgets(line, MAXLINE, ficpar);          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);  
     puts(line);          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){
     fputs(line,ficparo);            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);
   }            nhstepm = nhstepm/hstepm;
   ungetc(c,ficpar);           
               p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);            oldm=oldms;savm=savms;
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
   fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);            for (h=0; h<=nhstepm; h++){
   printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);              if (h==(int) (calagedatem+YEARM*cpt)) {
   fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);                fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
                  }
   while((c=getc(ficpar))=='#' && c!= EOF){              for(j=1; j<=nlstate+ndeath;j++) {
     ungetc(c,ficpar);                kk1=0.;kk2=0;
     fgets(line, MAXLINE, ficpar);                for(i=1; i<=nlstate;i++) {              
     puts(line);                  kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
     fputs(line,ficparo);                }
   }                if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
   ungetc(c,ficpar);              }
              }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;          }
   dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;        }
      }
   fscanf(ficpar,"pop_based=%d\n",&popbased);    }
   fprintf(ficparo,"pop_based=%d\n",popbased);      
   fprintf(ficres,"pop_based=%d\n",popbased);       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     
   while((c=getc(ficpar))=='#' && c!= EOF){    if (popforecast==1) {
     ungetc(c,ficpar);      free_ivector(popage,0,AGESUP);
     fgets(line, MAXLINE, ficpar);      free_vector(popeffectif,0,AGESUP);
     puts(line);      free_vector(popcount,0,AGESUP);
     fputs(line,ficparo);    }
   }    free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   ungetc(c,ficpar);    free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);  } /* End of popforecast */
   fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);  
   printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);  int fileappend(FILE *fichier, char *optionfich)
   fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);  {
   fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);    if((fichier=fopen(optionfich,"a"))==NULL) {
   /* day and month of proj2 are not used but only year anproj2.*/      printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
   while((c=getc(ficpar))=='#' && c!= EOF){      return (0);
     ungetc(c,ficpar);    }
     fgets(line, MAXLINE, ficpar);    fflush(fichier);
     puts(line);    return (1);
     fputs(line,ficparo);  }
   }  
   ungetc(c,ficpar);  
   /**************** function prwizard **********************/
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);  void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);  {
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);  
     /* Wizard to print covariance matrix template */
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);  
   freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
   /*------------ gnuplot -------------*/    int numlinepar;
   strcpy(optionfilegnuplot,optionfilefiname);  
   strcat(optionfilegnuplot,".gp");    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {    fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     printf("Problem with file %s",optionfilegnuplot);    for(i=1; i <=nlstate; i++){
   }      jj=0;
   else{      for(j=1; j <=nlstate+ndeath; j++){
     fprintf(ficgp,"\n# %s\n", version);         if(j==i) continue;
     fprintf(ficgp,"# %s\n", optionfilegnuplot);         jj++;
     fprintf(ficgp,"set missing 'NaNq'\n");        /*ca[0]= k+'a'-1;ca[1]='\0';*/
   }        printf("%1d%1d",i,j);
   fclose(ficgp);        fprintf(ficparo,"%1d%1d",i,j);
   printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);        for(k=1; k<=ncovmodel;k++){
   /*--------- index.htm --------*/          /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
   strcpy(optionfilehtm,optionfile);          printf(" 0.");
   strcat(optionfilehtm,".htm");          fprintf(ficparo," 0.");
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {        }
     printf("Problem with %s \n",optionfilehtm), exit(0);        printf("\n");
   }        fprintf(ficparo,"\n");
       }
   fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n    }
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n    printf("# Scales (for hessian or gradient estimation)\n");
 \n    fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
 Total number of observations=%d <br>\n    npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
 Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n    for(i=1; i <=nlstate; i++){
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n      jj=0;
 <hr  size=\"2\" color=\"#EC5E5E\">      for(j=1; j <=nlstate+ndeath; j++){
  <ul><li><h4>Parameter files</h4>\n        if(j==i) continue;
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n        jj++;
  - Log file of the run: <a href=\"%s\">%s</a><br>\n        fprintf(ficparo,"%1d%1d",i,j);
  - Gnuplot file name: <a href=\"%s\">%s</a></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,agemin,agemax,jmin,jmax,jmean,fileres,fileres,filelog,filelog,optionfilegnuplot,optionfilegnuplot);        printf("%1d%1d",i,j);
    fclose(fichtm);        fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
   printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);          /*      printf(" %le",delti3[i][j][k]); */
            /*      fprintf(ficparo," %le",delti3[i][j][k]); */
   /*------------ free_vector  -------------*/          printf(" 0.");
   chdir(path);          fprintf(ficparo," 0.");
          }
   free_ivector(wav,1,imx);        numlinepar++;
   free_imatrix(dh,1,lastpass-firstpass+1,1,imx);        printf("\n");
   free_imatrix(bh,1,lastpass-firstpass+1,1,imx);        fprintf(ficparo,"\n");
   free_imatrix(mw,1,lastpass-firstpass+1,1,imx);         }
   free_ivector(num,1,n);    }
   free_vector(agedc,1,n);    printf("# Covariance matrix\n");
   /*free_matrix(covar,0,NCOVMAX,1,n);*/  /* # 121 Var(a12)\n\ */
   /*free_matrix(covar,1,NCOVMAX,1,n);*/  /* # 122 Cov(b12,a12) Var(b12)\n\ */
   fclose(ficparo);  /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   fclose(ficres);  /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /*--------------- Prevalence limit  (stable prevalence) --------------*/  /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
     /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
   strcpy(filerespl,"pl");    fflush(stdout);
   strcat(filerespl,fileres);    fprintf(ficparo,"# Covariance matrix\n");
   if((ficrespl=fopen(filerespl,"w"))==NULL) {    /* # 121 Var(a12)\n\ */
     printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;    /* # 122 Cov(b12,a12) Var(b12)\n\ */
     fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;    /* #   ...\n\ */
   }    /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
   printf("Computing stable prevalence: result on file '%s' \n", filerespl);   
   fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);    for(itimes=1;itimes<=2;itimes++){
   fprintf(ficrespl,"#Stable prevalence \n");      jj=0;
   fprintf(ficrespl,"#Age ");      for(i=1; i <=nlstate; i++){
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);        for(j=1; j <=nlstate+ndeath; j++){
   fprintf(ficrespl,"\n");          if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
   prlim=matrix(1,nlstate,1,nlstate);            jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
   agebase=ageminpar;            if(itimes==1){
   agelim=agemaxpar;              printf("#%1d%1d%d",i,j,k);
   ftolpl=1.e-10;              fprintf(ficparo,"#%1d%1d%d",i,j,k);
   i1=cptcoveff;            }else{
   if (cptcovn < 1){i1=1;}              printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
   for(cptcov=1,k=0;cptcov<=i1;cptcov++){              /*  printf(" %.5le",matcov[i][j]); */
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){            }
       k=k+1;            ll=0;
       /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/            for(li=1;li <=nlstate; li++){
       fprintf(ficrespl,"\n#******");              for(lj=1;lj <=nlstate+ndeath; lj++){
       printf("\n#******");                if(lj==li) continue;
       fprintf(ficlog,"\n#******");                for(lk=1;lk<=ncovmodel;lk++){
       for(j=1;j<=cptcoveff;j++) {                  ll++;
         fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                  if(ll<=jj){
         printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                    cb[0]= lk +'a'-1;cb[1]='\0';
         fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                    if(ll<jj){
       }                      if(itimes==1){
       fprintf(ficrespl,"******\n");                        printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
       printf("******\n");                        fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
       fprintf(ficlog,"******\n");                      }else{
                                 printf(" 0.");
       for (age=agebase; age<=agelim; age++){                        fprintf(ficparo," 0.");
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);                      }
         fprintf(ficrespl,"%.0f ",age );                    }else{
         for(j=1;j<=cptcoveff;j++)                      if(itimes==1){
           fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                        printf(" Var(%s%1d%1d)",ca,i,j);
         for(i=1; i<=nlstate;i++)                        fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
           fprintf(ficrespl," %.5f", prlim[i][i]);                      }else{
         fprintf(ficrespl,"\n");                        printf(" 0.");
       }                        fprintf(ficparo," 0.");
     }                      }
   }                    }
   fclose(ficrespl);                  }
                 } /* end lk */
   /*------------- h Pij x at various ages ------------*/              } /* end lj */
               } /* end li */
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);            printf("\n");
   if((ficrespij=fopen(filerespij,"w"))==NULL) {            fprintf(ficparo,"\n");
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;            numlinepar++;
     fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;          } /* end k*/
   }        } /*end j */
   printf("Computing pij: result on file '%s' \n", filerespij);      } /* end i */
   fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);    } /* end itimes */
     
   stepsize=(int) (stepm+YEARM-1)/YEARM;  } /* end of prwizard */
   /*if (stepm<=24) stepsize=2;*/  /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   agelim=AGESUP;  {
   hstepm=stepsize*YEARM; /* Every year of age */    double A,B,L=0.0,sump=0.,num=0.;
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */     int i,n=0; /* n is the size of the sample */
   
   /* hstepm=1;   aff par mois*/    for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
   fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");      /*    sump=sump+1;*/
   for(cptcov=1,k=0;cptcov<=i1;cptcov++){      num=num+1;
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    }
       k=k+1;   
       fprintf(ficrespij,"\n#****** ");   
       for(j=1;j<=cptcoveff;j++)     /* for (i=0; i<=imx; i++)
         fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);       if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
       fprintf(ficrespij,"******\n");  
             for (i=1;i<=imx ; i++)
       for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */      {
         nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */         if (cens[i] == 1 && wav[i]>1)
         nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */          A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
        
         /*        nhstepm=nhstepm*YEARM; aff par mois*/        if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
         p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);               +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         oldm=oldms;savm=savms;       
         hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);          /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");        if (wav[i] > 1 ) { /* ??? */
         for(i=1; i<=nlstate;i++)          L=L+A*weight[i];
           for(j=1; j<=nlstate+ndeath;j++)          /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
             fprintf(ficrespij," %1d-%1d",i,j);        }
         fprintf(ficrespij,"\n");      }
         for (h=0; h<=nhstepm; h++){  
           fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );   /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
           for(i=1; i<=nlstate;i++)   
             for(j=1; j<=nlstate+ndeath;j++)    return -2*L*num/sump;
               fprintf(ficrespij," %.5f", p3mat[i][j][h]);  }
           fprintf(ficrespij,"\n");  
         }  /******************* Printing html file ***********/
         free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
         fprintf(ficrespij,"\n");                    int lastpass, int stepm, int weightopt, char model[],\
       }                    int imx,  double p[],double **matcov,double agemortsup){
     }    int i,k;
   }  
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
   varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax);    fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++)
   fclose(ficrespij);      fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   /*---------- Forecasting ------------------*/  
   /*if((stepm == 1) && (strcmp(model,".")==0)){*/  fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   if(prevfcast==1){  
     /*    if(stepm ==1){*/   fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
       prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);  
       /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/   for (k=agegomp;k<(agemortsup-2);k++)
 /*      }  */     fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
 /*      else{ */  
 /*        erreur=108; */   
 /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */    fflush(fichtm);
 /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */  }
 /*      } */  
   }  /******************* Gnuplot file **************/
     void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
   /*---------- Health expectancies and variances ------------*/    char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
   strcpy(filerest,"t");    int ng;
   strcat(filerest,fileres);  
   if((ficrest=fopen(filerest,"w"))==NULL) {  
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;    /*#ifdef windows */
     fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;    fprintf(ficgp,"cd \"%s\" \n",pathc);
   }      /*#endif */
   printf("Computing Total LEs with variances: file '%s' \n", filerest);   
   fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest);   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
   strcpy(filerese,"e");    fprintf(ficgp,"set out \"graphmort.png\"\n ");
   strcat(filerese,fileres);    fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n ");
   if((ficreseij=fopen(filerese,"w"))==NULL) {    fprintf(ficgp, "set ter png small\n set log y\n");
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);    fprintf(ficgp, "set size 0.65,0.65\n");
     fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);    fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   }  
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);  }
   fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);  
   
   strcpy(fileresv,"v");  
   strcat(fileresv,fileres);  
   if((ficresvij=fopen(fileresv,"w"))==NULL) {  
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);  /***********************************************/
     fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);  /**************** Main Program *****************/
   }  /***********************************************/
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);  
   fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);  int main(int argc, char *argv[])
   {
   /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */    int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
   prevalence(agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);    int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
   /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\    int linei, month, year,iout;
 ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);    int jj, ll, li, lj, lk, imk;
   */    int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
   if (mobilav!=0) {    int NDIM=2;
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
     if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){    char ca[32], cb[32], cc[32];
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);    char dummy[]="                         ";
       printf(" Error in movingaverage mobilav=%d\n",mobilav);    /*  FILE *fichtm; *//* Html File */
     }    /* FILE *ficgp;*/ /*Gnuplot File */
   }    struct stat info;
     double agedeb, agefin,hf;
   for(cptcov=1,k=0;cptcov<=i1;cptcov++){    double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  
       k=k+1;     double fret;
       fprintf(ficrest,"\n#****** ");    double **xi,tmp,delta;
       for(j=1;j<=cptcoveff;j++)   
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    double dum; /* Dummy variable */
       fprintf(ficrest,"******\n");    double ***p3mat;
     double ***mobaverage;
       fprintf(ficreseij,"\n#****** ");    int *indx;
       for(j=1;j<=cptcoveff;j++)     char line[MAXLINE], linepar[MAXLINE];
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
       fprintf(ficreseij,"******\n");    char pathr[MAXLINE], pathimach[MAXLINE];
     char **bp, *tok, *val; /* pathtot */
       fprintf(ficresvij,"\n#****** ");    int firstobs=1, lastobs=10;
       for(j=1;j<=cptcoveff;j++)     int sdeb, sfin; /* Status at beginning and end */
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    int c,  h , cpt,l;
       fprintf(ficresvij,"******\n");    int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab;
       oldm=oldms;savm=savms;    int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);      int mobilav=0,popforecast=0;
      int hstepm, nhstepm;
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    int agemortsup;
       oldm=oldms;savm=savms;    float  sumlpop=0.;
       varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav);    double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
       if(popbased==1){    double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav);  
       }    double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
      double **prlim;
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");    double *severity;
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);    double ***param; /* Matrix of parameters */
       fprintf(ficrest,"\n");    double  *p;
     double **matcov; /* Matrix of covariance */
       epj=vector(1,nlstate+1);    double ***delti3; /* Scale */
       for(age=bage; age <=fage ;age++){    double *delti; /* Scale */
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    double ***eij, ***vareij;
         if (popbased==1) {    double **varpl; /* Variances of prevalence limits by age */
           if(mobilav ==0){    double *epj, vepp;
             for(i=1; i<=nlstate;i++)    double kk1, kk2;
               prlim[i][i]=probs[(int)age][i][k];    double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
           }else{ /* mobilav */     double **ximort;
             for(i=1; i<=nlstate;i++)    char *alph[]={"a","a","b","c","d","e"}, str[4];
               prlim[i][i]=mobaverage[(int)age][i][k];    int *dcwave;
           }  
         }    char z[1]="c", occ;
           
         fprintf(ficrest," %4.0f",age);    char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){    char  *strt, strtend[80];
           for(i=1, epj[j]=0.;i <=nlstate;i++) {    char *stratrunc;
             epj[j] += prlim[i][i]*eij[i][j][(int)age];    int lstra;
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/  
           }    long total_usecs;
           epj[nlstate+1] +=epj[j];   
         }  /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
         for(i=1, vepp=0.;i <=nlstate;i++)  /*   textdomain (PACKAGE); */
           for(j=1;j <=nlstate;j++)  /*   setlocale (LC_CTYPE, ""); */
             vepp += vareij[i][j][(int)age];  /*   setlocale (LC_MESSAGES, ""); */
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));  
         for(j=1;j <=nlstate;j++){    /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));    (void) gettimeofday(&start_time,&tzp);
         }    curr_time=start_time;
         fprintf(ficrest,"\n");    tm = *localtime(&start_time.tv_sec);
       }    tmg = *gmtime(&start_time.tv_sec);
       free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);    strcpy(strstart,asctime(&tm));
       free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);  
       free_vector(epj,1,nlstate+1);  /*  printf("Localtime (at start)=%s",strstart); */
     }  /*  tp.tv_sec = tp.tv_sec +86400; */
   }  /*  tm = *localtime(&start_time.tv_sec); */
   free_vector(weight,1,n);  /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   free_imatrix(Tvard,1,15,1,2);  /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   free_imatrix(s,1,maxwav+1,1,n);  /*   tmg.tm_hour=tmg.tm_hour + 1; */
   free_matrix(anint,1,maxwav,1,n);   /*   tp.tv_sec = mktime(&tmg); */
   free_matrix(mint,1,maxwav,1,n);  /*   strt=asctime(&tmg); */
   free_ivector(cod,1,n);  /*   printf("Time(after) =%s",strstart);  */
   free_ivector(tab,1,NCOVMAX);  /*  (void) time (&time_value);
   fclose(ficreseij);  *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   fclose(ficresvij);  *  tm = *localtime(&time_value);
   fclose(ficrest);  *  strstart=asctime(&tm);
   fclose(ficpar);  *  printf("tim_value=%d,asctime=%s\n",time_value,strstart);
     */
   /*------- Variance of stable prevalence------*/     
     nberr=0; /* Number of errors and warnings */
   strcpy(fileresvpl,"vpl");    nbwarn=0;
   strcat(fileresvpl,fileres);    getcwd(pathcd, size);
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {  
     printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);    printf("\n%s\n%s",version,fullversion);
     exit(0);    if(argc <=1){
   }      printf("\nEnter the parameter file name: ");
   printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);      fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
   for(cptcov=1,k=0;cptcov<=i1;cptcov++){      if(pathr[i-1]=='\n')
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        pathr[i-1]='\0';
       k=k+1;     for (tok = pathr; tok != NULL; ){
       fprintf(ficresvpl,"\n#****** ");        printf("Pathr |%s|\n",pathr);
       for(j=1;j<=cptcoveff;j++)         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        printf("val= |%s| pathr=%s\n",val,pathr);
       fprintf(ficresvpl,"******\n");        strcpy (pathtot, val);
               if(pathr[0] == '\0') break; /* Dirty */
       varpl=matrix(1,nlstate,(int) bage, (int) fage);      }
       oldm=oldms;savm=savms;    }
       varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);    else{
       free_matrix(varpl,1,nlstate,(int) bage, (int)fage);      strcpy(pathtot,argv[1]);
     }    }
   }    /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
   fclose(ficresvpl);      printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   /*---------- End : free ----------------*/  
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);    /* Split argv[0], imach program to get pathimach */
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);    printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);    split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);    printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
      /*   strcpy(pathimach,argv[0]); */
   free_matrix(covar,0,NCOVMAX,1,n);    /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
   free_matrix(matcov,1,npar,1,npar);    split(pathtot,path,optionfile,optionfilext,optionfilefiname);
   /*free_vector(delti,1,npar);*/    printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
   free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);     chdir(path); /* Can be a relative path */
   free_matrix(agev,1,maxwav,1,imx);    if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);      printf("Current directory %s!\n",pathcd);
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    strcpy(command,"mkdir ");
   free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);    strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
   free_ivector(ncodemax,1,8);      printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
   free_ivector(Tvar,1,15);      /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
   free_ivector(Tprod,1,15);      /* fclose(ficlog); */
   free_ivector(Tvaraff,1,15);  /*     exit(1); */
   free_ivector(Tage,1,15);    }
   free_ivector(Tcode,1,100);  /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*  fclose(fichtm);*/  /*   } */
   /*  fclose(ficgp);*/ /* ALready done */  
       /*-------- arguments in the command line --------*/
   
   if(erreur >0){    /* Log file */
     printf("End of Imach with error or warning %d\n",erreur);    strcat(filelog, optionfilefiname);
     fprintf(ficlog,"End of Imach with error or warning %d\n",erreur);    strcat(filelog,".log");    /* */
   }else{    if((ficlog=fopen(filelog,"w"))==NULL)    {
    printf("End of Imach\n");      printf("Problem with logfile %s\n",filelog);
    fprintf(ficlog,"End of Imach\n");      goto end;
   }    }
   printf("See log file on %s\n",filelog);    fprintf(ficlog,"Log filename:%s\n",filelog);
   fclose(ficlog);    fprintf(ficlog,"\n%s\n%s",version,fullversion);
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */    fprintf(ficlog,"\nEnter the parameter file name: \n");
       fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/   path=%s \n\
   /*printf("Total time was %d uSec.\n", total_usecs);*/   optionfile=%s\n\
   /*------ End -----------*/   optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   end:  
 #ifdef windows    printf("Local time (at start):%s",strstart);
   /* chdir(pathcd);*/    fprintf(ficlog,"Local time (at start): %s",strstart);
 #endif     fflush(ficlog);
  /*system("wgnuplot graph.plt");*/  /*   (void) gettimeofday(&curr_time,&tzp); */
  /*system("../gp37mgw/wgnuplot graph.plt");*/  /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
  /*system("cd ../gp37mgw");*/  
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/    /* */
   strcpy(plotcmd,GNUPLOTPROGRAM);    strcpy(fileres,"r");
   strcat(plotcmd," ");    strcat(fileres, optionfilefiname);
   strcat(plotcmd,optionfilegnuplot);    strcat(fileres,".txt");    /* Other files have txt extension */
   printf("Starting graphs with: %s",plotcmd);fflush(stdout);  
   system(plotcmd);    /*---------arguments file --------*/
   printf(" Wait...");  
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
  /*#ifdef windows*/      printf("Problem with optionfile %s\n",optionfile);
   while (z[0] != 'q') {      fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
     /* chdir(path); */      fflush(ficlog);
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");      goto end;
     scanf("%s",z);    }
     if (z[0] == 'c') system("./imach");  
     else if (z[0] == 'e') system(optionfilehtm);  
     else if (z[0] == 'g') system(plotcmd);  
     else if (z[0] == 'q') exit(0);    strcpy(filereso,"o");
   }    strcat(filereso,fileres);
   /*#endif */    if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
 }      printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n);
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
       fclose (ficparo);
       fclose (ficlog);
       goto end;
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
      
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
   It might be a problem of design; if ncovcol and the model are correct\n \
   run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       p=param[1][1];
      
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
    
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
    
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
      
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
      
       fflush(ficlog);
      
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb,line,' ');
         errno=0;
         lval=strtol(strb,&endptr,10);
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %d %s for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
           exit(1);
         }
         s[j][i]=lval;
        
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }
         else  if(iout=sscanf(strb,"%s.") != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           exit(1);
         }
         anint[j][i]= (double) year;
         mint[j][i]= (double)month;
         strcpy(line,stra);
       } /* ENd Waves */
      
       cutv(stra, strb,line,' ');
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.",dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         exit(1);
       }
       andc[i]=(double) year;
       moisdc[i]=(double) month;
       strcpy(line,stra);
      
       cutv(stra, strb,line,' ');
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.") != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line,j);
         exit(1);
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month);
       strcpy(line,stra);
      
       cutv(stra, strb,line,' ');
       errno=0;
       dval=strtod(strb,&endptr);
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%f' at line number %ld, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         exit(1);
       }
       weight[i]=dval;
       strcpy(line,stra);
      
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' ');
         errno=0;
         lval=strtol(strb,&endptr,10);
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a covar (meaning 0 for the reference or 1).  Exiting.\n",lval, linei,i, line);
           exit(1);
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%d' at line number %ld for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);
           exit(1);
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       }
       lstra=strlen(stra);
      
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
      
       i=i+1;
     } /* End loop reading  data */
     fclose(fic);
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1;
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
    
     /* for (i=1; i<=imx; i++) */
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameters from char model */
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15);
     Tvaraff=ivector(1,15);
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1;
       cptcovprod=j1; /*Number of products */
      
       strcpy(modelsav,model);
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
      
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2];
             for (k=1; k<=lastobs;k++)
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
    
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]);
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]);
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
      
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);    
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);    
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
   
     agegomp=(int)agemin;
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
        
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           }
         }
       }
     }
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
      
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version);
       fprintf(ficgp,"# %s\n", optionfilegnuplot);
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
    
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
      
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.;
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1)
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
      
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
      
       p[1]=0.0268; p[NDIM]=0.083;
       /*printf("%lf %lf", p[1], p[2]);*/
      
      
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
       strcpy(filerespow,"pow-mort");
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
      
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
      
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz);
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
      
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
      
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++)
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
      
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
      
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
      
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
      
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
      
      
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++)
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
      
      
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
      
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
      
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
     } /* Endof if mle==-3 */
    
     else{ /* For mle >=1 */
    
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
      
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
      
      
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%lf ",p[jk]);
               fprintf(ficlog,"%lf ",p[jk]);
               fprintf(ficres,"%lf ",p[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
      
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
      
      
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]);
                           fprintf(ficlog," %.5e",matcov[jj][ll]);
                           fprintf(ficres," %.5e",matcov[jj][ll]);
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]);
                           fprintf(ficlog," %.5e",matcov[jj][ll]);
                           fprintf(ficres," %.5e",matcov[jj][ll]);
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
      
       fflush(ficlog);
       fflush(ficres);
      
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
      
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
      
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
      
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
      
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
      
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
      
      
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
      
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);  
       fprintf(ficres,"pop_based=%d\n",popbased);  
      
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
      
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
      
      
      
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
      
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
      
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
        
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);  
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
    
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       pstamp(ficrespl);
       fprintf(ficrespl,"# Period (stable) prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
    
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
          
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
    
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
    
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */
   
       /* hstepm=1;   aff par mois*/
       pstamp(ficrespij);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
          
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
    
   
       /*---------- Health expectancies and variances ------------*/
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest);
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest);
   
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficreseij,"\n#****** ");
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
           cvevsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav, strstart);
           if(popbased==1){
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav, strstart);
           }
   
           pstamp(ficrest);
           fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n# Age ( e.. (std) ");
           for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
           fprintf(ficrest,"\n");
   
           epj=vector(1,nlstate+1);
           for(age=bage; age <=fage ;age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             if (popbased==1) {
               if(mobilav ==0){
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=probs[(int)age][i][k];
               }else{ /* mobilav */
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=mobaverage[(int)age][i][k];
               }
             }
          
             fprintf(ficrest," %4.0f",age);
             for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
               for(i=1, epj[j]=0.;i <=nlstate;i++) {
                 epj[j] += prlim[i][i]*eij[i][j][(int)age];
                 /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
               }
               epj[nlstate+1] +=epj[j];
             }
   
             for(i=1, vepp=0.;i <=nlstate;i++)
               for(j=1;j <=nlstate;j++)
                 vepp += vareij[i][j][(int)age];
             fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
             for(j=1;j <=nlstate;j++){
               fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
             }
             fprintf(ficrest,"\n");
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n);
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficreseij);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
    
       /*------- Variance of period (stable) prevalence------*/  
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
        
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
     free_matrix(prlim,1,nlstate,1,nlstate);
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
       free_ivector(Tcode,1,100);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
    
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend);
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend);
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
    
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.82  
changed lines
  Added in v.1.125


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>