Diff for /imach/src/imach.c between versions 1.41.2.2 and 1.90

version 1.41.2.2, 2003/06/13 07:45:28 version 1.90, 2003/06/24 12:34:15
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.90  2003/06/24 12:34:15  brouard
      (Module): Some bugs corrected for windows. Also, when
   This program computes Healthy Life Expectancies from    mle=-1 a template is output in file "or"mypar.txt with the design
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    of the covariance matrix to be input.
   first survey ("cross") where individuals from different ages are  
   interviewed on their health status or degree of disability (in the    Revision 1.89  2003/06/24 12:30:52  brouard
   case of a health survey which is our main interest) -2- at least a    (Module): Some bugs corrected for windows. Also, when
   second wave of interviews ("longitudinal") which measure each change    mle=-1 a template is output in file "or"mypar.txt with the design
   (if any) in individual health status.  Health expectancies are    of the covariance matrix to be input.
   computed from the time spent in each health state according to a  
   model. More health states you consider, more time is necessary to reach the    Revision 1.88  2003/06/23 17:54:56  brouard
   Maximum Likelihood of the parameters involved in the model.  The    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
   simplest model is the multinomial logistic model where pij is the  
   probability to be observed in state j at the second wave    Revision 1.87  2003/06/18 12:26:01  brouard
   conditional to be observed in state i at the first wave. Therefore    Version 0.96
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where  
   'age' is age and 'sex' is a covariate. If you want to have a more    Revision 1.86  2003/06/17 20:04:08  brouard
   complex model than "constant and age", you should modify the program    (Module): Change position of html and gnuplot routines and added
   where the markup *Covariates have to be included here again* invites    routine fileappend.
   you to do it.  More covariates you add, slower the  
   convergence.    Revision 1.85  2003/06/17 13:12:43  brouard
     * imach.c (Repository): Check when date of death was earlier that
   The advantage of this computer programme, compared to a simple    current date of interview. It may happen when the death was just
   multinomial logistic model, is clear when the delay between waves is not    prior to the death. In this case, dh was negative and likelihood
   identical for each individual. Also, if a individual missed an    was wrong (infinity). We still send an "Error" but patch by
   intermediate interview, the information is lost, but taken into    assuming that the date of death was just one stepm after the
   account using an interpolation or extrapolation.      interview.
     (Repository): Because some people have very long ID (first column)
   hPijx is the probability to be observed in state i at age x+h    we changed int to long in num[] and we added a new lvector for
   conditional to the observed state i at age x. The delay 'h' can be    memory allocation. But we also truncated to 8 characters (left
   split into an exact number (nh*stepm) of unobserved intermediate    truncation)
   states. This elementary transition (by month or quarter trimester,    (Repository): No more line truncation errors.
   semester or year) is model as a multinomial logistic.  The hPx  
   matrix is simply the matrix product of nh*stepm elementary matrices    Revision 1.84  2003/06/13 21:44:43  brouard
   and the contribution of each individual to the likelihood is simply    * imach.c (Repository): Replace "freqsummary" at a correct
   hPijx.    place. It differs from routine "prevalence" which may be called
     many times. Probs is memory consuming and must be used with
   Also this programme outputs the covariance matrix of the parameters but also    parcimony.
   of the life expectancies. It also computes the prevalence limits.    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
    
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    Revision 1.83  2003/06/10 13:39:11  lievre
            Institut national d'études démographiques, Paris.    *** empty log message ***
   This software have been partly granted by Euro-REVES, a concerted action  
   from the European Union.    Revision 1.82  2003/06/05 15:57:20  brouard
   It is copyrighted identically to a GNU software product, ie programme and    Add log in  imach.c and  fullversion number is now printed.
   software can be distributed freely for non commercial use. Latest version  
   can be accessed at http://euroreves.ined.fr/imach .  */
   **********************************************************************/  /*
       Interpolated Markov Chain
 #include <math.h>  
 #include <stdio.h>    Short summary of the programme:
 #include <stdlib.h>    
 #include <unistd.h>    This program computes Healthy Life Expectancies from
     cross-longitudinal data. Cross-longitudinal data consist in: -1- a
 #define MAXLINE 256    first survey ("cross") where individuals from different ages are
 #define GNUPLOTPROGRAM "wgnuplot"    interviewed on their health status or degree of disability (in the
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    case of a health survey which is our main interest) -2- at least a
 #define FILENAMELENGTH 80    second wave of interviews ("longitudinal") which measure each change
 /*#define DEBUG*/    (if any) in individual health status.  Health expectancies are
     computed from the time spent in each health state according to a
 /*#define windows*/    model. More health states you consider, more time is necessary to reach the
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    Maximum Likelihood of the parameters involved in the model.  The
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    simplest model is the multinomial logistic model where pij is the
     probability to be observed in state j at the second wave
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    conditional to be observed in state i at the first wave. Therefore
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
     'age' is age and 'sex' is a covariate. If you want to have a more
 #define NINTERVMAX 8    complex model than "constant and age", you should modify the program
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    where the markup *Covariates have to be included here again* invites
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    you to do it.  More covariates you add, slower the
 #define NCOVMAX 8 /* Maximum number of covariates */    convergence.
 #define MAXN 20000  
 #define YEARM 12. /* Number of months per year */    The advantage of this computer programme, compared to a simple
 #define AGESUP 130    multinomial logistic model, is clear when the delay between waves is not
 #define AGEBASE 40    identical for each individual. Also, if a individual missed an
     intermediate interview, the information is lost, but taken into
     account using an interpolation or extrapolation.  
 int erreur; /* Error number */  
 int nvar;    hPijx is the probability to be observed in state i at age x+h
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    conditional to the observed state i at age x. The delay 'h' can be
 int npar=NPARMAX;    split into an exact number (nh*stepm) of unobserved intermediate
 int nlstate=2; /* Number of live states */    states. This elementary transition (by month, quarter,
 int ndeath=1; /* Number of dead states */    semester or year) is modelled as a multinomial logistic.  The hPx
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    matrix is simply the matrix product of nh*stepm elementary matrices
 int popbased=0;    and the contribution of each individual to the likelihood is simply
     hPijx.
 int *wav; /* Number of waves for this individuual 0 is possible */  
 int maxwav; /* Maxim number of waves */    Also this programme outputs the covariance matrix of the parameters but also
 int jmin, jmax; /* min, max spacing between 2 waves */    of the life expectancies. It also computes the stable prevalence. 
 int mle, weightopt;    
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */             Institut national d'études démographiques, Paris.
 double jmean; /* Mean space between 2 waves */    This software have been partly granted by Euro-REVES, a concerted action
 double **oldm, **newm, **savm; /* Working pointers to matrices */    from the European Union.
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    It is copyrighted identically to a GNU software product, ie programme and
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    software can be distributed freely for non commercial use. Latest version
 FILE *ficgp,*ficresprob,*ficpop;    can be accessed at http://euroreves.ined.fr/imach .
 FILE *ficreseij;  
   char filerese[FILENAMELENGTH];    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
  FILE  *ficresvij;    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
   char fileresv[FILENAMELENGTH];    
  FILE  *ficresvpl;    **********************************************************************/
   char fileresvpl[FILENAMELENGTH];  /*
     main
 #define NR_END 1    read parameterfile
 #define FREE_ARG char*    read datafile
 #define FTOL 1.0e-10    concatwav
     freqsummary
 #define NRANSI    if (mle >= 1)
 #define ITMAX 200      mlikeli
     print results files
 #define TOL 2.0e-4    if mle==1 
        computes hessian
 #define CGOLD 0.3819660    read end of parameter file: agemin, agemax, bage, fage, estepm
 #define ZEPS 1.0e-10        begin-prev-date,...
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    open gnuplot file
     open html file
 #define GOLD 1.618034    stable prevalence
 #define GLIMIT 100.0     for age prevalim()
 #define TINY 1.0e-20    h Pij x
     variance of p varprob
 static double maxarg1,maxarg2;    forecasting if prevfcast==1 prevforecast call prevalence()
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    health expectancies
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    Variance-covariance of DFLE
      prevalence()
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))     movingaverage()
 #define rint(a) floor(a+0.5)    varevsij() 
     if popbased==1 varevsij(,popbased)
 static double sqrarg;    total life expectancies
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    Variance of stable prevalence
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}   end
   */
 int imx;  
 int stepm;  
 /* Stepm, step in month: minimum step interpolation*/  
    
 int estepm;  #include <math.h>
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/  #include <stdio.h>
   #include <stdlib.h>
 int m,nb;  #include <unistd.h>
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;  
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;  #include <sys/time.h>
 double **pmmij, ***probs, ***mobaverage;  #include <time.h>
 double dateintmean=0;  #include "timeval.h"
   
 double *weight;  #define MAXLINE 256
 int **s; /* Status */  #define GNUPLOTPROGRAM "gnuplot"
 double *agedc, **covar, idx;  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;  #define FILENAMELENGTH 132
   /*#define DEBUG*/
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */  /*#define windows*/
 double ftolhess; /* Tolerance for computing hessian */  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
   #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
 /**************** split *************************/  
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
 {  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
    char *s;                             /* pointer */  
    int  l1, l2;                         /* length counters */  #define NINTERVMAX 8
   #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
    l1 = strlen( path );                 /* length of path */  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );  #define NCOVMAX 8 /* Maximum number of covariates */
 #ifdef windows  #define MAXN 20000
    s = strrchr( path, '\\' );           /* find last / */  #define YEARM 12. /* Number of months per year */
 #else  #define AGESUP 130
    s = strrchr( path, '/' );            /* find last / */  #define AGEBASE 40
 #endif  #ifdef unix
    if ( s == NULL ) {                   /* no directory, so use current */  #define DIRSEPARATOR '/'
 #if     defined(__bsd__)                /* get current working directory */  #define ODIRSEPARATOR '\\'
       extern char       *getwd( );  #else
   #define DIRSEPARATOR '\\'
       if ( getwd( dirc ) == NULL ) {  #define ODIRSEPARATOR '/'
 #else  #endif
       extern char       *getcwd( );  
   /* $Id$ */
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {  /* $State$ */
 #endif  
          return( GLOCK_ERROR_GETCWD );  char version[]="Imach version 0.96a, June 2003, INED-EUROREVES ";
       }  char fullversion[]="$Revision$ $Date$"; 
       strcpy( name, path );             /* we've got it */  int erreur; /* Error number */
    } else {                             /* strip direcotry from path */  int nvar;
       s++;                              /* after this, the filename */  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
       l2 = strlen( s );                 /* length of filename */  int npar=NPARMAX;
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );  int nlstate=2; /* Number of live states */
       strcpy( name, s );                /* save file name */  int ndeath=1; /* Number of dead states */
       strncpy( dirc, path, l1 - l2 );   /* now the directory */  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
       dirc[l1-l2] = 0;                  /* add zero */  int popbased=0;
    }  
    l1 = strlen( dirc );                 /* length of directory */  int *wav; /* Number of waves for this individuual 0 is possible */
 #ifdef windows  int maxwav; /* Maxim number of waves */
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }  int jmin, jmax; /* min, max spacing between 2 waves */
 #else  int gipmx, gsw; /* Global variables on the number of contributions 
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }                     to the likelihood and the sum of weights (done by funcone)*/
 #endif  int mle, weightopt;
    s = strrchr( name, '.' );            /* find last / */  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
    s++;  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
    strcpy(ext,s);                       /* save extension */  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
    l1= strlen( name);             * wave mi and wave mi+1 is not an exact multiple of stepm. */
    l2= strlen( s)+1;  double jmean; /* Mean space between 2 waves */
    strncpy( finame, name, l1-l2);  double **oldm, **newm, **savm; /* Working pointers to matrices */
    finame[l1-l2]= 0;  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
    return( 0 );                         /* we're done */  FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
 }  FILE *ficlog, *ficrespow;
   int globpr; /* Global variable for printing or not */
   double fretone; /* Only one call to likelihood */
 /******************************************/  long ipmx; /* Number of contributions */
   double sw; /* Sum of weights */
 void replace(char *s, char*t)  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
 {  FILE *ficresilk;
   int i;  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
   int lg=20;  FILE *ficresprobmorprev;
   i=0;  FILE *fichtm; /* Html File */
   lg=strlen(t);  FILE *ficreseij;
   for(i=0; i<= lg; i++) {  char filerese[FILENAMELENGTH];
     (s[i] = t[i]);  FILE  *ficresvij;
     if (t[i]== '\\') s[i]='/';  char fileresv[FILENAMELENGTH];
   }  FILE  *ficresvpl;
 }  char fileresvpl[FILENAMELENGTH];
   char title[MAXLINE];
 int nbocc(char *s, char occ)  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
 {  char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];
   int i,j=0;  char tmpout[FILENAMELENGTH]; 
   int lg=20;  char command[FILENAMELENGTH];
   i=0;  int  outcmd=0;
   lg=strlen(s);  
   for(i=0; i<= lg; i++) {  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
   if  (s[i] == occ ) j++;  char lfileres[FILENAMELENGTH];
   }  char filelog[FILENAMELENGTH]; /* Log file */
   return j;  char filerest[FILENAMELENGTH];
 }  char fileregp[FILENAMELENGTH];
   char popfile[FILENAMELENGTH];
 void cutv(char *u,char *v, char*t, char occ)  
 {  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];
   int i,lg,j,p=0;  
   i=0;  #define NR_END 1
   for(j=0; j<=strlen(t)-1; j++) {  #define FREE_ARG char*
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  #define FTOL 1.0e-10
   }  
   #define NRANSI 
   lg=strlen(t);  #define ITMAX 200 
   for(j=0; j<p; j++) {  
     (u[j] = t[j]);  #define TOL 2.0e-4 
   }  
      u[p]='\0';  #define CGOLD 0.3819660 
   #define ZEPS 1.0e-10 
    for(j=0; j<= lg; j++) {  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
     if (j>=(p+1))(v[j-p-1] = t[j]);  
   }  #define GOLD 1.618034 
 }  #define GLIMIT 100.0 
   #define TINY 1.0e-20 
 /********************** nrerror ********************/  
   static double maxarg1,maxarg2;
 void nrerror(char error_text[])  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
 {  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
   fprintf(stderr,"ERREUR ...\n");    
   fprintf(stderr,"%s\n",error_text);  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
   exit(1);  #define rint(a) floor(a+0.5)
 }  
 /*********************** vector *******************/  static double sqrarg;
 double *vector(int nl, int nh)  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
 {  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
   double *v;  
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  int imx; 
   if (!v) nrerror("allocation failure in vector");  int stepm;
   return v-nl+NR_END;  /* Stepm, step in month: minimum step interpolation*/
 }  
   int estepm;
 /************************ free vector ******************/  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
 void free_vector(double*v, int nl, int nh)  
 {  int m,nb;
   free((FREE_ARG)(v+nl-NR_END));  long *num;
 }  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;
   double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
 /************************ivector *******************************/  double **pmmij, ***probs;
 int *ivector(long nl,long nh)  double dateintmean=0;
 {  
   int *v;  double *weight;
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  int **s; /* Status */
   if (!v) nrerror("allocation failure in ivector");  double *agedc, **covar, idx;
   return v-nl+NR_END;  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
 }  
   double ftol=FTOL; /* Tolerance for computing Max Likelihood */
 /******************free ivector **************************/  double ftolhess; /* Tolerance for computing hessian */
 void free_ivector(int *v, long nl, long nh)  
 {  /**************** split *************************/
   free((FREE_ARG)(v+nl-NR_END));  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
 }  {
     char  *ss;                            /* pointer */
 /******************* imatrix *******************************/    int   l1, l2;                         /* length counters */
 int **imatrix(long nrl, long nrh, long ncl, long nch)  
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */    l1 = strlen(path );                   /* length of path */
 {    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
   int **m;    if ( ss == NULL ) {                   /* no directory, so use current */
        /*if(strrchr(path, ODIRSEPARATOR )==NULL)
   /* allocate pointers to rows */        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));      /* get current working directory */
   if (!m) nrerror("allocation failure 1 in matrix()");      /*    extern  char* getcwd ( char *buf , int len);*/
   m += NR_END;      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
   m -= nrl;        return( GLOCK_ERROR_GETCWD );
        }
        strcpy( name, path );               /* we've got it */
   /* allocate rows and set pointers to them */    } else {                              /* strip direcotry from path */
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));      ss++;                               /* after this, the filename */
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");      l2 = strlen( ss );                  /* length of filename */
   m[nrl] += NR_END;      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
   m[nrl] -= ncl;      strcpy( name, ss );         /* save file name */
        strncpy( dirc, path, l1 - l2 );     /* now the directory */
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;      dirc[l1-l2] = 0;                    /* add zero */
      }
   /* return pointer to array of pointers to rows */    l1 = strlen( dirc );                  /* length of directory */
   return m;    /*#ifdef windows
 }    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }
   #else
 /****************** free_imatrix *************************/    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }
 void free_imatrix(m,nrl,nrh,ncl,nch)  #endif
       int **m;    */
       long nch,ncl,nrh,nrl;    ss = strrchr( name, '.' );            /* find last / */
      /* free an int matrix allocated by imatrix() */    ss++;
 {    strcpy(ext,ss);                       /* save extension */
   free((FREE_ARG) (m[nrl]+ncl-NR_END));    l1= strlen( name);
   free((FREE_ARG) (m+nrl-NR_END));    l2= strlen(ss)+1;
 }    strncpy( finame, name, l1-l2);
     finame[l1-l2]= 0;
 /******************* matrix *******************************/    return( 0 );                          /* we're done */
 double **matrix(long nrl, long nrh, long ncl, long nch)  }
 {  
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  
   double **m;  /******************************************/
   
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  void replace_back_to_slash(char *s, char*t)
   if (!m) nrerror("allocation failure 1 in matrix()");  {
   m += NR_END;    int i;
   m -= nrl;    int lg=0;
     i=0;
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    lg=strlen(t);
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    for(i=0; i<= lg; i++) {
   m[nrl] += NR_END;      (s[i] = t[i]);
   m[nrl] -= ncl;      if (t[i]== '\\') s[i]='/';
     }
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  }
   return m;  
 }  int nbocc(char *s, char occ)
   {
 /*************************free matrix ************************/    int i,j=0;
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)    int lg=20;
 {    i=0;
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    lg=strlen(s);
   free((FREE_ARG)(m+nrl-NR_END));    for(i=0; i<= lg; i++) {
 }    if  (s[i] == occ ) j++;
     }
 /******************* ma3x *******************************/    return j;
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  }
 {  
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  void cutv(char *u,char *v, char*t, char occ)
   double ***m;  {
     /* cuts string t into u and v where u is ended by char occ excluding it
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));       and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)
   if (!m) nrerror("allocation failure 1 in matrix()");       gives u="abcedf" and v="ghi2j" */
   m += NR_END;    int i,lg,j,p=0;
   m -= nrl;    i=0;
     for(j=0; j<=strlen(t)-1; j++) {
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    }
   m[nrl] += NR_END;  
   m[nrl] -= ncl;    lg=strlen(t);
     for(j=0; j<p; j++) {
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;      (u[j] = t[j]);
     }
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));       u[p]='\0';
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  
   m[nrl][ncl] += NR_END;     for(j=0; j<= lg; j++) {
   m[nrl][ncl] -= nll;      if (j>=(p+1))(v[j-p-1] = t[j]);
   for (j=ncl+1; j<=nch; j++)    }
     m[nrl][j]=m[nrl][j-1]+nlay;  }
    
   for (i=nrl+1; i<=nrh; i++) {  /********************** nrerror ********************/
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  
     for (j=ncl+1; j<=nch; j++)  void nrerror(char error_text[])
       m[i][j]=m[i][j-1]+nlay;  {
   }    fprintf(stderr,"ERREUR ...\n");
   return m;    fprintf(stderr,"%s\n",error_text);
 }    exit(EXIT_FAILURE);
   }
 /*************************free ma3x ************************/  /*********************** vector *******************/
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  double *vector(int nl, int nh)
 {  {
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));    double *v;
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
   free((FREE_ARG)(m+nrl-NR_END));    if (!v) nrerror("allocation failure in vector");
 }    return v-nl+NR_END;
   }
 /***************** f1dim *************************/  
 extern int ncom;  /************************ free vector ******************/
 extern double *pcom,*xicom;  void free_vector(double*v, int nl, int nh)
 extern double (*nrfunc)(double []);  {
      free((FREE_ARG)(v+nl-NR_END));
 double f1dim(double x)  }
 {  
   int j;  /************************ivector *******************************/
   double f;  int *ivector(long nl,long nh)
   double *xt;  {
      int *v;
   xt=vector(1,ncom);    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];    if (!v) nrerror("allocation failure in ivector");
   f=(*nrfunc)(xt);    return v-nl+NR_END;
   free_vector(xt,1,ncom);  }
   return f;  
 }  /******************free ivector **************************/
   void free_ivector(int *v, long nl, long nh)
 /*****************brent *************************/  {
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)    free((FREE_ARG)(v+nl-NR_END));
 {  }
   int iter;  
   double a,b,d,etemp;  /************************lvector *******************************/
   double fu,fv,fw,fx;  long *lvector(long nl,long nh)
   double ftemp;  {
   double p,q,r,tol1,tol2,u,v,w,x,xm;    long *v;
   double e=0.0;    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
      if (!v) nrerror("allocation failure in ivector");
   a=(ax < cx ? ax : cx);    return v-nl+NR_END;
   b=(ax > cx ? ax : cx);  }
   x=w=v=bx;  
   fw=fv=fx=(*f)(x);  /******************free lvector **************************/
   for (iter=1;iter<=ITMAX;iter++) {  void free_lvector(long *v, long nl, long nh)
     xm=0.5*(a+b);  {
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);    free((FREE_ARG)(v+nl-NR_END));
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  }
     printf(".");fflush(stdout);  
 #ifdef DEBUG  /******************* imatrix *******************************/
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  int **imatrix(long nrl, long nrh, long ncl, long nch) 
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
 #endif  { 
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
       *xmin=x;    int **m; 
       return fx;    
     }    /* allocate pointers to rows */ 
     ftemp=fu;    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
     if (fabs(e) > tol1) {    if (!m) nrerror("allocation failure 1 in matrix()"); 
       r=(x-w)*(fx-fv);    m += NR_END; 
       q=(x-v)*(fx-fw);    m -= nrl; 
       p=(x-v)*q-(x-w)*r;    
       q=2.0*(q-r);    
       if (q > 0.0) p = -p;    /* allocate rows and set pointers to them */ 
       q=fabs(q);    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
       etemp=e;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
       e=d;    m[nrl] += NR_END; 
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))    m[nrl] -= ncl; 
         d=CGOLD*(e=(x >= xm ? a-x : b-x));    
       else {    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
         d=p/q;    
         u=x+d;    /* return pointer to array of pointers to rows */ 
         if (u-a < tol2 || b-u < tol2)    return m; 
           d=SIGN(tol1,xm-x);  } 
       }  
     } else {  /****************** free_imatrix *************************/
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  void free_imatrix(m,nrl,nrh,ncl,nch)
     }        int **m;
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));        long nch,ncl,nrh,nrl; 
     fu=(*f)(u);       /* free an int matrix allocated by imatrix() */ 
     if (fu <= fx) {  { 
       if (u >= x) a=x; else b=x;    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
       SHFT(v,w,x,u)    free((FREE_ARG) (m+nrl-NR_END)); 
         SHFT(fv,fw,fx,fu)  } 
         } else {  
           if (u < x) a=u; else b=u;  /******************* matrix *******************************/
           if (fu <= fw || w == x) {  double **matrix(long nrl, long nrh, long ncl, long nch)
             v=w;  {
             w=u;    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
             fv=fw;    double **m;
             fw=fu;  
           } else if (fu <= fv || v == x || v == w) {    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
             v=u;    if (!m) nrerror("allocation failure 1 in matrix()");
             fv=fu;    m += NR_END;
           }    m -= nrl;
         }  
   }    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   nrerror("Too many iterations in brent");    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   *xmin=x;    m[nrl] += NR_END;
   return fx;    m[nrl] -= ncl;
 }  
     for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
 /****************** mnbrak ***********************/    return m;
     /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,     */
             double (*func)(double))  }
 {  
   double ulim,u,r,q, dum;  /*************************free matrix ************************/
   double fu;  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
    {
   *fa=(*func)(*ax);    free((FREE_ARG)(m[nrl]+ncl-NR_END));
   *fb=(*func)(*bx);    free((FREE_ARG)(m+nrl-NR_END));
   if (*fb > *fa) {  }
     SHFT(dum,*ax,*bx,dum)  
       SHFT(dum,*fb,*fa,dum)  /******************* ma3x *******************************/
       }  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
   *cx=(*bx)+GOLD*(*bx-*ax);  {
   *fc=(*func)(*cx);    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
   while (*fb > *fc) {    double ***m;
     r=(*bx-*ax)*(*fb-*fc);  
     q=(*bx-*cx)*(*fb-*fa);    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/    if (!m) nrerror("allocation failure 1 in matrix()");
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));    m += NR_END;
     ulim=(*bx)+GLIMIT*(*cx-*bx);    m -= nrl;
     if ((*bx-u)*(u-*cx) > 0.0) {  
       fu=(*func)(u);    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     } else if ((*cx-u)*(u-ulim) > 0.0) {    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       fu=(*func)(u);    m[nrl] += NR_END;
       if (fu < *fc) {    m[nrl] -= ncl;
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))  
           SHFT(*fb,*fc,fu,(*func)(u))    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
           }  
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
       u=ulim;    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
       fu=(*func)(u);    m[nrl][ncl] += NR_END;
     } else {    m[nrl][ncl] -= nll;
       u=(*cx)+GOLD*(*cx-*bx);    for (j=ncl+1; j<=nch; j++) 
       fu=(*func)(u);      m[nrl][j]=m[nrl][j-1]+nlay;
     }    
     SHFT(*ax,*bx,*cx,u)    for (i=nrl+1; i<=nrh; i++) {
       SHFT(*fa,*fb,*fc,fu)      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
       }      for (j=ncl+1; j<=nch; j++) 
 }        m[i][j]=m[i][j-1]+nlay;
     }
 /*************** linmin ************************/    return m; 
     /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
 int ncom;             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
 double *pcom,*xicom;    */
 double (*nrfunc)(double []);  }
    
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))  /*************************free ma3x ************************/
 {  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
   double brent(double ax, double bx, double cx,  {
                double (*f)(double), double tol, double *xmin);    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
   double f1dim(double x);    free((FREE_ARG)(m[nrl]+ncl-NR_END));
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,    free((FREE_ARG)(m+nrl-NR_END));
               double *fc, double (*func)(double));  }
   int j;  
   double xx,xmin,bx,ax;  /***************** f1dim *************************/
   double fx,fb,fa;  extern int ncom; 
    extern double *pcom,*xicom;
   ncom=n;  extern double (*nrfunc)(double []); 
   pcom=vector(1,n);   
   xicom=vector(1,n);  double f1dim(double x) 
   nrfunc=func;  { 
   for (j=1;j<=n;j++) {    int j; 
     pcom[j]=p[j];    double f;
     xicom[j]=xi[j];    double *xt; 
   }   
   ax=0.0;    xt=vector(1,ncom); 
   xx=1.0;    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);    f=(*nrfunc)(xt); 
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);    free_vector(xt,1,ncom); 
 #ifdef DEBUG    return f; 
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  } 
 #endif  
   for (j=1;j<=n;j++) {  /*****************brent *************************/
     xi[j] *= xmin;  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
     p[j] += xi[j];  { 
   }    int iter; 
   free_vector(xicom,1,n);    double a,b,d,etemp;
   free_vector(pcom,1,n);    double fu,fv,fw,fx;
 }    double ftemp;
     double p,q,r,tol1,tol2,u,v,w,x,xm; 
 /*************** powell ************************/    double e=0.0; 
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,   
             double (*func)(double []))    a=(ax < cx ? ax : cx); 
 {    b=(ax > cx ? ax : cx); 
   void linmin(double p[], double xi[], int n, double *fret,    x=w=v=bx; 
               double (*func)(double []));    fw=fv=fx=(*f)(x); 
   int i,ibig,j;    for (iter=1;iter<=ITMAX;iter++) { 
   double del,t,*pt,*ptt,*xit;      xm=0.5*(a+b); 
   double fp,fptt;      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
   double *xits;      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
   pt=vector(1,n);      printf(".");fflush(stdout);
   ptt=vector(1,n);      fprintf(ficlog,".");fflush(ficlog);
   xit=vector(1,n);  #ifdef DEBUG
   xits=vector(1,n);      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   *fret=(*func)(p);      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   for (j=1;j<=n;j++) pt[j]=p[j];      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
   for (*iter=1;;++(*iter)) {  #endif
     fp=(*fret);      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
     ibig=0;        *xmin=x; 
     del=0.0;        return fx; 
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);      } 
     for (i=1;i<=n;i++)      ftemp=fu;
       printf(" %d %.12f",i, p[i]);      if (fabs(e) > tol1) { 
     printf("\n");        r=(x-w)*(fx-fv); 
     for (i=1;i<=n;i++) {        q=(x-v)*(fx-fw); 
       for (j=1;j<=n;j++) xit[j]=xi[j][i];        p=(x-v)*q-(x-w)*r; 
       fptt=(*fret);        q=2.0*(q-r); 
 #ifdef DEBUG        if (q > 0.0) p = -p; 
       printf("fret=%lf \n",*fret);        q=fabs(q); 
 #endif        etemp=e; 
       printf("%d",i);fflush(stdout);        e=d; 
       linmin(p,xit,n,fret,func);        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
       if (fabs(fptt-(*fret)) > del) {          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
         del=fabs(fptt-(*fret));        else { 
         ibig=i;          d=p/q; 
       }          u=x+d; 
 #ifdef DEBUG          if (u-a < tol2 || b-u < tol2) 
       printf("%d %.12e",i,(*fret));            d=SIGN(tol1,xm-x); 
       for (j=1;j<=n;j++) {        } 
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);      } else { 
         printf(" x(%d)=%.12e",j,xit[j]);        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
       }      } 
       for(j=1;j<=n;j++)      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
         printf(" p=%.12e",p[j]);      fu=(*f)(u); 
       printf("\n");      if (fu <= fx) { 
 #endif        if (u >= x) a=x; else b=x; 
     }        SHFT(v,w,x,u) 
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {          SHFT(fv,fw,fx,fu) 
 #ifdef DEBUG          } else { 
       int k[2],l;            if (u < x) a=u; else b=u; 
       k[0]=1;            if (fu <= fw || w == x) { 
       k[1]=-1;              v=w; 
       printf("Max: %.12e",(*func)(p));              w=u; 
       for (j=1;j<=n;j++)              fv=fw; 
         printf(" %.12e",p[j]);              fw=fu; 
       printf("\n");            } else if (fu <= fv || v == x || v == w) { 
       for(l=0;l<=1;l++) {              v=u; 
         for (j=1;j<=n;j++) {              fv=fu; 
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];            } 
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);          } 
         }    } 
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    nrerror("Too many iterations in brent"); 
       }    *xmin=x; 
 #endif    return fx; 
   } 
   
       free_vector(xit,1,n);  /****************** mnbrak ***********************/
       free_vector(xits,1,n);  
       free_vector(ptt,1,n);  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
       free_vector(pt,1,n);              double (*func)(double)) 
       return;  { 
     }    double ulim,u,r,q, dum;
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");    double fu; 
     for (j=1;j<=n;j++) {   
       ptt[j]=2.0*p[j]-pt[j];    *fa=(*func)(*ax); 
       xit[j]=p[j]-pt[j];    *fb=(*func)(*bx); 
       pt[j]=p[j];    if (*fb > *fa) { 
     }      SHFT(dum,*ax,*bx,dum) 
     fptt=(*func)(ptt);        SHFT(dum,*fb,*fa,dum) 
     if (fptt < fp) {        } 
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);    *cx=(*bx)+GOLD*(*bx-*ax); 
       if (t < 0.0) {    *fc=(*func)(*cx); 
         linmin(p,xit,n,fret,func);    while (*fb > *fc) { 
         for (j=1;j<=n;j++) {      r=(*bx-*ax)*(*fb-*fc); 
           xi[j][ibig]=xi[j][n];      q=(*bx-*cx)*(*fb-*fa); 
           xi[j][n]=xit[j];      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
         }        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
 #ifdef DEBUG      ulim=(*bx)+GLIMIT*(*cx-*bx); 
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);      if ((*bx-u)*(u-*cx) > 0.0) { 
         for(j=1;j<=n;j++)        fu=(*func)(u); 
           printf(" %.12e",xit[j]);      } else if ((*cx-u)*(u-ulim) > 0.0) { 
         printf("\n");        fu=(*func)(u); 
 #endif        if (fu < *fc) { 
       }          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
     }            SHFT(*fb,*fc,fu,(*func)(u)) 
   }            } 
 }      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
         u=ulim; 
 /**** Prevalence limit ****************/        fu=(*func)(u); 
       } else { 
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)        u=(*cx)+GOLD*(*cx-*bx); 
 {        fu=(*func)(u); 
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit      } 
      matrix by transitions matrix until convergence is reached */      SHFT(*ax,*bx,*cx,u) 
         SHFT(*fa,*fb,*fc,fu) 
   int i, ii,j,k;        } 
   double min, max, maxmin, maxmax,sumnew=0.;  } 
   double **matprod2();  
   double **out, cov[NCOVMAX], **pmij();  /*************** linmin ************************/
   double **newm;  
   double agefin, delaymax=50 ; /* Max number of years to converge */  int ncom; 
   double *pcom,*xicom;
   for (ii=1;ii<=nlstate+ndeath;ii++)  double (*nrfunc)(double []); 
     for (j=1;j<=nlstate+ndeath;j++){   
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
     }  { 
     double brent(double ax, double bx, double cx, 
    cov[1]=1.;                 double (*f)(double), double tol, double *xmin); 
      double f1dim(double x); 
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){                double *fc, double (*func)(double)); 
     newm=savm;    int j; 
     /* Covariates have to be included here again */    double xx,xmin,bx,ax; 
      cov[2]=agefin;    double fx,fb,fa;
     
       for (k=1; k<=cptcovn;k++) {    ncom=n; 
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    pcom=vector(1,n); 
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/    xicom=vector(1,n); 
       }    nrfunc=func; 
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    for (j=1;j<=n;j++) { 
       for (k=1; k<=cptcovprod;k++)      pcom[j]=p[j]; 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];      xicom[j]=xi[j]; 
     } 
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/    ax=0.0; 
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/    xx=1.0; 
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
   #ifdef DEBUG
     savm=oldm;    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
     oldm=newm;    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
     maxmax=0.;  #endif
     for(j=1;j<=nlstate;j++){    for (j=1;j<=n;j++) { 
       min=1.;      xi[j] *= xmin; 
       max=0.;      p[j] += xi[j]; 
       for(i=1; i<=nlstate; i++) {    } 
         sumnew=0;    free_vector(xicom,1,n); 
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];    free_vector(pcom,1,n); 
         prlim[i][j]= newm[i][j]/(1-sumnew);  } 
         max=FMAX(max,prlim[i][j]);  
         min=FMIN(min,prlim[i][j]);  /*************** powell ************************/
       }  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
       maxmin=max-min;              double (*func)(double [])) 
       maxmax=FMAX(maxmax,maxmin);  { 
     }    void linmin(double p[], double xi[], int n, double *fret, 
     if(maxmax < ftolpl){                double (*func)(double [])); 
       return prlim;    int i,ibig,j; 
     }    double del,t,*pt,*ptt,*xit;
   }    double fp,fptt;
 }    double *xits;
     pt=vector(1,n); 
 /*************** transition probabilities ***************/    ptt=vector(1,n); 
     xit=vector(1,n); 
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )    xits=vector(1,n); 
 {    *fret=(*func)(p); 
   double s1, s2;    for (j=1;j<=n;j++) pt[j]=p[j]; 
   /*double t34;*/    for (*iter=1;;++(*iter)) { 
   int i,j,j1, nc, ii, jj;      fp=(*fret); 
       ibig=0; 
     for(i=1; i<= nlstate; i++){      del=0.0; 
     for(j=1; j<i;j++){      printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f",*iter,*fret);
         /*s2 += param[i][j][nc]*cov[nc];*/      fprintf(ficrespow,"%d %.12f",*iter,*fret);
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];      for (i=1;i<=n;i++) {
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/        printf(" %d %.12f",i, p[i]);
       }        fprintf(ficlog," %d %.12lf",i, p[i]);
       ps[i][j]=s2;        fprintf(ficrespow," %.12lf", p[i]);
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/      }
     }      printf("\n");
     for(j=i+1; j<=nlstate+ndeath;j++){      fprintf(ficlog,"\n");
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){      fprintf(ficrespow,"\n");
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];      for (i=1;i<=n;i++) { 
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
       }        fptt=(*fret); 
       ps[i][j]=s2;  #ifdef DEBUG
     }        printf("fret=%lf \n",*fret);
   }        fprintf(ficlog,"fret=%lf \n",*fret);
     /*ps[3][2]=1;*/  #endif
         printf("%d",i);fflush(stdout);
   for(i=1; i<= nlstate; i++){        fprintf(ficlog,"%d",i);fflush(ficlog);
      s1=0;        linmin(p,xit,n,fret,func); 
     for(j=1; j<i; j++)        if (fabs(fptt-(*fret)) > del) { 
       s1+=exp(ps[i][j]);          del=fabs(fptt-(*fret)); 
     for(j=i+1; j<=nlstate+ndeath; j++)          ibig=i; 
       s1+=exp(ps[i][j]);        } 
     ps[i][i]=1./(s1+1.);  #ifdef DEBUG
     for(j=1; j<i; j++)        printf("%d %.12e",i,(*fret));
       ps[i][j]= exp(ps[i][j])*ps[i][i];        fprintf(ficlog,"%d %.12e",i,(*fret));
     for(j=i+1; j<=nlstate+ndeath; j++)        for (j=1;j<=n;j++) {
       ps[i][j]= exp(ps[i][j])*ps[i][i];          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */          printf(" x(%d)=%.12e",j,xit[j]);
   } /* end i */          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
         }
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){        for(j=1;j<=n;j++) {
     for(jj=1; jj<= nlstate+ndeath; jj++){          printf(" p=%.12e",p[j]);
       ps[ii][jj]=0;          fprintf(ficlog," p=%.12e",p[j]);
       ps[ii][ii]=1;        }
     }        printf("\n");
   }        fprintf(ficlog,"\n");
   #endif
       } 
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
     for(jj=1; jj<= nlstate+ndeath; jj++){  #ifdef DEBUG
      printf("%lf ",ps[ii][jj]);        int k[2],l;
    }        k[0]=1;
     printf("\n ");        k[1]=-1;
     }        printf("Max: %.12e",(*func)(p));
     printf("\n ");printf("%lf ",cov[2]);*/        fprintf(ficlog,"Max: %.12e",(*func)(p));
 /*        for (j=1;j<=n;j++) {
   for(i=1; i<= npar; i++) printf("%f ",x[i]);          printf(" %.12e",p[j]);
   goto end;*/          fprintf(ficlog," %.12e",p[j]);
     return ps;        }
 }        printf("\n");
         fprintf(ficlog,"\n");
 /**************** Product of 2 matrices ******************/        for(l=0;l<=1;l++) {
           for (j=1;j<=n;j++) {
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
 {            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */          }
   /* in, b, out are matrice of pointers which should have been initialized          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
      before: only the contents of out is modified. The function returns          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
      a pointer to pointers identical to out */        }
   long i, j, k;  #endif
   for(i=nrl; i<= nrh; i++)  
     for(k=ncolol; k<=ncoloh; k++)  
       for(j=ncl,out[i][k]=0.; j<=nch; j++)        free_vector(xit,1,n); 
         out[i][k] +=in[i][j]*b[j][k];        free_vector(xits,1,n); 
         free_vector(ptt,1,n); 
   return out;        free_vector(pt,1,n); 
 }        return; 
       } 
       if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
 /************* Higher Matrix Product ***************/      for (j=1;j<=n;j++) { 
         ptt[j]=2.0*p[j]-pt[j]; 
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )        xit[j]=p[j]-pt[j]; 
 {        pt[j]=p[j]; 
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month      } 
      duration (i.e. until      fptt=(*func)(ptt); 
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.      if (fptt < fp) { 
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
      (typically every 2 years instead of every month which is too big).        if (t < 0.0) { 
      Model is determined by parameters x and covariates have to be          linmin(p,xit,n,fret,func); 
      included manually here.          for (j=1;j<=n;j++) { 
             xi[j][ibig]=xi[j][n]; 
      */            xi[j][n]=xit[j]; 
           }
   int i, j, d, h, k;  #ifdef DEBUG
   double **out, cov[NCOVMAX];          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   double **newm;          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
           for(j=1;j<=n;j++){
   /* Hstepm could be zero and should return the unit matrix */            printf(" %.12e",xit[j]);
   for (i=1;i<=nlstate+ndeath;i++)            fprintf(ficlog," %.12e",xit[j]);
     for (j=1;j<=nlstate+ndeath;j++){          }
       oldm[i][j]=(i==j ? 1.0 : 0.0);          printf("\n");
       po[i][j][0]=(i==j ? 1.0 : 0.0);          fprintf(ficlog,"\n");
     }  #endif
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */        }
   for(h=1; h <=nhstepm; h++){      } 
     for(d=1; d <=hstepm; d++){    } 
       newm=savm;  } 
       /* Covariates have to be included here again */  
       cov[1]=1.;  /**** Prevalence limit (stable prevalence)  ****************/
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;  
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
       for (k=1; k<=cptcovage;k++)  {
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
       for (k=1; k<=cptcovprod;k++)       matrix by transitions matrix until convergence is reached */
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  
     int i, ii,j,k;
     double min, max, maxmin, maxmax,sumnew=0.;
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/    double **matprod2();
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/    double **out, cov[NCOVMAX], **pmij();
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,    double **newm;
                    pmij(pmmij,cov,ncovmodel,x,nlstate));    double agefin, delaymax=50 ; /* Max number of years to converge */
       savm=oldm;  
       oldm=newm;    for (ii=1;ii<=nlstate+ndeath;ii++)
     }      for (j=1;j<=nlstate+ndeath;j++){
     for(i=1; i<=nlstate+ndeath; i++)        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       for(j=1;j<=nlstate+ndeath;j++) {      }
         po[i][j][h]=newm[i][j];  
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);     cov[1]=1.;
          */   
       }   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   } /* end h */    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
   return po;      newm=savm;
 }      /* Covariates have to be included here again */
        cov[2]=agefin;
     
 /*************** log-likelihood *************/        for (k=1; k<=cptcovn;k++) {
 double func( double *x)          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
 {          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
   int i, ii, j, k, mi, d, kk;        }
   double l, ll[NLSTATEMAX], cov[NCOVMAX];        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   double **out;        for (k=1; k<=cptcovprod;k++)
   double sw; /* Sum of weights */          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   double lli; /* Individual log likelihood */  
   int s1, s2;        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
   long ipmx;        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
   /*extern weight */        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
   /* We are differentiating ll according to initial status */      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/  
   /*for(i=1;i<imx;i++)      savm=oldm;
     printf(" %d\n",s[4][i]);      oldm=newm;
   */      maxmax=0.;
   cov[1]=1.;      for(j=1;j<=nlstate;j++){
         min=1.;
   for(k=1; k<=nlstate; k++) ll[k]=0.;        max=0.;
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){        for(i=1; i<=nlstate; i++) {
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];          sumnew=0;
     for(mi=1; mi<= wav[i]-1; mi++){          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
       for (ii=1;ii<=nlstate+ndeath;ii++)          prlim[i][j]= newm[i][j]/(1-sumnew);
         for (j=1;j<=nlstate+ndeath;j++){          max=FMAX(max,prlim[i][j]);
           oldm[ii][j]=(ii==j ? 1.0 : 0.0);          min=FMIN(min,prlim[i][j]);
           savm[ii][j]=(ii==j ? 1.0 : 0.0);        }
         }        maxmin=max-min;
       for(d=0; d<dh[mi][i]; d++){        maxmax=FMAX(maxmax,maxmin);
         newm=savm;      }
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;      if(maxmax < ftolpl){
         for (kk=1; kk<=cptcovage;kk++) {        return prlim;
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];      }
         }    }
          }
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,  
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));  /*************** transition probabilities ***************/ 
         savm=oldm;  
         oldm=newm;  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
          {
            double s1, s2;
       } /* end mult */    /*double t34;*/
          int i,j,j1, nc, ii, jj;
       s1=s[mw[mi][i]][i];  
       s2=s[mw[mi+1][i]][i];      for(i=1; i<= nlstate; i++){
       if( s2 > nlstate){      for(j=1; j<i;j++){
         /* i.e. if s2 is a death state and if the date of death is known then the contribution        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
            to the likelihood is the probability to die between last step unit time and current          /*s2 += param[i][j][nc]*cov[nc];*/
            step unit time, which is also the differences between probability to die before dh          s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
            and probability to die before dh-stepm .          /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/
            In version up to 0.92 likelihood was computed        }
            as if date of death was unknown. Death was treated as any other        ps[i][j]=s2;
            health state: the date of the interview describes the actual state        /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/
            and not the date of a change in health state. The former idea was      }
            to consider that at each interview the state was recorded      for(j=i+1; j<=nlstate+ndeath;j++){
            (healthy, disable or death) and IMaCh was corrected; but when we        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
            introduced the exact date of death then we should have modified          s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
            the contribution of an exact death to the likelihood. This new          /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/
            contribution is smaller and very dependent of the step unit        }
            stepm. It is no more the probability to die between last interview        ps[i][j]=s2;
            and month of death but the probability to survive from last      }
            interview up to one month before death multiplied by the    }
            probability to die within a month. Thanks to Chris      /*ps[3][2]=1;*/
            Jackson for correcting this bug.  Former versions increased  
            mortality artificially. The bad side is that we add another loop    for(i=1; i<= nlstate; i++){
            which slows down the processing. The difference can be up to 10%       s1=0;
            lower mortality.      for(j=1; j<i; j++)
         */        s1+=exp(ps[i][j]);
         lli=log(out[s1][s2] - savm[s1][s2]);      for(j=i+1; j<=nlstate+ndeath; j++)
       }else{        s1+=exp(ps[i][j]);
         lli=log(out[s1][s2]); /* or     lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); */      ps[i][i]=1./(s1+1.);
         /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/      for(j=1; j<i; j++)
       }        ps[i][j]= exp(ps[i][j])*ps[i][i];
       ipmx +=1;      for(j=i+1; j<=nlstate+ndeath; j++)
       sw += weight[i];        ps[i][j]= exp(ps[i][j])*ps[i][i];
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;      /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
       /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d lli=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],lli,weight[i],out[s1][s2],savm[s1][s2]);*/    } /* end i */
     } /* end of wave */  
   } /* end of individual */    for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
       for(jj=1; jj<= nlstate+ndeath; jj++){
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];        ps[ii][jj]=0;
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */        ps[ii][ii]=1;
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */      }
   /*exit(0);*/    }
   return -l;  
 }  
     /*   for(ii=1; ii<= nlstate+ndeath; ii++){
       for(jj=1; jj<= nlstate+ndeath; jj++){
 /*********** Maximum Likelihood Estimation ***************/       printf("%lf ",ps[ii][jj]);
      }
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))      printf("\n ");
 {      }
   int i,j, iter;      printf("\n ");printf("%lf ",cov[2]);*/
   double **xi,*delti;  /*
   double fret;    for(i=1; i<= npar; i++) printf("%f ",x[i]);
   xi=matrix(1,npar,1,npar);    goto end;*/
   for (i=1;i<=npar;i++)      return ps;
     for (j=1;j<=npar;j++)  }
       xi[i][j]=(i==j ? 1.0 : 0.0);  
   printf("Powell\n");  /**************** Product of 2 matrices ******************/
   powell(p,xi,npar,ftol,&iter,&fret,func);  
   double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));  {
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
        b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
 }    /* in, b, out are matrice of pointers which should have been initialized 
        before: only the contents of out is modified. The function returns
 /**** Computes Hessian and covariance matrix ***/       a pointer to pointers identical to out */
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))    long i, j, k;
 {    for(i=nrl; i<= nrh; i++)
   double  **a,**y,*x,pd;      for(k=ncolol; k<=ncoloh; k++)
   double **hess;        for(j=ncl,out[i][k]=0.; j<=nch; j++)
   int i, j,jk;          out[i][k] +=in[i][j]*b[j][k];
   int *indx;  
     return out;
   double hessii(double p[], double delta, int theta, double delti[]);  }
   double hessij(double p[], double delti[], int i, int j);  
   void lubksb(double **a, int npar, int *indx, double b[]) ;  
   void ludcmp(double **a, int npar, int *indx, double *d) ;  /************* Higher Matrix Product ***************/
   
   hess=matrix(1,npar,1,npar);  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
   {
   printf("\nCalculation of the hessian matrix. Wait...\n");    /* Computes the transition matrix starting at age 'age' over 
   for (i=1;i<=npar;i++){       'nhstepm*hstepm*stepm' months (i.e. until
     printf("%d",i);fflush(stdout);       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
     hess[i][i]=hessii(p,ftolhess,i,delti);       nhstepm*hstepm matrices. 
     /*printf(" %f ",p[i]);*/       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
     /*printf(" %lf ",hess[i][i]);*/       (typically every 2 years instead of every month which is too big 
   }       for the memory).
         Model is determined by parameters x and covariates have to be 
   for (i=1;i<=npar;i++) {       included manually here. 
     for (j=1;j<=npar;j++)  {  
       if (j>i) {       */
         printf(".%d%d",i,j);fflush(stdout);  
         hess[i][j]=hessij(p,delti,i,j);    int i, j, d, h, k;
         hess[j][i]=hess[i][j];        double **out, cov[NCOVMAX];
         /*printf(" %lf ",hess[i][j]);*/    double **newm;
       }  
     }    /* Hstepm could be zero and should return the unit matrix */
   }    for (i=1;i<=nlstate+ndeath;i++)
   printf("\n");      for (j=1;j<=nlstate+ndeath;j++){
         oldm[i][j]=(i==j ? 1.0 : 0.0);
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");        po[i][j][0]=(i==j ? 1.0 : 0.0);
        }
   a=matrix(1,npar,1,npar);    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   y=matrix(1,npar,1,npar);    for(h=1; h <=nhstepm; h++){
   x=vector(1,npar);      for(d=1; d <=hstepm; d++){
   indx=ivector(1,npar);        newm=savm;
   for (i=1;i<=npar;i++)        /* Covariates have to be included here again */
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];        cov[1]=1.;
   ludcmp(a,npar,indx,&pd);        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
         for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   for (j=1;j<=npar;j++) {        for (k=1; k<=cptcovage;k++)
     for (i=1;i<=npar;i++) x[i]=0;          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
     x[j]=1;        for (k=1; k<=cptcovprod;k++)
     lubksb(a,npar,indx,x);          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
     for (i=1;i<=npar;i++){  
       matcov[i][j]=x[i];  
     }        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
   }        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
   printf("\n#Hessian matrix#\n");                     pmij(pmmij,cov,ncovmodel,x,nlstate));
   for (i=1;i<=npar;i++) {        savm=oldm;
     for (j=1;j<=npar;j++) {        oldm=newm;
       printf("%.3e ",hess[i][j]);      }
     }      for(i=1; i<=nlstate+ndeath; i++)
     printf("\n");        for(j=1;j<=nlstate+ndeath;j++) {
   }          po[i][j][h]=newm[i][j];
           /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
   /* Recompute Inverse */           */
   for (i=1;i<=npar;i++)        }
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];    } /* end h */
   ludcmp(a,npar,indx,&pd);    return po;
   }
   /*  printf("\n#Hessian matrix recomputed#\n");  
   
   for (j=1;j<=npar;j++) {  /*************** log-likelihood *************/
     for (i=1;i<=npar;i++) x[i]=0;  double func( double *x)
     x[j]=1;  {
     lubksb(a,npar,indx,x);    int i, ii, j, k, mi, d, kk;
     for (i=1;i<=npar;i++){    double l, ll[NLSTATEMAX], cov[NCOVMAX];
       y[i][j]=x[i];    double **out;
       printf("%.3e ",y[i][j]);    double sw; /* Sum of weights */
     }    double lli; /* Individual log likelihood */
     printf("\n");    int s1, s2;
   }    double bbh, survp;
   */    long ipmx;
     /*extern weight */
   free_matrix(a,1,npar,1,npar);    /* We are differentiating ll according to initial status */
   free_matrix(y,1,npar,1,npar);    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   free_vector(x,1,npar);    /*for(i=1;i<imx;i++) 
   free_ivector(indx,1,npar);      printf(" %d\n",s[4][i]);
   free_matrix(hess,1,npar,1,npar);    */
     cov[1]=1.;
   
 }    for(k=1; k<=nlstate; k++) ll[k]=0.;
   
 /*************** hessian matrix ****************/    if(mle==1){
 double hessii( double x[], double delta, int theta, double delti[])      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 {        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   int i;        for(mi=1; mi<= wav[i]-1; mi++){
   int l=1, lmax=20;          for (ii=1;ii<=nlstate+ndeath;ii++)
   double k1,k2;            for (j=1;j<=nlstate+ndeath;j++){
   double p2[NPARMAX+1];              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   double res;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;            }
   double fx;          for(d=0; d<dh[mi][i]; d++){
   int k=0,kmax=10;            newm=savm;
   double l1;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             for (kk=1; kk<=cptcovage;kk++) {
   fx=func(x);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   for (i=1;i<=npar;i++) p2[i]=x[i];            }
   for(l=0 ; l <=lmax; l++){            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     l1=pow(10,l);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     delts=delt;            savm=oldm;
     for(k=1 ; k <kmax; k=k+1){            oldm=newm;
       delt = delta*(l1*k);          } /* end mult */
       p2[theta]=x[theta] +delt;        
       k1=func(p2)-fx;          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
       p2[theta]=x[theta]-delt;          /* But now since version 0.9 we anticipate for bias and large stepm.
       k2=func(p2)-fx;           * If stepm is larger than one month (smallest stepm) and if the exact delay 
       /*res= (k1-2.0*fx+k2)/delt/delt; */           * (in months) between two waves is not a multiple of stepm, we rounded to 
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */           * the nearest (and in case of equal distance, to the lowest) interval but now
                 * we keep into memory the bias bh[mi][i] and also the previous matrix product
 #ifdef DEBUG           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);           * probability in order to take into account the bias as a fraction of the way
 #endif           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */           * -stepm/2 to stepm/2 .
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){           * For stepm=1 the results are the same as for previous versions of Imach.
         k=kmax;           * For stepm > 1 the results are less biased than in previous versions. 
       }           */
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */          s1=s[mw[mi][i]][i];
         k=kmax; l=lmax*10.;          s2=s[mw[mi+1][i]][i];
       }          bbh=(double)bh[mi][i]/(double)stepm; 
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){          /* bias is positive if real duration
         delts=delt;           * is higher than the multiple of stepm and negative otherwise.
       }           */
     }          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
   }          if( s2 > nlstate){ 
   delti[theta]=delts;            /* i.e. if s2 is a death state and if the date of death is known then the contribution
   return res;               to the likelihood is the probability to die between last step unit time and current 
                 step unit time, which is also the differences between probability to die before dh 
 }               and probability to die before dh-stepm . 
                In version up to 0.92 likelihood was computed
 double hessij( double x[], double delti[], int thetai,int thetaj)          as if date of death was unknown. Death was treated as any other
 {          health state: the date of the interview describes the actual state
   int i;          and not the date of a change in health state. The former idea was
   int l=1, l1, lmax=20;          to consider that at each interview the state was recorded
   double k1,k2,k3,k4,res,fx;          (healthy, disable or death) and IMaCh was corrected; but when we
   double p2[NPARMAX+1];          introduced the exact date of death then we should have modified
   int k;          the contribution of an exact death to the likelihood. This new
           contribution is smaller and very dependent of the step unit
   fx=func(x);          stepm. It is no more the probability to die between last interview
   for (k=1; k<=2; k++) {          and month of death but the probability to survive from last
     for (i=1;i<=npar;i++) p2[i]=x[i];          interview up to one month before death multiplied by the
     p2[thetai]=x[thetai]+delti[thetai]/k;          probability to die within a month. Thanks to Chris
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;          Jackson for correcting this bug.  Former versions increased
     k1=func(p2)-fx;          mortality artificially. The bad side is that we add another loop
            which slows down the processing. The difference can be up to 10%
     p2[thetai]=x[thetai]+delti[thetai]/k;          lower mortality.
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;            */
     k2=func(p2)-fx;            lli=log(out[s1][s2] - savm[s1][s2]);
            }else{
     p2[thetai]=x[thetai]-delti[thetai]/k;            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
     k3=func(p2)-fx;          } 
            /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
     p2[thetai]=x[thetai]-delti[thetai]/k;          /*if(lli ==000.0)*/
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
     k4=func(p2)-fx;          ipmx +=1;
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */          sw += weight[i];
 #ifdef DEBUG          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);        } /* end of wave */
 #endif      } /* end of individual */
   }    }  else if(mle==2){
   return res;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(mi=1; mi<= wav[i]-1; mi++){
 /************** Inverse of matrix **************/          for (ii=1;ii<=nlstate+ndeath;ii++)
 void ludcmp(double **a, int n, int *indx, double *d)            for (j=1;j<=nlstate+ndeath;j++){
 {              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   int i,imax,j,k;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   double big,dum,sum,temp;            }
   double *vv;          for(d=0; d<=dh[mi][i]; d++){
              newm=savm;
   vv=vector(1,n);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   *d=1.0;            for (kk=1; kk<=cptcovage;kk++) {
   for (i=1;i<=n;i++) {              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     big=0.0;            }
     for (j=1;j<=n;j++)            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       if ((temp=fabs(a[i][j])) > big) big=temp;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");            savm=oldm;
     vv[i]=1.0/big;            oldm=newm;
   }          } /* end mult */
   for (j=1;j<=n;j++) {        
     for (i=1;i<j;i++) {          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
       sum=a[i][j];          /* But now since version 0.9 we anticipate for bias and large stepm.
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];           * If stepm is larger than one month (smallest stepm) and if the exact delay 
       a[i][j]=sum;           * (in months) between two waves is not a multiple of stepm, we rounded to 
     }           * the nearest (and in case of equal distance, to the lowest) interval but now
     big=0.0;           * we keep into memory the bias bh[mi][i] and also the previous matrix product
     for (i=j;i<=n;i++) {           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
       sum=a[i][j];           * probability in order to take into account the bias as a fraction of the way
       for (k=1;k<j;k++)           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
         sum -= a[i][k]*a[k][j];           * -stepm/2 to stepm/2 .
       a[i][j]=sum;           * For stepm=1 the results are the same as for previous versions of Imach.
       if ( (dum=vv[i]*fabs(sum)) >= big) {           * For stepm > 1 the results are less biased than in previous versions. 
         big=dum;           */
         imax=i;          s1=s[mw[mi][i]][i];
       }          s2=s[mw[mi+1][i]][i];
     }          bbh=(double)bh[mi][i]/(double)stepm; 
     if (j != imax) {          /* bias is positive if real duration
       for (k=1;k<=n;k++) {           * is higher than the multiple of stepm and negative otherwise.
         dum=a[imax][k];           */
         a[imax][k]=a[j][k];          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
         a[j][k]=dum;          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
       }          /*lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.-+bh)*out[s1][s2])); */ /* exponential interpolation */
       *d = -(*d);          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
       vv[imax]=vv[j];          /*if(lli ==000.0)*/
     }          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
     indx[j]=imax;          ipmx +=1;
     if (a[j][j] == 0.0) a[j][j]=TINY;          sw += weight[i];
     if (j != n) {          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       dum=1.0/(a[j][j]);        } /* end of wave */
       for (i=j+1;i<=n;i++) a[i][j] *= dum;      } /* end of individual */
     }    }  else if(mle==3){  /* exponential inter-extrapolation */
   }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   free_vector(vv,1,n);  /* Doesn't work */        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 ;        for(mi=1; mi<= wav[i]-1; mi++){
 }          for (ii=1;ii<=nlstate+ndeath;ii++)
             for (j=1;j<=nlstate+ndeath;j++){
 void lubksb(double **a, int n, int *indx, double b[])              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 {              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   int i,ii=0,ip,j;            }
   double sum;          for(d=0; d<dh[mi][i]; d++){
              newm=savm;
   for (i=1;i<=n;i++) {            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     ip=indx[i];            for (kk=1; kk<=cptcovage;kk++) {
     sum=b[ip];              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     b[ip]=b[i];            }
     if (ii)            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     else if (sum) ii=i;            savm=oldm;
     b[i]=sum;            oldm=newm;
   }          } /* end mult */
   for (i=n;i>=1;i--) {        
     sum=b[i];          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];          /* But now since version 0.9 we anticipate for bias and large stepm.
     b[i]=sum/a[i][i];           * If stepm is larger than one month (smallest stepm) and if the exact delay 
   }           * (in months) between two waves is not a multiple of stepm, we rounded to 
 }           * the nearest (and in case of equal distance, to the lowest) interval but now
            * we keep into memory the bias bh[mi][i] and also the previous matrix product
 /************ Frequencies ********************/           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)           * probability in order to take into account the bias as a fraction of the way
 {  /* Some frequencies */           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
             * -stepm/2 to stepm/2 .
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;           * For stepm=1 the results are the same as for previous versions of Imach.
   double ***freq; /* Frequencies */           * For stepm > 1 the results are less biased than in previous versions. 
   double *pp;           */
   double pos, k2, dateintsum=0,k2cpt=0;          s1=s[mw[mi][i]][i];
   FILE *ficresp;          s2=s[mw[mi+1][i]][i];
   char fileresp[FILENAMELENGTH];          bbh=(double)bh[mi][i]/(double)stepm; 
            /* bias is positive if real duration
   pp=vector(1,nlstate);           * is higher than the multiple of stepm and negative otherwise.
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);           */
   strcpy(fileresp,"p");          /* lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); */ /* linear interpolation */
   strcat(fileresp,fileres);          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   if((ficresp=fopen(fileresp,"w"))==NULL) {          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
     printf("Problem with prevalence resultfile: %s\n", fileresp);          /*if(lli ==000.0)*/
     exit(0);          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
   }          ipmx +=1;
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);          sw += weight[i];
   j1=0;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
          } /* end of wave */
   j=cptcoveff;      } /* end of individual */
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    }else if (mle==4){  /* ml=4 no inter-extrapolation */
        for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   for(k1=1; k1<=j;k1++){        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     for(i1=1; i1<=ncodemax[k1];i1++){        for(mi=1; mi<= wav[i]-1; mi++){
       j1++;          for (ii=1;ii<=nlstate+ndeath;ii++)
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);            for (j=1;j<=nlstate+ndeath;j++){
         scanf("%d", i);*/              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       for (i=-1; i<=nlstate+ndeath; i++)                savm[ii][j]=(ii==j ? 1.0 : 0.0);
         for (jk=-1; jk<=nlstate+ndeath; jk++)              }
           for(m=agemin; m <= agemax+3; m++)          for(d=0; d<dh[mi][i]; d++){
             freq[i][jk][m]=0;            newm=savm;
                  cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       dateintsum=0;            for (kk=1; kk<=cptcovage;kk++) {
       k2cpt=0;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       for (i=1; i<=imx; i++) {            }
         bool=1;          
         if  (cptcovn>0) {            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
           for (z1=1; z1<=cptcoveff; z1++)                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])            savm=oldm;
               bool=0;            oldm=newm;
         }          } /* end mult */
         if (bool==1) {        
           for(m=firstpass; m<=lastpass; m++){          s1=s[mw[mi][i]][i];
             k2=anint[m][i]+(mint[m][i]/12.);          s2=s[mw[mi+1][i]][i];
             if ((k2>=dateprev1) && (k2<=dateprev2)) {          if( s2 > nlstate){ 
               if(agev[m][i]==0) agev[m][i]=agemax+1;            lli=log(out[s1][s2] - savm[s1][s2]);
               if(agev[m][i]==1) agev[m][i]=agemax+2;          }else{
               if (m<lastpass) {            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];          }
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];          ipmx +=1;
               }          sw += weight[i];
                        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
                 dateintsum=dateintsum+k2;        } /* end of wave */
                 k2cpt++;      } /* end of individual */
               }    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
             }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         }        for(mi=1; mi<= wav[i]-1; mi++){
       }          for (ii=1;ii<=nlstate+ndeath;ii++)
                    for (j=1;j<=nlstate+ndeath;j++){
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               savm[ii][j]=(ii==j ? 1.0 : 0.0);
       if  (cptcovn>0) {            }
         fprintf(ficresp, "\n#********** Variable ");          for(d=0; d<dh[mi][i]; d++){
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);            newm=savm;
         fprintf(ficresp, "**********\n#");            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       }            for (kk=1; kk<=cptcovage;kk++) {
       for(i=1; i<=nlstate;i++)              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);            }
       fprintf(ficresp, "\n");          
                  out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       for(i=(int)agemin; i <= (int)agemax+3; i++){                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         if(i==(int)agemax+3)            savm=oldm;
           printf("Total");            oldm=newm;
         else          } /* end mult */
           printf("Age %d", i);        
         for(jk=1; jk <=nlstate ; jk++){          s1=s[mw[mi][i]][i];
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)          s2=s[mw[mi+1][i]][i];
             pp[jk] += freq[jk][m][i];          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
         }          ipmx +=1;
         for(jk=1; jk <=nlstate ; jk++){          sw += weight[i];
           for(m=-1, pos=0; m <=0 ; m++)          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
             pos += freq[jk][m][i];          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
           if(pp[jk]>=1.e-10)        } /* end of wave */
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);      } /* end of individual */
           else    } /* End of if */
             printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
         }    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
     l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
         for(jk=1; jk <=nlstate ; jk++){    return -l;
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)  }
             pp[jk] += freq[jk][m][i];  
         }  /*************** log-likelihood *************/
   double funcone( double *x)
         for(jk=1,pos=0; jk <=nlstate ; jk++)  {
           pos += pp[jk];    /* Same as likeli but slower because of a lot of printf and if */
         for(jk=1; jk <=nlstate ; jk++){    int i, ii, j, k, mi, d, kk;
           if(pos>=1.e-5)    double l, ll[NLSTATEMAX], cov[NCOVMAX];
             printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);    double **out;
           else    double lli; /* Individual log likelihood */
             printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);    double llt;
           if( i <= (int) agemax){    int s1, s2;
             if(pos>=1.e-5){    double bbh, survp;
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);    /*extern weight */
               probs[i][jk][j1]= pp[jk]/pos;    /* We are differentiating ll according to initial status */
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
             }    /*for(i=1;i<imx;i++) 
             else      printf(" %d\n",s[4][i]);
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);    */
           }    cov[1]=1.;
         }  
            for(k=1; k<=nlstate; k++) ll[k]=0.;
         for(jk=-1; jk <=nlstate+ndeath; jk++)  
           for(m=-1; m <=nlstate+ndeath; m++)    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
             if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         if(i <= (int) agemax)      for(mi=1; mi<= wav[i]-1; mi++){
           fprintf(ficresp,"\n");        for (ii=1;ii<=nlstate+ndeath;ii++)
         printf("\n");          for (j=1;j<=nlstate+ndeath;j++){
       }            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     }            savm[ii][j]=(ii==j ? 1.0 : 0.0);
   }          }
   dateintmean=dateintsum/k2cpt;        for(d=0; d<dh[mi][i]; d++){
            newm=savm;
   fclose(ficresp);          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);          for (kk=1; kk<=cptcovage;kk++) {
   free_vector(pp,1,nlstate);            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
            }
   /* End of Freq */          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 }                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           savm=oldm;
 /************ Prevalence ********************/          oldm=newm;
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)        } /* end mult */
 {  /* Some frequencies */        
          s1=s[mw[mi][i]][i];
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;        s2=s[mw[mi+1][i]][i];
   double ***freq; /* Frequencies */        bbh=(double)bh[mi][i]/(double)stepm; 
   double *pp;        /* bias is positive if real duration
   double pos, k2;         * is higher than the multiple of stepm and negative otherwise.
          */
   pp=vector(1,nlstate);        if( s2 > nlstate && (mle <5) ){  /* Jackson */
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);          lli=log(out[s1][s2] - savm[s1][s2]);
          } else if (mle==1){
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   j1=0;        } else if(mle==2){
            lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
   j=cptcoveff;        } else if(mle==3){  /* exponential inter-extrapolation */
   if (cptcovn<1) {j=1;ncodemax[1]=1;}          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
          } else if (mle==4){  /* mle=4 no inter-extrapolation */
  for(k1=1; k1<=j;k1++){          lli=log(out[s1][s2]); /* Original formula */
     for(i1=1; i1<=ncodemax[k1];i1++){        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
       j1++;          lli=log(out[s1][s2]); /* Original formula */
          } /* End of if */
       for (i=-1; i<=nlstate+ndeath; i++)          ipmx +=1;
         for (jk=-1; jk<=nlstate+ndeath; jk++)          sw += weight[i];
           for(m=agemin; m <= agemax+3; m++)        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
             freq[i][jk][m]=0;  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
              if(globpr){
       for (i=1; i<=imx; i++) {          fprintf(ficresilk,"%9d %6d %1d %1d %1d %1d %3d %10.6f %6.4f\
         bool=1;   %10.6f %10.6f %10.6f ", \
         if  (cptcovn>0) {                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
           for (z1=1; z1<=cptcoveff; z1++)                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
               bool=0;            llt +=ll[k]*gipmx/gsw;
         }            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
         if (bool==1) {          }
           for(m=firstpass; m<=lastpass; m++){          fprintf(ficresilk," %10.6f\n", -llt);
             k2=anint[m][i]+(mint[m][i]/12.);        }
             if ((k2>=dateprev1) && (k2<=dateprev2)) {      } /* end of wave */
               if(agev[m][i]==0) agev[m][i]=agemax+1;    } /* end of individual */
               if(agev[m][i]==1) agev[m][i]=agemax+2;    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
               if (m<lastpass)    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
                 if (calagedate>0) freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
               else    if(globpr==0){ /* First time we count the contributions and weights */
                freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];      gipmx=ipmx;
                freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];      gsw=sw;
             }    }
           }    return -l;
         }  }
       }  
         for(i=(int)agemin; i <= (int)agemax+3; i++){  char *subdirf(char fileres[])
           for(jk=1; jk <=nlstate ; jk++){  {
             for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)    
               pp[jk] += freq[jk][m][i];    strcpy(tmpout,optionfilefiname);
           }    strcat(tmpout,"/"); /* Add to the right */
           for(jk=1; jk <=nlstate ; jk++){    strcat(tmpout,fileres);
             for(m=-1, pos=0; m <=0 ; m++)    return tmpout;
             pos += freq[jk][m][i];  }
         }  
          char *subdirf2(char fileres[], char *preop)
          for(jk=1; jk <=nlstate ; jk++){  {
            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)    
              pp[jk] += freq[jk][m][i];    strcpy(tmpout,optionfilefiname);
          }    strcat(tmpout,"/");
              strcat(tmpout,preop);
          for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];    strcat(tmpout,fileres);
     return tmpout;
          for(jk=1; jk <=nlstate ; jk++){            }
            if( i <= (int) agemax){  char *subdirf3(char fileres[], char *preop, char *preop2)
              if(pos>=1.e-5){  {
                probs[i][jk][j1]= pp[jk]/pos;    
              }    strcpy(tmpout,optionfilefiname);
            }    strcat(tmpout,"/");
          }    strcat(tmpout,preop);
              strcat(tmpout,preop2);
         }    strcat(tmpout,fileres);
     }    return tmpout;
   }  }
   
    void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);  {
   free_vector(pp,1,nlstate);    /* This routine should help understanding what is done with 
         the selection of individuals/waves and
 }  /* End of Freq */       to check the exact contribution to the likelihood.
        Plotting could be done.
 /************* Waves Concatenation ***************/     */
     int k;
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)  
 {    if(*globpri !=0){ /* Just counts and sums, no printings */
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.      strcpy(fileresilk,"ilk"); 
      Death is a valid wave (if date is known).      strcat(fileresilk,fileres);
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]        printf("Problem with resultfile: %s\n", fileresilk);
      and mw[mi+1][i]. dh depends on stepm.        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
      */      }
       fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
   int i, mi, m;      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
      double sum=0., jmean=0.;*/      for(k=1; k<=nlstate; k++) 
         fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
   int j, k=0,jk, ju, jl;      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
   double sum=0.;    }
   jmin=1e+5;  
   jmax=-1;    *fretone=(*funcone)(p);
   jmean=0.;    if(*globpri !=0){
   for(i=1; i<=imx; i++){      fclose(ficresilk);
     mi=0;      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
     m=firstpass;      fflush(fichtm); 
     while(s[m][i] <= nlstate){    } 
       if(s[m][i]>=1)    return;
         mw[++mi][i]=m;  }
       if(m >=lastpass)  
         break;  
       else  /*********** Maximum Likelihood Estimation ***************/
         m++;  
     }/* end while */  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
     if (s[m][i] > nlstate){  {
       mi++;     /* Death is another wave */    int i,j, iter;
       /* if(mi==0)  never been interviewed correctly before death */    double **xi;
          /* Only death is a correct wave */    double fret;
       mw[mi][i]=m;    double fretone; /* Only one call to likelihood */
     }    char filerespow[FILENAMELENGTH];
     xi=matrix(1,npar,1,npar);
     wav[i]=mi;    for (i=1;i<=npar;i++)
     if(mi==0)      for (j=1;j<=npar;j++)
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);        xi[i][j]=(i==j ? 1.0 : 0.0);
   }    printf("Powell\n");  fprintf(ficlog,"Powell\n");
     strcpy(filerespow,"pow"); 
   for(i=1; i<=imx; i++){    strcat(filerespow,fileres);
     for(mi=1; mi<wav[i];mi++){    if((ficrespow=fopen(filerespow,"w"))==NULL) {
       if (stepm <=0)      printf("Problem with resultfile: %s\n", filerespow);
         dh[mi][i]=1;      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       else{    }
         if (s[mw[mi+1][i]][i] > nlstate) {    fprintf(ficrespow,"# Powell\n# iter -2*LL");
           if (agedc[i] < 2*AGESUP) {    for (i=1;i<=nlstate;i++)
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);      for(j=1;j<=nlstate+ndeath;j++)
           if(j==0) j=1;  /* Survives at least one month after exam */        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
           k=k+1;    fprintf(ficrespow,"\n");
           if (j >= jmax) jmax=j;  
           if (j <= jmin) jmin=j;    powell(p,xi,npar,ftol,&iter,&fret,func);
           sum=sum+j;  
           /*if (j<0) printf("j=%d num=%d \n",j,i); */    fclose(ficrespow);
           }    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
         }    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
         else{    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));  
           k=k+1;  }
           if (j >= jmax) jmax=j;  
           else if (j <= jmin)jmin=j;  /**** Computes Hessian and covariance matrix ***/
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
           sum=sum+j;  {
         }    double  **a,**y,*x,pd;
         jk= j/stepm;    double **hess;
         jl= j -jk*stepm;    int i, j,jk;
         ju= j -(jk+1)*stepm;    int *indx;
         if(jl <= -ju)  
           dh[mi][i]=jk;    double hessii(double p[], double delta, int theta, double delti[]);
         else    double hessij(double p[], double delti[], int i, int j);
           dh[mi][i]=jk+1;    void lubksb(double **a, int npar, int *indx, double b[]) ;
         if(dh[mi][i]==0)    void ludcmp(double **a, int npar, int *indx, double *d) ;
           dh[mi][i]=1; /* At least one step */  
       }    hess=matrix(1,npar,1,npar);
     }  
   }    printf("\nCalculation of the hessian matrix. Wait...\n");
   jmean=sum/k;    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);    for (i=1;i<=npar;i++){
  }      printf("%d",i);fflush(stdout);
 /*********** Tricode ****************************/      fprintf(ficlog,"%d",i);fflush(ficlog);
 void tricode(int *Tvar, int **nbcode, int imx)      hess[i][i]=hessii(p,ftolhess,i,delti);
 {      /*printf(" %f ",p[i]);*/
   int Ndum[20],ij=1, k, j, i;      /*printf(" %lf ",hess[i][i]);*/
   int cptcode=0;    }
   cptcoveff=0;    
      for (i=1;i<=npar;i++) {
   for (k=0; k<19; k++) Ndum[k]=0;      for (j=1;j<=npar;j++)  {
   for (k=1; k<=7; k++) ncodemax[k]=0;        if (j>i) { 
           printf(".%d%d",i,j);fflush(stdout);
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
     for (i=1; i<=imx; i++) {          hess[i][j]=hessij(p,delti,i,j);
       ij=(int)(covar[Tvar[j]][i]);          hess[j][i]=hess[i][j];    
       Ndum[ij]++;          /*printf(" %lf ",hess[i][j]);*/
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/        }
       if (ij > cptcode) cptcode=ij;      }
     }    }
     printf("\n");
     for (i=0; i<=cptcode; i++) {    fprintf(ficlog,"\n");
       if(Ndum[i]!=0) ncodemax[j]++;  
     }    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
     ij=1;    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
     
     a=matrix(1,npar,1,npar);
     for (i=1; i<=ncodemax[j]; i++) {    y=matrix(1,npar,1,npar);
       for (k=0; k<=19; k++) {    x=vector(1,npar);
         if (Ndum[k] != 0) {    indx=ivector(1,npar);
           nbcode[Tvar[j]][ij]=k;    for (i=1;i<=npar;i++)
                for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
           ij++;    ludcmp(a,npar,indx,&pd);
         }  
         if (ij > ncodemax[j]) break;    for (j=1;j<=npar;j++) {
       }        for (i=1;i<=npar;i++) x[i]=0;
     }      x[j]=1;
   }        lubksb(a,npar,indx,x);
       for (i=1;i<=npar;i++){ 
  for (k=0; k<19; k++) Ndum[k]=0;        matcov[i][j]=x[i];
       }
  for (i=1; i<=ncovmodel-2; i++) {    }
       ij=Tvar[i];  
       Ndum[ij]++;    printf("\n#Hessian matrix#\n");
     }    fprintf(ficlog,"\n#Hessian matrix#\n");
     for (i=1;i<=npar;i++) { 
  ij=1;      for (j=1;j<=npar;j++) { 
  for (i=1; i<=10; i++) {        printf("%.3e ",hess[i][j]);
    if((Ndum[i]!=0) && (i<=ncovcol)){        fprintf(ficlog,"%.3e ",hess[i][j]);
      Tvaraff[ij]=i;      }
      ij++;      printf("\n");
    }      fprintf(ficlog,"\n");
  }    }
    
     cptcoveff=ij-1;    /* Recompute Inverse */
 }    for (i=1;i<=npar;i++)
       for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
 /*********** Health Expectancies ****************/    ludcmp(a,npar,indx,&pd);
   
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )    /*  printf("\n#Hessian matrix recomputed#\n");
   
 {    for (j=1;j<=npar;j++) {
   /* Health expectancies */      for (i=1;i<=npar;i++) x[i]=0;
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;      x[j]=1;
   double age, agelim, hf;      lubksb(a,npar,indx,x);
   double ***p3mat,***varhe;      for (i=1;i<=npar;i++){ 
   double **dnewm,**doldm;        y[i][j]=x[i];
   double *xp;        printf("%.3e ",y[i][j]);
   double **gp, **gm;        fprintf(ficlog,"%.3e ",y[i][j]);
   double ***gradg, ***trgradg;      }
   int theta;      printf("\n");
       fprintf(ficlog,"\n");
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);    }
   xp=vector(1,npar);    */
   dnewm=matrix(1,nlstate*2,1,npar);  
   doldm=matrix(1,nlstate*2,1,nlstate*2);    free_matrix(a,1,npar,1,npar);
      free_matrix(y,1,npar,1,npar);
   fprintf(ficreseij,"# Health expectancies\n");    free_vector(x,1,npar);
   fprintf(ficreseij,"# Age");    free_ivector(indx,1,npar);
   for(i=1; i<=nlstate;i++)    free_matrix(hess,1,npar,1,npar);
     for(j=1; j<=nlstate;j++)  
       fprintf(ficreseij," %1d-%1d (SE)",i,j);  
   fprintf(ficreseij,"\n");  }
   
   if(estepm < stepm){  /*************** hessian matrix ****************/
     printf ("Problem %d lower than %d\n",estepm, stepm);  double hessii( double x[], double delta, int theta, double delti[])
   }  {
   else  hstepm=estepm;      int i;
   /* We compute the life expectancy from trapezoids spaced every estepm months    int l=1, lmax=20;
    * This is mainly to measure the difference between two models: for example    double k1,k2;
    * if stepm=24 months pijx are given only every 2 years and by summing them    double p2[NPARMAX+1];
    * we are calculating an estimate of the Life Expectancy assuming a linear    double res;
    * progression inbetween and thus overestimating or underestimating according    double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;
    * to the curvature of the survival function. If, for the same date, we    double fx;
    * estimate the model with stepm=1 month, we can keep estepm to 24 months    int k=0,kmax=10;
    * to compare the new estimate of Life expectancy with the same linear    double l1;
    * hypothesis. A more precise result, taking into account a more precise  
    * curvature will be obtained if estepm is as small as stepm. */    fx=func(x);
     for (i=1;i<=npar;i++) p2[i]=x[i];
   /* For example we decided to compute the life expectancy with the smallest unit */    for(l=0 ; l <=lmax; l++){
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.      l1=pow(10,l);
      nhstepm is the number of hstepm from age to agelim      delts=delt;
      nstepm is the number of stepm from age to agelin.      for(k=1 ; k <kmax; k=k+1){
      Look at hpijx to understand the reason of that which relies in memory size        delt = delta*(l1*k);
      and note for a fixed period like estepm months */        p2[theta]=x[theta] +delt;
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the        k1=func(p2)-fx;
      survival function given by stepm (the optimization length). Unfortunately it        p2[theta]=x[theta]-delt;
      means that if the survival funtion is printed only each two years of age and if        k2=func(p2)-fx;
      you sum them up and add 1 year (area under the trapezoids) you won't get the same        /*res= (k1-2.0*fx+k2)/delt/delt; */
      results. So we changed our mind and took the option of the best precision.        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
   */        
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */  #ifdef DEBUG
         printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   agelim=AGESUP;        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */  #endif
     /* nhstepm age range expressed in number of stepm */        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
     nstepm=(int) rint((agelim-age)*YEARM/stepm);        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */          k=kmax;
     /* if (stepm >= YEARM) hstepm=1;*/        }
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          k=kmax; l=lmax*10.;
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);        }
     gp=matrix(0,nhstepm,1,nlstate*2);        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
     gm=matrix(0,nhstepm,1,nlstate*2);          delts=delt;
         }
     /* Computed by stepm unit matrices, product of hstepm matrices, stored      }
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */    }
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);      delti[theta]=delts;
      return res; 
     
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */  }
   
     /* Computing Variances of health expectancies */  double hessij( double x[], double delti[], int thetai,int thetaj)
   {
      for(theta=1; theta <=npar; theta++){    int i;
       for(i=1; i<=npar; i++){    int l=1, l1, lmax=20;
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    double k1,k2,k3,k4,res,fx;
       }    double p2[NPARMAX+1];
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      int k;
    
       cptj=0;    fx=func(x);
       for(j=1; j<= nlstate; j++){    for (k=1; k<=2; k++) {
         for(i=1; i<=nlstate; i++){      for (i=1;i<=npar;i++) p2[i]=x[i];
           cptj=cptj+1;      p2[thetai]=x[thetai]+delti[thetai]/k;
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;      k1=func(p2)-fx;
           }    
         }      p2[thetai]=x[thetai]+delti[thetai]/k;
       }      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
            k2=func(p2)-fx;
          
       for(i=1; i<=npar; i++)      p2[thetai]=x[thetai]-delti[thetai]/k;
         xp[i] = x[i] - (i==theta ?delti[theta]:0);      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        k3=func(p2)-fx;
          
       cptj=0;      p2[thetai]=x[thetai]-delti[thetai]/k;
       for(j=1; j<= nlstate; j++){      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
         for(i=1;i<=nlstate;i++){      k4=func(p2)-fx;
           cptj=cptj+1;      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){  #ifdef DEBUG
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
           }      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
         }  #endif
       }    }
          return res;
      }
   
       for(j=1; j<= nlstate*2; j++)  /************** Inverse of matrix **************/
         for(h=0; h<=nhstepm-1; h++){  void ludcmp(double **a, int n, int *indx, double *d) 
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];  { 
         }    int i,imax,j,k; 
     double big,dum,sum,temp; 
      }    double *vv; 
       
 /* End theta */    vv=vector(1,n); 
     *d=1.0; 
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);    for (i=1;i<=n;i++) { 
       big=0.0; 
      for(h=0; h<=nhstepm-1; h++)      for (j=1;j<=n;j++) 
       for(j=1; j<=nlstate*2;j++)        if ((temp=fabs(a[i][j])) > big) big=temp; 
         for(theta=1; theta <=npar; theta++)      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
         trgradg[h][j][theta]=gradg[h][theta][j];      vv[i]=1.0/big; 
     } 
     for (j=1;j<=n;j++) { 
      for(i=1;i<=nlstate*2;i++)      for (i=1;i<j;i++) { 
       for(j=1;j<=nlstate*2;j++)        sum=a[i][j]; 
         varhe[i][j][(int)age] =0.;        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
         a[i][j]=sum; 
     for(h=0;h<=nhstepm-1;h++){      } 
       for(k=0;k<=nhstepm-1;k++){      big=0.0; 
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);      for (i=j;i<=n;i++) { 
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);        sum=a[i][j]; 
         for(i=1;i<=nlstate*2;i++)        for (k=1;k<j;k++) 
           for(j=1;j<=nlstate*2;j++)          sum -= a[i][k]*a[k][j]; 
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;        a[i][j]=sum; 
       }        if ( (dum=vv[i]*fabs(sum)) >= big) { 
     }          big=dum; 
           imax=i; 
              } 
     /* Computing expectancies */      } 
     for(i=1; i<=nlstate;i++)      if (j != imax) { 
       for(j=1; j<=nlstate;j++)        for (k=1;k<=n;k++) { 
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){          dum=a[imax][k]; 
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;          a[imax][k]=a[j][k]; 
                    a[j][k]=dum; 
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/        } 
         *d = -(*d); 
         }        vv[imax]=vv[j]; 
       } 
     fprintf(ficreseij,"%3.0f",age );      indx[j]=imax; 
     cptj=0;      if (a[j][j] == 0.0) a[j][j]=TINY; 
     for(i=1; i<=nlstate;i++)      if (j != n) { 
       for(j=1; j<=nlstate;j++){        dum=1.0/(a[j][j]); 
         cptj++;        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );      } 
       }    } 
     fprintf(ficreseij,"\n");    free_vector(vv,1,n);  /* Doesn't work */
      ;
     free_matrix(gm,0,nhstepm,1,nlstate*2);  } 
     free_matrix(gp,0,nhstepm,1,nlstate*2);  
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);  void lubksb(double **a, int n, int *indx, double b[]) 
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);  { 
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    int i,ii=0,ip,j; 
   }    double sum; 
   free_vector(xp,1,npar);   
   free_matrix(dnewm,1,nlstate*2,1,npar);    for (i=1;i<=n;i++) { 
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);      ip=indx[i]; 
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);      sum=b[ip]; 
 }      b[ip]=b[i]; 
       if (ii) 
 /************ Variance ******************/        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm)      else if (sum) ii=i; 
 {      b[i]=sum; 
   /* Variance of health expectancies */    } 
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    for (i=n;i>=1;i--) { 
   double **newm;      sum=b[i]; 
   double **dnewm,**doldm;      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
   int i, j, nhstepm, hstepm, h, nstepm ;      b[i]=sum/a[i][i]; 
   int k, cptcode;    } 
   double *xp;  } 
   double **gp, **gm;  
   double ***gradg, ***trgradg;  /************ Frequencies ********************/
   double ***p3mat;  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint)
   double age,agelim, hf;  {  /* Some frequencies */
   int theta;    
     int i, m, jk, k1,i1, j1, bool, z1,z2,j;
    fprintf(ficresvij,"# Covariances of life expectancies\n");    int first;
   fprintf(ficresvij,"# Age");    double ***freq; /* Frequencies */
   for(i=1; i<=nlstate;i++)    double *pp, **prop;
     for(j=1; j<=nlstate;j++)    double pos,posprop, k2, dateintsum=0,k2cpt=0;
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);    FILE *ficresp;
   fprintf(ficresvij,"\n");    char fileresp[FILENAMELENGTH];
     
   xp=vector(1,npar);    pp=vector(1,nlstate);
   dnewm=matrix(1,nlstate,1,npar);    prop=matrix(1,nlstate,iagemin,iagemax+3);
   doldm=matrix(1,nlstate,1,nlstate);    strcpy(fileresp,"p");
      strcat(fileresp,fileres);
   if(estepm < stepm){    if((ficresp=fopen(fileresp,"w"))==NULL) {
     printf ("Problem %d lower than %d\n",estepm, stepm);      printf("Problem with prevalence resultfile: %s\n", fileresp);
   }      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
   else  hstepm=estepm;        exit(0);
   /* For example we decided to compute the life expectancy with the smallest unit */    }
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.    freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);
      nhstepm is the number of hstepm from age to agelim    j1=0;
      nstepm is the number of stepm from age to agelin.    
      Look at hpijx to understand the reason of that which relies in memory size    j=cptcoveff;
      and note for a fixed period like k years */    if (cptcovn<1) {j=1;ncodemax[1]=1;}
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the  
      survival function given by stepm (the optimization length). Unfortunately it    first=1;
      means that if the survival funtion is printed only each two years of age and if  
      you sum them up and add 1 year (area under the trapezoids) you won't get the same    for(k1=1; k1<=j;k1++){
      results. So we changed our mind and took the option of the best precision.      for(i1=1; i1<=ncodemax[k1];i1++){
   */        j1++;
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
   agelim = AGESUP;          scanf("%d", i);*/
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */        for (i=-1; i<=nlstate+ndeath; i++)  
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */          for (jk=-1; jk<=nlstate+ndeath; jk++)  
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */            for(m=iagemin; m <= iagemax+3; m++)
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);              freq[i][jk][m]=0;
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);  
     gp=matrix(0,nhstepm,1,nlstate);      for (i=1; i<=nlstate; i++)  
     gm=matrix(0,nhstepm,1,nlstate);        for(m=iagemin; m <= iagemax+3; m++)
           prop[i][m]=0;
     for(theta=1; theta <=npar; theta++){        
       for(i=1; i<=npar; i++){ /* Computes gradient */        dateintsum=0;
         xp[i] = x[i] + (i==theta ?delti[theta]:0);        k2cpt=0;
       }        for (i=1; i<=imx; i++) {
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            bool=1;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          if  (cptcovn>0) {
             for (z1=1; z1<=cptcoveff; z1++) 
       if (popbased==1) {              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
         for(i=1; i<=nlstate;i++)                bool=0;
           prlim[i][i]=probs[(int)age][i][ij];          }
       }          if (bool==1){
              for(m=firstpass; m<=lastpass; m++){
       for(j=1; j<= nlstate; j++){              k2=anint[m][i]+(mint[m][i]/12.);
         for(h=0; h<=nhstepm; h++){              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)                if(agev[m][i]==0) agev[m][i]=iagemax+1;
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];                if(agev[m][i]==1) agev[m][i]=iagemax+2;
         }                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
       }                if (m<lastpass) {
                      freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
       for(i=1; i<=npar; i++) /* Computes gradient */                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
         xp[i] = x[i] - (i==theta ?delti[theta]:0);                }
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);                  
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
                    dateintsum=dateintsum+k2;
       if (popbased==1) {                  k2cpt++;
         for(i=1; i<=nlstate;i++)                }
           prlim[i][i]=probs[(int)age][i][ij];                /*}*/
       }            }
           }
       for(j=1; j<= nlstate; j++){        }
         for(h=0; h<=nhstepm; h++){         
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];  
         }        if  (cptcovn>0) {
       }          fprintf(ficresp, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       for(j=1; j<= nlstate; j++)          fprintf(ficresp, "**********\n#");
         for(h=0; h<=nhstepm; h++){        }
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];        for(i=1; i<=nlstate;i++) 
         }          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
     } /* End theta */        fprintf(ficresp, "\n");
         
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);        for(i=iagemin; i <= iagemax+3; i++){
           if(i==iagemax+3){
     for(h=0; h<=nhstepm; h++)            fprintf(ficlog,"Total");
       for(j=1; j<=nlstate;j++)          }else{
         for(theta=1; theta <=npar; theta++)            if(first==1){
           trgradg[h][j][theta]=gradg[h][theta][j];              first=0;
               printf("See log file for details...\n");
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */            }
     for(i=1;i<=nlstate;i++)            fprintf(ficlog,"Age %d", i);
       for(j=1;j<=nlstate;j++)          }
         vareij[i][j][(int)age] =0.;          for(jk=1; jk <=nlstate ; jk++){
             for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
     for(h=0;h<=nhstepm;h++){              pp[jk] += freq[jk][m][i]; 
       for(k=0;k<=nhstepm;k++){          }
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);          for(jk=1; jk <=nlstate ; jk++){
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);            for(m=-1, pos=0; m <=0 ; m++)
         for(i=1;i<=nlstate;i++)              pos += freq[jk][m][i];
           for(j=1;j<=nlstate;j++)            if(pp[jk]>=1.e-10){
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;              if(first==1){
       }              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
     }              }
               fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
     fprintf(ficresvij,"%.0f ",age );            }else{
     for(i=1; i<=nlstate;i++)              if(first==1)
       for(j=1; j<=nlstate;j++){                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
       }            }
     fprintf(ficresvij,"\n");          }
     free_matrix(gp,0,nhstepm,1,nlstate);  
     free_matrix(gm,0,nhstepm,1,nlstate);          for(jk=1; jk <=nlstate ; jk++){
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);              pp[jk] += freq[jk][m][i];
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          }       
   } /* End age */          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
              pos += pp[jk];
   free_vector(xp,1,npar);            posprop += prop[jk][i];
   free_matrix(doldm,1,nlstate,1,npar);          }
   free_matrix(dnewm,1,nlstate,1,nlstate);          for(jk=1; jk <=nlstate ; jk++){
             if(pos>=1.e-5){
 }              if(first==1)
                 printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
 /************ Variance of prevlim ******************/              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)            }else{
 {              if(first==1)
   /* Variance of prevalence limit */                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
   double **newm;            }
   double **dnewm,**doldm;            if( i <= iagemax){
   int i, j, nhstepm, hstepm;              if(pos>=1.e-5){
   int k, cptcode;                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
   double *xp;                /*probs[i][jk][j1]= pp[jk]/pos;*/
   double *gp, *gm;                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
   double **gradg, **trgradg;              }
   double age,agelim;              else
   int theta;                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
                }
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");          }
   fprintf(ficresvpl,"# Age");          
   for(i=1; i<=nlstate;i++)          for(jk=-1; jk <=nlstate+ndeath; jk++)
       fprintf(ficresvpl," %1d-%1d",i,i);            for(m=-1; m <=nlstate+ndeath; m++)
   fprintf(ficresvpl,"\n");              if(freq[jk][m][i] !=0 ) {
               if(first==1)
   xp=vector(1,npar);                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
   dnewm=matrix(1,nlstate,1,npar);                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
   doldm=matrix(1,nlstate,1,nlstate);              }
            if(i <= iagemax)
   hstepm=1*YEARM; /* Every year of age */            fprintf(ficresp,"\n");
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */          if(first==1)
   agelim = AGESUP;            printf("Others in log...\n");
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */          fprintf(ficlog,"\n");
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */        }
     if (stepm >= YEARM) hstepm=1;      }
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    }
     gradg=matrix(1,npar,1,nlstate);    dateintmean=dateintsum/k2cpt; 
     gp=vector(1,nlstate);   
     gm=vector(1,nlstate);    fclose(ficresp);
     free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);
     for(theta=1; theta <=npar; theta++){    free_vector(pp,1,nlstate);
       for(i=1; i<=npar; i++){ /* Computes gradient */    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    /* End of Freq */
       }  }
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  
       for(i=1;i<=nlstate;i++)  /************ Prevalence ********************/
         gp[i] = prlim[i][i];  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
      {  
       for(i=1; i<=npar; i++) /* Computes gradient */    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
         xp[i] = x[i] - (i==theta ?delti[theta]:0);       in each health status at the date of interview (if between dateprev1 and dateprev2).
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);       We still use firstpass and lastpass as another selection.
       for(i=1;i<=nlstate;i++)    */
         gm[i] = prlim[i][i];   
     int i, m, jk, k1, i1, j1, bool, z1,z2,j;
       for(i=1;i<=nlstate;i++)    double ***freq; /* Frequencies */
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];    double *pp, **prop;
     } /* End theta */    double pos,posprop; 
     double  y2; /* in fractional years */
     trgradg =matrix(1,nlstate,1,npar);    int iagemin, iagemax;
   
     for(j=1; j<=nlstate;j++)    iagemin= (int) agemin;
       for(theta=1; theta <=npar; theta++)    iagemax= (int) agemax;
         trgradg[j][theta]=gradg[theta][j];    /*pp=vector(1,nlstate);*/
     prop=matrix(1,nlstate,iagemin,iagemax+3); 
     for(i=1;i<=nlstate;i++)    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
       varpl[i][(int)age] =0.;    j1=0;
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);    
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);    j=cptcoveff;
     for(i=1;i<=nlstate;i++)    if (cptcovn<1) {j=1;ncodemax[1]=1;}
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */    
     for(k1=1; k1<=j;k1++){
     fprintf(ficresvpl,"%.0f ",age );      for(i1=1; i1<=ncodemax[k1];i1++){
     for(i=1; i<=nlstate;i++)        j1++;
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));        
     fprintf(ficresvpl,"\n");        for (i=1; i<=nlstate; i++)  
     free_vector(gp,1,nlstate);          for(m=iagemin; m <= iagemax+3; m++)
     free_vector(gm,1,nlstate);            prop[i][m]=0.0;
     free_matrix(gradg,1,npar,1,nlstate);       
     free_matrix(trgradg,1,nlstate,1,npar);        for (i=1; i<=imx; i++) { /* Each individual */
   } /* End age */          bool=1;
           if  (cptcovn>0) {
   free_vector(xp,1,npar);            for (z1=1; z1<=cptcoveff; z1++) 
   free_matrix(doldm,1,nlstate,1,npar);              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
   free_matrix(dnewm,1,nlstate,1,nlstate);                bool=0;
           } 
 }          if (bool==1) { 
             for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
 /************ Variance of one-step probabilities  ******************/              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
 void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
 {                if(agev[m][i]==0) agev[m][i]=iagemax+1;
   int i, j, i1, k1, j1, z1;                if(agev[m][i]==1) agev[m][i]=iagemax+2;
   int k=0, cptcode;                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
   double **dnewm,**doldm;                if (s[m][i]>0 && s[m][i]<=nlstate) { 
   double *xp;                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
   double *gp, *gm;                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
   double **gradg, **trgradg;                  prop[s[m][i]][iagemax+3] += weight[i]; 
   double age,agelim, cov[NCOVMAX];                } 
   int theta;              }
   char fileresprob[FILENAMELENGTH];            } /* end selection of waves */
           }
   strcpy(fileresprob,"prob");        }
   strcat(fileresprob,fileres);        for(i=iagemin; i <= iagemax+3; i++){  
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {          
     printf("Problem with resultfile: %s\n", fileresprob);          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
   }            posprop += prop[jk][i]; 
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);          } 
    
 fprintf(ficresprob,"#One-step probabilities and standard deviation in parentheses\n");          for(jk=1; jk <=nlstate ; jk++){     
   fprintf(ficresprob,"# Age");            if( i <=  iagemax){ 
   for(i=1; i<=nlstate;i++)              if(posprop>=1.e-5){ 
     for(j=1; j<=(nlstate+ndeath);j++)                probs[i][jk][j1]= prop[jk][i]/posprop;
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);              } 
             } 
           }/* end jk */ 
   fprintf(ficresprob,"\n");        }/* end i */ 
       } /* end i1 */
     } /* end k1 */
   xp=vector(1,npar);    
   dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
   doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));    /*free_vector(pp,1,nlstate);*/
      free_matrix(prop,1,nlstate, iagemin,iagemax+3);
   cov[1]=1;  }  /* End of prevalence */
   j=cptcoveff;  
   if (cptcovn<1) {j=1;ncodemax[1]=1;}  /************* Waves Concatenation ***************/
   j1=0;  
   for(k1=1; k1<=1;k1++){  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
     for(i1=1; i1<=ncodemax[k1];i1++){  {
     j1++;    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
        Death is a valid wave (if date is known).
     if  (cptcovn>0) {       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
       fprintf(ficresprob, "\n#********** Variable ");       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);       and mw[mi+1][i]. dh depends on stepm.
       fprintf(ficresprob, "**********\n#");       */
     }  
        int i, mi, m;
       for (age=bage; age<=fage; age ++){    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
         cov[2]=age;       double sum=0., jmean=0.;*/
         for (k=1; k<=cptcovn;k++) {    int first;
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];    int j, k=0,jk, ju, jl;
              double sum=0.;
         }    first=0;
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    jmin=1e+5;
         for (k=1; k<=cptcovprod;k++)    jmax=-1;
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    jmean=0.;
            for(i=1; i<=imx; i++){
         gradg=matrix(1,npar,1,9);      mi=0;
         trgradg=matrix(1,9,1,npar);      m=firstpass;
         gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));      while(s[m][i] <= nlstate){
         gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));        if(s[m][i]>=1)
              mw[++mi][i]=m;
         for(theta=1; theta <=npar; theta++){        if(m >=lastpass)
           for(i=1; i<=npar; i++)          break;
             xp[i] = x[i] + (i==theta ?delti[theta]:0);        else
                    m++;
           pmij(pmmij,cov,ncovmodel,xp,nlstate);      }/* end while */
                if (s[m][i] > nlstate){
           k=0;        mi++;     /* Death is another wave */
           for(i=1; i<= (nlstate+ndeath); i++){        /* if(mi==0)  never been interviewed correctly before death */
             for(j=1; j<=(nlstate+ndeath);j++){           /* Only death is a correct wave */
               k=k+1;        mw[mi][i]=m;
               gp[k]=pmmij[i][j];      }
             }  
           }      wav[i]=mi;
                if(mi==0){
           for(i=1; i<=npar; i++)        if(first==0){
             xp[i] = x[i] - (i==theta ?delti[theta]:0);          printf("Warning! None valid information for:%ld line=%d (skipped) and may be others, see log file\n",num[i],i);
              first=1;
           pmij(pmmij,cov,ncovmodel,xp,nlstate);        }
           k=0;        if(first==1){
           for(i=1; i<=(nlstate+ndeath); i++){          fprintf(ficlog,"Warning! None valid information for:%ld line=%d (skipped)\n",num[i],i);
             for(j=1; j<=(nlstate+ndeath);j++){        }
               k=k+1;      } /* end mi==0 */
               gm[k]=pmmij[i][j];    } /* End individuals */
             }  
           }    for(i=1; i<=imx; i++){
            for(mi=1; mi<wav[i];mi++){
           for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)        if (stepm <=0)
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];            dh[mi][i]=1;
         }        else{
           if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
         for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)            if (agedc[i] < 2*AGESUP) {
           for(theta=1; theta <=npar; theta++)              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
             trgradg[j][theta]=gradg[theta][j];              if(j==0) j=1;  /* Survives at least one month after exam */
                      else if(j<0){
         matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
         matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);                j=1; /* Careful Patch */
                        printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
         pmij(pmmij,cov,ncovmodel,x,nlstate);                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                        fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
         k=0;              }
         for(i=1; i<=(nlstate+ndeath); i++){              k=k+1;
           for(j=1; j<=(nlstate+ndeath);j++){              if (j >= jmax) jmax=j;
             k=k+1;              if (j <= jmin) jmin=j;
             gm[k]=pmmij[i][j];              sum=sum+j;
           }              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
         }              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
                  }
      /*printf("\n%d ",(int)age);          }
      for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){          else{
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
      }*/            /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
             k=k+1;
         fprintf(ficresprob,"\n%d ",(int)age);            if (j >= jmax) jmax=j;
             else if (j <= jmin)jmin=j;
         for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++)            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
           fprintf(ficresprob,"%.3e (%.3e) ",gm[i],sqrt(doldm[i][i]));            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
              if(j<0){
       }              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     }              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));            }
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));            sum=sum+j;
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);          }
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);          jk= j/stepm;
   }          jl= j -jk*stepm;
   free_vector(xp,1,npar);          ju= j -(jk+1)*stepm;
   fclose(ficresprob);          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
              if(jl==0){
 }              dh[mi][i]=jk;
               bh[mi][i]=0;
 /******************* Printing html file ***********/            }else{ /* We want a negative bias in order to only have interpolation ie
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \                    * at the price of an extra matrix product in likelihood */
  int lastpass, int stepm, int weightopt, char model[],\              dh[mi][i]=jk+1;
  int imx,int jmin, int jmax, double jmeanint,char optionfile[], \              bh[mi][i]=ju;
  char optionfilehtm[],char rfileres[], char optionfilegnuplot[],\            }
  char version[], int popforecast, int estepm ){          }else{
   int jj1, k1, i1, cpt;            if(jl <= -ju){
   FILE *fichtm;              dh[mi][i]=jk;
   /*char optionfilehtm[FILENAMELENGTH];*/              bh[mi][i]=jl;       /* bias is positive if real duration
                                    * is higher than the multiple of stepm and negative otherwise.
   strcpy(optionfilehtm,optionfile);                                   */
   strcat(optionfilehtm,".htm");            }
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {            else{
     printf("Problem with %s \n",optionfilehtm), exit(0);              dh[mi][i]=jk+1;
   }              bh[mi][i]=ju;
             }
  fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n            if(dh[mi][i]==0){
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n              dh[mi][i]=1; /* At least one step */
 \n              bh[mi][i]=ju; /* At least one step */
 Total number of observations=%d <br>\n              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n            }
 <hr  size=\"2\" color=\"#EC5E5E\">          } /* end if mle */
  <ul><li>Outputs files<br>\n        }
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n      } /* end wave */
  - Gnuplot file name: <a href=\"%s\">%s</a><br>\n    }
  - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n    jmean=sum/k;
  - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>\n    printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
  - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>\n    fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
  - Life expectancies by age and initial health status (estepm=%2d months): <a href=\"e%s\">e%s</a> <br>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot,fileres,fileres,fileres,fileres,fileres,fileres,estepm,fileres,fileres);   }
   
  fprintf(fichtm,"\n  /*********** Tricode ****************************/
  - Parameter file with estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>\n  void tricode(int *Tvar, int **nbcode, int imx)
   - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n  {
  - Variances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n    
  - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>\n    int Ndum[20],ij=1, k, j, i, maxncov=19;
  - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);    int cptcode=0;
     cptcoveff=0; 
  if(popforecast==1) fprintf(fichtm,"\n   
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n    for (k=0; k<maxncov; k++) Ndum[k]=0;
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n    for (k=1; k<=7; k++) ncodemax[k]=0;
         <br>",fileres,fileres,fileres,fileres);  
  else    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
 fprintf(fichtm," <li>Graphs</li><p>");                                 modality*/ 
         ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
  m=cptcoveff;        Ndum[ij]++; /*store the modality */
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
         if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
  jj1=0;                                         Tvar[j]. If V=sex and male is 0 and 
  for(k1=1; k1<=m;k1++){                                         female is 1, then  cptcode=1.*/
    for(i1=1; i1<=ncodemax[k1];i1++){      }
        jj1++;  
        if (cptcovn > 0) {      for (i=0; i<=cptcode; i++) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
          for (cpt=1; cpt<=cptcoveff;cpt++)      }
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);  
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");      ij=1; 
        }      for (i=1; i<=ncodemax[j]; i++) {
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>        for (k=0; k<= maxncov; k++) {
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);              if (Ndum[k] != 0) {
        for(cpt=1; cpt<nlstate;cpt++){            nbcode[Tvar[j]][ij]=k; 
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);            
        }            ij++;
     for(cpt=1; cpt<=nlstate;cpt++) {          }
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident          if (ij > ncodemax[j]) break; 
 interval) in state (%d): v%s%d%d.gif <br>        }  
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);        } 
      }    }  
      for(cpt=1; cpt<=nlstate;cpt++) {  
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>   for (k=0; k< maxncov; k++) Ndum[k]=0;
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);  
      }   for (i=1; i<=ncovmodel-2; i++) { 
      fprintf(fichtm,"\n<br>- Total life expectancy by age and     /* Listing of all covariables in staement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
 health expectancies in states (1) and (2): e%s%d.gif<br>     ij=Tvar[i];
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);     Ndum[ij]++;
 fprintf(fichtm,"\n</body>");   }
    }  
    }   ij=1;
 fclose(fichtm);   for (i=1; i<= maxncov; i++) {
 }     if((Ndum[i]!=0) && (i<=ncovcol)){
        Tvaraff[ij]=i; /*For printing */
 /******************* Gnuplot file **************/       ij++;
 void printinggnuplot(char fileres[],char optionfilefiname[],char optionfile[],char optionfilegnuplot[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){     }
    }
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;   
    cptcoveff=ij-1; /*Number of simple covariates*/
   strcpy(optionfilegnuplot,optionfilefiname);  }
   strcat(optionfilegnuplot,".gp.txt");  
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {  /*********** Health Expectancies ****************/
     printf("Problem with file %s",optionfilegnuplot);  
   }  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )
   
 #ifdef windows  {
     fprintf(ficgp,"cd \"%s\" \n",pathc);    /* Health expectancies */
 #endif    int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
 m=pow(2,cptcoveff);    double age, agelim, hf;
      double ***p3mat,***varhe;
  /* 1eme*/    double **dnewm,**doldm;
   for (cpt=1; cpt<= nlstate ; cpt ++) {    double *xp;
    for (k1=1; k1<= m ; k1 ++) {    double **gp, **gm;
     double ***gradg, ***trgradg;
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);    int theta;
   
 for (i=1; i<= nlstate ; i ++) {    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    xp=vector(1,npar);
   else fprintf(ficgp," \%%*lf (\%%*lf)");    dnewm=matrix(1,nlstate*nlstate,1,npar);
 }    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);    
     for (i=1; i<= nlstate ; i ++) {    fprintf(ficreseij,"# Health expectancies\n");
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    fprintf(ficreseij,"# Age");
   else fprintf(ficgp," \%%*lf (\%%*lf)");    for(i=1; i<=nlstate;i++)
 }      for(j=1; j<=nlstate;j++)
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);        fprintf(ficreseij," %1d-%1d (SE)",i,j);
      for (i=1; i<= nlstate ; i ++) {    fprintf(ficreseij,"\n");
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");  
   else fprintf(ficgp," \%%*lf (\%%*lf)");    if(estepm < stepm){
 }        printf ("Problem %d lower than %d\n",estepm, stepm);
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));    }
     else  hstepm=estepm;   
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);    /* We compute the life expectancy from trapezoids spaced every estepm months
    }     * This is mainly to measure the difference between two models: for example
   }     * if stepm=24 months pijx are given only every 2 years and by summing them
   /*2 eme*/     * we are calculating an estimate of the Life Expectancy assuming a linear 
      * progression in between and thus overestimating or underestimating according
   for (k1=1; k1<= m ; k1 ++) {     * to the curvature of the survival function. If, for the same date, we 
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",ageminpar,fage);     * estimate the model with stepm=1 month, we can keep estepm to 24 months
         * to compare the new estimate of Life expectancy with the same linear 
     for (i=1; i<= nlstate+1 ; i ++) {     * hypothesis. A more precise result, taking into account a more precise
       k=2*i;     * curvature will be obtained if estepm is as small as stepm. */
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);  
       for (j=1; j<= nlstate+1 ; j ++) {    /* For example we decided to compute the life expectancy with the smallest unit */
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   else fprintf(ficgp," \%%*lf (\%%*lf)");       nhstepm is the number of hstepm from age to agelim 
 }         nstepm is the number of stepm from age to agelin. 
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");       Look at hpijx to understand the reason of that which relies in memory size
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);       and note for a fixed period like estepm months */
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
       for (j=1; j<= nlstate+1 ; j ++) {       survival function given by stepm (the optimization length). Unfortunately it
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");       means that if the survival funtion is printed only each two years of age and if
         else fprintf(ficgp," \%%*lf (\%%*lf)");       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
 }         results. So we changed our mind and took the option of the best precision.
       fprintf(ficgp,"\" t\"\" w l 0,");    */
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
       for (j=1; j<= nlstate+1 ; j ++) {  
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    agelim=AGESUP;
   else fprintf(ficgp," \%%*lf (\%%*lf)");    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
 }        /* nhstepm age range expressed in number of stepm */
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");      nstepm=(int) rint((agelim-age)*YEARM/stepm); 
       else fprintf(ficgp,"\" t\"\" w l 0,");      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     }      /* if (stepm >= YEARM) hstepm=1;*/
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   }      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
        gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
   /*3eme*/      gp=matrix(0,nhstepm,1,nlstate*nlstate);
       gm=matrix(0,nhstepm,1,nlstate*nlstate);
   for (k1=1; k1<= m ; k1 ++) {  
     for (cpt=1; cpt<= nlstate ; cpt ++) {      /* Computed by stepm unit matrices, product of hstepm matrices, stored
       k=2+nlstate*(2*cpt-2);         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);   
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");  
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);  
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");      /* Computing Variances of health expectancies */
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);  
        for(theta=1; theta <=npar; theta++){
 */        for(i=1; i<=npar; i++){ 
       for (i=1; i< nlstate ; i ++) {          xp[i] = x[i] + (i==theta ?delti[theta]:0);
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);        }
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
       }    
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);        cptj=0;
     }        for(j=1; j<= nlstate; j++){
     }          for(i=1; i<=nlstate; i++){
              cptj=cptj+1;
   /* CV preval stat */            for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
     for (k1=1; k1<= m ; k1 ++) {              gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
     for (cpt=1; cpt<nlstate ; cpt ++) {            }
       k=3;          }
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);        }
        
       for (i=1; i< nlstate ; i ++)       
         fprintf(ficgp,"+$%d",k+i+1);        for(i=1; i<=npar; i++) 
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
              hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
       l=3+(nlstate+ndeath)*cpt;        
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);        cptj=0;
       for (i=1; i< nlstate ; i ++) {        for(j=1; j<= nlstate; j++){
         l=3+(nlstate+ndeath)*cpt;          for(i=1;i<=nlstate;i++){
         fprintf(ficgp,"+$%d",l+i+1);            cptj=cptj+1;
       }            for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);    
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);              gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
     }            }
   }            }
          }
   /* proba elementaires */        for(j=1; j<= nlstate*nlstate; j++)
    for(i=1,jk=1; i <=nlstate; i++){          for(h=0; h<=nhstepm-1; h++){
     for(k=1; k <=(nlstate+ndeath); k++){            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
       if (k != i) {          }
         for(j=1; j <=ncovmodel; j++){       } 
             
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);  /* End theta */
           jk++;  
           fprintf(ficgp,"\n");       trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
         }  
       }       for(h=0; h<=nhstepm-1; h++)
     }        for(j=1; j<=nlstate*nlstate;j++)
     }          for(theta=1; theta <=npar; theta++)
             trgradg[h][j][theta]=gradg[h][theta][j];
     for(jk=1; jk <=m; jk++) {       
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);  
    i=1;       for(i=1;i<=nlstate*nlstate;i++)
    for(k2=1; k2<=nlstate; k2++) {        for(j=1;j<=nlstate*nlstate;j++)
      k3=i;          varhe[i][j][(int)age] =0.;
      for(k=1; k<=(nlstate+ndeath); k++) {  
        if (k != k2){       printf("%d|",(int)age);fflush(stdout);
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
 ij=1;       for(h=0;h<=nhstepm-1;h++){
         for(j=3; j <=ncovmodel; j++) {        for(k=0;k<=nhstepm-1;k++){
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
             fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
             ij++;          for(i=1;i<=nlstate*nlstate;i++)
           }            for(j=1;j<=nlstate*nlstate;j++)
           else              varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);        }
         }      }
           fprintf(ficgp,")/(1");      /* Computing expectancies */
              for(i=1; i<=nlstate;i++)
         for(k1=1; k1 <=nlstate; k1++){          for(j=1; j<=nlstate;j++)
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
 ij=1;            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
           for(j=3; j <=ncovmodel; j++){            
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
             fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);  
             ij++;          }
           }  
           else      fprintf(ficreseij,"%3.0f",age );
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);      cptj=0;
           }      for(i=1; i<=nlstate;i++)
           fprintf(ficgp,")");        for(j=1; j<=nlstate;j++){
         }          cptj++;
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);          fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");        }
         i=i+ncovmodel;      fprintf(ficreseij,"\n");
        }     
      }      free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
    }      free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
    }      free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
          free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   fclose(ficgp);    }
 }  /* end gnuplot */    printf("\n");
     fprintf(ficlog,"\n");
   
 /*************** Moving average **************/    free_vector(xp,1,npar);
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
     free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
   int i, cpt, cptcod;    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)  }
       for (i=1; i<=nlstate;i++)  
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)  /************ Variance ******************/
           mobaverage[(int)agedeb][i][cptcod]=0.;  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav)
      {
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){    /* Variance of health expectancies */
       for (i=1; i<=nlstate;i++){    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    /* double **newm;*/
           for (cpt=0;cpt<=4;cpt++){    double **dnewm,**doldm;
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];    double **dnewmp,**doldmp;
           }    int i, j, nhstepm, hstepm, h, nstepm ;
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;    int k, cptcode;
         }    double *xp;
       }    double **gp, **gm;  /* for var eij */
     }    double ***gradg, ***trgradg; /*for var eij */
        double **gradgp, **trgradgp; /* for var p point j */
 }    double *gpp, *gmp; /* for var p point j */
     double **varppt; /* for var p point j nlstate to nlstate+ndeath */
     double ***p3mat;
 /************** Forecasting ******************/    double age,agelim, hf;
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){    double ***mobaverage;
      int theta;
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;    char digit[4];
   int *popage;    char digitp[25];
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;  
   double *popeffectif,*popcount;    char fileresprobmorprev[FILENAMELENGTH];
   double ***p3mat;  
   char fileresf[FILENAMELENGTH];    if(popbased==1){
       if(mobilav!=0)
  agelim=AGESUP;        strcpy(digitp,"-populbased-mobilav-");
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;      else strcpy(digitp,"-populbased-nomobil-");
     }
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    else 
        strcpy(digitp,"-stablbased-");
    
   strcpy(fileresf,"f");    if (mobilav!=0) {
   strcat(fileresf,fileres);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   if((ficresf=fopen(fileresf,"w"))==NULL) {      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
     printf("Problem with forecast resultfile: %s\n", fileresf);        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
   }        printf(" Error in movingaverage mobilav=%d\n",mobilav);
   printf("Computing forecasting: result on file '%s' \n", fileresf);      }
     }
   if (cptcoveff==0) ncodemax[cptcoveff]=1;  
     strcpy(fileresprobmorprev,"prmorprev"); 
   if (mobilav==1) {    sprintf(digit,"%-d",ij);
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
     movingaverage(agedeb, fage, ageminpar, mobaverage);    strcat(fileresprobmorprev,digit); /* Tvar to be done */
   }    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
     strcat(fileresprobmorprev,fileres);
   stepsize=(int) (stepm+YEARM-1)/YEARM;    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
   if (stepm<=12) stepsize=1;      printf("Problem with resultfile: %s\n", fileresprobmorprev);
        fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
   agelim=AGESUP;    }
      printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   hstepm=1;    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   hstepm=hstepm/stepm;    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
   yp1=modf(dateintmean,&yp);    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
   anprojmean=yp;    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
   yp2=modf((yp1*12),&yp);      fprintf(ficresprobmorprev," p.%-d SE",j);
   mprojmean=yp;      for(i=1; i<=nlstate;i++)
   yp1=modf((yp2*30.5),&yp);        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
   jprojmean=yp;    }  
   if(jprojmean==0) jprojmean=1;    fprintf(ficresprobmorprev,"\n");
   if(mprojmean==0) jprojmean=1;    fprintf(ficgp,"\n# Routine varevsij");
      fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
    /*   } */
   for(cptcov=1;cptcov<=i2;cptcov++){    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){  
       k=k+1;    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
       fprintf(ficresf,"\n#******");    fprintf(ficresvij,"# Age");
       for(j=1;j<=cptcoveff;j++) {    for(i=1; i<=nlstate;i++)
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      for(j=1; j<=nlstate;j++)
       }        fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
       fprintf(ficresf,"******\n");    fprintf(ficresvij,"\n");
       fprintf(ficresf,"# StartingAge FinalAge");  
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);    xp=vector(1,npar);
          dnewm=matrix(1,nlstate,1,npar);
          doldm=matrix(1,nlstate,1,nlstate);
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
         fprintf(ficresf,"\n");    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);    
     gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    gpp=vector(nlstate+1,nlstate+ndeath);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    gmp=vector(nlstate+1,nlstate+ndeath);
           nhstepm = nhstepm/hstepm;    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
              
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    if(estepm < stepm){
           oldm=oldms;savm=savms;      printf ("Problem %d lower than %d\n",estepm, stepm);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      }
            else  hstepm=estepm;   
           for (h=0; h<=nhstepm; h++){    /* For example we decided to compute the life expectancy with the smallest unit */
             if (h==(int) (calagedate+YEARM*cpt)) {    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);       nhstepm is the number of hstepm from age to agelim 
             }       nstepm is the number of stepm from age to agelin. 
             for(j=1; j<=nlstate+ndeath;j++) {       Look at hpijx to understand the reason of that which relies in memory size
               kk1=0.;kk2=0;       and note for a fixed period like k years */
               for(i=1; i<=nlstate;i++) {                  /* We decided (b) to get a life expectancy respecting the most precise curvature of the
                 if (mobilav==1)       survival function given by stepm (the optimization length). Unfortunately it
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];       means that if the survival funtion is printed every two years of age and if
                 else {       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];       results. So we changed our mind and took the option of the best precision.
                 }    */
                    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
               }    agelim = AGESUP;
               if (h==(int)(calagedate+12*cpt)){    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
                 fprintf(ficresf," %.3f", kk1);      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
                              nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
               }      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             }      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
           }      gp=matrix(0,nhstepm,1,nlstate);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      gm=matrix(0,nhstepm,1,nlstate);
         }  
       }  
     }      for(theta=1; theta <=npar; theta++){
   }        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
                  xp[i] = x[i] + (i==theta ?delti[theta]:0);
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        }
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   fclose(ficresf);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
 }  
 /************** Forecasting ******************/        if (popbased==1) {
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){          if(mobilav ==0){
              for(i=1; i<=nlstate;i++)
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;              prlim[i][i]=probs[(int)age][i][ij];
   int *popage;          }else{ /* mobilav */ 
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;            for(i=1; i<=nlstate;i++)
   double *popeffectif,*popcount;              prlim[i][i]=mobaverage[(int)age][i][ij];
   double ***p3mat,***tabpop,***tabpopprev;          }
   char filerespop[FILENAMELENGTH];        }
     
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        for(j=1; j<= nlstate; j++){
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          for(h=0; h<=nhstepm; h++){
   agelim=AGESUP;            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
            }
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);        }
          /* This for computing probability of death (h=1 means
             computed over hstepm matrices product = hstepm*stepm months) 
   strcpy(filerespop,"pop");           as a weighted average of prlim.
   strcat(filerespop,fileres);        */
   if((ficrespop=fopen(filerespop,"w"))==NULL) {        for(j=nlstate+1;j<=nlstate+ndeath;j++){
     printf("Problem with forecast resultfile: %s\n", filerespop);          for(i=1,gpp[j]=0.; i<= nlstate; i++)
   }            gpp[j] += prlim[i][i]*p3mat[i][j][1];
   printf("Computing forecasting: result on file '%s' \n", filerespop);        }    
         /* end probability of death */
   if (cptcoveff==0) ncodemax[cptcoveff]=1;  
         for(i=1; i<=npar; i++) /* Computes gradient x - delta */
   if (mobilav==1) {          xp[i] = x[i] - (i==theta ?delti[theta]:0);
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
     movingaverage(agedeb, fage, ageminpar, mobaverage);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   }   
         if (popbased==1) {
   stepsize=(int) (stepm+YEARM-1)/YEARM;          if(mobilav ==0){
   if (stepm<=12) stepsize=1;            for(i=1; i<=nlstate;i++)
                prlim[i][i]=probs[(int)age][i][ij];
   agelim=AGESUP;          }else{ /* mobilav */ 
              for(i=1; i<=nlstate;i++)
   hstepm=1;              prlim[i][i]=mobaverage[(int)age][i][ij];
   hstepm=hstepm/stepm;          }
          }
   if (popforecast==1) {  
     if((ficpop=fopen(popfile,"r"))==NULL) {        for(j=1; j<= nlstate; j++){
       printf("Problem with population file : %s\n",popfile);exit(0);          for(h=0; h<=nhstepm; h++){
     }            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
     popage=ivector(0,AGESUP);              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
     popeffectif=vector(0,AGESUP);          }
     popcount=vector(0,AGESUP);        }
            /* This for computing probability of death (h=1 means
     i=1;             computed over hstepm matrices product = hstepm*stepm months) 
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;           as a weighted average of prlim.
            */
     imx=i;        for(j=nlstate+1;j<=nlstate+ndeath;j++){
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];          for(i=1,gmp[j]=0.; i<= nlstate; i++)
   }           gmp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
   for(cptcov=1;cptcov<=i2;cptcov++){        /* end probability of death */
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){  
       k=k+1;        for(j=1; j<= nlstate; j++) /* vareij */
       fprintf(ficrespop,"\n#******");          for(h=0; h<=nhstepm; h++){
       for(j=1;j<=cptcoveff;j++) {            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          }
       }  
       fprintf(ficrespop,"******\n");        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
       fprintf(ficrespop,"# Age");          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);        }
       if (popforecast==1)  fprintf(ficrespop," [Population]");  
            } /* End theta */
       for (cpt=0; cpt<=0;cpt++) {  
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);        trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
          
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){      for(h=0; h<=nhstepm; h++) /* veij */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);        for(j=1; j<=nlstate;j++)
           nhstepm = nhstepm/hstepm;          for(theta=1; theta <=npar; theta++)
                      trgradg[h][j][theta]=gradg[h][theta][j];
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
           oldm=oldms;savm=savms;      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);          for(theta=1; theta <=npar; theta++)
                  trgradgp[j][theta]=gradgp[theta][j];
           for (h=0; h<=nhstepm; h++){    
             if (h==(int) (calagedate+YEARM*cpt)) {  
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
             }      for(i=1;i<=nlstate;i++)
             for(j=1; j<=nlstate+ndeath;j++) {        for(j=1;j<=nlstate;j++)
               kk1=0.;kk2=0;          vareij[i][j][(int)age] =0.;
               for(i=1; i<=nlstate;i++) {                
                 if (mobilav==1)      for(h=0;h<=nhstepm;h++){
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];        for(k=0;k<=nhstepm;k++){
                 else {          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
                 }          for(i=1;i<=nlstate;i++)
               }            for(j=1;j<=nlstate;j++)
               if (h==(int)(calagedate+12*cpt)){              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;        }
                   /*fprintf(ficrespop," %.3f", kk1);      }
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/    
               }      /* pptj */
             }      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
             for(i=1; i<=nlstate;i++){      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
               kk1=0.;      for(j=nlstate+1;j<=nlstate+ndeath;j++)
                 for(j=1; j<=nlstate;j++){        for(i=nlstate+1;i<=nlstate+ndeath;i++)
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];          varppt[j][i]=doldmp[j][i];
                 }      /* end ppptj */
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];      /*  x centered again */
             }      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
       prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)   
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);      if (popbased==1) {
           }        if(mobilav ==0){
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          for(i=1; i<=nlstate;i++)
         }            prlim[i][i]=probs[(int)age][i][ij];
       }        }else{ /* mobilav */ 
            for(i=1; i<=nlstate;i++)
   /******/            prlim[i][i]=mobaverage[(int)age][i][ij];
         }
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {      }
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);                 
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){      /* This for computing probability of death (h=1 means
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
           nhstepm = nhstepm/hstepm;         as a weighted average of prlim.
                */
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      for(j=nlstate+1;j<=nlstate+ndeath;j++){
           oldm=oldms;savm=savms;        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);            gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
           for (h=0; h<=nhstepm; h++){      }    
             if (h==(int) (calagedate+YEARM*cpt)) {      /* end probability of death */
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);  
             }      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
             for(j=1; j<=nlstate+ndeath;j++) {      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
               kk1=0.;kk2=0;        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
               for(i=1; i<=nlstate;i++) {                      for(i=1; i<=nlstate;i++){
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];              fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
               }        }
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);      } 
             }      fprintf(ficresprobmorprev,"\n");
           }  
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      fprintf(ficresvij,"%.0f ",age );
         }      for(i=1; i<=nlstate;i++)
       }        for(j=1; j<=nlstate;j++){
    }          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
   }        }
        fprintf(ficresvij,"\n");
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      free_matrix(gp,0,nhstepm,1,nlstate);
       free_matrix(gm,0,nhstepm,1,nlstate);
   if (popforecast==1) {      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
     free_ivector(popage,0,AGESUP);      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
     free_vector(popeffectif,0,AGESUP);      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     free_vector(popcount,0,AGESUP);    } /* End age */
   }    free_vector(gpp,nlstate+1,nlstate+ndeath);
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    free_vector(gmp,nlstate+1,nlstate+ndeath);
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
   fclose(ficrespop);    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
 }    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
     /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
 /***********************************************/    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
 /**************** Main Program *****************/  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
 /***********************************************/  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
 int main(int argc, char *argv[])    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
 {    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
   double agedeb, agefin,hf;    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
   */
   double fret;  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
   double **xi,tmp,delta;    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   
   double dum; /* Dummy variable */    free_vector(xp,1,npar);
   double ***p3mat;    free_matrix(doldm,1,nlstate,1,nlstate);
   int *indx;    free_matrix(dnewm,1,nlstate,1,npar);
   char line[MAXLINE], linepar[MAXLINE];    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   char title[MAXLINE];    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   char optionfilext[10], optionfilefiname[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilegnuplot[FILENAMELENGTH], plotcmd[FILENAMELENGTH];    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
      fclose(ficresprobmorprev);
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];    fflush(ficgp);
     fflush(fichtm); 
   char filerest[FILENAMELENGTH];  }  /* end varevsij */
   char fileregp[FILENAMELENGTH];  
   char popfile[FILENAMELENGTH];  /************ Variance of prevlim ******************/
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)
   int firstobs=1, lastobs=10;  {
   int sdeb, sfin; /* Status at beginning and end */    /* Variance of prevalence limit */
   int c,  h , cpt,l;    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
   int ju,jl, mi;    double **newm;
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;    double **dnewm,**doldm;
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;    int i, j, nhstepm, hstepm;
   int mobilav=0,popforecast=0;    int k, cptcode;
   int hstepm, nhstepm;    double *xp;
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;    double *gp, *gm;
     double **gradg, **trgradg;
   double bage, fage, age, agelim, agebase;    double age,agelim;
   double ftolpl=FTOL;    int theta;
   double **prlim;     
   double *severity;    fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
   double ***param; /* Matrix of parameters */    fprintf(ficresvpl,"# Age");
   double  *p;    for(i=1; i<=nlstate;i++)
   double **matcov; /* Matrix of covariance */        fprintf(ficresvpl," %1d-%1d",i,i);
   double ***delti3; /* Scale */    fprintf(ficresvpl,"\n");
   double *delti; /* Scale */  
   double ***eij, ***vareij;    xp=vector(1,npar);
   double **varpl; /* Variances of prevalence limits by age */    dnewm=matrix(1,nlstate,1,npar);
   double *epj, vepp;    doldm=matrix(1,nlstate,1,nlstate);
   double kk1, kk2;    
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;    hstepm=1*YEARM; /* Every year of age */
      hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
     agelim = AGESUP;
   char version[80]="Imach version 0.8a1, June 2003, INED-EUROREVES ";    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   char *alph[]={"a","a","b","c","d","e"}, str[4];      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       if (stepm >= YEARM) hstepm=1;
       nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   char z[1]="c", occ;      gradg=matrix(1,npar,1,nlstate);
 #include <sys/time.h>      gp=vector(1,nlstate);
 #include <time.h>      gm=vector(1,nlstate);
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];  
        for(theta=1; theta <=npar; theta++){
   /* long total_usecs;        for(i=1; i<=npar; i++){ /* Computes gradient */
   struct timeval start_time, end_time;          xp[i] = x[i] + (i==theta ?delti[theta]:0);
          }
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   getcwd(pathcd, size);        for(i=1;i<=nlstate;i++)
           gp[i] = prlim[i][i];
   printf("\n%s",version);      
   if(argc <=1){        for(i=1; i<=npar; i++) /* Computes gradient */
     printf("\nEnter the parameter file name: ");          xp[i] = x[i] - (i==theta ?delti[theta]:0);
     scanf("%s",pathtot);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   }        for(i=1;i<=nlstate;i++)
   else{          gm[i] = prlim[i][i];
     strcpy(pathtot,argv[1]);  
   }        for(i=1;i<=nlstate;i++)
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
   /*cygwin_split_path(pathtot,path,optionfile);      } /* End theta */
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/  
   /* cutv(path,optionfile,pathtot,'\\');*/      trgradg =matrix(1,nlstate,1,npar);
   
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);      for(j=1; j<=nlstate;j++)
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);        for(theta=1; theta <=npar; theta++)
   chdir(path);          trgradg[j][theta]=gradg[theta][j];
   replace(pathc,path);  
       for(i=1;i<=nlstate;i++)
 /*-------- arguments in the command line --------*/        varpl[i][(int)age] =0.;
       matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
   strcpy(fileres,"r");      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
   strcat(fileres, optionfilefiname);      for(i=1;i<=nlstate;i++)
   strcat(fileres,".txt");    /* Other files have txt extension */        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   
   /*---------arguments file --------*/      fprintf(ficresvpl,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
   if((ficpar=fopen(optionfile,"r"))==NULL)    {        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
     printf("Problem with optionfile %s\n",optionfile);      fprintf(ficresvpl,"\n");
     goto end;      free_vector(gp,1,nlstate);
   }      free_vector(gm,1,nlstate);
       free_matrix(gradg,1,npar,1,nlstate);
   strcpy(filereso,"o");      free_matrix(trgradg,1,nlstate,1,npar);
   strcat(filereso,fileres);    } /* End age */
   if((ficparo=fopen(filereso,"w"))==NULL) {  
     printf("Problem with Output resultfile: %s\n", filereso);goto end;    free_vector(xp,1,npar);
   }    free_matrix(doldm,1,nlstate,1,npar);
     free_matrix(dnewm,1,nlstate,1,nlstate);
   /* Reads comments: lines beginning with '#' */  
   while((c=getc(ficpar))=='#' && c!= EOF){  }
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);  /************ Variance of one-step probabilities  ******************/
     puts(line);  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)
     fputs(line,ficparo);  {
   }    int i, j=0,  i1, k1, l1, t, tj;
   ungetc(c,ficpar);    int k2, l2, j1,  z1;
     int k=0,l, cptcode;
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);    int first=1, first1;
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);    double **dnewm,**doldm;
 while((c=getc(ficpar))=='#' && c!= EOF){    double *xp;
     ungetc(c,ficpar);    double *gp, *gm;
     fgets(line, MAXLINE, ficpar);    double **gradg, **trgradg;
     puts(line);    double **mu;
     fputs(line,ficparo);    double age,agelim, cov[NCOVMAX];
   }    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
   ungetc(c,ficpar);    int theta;
      char fileresprob[FILENAMELENGTH];
        char fileresprobcov[FILENAMELENGTH];
   covar=matrix(0,NCOVMAX,1,n);    char fileresprobcor[FILENAMELENGTH];
   cptcovn=0;  
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;    double ***varpij;
   
   ncovmodel=2+cptcovn;    strcpy(fileresprob,"prob"); 
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */    strcat(fileresprob,fileres);
      if((ficresprob=fopen(fileresprob,"w"))==NULL) {
   /* Read guess parameters */      printf("Problem with resultfile: %s\n", fileresprob);
   /* Reads comments: lines beginning with '#' */      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
   while((c=getc(ficpar))=='#' && c!= EOF){    }
     ungetc(c,ficpar);    strcpy(fileresprobcov,"probcov"); 
     fgets(line, MAXLINE, ficpar);    strcat(fileresprobcov,fileres);
     puts(line);    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
     fputs(line,ficparo);      printf("Problem with resultfile: %s\n", fileresprobcov);
   }      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
   ungetc(c,ficpar);    }
      strcpy(fileresprobcor,"probcor"); 
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    strcat(fileresprobcor,fileres);
     for(i=1; i <=nlstate; i++)    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
     for(j=1; j <=nlstate+ndeath-1; j++){      printf("Problem with resultfile: %s\n", fileresprobcor);
       fscanf(ficpar,"%1d%1d",&i1,&j1);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
       fprintf(ficparo,"%1d%1d",i1,j1);    }
       printf("%1d%1d",i,j);    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
       for(k=1; k<=ncovmodel;k++){    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
         fscanf(ficpar," %lf",&param[i][j][k]);    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
         printf(" %lf",param[i][j][k]);    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
         fprintf(ficparo," %lf",param[i][j][k]);    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
       }    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
       fscanf(ficpar,"\n");    
       printf("\n");    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
       fprintf(ficparo,"\n");    fprintf(ficresprob,"# Age");
     }    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
      fprintf(ficresprobcov,"# Age");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
     fprintf(ficresprobcov,"# Age");
   p=param[1][1];  
    
   /* Reads comments: lines beginning with '#' */    for(i=1; i<=nlstate;i++)
   while((c=getc(ficpar))=='#' && c!= EOF){      for(j=1; j<=(nlstate+ndeath);j++){
     ungetc(c,ficpar);        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
     fgets(line, MAXLINE, ficpar);        fprintf(ficresprobcov," p%1d-%1d ",i,j);
     puts(line);        fprintf(ficresprobcor," p%1d-%1d ",i,j);
     fputs(line,ficparo);      }  
   }   /* fprintf(ficresprob,"\n");
   ungetc(c,ficpar);    fprintf(ficresprobcov,"\n");
     fprintf(ficresprobcor,"\n");
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);   */
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */   xp=vector(1,npar);
   for(i=1; i <=nlstate; i++){    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     for(j=1; j <=nlstate+ndeath-1; j++){    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
       fscanf(ficpar,"%1d%1d",&i1,&j1);    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
       printf("%1d%1d",i,j);    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
       fprintf(ficparo,"%1d%1d",i1,j1);    first=1;
       for(k=1; k<=ncovmodel;k++){    fprintf(ficgp,"\n# Routine varprob");
         fscanf(ficpar,"%le",&delti3[i][j][k]);    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
         printf(" %le",delti3[i][j][k]);    fprintf(fichtm,"\n");
         fprintf(ficparo," %le",delti3[i][j][k]);  
       }    fprintf(fichtm,"\n<li><h4> Computing matrix of variance-covariance of step probabilities</h4></li>\n");
       fscanf(ficpar,"\n");    fprintf(fichtm,"\nWe have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
       printf("\n");    fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");
       fprintf(ficparo,"\n");  
     }    cov[1]=1;
   }    tj=cptcoveff;
   delti=delti3[1][1];    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
      j1=0;
   /* Reads comments: lines beginning with '#' */    for(t=1; t<=tj;t++){
   while((c=getc(ficpar))=='#' && c!= EOF){      for(i1=1; i1<=ncodemax[t];i1++){ 
     ungetc(c,ficpar);        j1++;
     fgets(line, MAXLINE, ficpar);        if  (cptcovn>0) {
     puts(line);          fprintf(ficresprob, "\n#********** Variable "); 
     fputs(line,ficparo);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   }          fprintf(ficresprob, "**********\n#\n");
   ungetc(c,ficpar);          fprintf(ficresprobcov, "\n#********** Variable "); 
            for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   matcov=matrix(1,npar,1,npar);          fprintf(ficresprobcov, "**********\n#\n");
   for(i=1; i <=npar; i++){          
     fscanf(ficpar,"%s",&str);          fprintf(ficgp, "\n#********** Variable "); 
     printf("%s",str);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     fprintf(ficparo,"%s",str);          fprintf(ficgp, "**********\n#\n");
     for(j=1; j <=i; j++){          
       fscanf(ficpar," %le",&matcov[i][j]);          
       printf(" %.5le",matcov[i][j]);          fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
       fprintf(ficparo," %.5le",matcov[i][j]);          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     }          fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
     fscanf(ficpar,"\n");          
     printf("\n");          fprintf(ficresprobcor, "\n#********** Variable ");    
     fprintf(ficparo,"\n");          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   }          fprintf(ficresprobcor, "**********\n#");    
   for(i=1; i <=npar; i++)        }
     for(j=i+1;j<=npar;j++)        
       matcov[i][j]=matcov[j][i];        for (age=bage; age<=fage; age ++){ 
              cov[2]=age;
   printf("\n");          for (k=1; k<=cptcovn;k++) {
             cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
           }
     /*-------- Rewriting paramater file ----------*/          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
      strcpy(rfileres,"r");    /* "Rparameterfile */          for (k=1; k<=cptcovprod;k++)
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
      strcat(rfileres,".");    /* */          
      strcat(rfileres,optionfilext);    /* Other files have txt extension */          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
     if((ficres =fopen(rfileres,"w"))==NULL) {          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
       printf("Problem writing new parameter file: %s\n", fileres);goto end;          gp=vector(1,(nlstate)*(nlstate+ndeath));
     }          gm=vector(1,(nlstate)*(nlstate+ndeath));
     fprintf(ficres,"#%s\n",version);      
              for(theta=1; theta <=npar; theta++){
     /*-------- data file ----------*/            for(i=1; i<=npar; i++)
     if((fic=fopen(datafile,"r"))==NULL)    {              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
       printf("Problem with datafile: %s\n", datafile);goto end;            
     }            pmij(pmmij,cov,ncovmodel,xp,nlstate);
             
     n= lastobs;            k=0;
     severity = vector(1,maxwav);            for(i=1; i<= (nlstate); i++){
     outcome=imatrix(1,maxwav+1,1,n);              for(j=1; j<=(nlstate+ndeath);j++){
     num=ivector(1,n);                k=k+1;
     moisnais=vector(1,n);                gp[k]=pmmij[i][j];
     annais=vector(1,n);              }
     moisdc=vector(1,n);            }
     andc=vector(1,n);            
     agedc=vector(1,n);            for(i=1; i<=npar; i++)
     cod=ivector(1,n);              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
     weight=vector(1,n);      
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */            pmij(pmmij,cov,ncovmodel,xp,nlstate);
     mint=matrix(1,maxwav,1,n);            k=0;
     anint=matrix(1,maxwav,1,n);            for(i=1; i<=(nlstate); i++){
     s=imatrix(1,maxwav+1,1,n);              for(j=1; j<=(nlstate+ndeath);j++){
     adl=imatrix(1,maxwav+1,1,n);                    k=k+1;
     tab=ivector(1,NCOVMAX);                gm[k]=pmmij[i][j];
     ncodemax=ivector(1,8);              }
             }
     i=1;       
     while (fgets(line, MAXLINE, fic) != NULL)    {            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
       if ((i >= firstobs) && (i <=lastobs)) {              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
                  }
         for (j=maxwav;j>=1;j--){  
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
           strcpy(line,stra);            for(theta=1; theta <=npar; theta++)
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);              trgradg[j][theta]=gradg[theta][j];
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);          
         }          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
                  matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);  
           pmij(pmmij,cov,ncovmodel,x,nlstate);
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);          
         for (j=ncovcol;j>=1;j--){          k=0;
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);          for(i=1; i<=(nlstate); i++){
         }            for(j=1; j<=(nlstate+ndeath);j++){
         num[i]=atol(stra);              k=k+1;
                      mu[k][(int) age]=pmmij[i][j];
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){            }
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/          }
           for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
         i=i+1;            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
       }              varpij[i][j][(int)age] = doldm[i][j];
     }  
     /* printf("ii=%d", ij);          /*printf("\n%d ",(int)age);
        scanf("%d",i);*/            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
   imx=i-1; /* Number of individuals */            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
   /* for (i=1; i<=imx; i++){            }*/
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;  
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;          fprintf(ficresprob,"\n%d ",(int)age);
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;          fprintf(ficresprobcov,"\n%d ",(int)age);
     }*/          fprintf(ficresprobcor,"\n%d ",(int)age);
    /*  for (i=1; i<=imx; i++){  
      if (s[4][i]==9)  s[4][i]=-1;          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
              fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
   /* Calculation of the number of parameter from char model*/            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
   Tvar=ivector(1,15);          }
   Tprod=ivector(1,15);          i=0;
   Tvaraff=ivector(1,15);          for (k=1; k<=(nlstate);k++){
   Tvard=imatrix(1,15,1,2);            for (l=1; l<=(nlstate+ndeath);l++){ 
   Tage=ivector(1,15);                    i=i++;
                  fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
   if (strlen(model) >1){              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
     j=0, j1=0, k1=1, k2=1;              for (j=1; j<=i;j++){
     j=nbocc(model,'+');                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
     j1=nbocc(model,'*');                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
     cptcovn=j+1;              }
     cptcovprod=j1;            }
              }/* end of loop for state */
     strcpy(modelsav,model);        } /* end of loop for age */
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){  
       printf("Error. Non available option model=%s ",model);        /* Confidence intervalle of pij  */
       goto end;        /*
     }          fprintf(ficgp,"\nset noparametric;unset label");
              fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
     for(i=(j+1); i>=1;i--){          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
       cutv(stra,strb,modelsav,'+');          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
       /*scanf("%d",i);*/          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
       if (strchr(strb,'*')) {        */
         cutv(strd,strc,strb,'*');  
         if (strcmp(strc,"age")==0) {        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
           cptcovprod--;        first1=1;
           cutv(strb,stre,strd,'V');        for (k2=1; k2<=(nlstate);k2++){
           Tvar[i]=atoi(stre);          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
           cptcovage++;            if(l2==k2) continue;
             Tage[cptcovage]=i;            j=(k2-1)*(nlstate+ndeath)+l2;
             /*printf("stre=%s ", stre);*/            for (k1=1; k1<=(nlstate);k1++){
         }              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
         else if (strcmp(strd,"age")==0) {                if(l1==k1) continue;
           cptcovprod--;                i=(k1-1)*(nlstate+ndeath)+l1;
           cutv(strb,stre,strc,'V');                if(i<=j) continue;
           Tvar[i]=atoi(stre);                for (age=bage; age<=fage; age ++){ 
           cptcovage++;                  if ((int)age %5==0){
           Tage[cptcovage]=i;                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
         }                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
         else {                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
           cutv(strb,stre,strc,'V');                    mu1=mu[i][(int) age]/stepm*YEARM ;
           Tvar[i]=ncovcol+k1;                    mu2=mu[j][(int) age]/stepm*YEARM;
           cutv(strb,strc,strd,'V');                    c12=cv12/sqrt(v1*v2);
           Tprod[k1]=i;                    /* Computing eigen value of matrix of covariance */
           Tvard[k1][1]=atoi(strc);                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
           Tvard[k1][2]=atoi(stre);                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
           Tvar[cptcovn+k2]=Tvard[k1][1];                    /* Eigen vectors */
           Tvar[cptcovn+k2+1]=Tvard[k1][2];                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
           for (k=1; k<=lastobs;k++)                    /*v21=sqrt(1.-v11*v11); *//* error */
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];                    v21=(lc1-v1)/cv12*v11;
           k1++;                    v12=-v21;
           k2=k2+2;                    v22=v11;
         }                    tnalp=v21/v11;
       }                    if(first1==1){
       else {                      first1=0;
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
        /*  scanf("%d",i);*/                    }
       cutv(strd,strc,strb,'V');                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
       Tvar[i]=atoi(strc);                    /*printf(fignu*/
       }                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
       strcpy(modelsav,stra);                      /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);                    if(first==1){
         scanf("%d",i);*/                      first=0;
     }                      fprintf(ficgp,"\nset parametric;unset label");
 }                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);                      fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
   printf("cptcovprod=%d ", cptcovprod);   :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   scanf("%d ",i);*/  %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
     fclose(fic);                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
     /*  if(mle==1){*/                      fprintf(fichtm,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
     if (weightopt != 1) { /* Maximisation without weights*/                      fprintf(fichtm,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
       for(i=1;i<=n;i++) weight[i]=1.0;                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
     }                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
     /*-calculation of age at interview from date of interview and age at death -*/                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
     agev=matrix(1,maxwav,1,imx);                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
     for (i=1; i<=imx; i++) {                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
       for(m=2; (m<= maxwav); m++) {                    }else{
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){                      first=0;
          anint[m][i]=9999;                      fprintf(fichtm," %d (%.3f),",(int) age, c12);
          s[m][i]=-1;                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
        }                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
       }                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
     }                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }/* if first */
     for (i=1; i<=imx; i++)  {                  } /* age mod 5 */
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);                } /* end loop age */
       for(m=1; (m<= maxwav); m++){                fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
         if(s[m][i] >0){                first=1;
           if (s[m][i] >= nlstate+1) {              } /*l12 */
             if(agedc[i]>0)            } /* k12 */
               if(moisdc[i]!=99 && andc[i]!=9999)          } /*l1 */
                 agev[m][i]=agedc[i];        }/* k1 */
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/      } /* loop covariates */
            else {    }
               if (andc[i]!=9999){    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
               printf("Warning negative age at death: %d line:%d\n",num[i],i);    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
               agev[m][i]=-1;    free_vector(xp,1,npar);
               }    fclose(ficresprob);
             }    fclose(ficresprobcov);
           }    fclose(ficresprobcor);
           else if(s[m][i] !=9){ /* Should no more exist */    /*  fclose(ficgp);*/
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);  }
             if(mint[m][i]==99 || anint[m][i]==9999)  
               agev[m][i]=1;  
             else if(agev[m][i] <agemin){  /******************* Printing html file ***********/
               agemin=agev[m][i];  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/                    int lastpass, int stepm, int weightopt, char model[],\
             }                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
             else if(agev[m][i] >agemax){                    int popforecast, int estepm ,\
               agemax=agev[m][i];                    double jprev1, double mprev1,double anprev1, \
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/                    double jprev2, double mprev2,double anprev2){
             }    int jj1, k1, i1, cpt;
             /*agev[m][i]=anint[m][i]-annais[i];*/    /*char optionfilehtm[FILENAMELENGTH];*/
             /*   agev[m][i] = age[i]+2*m;*/  /*   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    { */
           }  /*     printf("Problem with %s \n",optionfilehtm), exit(0); */
           else { /* =9 */  /*     fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0); */
             agev[m][i]=1;  /*   } */
             s[m][i]=-1;  
           }     fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n \
         }   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n \
         else /*= 0 Unknown */   - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n \
           agev[m][i]=1;   - Stable prevalence in each health state: <a href=\"%s\">%s</a> <br>\n \
       }   - Life expectancies by age and initial health status (estepm=%2d months): \
         <a href=\"%s\">%s</a> <br>\n</li>", \
     }             jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"),\
     for (i=1; i<=imx; i++)  {             stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"),\
       for(m=1; (m<= maxwav); m++){             subdirf2(fileres,"pl"),subdirf2(fileres,"pl"),\
         if (s[m][i] > (nlstate+ndeath)) {             estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
           printf("Error: Wrong value in nlstate or ndeath\n");    
           goto end;  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
         }  
       }   m=cptcoveff;
     }   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);   jj1=0;
    for(k1=1; k1<=m;k1++){
     free_vector(severity,1,maxwav);     for(i1=1; i1<=ncodemax[k1];i1++){
     free_imatrix(outcome,1,maxwav+1,1,n);       jj1++;
     free_vector(moisnais,1,n);       if (cptcovn > 0) {
     free_vector(annais,1,n);         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
     /* free_matrix(mint,1,maxwav,1,n);         for (cpt=1; cpt<=cptcoveff;cpt++) 
        free_matrix(anint,1,maxwav,1,n);*/           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
     free_vector(moisdc,1,n);         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
     free_vector(andc,1,n);       }
        /* Pij */
           fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: %s%d1.png<br> \
     wav=ivector(1,imx);  <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
     dh=imatrix(1,lastpass-firstpass+1,1,imx);       /* Quasi-incidences */
     mw=imatrix(1,lastpass-firstpass+1,1,imx);       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
       before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: %s%d2.png<br> \
     /* Concatenates waves */  <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);         /* Stable prevalence in each health state */
          for(cpt=1; cpt<nlstate;cpt++){
            fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \
       Tcode=ivector(1,100);  <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);         }
       ncodemax[1]=1;       for(cpt=1; cpt<=nlstate;cpt++) {
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);          fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): %s%d%d.png <br> \
        <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
    codtab=imatrix(1,100,1,10);       }
    h=0;       fprintf(fichtm,"\n<br>- Total life expectancy by age and \
    m=pow(2,cptcoveff);  health expectancies in states (1) and (2): %s%d.png<br>\
    <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
    for(k=1;k<=cptcoveff; k++){     } /* end i1 */
      for(i=1; i <=(m/pow(2,k));i++){   }/* End k1 */
        for(j=1; j <= ncodemax[k]; j++){   fprintf(fichtm,"</ul>");
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){  
            h++;  
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;   fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n\
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n\
          }   - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n\
        }   - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n\
      }   - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n\
    }   - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"%s\">%s</a><br>\n\
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);   - Health expectancies with their variances (no covariance): <a href=\"%s\">%s</a> <br>\n\
       codtab[1][2]=1;codtab[2][2]=2; */   - Standard deviation of stable prevalences: <a href=\"%s\">%s</a> <br>\n",\
    /* for(i=1; i <=m ;i++){           rfileres,rfileres,\
       for(k=1; k <=cptcovn; k++){           subdirf2(fileres,"prob"),subdirf2(fileres,"prob"),\
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);           subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"),\
       }           subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"),\
       printf("\n");           estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"),\
       }           subdirf2(fileres,"t"),subdirf2(fileres,"t"),\
       scanf("%d",i);*/           subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
      
    /* Calculates basic frequencies. Computes observed prevalence at single age  /*  if(popforecast==1) fprintf(fichtm,"\n */
        and prints on file fileres'p'. */  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
      /*      <br>",fileres,fileres,fileres,fileres); */
      /*  else  */
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */   m=cptcoveff;
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
        
     /* For Powell, parameters are in a vector p[] starting at p[1]   jj1=0;
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */   for(k1=1; k1<=m;k1++){
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */     for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
     if(mle==1){       if (cptcovn > 0) {
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
     }         for (cpt=1; cpt<=cptcoveff;cpt++) 
               fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
     /*--------- results files --------------*/         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);       }
         for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed and period prevalence (with confident\
    jk=1;  interval) in state (%d): %s%d%d.png <br>\
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");       }
    for(i=1,jk=1; i <=nlstate; i++){     } /* end i1 */
      for(k=1; k <=(nlstate+ndeath); k++){   }/* End k1 */
        if (k != i)   fprintf(fichtm,"</ul>");
          {   fflush(fichtm);
            printf("%d%d ",i,k);  }
            fprintf(ficres,"%1d%1d ",i,k);  
            for(j=1; j <=ncovmodel; j++){  /******************* Gnuplot file **************/
              printf("%f ",p[jk]);  void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
              fprintf(ficres,"%f ",p[jk]);  
              jk++;    char dirfileres[132],optfileres[132];
            }    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
            printf("\n");    int ng;
            fprintf(ficres,"\n");  /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
          }  /*     printf("Problem with file %s",optionfilegnuplot); */
      }  /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
    }  /*   } */
  if(mle==1){  
     /* Computing hessian and covariance matrix */    /*#ifdef windows */
     ftolhess=ftol; /* Usually correct */    fprintf(ficgp,"cd \"%s\" \n",pathc);
     hesscov(matcov, p, npar, delti, ftolhess, func);      /*#endif */
  }    m=pow(2,cptcoveff);
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");  
     printf("# Scales (for hessian or gradient estimation)\n");    strcpy(dirfileres,optionfilefiname);
      for(i=1,jk=1; i <=nlstate; i++){    strcpy(optfileres,"vpl");
       for(j=1; j <=nlstate+ndeath; j++){   /* 1eme*/
         if (j!=i) {    for (cpt=1; cpt<= nlstate ; cpt ++) {
           fprintf(ficres,"%1d%1d",i,j);     for (k1=1; k1<= m ; k1 ++) {
           printf("%1d%1d",i,j);       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
           for(k=1; k<=ncovmodel;k++){       fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
             printf(" %.5e",delti[jk]);       fprintf(ficgp,"set xlabel \"Age\" \n\
             fprintf(ficres," %.5e",delti[jk]);  set ylabel \"Probability\" \n\
             jk++;  set ter png small\n\
           }  set size 0.65,0.65\n\
           printf("\n");  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
           fprintf(ficres,"\n");  
         }       for (i=1; i<= nlstate ; i ++) {
       }         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
      }         else fprintf(ficgp," \%%*lf (\%%*lf)");
           }
     k=1;       fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");       for (i=1; i<= nlstate ; i ++) {
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
     for(i=1;i<=npar;i++){         else fprintf(ficgp," \%%*lf (\%%*lf)");
       /*  if (k>nlstate) k=1;       } 
       i1=(i-1)/(ncovmodel*nlstate)+1;       fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);       for (i=1; i<= nlstate ; i ++) {
       printf("%s%d%d",alph[k],i1,tab[i]);*/         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
       fprintf(ficres,"%3d",i);         else fprintf(ficgp," \%%*lf (\%%*lf)");
       printf("%3d",i);       }  
       for(j=1; j<=i;j++){       fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
         fprintf(ficres," %.5e",matcov[i][j]);     }
         printf(" %.5e",matcov[i][j]);    }
       }    /*2 eme*/
       fprintf(ficres,"\n");    
       printf("\n");    for (k1=1; k1<= m ; k1 ++) { 
       k++;      fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
     }      fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
          
     while((c=getc(ficpar))=='#' && c!= EOF){      for (i=1; i<= nlstate+1 ; i ++) {
       ungetc(c,ficpar);        k=2*i;
       fgets(line, MAXLINE, ficpar);        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
       puts(line);        for (j=1; j<= nlstate+1 ; j ++) {
       fputs(line,ficparo);          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
     }          else fprintf(ficgp," \%%*lf (\%%*lf)");
     ungetc(c,ficpar);        }   
     estepm=0;        if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);        else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
     if (estepm==0 || estepm < stepm) estepm=stepm;        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
     if (fage <= 2) {        for (j=1; j<= nlstate+1 ; j ++) {
       bage = ageminpar;          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
       fage = agemaxpar;          else fprintf(ficgp," \%%*lf (\%%*lf)");
     }        }   
            fprintf(ficgp,"\" t\"\" w l 0,");
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);        for (j=1; j<= nlstate+1 ; j ++) {
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
            else fprintf(ficgp," \%%*lf (\%%*lf)");
     while((c=getc(ficpar))=='#' && c!= EOF){        }   
     ungetc(c,ficpar);        if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
     fgets(line, MAXLINE, ficpar);        else fprintf(ficgp,"\" t\"\" w l 0,");
     puts(line);      }
     fputs(line,ficparo);    }
   }    
   ungetc(c,ficpar);    /*3eme*/
      
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);    for (k1=1; k1<= m ; k1 ++) { 
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);      for (cpt=1; cpt<= nlstate ; cpt ++) {
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);        k=2+nlstate*(2*cpt-2);
              fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
   while((c=getc(ficpar))=='#' && c!= EOF){        fprintf(ficgp,"set ter png small\n\
     ungetc(c,ficpar);  set size 0.65,0.65\n\
     fgets(line, MAXLINE, ficpar);  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
     puts(line);        /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
     fputs(line,ficparo);          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
   }          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
   ungetc(c,ficpar);          fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
            for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
    dateprev1=anprev1+mprev1/12.+jprev1/365.;          
    dateprev2=anprev2+mprev2/12.+jprev2/365.;        */
         for (i=1; i< nlstate ; i ++) {
   fscanf(ficpar,"pop_based=%d\n",&popbased);          fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);
   fprintf(ficparo,"pop_based=%d\n",popbased);            
   fprintf(ficres,"pop_based=%d\n",popbased);          } 
        }
   while((c=getc(ficpar))=='#' && c!= EOF){    }
     ungetc(c,ficpar);    
     fgets(line, MAXLINE, ficpar);    /* CV preval stable (period) */
     puts(line);    for (k1=1; k1<= m ; k1 ++) { 
     fputs(line,ficparo);      for (cpt=1; cpt<=nlstate ; cpt ++) {
   }        k=3;
   ungetc(c,ficpar);        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);  set ter png small\nset size 0.65,0.65\n\
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);  unset log y\n\
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);  plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
         
         for (i=1; i< nlstate ; i ++)
 while((c=getc(ficpar))=='#' && c!= EOF){          fprintf(ficgp,"+$%d",k+i+1);
     ungetc(c,ficpar);        fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
     fgets(line, MAXLINE, ficpar);        
     puts(line);        l=3+(nlstate+ndeath)*cpt;
     fputs(line,ficparo);        fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
   }        for (i=1; i< nlstate ; i ++) {
   ungetc(c,ficpar);          l=3+(nlstate+ndeath)*cpt;
           fprintf(ficgp,"+$%d",l+i+1);
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);        }
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);        fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);      } 
     }  
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    
     /* proba elementaires */
 /*------------ gnuplot -------------*/    for(i=1,jk=1; i <=nlstate; i++){
  printinggnuplot(fileres,optionfilefiname,optionfile,optionfilegnuplot, ageminpar,agemaxpar,fage, pathc,p);      for(k=1; k <=(nlstate+ndeath); k++){
          if (k != i) {
 /*------------ free_vector  -------------*/          for(j=1; j <=ncovmodel; j++){
  chdir(path);            fprintf(ficgp,"p%d=%f ",jk,p[jk]);
              jk++; 
  free_ivector(wav,1,imx);            fprintf(ficgp,"\n");
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);          }
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);          }
  free_ivector(num,1,n);      }
  free_vector(agedc,1,n);     }
  /*free_matrix(covar,1,NCOVMAX,1,n);*/  
  fclose(ficparo);     for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
  fclose(ficres);       for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
 /*--------- index.htm --------*/         if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
   printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,optionfile,optionfilehtm,rfileres,optionfilegnuplot,version,popforecast,estepm);         else
            fprintf(ficgp,"\nset title \"Probability\"\n");
           fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
   /*--------------- Prevalence limit --------------*/         i=1;
           for(k2=1; k2<=nlstate; k2++) {
   strcpy(filerespl,"pl");           k3=i;
   strcat(filerespl,fileres);           for(k=1; k<=(nlstate+ndeath); k++) {
   if((ficrespl=fopen(filerespl,"w"))==NULL) {             if (k != k2){
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;               if(ng==2)
   }                 fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);               else
   fprintf(ficrespl,"#Prevalence limit\n");                 fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
   fprintf(ficrespl,"#Age ");               ij=1;
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);               for(j=3; j <=ncovmodel; j++) {
   fprintf(ficrespl,"\n");                 if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                     fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
   prlim=matrix(1,nlstate,1,nlstate);                   ij++;
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                 }
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                 else
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                   fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */               }
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */               fprintf(ficgp,")/(1");
   k=0;               
   agebase=ageminpar;               for(k1=1; k1 <=nlstate; k1++){   
   agelim=agemaxpar;                 fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
   ftolpl=1.e-10;                 ij=1;
   i1=cptcoveff;                 for(j=3; j <=ncovmodel; j++){
   if (cptcovn < 1){i1=1;}                   if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
   for(cptcov=1;cptcov<=i1;cptcov++){                     ij++;
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){                   }
         k=k+1;                   else
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/                     fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
         fprintf(ficrespl,"\n#******");                 }
         for(j=1;j<=cptcoveff;j++)                 fprintf(ficgp,")");
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);               }
         fprintf(ficrespl,"******\n");               fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                       if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
         for (age=agebase; age<=agelim; age++){               i=i+ncovmodel;
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);             }
           fprintf(ficrespl,"%.0f",age );           } /* end k */
           for(i=1; i<=nlstate;i++)         } /* end k2 */
           fprintf(ficrespl," %.5f", prlim[i][i]);       } /* end jk */
           fprintf(ficrespl,"\n");     } /* end ng */
         }     fflush(ficgp); 
       }  }  /* end gnuplot */
     }  
   fclose(ficrespl);  
   /*************** Moving average **************/
   /*------------- h Pij x at various ages ------------*/  int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
    
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);    int i, cpt, cptcod;
   if((ficrespij=fopen(filerespij,"w"))==NULL) {    int modcovmax =1;
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;    int mobilavrange, mob;
   }    double age;
   printf("Computing pij: result on file '%s' \n", filerespij);  
      modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
   stepsize=(int) (stepm+YEARM-1)/YEARM;                             a covariate has 2 modalities */
   /*if (stepm<=24) stepsize=2;*/    if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
   agelim=AGESUP;    if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
   hstepm=stepsize*YEARM; /* Every year of age */      if(mobilav==1) mobilavrange=5; /* default */
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */      else mobilavrange=mobilav;
        for (age=bage; age<=fage; age++)
   k=0;        for (i=1; i<=nlstate;i++)
   for(cptcov=1;cptcov<=i1;cptcov++){          for (cptcod=1;cptcod<=modcovmax;cptcod++)
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){            mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       k=k+1;      /* We keep the original values on the extreme ages bage, fage and for 
         fprintf(ficrespij,"\n#****** ");         fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
         for(j=1;j<=cptcoveff;j++)         we use a 5 terms etc. until the borders are no more concerned. 
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      */ 
         fprintf(ficrespij,"******\n");      for (mob=3;mob <=mobilavrange;mob=mob+2){
                for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */          for (i=1; i<=nlstate;i++){
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */            for (cptcod=1;cptcod<=modcovmax;cptcod++){
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */              mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                for (cpt=1;cpt<=(mob-1)/2;cpt++){
           oldm=oldms;savm=savms;                  mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);                    mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
           fprintf(ficrespij,"# Age");                }
           for(i=1; i<=nlstate;i++)              mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             for(j=1; j<=nlstate+ndeath;j++)            }
               fprintf(ficrespij," %1d-%1d",i,j);          }
           fprintf(ficrespij,"\n");        }/* end age */
            for (h=0; h<=nhstepm; h++){      }/* end mob */
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );    }else return -1;
             for(i=1; i<=nlstate;i++)    return 0;
               for(j=1; j<=nlstate+ndeath;j++)  }/* End movingaverage */
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);  
             fprintf(ficrespij,"\n");  
              }  /************** Forecasting ******************/
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
           fprintf(ficrespij,"\n");    /* proj1, year, month, day of starting projection 
         }       agemin, agemax range of age
     }       dateprev1 dateprev2 range of dates during which prevalence is computed
   }       anproj2 year of en of projection (same day and month as proj1).
     */
   varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);    int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
   fclose(ficrespij);    double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
   /*---------- Forecasting ------------------*/    double ***p3mat;
   if((stepm == 1) && (strcmp(model,".")==0)){    double ***mobaverage;
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);    char fileresf[FILENAMELENGTH];
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);  
   }    agelim=AGESUP;
   else{    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     erreur=108;   
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);    strcpy(fileresf,"f"); 
   }    strcat(fileresf,fileres);
      if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
   /*---------- Health expectancies and variances ------------*/      fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
   strcpy(filerest,"t");    printf("Computing forecasting: result on file '%s' \n", fileresf);
   strcat(filerest,fileres);    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   if((ficrest=fopen(filerest,"w"))==NULL) {  
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;    if (cptcoveff==0) ncodemax[cptcoveff]=1;
   }  
   printf("Computing Total LEs with variances: file '%s' \n", filerest);    if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
   strcpy(filerese,"e");        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
   strcat(filerese,fileres);        printf(" Error in movingaverage mobilav=%d\n",mobilav);
   if((ficreseij=fopen(filerese,"w"))==NULL) {      }
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);    }
   }  
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);    stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
  strcpy(fileresv,"v");    if(estepm < stepm){
   strcat(fileresv,fileres);      printf ("Problem %d lower than %d\n",estepm, stepm);
   if((ficresvij=fopen(fileresv,"w"))==NULL) {    }
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);    else  hstepm=estepm;   
   }  
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);    hstepm=hstepm/stepm; 
   calagedate=-1;    yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
 prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);                                 fractional in yp1 */
     anprojmean=yp;
   k=0;    yp2=modf((yp1*12),&yp);
   for(cptcov=1;cptcov<=i1;cptcov++){    mprojmean=yp;
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    yp1=modf((yp2*30.5),&yp);
       k=k+1;    jprojmean=yp;
       fprintf(ficrest,"\n#****** ");    if(jprojmean==0) jprojmean=1;
       for(j=1;j<=cptcoveff;j++)    if(mprojmean==0) jprojmean=1;
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
       fprintf(ficrest,"******\n");    i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
       fprintf(ficreseij,"\n#****** ");    
       for(j=1;j<=cptcoveff;j++)    fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    
       fprintf(ficreseij,"******\n");    fprintf(ficresf,"#****** Routine prevforecast **\n");
   
       fprintf(ficresvij,"\n#****** ");  /*            if (h==(int)(YEARM*yearp)){ */
       for(j=1;j<=cptcoveff;j++)    for(cptcov=1, k=0;cptcov<=i1;cptcov++){
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
       fprintf(ficresvij,"******\n");        k=k+1;
         fprintf(ficresf,"\n#******");
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);        for(j=1;j<=cptcoveff;j++) {
       oldm=oldms;savm=savms;          fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);          }
          fprintf(ficresf,"******\n");
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);        fprintf(ficresf,"# Covariate valuofcovar yearproj age");
       oldm=oldms;savm=savms;        for(j=1; j<=nlstate+ndeath;j++){ 
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm);          for(i=1; i<=nlstate;i++)              
                fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
          }
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");        for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);          fprintf(ficresf,"\n");
       fprintf(ficrest,"\n");          fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
       epj=vector(1,nlstate+1);          for (agec=fage; agec>=(ageminpar-1); agec--){ 
       for(age=bage; age <=fage ;age++){            nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);            nhstepm = nhstepm/hstepm; 
         if (popbased==1) {            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           for(i=1; i<=nlstate;i++)            oldm=oldms;savm=savms;
             prlim[i][i]=probs[(int)age][i][k];            hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
         }          
                    for (h=0; h<=nhstepm; h++){
         fprintf(ficrest," %4.0f",age);              if (h*hstepm/YEARM*stepm ==yearp) {
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){                fprintf(ficresf,"\n");
           for(i=1, epj[j]=0.;i <=nlstate;i++) {                for(j=1;j<=cptcoveff;j++) 
             epj[j] += prlim[i][i]*eij[i][j][(int)age];                  fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/                fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
           }              } 
           epj[nlstate+1] +=epj[j];              for(j=1; j<=nlstate+ndeath;j++) {
         }                ppij=0.;
                 for(i=1; i<=nlstate;i++) {
         for(i=1, vepp=0.;i <=nlstate;i++)                  if (mobilav==1) 
           for(j=1;j <=nlstate;j++)                    ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
             vepp += vareij[i][j][(int)age];                  else {
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));                    ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
         for(j=1;j <=nlstate;j++){                  }
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));                  if (h*hstepm/YEARM*stepm== yearp) {
         }                    fprintf(ficresf," %.3f", p3mat[i][j][h]);
         fprintf(ficrest,"\n");                  }
       }                } /* end i */
     }                if (h*hstepm/YEARM*stepm==yearp) {
   }                  fprintf(ficresf," %.3f", ppij);
 free_matrix(mint,1,maxwav,1,n);                }
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);              }/* end j */
     free_vector(weight,1,n);            } /* end h */
   fclose(ficreseij);            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   fclose(ficresvij);          } /* end agec */
   fclose(ficrest);        } /* end yearp */
   fclose(ficpar);      } /* end cptcod */
   free_vector(epj,1,nlstate+1);    } /* end  cptcov */
           
   /*------- Variance limit prevalence------*/      if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
   strcpy(fileresvpl,"vpl");    fclose(ficresf);
   strcat(fileresvpl,fileres);  }
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {  
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);  /************** Forecasting *****not tested NB*************/
     exit(0);  populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
   }    
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);    int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
   k=0;    double calagedatem, agelim, kk1, kk2;
   for(cptcov=1;cptcov<=i1;cptcov++){    double *popeffectif,*popcount;
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    double ***p3mat,***tabpop,***tabpopprev;
       k=k+1;    double ***mobaverage;
       fprintf(ficresvpl,"\n#****** ");    char filerespop[FILENAMELENGTH];
       for(j=1;j<=cptcoveff;j++)  
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       fprintf(ficresvpl,"******\n");    tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
          agelim=AGESUP;
       varpl=matrix(1,nlstate,(int) bage, (int) fage);    calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
       oldm=oldms;savm=savms;    
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     }    
  }    
     strcpy(filerespop,"pop"); 
   fclose(ficresvpl);    strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
   /*---------- End : free ----------------*/      printf("Problem with forecast resultfile: %s\n", filerespop);
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);      fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
      }
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);    printf("Computing forecasting: result on file '%s' \n", filerespop);
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
    
      if (cptcoveff==0) ncodemax[cptcoveff]=1;
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);  
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);    if (mobilav!=0) {
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
          fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
   free_matrix(matcov,1,npar,1,npar);        printf(" Error in movingaverage mobilav=%d\n",mobilav);
   free_vector(delti,1,npar);      }
   free_matrix(agev,1,maxwav,1,imx);    }
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);  
     stepsize=(int) (stepm+YEARM-1)/YEARM;
   if(erreur >0)    if (stepm<=12) stepsize=1;
     printf("End of Imach with error or warning %d\n",erreur);    
   else   printf("End of Imach\n");    agelim=AGESUP;
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */    
      hstepm=1;
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/    hstepm=hstepm/stepm; 
   /*printf("Total time was %d uSec.\n", total_usecs);*/    
   /*------ End -----------*/    if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
  end:        fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
   /* chdir(pathcd);*/      } 
  /*system("wgnuplot graph.plt");*/      popage=ivector(0,AGESUP);
  /*system("../gp37mgw/wgnuplot graph.plt");*/      popeffectif=vector(0,AGESUP);
  /*system("cd ../gp37mgw");*/      popcount=vector(0,AGESUP);
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/      
  strcpy(plotcmd,GNUPLOTPROGRAM);      i=1;   
  strcat(plotcmd," ");      while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
  strcat(plotcmd,optionfilegnuplot);     
  system(plotcmd);      imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
  /*#ifdef windows*/    }
   while (z[0] != 'q') {  
     /* chdir(path); */    for(cptcov=1,k=0;cptcov<=i2;cptcov++){
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
     scanf("%s",z);        k=k+1;
     if (z[0] == 'c') system("./imach");        fprintf(ficrespop,"\n#******");
     else if (z[0] == 'e') system(optionfilehtm);        for(j=1;j<=cptcoveff;j++) {
     else if (z[0] == 'g') system(plotcmd);          fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
     else if (z[0] == 'q') exit(0);        }
   }        fprintf(ficrespop,"******\n");
   /*#endif */        fprintf(ficrespop,"# Age");
 }        for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     }
   
   } /* end of prwizard */
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int jj, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE]; 
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
   
     char *alph[]={"a","a","b","c","d","e"}, str[4];
   
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char strstart[80], *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
     struct timeval start_time, end_time, curr_time;
     struct timezone tzp;
     extern int gettimeofday();
     struct tm tmg, tm, *gmtime(), *localtime();
     long time_value;
     extern long time();
    
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       scanf("%s",pathtot);
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("pathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: ");
     fprintf(ficlog,"pathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Localtime (at start):%s",strstart);
     fprintf(ficlog,"Localtime (at start): %s",strstart);
     fflush(ficlog);
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
    
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fclose (ficparo);
       fclose (ficlog);
       exit(0);
     }
     /* Read guess parameters */
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     for(i=1; i <=nlstate; i++){
       j=0;
       for(jj=1; jj <=nlstate+ndeath; jj++){
         if(jj==i) continue;
         j++;
         fscanf(ficpar,"%1d%1d",&i1,&j1);
         if ((i1 != i) && (j1 != j)){
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
           exit(1);
         }
         fprintf(ficparo,"%1d%1d",i1,j1);
         if(mle==1)
           printf("%1d%1d",i,j);
         fprintf(ficlog,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           fscanf(ficpar," %lf",&param[i][j][k]);
           if(mle==1){
             printf(" %lf",param[i][j][k]);
             fprintf(ficlog," %lf",param[i][j][k]);
           }
           else
             fprintf(ficlog," %lf",param[i][j][k]);
           fprintf(ficparo," %lf",param[i][j][k]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
     }  
     fflush(ficlog);
   
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     p=param[1][1];
     
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     /* delti=vector(1,npar); *//* Scale of each paramater (output from hesscov) */
     for(i=1; i <=nlstate; i++){
       for(j=1; j <=nlstate+ndeath-1; j++){
         fscanf(ficpar,"%1d%1d",&i1,&j1);
         if ((i1-i)*(j1-j)!=0){
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
           exit(1);
         }
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i1,j1);
         fprintf(ficlog,"%1d%1d",i1,j1);
         for(k=1; k<=ncovmodel;k++){
           fscanf(ficpar,"%le",&delti3[i][j][k]);
           printf(" %le",delti3[i][j][k]);
           fprintf(ficparo," %le",delti3[i][j][k]);
           fprintf(ficlog," %le",delti3[i][j][k]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
         fprintf(ficlog,"\n");
       }
     }
     fflush(ficlog);
   
     delti=delti3[1][1];
   
   
     /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
     
     matcov=matrix(1,npar,1,npar);
     for(i=1; i <=npar; i++){
       fscanf(ficpar,"%s",&str);
       if(mle==1)
         printf("%s",str);
       fprintf(ficlog,"%s",str);
       fprintf(ficparo,"%s",str);
       for(j=1; j <=i; j++){
         fscanf(ficpar," %le",&matcov[i][j]);
         if(mle==1){
           printf(" %.5le",matcov[i][j]);
         }
         fprintf(ficlog," %.5le",matcov[i][j]);
         fprintf(ficparo," %.5le",matcov[i][j]);
       }
       fscanf(ficpar,"\n");
       numlinepar++;
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       fprintf(ficparo,"\n");
     }
     for(i=1; i <=npar; i++)
       for(j=i+1;j<=npar;j++)
         matcov[i][j]=matcov[j][i];
      
     if(mle==1)
       printf("\n");
     fprintf(ficlog,"\n");
   
     fflush(ficlog);
   
     /*-------- Rewriting paramater file ----------*/
     strcpy(rfileres,"r");    /* "Rparameterfile */
     strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
     strcat(rfileres,".");    /* */
     strcat(rfileres,optionfilext);    /* Other files have txt extension */
     if((ficres =fopen(rfileres,"w"))==NULL) {
       printf("Problem writing new parameter file: %s\n", fileres);goto end;
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
     }
     fprintf(ficres,"#%s\n",version);
       
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem with datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     while (fgets(line, MAXLINE, fic) != NULL)    {
       if ((i >= firstobs) && (i <=lastobs)) {
           
         for (j=maxwav;j>=1;j--){
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb); 
           strcpy(line,stra);
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         }
           
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);
         for (j=ncovcol;j>=1;j--){
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         } 
         lstra=strlen(stra);
         if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
           stratrunc = &(stra[lstra-9]);
           num[i]=atol(stratrunc);
         }
         else
           num[i]=atol(stra);
           
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
           printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
   
         i=i+1;
       }
     }
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
    for (i=1; i<=imx; i++)
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameter from char model*/
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);
     fclose(fic);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a
                                    month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     strcat(optionfilegnuplot,".gp");
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname);
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt,\
             model,fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     /*fclose(fichtm);*/
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     strcpy(lfileres,fileres);
     strcat(lfileres,"/");
     strcat(lfileres,optionfilefiname);
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
     printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
     for (k=1; k<=npar;k++)
       printf(" %d %8.5f",k,p[k]);
     printf("\n");
     globpr=1; /* to print the contributions */
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
     printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
     for (k=1; k<=npar;k++)
       printf(" %d %8.5f",k,p[k]);
     printf("\n");
     if(mle>=1){ /* Could be 1 or 2 */
       mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
     }
       
     /*--------- results files --------------*/
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
     
   
     jk=1;
     fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) 
           {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
       }
     }
     if(mle!=0){
       /* Computing hessian and covariance matrix */
       ftolhess=ftol; /* Usually correct */
       hesscov(matcov, p, npar, delti, ftolhess, func);
     }
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(j=1; j <=nlstate+ndeath; j++){
         if (j!=i) {
           fprintf(ficres,"%1d%1d",i,j);
           printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             printf(" %.5e",delti[jk]);
             fprintf(ficlog," %.5e",delti[jk]);
             fprintf(ficres," %.5e",delti[jk]);
             jk++;
           }
           printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficres,"\n");
         }
       }
     }
      
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     if(mle==1)
       printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     for(i=1,k=1;i<=npar;i++){
       /*  if (k>nlstate) k=1;
           i1=(i-1)/(ncovmodel*nlstate)+1; 
           fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);
           printf("%s%d%d",alph[k],i1,tab[i]);
       */
       fprintf(ficres,"%3d",i);
       if(mle==1)
         printf("%3d",i);
       fprintf(ficlog,"%3d",i);
       for(j=1; j<=i;j++){
         fprintf(ficres," %.5e",matcov[i][j]);
         if(mle==1)
           printf(" %.5e",matcov[i][j]);
         fprintf(ficlog," %.5e",matcov[i][j]);
       }
       fprintf(ficres,"\n");
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       k++;
     }
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     estepm=0;
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
     if (estepm==0 || estepm < stepm) estepm=stepm;
     if (fage <= 2) {
       bage = ageminpar;
       fage = agemaxpar;
     }
      
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
     
     fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
     fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
    
   
     dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
     dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
   
     fscanf(ficpar,"pop_based=%d\n",&popbased);
     fprintf(ficparo,"pop_based=%d\n",popbased);   
     fprintf(ficres,"pop_based=%d\n",popbased);   
     
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
     fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     /* day and month of proj2 are not used but only year anproj2.*/
   
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);
     fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
     fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
   
     /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
     /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
   
     replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
     printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
   
     printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                  model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                  jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
    
     /*------------ free_vector  -------------*/
     /*  chdir(path); */
    
     free_ivector(wav,1,imx);
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
     free_lvector(num,1,n);
     free_vector(agedc,1,n);
     /*free_matrix(covar,0,NCOVMAX,1,n);*/
     /*free_matrix(covar,1,NCOVMAX,1,n);*/
     fclose(ficparo);
     fclose(ficres);
   
   
     /*--------------- Prevalence limit  (stable prevalence) --------------*/
     
     strcpy(filerespl,"pl");
     strcat(filerespl,fileres);
     if((ficrespl=fopen(filerespl,"w"))==NULL) {
       printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
     }
     printf("Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficrespl,"#Stable prevalence \n");
     fprintf(ficrespl,"#Age ");
     for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
     fprintf(ficrespl,"\n");
     
     prlim=matrix(1,nlstate,1,nlstate);
   
     agebase=ageminpar;
     agelim=agemaxpar;
     ftolpl=1.e-10;
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
         fprintf(ficrespl,"\n#******");
         printf("\n#******");
         fprintf(ficlog,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespl,"******\n");
         printf("******\n");
         fprintf(ficlog,"******\n");
           
         for (age=agebase; age<=agelim; age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           fprintf(ficrespl,"%.0f ",age );
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           for(i=1; i<=nlstate;i++)
             fprintf(ficrespl," %.5f", prlim[i][i]);
           fprintf(ficrespl,"\n");
         }
       }
     }
     fclose(ficrespl);
   
     /*------------- h Pij x at various ages ------------*/
     
     strcpy(filerespij,"pij");  strcat(filerespij,fileres);
     if((ficrespij=fopen(filerespij,"w"))==NULL) {
       printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
       fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
     }
     printf("Computing pij: result on file '%s' \n", filerespij);
     fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     /*if (stepm<=24) stepsize=2;*/
   
     agelim=AGESUP;
     hstepm=stepsize*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
     /* hstepm=1;   aff par mois*/
   
     fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficrespij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrespij,"******\n");
           
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
           /*        nhstepm=nhstepm*YEARM; aff par mois*/
   
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           oldm=oldms;savm=savms;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
           for(i=1; i<=nlstate;i++)
             for(j=1; j<=nlstate+ndeath;j++)
               fprintf(ficrespij," %1d-%1d",i,j);
           fprintf(ficrespij,"\n");
           for (h=0; h<=nhstepm; h++){
             fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);
             fprintf(ficrespij,"\n");
           }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           fprintf(ficrespij,"\n");
         }
       }
     }
   
     varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax);
   
     fclose(ficrespij);
   
     probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     /*---------- Forecasting ------------------*/
     /*if((stepm == 1) && (strcmp(model,".")==0)){*/
     if(prevfcast==1){
       /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
   /*      }  */
   /*      else{ */
   /*        erreur=108; */
   /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*      } */
     }
     
   
     /*---------- Health expectancies and variances ------------*/
   
     strcpy(filerest,"t");
     strcat(filerest,fileres);
     if((ficrest=fopen(filerest,"w"))==NULL) {
       printf("Problem with total LE resultfile: %s\n", filerest);goto end;
       fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
     }
     printf("Computing Total LEs with variances: file '%s' \n", filerest); 
     fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
     strcpy(filerese,"e");
     strcat(filerese,fileres);
     if((ficreseij=fopen(filerese,"w"))==NULL) {
       printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
     }
     printf("Computing Health Expectancies: result on file '%s' \n", filerese);
     fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
     strcpy(fileresv,"v");
     strcat(fileresv,fileres);
     if((ficresvij=fopen(fileresv,"w"))==NULL) {
       printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
       fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
     }
     printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
     fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
     /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
     prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
   ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
     */
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1; 
         fprintf(ficrest,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrest,"******\n");
   
         fprintf(ficreseij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficreseij,"******\n");
   
         fprintf(ficresvij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvij,"******\n");
   
         eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);  
    
         vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav);
         if(popbased==1){
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav);
         }
   
    
         fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
         for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
         fprintf(ficrest,"\n");
   
         epj=vector(1,nlstate+1);
         for(age=bage; age <=fage ;age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           if (popbased==1) {
             if(mobilav ==0){
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=probs[(int)age][i][k];
             }else{ /* mobilav */ 
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=mobaverage[(int)age][i][k];
             }
           }
           
           fprintf(ficrest," %4.0f",age);
           for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
             for(i=1, epj[j]=0.;i <=nlstate;i++) {
               epj[j] += prlim[i][i]*eij[i][j][(int)age];
               /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
             }
             epj[nlstate+1] +=epj[j];
           }
   
           for(i=1, vepp=0.;i <=nlstate;i++)
             for(j=1;j <=nlstate;j++)
               vepp += vareij[i][j][(int)age];
           fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
           for(j=1;j <=nlstate;j++){
             fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
           }
           fprintf(ficrest,"\n");
         }
         free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_vector(epj,1,nlstate+1);
       }
     }
     free_vector(weight,1,n);
     free_imatrix(Tvard,1,15,1,2);
     free_imatrix(s,1,maxwav+1,1,n);
     free_matrix(anint,1,maxwav,1,n); 
     free_matrix(mint,1,maxwav,1,n);
     free_ivector(cod,1,n);
     free_ivector(tab,1,NCOVMAX);
     fclose(ficreseij);
     fclose(ficresvij);
     fclose(ficrest);
     fclose(ficpar);
     
     /*------- Variance of stable prevalence------*/   
   
     strcpy(fileresvpl,"vpl");
     strcat(fileresvpl,fileres);
     if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
       printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
       exit(0);
     }
     printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficresvpl,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvpl,"******\n");
         
         varpl=matrix(1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);
         free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
       }
     }
   
     fclose(ficresvpl);
   
     /*---------- End : free ----------------*/
     free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
     
     free_matrix(covar,0,NCOVMAX,1,n);
     free_matrix(matcov,1,npar,1,npar);
     /*free_vector(delti,1,npar);*/
     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
     free_matrix(agev,1,maxwav,1,imx);
     free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     free_ivector(ncodemax,1,8);
     free_ivector(Tvar,1,15);
     free_ivector(Tprod,1,15);
     free_ivector(Tvaraff,1,15);
     free_ivector(Tage,1,15);
     free_ivector(Tcode,1,100);
   
     fflush(fichtm);
     fflush(ficgp);
     
   
     if(erreur >0){
       printf("End of Imach with error or warning %d\n",erreur);
       fprintf(ficlog,"End of Imach with error or warning %d\n",erreur);
     }else{
      printf("End of Imach\n");
      fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     fclose(ficlog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Localtime at start %s\nLocaltime at end   %s",strstart, strtend); 
     fprintf(ficlog,"Localtime at start %s\nLocal time at end   %s",strstart, strtend); 
     /*  printf("Total time used %d Sec\n", asc_time(end_time.tv_sec -start_time.tv_sec);*/
   
     printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);
     fprintf(ficlog,"Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);
     fclose(fichtm);
     fclose(ficgp);
     /*------ End -----------*/
   
     end:
   #ifdef windows
     /* chdir(pathcd);*/
   #endif 
     chdir(path);
    /*system("wgnuplot graph.plt");*/
    /*system("../gp37mgw/wgnuplot graph.plt");*/
    /*system("cd ../gp37mgw");*/
    /* system("..\\gp37mgw\\wgnuplot graph.plt");*/
     strcpy(plotcmd,GNUPLOTPROGRAM);
     strcat(plotcmd," ");
     strcat(plotcmd,optionfilegnuplot);
     printf("Starting graphs with: %s",plotcmd);fflush(stdout);
     system(plotcmd);
     printf(" Wait...");
   
    /*#ifdef windows*/
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");
       scanf("%s",z);
       if (z[0] == 'c') system("./imach");
       else if (z[0] == 'e') system(optionfilehtm);
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     /*#endif */
   }
   
   
   

Removed from v.1.41.2.2  
changed lines
  Added in v.1.90


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>