Diff for /imach/src/imach.c between versions 1.41.2.2 and 1.91

version 1.41.2.2, 2003/06/13 07:45:28 version 1.91, 2003/06/25 15:30:29
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.91  2003/06/25 15:30:29  brouard
      * imach.c (Repository): Duplicated warning errors corrected.
   This program computes Healthy Life Expectancies from    (Repository): Elapsed time after each iteration is now output. It
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    helps to forecast when convergence will be reached. Elapsed time
   first survey ("cross") where individuals from different ages are    is stamped in powell.  We created a new html file for the graphs
   interviewed on their health status or degree of disability (in the    concerning matrix of covariance. It has extension -cov.htm.
   case of a health survey which is our main interest) -2- at least a  
   second wave of interviews ("longitudinal") which measure each change    Revision 1.90  2003/06/24 12:34:15  brouard
   (if any) in individual health status.  Health expectancies are    (Module): Some bugs corrected for windows. Also, when
   computed from the time spent in each health state according to a    mle=-1 a template is output in file "or"mypar.txt with the design
   model. More health states you consider, more time is necessary to reach the    of the covariance matrix to be input.
   Maximum Likelihood of the parameters involved in the model.  The  
   simplest model is the multinomial logistic model where pij is the    Revision 1.89  2003/06/24 12:30:52  brouard
   probability to be observed in state j at the second wave    (Module): Some bugs corrected for windows. Also, when
   conditional to be observed in state i at the first wave. Therefore    mle=-1 a template is output in file "or"mypar.txt with the design
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    of the covariance matrix to be input.
   'age' is age and 'sex' is a covariate. If you want to have a more  
   complex model than "constant and age", you should modify the program    Revision 1.88  2003/06/23 17:54:56  brouard
   where the markup *Covariates have to be included here again* invites    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
   you to do it.  More covariates you add, slower the  
   convergence.    Revision 1.87  2003/06/18 12:26:01  brouard
     Version 0.96
   The advantage of this computer programme, compared to a simple  
   multinomial logistic model, is clear when the delay between waves is not    Revision 1.86  2003/06/17 20:04:08  brouard
   identical for each individual. Also, if a individual missed an    (Module): Change position of html and gnuplot routines and added
   intermediate interview, the information is lost, but taken into    routine fileappend.
   account using an interpolation or extrapolation.    
     Revision 1.85  2003/06/17 13:12:43  brouard
   hPijx is the probability to be observed in state i at age x+h    * imach.c (Repository): Check when date of death was earlier that
   conditional to the observed state i at age x. The delay 'h' can be    current date of interview. It may happen when the death was just
   split into an exact number (nh*stepm) of unobserved intermediate    prior to the death. In this case, dh was negative and likelihood
   states. This elementary transition (by month or quarter trimester,    was wrong (infinity). We still send an "Error" but patch by
   semester or year) is model as a multinomial logistic.  The hPx    assuming that the date of death was just one stepm after the
   matrix is simply the matrix product of nh*stepm elementary matrices    interview.
   and the contribution of each individual to the likelihood is simply    (Repository): Because some people have very long ID (first column)
   hPijx.    we changed int to long in num[] and we added a new lvector for
     memory allocation. But we also truncated to 8 characters (left
   Also this programme outputs the covariance matrix of the parameters but also    truncation)
   of the life expectancies. It also computes the prevalence limits.    (Repository): No more line truncation errors.
    
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    Revision 1.84  2003/06/13 21:44:43  brouard
            Institut national d'études démographiques, Paris.    * imach.c (Repository): Replace "freqsummary" at a correct
   This software have been partly granted by Euro-REVES, a concerted action    place. It differs from routine "prevalence" which may be called
   from the European Union.    many times. Probs is memory consuming and must be used with
   It is copyrighted identically to a GNU software product, ie programme and    parcimony.
   software can be distributed freely for non commercial use. Latest version    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
   can be accessed at http://euroreves.ined.fr/imach .  
   **********************************************************************/    Revision 1.83  2003/06/10 13:39:11  lievre
      *** empty log message ***
 #include <math.h>  
 #include <stdio.h>    Revision 1.82  2003/06/05 15:57:20  brouard
 #include <stdlib.h>    Add log in  imach.c and  fullversion number is now printed.
 #include <unistd.h>  
   */
 #define MAXLINE 256  /*
 #define GNUPLOTPROGRAM "wgnuplot"     Interpolated Markov Chain
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/  
 #define FILENAMELENGTH 80    Short summary of the programme:
 /*#define DEBUG*/    
     This program computes Healthy Life Expectancies from
 /*#define windows*/    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    first survey ("cross") where individuals from different ages are
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    interviewed on their health status or degree of disability (in the
     case of a health survey which is our main interest) -2- at least a
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    second wave of interviews ("longitudinal") which measure each change
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    (if any) in individual health status.  Health expectancies are
     computed from the time spent in each health state according to a
 #define NINTERVMAX 8    model. More health states you consider, more time is necessary to reach the
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    Maximum Likelihood of the parameters involved in the model.  The
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    simplest model is the multinomial logistic model where pij is the
 #define NCOVMAX 8 /* Maximum number of covariates */    probability to be observed in state j at the second wave
 #define MAXN 20000    conditional to be observed in state i at the first wave. Therefore
 #define YEARM 12. /* Number of months per year */    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
 #define AGESUP 130    'age' is age and 'sex' is a covariate. If you want to have a more
 #define AGEBASE 40    complex model than "constant and age", you should modify the program
     where the markup *Covariates have to be included here again* invites
     you to do it.  More covariates you add, slower the
 int erreur; /* Error number */    convergence.
 int nvar;  
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    The advantage of this computer programme, compared to a simple
 int npar=NPARMAX;    multinomial logistic model, is clear when the delay between waves is not
 int nlstate=2; /* Number of live states */    identical for each individual. Also, if a individual missed an
 int ndeath=1; /* Number of dead states */    intermediate interview, the information is lost, but taken into
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    account using an interpolation or extrapolation.  
 int popbased=0;  
     hPijx is the probability to be observed in state i at age x+h
 int *wav; /* Number of waves for this individuual 0 is possible */    conditional to the observed state i at age x. The delay 'h' can be
 int maxwav; /* Maxim number of waves */    split into an exact number (nh*stepm) of unobserved intermediate
 int jmin, jmax; /* min, max spacing between 2 waves */    states. This elementary transition (by month, quarter,
 int mle, weightopt;    semester or year) is modelled as a multinomial logistic.  The hPx
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    matrix is simply the matrix product of nh*stepm elementary matrices
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    and the contribution of each individual to the likelihood is simply
 double jmean; /* Mean space between 2 waves */    hPijx.
 double **oldm, **newm, **savm; /* Working pointers to matrices */  
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    Also this programme outputs the covariance matrix of the parameters but also
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    of the life expectancies. It also computes the stable prevalence. 
 FILE *ficgp,*ficresprob,*ficpop;    
 FILE *ficreseij;    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
   char filerese[FILENAMELENGTH];             Institut national d'études démographiques, Paris.
  FILE  *ficresvij;    This software have been partly granted by Euro-REVES, a concerted action
   char fileresv[FILENAMELENGTH];    from the European Union.
  FILE  *ficresvpl;    It is copyrighted identically to a GNU software product, ie programme and
   char fileresvpl[FILENAMELENGTH];    software can be distributed freely for non commercial use. Latest version
     can be accessed at http://euroreves.ined.fr/imach .
 #define NR_END 1  
 #define FREE_ARG char*    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
 #define FTOL 1.0e-10    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
     
 #define NRANSI    **********************************************************************/
 #define ITMAX 200  /*
     main
 #define TOL 2.0e-4    read parameterfile
     read datafile
 #define CGOLD 0.3819660    concatwav
 #define ZEPS 1.0e-10    freqsummary
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    if (mle >= 1)
       mlikeli
 #define GOLD 1.618034    print results files
 #define GLIMIT 100.0    if mle==1 
 #define TINY 1.0e-20       computes hessian
     read end of parameter file: agemin, agemax, bage, fage, estepm
 static double maxarg1,maxarg2;        begin-prev-date,...
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    open gnuplot file
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    open html file
      stable prevalence
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))     for age prevalim()
 #define rint(a) floor(a+0.5)    h Pij x
     variance of p varprob
 static double sqrarg;    forecasting if prevfcast==1 prevforecast call prevalence()
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    health expectancies
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    Variance-covariance of DFLE
     prevalence()
 int imx;     movingaverage()
 int stepm;    varevsij() 
 /* Stepm, step in month: minimum step interpolation*/    if popbased==1 varevsij(,popbased)
     total life expectancies
 int estepm;    Variance of stable prevalence
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/   end
   */
 int m,nb;  
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;  
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;  
 double **pmmij, ***probs, ***mobaverage;   
 double dateintmean=0;  #include <math.h>
   #include <stdio.h>
 double *weight;  #include <stdlib.h>
 int **s; /* Status */  #include <unistd.h>
 double *agedc, **covar, idx;  
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;  #include <sys/time.h>
   #include <time.h>
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */  #include "timeval.h"
 double ftolhess; /* Tolerance for computing hessian */  
   #define MAXLINE 256
 /**************** split *************************/  #define GNUPLOTPROGRAM "gnuplot"
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
 {  #define FILENAMELENGTH 132
    char *s;                             /* pointer */  /*#define DEBUG*/
    int  l1, l2;                         /* length counters */  /*#define windows*/
   #define GLOCK_ERROR_NOPATH              -1      /* empty path */
    l1 = strlen( path );                 /* length of path */  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );  
 #ifdef windows  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
    s = strrchr( path, '\\' );           /* find last / */  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
 #else  
    s = strrchr( path, '/' );            /* find last / */  #define NINTERVMAX 8
 #endif  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
    if ( s == NULL ) {                   /* no directory, so use current */  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
 #if     defined(__bsd__)                /* get current working directory */  #define NCOVMAX 8 /* Maximum number of covariates */
       extern char       *getwd( );  #define MAXN 20000
   #define YEARM 12. /* Number of months per year */
       if ( getwd( dirc ) == NULL ) {  #define AGESUP 130
 #else  #define AGEBASE 40
       extern char       *getcwd( );  #ifdef unix
   #define DIRSEPARATOR '/'
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {  #define ODIRSEPARATOR '\\'
 #endif  #else
          return( GLOCK_ERROR_GETCWD );  #define DIRSEPARATOR '\\'
       }  #define ODIRSEPARATOR '/'
       strcpy( name, path );             /* we've got it */  #endif
    } else {                             /* strip direcotry from path */  
       s++;                              /* after this, the filename */  /* $Id$ */
       l2 = strlen( s );                 /* length of filename */  /* $State$ */
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );  
       strcpy( name, s );                /* save file name */  char version[]="Imach version 0.96a, June 2003, INED-EUROREVES ";
       strncpy( dirc, path, l1 - l2 );   /* now the directory */  char fullversion[]="$Revision$ $Date$"; 
       dirc[l1-l2] = 0;                  /* add zero */  int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
    }  int nvar;
    l1 = strlen( dirc );                 /* length of directory */  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
 #ifdef windows  int npar=NPARMAX;
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }  int nlstate=2; /* Number of live states */
 #else  int ndeath=1; /* Number of dead states */
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
 #endif  int popbased=0;
    s = strrchr( name, '.' );            /* find last / */  
    s++;  int *wav; /* Number of waves for this individuual 0 is possible */
    strcpy(ext,s);                       /* save extension */  int maxwav; /* Maxim number of waves */
    l1= strlen( name);  int jmin, jmax; /* min, max spacing between 2 waves */
    l2= strlen( s)+1;  int gipmx, gsw; /* Global variables on the number of contributions 
    strncpy( finame, name, l1-l2);                     to the likelihood and the sum of weights (done by funcone)*/
    finame[l1-l2]= 0;  int mle, weightopt;
    return( 0 );                         /* we're done */  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
 }  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
   int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
              * wave mi and wave mi+1 is not an exact multiple of stepm. */
 /******************************************/  double jmean; /* Mean space between 2 waves */
   double **oldm, **newm, **savm; /* Working pointers to matrices */
 void replace(char *s, char*t)  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
 {  FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
   int i;  FILE *ficlog, *ficrespow;
   int lg=20;  int globpr; /* Global variable for printing or not */
   i=0;  double fretone; /* Only one call to likelihood */
   lg=strlen(t);  long ipmx; /* Number of contributions */
   for(i=0; i<= lg; i++) {  double sw; /* Sum of weights */
     (s[i] = t[i]);  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
     if (t[i]== '\\') s[i]='/';  FILE *ficresilk;
   }  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
 }  FILE *ficresprobmorprev;
   FILE *fichtm, *fichtmcov; /* Html File */
 int nbocc(char *s, char occ)  FILE *ficreseij;
 {  char filerese[FILENAMELENGTH];
   int i,j=0;  FILE  *ficresvij;
   int lg=20;  char fileresv[FILENAMELENGTH];
   i=0;  FILE  *ficresvpl;
   lg=strlen(s);  char fileresvpl[FILENAMELENGTH];
   for(i=0; i<= lg; i++) {  char title[MAXLINE];
   if  (s[i] == occ ) j++;  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
   }  char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];
   return j;  char tmpout[FILENAMELENGTH]; 
 }  char command[FILENAMELENGTH];
   int  outcmd=0;
 void cutv(char *u,char *v, char*t, char occ)  
 {  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
   int i,lg,j,p=0;  char lfileres[FILENAMELENGTH];
   i=0;  char filelog[FILENAMELENGTH]; /* Log file */
   for(j=0; j<=strlen(t)-1; j++) {  char filerest[FILENAMELENGTH];
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  char fileregp[FILENAMELENGTH];
   }  char popfile[FILENAMELENGTH];
   
   lg=strlen(t);  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
   for(j=0; j<p; j++) {  
     (u[j] = t[j]);  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
   }  struct timezone tzp;
      u[p]='\0';  extern int gettimeofday();
   struct tm tmg, tm, tmf, *gmtime(), *localtime();
    for(j=0; j<= lg; j++) {  long time_value;
     if (j>=(p+1))(v[j-p-1] = t[j]);  extern long time();
   }  char strcurr[80], strfor[80];
 }  
   #define NR_END 1
 /********************** nrerror ********************/  #define FREE_ARG char*
   #define FTOL 1.0e-10
 void nrerror(char error_text[])  
 {  #define NRANSI 
   fprintf(stderr,"ERREUR ...\n");  #define ITMAX 200 
   fprintf(stderr,"%s\n",error_text);  
   exit(1);  #define TOL 2.0e-4 
 }  
 /*********************** vector *******************/  #define CGOLD 0.3819660 
 double *vector(int nl, int nh)  #define ZEPS 1.0e-10 
 {  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
   double *v;  
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  #define GOLD 1.618034 
   if (!v) nrerror("allocation failure in vector");  #define GLIMIT 100.0 
   return v-nl+NR_END;  #define TINY 1.0e-20 
 }  
   static double maxarg1,maxarg2;
 /************************ free vector ******************/  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
 void free_vector(double*v, int nl, int nh)  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
 {    
   free((FREE_ARG)(v+nl-NR_END));  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
 }  #define rint(a) floor(a+0.5)
   
 /************************ivector *******************************/  static double sqrarg;
 int *ivector(long nl,long nh)  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
 {  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
   int *v;  
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  int imx; 
   if (!v) nrerror("allocation failure in ivector");  int stepm;
   return v-nl+NR_END;  /* Stepm, step in month: minimum step interpolation*/
 }  
   int estepm;
 /******************free ivector **************************/  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
 void free_ivector(int *v, long nl, long nh)  
 {  int m,nb;
   free((FREE_ARG)(v+nl-NR_END));  long *num;
 }  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;
   double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
 /******************* imatrix *******************************/  double **pmmij, ***probs;
 int **imatrix(long nrl, long nrh, long ncl, long nch)  double dateintmean=0;
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  
 {  double *weight;
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  int **s; /* Status */
   int **m;  double *agedc, **covar, idx;
    int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
   /* allocate pointers to rows */  
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
   if (!m) nrerror("allocation failure 1 in matrix()");  double ftolhess; /* Tolerance for computing hessian */
   m += NR_END;  
   m -= nrl;  /**************** split *************************/
    static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
    {
   /* allocate rows and set pointers to them */    char  *ss;                            /* pointer */
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));    int   l1, l2;                         /* length counters */
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  
   m[nrl] += NR_END;    l1 = strlen(path );                   /* length of path */
   m[nrl] -= ncl;    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
      ss= strrchr( path, DIRSEPARATOR );            /* find last / */
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;    if ( ss == NULL ) {                   /* no directory, so use current */
        /*if(strrchr(path, ODIRSEPARATOR )==NULL)
   /* return pointer to array of pointers to rows */        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
   return m;      /* get current working directory */
 }      /*    extern  char* getcwd ( char *buf , int len);*/
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
 /****************** free_imatrix *************************/        return( GLOCK_ERROR_GETCWD );
 void free_imatrix(m,nrl,nrh,ncl,nch)      }
       int **m;      strcpy( name, path );               /* we've got it */
       long nch,ncl,nrh,nrl;    } else {                              /* strip direcotry from path */
      /* free an int matrix allocated by imatrix() */      ss++;                               /* after this, the filename */
 {      l2 = strlen( ss );                  /* length of filename */
   free((FREE_ARG) (m[nrl]+ncl-NR_END));      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
   free((FREE_ARG) (m+nrl-NR_END));      strcpy( name, ss );         /* save file name */
 }      strncpy( dirc, path, l1 - l2 );     /* now the directory */
       dirc[l1-l2] = 0;                    /* add zero */
 /******************* matrix *******************************/    }
 double **matrix(long nrl, long nrh, long ncl, long nch)    l1 = strlen( dirc );                  /* length of directory */
 {    /*#ifdef windows
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }
   double **m;  #else
     if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  #endif
   if (!m) nrerror("allocation failure 1 in matrix()");    */
   m += NR_END;    ss = strrchr( name, '.' );            /* find last / */
   m -= nrl;    ss++;
     strcpy(ext,ss);                       /* save extension */
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    l1= strlen( name);
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    l2= strlen(ss)+1;
   m[nrl] += NR_END;    strncpy( finame, name, l1-l2);
   m[nrl] -= ncl;    finame[l1-l2]= 0;
     return( 0 );                          /* we're done */
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  }
   return m;  
 }  
   /******************************************/
 /*************************free matrix ************************/  
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  void replace_back_to_slash(char *s, char*t)
 {  {
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    int i;
   free((FREE_ARG)(m+nrl-NR_END));    int lg=0;
 }    i=0;
     lg=strlen(t);
 /******************* ma3x *******************************/    for(i=0; i<= lg; i++) {
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)      (s[i] = t[i]);
 {      if (t[i]== '\\') s[i]='/';
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;    }
   double ***m;  }
   
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  int nbocc(char *s, char occ)
   if (!m) nrerror("allocation failure 1 in matrix()");  {
   m += NR_END;    int i,j=0;
   m -= nrl;    int lg=20;
     i=0;
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    lg=strlen(s);
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    for(i=0; i<= lg; i++) {
   m[nrl] += NR_END;    if  (s[i] == occ ) j++;
   m[nrl] -= ncl;    }
     return j;
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  }
   
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  void cutv(char *u,char *v, char*t, char occ)
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  {
   m[nrl][ncl] += NR_END;    /* cuts string t into u and v where u is ended by char occ excluding it
   m[nrl][ncl] -= nll;       and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)
   for (j=ncl+1; j<=nch; j++)       gives u="abcedf" and v="ghi2j" */
     m[nrl][j]=m[nrl][j-1]+nlay;    int i,lg,j,p=0;
      i=0;
   for (i=nrl+1; i<=nrh; i++) {    for(j=0; j<=strlen(t)-1; j++) {
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
     for (j=ncl+1; j<=nch; j++)    }
       m[i][j]=m[i][j-1]+nlay;  
   }    lg=strlen(t);
   return m;    for(j=0; j<p; j++) {
 }      (u[j] = t[j]);
     }
 /*************************free ma3x ************************/       u[p]='\0';
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  
 {     for(j=0; j<= lg; j++) {
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));      if (j>=(p+1))(v[j-p-1] = t[j]);
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    }
   free((FREE_ARG)(m+nrl-NR_END));  }
 }  
   /********************** nrerror ********************/
 /***************** f1dim *************************/  
 extern int ncom;  void nrerror(char error_text[])
 extern double *pcom,*xicom;  {
 extern double (*nrfunc)(double []);    fprintf(stderr,"ERREUR ...\n");
      fprintf(stderr,"%s\n",error_text);
 double f1dim(double x)    exit(EXIT_FAILURE);
 {  }
   int j;  /*********************** vector *******************/
   double f;  double *vector(int nl, int nh)
   double *xt;  {
      double *v;
   xt=vector(1,ncom);    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];    if (!v) nrerror("allocation failure in vector");
   f=(*nrfunc)(xt);    return v-nl+NR_END;
   free_vector(xt,1,ncom);  }
   return f;  
 }  /************************ free vector ******************/
   void free_vector(double*v, int nl, int nh)
 /*****************brent *************************/  {
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)    free((FREE_ARG)(v+nl-NR_END));
 {  }
   int iter;  
   double a,b,d,etemp;  /************************ivector *******************************/
   double fu,fv,fw,fx;  int *ivector(long nl,long nh)
   double ftemp;  {
   double p,q,r,tol1,tol2,u,v,w,x,xm;    int *v;
   double e=0.0;    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
      if (!v) nrerror("allocation failure in ivector");
   a=(ax < cx ? ax : cx);    return v-nl+NR_END;
   b=(ax > cx ? ax : cx);  }
   x=w=v=bx;  
   fw=fv=fx=(*f)(x);  /******************free ivector **************************/
   for (iter=1;iter<=ITMAX;iter++) {  void free_ivector(int *v, long nl, long nh)
     xm=0.5*(a+b);  {
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);    free((FREE_ARG)(v+nl-NR_END));
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  }
     printf(".");fflush(stdout);  
 #ifdef DEBUG  /************************lvector *******************************/
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  long *lvector(long nl,long nh)
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  {
 #endif    long *v;
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
       *xmin=x;    if (!v) nrerror("allocation failure in ivector");
       return fx;    return v-nl+NR_END;
     }  }
     ftemp=fu;  
     if (fabs(e) > tol1) {  /******************free lvector **************************/
       r=(x-w)*(fx-fv);  void free_lvector(long *v, long nl, long nh)
       q=(x-v)*(fx-fw);  {
       p=(x-v)*q-(x-w)*r;    free((FREE_ARG)(v+nl-NR_END));
       q=2.0*(q-r);  }
       if (q > 0.0) p = -p;  
       q=fabs(q);  /******************* imatrix *******************************/
       etemp=e;  int **imatrix(long nrl, long nrh, long ncl, long nch) 
       e=d;       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  { 
         d=CGOLD*(e=(x >= xm ? a-x : b-x));    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
       else {    int **m; 
         d=p/q;    
         u=x+d;    /* allocate pointers to rows */ 
         if (u-a < tol2 || b-u < tol2)    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
           d=SIGN(tol1,xm-x);    if (!m) nrerror("allocation failure 1 in matrix()"); 
       }    m += NR_END; 
     } else {    m -= nrl; 
       d=CGOLD*(e=(x >= xm ? a-x : b-x));    
     }    
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));    /* allocate rows and set pointers to them */ 
     fu=(*f)(u);    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
     if (fu <= fx) {    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
       if (u >= x) a=x; else b=x;    m[nrl] += NR_END; 
       SHFT(v,w,x,u)    m[nrl] -= ncl; 
         SHFT(fv,fw,fx,fu)    
         } else {    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
           if (u < x) a=u; else b=u;    
           if (fu <= fw || w == x) {    /* return pointer to array of pointers to rows */ 
             v=w;    return m; 
             w=u;  } 
             fv=fw;  
             fw=fu;  /****************** free_imatrix *************************/
           } else if (fu <= fv || v == x || v == w) {  void free_imatrix(m,nrl,nrh,ncl,nch)
             v=u;        int **m;
             fv=fu;        long nch,ncl,nrh,nrl; 
           }       /* free an int matrix allocated by imatrix() */ 
         }  { 
   }    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
   nrerror("Too many iterations in brent");    free((FREE_ARG) (m+nrl-NR_END)); 
   *xmin=x;  } 
   return fx;  
 }  /******************* matrix *******************************/
   double **matrix(long nrl, long nrh, long ncl, long nch)
 /****************** mnbrak ***********************/  {
     long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,    double **m;
             double (*func)(double))  
 {    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   double ulim,u,r,q, dum;    if (!m) nrerror("allocation failure 1 in matrix()");
   double fu;    m += NR_END;
      m -= nrl;
   *fa=(*func)(*ax);  
   *fb=(*func)(*bx);    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   if (*fb > *fa) {    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     SHFT(dum,*ax,*bx,dum)    m[nrl] += NR_END;
       SHFT(dum,*fb,*fa,dum)    m[nrl] -= ncl;
       }  
   *cx=(*bx)+GOLD*(*bx-*ax);    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   *fc=(*func)(*cx);    return m;
   while (*fb > *fc) {    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
     r=(*bx-*ax)*(*fb-*fc);     */
     q=(*bx-*cx)*(*fb-*fa);  }
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/  
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  /*************************free matrix ************************/
     ulim=(*bx)+GLIMIT*(*cx-*bx);  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
     if ((*bx-u)*(u-*cx) > 0.0) {  {
       fu=(*func)(u);    free((FREE_ARG)(m[nrl]+ncl-NR_END));
     } else if ((*cx-u)*(u-ulim) > 0.0) {    free((FREE_ARG)(m+nrl-NR_END));
       fu=(*func)(u);  }
       if (fu < *fc) {  
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))  /******************* ma3x *******************************/
           SHFT(*fb,*fc,fu,(*func)(u))  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
           }  {
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
       u=ulim;    double ***m;
       fu=(*func)(u);  
     } else {    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
       u=(*cx)+GOLD*(*cx-*bx);    if (!m) nrerror("allocation failure 1 in matrix()");
       fu=(*func)(u);    m += NR_END;
     }    m -= nrl;
     SHFT(*ax,*bx,*cx,u)  
       SHFT(*fa,*fb,*fc,fu)    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
       }    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
 }    m[nrl] += NR_END;
     m[nrl] -= ncl;
 /*************** linmin ************************/  
     for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
 int ncom;  
 double *pcom,*xicom;    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
 double (*nrfunc)(double []);    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
      m[nrl][ncl] += NR_END;
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))    m[nrl][ncl] -= nll;
 {    for (j=ncl+1; j<=nch; j++) 
   double brent(double ax, double bx, double cx,      m[nrl][j]=m[nrl][j-1]+nlay;
                double (*f)(double), double tol, double *xmin);    
   double f1dim(double x);    for (i=nrl+1; i<=nrh; i++) {
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
               double *fc, double (*func)(double));      for (j=ncl+1; j<=nch; j++) 
   int j;        m[i][j]=m[i][j-1]+nlay;
   double xx,xmin,bx,ax;    }
   double fx,fb,fa;    return m; 
      /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
   ncom=n;             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
   pcom=vector(1,n);    */
   xicom=vector(1,n);  }
   nrfunc=func;  
   for (j=1;j<=n;j++) {  /*************************free ma3x ************************/
     pcom[j]=p[j];  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
     xicom[j]=xi[j];  {
   }    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
   ax=0.0;    free((FREE_ARG)(m[nrl]+ncl-NR_END));
   xx=1.0;    free((FREE_ARG)(m+nrl-NR_END));
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  }
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);  
 #ifdef DEBUG  /***************** f1dim *************************/
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  extern int ncom; 
 #endif  extern double *pcom,*xicom;
   for (j=1;j<=n;j++) {  extern double (*nrfunc)(double []); 
     xi[j] *= xmin;   
     p[j] += xi[j];  double f1dim(double x) 
   }  { 
   free_vector(xicom,1,n);    int j; 
   free_vector(pcom,1,n);    double f;
 }    double *xt; 
    
 /*************** powell ************************/    xt=vector(1,ncom); 
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
             double (*func)(double []))    f=(*nrfunc)(xt); 
 {    free_vector(xt,1,ncom); 
   void linmin(double p[], double xi[], int n, double *fret,    return f; 
               double (*func)(double []));  } 
   int i,ibig,j;  
   double del,t,*pt,*ptt,*xit;  /*****************brent *************************/
   double fp,fptt;  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
   double *xits;  { 
   pt=vector(1,n);    int iter; 
   ptt=vector(1,n);    double a,b,d,etemp;
   xit=vector(1,n);    double fu,fv,fw,fx;
   xits=vector(1,n);    double ftemp;
   *fret=(*func)(p);    double p,q,r,tol1,tol2,u,v,w,x,xm; 
   for (j=1;j<=n;j++) pt[j]=p[j];    double e=0.0; 
   for (*iter=1;;++(*iter)) {   
     fp=(*fret);    a=(ax < cx ? ax : cx); 
     ibig=0;    b=(ax > cx ? ax : cx); 
     del=0.0;    x=w=v=bx; 
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);    fw=fv=fx=(*f)(x); 
     for (i=1;i<=n;i++)    for (iter=1;iter<=ITMAX;iter++) { 
       printf(" %d %.12f",i, p[i]);      xm=0.5*(a+b); 
     printf("\n");      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
     for (i=1;i<=n;i++) {      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
       for (j=1;j<=n;j++) xit[j]=xi[j][i];      printf(".");fflush(stdout);
       fptt=(*fret);      fprintf(ficlog,".");fflush(ficlog);
 #ifdef DEBUG  #ifdef DEBUG
       printf("fret=%lf \n",*fret);      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
 #endif      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       printf("%d",i);fflush(stdout);      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
       linmin(p,xit,n,fret,func);  #endif
       if (fabs(fptt-(*fret)) > del) {      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
         del=fabs(fptt-(*fret));        *xmin=x; 
         ibig=i;        return fx; 
       }      } 
 #ifdef DEBUG      ftemp=fu;
       printf("%d %.12e",i,(*fret));      if (fabs(e) > tol1) { 
       for (j=1;j<=n;j++) {        r=(x-w)*(fx-fv); 
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);        q=(x-v)*(fx-fw); 
         printf(" x(%d)=%.12e",j,xit[j]);        p=(x-v)*q-(x-w)*r; 
       }        q=2.0*(q-r); 
       for(j=1;j<=n;j++)        if (q > 0.0) p = -p; 
         printf(" p=%.12e",p[j]);        q=fabs(q); 
       printf("\n");        etemp=e; 
 #endif        e=d; 
     }        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
 #ifdef DEBUG        else { 
       int k[2],l;          d=p/q; 
       k[0]=1;          u=x+d; 
       k[1]=-1;          if (u-a < tol2 || b-u < tol2) 
       printf("Max: %.12e",(*func)(p));            d=SIGN(tol1,xm-x); 
       for (j=1;j<=n;j++)        } 
         printf(" %.12e",p[j]);      } else { 
       printf("\n");        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
       for(l=0;l<=1;l++) {      } 
         for (j=1;j<=n;j++) {      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];      fu=(*f)(u); 
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);      if (fu <= fx) { 
         }        if (u >= x) a=x; else b=x; 
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));        SHFT(v,w,x,u) 
       }          SHFT(fv,fw,fx,fu) 
 #endif          } else { 
             if (u < x) a=u; else b=u; 
             if (fu <= fw || w == x) { 
       free_vector(xit,1,n);              v=w; 
       free_vector(xits,1,n);              w=u; 
       free_vector(ptt,1,n);              fv=fw; 
       free_vector(pt,1,n);              fw=fu; 
       return;            } else if (fu <= fv || v == x || v == w) { 
     }              v=u; 
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");              fv=fu; 
     for (j=1;j<=n;j++) {            } 
       ptt[j]=2.0*p[j]-pt[j];          } 
       xit[j]=p[j]-pt[j];    } 
       pt[j]=p[j];    nrerror("Too many iterations in brent"); 
     }    *xmin=x; 
     fptt=(*func)(ptt);    return fx; 
     if (fptt < fp) {  } 
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);  
       if (t < 0.0) {  /****************** mnbrak ***********************/
         linmin(p,xit,n,fret,func);  
         for (j=1;j<=n;j++) {  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
           xi[j][ibig]=xi[j][n];              double (*func)(double)) 
           xi[j][n]=xit[j];  { 
         }    double ulim,u,r,q, dum;
 #ifdef DEBUG    double fu; 
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);   
         for(j=1;j<=n;j++)    *fa=(*func)(*ax); 
           printf(" %.12e",xit[j]);    *fb=(*func)(*bx); 
         printf("\n");    if (*fb > *fa) { 
 #endif      SHFT(dum,*ax,*bx,dum) 
       }        SHFT(dum,*fb,*fa,dum) 
     }        } 
   }    *cx=(*bx)+GOLD*(*bx-*ax); 
 }    *fc=(*func)(*cx); 
     while (*fb > *fc) { 
 /**** Prevalence limit ****************/      r=(*bx-*ax)*(*fb-*fc); 
       q=(*bx-*cx)*(*fb-*fa); 
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
 {        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit      ulim=(*bx)+GLIMIT*(*cx-*bx); 
      matrix by transitions matrix until convergence is reached */      if ((*bx-u)*(u-*cx) > 0.0) { 
         fu=(*func)(u); 
   int i, ii,j,k;      } else if ((*cx-u)*(u-ulim) > 0.0) { 
   double min, max, maxmin, maxmax,sumnew=0.;        fu=(*func)(u); 
   double **matprod2();        if (fu < *fc) { 
   double **out, cov[NCOVMAX], **pmij();          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
   double **newm;            SHFT(*fb,*fc,fu,(*func)(u)) 
   double agefin, delaymax=50 ; /* Max number of years to converge */            } 
       } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
   for (ii=1;ii<=nlstate+ndeath;ii++)        u=ulim; 
     for (j=1;j<=nlstate+ndeath;j++){        fu=(*func)(u); 
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);      } else { 
     }        u=(*cx)+GOLD*(*cx-*bx); 
         fu=(*func)(u); 
    cov[1]=1.;      } 
        SHFT(*ax,*bx,*cx,u) 
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */        SHFT(*fa,*fb,*fc,fu) 
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){        } 
     newm=savm;  } 
     /* Covariates have to be included here again */  
      cov[2]=agefin;  /*************** linmin ************************/
    
       for (k=1; k<=cptcovn;k++) {  int ncom; 
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  double *pcom,*xicom;
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/  double (*nrfunc)(double []); 
       }   
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
       for (k=1; k<=cptcovprod;k++)  { 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    double brent(double ax, double bx, double cx, 
                  double (*f)(double), double tol, double *xmin); 
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/    double f1dim(double x); 
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/                double *fc, double (*func)(double)); 
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);    int j; 
     double xx,xmin,bx,ax; 
     savm=oldm;    double fx,fb,fa;
     oldm=newm;   
     maxmax=0.;    ncom=n; 
     for(j=1;j<=nlstate;j++){    pcom=vector(1,n); 
       min=1.;    xicom=vector(1,n); 
       max=0.;    nrfunc=func; 
       for(i=1; i<=nlstate; i++) {    for (j=1;j<=n;j++) { 
         sumnew=0;      pcom[j]=p[j]; 
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];      xicom[j]=xi[j]; 
         prlim[i][j]= newm[i][j]/(1-sumnew);    } 
         max=FMAX(max,prlim[i][j]);    ax=0.0; 
         min=FMIN(min,prlim[i][j]);    xx=1.0; 
       }    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
       maxmin=max-min;    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
       maxmax=FMAX(maxmax,maxmin);  #ifdef DEBUG
     }    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
     if(maxmax < ftolpl){    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
       return prlim;  #endif
     }    for (j=1;j<=n;j++) { 
   }      xi[j] *= xmin; 
 }      p[j] += xi[j]; 
     } 
 /*************** transition probabilities ***************/    free_vector(xicom,1,n); 
     free_vector(pcom,1,n); 
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )  } 
 {  
   double s1, s2;  char *asc_diff_time(long time_sec, char ascdiff[])
   /*double t34;*/  {
   int i,j,j1, nc, ii, jj;    long sec_left, days, hours, minutes;
     days = (time_sec) / (60*60*24);
     for(i=1; i<= nlstate; i++){    sec_left = (time_sec) % (60*60*24);
     for(j=1; j<i;j++){    hours = (sec_left) / (60*60) ;
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    sec_left = (sec_left) %(60*60);
         /*s2 += param[i][j][nc]*cov[nc];*/    minutes = (sec_left) /60;
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    sec_left = (sec_left) % (60);
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
       }    return ascdiff;
       ps[i][j]=s2;  }
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/  
     }  /*************** powell ************************/
     for(j=i+1; j<=nlstate+ndeath;j++){  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){              double (*func)(double [])) 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  { 
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/    void linmin(double p[], double xi[], int n, double *fret, 
       }                double (*func)(double [])); 
       ps[i][j]=s2;    int i,ibig,j; 
     }    double del,t,*pt,*ptt,*xit;
   }    double fp,fptt;
     /*ps[3][2]=1;*/    double *xits;
     int niterf, itmp;
   for(i=1; i<= nlstate; i++){  
      s1=0;    pt=vector(1,n); 
     for(j=1; j<i; j++)    ptt=vector(1,n); 
       s1+=exp(ps[i][j]);    xit=vector(1,n); 
     for(j=i+1; j<=nlstate+ndeath; j++)    xits=vector(1,n); 
       s1+=exp(ps[i][j]);    *fret=(*func)(p); 
     ps[i][i]=1./(s1+1.);    for (j=1;j<=n;j++) pt[j]=p[j]; 
     for(j=1; j<i; j++)    for (*iter=1;;++(*iter)) { 
       ps[i][j]= exp(ps[i][j])*ps[i][i];      fp=(*fret); 
     for(j=i+1; j<=nlstate+ndeath; j++)      ibig=0; 
       ps[i][j]= exp(ps[i][j])*ps[i][i];      del=0.0; 
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */      last_time=curr_time;
   } /* end i */      (void) gettimeofday(&curr_time,&tzp);
       printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);
     for(jj=1; jj<= nlstate+ndeath; jj++){      fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);
       ps[ii][jj]=0;      for (i=1;i<=n;i++) {
       ps[ii][ii]=1;        printf(" %d %.12f",i, p[i]);
     }        fprintf(ficlog," %d %.12lf",i, p[i]);
   }        fprintf(ficrespow," %.12lf", p[i]);
       }
       printf("\n");
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){      fprintf(ficlog,"\n");
     for(jj=1; jj<= nlstate+ndeath; jj++){      fprintf(ficrespow,"\n");fflush(ficrespow);
      printf("%lf ",ps[ii][jj]);      if(*iter <=3){
    }        tm = *localtime(&curr_time.tv_sec);
     printf("\n ");        asctime_r(&tm,strcurr);
     }        forecast_time=curr_time;
     printf("\n ");printf("%lf ",cov[2]);*/        itmp = strlen(strcurr);
 /*        if(strcurr[itmp-1]=='\n')
   for(i=1; i<= npar; i++) printf("%f ",x[i]);          strcurr[itmp-1]='\0';
   goto end;*/        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
     return ps;        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
 }        for(niterf=10;niterf<=30;niterf+=10){
           forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
 /**************** Product of 2 matrices ******************/          tmf = *localtime(&forecast_time.tv_sec);
           asctime_r(&tmf,strfor);
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)  /*      strcpy(strfor,asctime(&tmf)); */
 {          itmp = strlen(strfor);
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times          if(strfor[itmp-1]=='\n')
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */          strfor[itmp-1]='\0';
   /* in, b, out are matrice of pointers which should have been initialized          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s or\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
      before: only the contents of out is modified. The function returns          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s or\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
      a pointer to pointers identical to out */        }
   long i, j, k;      }
   for(i=nrl; i<= nrh; i++)      for (i=1;i<=n;i++) { 
     for(k=ncolol; k<=ncoloh; k++)        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
       for(j=ncl,out[i][k]=0.; j<=nch; j++)        fptt=(*fret); 
         out[i][k] +=in[i][j]*b[j][k];  #ifdef DEBUG
         printf("fret=%lf \n",*fret);
   return out;        fprintf(ficlog,"fret=%lf \n",*fret);
 }  #endif
         printf("%d",i);fflush(stdout);
         fprintf(ficlog,"%d",i);fflush(ficlog);
 /************* Higher Matrix Product ***************/        linmin(p,xit,n,fret,func); 
         if (fabs(fptt-(*fret)) > del) { 
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )          del=fabs(fptt-(*fret)); 
 {          ibig=i; 
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month        } 
      duration (i.e. until  #ifdef DEBUG
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.        printf("%d %.12e",i,(*fret));
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step        fprintf(ficlog,"%d %.12e",i,(*fret));
      (typically every 2 years instead of every month which is too big).        for (j=1;j<=n;j++) {
      Model is determined by parameters x and covariates have to be          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
      included manually here.          printf(" x(%d)=%.12e",j,xit[j]);
           fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
      */        }
         for(j=1;j<=n;j++) {
   int i, j, d, h, k;          printf(" p=%.12e",p[j]);
   double **out, cov[NCOVMAX];          fprintf(ficlog," p=%.12e",p[j]);
   double **newm;        }
         printf("\n");
   /* Hstepm could be zero and should return the unit matrix */        fprintf(ficlog,"\n");
   for (i=1;i<=nlstate+ndeath;i++)  #endif
     for (j=1;j<=nlstate+ndeath;j++){      } 
       oldm[i][j]=(i==j ? 1.0 : 0.0);      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
       po[i][j][0]=(i==j ? 1.0 : 0.0);  #ifdef DEBUG
     }        int k[2],l;
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */        k[0]=1;
   for(h=1; h <=nhstepm; h++){        k[1]=-1;
     for(d=1; d <=hstepm; d++){        printf("Max: %.12e",(*func)(p));
       newm=savm;        fprintf(ficlog,"Max: %.12e",(*func)(p));
       /* Covariates have to be included here again */        for (j=1;j<=n;j++) {
       cov[1]=1.;          printf(" %.12e",p[j]);
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;          fprintf(ficlog," %.12e",p[j]);
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];        }
       for (k=1; k<=cptcovage;k++)        printf("\n");
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];        fprintf(ficlog,"\n");
       for (k=1; k<=cptcovprod;k++)        for(l=0;l<=1;l++) {
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];          for (j=1;j<=n;j++) {
             ptt[j]=p[j]+(p[j]-pt[j])*k[l];
             printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/          }
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
                    pmij(pmmij,cov,ncovmodel,x,nlstate));          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
       savm=oldm;        }
       oldm=newm;  #endif
     }  
     for(i=1; i<=nlstate+ndeath; i++)  
       for(j=1;j<=nlstate+ndeath;j++) {        free_vector(xit,1,n); 
         po[i][j][h]=newm[i][j];        free_vector(xits,1,n); 
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);        free_vector(ptt,1,n); 
          */        free_vector(pt,1,n); 
       }        return; 
   } /* end h */      } 
   return po;      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
 }      for (j=1;j<=n;j++) { 
         ptt[j]=2.0*p[j]-pt[j]; 
         xit[j]=p[j]-pt[j]; 
 /*************** log-likelihood *************/        pt[j]=p[j]; 
 double func( double *x)      } 
 {      fptt=(*func)(ptt); 
   int i, ii, j, k, mi, d, kk;      if (fptt < fp) { 
   double l, ll[NLSTATEMAX], cov[NCOVMAX];        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
   double **out;        if (t < 0.0) { 
   double sw; /* Sum of weights */          linmin(p,xit,n,fret,func); 
   double lli; /* Individual log likelihood */          for (j=1;j<=n;j++) { 
   int s1, s2;            xi[j][ibig]=xi[j][n]; 
   long ipmx;            xi[j][n]=xit[j]; 
   /*extern weight */          }
   /* We are differentiating ll according to initial status */  #ifdef DEBUG
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   /*for(i=1;i<imx;i++)          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
     printf(" %d\n",s[4][i]);          for(j=1;j<=n;j++){
   */            printf(" %.12e",xit[j]);
   cov[1]=1.;            fprintf(ficlog," %.12e",xit[j]);
           }
   for(k=1; k<=nlstate; k++) ll[k]=0.;          printf("\n");
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){          fprintf(ficlog,"\n");
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];  #endif
     for(mi=1; mi<= wav[i]-1; mi++){        }
       for (ii=1;ii<=nlstate+ndeath;ii++)      } 
         for (j=1;j<=nlstate+ndeath;j++){    } 
           oldm[ii][j]=(ii==j ? 1.0 : 0.0);  } 
           savm[ii][j]=(ii==j ? 1.0 : 0.0);  
         }  /**** Prevalence limit (stable prevalence)  ****************/
       for(d=0; d<dh[mi][i]; d++){  
         newm=savm;  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;  {
         for (kk=1; kk<=cptcovage;kk++) {    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];       matrix by transitions matrix until convergence is reached */
         }  
            int i, ii,j,k;
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,    double min, max, maxmin, maxmax,sumnew=0.;
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));    double **matprod2();
         savm=oldm;    double **out, cov[NCOVMAX], **pmij();
         oldm=newm;    double **newm;
            double agefin, delaymax=50 ; /* Max number of years to converge */
          
       } /* end mult */    for (ii=1;ii<=nlstate+ndeath;ii++)
            for (j=1;j<=nlstate+ndeath;j++){
       s1=s[mw[mi][i]][i];        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       s2=s[mw[mi+1][i]][i];      }
       if( s2 > nlstate){  
         /* i.e. if s2 is a death state and if the date of death is known then the contribution     cov[1]=1.;
            to the likelihood is the probability to die between last step unit time and current   
            step unit time, which is also the differences between probability to die before dh   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
            and probability to die before dh-stepm .    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
            In version up to 0.92 likelihood was computed      newm=savm;
            as if date of death was unknown. Death was treated as any other      /* Covariates have to be included here again */
            health state: the date of the interview describes the actual state       cov[2]=agefin;
            and not the date of a change in health state. The former idea was    
            to consider that at each interview the state was recorded        for (k=1; k<=cptcovn;k++) {
            (healthy, disable or death) and IMaCh was corrected; but when we          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
            introduced the exact date of death then we should have modified          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
            the contribution of an exact death to the likelihood. This new        }
            contribution is smaller and very dependent of the step unit        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
            stepm. It is no more the probability to die between last interview        for (k=1; k<=cptcovprod;k++)
            and month of death but the probability to survive from last          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
            interview up to one month before death multiplied by the  
            probability to die within a month. Thanks to Chris        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
            Jackson for correcting this bug.  Former versions increased        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
            mortality artificially. The bad side is that we add another loop        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
            which slows down the processing. The difference can be up to 10%      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
            lower mortality.  
         */      savm=oldm;
         lli=log(out[s1][s2] - savm[s1][s2]);      oldm=newm;
       }else{      maxmax=0.;
         lli=log(out[s1][s2]); /* or     lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); */      for(j=1;j<=nlstate;j++){
         /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/        min=1.;
       }        max=0.;
       ipmx +=1;        for(i=1; i<=nlstate; i++) {
       sw += weight[i];          sumnew=0;
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
       /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d lli=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],lli,weight[i],out[s1][s2],savm[s1][s2]);*/          prlim[i][j]= newm[i][j]/(1-sumnew);
     } /* end of wave */          max=FMAX(max,prlim[i][j]);
   } /* end of individual */          min=FMIN(min,prlim[i][j]);
         }
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];        maxmin=max-min;
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */        maxmax=FMAX(maxmax,maxmin);
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */      }
   /*exit(0);*/      if(maxmax < ftolpl){
   return -l;        return prlim;
 }      }
     }
   }
 /*********** Maximum Likelihood Estimation ***************/  
   /*************** transition probabilities ***************/ 
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))  
 {  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
   int i,j, iter;  {
   double **xi,*delti;    double s1, s2;
   double fret;    /*double t34;*/
   xi=matrix(1,npar,1,npar);    int i,j,j1, nc, ii, jj;
   for (i=1;i<=npar;i++)  
     for (j=1;j<=npar;j++)      for(i=1; i<= nlstate; i++){
       xi[i][j]=(i==j ? 1.0 : 0.0);      for(j=1; j<i;j++){
   printf("Powell\n");        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
   powell(p,xi,npar,ftol,&iter,&fret,func);          /*s2 += param[i][j][nc]*cov[nc];*/
           s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));          /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));        }
         ps[i][j]=s2;
 }        /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/
       }
 /**** Computes Hessian and covariance matrix ***/      for(j=i+1; j<=nlstate+ndeath;j++){
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
 {          s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
   double  **a,**y,*x,pd;          /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/
   double **hess;        }
   int i, j,jk;        ps[i][j]=s2;
   int *indx;      }
     }
   double hessii(double p[], double delta, int theta, double delti[]);      /*ps[3][2]=1;*/
   double hessij(double p[], double delti[], int i, int j);  
   void lubksb(double **a, int npar, int *indx, double b[]) ;    for(i=1; i<= nlstate; i++){
   void ludcmp(double **a, int npar, int *indx, double *d) ;       s1=0;
       for(j=1; j<i; j++)
   hess=matrix(1,npar,1,npar);        s1+=exp(ps[i][j]);
       for(j=i+1; j<=nlstate+ndeath; j++)
   printf("\nCalculation of the hessian matrix. Wait...\n");        s1+=exp(ps[i][j]);
   for (i=1;i<=npar;i++){      ps[i][i]=1./(s1+1.);
     printf("%d",i);fflush(stdout);      for(j=1; j<i; j++)
     hess[i][i]=hessii(p,ftolhess,i,delti);        ps[i][j]= exp(ps[i][j])*ps[i][i];
     /*printf(" %f ",p[i]);*/      for(j=i+1; j<=nlstate+ndeath; j++)
     /*printf(" %lf ",hess[i][i]);*/        ps[i][j]= exp(ps[i][j])*ps[i][i];
   }      /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
      } /* end i */
   for (i=1;i<=npar;i++) {  
     for (j=1;j<=npar;j++)  {    for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
       if (j>i) {      for(jj=1; jj<= nlstate+ndeath; jj++){
         printf(".%d%d",i,j);fflush(stdout);        ps[ii][jj]=0;
         hess[i][j]=hessij(p,delti,i,j);        ps[ii][ii]=1;
         hess[j][i]=hess[i][j];          }
         /*printf(" %lf ",hess[i][j]);*/    }
       }  
     }  
   }    /*   for(ii=1; ii<= nlstate+ndeath; ii++){
   printf("\n");      for(jj=1; jj<= nlstate+ndeath; jj++){
        printf("%lf ",ps[ii][jj]);
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");     }
        printf("\n ");
   a=matrix(1,npar,1,npar);      }
   y=matrix(1,npar,1,npar);      printf("\n ");printf("%lf ",cov[2]);*/
   x=vector(1,npar);  /*
   indx=ivector(1,npar);    for(i=1; i<= npar; i++) printf("%f ",x[i]);
   for (i=1;i<=npar;i++)    goto end;*/
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];      return ps;
   ludcmp(a,npar,indx,&pd);  }
   
   for (j=1;j<=npar;j++) {  /**************** Product of 2 matrices ******************/
     for (i=1;i<=npar;i++) x[i]=0;  
     x[j]=1;  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
     lubksb(a,npar,indx,x);  {
     for (i=1;i<=npar;i++){    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
       matcov[i][j]=x[i];       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
     }    /* in, b, out are matrice of pointers which should have been initialized 
   }       before: only the contents of out is modified. The function returns
        a pointer to pointers identical to out */
   printf("\n#Hessian matrix#\n");    long i, j, k;
   for (i=1;i<=npar;i++) {    for(i=nrl; i<= nrh; i++)
     for (j=1;j<=npar;j++) {      for(k=ncolol; k<=ncoloh; k++)
       printf("%.3e ",hess[i][j]);        for(j=ncl,out[i][k]=0.; j<=nch; j++)
     }          out[i][k] +=in[i][j]*b[j][k];
     printf("\n");  
   }    return out;
   }
   /* Recompute Inverse */  
   for (i=1;i<=npar;i++)  
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];  /************* Higher Matrix Product ***************/
   ludcmp(a,npar,indx,&pd);  
   double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
   /*  printf("\n#Hessian matrix recomputed#\n");  {
     /* Computes the transition matrix starting at age 'age' over 
   for (j=1;j<=npar;j++) {       'nhstepm*hstepm*stepm' months (i.e. until
     for (i=1;i<=npar;i++) x[i]=0;       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
     x[j]=1;       nhstepm*hstepm matrices. 
     lubksb(a,npar,indx,x);       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
     for (i=1;i<=npar;i++){       (typically every 2 years instead of every month which is too big 
       y[i][j]=x[i];       for the memory).
       printf("%.3e ",y[i][j]);       Model is determined by parameters x and covariates have to be 
     }       included manually here. 
     printf("\n");  
   }       */
   */  
     int i, j, d, h, k;
   free_matrix(a,1,npar,1,npar);    double **out, cov[NCOVMAX];
   free_matrix(y,1,npar,1,npar);    double **newm;
   free_vector(x,1,npar);  
   free_ivector(indx,1,npar);    /* Hstepm could be zero and should return the unit matrix */
   free_matrix(hess,1,npar,1,npar);    for (i=1;i<=nlstate+ndeath;i++)
       for (j=1;j<=nlstate+ndeath;j++){
         oldm[i][j]=(i==j ? 1.0 : 0.0);
 }        po[i][j][0]=(i==j ? 1.0 : 0.0);
       }
 /*************** hessian matrix ****************/    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
 double hessii( double x[], double delta, int theta, double delti[])    for(h=1; h <=nhstepm; h++){
 {      for(d=1; d <=hstepm; d++){
   int i;        newm=savm;
   int l=1, lmax=20;        /* Covariates have to be included here again */
   double k1,k2;        cov[1]=1.;
   double p2[NPARMAX+1];        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
   double res;        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;        for (k=1; k<=cptcovage;k++)
   double fx;          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   int k=0,kmax=10;        for (k=1; k<=cptcovprod;k++)
   double l1;          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   
   fx=func(x);  
   for (i=1;i<=npar;i++) p2[i]=x[i];        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
   for(l=0 ; l <=lmax; l++){        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
     l1=pow(10,l);        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
     delts=delt;                     pmij(pmmij,cov,ncovmodel,x,nlstate));
     for(k=1 ; k <kmax; k=k+1){        savm=oldm;
       delt = delta*(l1*k);        oldm=newm;
       p2[theta]=x[theta] +delt;      }
       k1=func(p2)-fx;      for(i=1; i<=nlstate+ndeath; i++)
       p2[theta]=x[theta]-delt;        for(j=1;j<=nlstate+ndeath;j++) {
       k2=func(p2)-fx;          po[i][j][h]=newm[i][j];
       /*res= (k1-2.0*fx+k2)/delt/delt; */          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */           */
              }
 #ifdef DEBUG    } /* end h */
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);    return po;
 #endif  }
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */  
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){  
         k=kmax;  /*************** log-likelihood *************/
       }  double func( double *x)
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */  {
         k=kmax; l=lmax*10.;    int i, ii, j, k, mi, d, kk;
       }    double l, ll[NLSTATEMAX], cov[NCOVMAX];
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){    double **out;
         delts=delt;    double sw; /* Sum of weights */
       }    double lli; /* Individual log likelihood */
     }    int s1, s2;
   }    double bbh, survp;
   delti[theta]=delts;    long ipmx;
   return res;    /*extern weight */
      /* We are differentiating ll according to initial status */
 }    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     /*for(i=1;i<imx;i++) 
 double hessij( double x[], double delti[], int thetai,int thetaj)      printf(" %d\n",s[4][i]);
 {    */
   int i;    cov[1]=1.;
   int l=1, l1, lmax=20;  
   double k1,k2,k3,k4,res,fx;    for(k=1; k<=nlstate; k++) ll[k]=0.;
   double p2[NPARMAX+1];  
   int k;    if(mle==1){
       for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   fx=func(x);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   for (k=1; k<=2; k++) {        for(mi=1; mi<= wav[i]-1; mi++){
     for (i=1;i<=npar;i++) p2[i]=x[i];          for (ii=1;ii<=nlstate+ndeath;ii++)
     p2[thetai]=x[thetai]+delti[thetai]/k;            for (j=1;j<=nlstate+ndeath;j++){
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     k1=func(p2)-fx;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
              }
     p2[thetai]=x[thetai]+delti[thetai]/k;          for(d=0; d<dh[mi][i]; d++){
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;            newm=savm;
     k2=func(p2)-fx;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
              for (kk=1; kk<=cptcovage;kk++) {
     p2[thetai]=x[thetai]-delti[thetai]/k;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;            }
     k3=func(p2)-fx;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     p2[thetai]=x[thetai]-delti[thetai]/k;            savm=oldm;
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;            oldm=newm;
     k4=func(p2)-fx;          } /* end mult */
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */        
 #ifdef DEBUG          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);          /* But now since version 0.9 we anticipate for bias and large stepm.
 #endif           * If stepm is larger than one month (smallest stepm) and if the exact delay 
   }           * (in months) between two waves is not a multiple of stepm, we rounded to 
   return res;           * the nearest (and in case of equal distance, to the lowest) interval but now
 }           * we keep into memory the bias bh[mi][i] and also the previous matrix product
            * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
 /************** Inverse of matrix **************/           * probability in order to take into account the bias as a fraction of the way
 void ludcmp(double **a, int n, int *indx, double *d)           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
 {           * -stepm/2 to stepm/2 .
   int i,imax,j,k;           * For stepm=1 the results are the same as for previous versions of Imach.
   double big,dum,sum,temp;           * For stepm > 1 the results are less biased than in previous versions. 
   double *vv;           */
            s1=s[mw[mi][i]][i];
   vv=vector(1,n);          s2=s[mw[mi+1][i]][i];
   *d=1.0;          bbh=(double)bh[mi][i]/(double)stepm; 
   for (i=1;i<=n;i++) {          /* bias is positive if real duration
     big=0.0;           * is higher than the multiple of stepm and negative otherwise.
     for (j=1;j<=n;j++)           */
       if ((temp=fabs(a[i][j])) > big) big=temp;          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");          if( s2 > nlstate){ 
     vv[i]=1.0/big;            /* i.e. if s2 is a death state and if the date of death is known then the contribution
   }               to the likelihood is the probability to die between last step unit time and current 
   for (j=1;j<=n;j++) {               step unit time, which is also the differences between probability to die before dh 
     for (i=1;i<j;i++) {               and probability to die before dh-stepm . 
       sum=a[i][j];               In version up to 0.92 likelihood was computed
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];          as if date of death was unknown. Death was treated as any other
       a[i][j]=sum;          health state: the date of the interview describes the actual state
     }          and not the date of a change in health state. The former idea was
     big=0.0;          to consider that at each interview the state was recorded
     for (i=j;i<=n;i++) {          (healthy, disable or death) and IMaCh was corrected; but when we
       sum=a[i][j];          introduced the exact date of death then we should have modified
       for (k=1;k<j;k++)          the contribution of an exact death to the likelihood. This new
         sum -= a[i][k]*a[k][j];          contribution is smaller and very dependent of the step unit
       a[i][j]=sum;          stepm. It is no more the probability to die between last interview
       if ( (dum=vv[i]*fabs(sum)) >= big) {          and month of death but the probability to survive from last
         big=dum;          interview up to one month before death multiplied by the
         imax=i;          probability to die within a month. Thanks to Chris
       }          Jackson for correcting this bug.  Former versions increased
     }          mortality artificially. The bad side is that we add another loop
     if (j != imax) {          which slows down the processing. The difference can be up to 10%
       for (k=1;k<=n;k++) {          lower mortality.
         dum=a[imax][k];            */
         a[imax][k]=a[j][k];            lli=log(out[s1][s2] - savm[s1][s2]);
         a[j][k]=dum;          }else{
       }            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
       *d = -(*d);            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
       vv[imax]=vv[j];          } 
     }          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
     indx[j]=imax;          /*if(lli ==000.0)*/
     if (a[j][j] == 0.0) a[j][j]=TINY;          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
     if (j != n) {          ipmx +=1;
       dum=1.0/(a[j][j]);          sw += weight[i];
       for (i=j+1;i<=n;i++) a[i][j] *= dum;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     }        } /* end of wave */
   }      } /* end of individual */
   free_vector(vv,1,n);  /* Doesn't work */    }  else if(mle==2){
 ;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(mi=1; mi<= wav[i]-1; mi++){
 void lubksb(double **a, int n, int *indx, double b[])          for (ii=1;ii<=nlstate+ndeath;ii++)
 {            for (j=1;j<=nlstate+ndeath;j++){
   int i,ii=0,ip,j;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   double sum;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
              }
   for (i=1;i<=n;i++) {          for(d=0; d<=dh[mi][i]; d++){
     ip=indx[i];            newm=savm;
     sum=b[ip];            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     b[ip]=b[i];            for (kk=1; kk<=cptcovage;kk++) {
     if (ii)              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];            }
     else if (sum) ii=i;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     b[i]=sum;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   }            savm=oldm;
   for (i=n;i>=1;i--) {            oldm=newm;
     sum=b[i];          } /* end mult */
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];        
     b[i]=sum/a[i][i];          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
   }          /* But now since version 0.9 we anticipate for bias and large stepm.
 }           * If stepm is larger than one month (smallest stepm) and if the exact delay 
            * (in months) between two waves is not a multiple of stepm, we rounded to 
 /************ Frequencies ********************/           * the nearest (and in case of equal distance, to the lowest) interval but now
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)           * we keep into memory the bias bh[mi][i] and also the previous matrix product
 {  /* Some frequencies */           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
             * probability in order to take into account the bias as a fraction of the way
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
   double ***freq; /* Frequencies */           * -stepm/2 to stepm/2 .
   double *pp;           * For stepm=1 the results are the same as for previous versions of Imach.
   double pos, k2, dateintsum=0,k2cpt=0;           * For stepm > 1 the results are less biased than in previous versions. 
   FILE *ficresp;           */
   char fileresp[FILENAMELENGTH];          s1=s[mw[mi][i]][i];
            s2=s[mw[mi+1][i]][i];
   pp=vector(1,nlstate);          bbh=(double)bh[mi][i]/(double)stepm; 
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);          /* bias is positive if real duration
   strcpy(fileresp,"p");           * is higher than the multiple of stepm and negative otherwise.
   strcat(fileresp,fileres);           */
   if((ficresp=fopen(fileresp,"w"))==NULL) {          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
     printf("Problem with prevalence resultfile: %s\n", fileresp);          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
     exit(0);          /*lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.-+bh)*out[s1][s2])); */ /* exponential interpolation */
   }          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);          /*if(lli ==000.0)*/
   j1=0;          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
            ipmx +=1;
   j=cptcoveff;          sw += weight[i];
   if (cptcovn<1) {j=1;ncodemax[1]=1;}          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
          } /* end of wave */
   for(k1=1; k1<=j;k1++){      } /* end of individual */
     for(i1=1; i1<=ncodemax[k1];i1++){    }  else if(mle==3){  /* exponential inter-extrapolation */
       j1++;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         scanf("%d", i);*/        for(mi=1; mi<= wav[i]-1; mi++){
       for (i=-1; i<=nlstate+ndeath; i++)            for (ii=1;ii<=nlstate+ndeath;ii++)
         for (jk=-1; jk<=nlstate+ndeath; jk++)              for (j=1;j<=nlstate+ndeath;j++){
           for(m=agemin; m <= agemax+3; m++)              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
             freq[i][jk][m]=0;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
                  }
       dateintsum=0;          for(d=0; d<dh[mi][i]; d++){
       k2cpt=0;            newm=savm;
       for (i=1; i<=imx; i++) {            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         bool=1;            for (kk=1; kk<=cptcovage;kk++) {
         if  (cptcovn>0) {              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           for (z1=1; z1<=cptcoveff; z1++)            }
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
               bool=0;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         }            savm=oldm;
         if (bool==1) {            oldm=newm;
           for(m=firstpass; m<=lastpass; m++){          } /* end mult */
             k2=anint[m][i]+(mint[m][i]/12.);        
             if ((k2>=dateprev1) && (k2<=dateprev2)) {          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
               if(agev[m][i]==0) agev[m][i]=agemax+1;          /* But now since version 0.9 we anticipate for bias and large stepm.
               if(agev[m][i]==1) agev[m][i]=agemax+2;           * If stepm is larger than one month (smallest stepm) and if the exact delay 
               if (m<lastpass) {           * (in months) between two waves is not a multiple of stepm, we rounded to 
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];           * the nearest (and in case of equal distance, to the lowest) interval but now
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];           * we keep into memory the bias bh[mi][i] and also the previous matrix product
               }           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
                         * probability in order to take into account the bias as a fraction of the way
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
                 dateintsum=dateintsum+k2;           * -stepm/2 to stepm/2 .
                 k2cpt++;           * For stepm=1 the results are the same as for previous versions of Imach.
               }           * For stepm > 1 the results are less biased than in previous versions. 
             }           */
           }          s1=s[mw[mi][i]][i];
         }          s2=s[mw[mi+1][i]][i];
       }          bbh=(double)bh[mi][i]/(double)stepm; 
                  /* bias is positive if real duration
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);           * is higher than the multiple of stepm and negative otherwise.
            */
       if  (cptcovn>0) {          /* lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); */ /* linear interpolation */
         fprintf(ficresp, "\n#********** Variable ");          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
         fprintf(ficresp, "**********\n#");          /*if(lli ==000.0)*/
       }          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
       for(i=1; i<=nlstate;i++)          ipmx +=1;
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);          sw += weight[i];
       fprintf(ficresp, "\n");          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
              } /* end of wave */
       for(i=(int)agemin; i <= (int)agemax+3; i++){      } /* end of individual */
         if(i==(int)agemax+3)    }else if (mle==4){  /* ml=4 no inter-extrapolation */
           printf("Total");      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         else        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
           printf("Age %d", i);        for(mi=1; mi<= wav[i]-1; mi++){
         for(jk=1; jk <=nlstate ; jk++){          for (ii=1;ii<=nlstate+ndeath;ii++)
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)            for (j=1;j<=nlstate+ndeath;j++){
             pp[jk] += freq[jk][m][i];              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         for(jk=1; jk <=nlstate ; jk++){            }
           for(m=-1, pos=0; m <=0 ; m++)          for(d=0; d<dh[mi][i]; d++){
             pos += freq[jk][m][i];            newm=savm;
           if(pp[jk]>=1.e-10)            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);            for (kk=1; kk<=cptcovage;kk++) {
           else              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);            }
         }          
             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         for(jk=1; jk <=nlstate ; jk++){                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)            savm=oldm;
             pp[jk] += freq[jk][m][i];            oldm=newm;
         }          } /* end mult */
         
         for(jk=1,pos=0; jk <=nlstate ; jk++)          s1=s[mw[mi][i]][i];
           pos += pp[jk];          s2=s[mw[mi+1][i]][i];
         for(jk=1; jk <=nlstate ; jk++){          if( s2 > nlstate){ 
           if(pos>=1.e-5)            lli=log(out[s1][s2] - savm[s1][s2]);
             printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);          }else{
           else            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
             printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);          }
           if( i <= (int) agemax){          ipmx +=1;
             if(pos>=1.e-5){          sw += weight[i];
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
               probs[i][jk][j1]= pp[jk]/pos;  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/        } /* end of wave */
             }      } /* end of individual */
             else    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         }        for(mi=1; mi<= wav[i]-1; mi++){
                  for (ii=1;ii<=nlstate+ndeath;ii++)
         for(jk=-1; jk <=nlstate+ndeath; jk++)            for (j=1;j<=nlstate+ndeath;j++){
           for(m=-1; m <=nlstate+ndeath; m++)              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
             if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         if(i <= (int) agemax)            }
           fprintf(ficresp,"\n");          for(d=0; d<dh[mi][i]; d++){
         printf("\n");            newm=savm;
       }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     }            for (kk=1; kk<=cptcovage;kk++) {
   }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   dateintmean=dateintsum/k2cpt;            }
            
   fclose(ficresp);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   free_vector(pp,1,nlstate);            savm=oldm;
              oldm=newm;
   /* End of Freq */          } /* end mult */
 }        
           s1=s[mw[mi][i]][i];
 /************ Prevalence ********************/          s2=s[mw[mi+1][i]][i];
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
 {  /* Some frequencies */          ipmx +=1;
            sw += weight[i];
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   double ***freq; /* Frequencies */          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
   double *pp;        } /* end of wave */
   double pos, k2;      } /* end of individual */
     } /* End of if */
   pp=vector(1,nlstate);    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
      l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);    return -l;
   j1=0;  }
    
   j=cptcoveff;  /*************** log-likelihood *************/
   if (cptcovn<1) {j=1;ncodemax[1]=1;}  double funcone( double *x)
    {
  for(k1=1; k1<=j;k1++){    /* Same as likeli but slower because of a lot of printf and if */
     for(i1=1; i1<=ncodemax[k1];i1++){    int i, ii, j, k, mi, d, kk;
       j1++;    double l, ll[NLSTATEMAX], cov[NCOVMAX];
      double **out;
       for (i=-1; i<=nlstate+ndeath; i++)      double lli; /* Individual log likelihood */
         for (jk=-1; jk<=nlstate+ndeath; jk++)      double llt;
           for(m=agemin; m <= agemax+3; m++)    int s1, s2;
             freq[i][jk][m]=0;    double bbh, survp;
          /*extern weight */
       for (i=1; i<=imx; i++) {    /* We are differentiating ll according to initial status */
         bool=1;    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
         if  (cptcovn>0) {    /*for(i=1;i<imx;i++) 
           for (z1=1; z1<=cptcoveff; z1++)      printf(" %d\n",s[4][i]);
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])    */
               bool=0;    cov[1]=1.;
         }  
         if (bool==1) {    for(k=1; k<=nlstate; k++) ll[k]=0.;
           for(m=firstpass; m<=lastpass; m++){  
             k2=anint[m][i]+(mint[m][i]/12.);    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
             if ((k2>=dateprev1) && (k2<=dateprev2)) {      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
               if(agev[m][i]==0) agev[m][i]=agemax+1;      for(mi=1; mi<= wav[i]-1; mi++){
               if(agev[m][i]==1) agev[m][i]=agemax+2;        for (ii=1;ii<=nlstate+ndeath;ii++)
               if (m<lastpass)          for (j=1;j<=nlstate+ndeath;j++){
                 if (calagedate>0) freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               else            savm[ii][j]=(ii==j ? 1.0 : 0.0);
                freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];          }
                freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];        for(d=0; d<dh[mi][i]; d++){
             }          newm=savm;
           }          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         }          for (kk=1; kk<=cptcovage;kk++) {
       }            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         for(i=(int)agemin; i <= (int)agemax+3; i++){          }
           for(jk=1; jk <=nlstate ; jk++){          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
             for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
               pp[jk] += freq[jk][m][i];          savm=oldm;
           }          oldm=newm;
           for(jk=1; jk <=nlstate ; jk++){        } /* end mult */
             for(m=-1, pos=0; m <=0 ; m++)        
             pos += freq[jk][m][i];        s1=s[mw[mi][i]][i];
         }        s2=s[mw[mi+1][i]][i];
                bbh=(double)bh[mi][i]/(double)stepm; 
          for(jk=1; jk <=nlstate ; jk++){        /* bias is positive if real duration
            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)         * is higher than the multiple of stepm and negative otherwise.
              pp[jk] += freq[jk][m][i];         */
          }        if( s2 > nlstate && (mle <5) ){  /* Jackson */
                    lli=log(out[s1][s2] - savm[s1][s2]);
          for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];        } else if (mle==1){
           lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
          for(jk=1; jk <=nlstate ; jk++){                  } else if(mle==2){
            if( i <= (int) agemax){          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
              if(pos>=1.e-5){        } else if(mle==3){  /* exponential inter-extrapolation */
                probs[i][jk][j1]= pp[jk]/pos;          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
              }        } else if (mle==4){  /* mle=4 no inter-extrapolation */
            }          lli=log(out[s1][s2]); /* Original formula */
          }        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
                    lli=log(out[s1][s2]); /* Original formula */
         }        } /* End of if */
     }        ipmx +=1;
   }        sw += weight[i];
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
    /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);        if(globpr){
   free_vector(pp,1,nlstate);          fprintf(ficresilk,"%9d %6d %1d %1d %1d %1d %3d %10.6f %6.4f\
     %10.6f %10.6f %10.6f ", \
 }  /* End of Freq */                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
                   2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
 /************* Waves Concatenation ***************/          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
             llt +=ll[k]*gipmx/gsw;
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
 {          }
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.          fprintf(ficresilk," %10.6f\n", -llt);
      Death is a valid wave (if date is known).        }
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i      } /* end of wave */
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]    } /* end of individual */
      and mw[mi+1][i]. dh depends on stepm.    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
      */    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
     l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   int i, mi, m;    if(globpr==0){ /* First time we count the contributions and weights */
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;      gipmx=ipmx;
      double sum=0., jmean=0.;*/      gsw=sw;
     }
   int j, k=0,jk, ju, jl;    return -l;
   double sum=0.;  }
   jmin=1e+5;  
   jmax=-1;  char *subdirf(char fileres[])
   jmean=0.;  {
   for(i=1; i<=imx; i++){    /* Caution optionfilefiname is hidden */
     mi=0;    strcpy(tmpout,optionfilefiname);
     m=firstpass;    strcat(tmpout,"/"); /* Add to the right */
     while(s[m][i] <= nlstate){    strcat(tmpout,fileres);
       if(s[m][i]>=1)    return tmpout;
         mw[++mi][i]=m;  }
       if(m >=lastpass)  
         break;  char *subdirf2(char fileres[], char *preop)
       else  {
         m++;    
     }/* end while */    strcpy(tmpout,optionfilefiname);
     if (s[m][i] > nlstate){    strcat(tmpout,"/");
       mi++;     /* Death is another wave */    strcat(tmpout,preop);
       /* if(mi==0)  never been interviewed correctly before death */    strcat(tmpout,fileres);
          /* Only death is a correct wave */    return tmpout;
       mw[mi][i]=m;  }
     }  char *subdirf3(char fileres[], char *preop, char *preop2)
   {
     wav[i]=mi;    
     if(mi==0)    strcpy(tmpout,optionfilefiname);
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);    strcat(tmpout,"/");
   }    strcat(tmpout,preop);
     strcat(tmpout,preop2);
   for(i=1; i<=imx; i++){    strcat(tmpout,fileres);
     for(mi=1; mi<wav[i];mi++){    return tmpout;
       if (stepm <=0)  }
         dh[mi][i]=1;  
       else{  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
         if (s[mw[mi+1][i]][i] > nlstate) {  {
           if (agedc[i] < 2*AGESUP) {    /* This routine should help understanding what is done with 
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);       the selection of individuals/waves and
           if(j==0) j=1;  /* Survives at least one month after exam */       to check the exact contribution to the likelihood.
           k=k+1;       Plotting could be done.
           if (j >= jmax) jmax=j;     */
           if (j <= jmin) jmin=j;    int k;
           sum=sum+j;  
           /*if (j<0) printf("j=%d num=%d \n",j,i); */    if(*globpri !=0){ /* Just counts and sums, no printings */
           }      strcpy(fileresilk,"ilk"); 
         }      strcat(fileresilk,fileres);
         else{      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));        printf("Problem with resultfile: %s\n", fileresilk);
           k=k+1;        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
           if (j >= jmax) jmax=j;      }
           else if (j <= jmin)jmin=j;      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
           sum=sum+j;      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
         }      for(k=1; k<=nlstate; k++) 
         jk= j/stepm;        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
         jl= j -jk*stepm;      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
         ju= j -(jk+1)*stepm;    }
         if(jl <= -ju)  
           dh[mi][i]=jk;    *fretone=(*funcone)(p);
         else    if(*globpri !=0){
           dh[mi][i]=jk+1;      fclose(ficresilk);
         if(dh[mi][i]==0)      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
           dh[mi][i]=1; /* At least one step */      fflush(fichtm); 
       }    } 
     }    return;
   }  }
   jmean=sum/k;  
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);  
  }  /*********** Maximum Likelihood Estimation ***************/
 /*********** Tricode ****************************/  
 void tricode(int *Tvar, int **nbcode, int imx)  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
 {  {
   int Ndum[20],ij=1, k, j, i;    int i,j, iter;
   int cptcode=0;    double **xi;
   cptcoveff=0;    double fret;
      double fretone; /* Only one call to likelihood */
   for (k=0; k<19; k++) Ndum[k]=0;    char filerespow[FILENAMELENGTH];
   for (k=1; k<=7; k++) ncodemax[k]=0;    xi=matrix(1,npar,1,npar);
     for (i=1;i<=npar;i++)
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {      for (j=1;j<=npar;j++)
     for (i=1; i<=imx; i++) {        xi[i][j]=(i==j ? 1.0 : 0.0);
       ij=(int)(covar[Tvar[j]][i]);    printf("Powell\n");  fprintf(ficlog,"Powell\n");
       Ndum[ij]++;    strcpy(filerespow,"pow"); 
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/    strcat(filerespow,fileres);
       if (ij > cptcode) cptcode=ij;    if((ficrespow=fopen(filerespow,"w"))==NULL) {
     }      printf("Problem with resultfile: %s\n", filerespow);
       fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
     for (i=0; i<=cptcode; i++) {    }
       if(Ndum[i]!=0) ncodemax[j]++;    fprintf(ficrespow,"# Powell\n# iter -2*LL");
     }    for (i=1;i<=nlstate;i++)
     ij=1;      for(j=1;j<=nlstate+ndeath;j++)
         if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
     fprintf(ficrespow,"\n");
     for (i=1; i<=ncodemax[j]; i++) {  
       for (k=0; k<=19; k++) {    powell(p,xi,npar,ftol,&iter,&fret,func);
         if (Ndum[k] != 0) {  
           nbcode[Tvar[j]][ij]=k;    fclose(ficrespow);
              printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
           ij++;    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
         }    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
         if (ij > ncodemax[j]) break;  
       }    }
     }  
   }    /**** Computes Hessian and covariance matrix ***/
   void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
  for (k=0; k<19; k++) Ndum[k]=0;  {
     double  **a,**y,*x,pd;
  for (i=1; i<=ncovmodel-2; i++) {    double **hess;
       ij=Tvar[i];    int i, j,jk;
       Ndum[ij]++;    int *indx;
     }  
     double hessii(double p[], double delta, int theta, double delti[]);
  ij=1;    double hessij(double p[], double delti[], int i, int j);
  for (i=1; i<=10; i++) {    void lubksb(double **a, int npar, int *indx, double b[]) ;
    if((Ndum[i]!=0) && (i<=ncovcol)){    void ludcmp(double **a, int npar, int *indx, double *d) ;
      Tvaraff[ij]=i;  
      ij++;    hess=matrix(1,npar,1,npar);
    }  
  }    printf("\nCalculation of the hessian matrix. Wait...\n");
      fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
     cptcoveff=ij-1;    for (i=1;i<=npar;i++){
 }      printf("%d",i);fflush(stdout);
       fprintf(ficlog,"%d",i);fflush(ficlog);
 /*********** Health Expectancies ****************/      hess[i][i]=hessii(p,ftolhess,i,delti);
       /*printf(" %f ",p[i]);*/
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )      /*printf(" %lf ",hess[i][i]);*/
     }
 {    
   /* Health expectancies */    for (i=1;i<=npar;i++) {
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;      for (j=1;j<=npar;j++)  {
   double age, agelim, hf;        if (j>i) { 
   double ***p3mat,***varhe;          printf(".%d%d",i,j);fflush(stdout);
   double **dnewm,**doldm;          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
   double *xp;          hess[i][j]=hessij(p,delti,i,j);
   double **gp, **gm;          hess[j][i]=hess[i][j];    
   double ***gradg, ***trgradg;          /*printf(" %lf ",hess[i][j]);*/
   int theta;        }
       }
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);    }
   xp=vector(1,npar);    printf("\n");
   dnewm=matrix(1,nlstate*2,1,npar);    fprintf(ficlog,"\n");
   doldm=matrix(1,nlstate*2,1,nlstate*2);  
      printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
   fprintf(ficreseij,"# Health expectancies\n");    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
   fprintf(ficreseij,"# Age");    
   for(i=1; i<=nlstate;i++)    a=matrix(1,npar,1,npar);
     for(j=1; j<=nlstate;j++)    y=matrix(1,npar,1,npar);
       fprintf(ficreseij," %1d-%1d (SE)",i,j);    x=vector(1,npar);
   fprintf(ficreseij,"\n");    indx=ivector(1,npar);
     for (i=1;i<=npar;i++)
   if(estepm < stepm){      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
     printf ("Problem %d lower than %d\n",estepm, stepm);    ludcmp(a,npar,indx,&pd);
   }  
   else  hstepm=estepm;      for (j=1;j<=npar;j++) {
   /* We compute the life expectancy from trapezoids spaced every estepm months      for (i=1;i<=npar;i++) x[i]=0;
    * This is mainly to measure the difference between two models: for example      x[j]=1;
    * if stepm=24 months pijx are given only every 2 years and by summing them      lubksb(a,npar,indx,x);
    * we are calculating an estimate of the Life Expectancy assuming a linear      for (i=1;i<=npar;i++){ 
    * progression inbetween and thus overestimating or underestimating according        matcov[i][j]=x[i];
    * to the curvature of the survival function. If, for the same date, we      }
    * estimate the model with stepm=1 month, we can keep estepm to 24 months    }
    * to compare the new estimate of Life expectancy with the same linear  
    * hypothesis. A more precise result, taking into account a more precise    printf("\n#Hessian matrix#\n");
    * curvature will be obtained if estepm is as small as stepm. */    fprintf(ficlog,"\n#Hessian matrix#\n");
     for (i=1;i<=npar;i++) { 
   /* For example we decided to compute the life expectancy with the smallest unit */      for (j=1;j<=npar;j++) { 
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.        printf("%.3e ",hess[i][j]);
      nhstepm is the number of hstepm from age to agelim        fprintf(ficlog,"%.3e ",hess[i][j]);
      nstepm is the number of stepm from age to agelin.      }
      Look at hpijx to understand the reason of that which relies in memory size      printf("\n");
      and note for a fixed period like estepm months */      fprintf(ficlog,"\n");
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the    }
      survival function given by stepm (the optimization length). Unfortunately it  
      means that if the survival funtion is printed only each two years of age and if    /* Recompute Inverse */
      you sum them up and add 1 year (area under the trapezoids) you won't get the same    for (i=1;i<=npar;i++)
      results. So we changed our mind and took the option of the best precision.      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
   */    ludcmp(a,npar,indx,&pd);
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */  
     /*  printf("\n#Hessian matrix recomputed#\n");
   agelim=AGESUP;  
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    for (j=1;j<=npar;j++) {
     /* nhstepm age range expressed in number of stepm */      for (i=1;i<=npar;i++) x[i]=0;
     nstepm=(int) rint((agelim-age)*YEARM/stepm);      x[j]=1;
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */      lubksb(a,npar,indx,x);
     /* if (stepm >= YEARM) hstepm=1;*/      for (i=1;i<=npar;i++){ 
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */        y[i][j]=x[i];
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        printf("%.3e ",y[i][j]);
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);        fprintf(ficlog,"%.3e ",y[i][j]);
     gp=matrix(0,nhstepm,1,nlstate*2);      }
     gm=matrix(0,nhstepm,1,nlstate*2);      printf("\n");
       fprintf(ficlog,"\n");
     /* Computed by stepm unit matrices, product of hstepm matrices, stored    }
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */    */
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);    
      free_matrix(a,1,npar,1,npar);
     free_matrix(y,1,npar,1,npar);
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */    free_vector(x,1,npar);
     free_ivector(indx,1,npar);
     /* Computing Variances of health expectancies */    free_matrix(hess,1,npar,1,npar);
   
      for(theta=1; theta <=npar; theta++){  
       for(i=1; i<=npar; i++){  }
         xp[i] = x[i] + (i==theta ?delti[theta]:0);  
       }  /*************** hessian matrix ****************/
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);    double hessii( double x[], double delta, int theta, double delti[])
    {
       cptj=0;    int i;
       for(j=1; j<= nlstate; j++){    int l=1, lmax=20;
         for(i=1; i<=nlstate; i++){    double k1,k2;
           cptj=cptj+1;    double p2[NPARMAX+1];
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){    double res;
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;    double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;
           }    double fx;
         }    int k=0,kmax=10;
       }    double l1;
        
          fx=func(x);
       for(i=1; i<=npar; i++)    for (i=1;i<=npar;i++) p2[i]=x[i];
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    for(l=0 ; l <=lmax; l++){
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        l1=pow(10,l);
            delts=delt;
       cptj=0;      for(k=1 ; k <kmax; k=k+1){
       for(j=1; j<= nlstate; j++){        delt = delta*(l1*k);
         for(i=1;i<=nlstate;i++){        p2[theta]=x[theta] +delt;
           cptj=cptj+1;        k1=func(p2)-fx;
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){        p2[theta]=x[theta]-delt;
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;        k2=func(p2)-fx;
           }        /*res= (k1-2.0*fx+k2)/delt/delt; */
         }        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
       }        
        #ifdef DEBUG
            printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
         fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
       for(j=1; j<= nlstate*2; j++)  #endif
         for(h=0; h<=nhstepm-1; h++){        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
         }          k=kmax;
         }
      }        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
              k=kmax; l=lmax*10.;
 /* End theta */        }
         else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);          delts=delt;
         }
      for(h=0; h<=nhstepm-1; h++)      }
       for(j=1; j<=nlstate*2;j++)    }
         for(theta=1; theta <=npar; theta++)    delti[theta]=delts;
         trgradg[h][j][theta]=gradg[h][theta][j];    return res; 
     
   }
      for(i=1;i<=nlstate*2;i++)  
       for(j=1;j<=nlstate*2;j++)  double hessij( double x[], double delti[], int thetai,int thetaj)
         varhe[i][j][(int)age] =0.;  {
     int i;
     for(h=0;h<=nhstepm-1;h++){    int l=1, l1, lmax=20;
       for(k=0;k<=nhstepm-1;k++){    double k1,k2,k3,k4,res,fx;
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);    double p2[NPARMAX+1];
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);    int k;
         for(i=1;i<=nlstate*2;i++)  
           for(j=1;j<=nlstate*2;j++)    fx=func(x);
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;    for (k=1; k<=2; k++) {
       }      for (i=1;i<=npar;i++) p2[i]=x[i];
     }      p2[thetai]=x[thetai]+delti[thetai]/k;
       p2[thetaj]=x[thetaj]+delti[thetaj]/k;
            k1=func(p2)-fx;
     /* Computing expectancies */    
     for(i=1; i<=nlstate;i++)      p2[thetai]=x[thetai]+delti[thetai]/k;
       for(j=1; j<=nlstate;j++)      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){      k2=func(p2)-fx;
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;    
                p2[thetai]=x[thetai]-delti[thetai]/k;
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
       k3=func(p2)-fx;
         }    
       p2[thetai]=x[thetai]-delti[thetai]/k;
     fprintf(ficreseij,"%3.0f",age );      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
     cptj=0;      k4=func(p2)-fx;
     for(i=1; i<=nlstate;i++)      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
       for(j=1; j<=nlstate;j++){  #ifdef DEBUG
         cptj++;      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
       }  #endif
     fprintf(ficreseij,"\n");    }
        return res;
     free_matrix(gm,0,nhstepm,1,nlstate*2);  }
     free_matrix(gp,0,nhstepm,1,nlstate*2);  
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);  /************** Inverse of matrix **************/
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);  void ludcmp(double **a, int n, int *indx, double *d) 
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  { 
   }    int i,imax,j,k; 
   free_vector(xp,1,npar);    double big,dum,sum,temp; 
   free_matrix(dnewm,1,nlstate*2,1,npar);    double *vv; 
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);   
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);    vv=vector(1,n); 
 }    *d=1.0; 
     for (i=1;i<=n;i++) { 
 /************ Variance ******************/      big=0.0; 
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm)      for (j=1;j<=n;j++) 
 {        if ((temp=fabs(a[i][j])) > big) big=temp; 
   /* Variance of health expectancies */      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/      vv[i]=1.0/big; 
   double **newm;    } 
   double **dnewm,**doldm;    for (j=1;j<=n;j++) { 
   int i, j, nhstepm, hstepm, h, nstepm ;      for (i=1;i<j;i++) { 
   int k, cptcode;        sum=a[i][j]; 
   double *xp;        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
   double **gp, **gm;        a[i][j]=sum; 
   double ***gradg, ***trgradg;      } 
   double ***p3mat;      big=0.0; 
   double age,agelim, hf;      for (i=j;i<=n;i++) { 
   int theta;        sum=a[i][j]; 
         for (k=1;k<j;k++) 
    fprintf(ficresvij,"# Covariances of life expectancies\n");          sum -= a[i][k]*a[k][j]; 
   fprintf(ficresvij,"# Age");        a[i][j]=sum; 
   for(i=1; i<=nlstate;i++)        if ( (dum=vv[i]*fabs(sum)) >= big) { 
     for(j=1; j<=nlstate;j++)          big=dum; 
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);          imax=i; 
   fprintf(ficresvij,"\n");        } 
       } 
   xp=vector(1,npar);      if (j != imax) { 
   dnewm=matrix(1,nlstate,1,npar);        for (k=1;k<=n;k++) { 
   doldm=matrix(1,nlstate,1,nlstate);          dum=a[imax][k]; 
            a[imax][k]=a[j][k]; 
   if(estepm < stepm){          a[j][k]=dum; 
     printf ("Problem %d lower than %d\n",estepm, stepm);        } 
   }        *d = -(*d); 
   else  hstepm=estepm;          vv[imax]=vv[j]; 
   /* For example we decided to compute the life expectancy with the smallest unit */      } 
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.      indx[j]=imax; 
      nhstepm is the number of hstepm from age to agelim      if (a[j][j] == 0.0) a[j][j]=TINY; 
      nstepm is the number of stepm from age to agelin.      if (j != n) { 
      Look at hpijx to understand the reason of that which relies in memory size        dum=1.0/(a[j][j]); 
      and note for a fixed period like k years */        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the      } 
      survival function given by stepm (the optimization length). Unfortunately it    } 
      means that if the survival funtion is printed only each two years of age and if    free_vector(vv,1,n);  /* Doesn't work */
      you sum them up and add 1 year (area under the trapezoids) you won't get the same  ;
      results. So we changed our mind and took the option of the best precision.  } 
   */  
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */  void lubksb(double **a, int n, int *indx, double b[]) 
   agelim = AGESUP;  { 
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    int i,ii=0,ip,j; 
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    double sum; 
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */   
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    for (i=1;i<=n;i++) { 
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);      ip=indx[i]; 
     gp=matrix(0,nhstepm,1,nlstate);      sum=b[ip]; 
     gm=matrix(0,nhstepm,1,nlstate);      b[ip]=b[i]; 
       if (ii) 
     for(theta=1; theta <=npar; theta++){        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
       for(i=1; i<=npar; i++){ /* Computes gradient */      else if (sum) ii=i; 
         xp[i] = x[i] + (i==theta ?delti[theta]:0);      b[i]=sum; 
       }    } 
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      for (i=n;i>=1;i--) { 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      sum=b[i]; 
       for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
       if (popbased==1) {      b[i]=sum/a[i][i]; 
         for(i=1; i<=nlstate;i++)    } 
           prlim[i][i]=probs[(int)age][i][ij];  } 
       }  
    /************ Frequencies ********************/
       for(j=1; j<= nlstate; j++){  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint)
         for(h=0; h<=nhstepm; h++){  {  /* Some frequencies */
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)    
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
         }    int first;
       }    double ***freq; /* Frequencies */
        double *pp, **prop;
       for(i=1; i<=npar; i++) /* Computes gradient */    double pos,posprop, k2, dateintsum=0,k2cpt=0;
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    FILE *ficresp;
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      char fileresp[FILENAMELENGTH];
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    
      pp=vector(1,nlstate);
       if (popbased==1) {    prop=matrix(1,nlstate,iagemin,iagemax+3);
         for(i=1; i<=nlstate;i++)    strcpy(fileresp,"p");
           prlim[i][i]=probs[(int)age][i][ij];    strcat(fileresp,fileres);
       }    if((ficresp=fopen(fileresp,"w"))==NULL) {
       printf("Problem with prevalence resultfile: %s\n", fileresp);
       for(j=1; j<= nlstate; j++){      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
         for(h=0; h<=nhstepm; h++){      exit(0);
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)    }
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];    freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);
         }    j1=0;
       }    
     j=cptcoveff;
       for(j=1; j<= nlstate; j++)    if (cptcovn<1) {j=1;ncodemax[1]=1;}
         for(h=0; h<=nhstepm; h++){  
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];    first=1;
         }  
     } /* End theta */    for(k1=1; k1<=j;k1++){
       for(i1=1; i1<=ncodemax[k1];i1++){
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);        j1++;
         /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
     for(h=0; h<=nhstepm; h++)          scanf("%d", i);*/
       for(j=1; j<=nlstate;j++)        for (i=-1; i<=nlstate+ndeath; i++)  
         for(theta=1; theta <=npar; theta++)          for (jk=-1; jk<=nlstate+ndeath; jk++)  
           trgradg[h][j][theta]=gradg[h][theta][j];            for(m=iagemin; m <= iagemax+3; m++)
               freq[i][jk][m]=0;
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */  
     for(i=1;i<=nlstate;i++)      for (i=1; i<=nlstate; i++)  
       for(j=1;j<=nlstate;j++)        for(m=iagemin; m <= iagemax+3; m++)
         vareij[i][j][(int)age] =0.;          prop[i][m]=0;
         
     for(h=0;h<=nhstepm;h++){        dateintsum=0;
       for(k=0;k<=nhstepm;k++){        k2cpt=0;
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);        for (i=1; i<=imx; i++) {
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);          bool=1;
         for(i=1;i<=nlstate;i++)          if  (cptcovn>0) {
           for(j=1;j<=nlstate;j++)            for (z1=1; z1<=cptcoveff; z1++) 
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
       }                bool=0;
     }          }
           if (bool==1){
     fprintf(ficresvij,"%.0f ",age );            for(m=firstpass; m<=lastpass; m++){
     for(i=1; i<=nlstate;i++)              k2=anint[m][i]+(mint[m][i]/12.);
       for(j=1; j<=nlstate;j++){              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);                if(agev[m][i]==0) agev[m][i]=iagemax+1;
       }                if(agev[m][i]==1) agev[m][i]=iagemax+2;
     fprintf(ficresvij,"\n");                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
     free_matrix(gp,0,nhstepm,1,nlstate);                if (m<lastpass) {
     free_matrix(gm,0,nhstepm,1,nlstate);                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);                }
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                
   } /* End age */                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
                    dateintsum=dateintsum+k2;
   free_vector(xp,1,npar);                  k2cpt++;
   free_matrix(doldm,1,nlstate,1,npar);                }
   free_matrix(dnewm,1,nlstate,1,nlstate);                /*}*/
             }
 }          }
         }
 /************ Variance of prevlim ******************/         
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
 {  
   /* Variance of prevalence limit */        if  (cptcovn>0) {
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/          fprintf(ficresp, "\n#********** Variable "); 
   double **newm;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   double **dnewm,**doldm;          fprintf(ficresp, "**********\n#");
   int i, j, nhstepm, hstepm;        }
   int k, cptcode;        for(i=1; i<=nlstate;i++) 
   double *xp;          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
   double *gp, *gm;        fprintf(ficresp, "\n");
   double **gradg, **trgradg;        
   double age,agelim;        for(i=iagemin; i <= iagemax+3; i++){
   int theta;          if(i==iagemax+3){
                fprintf(ficlog,"Total");
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");          }else{
   fprintf(ficresvpl,"# Age");            if(first==1){
   for(i=1; i<=nlstate;i++)              first=0;
       fprintf(ficresvpl," %1d-%1d",i,i);              printf("See log file for details...\n");
   fprintf(ficresvpl,"\n");            }
             fprintf(ficlog,"Age %d", i);
   xp=vector(1,npar);          }
   dnewm=matrix(1,nlstate,1,npar);          for(jk=1; jk <=nlstate ; jk++){
   doldm=matrix(1,nlstate,1,nlstate);            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
                pp[jk] += freq[jk][m][i]; 
   hstepm=1*YEARM; /* Every year of age */          }
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */          for(jk=1; jk <=nlstate ; jk++){
   agelim = AGESUP;            for(m=-1, pos=0; m <=0 ; m++)
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */              pos += freq[jk][m][i];
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */            if(pp[jk]>=1.e-10){
     if (stepm >= YEARM) hstepm=1;              if(first==1){
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
     gradg=matrix(1,npar,1,nlstate);              }
     gp=vector(1,nlstate);              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
     gm=vector(1,nlstate);            }else{
               if(first==1)
     for(theta=1; theta <=npar; theta++){                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
       for(i=1; i<=npar; i++){ /* Computes gradient */              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
         xp[i] = x[i] + (i==theta ?delti[theta]:0);            }
       }          }
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  
       for(i=1;i<=nlstate;i++)          for(jk=1; jk <=nlstate ; jk++){
         gp[i] = prlim[i][i];            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
                  pp[jk] += freq[jk][m][i];
       for(i=1; i<=npar; i++) /* Computes gradient */          }       
         xp[i] = x[i] - (i==theta ?delti[theta]:0);          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);            pos += pp[jk];
       for(i=1;i<=nlstate;i++)            posprop += prop[jk][i];
         gm[i] = prlim[i][i];          }
           for(jk=1; jk <=nlstate ; jk++){
       for(i=1;i<=nlstate;i++)            if(pos>=1.e-5){
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];              if(first==1)
     } /* End theta */                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
               fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
     trgradg =matrix(1,nlstate,1,npar);            }else{
               if(first==1)
     for(j=1; j<=nlstate;j++)                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
       for(theta=1; theta <=npar; theta++)              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
         trgradg[j][theta]=gradg[theta][j];            }
             if( i <= iagemax){
     for(i=1;i<=nlstate;i++)              if(pos>=1.e-5){
       varpl[i][(int)age] =0.;                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);                /*probs[i][jk][j1]= pp[jk]/pos;*/
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
     for(i=1;i<=nlstate;i++)              }
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */              else
                 fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
     fprintf(ficresvpl,"%.0f ",age );            }
     for(i=1; i<=nlstate;i++)          }
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));          
     fprintf(ficresvpl,"\n");          for(jk=-1; jk <=nlstate+ndeath; jk++)
     free_vector(gp,1,nlstate);            for(m=-1; m <=nlstate+ndeath; m++)
     free_vector(gm,1,nlstate);              if(freq[jk][m][i] !=0 ) {
     free_matrix(gradg,1,npar,1,nlstate);              if(first==1)
     free_matrix(trgradg,1,nlstate,1,npar);                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
   } /* End age */                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
               }
   free_vector(xp,1,npar);          if(i <= iagemax)
   free_matrix(doldm,1,nlstate,1,npar);            fprintf(ficresp,"\n");
   free_matrix(dnewm,1,nlstate,1,nlstate);          if(first==1)
             printf("Others in log...\n");
 }          fprintf(ficlog,"\n");
         }
 /************ Variance of one-step probabilities  ******************/      }
 void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)    }
 {    dateintmean=dateintsum/k2cpt; 
   int i, j, i1, k1, j1, z1;   
   int k=0, cptcode;    fclose(ficresp);
   double **dnewm,**doldm;    free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);
   double *xp;    free_vector(pp,1,nlstate);
   double *gp, *gm;    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
   double **gradg, **trgradg;    /* End of Freq */
   double age,agelim, cov[NCOVMAX];  }
   int theta;  
   char fileresprob[FILENAMELENGTH];  /************ Prevalence ********************/
   void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
   strcpy(fileresprob,"prob");  {  
   strcat(fileresprob,fileres);    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {       in each health status at the date of interview (if between dateprev1 and dateprev2).
     printf("Problem with resultfile: %s\n", fileresprob);       We still use firstpass and lastpass as another selection.
   }    */
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);   
      int i, m, jk, k1, i1, j1, bool, z1,z2,j;
 fprintf(ficresprob,"#One-step probabilities and standard deviation in parentheses\n");    double ***freq; /* Frequencies */
   fprintf(ficresprob,"# Age");    double *pp, **prop;
   for(i=1; i<=nlstate;i++)    double pos,posprop; 
     for(j=1; j<=(nlstate+ndeath);j++)    double  y2; /* in fractional years */
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);    int iagemin, iagemax;
   
     iagemin= (int) agemin;
   fprintf(ficresprob,"\n");    iagemax= (int) agemax;
     /*pp=vector(1,nlstate);*/
     prop=matrix(1,nlstate,iagemin,iagemax+3); 
   xp=vector(1,npar);    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
   dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    j1=0;
   doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));    
      j=cptcoveff;
   cov[1]=1;    if (cptcovn<1) {j=1;ncodemax[1]=1;}
   j=cptcoveff;    
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    for(k1=1; k1<=j;k1++){
   j1=0;      for(i1=1; i1<=ncodemax[k1];i1++){
   for(k1=1; k1<=1;k1++){        j1++;
     for(i1=1; i1<=ncodemax[k1];i1++){        
     j1++;        for (i=1; i<=nlstate; i++)  
           for(m=iagemin; m <= iagemax+3; m++)
     if  (cptcovn>0) {            prop[i][m]=0.0;
       fprintf(ficresprob, "\n#********** Variable ");       
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        for (i=1; i<=imx; i++) { /* Each individual */
       fprintf(ficresprob, "**********\n#");          bool=1;
     }          if  (cptcovn>0) {
                for (z1=1; z1<=cptcoveff; z1++) 
       for (age=bage; age<=fage; age ++){              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
         cov[2]=age;                bool=0;
         for (k=1; k<=cptcovn;k++) {          } 
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];          if (bool==1) { 
                      for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
         }              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
         for (k=1; k<=cptcovprod;k++)                if(agev[m][i]==0) agev[m][i]=iagemax+1;
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];                if(agev[m][i]==1) agev[m][i]=iagemax+2;
                        if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
         gradg=matrix(1,npar,1,9);                if (s[m][i]>0 && s[m][i]<=nlstate) { 
         trgradg=matrix(1,9,1,npar);                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
         gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
         gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));                  prop[s[m][i]][iagemax+3] += weight[i]; 
                    } 
         for(theta=1; theta <=npar; theta++){              }
           for(i=1; i<=npar; i++)            } /* end selection of waves */
             xp[i] = x[i] + (i==theta ?delti[theta]:0);          }
                  }
           pmij(pmmij,cov,ncovmodel,xp,nlstate);        for(i=iagemin; i <= iagemax+3; i++){  
                    
           k=0;          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
           for(i=1; i<= (nlstate+ndeath); i++){            posprop += prop[jk][i]; 
             for(j=1; j<=(nlstate+ndeath);j++){          } 
               k=k+1;  
               gp[k]=pmmij[i][j];          for(jk=1; jk <=nlstate ; jk++){     
             }            if( i <=  iagemax){ 
           }              if(posprop>=1.e-5){ 
                          probs[i][jk][j1]= prop[jk][i]/posprop;
           for(i=1; i<=npar; i++)              } 
             xp[i] = x[i] - (i==theta ?delti[theta]:0);            } 
              }/* end jk */ 
           pmij(pmmij,cov,ncovmodel,xp,nlstate);        }/* end i */ 
           k=0;      } /* end i1 */
           for(i=1; i<=(nlstate+ndeath); i++){    } /* end k1 */
             for(j=1; j<=(nlstate+ndeath);j++){    
               k=k+1;    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
               gm[k]=pmmij[i][j];    /*free_vector(pp,1,nlstate);*/
             }    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
           }  }  /* End of prevalence */
        
           for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)  /************* Waves Concatenation ***************/
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];    
         }  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
   {
         for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
           for(theta=1; theta <=npar; theta++)       Death is a valid wave (if date is known).
             trgradg[j][theta]=gradg[theta][j];       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
               dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
         matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);       and mw[mi+1][i]. dh depends on stepm.
         matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);       */
          
         pmij(pmmij,cov,ncovmodel,x,nlstate);    int i, mi, m;
            /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
         k=0;       double sum=0., jmean=0.;*/
         for(i=1; i<=(nlstate+ndeath); i++){    int first;
           for(j=1; j<=(nlstate+ndeath);j++){    int j, k=0,jk, ju, jl;
             k=k+1;    double sum=0.;
             gm[k]=pmmij[i][j];    first=0;
           }    jmin=1e+5;
         }    jmax=-1;
          jmean=0.;
      /*printf("\n%d ",(int)age);    for(i=1; i<=imx; i++){
      for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){      mi=0;
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));      m=firstpass;
      }*/      while(s[m][i] <= nlstate){
         if(s[m][i]>=1)
         fprintf(ficresprob,"\n%d ",(int)age);          mw[++mi][i]=m;
         if(m >=lastpass)
         for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++)          break;
           fprintf(ficresprob,"%.3e (%.3e) ",gm[i],sqrt(doldm[i][i]));        else
            m++;
       }      }/* end while */
     }      if (s[m][i] > nlstate){
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));        mi++;     /* Death is another wave */
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));        /* if(mi==0)  never been interviewed correctly before death */
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);           /* Only death is a correct wave */
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);        mw[mi][i]=m;
   }      }
   free_vector(xp,1,npar);  
   fclose(ficresprob);      wav[i]=mi;
        if(mi==0){
 }        nbwarn++;
         if(first==0){
 /******************* Printing html file ***********/          printf("Warning! None valid information for:%ld line=%d (skipped) and may be others, see log file\n",num[i],i);
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \          first=1;
  int lastpass, int stepm, int weightopt, char model[],\        }
  int imx,int jmin, int jmax, double jmeanint,char optionfile[], \        if(first==1){
  char optionfilehtm[],char rfileres[], char optionfilegnuplot[],\          fprintf(ficlog,"Warning! None valid information for:%ld line=%d (skipped)\n",num[i],i);
  char version[], int popforecast, int estepm ){        }
   int jj1, k1, i1, cpt;      } /* end mi==0 */
   FILE *fichtm;    } /* End individuals */
   /*char optionfilehtm[FILENAMELENGTH];*/  
     for(i=1; i<=imx; i++){
   strcpy(optionfilehtm,optionfile);      for(mi=1; mi<wav[i];mi++){
   strcat(optionfilehtm,".htm");        if (stepm <=0)
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {          dh[mi][i]=1;
     printf("Problem with %s \n",optionfilehtm), exit(0);        else{
   }          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
             if (agedc[i] < 2*AGESUP) {
  fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n              if(j==0) j=1;  /* Survives at least one month after exam */
 \n              else if(j<0){
 Total number of observations=%d <br>\n                nberr++;
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 <hr  size=\"2\" color=\"#EC5E5E\">                j=1; /* Temporary Dangerous patch */
  <ul><li>Outputs files<br>\n                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
  - Gnuplot file name: <a href=\"%s\">%s</a><br>\n                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
  - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n              }
  - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>\n              k=k+1;
  - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>\n              if (j >= jmax) jmax=j;
  - Life expectancies by age and initial health status (estepm=%2d months): <a href=\"e%s\">e%s</a> <br>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot,fileres,fileres,fileres,fileres,fileres,fileres,estepm,fileres,fileres);              if (j <= jmin) jmin=j;
               sum=sum+j;
  fprintf(fichtm,"\n              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
  - Parameter file with estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>\n              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
   - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n            }
  - Variances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n          }
  - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>\n          else{
  - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
             /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
  if(popforecast==1) fprintf(fichtm,"\n            k=k+1;
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n            if (j >= jmax) jmax=j;
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n            else if (j <= jmin)jmin=j;
         <br>",fileres,fileres,fileres,fileres);            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
  else            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);            if(j<0){
 fprintf(fichtm," <li>Graphs</li><p>");              nberr++;
               printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
  m=cptcoveff;              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}            }
             sum=sum+j;
  jj1=0;          }
  for(k1=1; k1<=m;k1++){          jk= j/stepm;
    for(i1=1; i1<=ncodemax[k1];i1++){          jl= j -jk*stepm;
        jj1++;          ju= j -(jk+1)*stepm;
        if (cptcovn > 0) {          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");            if(jl==0){
          for (cpt=1; cpt<=cptcoveff;cpt++)              dh[mi][i]=jk;
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);              bh[mi][i]=0;
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");            }else{ /* We want a negative bias in order to only have interpolation ie
        }                    * at the price of an extra matrix product in likelihood */
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>              dh[mi][i]=jk+1;
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);                  bh[mi][i]=ju;
        for(cpt=1; cpt<nlstate;cpt++){            }
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>          }else{
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);            if(jl <= -ju){
        }              dh[mi][i]=jk;
     for(cpt=1; cpt<=nlstate;cpt++) {              bh[mi][i]=jl;       /* bias is positive if real duration
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident                                   * is higher than the multiple of stepm and negative otherwise.
 interval) in state (%d): v%s%d%d.gif <br>                                   */
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);              }
      }            else{
      for(cpt=1; cpt<=nlstate;cpt++) {              dh[mi][i]=jk+1;
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>              bh[mi][i]=ju;
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);            }
      }            if(dh[mi][i]==0){
      fprintf(fichtm,"\n<br>- Total life expectancy by age and              dh[mi][i]=1; /* At least one step */
 health expectancies in states (1) and (2): e%s%d.gif<br>              bh[mi][i]=ju; /* At least one step */
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
 fprintf(fichtm,"\n</body>");            }
    }          } /* end if mle */
    }        }
 fclose(fichtm);      } /* end wave */
 }    }
     jmean=sum/k;
 /******************* Gnuplot file **************/    printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
 void printinggnuplot(char fileres[],char optionfilefiname[],char optionfile[],char optionfilegnuplot[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){    fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
    }
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;  
   /*********** Tricode ****************************/
   strcpy(optionfilegnuplot,optionfilefiname);  void tricode(int *Tvar, int **nbcode, int imx)
   strcat(optionfilegnuplot,".gp.txt");  {
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {    
     printf("Problem with file %s",optionfilegnuplot);    int Ndum[20],ij=1, k, j, i, maxncov=19;
   }    int cptcode=0;
     cptcoveff=0; 
 #ifdef windows   
     fprintf(ficgp,"cd \"%s\" \n",pathc);    for (k=0; k<maxncov; k++) Ndum[k]=0;
 #endif    for (k=1; k<=7; k++) ncodemax[k]=0;
 m=pow(2,cptcoveff);  
      for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
  /* 1eme*/      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
   for (cpt=1; cpt<= nlstate ; cpt ++) {                                 modality*/ 
    for (k1=1; k1<= m ; k1 ++) {        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
         Ndum[ij]++; /*store the modality */
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
         if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
 for (i=1; i<= nlstate ; i ++) {                                         Tvar[j]. If V=sex and male is 0 and 
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");                                         female is 1, then  cptcode=1.*/
   else fprintf(ficgp," \%%*lf (\%%*lf)");      }
 }  
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);      for (i=0; i<=cptcode; i++) {
     for (i=1; i<= nlstate ; i ++) {        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");      }
   else fprintf(ficgp," \%%*lf (\%%*lf)");  
 }      ij=1; 
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);      for (i=1; i<=ncodemax[j]; i++) {
      for (i=1; i<= nlstate ; i ++) {        for (k=0; k<= maxncov; k++) {
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");          if (Ndum[k] != 0) {
   else fprintf(ficgp," \%%*lf (\%%*lf)");            nbcode[Tvar[j]][ij]=k; 
 }              /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));            
             ij++;
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);          }
    }          if (ij > ncodemax[j]) break; 
   }        }  
   /*2 eme*/      } 
     }  
   for (k1=1; k1<= m ; k1 ++) {  
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",ageminpar,fage);   for (k=0; k< maxncov; k++) Ndum[k]=0;
      
     for (i=1; i<= nlstate+1 ; i ++) {   for (i=1; i<=ncovmodel-2; i++) { 
       k=2*i;     /* Listing of all covariables in staement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);     ij=Tvar[i];
       for (j=1; j<= nlstate+1 ; j ++) {     Ndum[ij]++;
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");   }
   else fprintf(ficgp," \%%*lf (\%%*lf)");  
 }     ij=1;
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");   for (i=1; i<= maxncov; i++) {
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);     if((Ndum[i]!=0) && (i<=ncovcol)){
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);       Tvaraff[ij]=i; /*For printing */
       for (j=1; j<= nlstate+1 ; j ++) {       ij++;
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");     }
         else fprintf(ficgp," \%%*lf (\%%*lf)");   }
 }     
       fprintf(ficgp,"\" t\"\" w l 0,");   cptcoveff=ij-1; /*Number of simple covariates*/
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);  }
       for (j=1; j<= nlstate+1 ; j ++) {  
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");  /*********** Health Expectancies ****************/
   else fprintf(ficgp," \%%*lf (\%%*lf)");  
 }    void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");  
       else fprintf(ficgp,"\" t\"\" w l 0,");  {
     }    /* Health expectancies */
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);    int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
   }    double age, agelim, hf;
      double ***p3mat,***varhe;
   /*3eme*/    double **dnewm,**doldm;
     double *xp;
   for (k1=1; k1<= m ; k1 ++) {    double **gp, **gm;
     for (cpt=1; cpt<= nlstate ; cpt ++) {    double ***gradg, ***trgradg;
       k=2+nlstate*(2*cpt-2);    int theta;
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);  
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");    xp=vector(1,npar);
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);    dnewm=matrix(1,nlstate*nlstate,1,npar);
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");    
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);    fprintf(ficreseij,"# Health expectancies\n");
     fprintf(ficreseij,"# Age");
 */    for(i=1; i<=nlstate;i++)
       for (i=1; i< nlstate ; i ++) {      for(j=1; j<=nlstate;j++)
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);        fprintf(ficreseij," %1d-%1d (SE)",i,j);
     fprintf(ficreseij,"\n");
       }  
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);    if(estepm < stepm){
     }      printf ("Problem %d lower than %d\n",estepm, stepm);
     }    }
      else  hstepm=estepm;   
   /* CV preval stat */    /* We compute the life expectancy from trapezoids spaced every estepm months
     for (k1=1; k1<= m ; k1 ++) {     * This is mainly to measure the difference between two models: for example
     for (cpt=1; cpt<nlstate ; cpt ++) {     * if stepm=24 months pijx are given only every 2 years and by summing them
       k=3;     * we are calculating an estimate of the Life Expectancy assuming a linear 
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);     * progression in between and thus overestimating or underestimating according
      * to the curvature of the survival function. If, for the same date, we 
       for (i=1; i< nlstate ; i ++)     * estimate the model with stepm=1 month, we can keep estepm to 24 months
         fprintf(ficgp,"+$%d",k+i+1);     * to compare the new estimate of Life expectancy with the same linear 
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);     * hypothesis. A more precise result, taking into account a more precise
           * curvature will be obtained if estepm is as small as stepm. */
       l=3+(nlstate+ndeath)*cpt;  
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);    /* For example we decided to compute the life expectancy with the smallest unit */
       for (i=1; i< nlstate ; i ++) {    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
         l=3+(nlstate+ndeath)*cpt;       nhstepm is the number of hstepm from age to agelim 
         fprintf(ficgp,"+$%d",l+i+1);       nstepm is the number of stepm from age to agelin. 
       }       Look at hpijx to understand the reason of that which relies in memory size
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);         and note for a fixed period like estepm months */
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
     }       survival function given by stepm (the optimization length). Unfortunately it
   }         means that if the survival funtion is printed only each two years of age and if
         you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   /* proba elementaires */       results. So we changed our mind and took the option of the best precision.
    for(i=1,jk=1; i <=nlstate; i++){    */
     for(k=1; k <=(nlstate+ndeath); k++){    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
       if (k != i) {  
         for(j=1; j <=ncovmodel; j++){    agelim=AGESUP;
            for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);      /* nhstepm age range expressed in number of stepm */
           jk++;      nstepm=(int) rint((agelim-age)*YEARM/stepm); 
           fprintf(ficgp,"\n");      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
         }      /* if (stepm >= YEARM) hstepm=1;*/
       }      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     }      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     }      gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
       gp=matrix(0,nhstepm,1,nlstate*nlstate);
     for(jk=1; jk <=m; jk++) {      gm=matrix(0,nhstepm,1,nlstate*nlstate);
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);  
    i=1;      /* Computed by stepm unit matrices, product of hstepm matrices, stored
    for(k2=1; k2<=nlstate; k2++) {         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
      k3=i;      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
      for(k=1; k<=(nlstate+ndeath); k++) {   
        if (k != k2){  
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
 ij=1;  
         for(j=3; j <=ncovmodel; j++) {      /* Computing Variances of health expectancies */
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {  
             fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);       for(theta=1; theta <=npar; theta++){
             ij++;        for(i=1; i<=npar; i++){ 
           }          xp[i] = x[i] + (i==theta ?delti[theta]:0);
           else        }
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         }    
           fprintf(ficgp,")/(1");        cptj=0;
                for(j=1; j<= nlstate; j++){
         for(k1=1; k1 <=nlstate; k1++){            for(i=1; i<=nlstate; i++){
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);            cptj=cptj+1;
 ij=1;            for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
           for(j=3; j <=ncovmodel; j++){              gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {            }
             fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);          }
             ij++;        }
           }       
           else       
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);        for(i=1; i<=npar; i++) 
           }          xp[i] = x[i] - (i==theta ?delti[theta]:0);
           fprintf(ficgp,")");        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         }        
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);        cptj=0;
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");        for(j=1; j<= nlstate; j++){
         i=i+ncovmodel;          for(i=1;i<=nlstate;i++){
        }            cptj=cptj+1;
      }            for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
    }  
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);              gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
    }            }
              }
   fclose(ficgp);        }
 }  /* end gnuplot */        for(j=1; j<= nlstate*nlstate; j++)
           for(h=0; h<=nhstepm-1; h++){
             gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
 /*************** Moving average **************/          }
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){       } 
      
   int i, cpt, cptcod;  /* End theta */
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)  
       for (i=1; i<=nlstate;i++)       trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)  
           mobaverage[(int)agedeb][i][cptcod]=0.;       for(h=0; h<=nhstepm-1; h++)
            for(j=1; j<=nlstate*nlstate;j++)
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){          for(theta=1; theta <=npar; theta++)
       for (i=1; i<=nlstate;i++){            trgradg[h][j][theta]=gradg[h][theta][j];
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){       
           for (cpt=0;cpt<=4;cpt++){  
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];       for(i=1;i<=nlstate*nlstate;i++)
           }        for(j=1;j<=nlstate*nlstate;j++)
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;          varhe[i][j][(int)age] =0.;
         }  
       }       printf("%d|",(int)age);fflush(stdout);
     }       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
           for(h=0;h<=nhstepm-1;h++){
 }        for(k=0;k<=nhstepm-1;k++){
           matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
           matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
 /************** Forecasting ******************/          for(i=1;i<=nlstate*nlstate;i++)
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){            for(j=1;j<=nlstate*nlstate;j++)
                varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;        }
   int *popage;      }
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;      /* Computing expectancies */
   double *popeffectif,*popcount;      for(i=1; i<=nlstate;i++)
   double ***p3mat;        for(j=1; j<=nlstate;j++)
   char fileresf[FILENAMELENGTH];          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
             eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
  agelim=AGESUP;            
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);          }
    
        fprintf(ficreseij,"%3.0f",age );
   strcpy(fileresf,"f");      cptj=0;
   strcat(fileresf,fileres);      for(i=1; i<=nlstate;i++)
   if((ficresf=fopen(fileresf,"w"))==NULL) {        for(j=1; j<=nlstate;j++){
     printf("Problem with forecast resultfile: %s\n", fileresf);          cptj++;
   }          fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
   printf("Computing forecasting: result on file '%s' \n", fileresf);        }
       fprintf(ficreseij,"\n");
   if (cptcoveff==0) ncodemax[cptcoveff]=1;     
       free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
   if (mobilav==1) {      free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
     movingaverage(agedeb, fage, ageminpar, mobaverage);      free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
   }      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     }
   stepsize=(int) (stepm+YEARM-1)/YEARM;    printf("\n");
   if (stepm<=12) stepsize=1;    fprintf(ficlog,"\n");
    
   agelim=AGESUP;    free_vector(xp,1,npar);
      free_matrix(dnewm,1,nlstate*nlstate,1,npar);
   hstepm=1;    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
   hstepm=hstepm/stepm;    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
   yp1=modf(dateintmean,&yp);  }
   anprojmean=yp;  
   yp2=modf((yp1*12),&yp);  /************ Variance ******************/
   mprojmean=yp;  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav)
   yp1=modf((yp2*30.5),&yp);  {
   jprojmean=yp;    /* Variance of health expectancies */
   if(jprojmean==0) jprojmean=1;    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
   if(mprojmean==0) jprojmean=1;    /* double **newm;*/
      double **dnewm,**doldm;
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);    double **dnewmp,**doldmp;
      int i, j, nhstepm, hstepm, h, nstepm ;
   for(cptcov=1;cptcov<=i2;cptcov++){    int k, cptcode;
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    double *xp;
       k=k+1;    double **gp, **gm;  /* for var eij */
       fprintf(ficresf,"\n#******");    double ***gradg, ***trgradg; /*for var eij */
       for(j=1;j<=cptcoveff;j++) {    double **gradgp, **trgradgp; /* for var p point j */
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    double *gpp, *gmp; /* for var p point j */
       }    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
       fprintf(ficresf,"******\n");    double ***p3mat;
       fprintf(ficresf,"# StartingAge FinalAge");    double age,agelim, hf;
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);    double ***mobaverage;
          int theta;
          char digit[4];
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {    char digitp[25];
         fprintf(ficresf,"\n");  
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);      char fileresprobmorprev[FILENAMELENGTH];
   
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    if(popbased==1){
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);      if(mobilav!=0)
           nhstepm = nhstepm/hstepm;        strcpy(digitp,"-populbased-mobilav-");
                else strcpy(digitp,"-populbased-nomobil-");
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    }
           oldm=oldms;savm=savms;    else 
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        strcpy(digitp,"-stablbased-");
          
           for (h=0; h<=nhstepm; h++){    if (mobilav!=0) {
             if (h==(int) (calagedate+YEARM*cpt)) {      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
             }        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
             for(j=1; j<=nlstate+ndeath;j++) {        printf(" Error in movingaverage mobilav=%d\n",mobilav);
               kk1=0.;kk2=0;      }
               for(i=1; i<=nlstate;i++) {                  }
                 if (mobilav==1)  
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];    strcpy(fileresprobmorprev,"prmorprev"); 
                 else {    sprintf(digit,"%-d",ij);
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
                 }    strcat(fileresprobmorprev,digit); /* Tvar to be done */
                    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
               }    strcat(fileresprobmorprev,fileres);
               if (h==(int)(calagedate+12*cpt)){    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
                 fprintf(ficresf," %.3f", kk1);      printf("Problem with resultfile: %s\n", fileresprobmorprev);
                              fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
               }    }
             }    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
           }    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
         }    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
       }    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
     }      fprintf(ficresprobmorprev," p.%-d SE",j);
   }      for(i=1; i<=nlstate;i++)
                fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    }  
     fprintf(ficresprobmorprev,"\n");
   fclose(ficresf);    fprintf(ficgp,"\n# Routine varevsij");
 }    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
 /************** Forecasting ******************/    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){  /*   } */
      varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;  
   int *popage;    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;    fprintf(ficresvij,"# Age");
   double *popeffectif,*popcount;    for(i=1; i<=nlstate;i++)
   double ***p3mat,***tabpop,***tabpopprev;      for(j=1; j<=nlstate;j++)
   char filerespop[FILENAMELENGTH];        fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
     fprintf(ficresvij,"\n");
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    xp=vector(1,npar);
   agelim=AGESUP;    dnewm=matrix(1,nlstate,1,npar);
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;    doldm=matrix(1,nlstate,1,nlstate);
      dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
    
      gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
   strcpy(filerespop,"pop");    gpp=vector(nlstate+1,nlstate+ndeath);
   strcat(filerespop,fileres);    gmp=vector(nlstate+1,nlstate+ndeath);
   if((ficrespop=fopen(filerespop,"w"))==NULL) {    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     printf("Problem with forecast resultfile: %s\n", filerespop);    
   }    if(estepm < stepm){
   printf("Computing forecasting: result on file '%s' \n", filerespop);      printf ("Problem %d lower than %d\n",estepm, stepm);
     }
   if (cptcoveff==0) ncodemax[cptcoveff]=1;    else  hstepm=estepm;   
     /* For example we decided to compute the life expectancy with the smallest unit */
   if (mobilav==1) {    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);       nhstepm is the number of hstepm from age to agelim 
     movingaverage(agedeb, fage, ageminpar, mobaverage);       nstepm is the number of stepm from age to agelin. 
   }       Look at hpijx to understand the reason of that which relies in memory size
        and note for a fixed period like k years */
   stepsize=(int) (stepm+YEARM-1)/YEARM;    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   if (stepm<=12) stepsize=1;       survival function given by stepm (the optimization length). Unfortunately it
         means that if the survival funtion is printed every two years of age and if
   agelim=AGESUP;       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
         results. So we changed our mind and took the option of the best precision.
   hstepm=1;    */
   hstepm=hstepm/stepm;    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
      agelim = AGESUP;
   if (popforecast==1) {    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
     if((ficpop=fopen(popfile,"r"))==NULL) {      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       printf("Problem with population file : %s\n",popfile);exit(0);      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     }      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     popage=ivector(0,AGESUP);      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
     popeffectif=vector(0,AGESUP);      gp=matrix(0,nhstepm,1,nlstate);
     popcount=vector(0,AGESUP);      gm=matrix(0,nhstepm,1,nlstate);
      
     i=1;    
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;      for(theta=1; theta <=npar; theta++){
            for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
     imx=i;          xp[i] = x[i] + (i==theta ?delti[theta]:0);
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];        }
   }        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   for(cptcov=1;cptcov<=i2;cptcov++){  
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){        if (popbased==1) {
       k=k+1;          if(mobilav ==0){
       fprintf(ficrespop,"\n#******");            for(i=1; i<=nlstate;i++)
       for(j=1;j<=cptcoveff;j++) {              prlim[i][i]=probs[(int)age][i][ij];
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          }else{ /* mobilav */ 
       }            for(i=1; i<=nlstate;i++)
       fprintf(ficrespop,"******\n");              prlim[i][i]=mobaverage[(int)age][i][ij];
       fprintf(ficrespop,"# Age");          }
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);        }
       if (popforecast==1)  fprintf(ficrespop," [Population]");    
              for(j=1; j<= nlstate; j++){
       for (cpt=0; cpt<=0;cpt++) {          for(h=0; h<=nhstepm; h++){
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);              for(i=1, gp[h][j]=0.;i<=nlstate;i++)
                      gp[h][j] += prlim[i][i]*p3mat[i][j][h];
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){          }
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);        }
           nhstepm = nhstepm/hstepm;        /* This for computing probability of death (h=1 means
                     computed over hstepm matrices product = hstepm*stepm months) 
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);           as a weighted average of prlim.
           oldm=oldms;savm=savms;        */
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);          for(j=nlstate+1;j<=nlstate+ndeath;j++){
                  for(i=1,gpp[j]=0.; i<= nlstate; i++)
           for (h=0; h<=nhstepm; h++){            gpp[j] += prlim[i][i]*p3mat[i][j][1];
             if (h==(int) (calagedate+YEARM*cpt)) {        }    
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);        /* end probability of death */
             }  
             for(j=1; j<=nlstate+ndeath;j++) {        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
               kk1=0.;kk2=0;          xp[i] = x[i] - (i==theta ?delti[theta]:0);
               for(i=1; i<=nlstate;i++) {                      hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
                 if (mobilav==1)        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];   
                 else {        if (popbased==1) {
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];          if(mobilav ==0){
                 }            for(i=1; i<=nlstate;i++)
               }              prlim[i][i]=probs[(int)age][i][ij];
               if (h==(int)(calagedate+12*cpt)){          }else{ /* mobilav */ 
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;            for(i=1; i<=nlstate;i++)
                   /*fprintf(ficrespop," %.3f", kk1);              prlim[i][i]=mobaverage[(int)age][i][ij];
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/          }
               }        }
             }  
             for(i=1; i<=nlstate;i++){        for(j=1; j<= nlstate; j++){
               kk1=0.;          for(h=0; h<=nhstepm; h++){
                 for(j=1; j<=nlstate;j++){            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
                 }          }
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];        }
             }        /* This for computing probability of death (h=1 means
            computed over hstepm matrices product = hstepm*stepm months) 
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)           as a weighted average of prlim.
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);        */
           }        for(j=nlstate+1;j<=nlstate+ndeath;j++){
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          for(i=1,gmp[j]=0.; i<= nlstate; i++)
         }           gmp[j] += prlim[i][i]*p3mat[i][j][1];
       }        }    
          /* end probability of death */
   /******/  
         for(j=1; j<= nlstate; j++) /* vareij */
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {          for(h=0; h<=nhstepm; h++){
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);              gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){          }
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);  
           nhstepm = nhstepm/hstepm;        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
                    gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        }
           oldm=oldms;savm=savms;  
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        } /* End theta */
           for (h=0; h<=nhstepm; h++){  
             if (h==(int) (calagedate+YEARM*cpt)) {      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);  
             }      for(h=0; h<=nhstepm; h++) /* veij */
             for(j=1; j<=nlstate+ndeath;j++) {        for(j=1; j<=nlstate;j++)
               kk1=0.;kk2=0;          for(theta=1; theta <=npar; theta++)
               for(i=1; i<=nlstate;i++) {                          trgradg[h][j][theta]=gradg[h][theta][j];
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];      
               }      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);        for(theta=1; theta <=npar; theta++)
             }          trgradgp[j][theta]=gradgp[theta][j];
           }    
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
         }      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       }      for(i=1;i<=nlstate;i++)
    }        for(j=1;j<=nlstate;j++)
   }          vareij[i][j][(int)age] =0.;
    
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      for(h=0;h<=nhstepm;h++){
         for(k=0;k<=nhstepm;k++){
   if (popforecast==1) {          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
     free_ivector(popage,0,AGESUP);          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
     free_vector(popeffectif,0,AGESUP);          for(i=1;i<=nlstate;i++)
     free_vector(popcount,0,AGESUP);            for(j=1;j<=nlstate;j++)
   }              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        }
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      }
   fclose(ficrespop);    
 }      /* pptj */
       matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
 /***********************************************/      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
 /**************** Main Program *****************/      for(j=nlstate+1;j<=nlstate+ndeath;j++)
 /***********************************************/        for(i=nlstate+1;i<=nlstate+ndeath;i++)
           varppt[j][i]=doldmp[j][i];
 int main(int argc, char *argv[])      /* end ppptj */
 {      /*  x centered again */
       hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
   double agedeb, agefin,hf;   
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;      if (popbased==1) {
         if(mobilav ==0){
   double fret;          for(i=1; i<=nlstate;i++)
   double **xi,tmp,delta;            prlim[i][i]=probs[(int)age][i][ij];
         }else{ /* mobilav */ 
   double dum; /* Dummy variable */          for(i=1; i<=nlstate;i++)
   double ***p3mat;            prlim[i][i]=mobaverage[(int)age][i][ij];
   int *indx;        }
   char line[MAXLINE], linepar[MAXLINE];      }
   char title[MAXLINE];               
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];      /* This for computing probability of death (h=1 means
   char optionfilext[10], optionfilefiname[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilegnuplot[FILENAMELENGTH], plotcmd[FILENAMELENGTH];         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
           as a weighted average of prlim.
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];      */
       for(j=nlstate+1;j<=nlstate+ndeath;j++){
   char filerest[FILENAMELENGTH];        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
   char fileregp[FILENAMELENGTH];          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
   char popfile[FILENAMELENGTH];      }    
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];      /* end probability of death */
   int firstobs=1, lastobs=10;  
   int sdeb, sfin; /* Status at beginning and end */      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
   int c,  h , cpt,l;      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
   int ju,jl, mi;        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;        for(i=1; i<=nlstate;i++){
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
   int mobilav=0,popforecast=0;        }
   int hstepm, nhstepm;      } 
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;      fprintf(ficresprobmorprev,"\n");
   
   double bage, fage, age, agelim, agebase;      fprintf(ficresvij,"%.0f ",age );
   double ftolpl=FTOL;      for(i=1; i<=nlstate;i++)
   double **prlim;        for(j=1; j<=nlstate;j++){
   double *severity;          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
   double ***param; /* Matrix of parameters */        }
   double  *p;      fprintf(ficresvij,"\n");
   double **matcov; /* Matrix of covariance */      free_matrix(gp,0,nhstepm,1,nlstate);
   double ***delti3; /* Scale */      free_matrix(gm,0,nhstepm,1,nlstate);
   double *delti; /* Scale */      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
   double ***eij, ***vareij;      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
   double **varpl; /* Variances of prevalence limits by age */      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   double *epj, vepp;    } /* End age */
   double kk1, kk2;    free_vector(gpp,nlstate+1,nlstate+ndeath);
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;    free_vector(gmp,nlstate+1,nlstate+ndeath);
      free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
     free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
   char version[80]="Imach version 0.8a1, June 2003, INED-EUROREVES ";    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
   char *alph[]={"a","a","b","c","d","e"}, str[4];    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
     fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
   /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   char z[1]="c", occ;  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
 #include <sys/time.h>  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
 #include <time.h>    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
      fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
   /* long total_usecs;    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
   struct timeval start_time, end_time;    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
      /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */  */
   getcwd(pathcd, size);  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
     fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   printf("\n%s",version);  
   if(argc <=1){    free_vector(xp,1,npar);
     printf("\nEnter the parameter file name: ");    free_matrix(doldm,1,nlstate,1,nlstate);
     scanf("%s",pathtot);    free_matrix(dnewm,1,nlstate,1,npar);
   }    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   else{    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
     strcpy(pathtot,argv[1]);    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   }    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/    fclose(ficresprobmorprev);
   /*cygwin_split_path(pathtot,path,optionfile);    fflush(ficgp);
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/    fflush(fichtm); 
   /* cutv(path,optionfile,pathtot,'\\');*/  }  /* end varevsij */
   
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);  /************ Variance of prevlim ******************/
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)
   chdir(path);  {
   replace(pathc,path);    /* Variance of prevalence limit */
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
 /*-------- arguments in the command line --------*/    double **newm;
     double **dnewm,**doldm;
   strcpy(fileres,"r");    int i, j, nhstepm, hstepm;
   strcat(fileres, optionfilefiname);    int k, cptcode;
   strcat(fileres,".txt");    /* Other files have txt extension */    double *xp;
     double *gp, *gm;
   /*---------arguments file --------*/    double **gradg, **trgradg;
     double age,agelim;
   if((ficpar=fopen(optionfile,"r"))==NULL)    {    int theta;
     printf("Problem with optionfile %s\n",optionfile);     
     goto end;    fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
   }    fprintf(ficresvpl,"# Age");
     for(i=1; i<=nlstate;i++)
   strcpy(filereso,"o");        fprintf(ficresvpl," %1d-%1d",i,i);
   strcat(filereso,fileres);    fprintf(ficresvpl,"\n");
   if((ficparo=fopen(filereso,"w"))==NULL) {  
     printf("Problem with Output resultfile: %s\n", filereso);goto end;    xp=vector(1,npar);
   }    dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
   /* Reads comments: lines beginning with '#' */    
   while((c=getc(ficpar))=='#' && c!= EOF){    hstepm=1*YEARM; /* Every year of age */
     ungetc(c,ficpar);    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
     fgets(line, MAXLINE, ficpar);    agelim = AGESUP;
     puts(line);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
     fputs(line,ficparo);      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
   }      if (stepm >= YEARM) hstepm=1;
   ungetc(c,ficpar);      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
       gradg=matrix(1,npar,1,nlstate);
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);      gp=vector(1,nlstate);
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);      gm=vector(1,nlstate);
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);  
 while((c=getc(ficpar))=='#' && c!= EOF){      for(theta=1; theta <=npar; theta++){
     ungetc(c,ficpar);        for(i=1; i<=npar; i++){ /* Computes gradient */
     fgets(line, MAXLINE, ficpar);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
     puts(line);        }
     fputs(line,ficparo);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   }        for(i=1;i<=nlstate;i++)
   ungetc(c,ficpar);          gp[i] = prlim[i][i];
        
            for(i=1; i<=npar; i++) /* Computes gradient */
   covar=matrix(0,NCOVMAX,1,n);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
   cptcovn=0;        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;        for(i=1;i<=nlstate;i++)
           gm[i] = prlim[i][i];
   ncovmodel=2+cptcovn;  
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */        for(i=1;i<=nlstate;i++)
            gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
   /* Read guess parameters */      } /* End theta */
   /* Reads comments: lines beginning with '#' */  
   while((c=getc(ficpar))=='#' && c!= EOF){      trgradg =matrix(1,nlstate,1,npar);
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);      for(j=1; j<=nlstate;j++)
     puts(line);        for(theta=1; theta <=npar; theta++)
     fputs(line,ficparo);          trgradg[j][theta]=gradg[theta][j];
   }  
   ungetc(c,ficpar);      for(i=1;i<=nlstate;i++)
          varpl[i][(int)age] =0.;
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
     for(i=1; i <=nlstate; i++)      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
     for(j=1; j <=nlstate+ndeath-1; j++){      for(i=1;i<=nlstate;i++)
       fscanf(ficpar,"%1d%1d",&i1,&j1);        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
       fprintf(ficparo,"%1d%1d",i1,j1);  
       printf("%1d%1d",i,j);      fprintf(ficresvpl,"%.0f ",age );
       for(k=1; k<=ncovmodel;k++){      for(i=1; i<=nlstate;i++)
         fscanf(ficpar," %lf",&param[i][j][k]);        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
         printf(" %lf",param[i][j][k]);      fprintf(ficresvpl,"\n");
         fprintf(ficparo," %lf",param[i][j][k]);      free_vector(gp,1,nlstate);
       }      free_vector(gm,1,nlstate);
       fscanf(ficpar,"\n");      free_matrix(gradg,1,npar,1,nlstate);
       printf("\n");      free_matrix(trgradg,1,nlstate,1,npar);
       fprintf(ficparo,"\n");    } /* End age */
     }  
      free_vector(xp,1,npar);
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;    free_matrix(doldm,1,nlstate,1,npar);
     free_matrix(dnewm,1,nlstate,1,nlstate);
   p=param[1][1];  
    }
   /* Reads comments: lines beginning with '#' */  
   while((c=getc(ficpar))=='#' && c!= EOF){  /************ Variance of one-step probabilities  ******************/
     ungetc(c,ficpar);  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)
     fgets(line, MAXLINE, ficpar);  {
     puts(line);    int i, j=0,  i1, k1, l1, t, tj;
     fputs(line,ficparo);    int k2, l2, j1,  z1;
   }    int k=0,l, cptcode;
   ungetc(c,ficpar);    int first=1, first1;
     double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    double **dnewm,**doldm;
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */    double *xp;
   for(i=1; i <=nlstate; i++){    double *gp, *gm;
     for(j=1; j <=nlstate+ndeath-1; j++){    double **gradg, **trgradg;
       fscanf(ficpar,"%1d%1d",&i1,&j1);    double **mu;
       printf("%1d%1d",i,j);    double age,agelim, cov[NCOVMAX];
       fprintf(ficparo,"%1d%1d",i1,j1);    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
       for(k=1; k<=ncovmodel;k++){    int theta;
         fscanf(ficpar,"%le",&delti3[i][j][k]);    char fileresprob[FILENAMELENGTH];
         printf(" %le",delti3[i][j][k]);    char fileresprobcov[FILENAMELENGTH];
         fprintf(ficparo," %le",delti3[i][j][k]);    char fileresprobcor[FILENAMELENGTH];
       }  
       fscanf(ficpar,"\n");    double ***varpij;
       printf("\n");  
       fprintf(ficparo,"\n");    strcpy(fileresprob,"prob"); 
     }    strcat(fileresprob,fileres);
   }    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
   delti=delti3[1][1];      printf("Problem with resultfile: %s\n", fileresprob);
        fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
   /* Reads comments: lines beginning with '#' */    }
   while((c=getc(ficpar))=='#' && c!= EOF){    strcpy(fileresprobcov,"probcov"); 
     ungetc(c,ficpar);    strcat(fileresprobcov,fileres);
     fgets(line, MAXLINE, ficpar);    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
     puts(line);      printf("Problem with resultfile: %s\n", fileresprobcov);
     fputs(line,ficparo);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
   }    }
   ungetc(c,ficpar);    strcpy(fileresprobcor,"probcor"); 
      strcat(fileresprobcor,fileres);
   matcov=matrix(1,npar,1,npar);    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
   for(i=1; i <=npar; i++){      printf("Problem with resultfile: %s\n", fileresprobcor);
     fscanf(ficpar,"%s",&str);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     printf("%s",str);    }
     fprintf(ficparo,"%s",str);    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     for(j=1; j <=i; j++){    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
       fscanf(ficpar," %le",&matcov[i][j]);    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
       printf(" %.5le",matcov[i][j]);    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
       fprintf(ficparo," %.5le",matcov[i][j]);    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     }    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     fscanf(ficpar,"\n");    
     printf("\n");    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     fprintf(ficparo,"\n");    fprintf(ficresprob,"# Age");
   }    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
   for(i=1; i <=npar; i++)    fprintf(ficresprobcov,"# Age");
     for(j=i+1;j<=npar;j++)    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
       matcov[i][j]=matcov[j][i];    fprintf(ficresprobcov,"# Age");
      
   printf("\n");  
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=(nlstate+ndeath);j++){
     /*-------- Rewriting paramater file ----------*/        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
      strcpy(rfileres,"r");    /* "Rparameterfile */        fprintf(ficresprobcov," p%1d-%1d ",i,j);
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/        fprintf(ficresprobcor," p%1d-%1d ",i,j);
      strcat(rfileres,".");    /* */      }  
      strcat(rfileres,optionfilext);    /* Other files have txt extension */   /* fprintf(ficresprob,"\n");
     if((ficres =fopen(rfileres,"w"))==NULL) {    fprintf(ficresprobcov,"\n");
       printf("Problem writing new parameter file: %s\n", fileres);goto end;    fprintf(ficresprobcor,"\n");
     }   */
     fprintf(ficres,"#%s\n",version);   xp=vector(1,npar);
        dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     /*-------- data file ----------*/    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     if((fic=fopen(datafile,"r"))==NULL)    {    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
       printf("Problem with datafile: %s\n", datafile);goto end;    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     }    first=1;
     fprintf(ficgp,"\n# Routine varprob");
     n= lastobs;    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
     severity = vector(1,maxwav);    fprintf(fichtm,"\n");
     outcome=imatrix(1,maxwav+1,1,n);  
     num=ivector(1,n);    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Computing matrix of variance-covariance of step probabilities</a></h4></li>\n",optionfilehtmcov);
     moisnais=vector(1,n);    fprintf(fichtmcov,"\n<h4>Computing matrix of variance-covariance of step probabilities</h4>\n\
     annais=vector(1,n);    file %s<br>\n",optionfilehtmcov);
     moisdc=vector(1,n);    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
     andc=vector(1,n);  and drawn. It helps understanding how is the covariance between two incidences.\
     agedc=vector(1,n);   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
     cod=ivector(1,n);    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
     weight=vector(1,n);  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
     mint=matrix(1,maxwav,1,n);  standard deviations wide on each axis. <br>\
     anint=matrix(1,maxwav,1,n);   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
     s=imatrix(1,maxwav+1,1,n);   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
     adl=imatrix(1,maxwav+1,1,n);      To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
     tab=ivector(1,NCOVMAX);  
     ncodemax=ivector(1,8);    cov[1]=1;
     tj=cptcoveff;
     i=1;    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     while (fgets(line, MAXLINE, fic) != NULL)    {    j1=0;
       if ((i >= firstobs) && (i <=lastobs)) {    for(t=1; t<=tj;t++){
              for(i1=1; i1<=ncodemax[t];i1++){ 
         for (j=maxwav;j>=1;j--){        j1++;
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);        if  (cptcovn>0) {
           strcpy(line,stra);          fprintf(ficresprob, "\n#********** Variable "); 
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);          fprintf(ficresprob, "**********\n#\n");
         }          fprintf(ficresprobcov, "\n#********** Variable "); 
                  for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);          fprintf(ficresprobcov, "**********\n#\n");
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);          
           fprintf(ficgp, "\n#********** Variable "); 
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);          fprintf(ficgp, "**********\n#\n");
           
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);          
         for (j=ncovcol;j>=1;j--){          fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
         }          fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
         num[i]=atol(stra);          
                  fprintf(ficresprobcor, "\n#********** Variable ");    
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/          fprintf(ficresprobcor, "**********\n#");    
         }
         i=i+1;        
       }        for (age=bage; age<=fage; age ++){ 
     }          cov[2]=age;
     /* printf("ii=%d", ij);          for (k=1; k<=cptcovn;k++) {
        scanf("%d",i);*/            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
   imx=i-1; /* Number of individuals */          }
           for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   /* for (i=1; i<=imx; i++){          for (k=1; k<=cptcovprod;k++)
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;          
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
     }*/          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
    /*  for (i=1; i<=imx; i++){          gp=vector(1,(nlstate)*(nlstate+ndeath));
      if (s[4][i]==9)  s[4][i]=-1;          gm=vector(1,(nlstate)*(nlstate+ndeath));
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/      
            for(theta=1; theta <=npar; theta++){
              for(i=1; i<=npar; i++)
   /* Calculation of the number of parameter from char model*/              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
   Tvar=ivector(1,15);            
   Tprod=ivector(1,15);            pmij(pmmij,cov,ncovmodel,xp,nlstate);
   Tvaraff=ivector(1,15);            
   Tvard=imatrix(1,15,1,2);            k=0;
   Tage=ivector(1,15);                  for(i=1; i<= (nlstate); i++){
                  for(j=1; j<=(nlstate+ndeath);j++){
   if (strlen(model) >1){                k=k+1;
     j=0, j1=0, k1=1, k2=1;                gp[k]=pmmij[i][j];
     j=nbocc(model,'+');              }
     j1=nbocc(model,'*');            }
     cptcovn=j+1;            
     cptcovprod=j1;            for(i=1; i<=npar; i++)
                  xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
     strcpy(modelsav,model);      
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){            pmij(pmmij,cov,ncovmodel,xp,nlstate);
       printf("Error. Non available option model=%s ",model);            k=0;
       goto end;            for(i=1; i<=(nlstate); i++){
     }              for(j=1; j<=(nlstate+ndeath);j++){
                    k=k+1;
     for(i=(j+1); i>=1;i--){                gm[k]=pmmij[i][j];
       cutv(stra,strb,modelsav,'+');              }
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);            }
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/       
       /*scanf("%d",i);*/            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
       if (strchr(strb,'*')) {              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
         cutv(strd,strc,strb,'*');          }
         if (strcmp(strc,"age")==0) {  
           cptcovprod--;          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
           cutv(strb,stre,strd,'V');            for(theta=1; theta <=npar; theta++)
           Tvar[i]=atoi(stre);              trgradg[j][theta]=gradg[theta][j];
           cptcovage++;          
             Tage[cptcovage]=i;          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
             /*printf("stre=%s ", stre);*/          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
         }          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
         else if (strcmp(strd,"age")==0) {          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
           cptcovprod--;          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
           cutv(strb,stre,strc,'V');          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
           Tvar[i]=atoi(stre);  
           cptcovage++;          pmij(pmmij,cov,ncovmodel,x,nlstate);
           Tage[cptcovage]=i;          
         }          k=0;
         else {          for(i=1; i<=(nlstate); i++){
           cutv(strb,stre,strc,'V');            for(j=1; j<=(nlstate+ndeath);j++){
           Tvar[i]=ncovcol+k1;              k=k+1;
           cutv(strb,strc,strd,'V');              mu[k][(int) age]=pmmij[i][j];
           Tprod[k1]=i;            }
           Tvard[k1][1]=atoi(strc);          }
           Tvard[k1][2]=atoi(stre);          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
           Tvar[cptcovn+k2]=Tvard[k1][1];            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
           Tvar[cptcovn+k2+1]=Tvard[k1][2];              varpij[i][j][(int)age] = doldm[i][j];
           for (k=1; k<=lastobs;k++)  
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];          /*printf("\n%d ",(int)age);
           k1++;            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
           k2=k2+2;            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
         }            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
       }            }*/
       else {  
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/          fprintf(ficresprob,"\n%d ",(int)age);
        /*  scanf("%d",i);*/          fprintf(ficresprobcov,"\n%d ",(int)age);
       cutv(strd,strc,strb,'V');          fprintf(ficresprobcor,"\n%d ",(int)age);
       Tvar[i]=atoi(strc);  
       }          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
       strcpy(modelsav,stra);              fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
         scanf("%d",i);*/            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
     }            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
 }          }
            i=0;
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);          for (k=1; k<=(nlstate);k++){
   printf("cptcovprod=%d ", cptcovprod);            for (l=1; l<=(nlstate+ndeath);l++){ 
   scanf("%d ",i);*/              i=i++;
     fclose(fic);              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
               fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
     /*  if(mle==1){*/              for (j=1; j<=i;j++){
     if (weightopt != 1) { /* Maximisation without weights*/                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
       for(i=1;i<=n;i++) weight[i]=1.0;                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
     }              }
     /*-calculation of age at interview from date of interview and age at death -*/            }
     agev=matrix(1,maxwav,1,imx);          }/* end of loop for state */
         } /* end of loop for age */
     for (i=1; i<=imx; i++) {  
       for(m=2; (m<= maxwav); m++) {        /* Confidence intervalle of pij  */
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){        /*
          anint[m][i]=9999;          fprintf(ficgp,"\nset noparametric;unset label");
          s[m][i]=-1;          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
        }          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
       }          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
     }          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
           fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
     for (i=1; i<=imx; i++)  {        */
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);  
       for(m=1; (m<= maxwav); m++){        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
         if(s[m][i] >0){        first1=1;
           if (s[m][i] >= nlstate+1) {        for (k2=1; k2<=(nlstate);k2++){
             if(agedc[i]>0)          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
               if(moisdc[i]!=99 && andc[i]!=9999)            if(l2==k2) continue;
                 agev[m][i]=agedc[i];            j=(k2-1)*(nlstate+ndeath)+l2;
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/            for (k1=1; k1<=(nlstate);k1++){
            else {              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
               if (andc[i]!=9999){                if(l1==k1) continue;
               printf("Warning negative age at death: %d line:%d\n",num[i],i);                i=(k1-1)*(nlstate+ndeath)+l1;
               agev[m][i]=-1;                if(i<=j) continue;
               }                for (age=bage; age<=fage; age ++){ 
             }                  if ((int)age %5==0){
           }                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
           else if(s[m][i] !=9){ /* Should no more exist */                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
             if(mint[m][i]==99 || anint[m][i]==9999)                    mu1=mu[i][(int) age]/stepm*YEARM ;
               agev[m][i]=1;                    mu2=mu[j][(int) age]/stepm*YEARM;
             else if(agev[m][i] <agemin){                    c12=cv12/sqrt(v1*v2);
               agemin=agev[m][i];                    /* Computing eigen value of matrix of covariance */
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
             }                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
             else if(agev[m][i] >agemax){                    /* Eigen vectors */
               agemax=agev[m][i];                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/                    /*v21=sqrt(1.-v11*v11); *//* error */
             }                    v21=(lc1-v1)/cv12*v11;
             /*agev[m][i]=anint[m][i]-annais[i];*/                    v12=-v21;
             /*   agev[m][i] = age[i]+2*m;*/                    v22=v11;
           }                    tnalp=v21/v11;
           else { /* =9 */                    if(first1==1){
             agev[m][i]=1;                      first1=0;
             s[m][i]=-1;                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
           }                    }
         }                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
         else /*= 0 Unknown */                    /*printf(fignu*/
           agev[m][i]=1;                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
       }                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                        if(first==1){
     }                      first=0;
     for (i=1; i<=imx; i++)  {                      fprintf(ficgp,"\nset parametric;unset label");
       for(m=1; (m<= maxwav); m++){                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
         if (s[m][i] > (nlstate+ndeath)) {                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           printf("Error: Wrong value in nlstate or ndeath\n");                        fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
           goto end;   :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
         }  %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
       }                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
     }                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);                      fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
     free_vector(severity,1,maxwav);                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
     free_imatrix(outcome,1,maxwav+1,1,n);                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
     free_vector(moisnais,1,n);                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
     free_vector(annais,1,n);                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
     /* free_matrix(mint,1,maxwav,1,n);                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
        free_matrix(anint,1,maxwav,1,n);*/                    }else{
     free_vector(moisdc,1,n);                      first=0;
     free_vector(andc,1,n);                      fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                          fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
     wav=ivector(1,imx);                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
     dh=imatrix(1,lastpass-firstpass+1,1,imx);                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
     mw=imatrix(1,lastpass-firstpass+1,1,imx);                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                        }/* if first */
     /* Concatenates waves */                  } /* age mod 5 */
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);                } /* end loop age */
                 fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                 first=1;
       Tcode=ivector(1,100);              } /*l12 */
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);            } /* k12 */
       ncodemax[1]=1;          } /*l1 */
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);        }/* k1 */
            } /* loop covariates */
    codtab=imatrix(1,100,1,10);    }
    h=0;    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
    m=pow(2,cptcoveff);    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
      free_vector(xp,1,npar);
    for(k=1;k<=cptcoveff; k++){    fclose(ficresprob);
      for(i=1; i <=(m/pow(2,k));i++){    fclose(ficresprobcov);
        for(j=1; j <= ncodemax[k]; j++){    fclose(ficresprobcor);
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){    fflush(ficgp);
            h++;    fflush(fichtmcov);
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;  }
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/  
          }  
        }  /******************* Printing html file ***********/
      }  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
    }                    int lastpass, int stepm, int weightopt, char model[],\
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
       codtab[1][2]=1;codtab[2][2]=2; */                    int popforecast, int estepm ,\
    /* for(i=1; i <=m ;i++){                    double jprev1, double mprev1,double anprev1, \
       for(k=1; k <=cptcovn; k++){                    double jprev2, double mprev2,double anprev2){
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);    int jj1, k1, i1, cpt;
       }    /*char optionfilehtm[FILENAMELENGTH];*/
       printf("\n");  /*   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    { */
       }  /*     printf("Problem with %s \n",optionfilehtm), exit(0); */
       scanf("%d",i);*/  /*     fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0); */
      /*   } */
    /* Calculates basic frequencies. Computes observed prevalence at single age  
        and prints on file fileres'p'. */     fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n \
       - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n \
       - Stable prevalence in each health state: <a href=\"%s\">%s</a> <br>\n \
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */   - Life expectancies by age and initial health status (estepm=%2d months): \
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */     <a href=\"%s\">%s</a> <br>\n</li>", \
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */             jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"),\
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */             stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"),\
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */             subdirf2(fileres,"pl"),subdirf2(fileres,"pl"),\
                   estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
     /* For Powell, parameters are in a vector p[] starting at p[1]  
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */  
    m=cptcoveff;
     if(mle==1){   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);  
     }   jj1=0;
       for(k1=1; k1<=m;k1++){
     /*--------- results files --------------*/     for(i1=1; i1<=ncodemax[k1];i1++){
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);       jj1++;
         if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
    jk=1;         for (cpt=1; cpt<=cptcoveff;cpt++) 
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
    for(i=1,jk=1; i <=nlstate; i++){       }
      for(k=1; k <=(nlstate+ndeath); k++){       /* Pij */
        if (k != i)       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: %s%d1.png<br> \
          {  <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
            printf("%d%d ",i,k);       /* Quasi-incidences */
            fprintf(ficres,"%1d%1d ",i,k);       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
            for(j=1; j <=ncovmodel; j++){   before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: %s%d2.png<br> \
              printf("%f ",p[jk]);  <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
              fprintf(ficres,"%f ",p[jk]);         /* Stable prevalence in each health state */
              jk++;         for(cpt=1; cpt<nlstate;cpt++){
            }           fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \
            printf("\n");  <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
            fprintf(ficres,"\n");         }
          }       for(cpt=1; cpt<=nlstate;cpt++) {
      }          fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): %s%d%d.png <br> \
    }  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
  if(mle==1){       }
     /* Computing hessian and covariance matrix */       fprintf(fichtm,"\n<br>- Total life expectancy by age and \
     ftolhess=ftol; /* Usually correct */  health expectancies in states (1) and (2): %s%d.png<br>\
     hesscov(matcov, p, npar, delti, ftolhess, func);  <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
  }     } /* end i1 */
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");   }/* End k1 */
     printf("# Scales (for hessian or gradient estimation)\n");   fprintf(fichtm,"</ul>");
      for(i=1,jk=1; i <=nlstate; i++){  
       for(j=1; j <=nlstate+ndeath; j++){  
         if (j!=i) {   fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n\
           fprintf(ficres,"%1d%1d",i,j);   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n\
           printf("%1d%1d",i,j);   - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n\
           for(k=1; k<=ncovmodel;k++){   - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n\
             printf(" %.5e",delti[jk]);   - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n\
             fprintf(ficres," %.5e",delti[jk]);   - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"%s\">%s</a><br>\n\
             jk++;   - Health expectancies with their variances (no covariance): <a href=\"%s\">%s</a> <br>\n\
           }   - Standard deviation of stable prevalences: <a href=\"%s\">%s</a> <br>\n",\
           printf("\n");           rfileres,rfileres,\
           fprintf(ficres,"\n");           subdirf2(fileres,"prob"),subdirf2(fileres,"prob"),\
         }           subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"),\
       }           subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"),\
      }           estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"),\
               subdirf2(fileres,"t"),subdirf2(fileres,"t"),\
     k=1;           subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");  
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");  /*  if(popforecast==1) fprintf(fichtm,"\n */
     for(i=1;i<=npar;i++){  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
       /*  if (k>nlstate) k=1;  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
       i1=(i-1)/(ncovmodel*nlstate)+1;  /*      <br>",fileres,fileres,fileres,fileres); */
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);  /*  else  */
       printf("%s%d%d",alph[k],i1,tab[i]);*/  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
       fprintf(ficres,"%3d",i);  fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
       printf("%3d",i);  
       for(j=1; j<=i;j++){   m=cptcoveff;
         fprintf(ficres," %.5e",matcov[i][j]);   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
         printf(" %.5e",matcov[i][j]);  
       }   jj1=0;
       fprintf(ficres,"\n");   for(k1=1; k1<=m;k1++){
       printf("\n");     for(i1=1; i1<=ncodemax[k1];i1++){
       k++;       jj1++;
     }       if (cptcovn > 0) {
             fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
     while((c=getc(ficpar))=='#' && c!= EOF){         for (cpt=1; cpt<=cptcoveff;cpt++) 
       ungetc(c,ficpar);           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
       fgets(line, MAXLINE, ficpar);         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
       puts(line);       }
       fputs(line,ficparo);       for(cpt=1; cpt<=nlstate;cpt++) {
     }         fprintf(fichtm,"<br>- Observed and period prevalence (with confident\
     ungetc(c,ficpar);  interval) in state (%d): %s%d%d.png <br>\
     estepm=0;  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);       }
     if (estepm==0 || estepm < stepm) estepm=stepm;     } /* end i1 */
     if (fage <= 2) {   }/* End k1 */
       bage = ageminpar;   fprintf(fichtm,"</ul>");
       fage = agemaxpar;   fflush(fichtm);
     }  }
      
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");  /******************* Gnuplot file **************/
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);  void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);  
      char dirfileres[132],optfileres[132];
     while((c=getc(ficpar))=='#' && c!= EOF){    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     ungetc(c,ficpar);    int ng;
     fgets(line, MAXLINE, ficpar);  /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
     puts(line);  /*     printf("Problem with file %s",optionfilegnuplot); */
     fputs(line,ficparo);  /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   }  /*   } */
   ungetc(c,ficpar);  
      /*#ifdef windows */
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);    fprintf(ficgp,"cd \"%s\" \n",pathc);
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);      /*#endif */
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    m=pow(2,cptcoveff);
        
   while((c=getc(ficpar))=='#' && c!= EOF){    strcpy(dirfileres,optionfilefiname);
     ungetc(c,ficpar);    strcpy(optfileres,"vpl");
     fgets(line, MAXLINE, ficpar);   /* 1eme*/
     puts(line);    for (cpt=1; cpt<= nlstate ; cpt ++) {
     fputs(line,ficparo);     for (k1=1; k1<= m ; k1 ++) {
   }       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
   ungetc(c,ficpar);       fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
    dateprev1=anprev1+mprev1/12.+jprev1/365.;  set ter png small\n\
    dateprev2=anprev2+mprev2/12.+jprev2/365.;  set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   fscanf(ficpar,"pop_based=%d\n",&popbased);  
   fprintf(ficparo,"pop_based=%d\n",popbased);         for (i=1; i<= nlstate ; i ++) {
   fprintf(ficres,"pop_based=%d\n",popbased);           if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
   while((c=getc(ficpar))=='#' && c!= EOF){       }
     ungetc(c,ficpar);       fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
     fgets(line, MAXLINE, ficpar);       for (i=1; i<= nlstate ; i ++) {
     puts(line);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
     fputs(line,ficparo);         else fprintf(ficgp," \%%*lf (\%%*lf)");
   }       } 
   ungetc(c,ficpar);       fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);         else fprintf(ficgp," \%%*lf (\%%*lf)");
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);       }  
        fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
 while((c=getc(ficpar))=='#' && c!= EOF){    }
     ungetc(c,ficpar);    /*2 eme*/
     fgets(line, MAXLINE, ficpar);    
     puts(line);    for (k1=1; k1<= m ; k1 ++) { 
     fputs(line,ficparo);      fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
   }      fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
   ungetc(c,ficpar);      
       for (i=1; i<= nlstate+1 ; i ++) {
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);        k=2*i;
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);        for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);          else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
 /*------------ gnuplot -------------*/        if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
  printinggnuplot(fileres,optionfilefiname,optionfile,optionfilegnuplot, ageminpar,agemaxpar,fage, pathc,p);        else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
          fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
 /*------------ free_vector  -------------*/        for (j=1; j<= nlstate+1 ; j ++) {
  chdir(path);          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
            else fprintf(ficgp," \%%*lf (\%%*lf)");
  free_ivector(wav,1,imx);        }   
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);        fprintf(ficgp,"\" t\"\" w l 0,");
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);          fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
  free_ivector(num,1,n);        for (j=1; j<= nlstate+1 ; j ++) {
  free_vector(agedc,1,n);          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
  /*free_matrix(covar,1,NCOVMAX,1,n);*/          else fprintf(ficgp," \%%*lf (\%%*lf)");
  fclose(ficparo);        }   
  fclose(ficres);        if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
         else fprintf(ficgp,"\" t\"\" w l 0,");
 /*--------- index.htm --------*/      }
     }
   printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,optionfile,optionfilehtm,rfileres,optionfilegnuplot,version,popforecast,estepm);    
     /*3eme*/
      
   /*--------------- Prevalence limit --------------*/    for (k1=1; k1<= m ; k1 ++) { 
        for (cpt=1; cpt<= nlstate ; cpt ++) {
   strcpy(filerespl,"pl");        k=2+nlstate*(2*cpt-2);
   strcat(filerespl,fileres);        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
   if((ficrespl=fopen(filerespl,"w"))==NULL) {        fprintf(ficgp,"set ter png small\n\
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;  set size 0.65,0.65\n\
   }  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);        /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
   fprintf(ficrespl,"#Prevalence limit\n");          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
   fprintf(ficrespl,"#Age ");          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);          fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
   fprintf(ficrespl,"\n");          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
            fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
   prlim=matrix(1,nlstate,1,nlstate);          
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        */
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        for (i=1; i< nlstate ; i ++) {
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */        } 
   k=0;      }
   agebase=ageminpar;    }
   agelim=agemaxpar;    
   ftolpl=1.e-10;    /* CV preval stable (period) */
   i1=cptcoveff;    for (k1=1; k1<= m ; k1 ++) { 
   if (cptcovn < 1){i1=1;}      for (cpt=1; cpt<=nlstate ; cpt ++) {
         k=3;
   for(cptcov=1;cptcov<=i1;cptcov++){        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
         k=k+1;  set ter png small\nset size 0.65,0.65\n\
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/  unset log y\n\
         fprintf(ficrespl,"\n#******");  plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
         for(j=1;j<=cptcoveff;j++)        
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        for (i=1; i< nlstate ; i ++)
         fprintf(ficrespl,"******\n");          fprintf(ficgp,"+$%d",k+i+1);
                fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         for (age=agebase; age<=agelim; age++){        
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);        l=3+(nlstate+ndeath)*cpt;
           fprintf(ficrespl,"%.0f",age );        fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
           for(i=1; i<=nlstate;i++)        for (i=1; i< nlstate ; i ++) {
           fprintf(ficrespl," %.5f", prlim[i][i]);          l=3+(nlstate+ndeath)*cpt;
           fprintf(ficrespl,"\n");          fprintf(ficgp,"+$%d",l+i+1);
         }        }
       }        fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
     }      } 
   fclose(ficrespl);    }  
     
   /*------------- h Pij x at various ages ------------*/    /* proba elementaires */
      for(i=1,jk=1; i <=nlstate; i++){
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);      for(k=1; k <=(nlstate+ndeath); k++){
   if((ficrespij=fopen(filerespij,"w"))==NULL) {        if (k != i) {
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;          for(j=1; j <=ncovmodel; j++){
   }            fprintf(ficgp,"p%d=%f ",jk,p[jk]);
   printf("Computing pij: result on file '%s' \n", filerespij);            jk++; 
              fprintf(ficgp,"\n");
   stepsize=(int) (stepm+YEARM-1)/YEARM;          }
   /*if (stepm<=24) stepsize=2;*/        }
       }
   agelim=AGESUP;     }
   hstepm=stepsize*YEARM; /* Every year of age */  
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */     for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
         for(jk=1; jk <=m; jk++) {
   k=0;         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
   for(cptcov=1;cptcov<=i1;cptcov++){         if (ng==2)
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){           fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
       k=k+1;         else
         fprintf(ficrespij,"\n#****** ");           fprintf(ficgp,"\nset title \"Probability\"\n");
         for(j=1;j<=cptcoveff;j++)         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);         i=1;
         fprintf(ficrespij,"******\n");         for(k2=1; k2<=nlstate; k2++) {
                   k3=i;
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */           for(k=1; k<=(nlstate+ndeath); k++) {
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */             if (k != k2){
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */               if(ng==2)
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                 fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
           oldm=oldms;savm=savms;               else
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);                   fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
           fprintf(ficrespij,"# Age");               ij=1;
           for(i=1; i<=nlstate;i++)               for(j=3; j <=ncovmodel; j++) {
             for(j=1; j<=nlstate+ndeath;j++)                 if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
               fprintf(ficrespij," %1d-%1d",i,j);                   fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
           fprintf(ficrespij,"\n");                   ij++;
            for (h=0; h<=nhstepm; h++){                 }
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );                 else
             for(i=1; i<=nlstate;i++)                   fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
               for(j=1; j<=nlstate+ndeath;j++)               }
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);               fprintf(ficgp,")/(1");
             fprintf(ficrespij,"\n");               
              }               for(k1=1; k1 <=nlstate; k1++){   
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                 fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
           fprintf(ficrespij,"\n");                 ij=1;
         }                 for(j=3; j <=ncovmodel; j++){
     }                   if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
   }                     fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                      ij++;
   varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);                   }
                    else
   fclose(ficrespij);                     fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
   /*---------- Forecasting ------------------*/               }
   if((stepm == 1) && (strcmp(model,".")==0)){               fprintf(ficgp,") t \"p%d%d\" ", k2,k);
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);               if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);               i=i+ncovmodel;
   }             }
   else{           } /* end k */
     erreur=108;         } /* end k2 */
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);       } /* end jk */
   }     } /* end ng */
       fflush(ficgp); 
   }  /* end gnuplot */
   /*---------- Health expectancies and variances ------------*/  
   
   strcpy(filerest,"t");  /*************** Moving average **************/
   strcat(filerest,fileres);  int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   if((ficrest=fopen(filerest,"w"))==NULL) {  
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;    int i, cpt, cptcod;
   }    int modcovmax =1;
   printf("Computing Total LEs with variances: file '%s' \n", filerest);    int mobilavrange, mob;
     double age;
   
   strcpy(filerese,"e");    modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
   strcat(filerese,fileres);                             a covariate has 2 modalities */
   if((ficreseij=fopen(filerese,"w"))==NULL) {    if (cptcovn<1) modcovmax=1; /* At least 1 pass */
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);  
   }    if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);      if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
  strcpy(fileresv,"v");      for (age=bage; age<=fage; age++)
   strcat(fileresv,fileres);        for (i=1; i<=nlstate;i++)
   if((ficresvij=fopen(fileresv,"w"))==NULL) {          for (cptcod=1;cptcod<=modcovmax;cptcod++)
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);            mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
   }      /* We keep the original values on the extreme ages bage, fage and for 
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);         fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
   calagedate=-1;         we use a 5 terms etc. until the borders are no more concerned. 
 prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);      */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
   k=0;        for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
   for(cptcov=1;cptcov<=i1;cptcov++){          for (i=1; i<=nlstate;i++){
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){            for (cptcod=1;cptcod<=modcovmax;cptcod++){
       k=k+1;              mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
       fprintf(ficrest,"\n#****** ");                for (cpt=1;cpt<=(mob-1)/2;cpt++){
       for(j=1;j<=cptcoveff;j++)                  mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                  mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
       fprintf(ficrest,"******\n");                }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
       fprintf(ficreseij,"\n#****** ");            }
       for(j=1;j<=cptcoveff;j++)          }
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        }/* end age */
       fprintf(ficreseij,"******\n");      }/* end mob */
     }else return -1;
       fprintf(ficresvij,"\n#****** ");    return 0;
       for(j=1;j<=cptcoveff;j++)  }/* End movingaverage */
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
       fprintf(ficresvij,"******\n");  
   /************** Forecasting ******************/
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);  prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
       oldm=oldms;savm=savms;    /* proj1, year, month, day of starting projection 
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);         agemin, agemax range of age
         dateprev1 dateprev2 range of dates during which prevalence is computed
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);       anproj2 year of en of projection (same day and month as proj1).
       oldm=oldms;savm=savms;    */
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm);    int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
        int *popage;
     double agec; /* generic age */
      double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");    double *popeffectif,*popcount;
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);    double ***p3mat;
       fprintf(ficrest,"\n");    double ***mobaverage;
     char fileresf[FILENAMELENGTH];
       epj=vector(1,nlstate+1);  
       for(age=bage; age <=fage ;age++){    agelim=AGESUP;
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
         if (popbased==1) {   
           for(i=1; i<=nlstate;i++)    strcpy(fileresf,"f"); 
             prlim[i][i]=probs[(int)age][i][k];    strcat(fileresf,fileres);
         }    if((ficresf=fopen(fileresf,"w"))==NULL) {
              printf("Problem with forecast resultfile: %s\n", fileresf);
         fprintf(ficrest," %4.0f",age);      fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){    }
           for(i=1, epj[j]=0.;i <=nlstate;i++) {    printf("Computing forecasting: result on file '%s' \n", fileresf);
             epj[j] += prlim[i][i]*eij[i][j][(int)age];    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/  
           }    if (cptcoveff==0) ncodemax[cptcoveff]=1;
           epj[nlstate+1] +=epj[j];  
         }    if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         for(i=1, vepp=0.;i <=nlstate;i++)      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
           for(j=1;j <=nlstate;j++)        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
             vepp += vareij[i][j][(int)age];        printf(" Error in movingaverage mobilav=%d\n",mobilav);
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));      }
         for(j=1;j <=nlstate;j++){    }
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));  
         }    stepsize=(int) (stepm+YEARM-1)/YEARM;
         fprintf(ficrest,"\n");    if (stepm<=12) stepsize=1;
       }    if(estepm < stepm){
     }      printf ("Problem %d lower than %d\n",estepm, stepm);
   }    }
 free_matrix(mint,1,maxwav,1,n);    else  hstepm=estepm;   
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);  
     free_vector(weight,1,n);    hstepm=hstepm/stepm; 
   fclose(ficreseij);    yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
   fclose(ficresvij);                                 fractional in yp1 */
   fclose(ficrest);    anprojmean=yp;
   fclose(ficpar);    yp2=modf((yp1*12),&yp);
   free_vector(epj,1,nlstate+1);    mprojmean=yp;
      yp1=modf((yp2*30.5),&yp);
   /*------- Variance limit prevalence------*/      jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
   strcpy(fileresvpl,"vpl");    if(mprojmean==0) jprojmean=1;
   strcat(fileresvpl,fileres);  
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {    i1=cptcoveff;
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);    if (cptcovn < 1){i1=1;}
     exit(0);    
   }    fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);    
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   k=0;  
   for(cptcov=1;cptcov<=i1;cptcov++){  /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       k=k+1;      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
       fprintf(ficresvpl,"\n#****** ");        k=k+1;
       for(j=1;j<=cptcoveff;j++)        fprintf(ficresf,"\n#******");
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        for(j=1;j<=cptcoveff;j++) {
       fprintf(ficresvpl,"******\n");          fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
              }
       varpl=matrix(1,nlstate,(int) bage, (int) fage);        fprintf(ficresf,"******\n");
       oldm=oldms;savm=savms;        fprintf(ficresf,"# Covariate valuofcovar yearproj age");
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);        for(j=1; j<=nlstate+ndeath;j++){ 
     }          for(i=1; i<=nlstate;i++)              
  }            fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
   fclose(ficresvpl);        }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
   /*---------- End : free ----------------*/          fprintf(ficresf,"\n");
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);          fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
    
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);          for (agec=fage; agec>=(ageminpar-1); agec--){ 
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);            nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
              nhstepm = nhstepm/hstepm; 
              p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);            oldm=oldms;savm=savms;
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);            hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);          
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);            for (h=0; h<=nhstepm; h++){
                if (h*hstepm/YEARM*stepm ==yearp) {
   free_matrix(matcov,1,npar,1,npar);                fprintf(ficresf,"\n");
   free_vector(delti,1,npar);                for(j=1;j<=cptcoveff;j++) 
   free_matrix(agev,1,maxwav,1,imx);                  fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);                fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
   if(erreur >0)              for(j=1; j<=nlstate+ndeath;j++) {
     printf("End of Imach with error or warning %d\n",erreur);                ppij=0.;
   else   printf("End of Imach\n");                for(i=1; i<=nlstate;i++) {
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */                  if (mobilav==1) 
                      ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/                  else {
   /*printf("Total time was %d uSec.\n", total_usecs);*/                    ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
   /*------ End -----------*/                  }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
  end:                  }
   /* chdir(pathcd);*/                } /* end i */
  /*system("wgnuplot graph.plt");*/                if (h*hstepm/YEARM*stepm==yearp) {
  /*system("../gp37mgw/wgnuplot graph.plt");*/                  fprintf(ficresf," %.3f", ppij);
  /*system("cd ../gp37mgw");*/                }
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/              }/* end j */
  strcpy(plotcmd,GNUPLOTPROGRAM);            } /* end h */
  strcat(plotcmd," ");            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
  strcat(plotcmd,optionfilegnuplot);          } /* end agec */
  system(plotcmd);        } /* end yearp */
       } /* end cptcod */
  /*#ifdef windows*/    } /* end  cptcov */
   while (z[0] != 'q') {         
     /* chdir(path); */    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");  
     scanf("%s",z);    fclose(ficresf);
     if (z[0] == 'c') system("./imach");  }
     else if (z[0] == 'e') system(optionfilehtm);  
     else if (z[0] == 'g') system(plotcmd);  /************** Forecasting *****not tested NB*************/
     else if (z[0] == 'q') exit(0);  populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
   }    
   /*#endif */    int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
 }    int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     }
   
   } /* end of prwizard */
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int jj, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE]; 
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
   
     char *alph[]={"a","a","b","c","d","e"}, str[4];
   
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char strstart[80], *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       scanf("%s",pathtot);
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("pathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: ");
     fprintf(ficlog,"pathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Localtime (at start):%s",strstart);
     fprintf(ficlog,"Localtime (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
    
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fclose (ficparo);
       fclose (ficlog);
       exit(0);
     }
     /* Read guess parameters */
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     for(i=1; i <=nlstate; i++){
       j=0;
       for(jj=1; jj <=nlstate+ndeath; jj++){
         if(jj==i) continue;
         j++;
         fscanf(ficpar,"%1d%1d",&i1,&j1);
         if ((i1 != i) && (j1 != j)){
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
           exit(1);
         }
         fprintf(ficparo,"%1d%1d",i1,j1);
         if(mle==1)
           printf("%1d%1d",i,j);
         fprintf(ficlog,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           fscanf(ficpar," %lf",&param[i][j][k]);
           if(mle==1){
             printf(" %lf",param[i][j][k]);
             fprintf(ficlog," %lf",param[i][j][k]);
           }
           else
             fprintf(ficlog," %lf",param[i][j][k]);
           fprintf(ficparo," %lf",param[i][j][k]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
     }  
     fflush(ficlog);
   
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     p=param[1][1];
     
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     /* delti=vector(1,npar); *//* Scale of each paramater (output from hesscov) */
     for(i=1; i <=nlstate; i++){
       for(j=1; j <=nlstate+ndeath-1; j++){
         fscanf(ficpar,"%1d%1d",&i1,&j1);
         if ((i1-i)*(j1-j)!=0){
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
           exit(1);
         }
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i1,j1);
         fprintf(ficlog,"%1d%1d",i1,j1);
         for(k=1; k<=ncovmodel;k++){
           fscanf(ficpar,"%le",&delti3[i][j][k]);
           printf(" %le",delti3[i][j][k]);
           fprintf(ficparo," %le",delti3[i][j][k]);
           fprintf(ficlog," %le",delti3[i][j][k]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
         fprintf(ficlog,"\n");
       }
     }
     fflush(ficlog);
   
     delti=delti3[1][1];
   
   
     /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
     
     matcov=matrix(1,npar,1,npar);
     for(i=1; i <=npar; i++){
       fscanf(ficpar,"%s",&str);
       if(mle==1)
         printf("%s",str);
       fprintf(ficlog,"%s",str);
       fprintf(ficparo,"%s",str);
       for(j=1; j <=i; j++){
         fscanf(ficpar," %le",&matcov[i][j]);
         if(mle==1){
           printf(" %.5le",matcov[i][j]);
         }
         fprintf(ficlog," %.5le",matcov[i][j]);
         fprintf(ficparo," %.5le",matcov[i][j]);
       }
       fscanf(ficpar,"\n");
       numlinepar++;
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       fprintf(ficparo,"\n");
     }
     for(i=1; i <=npar; i++)
       for(j=i+1;j<=npar;j++)
         matcov[i][j]=matcov[j][i];
      
     if(mle==1)
       printf("\n");
     fprintf(ficlog,"\n");
   
     fflush(ficlog);
   
     /*-------- Rewriting paramater file ----------*/
     strcpy(rfileres,"r");    /* "Rparameterfile */
     strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
     strcat(rfileres,".");    /* */
     strcat(rfileres,optionfilext);    /* Other files have txt extension */
     if((ficres =fopen(rfileres,"w"))==NULL) {
       printf("Problem writing new parameter file: %s\n", fileres);goto end;
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
     }
     fprintf(ficres,"#%s\n",version);
       
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem with datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     while (fgets(line, MAXLINE, fic) != NULL)    {
       if ((i >= firstobs) && (i <=lastobs)) {
           
         for (j=maxwav;j>=1;j--){
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb); 
           strcpy(line,stra);
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         }
           
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);
         for (j=ncovcol;j>=1;j--){
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         } 
         lstra=strlen(stra);
         if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
           stratrunc = &(stra[lstra-9]);
           num[i]=atol(stratrunc);
         }
         else
           num[i]=atol(stra);
           
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
           printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
   
         i=i+1;
       }
     }
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
    for (i=1; i<=imx; i++)
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameter from char model*/
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);
     fclose(fic);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a
                                    month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     strcat(optionfilegnuplot,".gp");
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<body>\n<title>IMaCh Cov %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     strcpy(lfileres,fileres);
     strcat(lfileres,"/");
     strcat(lfileres,optionfilefiname);
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
     printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
     for (k=1; k<=npar;k++)
       printf(" %d %8.5f",k,p[k]);
     printf("\n");
     globpr=1; /* to print the contributions */
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
     printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
     for (k=1; k<=npar;k++)
       printf(" %d %8.5f",k,p[k]);
     printf("\n");
     if(mle>=1){ /* Could be 1 or 2 */
       mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
     }
       
     /*--------- results files --------------*/
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
     
   
     jk=1;
     fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) 
           {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
       }
     }
     if(mle!=0){
       /* Computing hessian and covariance matrix */
       ftolhess=ftol; /* Usually correct */
       hesscov(matcov, p, npar, delti, ftolhess, func);
     }
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(j=1; j <=nlstate+ndeath; j++){
         if (j!=i) {
           fprintf(ficres,"%1d%1d",i,j);
           printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             printf(" %.5e",delti[jk]);
             fprintf(ficlog," %.5e",delti[jk]);
             fprintf(ficres," %.5e",delti[jk]);
             jk++;
           }
           printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficres,"\n");
         }
       }
     }
      
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     if(mle==1)
       printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     for(i=1,k=1;i<=npar;i++){
       /*  if (k>nlstate) k=1;
           i1=(i-1)/(ncovmodel*nlstate)+1; 
           fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);
           printf("%s%d%d",alph[k],i1,tab[i]);
       */
       fprintf(ficres,"%3d",i);
       if(mle==1)
         printf("%3d",i);
       fprintf(ficlog,"%3d",i);
       for(j=1; j<=i;j++){
         fprintf(ficres," %.5e",matcov[i][j]);
         if(mle==1)
           printf(" %.5e",matcov[i][j]);
         fprintf(ficlog," %.5e",matcov[i][j]);
       }
       fprintf(ficres,"\n");
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       k++;
     }
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     estepm=0;
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
     if (estepm==0 || estepm < stepm) estepm=stepm;
     if (fage <= 2) {
       bage = ageminpar;
       fage = agemaxpar;
     }
      
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
     
     fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
     fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
    
   
     dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
     dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
   
     fscanf(ficpar,"pop_based=%d\n",&popbased);
     fprintf(ficparo,"pop_based=%d\n",popbased);   
     fprintf(ficres,"pop_based=%d\n",popbased);   
     
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
     fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     /* day and month of proj2 are not used but only year anproj2.*/
   
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);
     fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
     fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
   
     /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
     /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
   
     replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
     printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
   
     printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                  model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                  jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
    
     /*------------ free_vector  -------------*/
     /*  chdir(path); */
    
     free_ivector(wav,1,imx);
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
     free_lvector(num,1,n);
     free_vector(agedc,1,n);
     /*free_matrix(covar,0,NCOVMAX,1,n);*/
     /*free_matrix(covar,1,NCOVMAX,1,n);*/
     fclose(ficparo);
     fclose(ficres);
   
   
     /*--------------- Prevalence limit  (stable prevalence) --------------*/
     
     strcpy(filerespl,"pl");
     strcat(filerespl,fileres);
     if((ficrespl=fopen(filerespl,"w"))==NULL) {
       printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
     }
     printf("Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficrespl,"#Stable prevalence \n");
     fprintf(ficrespl,"#Age ");
     for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
     fprintf(ficrespl,"\n");
     
     prlim=matrix(1,nlstate,1,nlstate);
   
     agebase=ageminpar;
     agelim=agemaxpar;
     ftolpl=1.e-10;
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
         fprintf(ficrespl,"\n#******");
         printf("\n#******");
         fprintf(ficlog,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespl,"******\n");
         printf("******\n");
         fprintf(ficlog,"******\n");
           
         for (age=agebase; age<=agelim; age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           fprintf(ficrespl,"%.0f ",age );
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           for(i=1; i<=nlstate;i++)
             fprintf(ficrespl," %.5f", prlim[i][i]);
           fprintf(ficrespl,"\n");
         }
       }
     }
     fclose(ficrespl);
   
     /*------------- h Pij x at various ages ------------*/
     
     strcpy(filerespij,"pij");  strcat(filerespij,fileres);
     if((ficrespij=fopen(filerespij,"w"))==NULL) {
       printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
       fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
     }
     printf("Computing pij: result on file '%s' \n", filerespij);
     fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     /*if (stepm<=24) stepsize=2;*/
   
     agelim=AGESUP;
     hstepm=stepsize*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
     /* hstepm=1;   aff par mois*/
   
     fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficrespij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrespij,"******\n");
           
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
           /*        nhstepm=nhstepm*YEARM; aff par mois*/
   
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           oldm=oldms;savm=savms;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
           for(i=1; i<=nlstate;i++)
             for(j=1; j<=nlstate+ndeath;j++)
               fprintf(ficrespij," %1d-%1d",i,j);
           fprintf(ficrespij,"\n");
           for (h=0; h<=nhstepm; h++){
             fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);
             fprintf(ficrespij,"\n");
           }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           fprintf(ficrespij,"\n");
         }
       }
     }
   
     varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax);
   
     fclose(ficrespij);
   
     probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     /*---------- Forecasting ------------------*/
     /*if((stepm == 1) && (strcmp(model,".")==0)){*/
     if(prevfcast==1){
       /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
   /*      }  */
   /*      else{ */
   /*        erreur=108; */
   /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*      } */
     }
     
   
     /*---------- Health expectancies and variances ------------*/
   
     strcpy(filerest,"t");
     strcat(filerest,fileres);
     if((ficrest=fopen(filerest,"w"))==NULL) {
       printf("Problem with total LE resultfile: %s\n", filerest);goto end;
       fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
     }
     printf("Computing Total LEs with variances: file '%s' \n", filerest); 
     fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
     strcpy(filerese,"e");
     strcat(filerese,fileres);
     if((ficreseij=fopen(filerese,"w"))==NULL) {
       printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
     }
     printf("Computing Health Expectancies: result on file '%s' \n", filerese);
     fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
     strcpy(fileresv,"v");
     strcat(fileresv,fileres);
     if((ficresvij=fopen(fileresv,"w"))==NULL) {
       printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
       fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
     }
     printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
     fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
     /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
     prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
   ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
     */
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1; 
         fprintf(ficrest,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrest,"******\n");
   
         fprintf(ficreseij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficreseij,"******\n");
   
         fprintf(ficresvij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvij,"******\n");
   
         eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);  
    
         vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav);
         if(popbased==1){
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav);
         }
   
    
         fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
         for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
         fprintf(ficrest,"\n");
   
         epj=vector(1,nlstate+1);
         for(age=bage; age <=fage ;age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           if (popbased==1) {
             if(mobilav ==0){
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=probs[(int)age][i][k];
             }else{ /* mobilav */ 
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=mobaverage[(int)age][i][k];
             }
           }
           
           fprintf(ficrest," %4.0f",age);
           for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
             for(i=1, epj[j]=0.;i <=nlstate;i++) {
               epj[j] += prlim[i][i]*eij[i][j][(int)age];
               /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
             }
             epj[nlstate+1] +=epj[j];
           }
   
           for(i=1, vepp=0.;i <=nlstate;i++)
             for(j=1;j <=nlstate;j++)
               vepp += vareij[i][j][(int)age];
           fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
           for(j=1;j <=nlstate;j++){
             fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
           }
           fprintf(ficrest,"\n");
         }
         free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_vector(epj,1,nlstate+1);
       }
     }
     free_vector(weight,1,n);
     free_imatrix(Tvard,1,15,1,2);
     free_imatrix(s,1,maxwav+1,1,n);
     free_matrix(anint,1,maxwav,1,n); 
     free_matrix(mint,1,maxwav,1,n);
     free_ivector(cod,1,n);
     free_ivector(tab,1,NCOVMAX);
     fclose(ficreseij);
     fclose(ficresvij);
     fclose(ficrest);
     fclose(ficpar);
     
     /*------- Variance of stable prevalence------*/   
   
     strcpy(fileresvpl,"vpl");
     strcat(fileresvpl,fileres);
     if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
       printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
       exit(0);
     }
     printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficresvpl,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvpl,"******\n");
         
         varpl=matrix(1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);
         free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
       }
     }
   
     fclose(ficresvpl);
   
     /*---------- End : free ----------------*/
     free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
     
     free_matrix(covar,0,NCOVMAX,1,n);
     free_matrix(matcov,1,npar,1,npar);
     /*free_vector(delti,1,npar);*/
     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
     free_matrix(agev,1,maxwav,1,imx);
     free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     free_ivector(ncodemax,1,8);
     free_ivector(Tvar,1,15);
     free_ivector(Tprod,1,15);
     free_ivector(Tvaraff,1,15);
     free_ivector(Tage,1,15);
     free_ivector(Tcode,1,100);
   
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Localtime at start %s\nLocaltime at end   %s",strstart, strtend); 
     fprintf(ficlog,"Localtime at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);
     fclose(fichtm);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
     chdir(path);
     strcpy(plotcmd,GNUPLOTPROGRAM);
     strcat(plotcmd," ");
     strcat(plotcmd,optionfilegnuplot);
     printf("Starting graphs with: %s",plotcmd);fflush(stdout);
     if((outcmd=system(plotcmd)) != 0){
       printf(" Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') system(optionfilehtm);
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.41.2.2  
changed lines
  Added in v.1.91


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>