Diff for /imach/src/imach.c between versions 1.109 and 1.125

version 1.109, 2006/01/24 19:37:15 version 1.125, 2006/04/04 15:20:31
Line 1 Line 1
 /* $Id$  /* $Id$
   $State$    $State$
   $Log$    $Log$
   Revision 1.109  2006/01/24 19:37:15  brouard    Revision 1.125  2006/04/04 15:20:31  lievre
   (Module): Comments (lines starting with a #) are allowed in data.    Errors in calculation of health expectancies. Age was not initialized.
     Forecasting file added.
   Revision 1.108  2006/01/19 18:05:42  lievre  
   Gnuplot problem appeared...    Revision 1.124  2006/03/22 17:13:53  lievre
   To be fixed    Parameters are printed with %lf instead of %f (more numbers after the comma).
     The log-likelihood is printed in the log file
   Revision 1.107  2006/01/19 16:20:37  brouard  
   Test existence of gnuplot in imach path    Revision 1.123  2006/03/20 10:52:43  brouard
     * imach.c (Module): <title> changed, corresponds to .htm file
   Revision 1.106  2006/01/19 13:24:36  brouard    name. <head> headers where missing.
   Some cleaning and links added in html output  
     * imach.c (Module): Weights can have a decimal point as for
   Revision 1.105  2006/01/05 20:23:19  lievre    English (a comma might work with a correct LC_NUMERIC environment,
   *** empty log message ***    otherwise the weight is truncated).
     Modification of warning when the covariates values are not 0 or
   Revision 1.104  2005/09/30 16:11:43  lievre    1.
   (Module): sump fixed, loop imx fixed, and simplifications.    Version 0.98g
   (Module): If the status is missing at the last wave but we know  
   that the person is alive, then we can code his/her status as -2    Revision 1.122  2006/03/20 09:45:41  brouard
   (instead of missing=-1 in earlier versions) and his/her    (Module): Weights can have a decimal point as for
   contributions to the likelihood is 1 - Prob of dying from last    English (a comma might work with a correct LC_NUMERIC environment,
   health status (= 1-p13= p11+p12 in the easiest case of somebody in    otherwise the weight is truncated).
   the healthy state at last known wave). Version is 0.98    Modification of warning when the covariates values are not 0 or
     1.
   Revision 1.103  2005/09/30 15:54:49  lievre    Version 0.98g
   (Module): sump fixed, loop imx fixed, and simplifications.  
     Revision 1.121  2006/03/16 17:45:01  lievre
   Revision 1.102  2004/09/15 17:31:30  brouard    * imach.c (Module): Comments concerning covariates added
   Add the possibility to read data file including tab characters.  
     * imach.c (Module): refinements in the computation of lli if
   Revision 1.101  2004/09/15 10:38:38  brouard    status=-2 in order to have more reliable computation if stepm is
   Fix on curr_time    not 1 month. Version 0.98f
   
   Revision 1.100  2004/07/12 18:29:06  brouard    Revision 1.120  2006/03/16 15:10:38  lievre
   Add version for Mac OS X. Just define UNIX in Makefile    (Module): refinements in the computation of lli if
     status=-2 in order to have more reliable computation if stepm is
   Revision 1.99  2004/06/05 08:57:40  brouard    not 1 month. Version 0.98f
   *** empty log message ***  
     Revision 1.119  2006/03/15 17:42:26  brouard
   Revision 1.98  2004/05/16 15:05:56  brouard    (Module): Bug if status = -2, the loglikelihood was
   New version 0.97 . First attempt to estimate force of mortality    computed as likelihood omitting the logarithm. Version O.98e
   directly from the data i.e. without the need of knowing the health  
   state at each age, but using a Gompertz model: log u =a + b*age .    Revision 1.118  2006/03/14 18:20:07  brouard
   This is the basic analysis of mortality and should be done before any    (Module): varevsij Comments added explaining the second
   other analysis, in order to test if the mortality estimated from the    table of variances if popbased=1 .
   cross-longitudinal survey is different from the mortality estimated    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   from other sources like vital statistic data.    (Module): Function pstamp added
     (Module): Version 0.98d
   The same imach parameter file can be used but the option for mle should be -3.  
     Revision 1.117  2006/03/14 17:16:22  brouard
   Agnès, who wrote this part of the code, tried to keep most of the    (Module): varevsij Comments added explaining the second
   former routines in order to include the new code within the former code.    table of variances if popbased=1 .
     (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   The output is very simple: only an estimate of the intercept and of    (Module): Function pstamp added
   the slope with 95% confident intervals.    (Module): Version 0.98d
   
   Current limitations:    Revision 1.116  2006/03/06 10:29:27  brouard
   A) Even if you enter covariates, i.e. with the    (Module): Variance-covariance wrong links and
   model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.    varian-covariance of ej. is needed (Saito).
   B) There is no computation of Life Expectancy nor Life Table.  
     Revision 1.115  2006/02/27 12:17:45  brouard
   Revision 1.97  2004/02/20 13:25:42  lievre    (Module): One freematrix added in mlikeli! 0.98c
   Version 0.96d. Population forecasting command line is (temporarily)  
   suppressed.    Revision 1.114  2006/02/26 12:57:58  brouard
     (Module): Some improvements in processing parameter
   Revision 1.96  2003/07/15 15:38:55  brouard    filename with strsep.
   * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is  
   rewritten within the same printf. Workaround: many printfs.    Revision 1.113  2006/02/24 14:20:24  brouard
     (Module): Memory leaks checks with valgrind and:
   Revision 1.95  2003/07/08 07:54:34  brouard    datafile was not closed, some imatrix were not freed and on matrix
   * imach.c (Repository):    allocation too.
   (Repository): Using imachwizard code to output a more meaningful covariance  
   matrix (cov(a12,c31) instead of numbers.    Revision 1.112  2006/01/30 09:55:26  brouard
     (Module): Back to gnuplot.exe instead of wgnuplot.exe
   Revision 1.94  2003/06/27 13:00:02  brouard  
   Just cleaning    Revision 1.111  2006/01/25 20:38:18  brouard
     (Module): Lots of cleaning and bugs added (Gompertz)
   Revision 1.93  2003/06/25 16:33:55  brouard    (Module): Comments can be added in data file. Missing date values
   (Module): On windows (cygwin) function asctime_r doesn't    can be a simple dot '.'.
   exist so I changed back to asctime which exists.  
   (Module): Version 0.96b    Revision 1.110  2006/01/25 00:51:50  brouard
     (Module): Lots of cleaning and bugs added (Gompertz)
   Revision 1.92  2003/06/25 16:30:45  brouard  
   (Module): On windows (cygwin) function asctime_r doesn't    Revision 1.109  2006/01/24 19:37:15  brouard
   exist so I changed back to asctime which exists.    (Module): Comments (lines starting with a #) are allowed in data.
   
   Revision 1.91  2003/06/25 15:30:29  brouard    Revision 1.108  2006/01/19 18:05:42  lievre
   * imach.c (Repository): Duplicated warning errors corrected.    Gnuplot problem appeared...
   (Repository): Elapsed time after each iteration is now output. It    To be fixed
   helps to forecast when convergence will be reached. Elapsed time  
   is stamped in powell.  We created a new html file for the graphs    Revision 1.107  2006/01/19 16:20:37  brouard
   concerning matrix of covariance. It has extension -cov.htm.    Test existence of gnuplot in imach path
   
   Revision 1.90  2003/06/24 12:34:15  brouard    Revision 1.106  2006/01/19 13:24:36  brouard
   (Module): Some bugs corrected for windows. Also, when    Some cleaning and links added in html output
   mle=-1 a template is output in file "or"mypar.txt with the design  
   of the covariance matrix to be input.    Revision 1.105  2006/01/05 20:23:19  lievre
     *** empty log message ***
   Revision 1.89  2003/06/24 12:30:52  brouard  
   (Module): Some bugs corrected for windows. Also, when    Revision 1.104  2005/09/30 16:11:43  lievre
   mle=-1 a template is output in file "or"mypar.txt with the design    (Module): sump fixed, loop imx fixed, and simplifications.
   of the covariance matrix to be input.    (Module): If the status is missing at the last wave but we know
     that the person is alive, then we can code his/her status as -2
   Revision 1.88  2003/06/23 17:54:56  brouard    (instead of missing=-1 in earlier versions) and his/her
   * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.    contributions to the likelihood is 1 - Prob of dying from last
     health status (= 1-p13= p11+p12 in the easiest case of somebody in
   Revision 1.87  2003/06/18 12:26:01  brouard    the healthy state at last known wave). Version is 0.98
   Version 0.96  
     Revision 1.103  2005/09/30 15:54:49  lievre
   Revision 1.86  2003/06/17 20:04:08  brouard    (Module): sump fixed, loop imx fixed, and simplifications.
   (Module): Change position of html and gnuplot routines and added  
   routine fileappend.    Revision 1.102  2004/09/15 17:31:30  brouard
     Add the possibility to read data file including tab characters.
   Revision 1.85  2003/06/17 13:12:43  brouard  
   * imach.c (Repository): Check when date of death was earlier that    Revision 1.101  2004/09/15 10:38:38  brouard
   current date of interview. It may happen when the death was just    Fix on curr_time
   prior to the death. In this case, dh was negative and likelihood  
   was wrong (infinity). We still send an "Error" but patch by    Revision 1.100  2004/07/12 18:29:06  brouard
   assuming that the date of death was just one stepm after the    Add version for Mac OS X. Just define UNIX in Makefile
   interview.  
   (Repository): Because some people have very long ID (first column)    Revision 1.99  2004/06/05 08:57:40  brouard
   we changed int to long in num[] and we added a new lvector for    *** empty log message ***
   memory allocation. But we also truncated to 8 characters (left  
   truncation)    Revision 1.98  2004/05/16 15:05:56  brouard
   (Repository): No more line truncation errors.    New version 0.97 . First attempt to estimate force of mortality
     directly from the data i.e. without the need of knowing the health
   Revision 1.84  2003/06/13 21:44:43  brouard    state at each age, but using a Gompertz model: log u =a + b*age .
   * imach.c (Repository): Replace "freqsummary" at a correct    This is the basic analysis of mortality and should be done before any
   place. It differs from routine "prevalence" which may be called    other analysis, in order to test if the mortality estimated from the
   many times. Probs is memory consuming and must be used with    cross-longitudinal survey is different from the mortality estimated
   parcimony.    from other sources like vital statistic data.
   Version 0.95a3 (should output exactly the same maximization than 0.8a2)  
     The same imach parameter file can be used but the option for mle should be -3.
   Revision 1.83  2003/06/10 13:39:11  lievre  
   *** empty log message ***    Agnès, who wrote this part of the code, tried to keep most of the
     former routines in order to include the new code within the former code.
   Revision 1.82  2003/06/05 15:57:20  brouard  
   Add log in  imach.c and  fullversion number is now printed.    The output is very simple: only an estimate of the intercept and of
     the slope with 95% confident intervals.
 */  
 /*    Current limitations:
    Interpolated Markov Chain    A) Even if you enter covariates, i.e. with the
     model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
   Short summary of the programme:    B) There is no computation of Life Expectancy nor Life Table.
     
   This program computes Healthy Life Expectancies from    Revision 1.97  2004/02/20 13:25:42  lievre
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    Version 0.96d. Population forecasting command line is (temporarily)
   first survey ("cross") where individuals from different ages are    suppressed.
   interviewed on their health status or degree of disability (in the  
   case of a health survey which is our main interest) -2- at least a    Revision 1.96  2003/07/15 15:38:55  brouard
   second wave of interviews ("longitudinal") which measure each change    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
   (if any) in individual health status.  Health expectancies are    rewritten within the same printf. Workaround: many printfs.
   computed from the time spent in each health state according to a  
   model. More health states you consider, more time is necessary to reach the    Revision 1.95  2003/07/08 07:54:34  brouard
   Maximum Likelihood of the parameters involved in the model.  The    * imach.c (Repository):
   simplest model is the multinomial logistic model where pij is the    (Repository): Using imachwizard code to output a more meaningful covariance
   probability to be observed in state j at the second wave    matrix (cov(a12,c31) instead of numbers.
   conditional to be observed in state i at the first wave. Therefore  
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    Revision 1.94  2003/06/27 13:00:02  brouard
   'age' is age and 'sex' is a covariate. If you want to have a more    Just cleaning
   complex model than "constant and age", you should modify the program  
   where the markup *Covariates have to be included here again* invites    Revision 1.93  2003/06/25 16:33:55  brouard
   you to do it.  More covariates you add, slower the    (Module): On windows (cygwin) function asctime_r doesn't
   convergence.    exist so I changed back to asctime which exists.
     (Module): Version 0.96b
   The advantage of this computer programme, compared to a simple  
   multinomial logistic model, is clear when the delay between waves is not    Revision 1.92  2003/06/25 16:30:45  brouard
   identical for each individual. Also, if a individual missed an    (Module): On windows (cygwin) function asctime_r doesn't
   intermediate interview, the information is lost, but taken into    exist so I changed back to asctime which exists.
   account using an interpolation or extrapolation.    
     Revision 1.91  2003/06/25 15:30:29  brouard
   hPijx is the probability to be observed in state i at age x+h    * imach.c (Repository): Duplicated warning errors corrected.
   conditional to the observed state i at age x. The delay 'h' can be    (Repository): Elapsed time after each iteration is now output. It
   split into an exact number (nh*stepm) of unobserved intermediate    helps to forecast when convergence will be reached. Elapsed time
   states. This elementary transition (by month, quarter,    is stamped in powell.  We created a new html file for the graphs
   semester or year) is modelled as a multinomial logistic.  The hPx    concerning matrix of covariance. It has extension -cov.htm.
   matrix is simply the matrix product of nh*stepm elementary matrices  
   and the contribution of each individual to the likelihood is simply    Revision 1.90  2003/06/24 12:34:15  brouard
   hPijx.    (Module): Some bugs corrected for windows. Also, when
     mle=-1 a template is output in file "or"mypar.txt with the design
   Also this programme outputs the covariance matrix of the parameters but also    of the covariance matrix to be input.
   of the life expectancies. It also computes the stable prevalence.   
       Revision 1.89  2003/06/24 12:30:52  brouard
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    (Module): Some bugs corrected for windows. Also, when
            Institut national d'études démographiques, Paris.    mle=-1 a template is output in file "or"mypar.txt with the design
   This software have been partly granted by Euro-REVES, a concerted action    of the covariance matrix to be input.
   from the European Union.  
   It is copyrighted identically to a GNU software product, ie programme and    Revision 1.88  2003/06/23 17:54:56  brouard
   software can be distributed freely for non commercial use. Latest version    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
   can be accessed at http://euroreves.ined.fr/imach .  
     Revision 1.87  2003/06/18 12:26:01  brouard
   Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach    Version 0.96
   or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so  
       Revision 1.86  2003/06/17 20:04:08  brouard
   **********************************************************************/    (Module): Change position of html and gnuplot routines and added
 /*    routine fileappend.
   main  
   read parameterfile    Revision 1.85  2003/06/17 13:12:43  brouard
   read datafile    * imach.c (Repository): Check when date of death was earlier that
   concatwav    current date of interview. It may happen when the death was just
   freqsummary    prior to the death. In this case, dh was negative and likelihood
   if (mle >= 1)    was wrong (infinity). We still send an "Error" but patch by
     mlikeli    assuming that the date of death was just one stepm after the
   print results files    interview.
   if mle==1     (Repository): Because some people have very long ID (first column)
      computes hessian    we changed int to long in num[] and we added a new lvector for
   read end of parameter file: agemin, agemax, bage, fage, estepm    memory allocation. But we also truncated to 8 characters (left
       begin-prev-date,...    truncation)
   open gnuplot file    (Repository): No more line truncation errors.
   open html file  
   stable prevalence    Revision 1.84  2003/06/13 21:44:43  brouard
    for age prevalim()    * imach.c (Repository): Replace "freqsummary" at a correct
   h Pij x    place. It differs from routine "prevalence" which may be called
   variance of p varprob    many times. Probs is memory consuming and must be used with
   forecasting if prevfcast==1 prevforecast call prevalence()    parcimony.
   health expectancies    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
   Variance-covariance of DFLE  
   prevalence()    Revision 1.83  2003/06/10 13:39:11  lievre
    movingaverage()    *** empty log message ***
   varevsij()   
   if popbased==1 varevsij(,popbased)    Revision 1.82  2003/06/05 15:57:20  brouard
   total life expectancies    Add log in  imach.c and  fullversion number is now printed.
   Variance of stable prevalence  
  end  */
 */  /*
      Interpolated Markov Chain
   
     Short summary of the programme:
     
 #include <math.h>    This program computes Healthy Life Expectancies from
 #include <stdio.h>    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
 #include <stdlib.h>    first survey ("cross") where individuals from different ages are
 #include <string.h>    interviewed on their health status or degree of disability (in the
 #include <unistd.h>    case of a health survey which is our main interest) -2- at least a
     second wave of interviews ("longitudinal") which measure each change
 #include <limits.h>    (if any) in individual health status.  Health expectancies are
 #include <sys/types.h>    computed from the time spent in each health state according to a
 #include <sys/stat.h>    model. More health states you consider, more time is necessary to reach the
 #include <errno.h>    Maximum Likelihood of the parameters involved in the model.  The
 extern int errno;    simplest model is the multinomial logistic model where pij is the
     probability to be observed in state j at the second wave
 /* #include <sys/time.h> */    conditional to be observed in state i at the first wave. Therefore
 #include <time.h>    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
 #include "timeval.h"    'age' is age and 'sex' is a covariate. If you want to have a more
     complex model than "constant and age", you should modify the program
 /* #include <libintl.h> */    where the markup *Covariates have to be included here again* invites
 /* #define _(String) gettext (String) */    you to do it.  More covariates you add, slower the
     convergence.
 #define MAXLINE 256  
     The advantage of this computer programme, compared to a simple
 #define GNUPLOTPROGRAM "gnuplot"    multinomial logistic model, is clear when the delay between waves is not
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    identical for each individual. Also, if a individual missed an
 #define FILENAMELENGTH 132    intermediate interview, the information is lost, but taken into
     account using an interpolation or extrapolation.  
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */  
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    hPijx is the probability to be observed in state i at age x+h
     conditional to the observed state i at age x. The delay 'h' can be
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    split into an exact number (nh*stepm) of unobserved intermediate
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    states. This elementary transition (by month, quarter,
     semester or year) is modelled as a multinomial logistic.  The hPx
 #define NINTERVMAX 8    matrix is simply the matrix product of nh*stepm elementary matrices
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    and the contribution of each individual to the likelihood is simply
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    hPijx.
 #define NCOVMAX 8 /* Maximum number of covariates */  
 #define MAXN 20000    Also this programme outputs the covariance matrix of the parameters but also
 #define YEARM 12. /* Number of months per year */    of the life expectancies. It also computes the period (stable) prevalence.
 #define AGESUP 130   
 #define AGEBASE 40    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
 #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */             Institut national d'études démographiques, Paris.
 #ifdef UNIX    This software have been partly granted by Euro-REVES, a concerted action
 #define DIRSEPARATOR '/'    from the European Union.
 #define CHARSEPARATOR "/"    It is copyrighted identically to a GNU software product, ie programme and
 #define ODIRSEPARATOR '\\'    software can be distributed freely for non commercial use. Latest version
 #else    can be accessed at http://euroreves.ined.fr/imach .
 #define DIRSEPARATOR '\\'  
 #define CHARSEPARATOR "\\"    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
 #define ODIRSEPARATOR '/'    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
 #endif   
     **********************************************************************/
 /* $Id$ */  /*
 /* $State$ */    main
     read parameterfile
 char version[]="Imach version 0.98a, January 2006, INED-EUROREVES ";    read datafile
 char fullversion[]="$Revision$ $Date$";     concatwav
 int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */    freqsummary
 int nvar;    if (mle >= 1)
 int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;      mlikeli
 int npar=NPARMAX;    print results files
 int nlstate=2; /* Number of live states */    if mle==1
 int ndeath=1; /* Number of dead states */       computes hessian
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    read end of parameter file: agemin, agemax, bage, fage, estepm
 int popbased=0;        begin-prev-date,...
     open gnuplot file
 int *wav; /* Number of waves for this individuual 0 is possible */    open html file
 int maxwav; /* Maxim number of waves */    period (stable) prevalence
 int jmin, jmax; /* min, max spacing between 2 waves */     for age prevalim()
 int gipmx, gsw; /* Global variables on the number of contributions     h Pij x
                    to the likelihood and the sum of weights (done by funcone)*/    variance of p varprob
 int mle, weightopt;    forecasting if prevfcast==1 prevforecast call prevalence()
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    health expectancies
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    Variance-covariance of DFLE
 int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between    prevalence()
            * wave mi and wave mi+1 is not an exact multiple of stepm. */     movingaverage()
 double jmean; /* Mean space between 2 waves */    varevsij()
 double **oldm, **newm, **savm; /* Working pointers to matrices */    if popbased==1 varevsij(,popbased)
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    total life expectancies
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    Variance of period (stable) prevalence
 FILE *ficlog, *ficrespow;   end
 int globpr; /* Global variable for printing or not */  */
 double fretone; /* Only one call to likelihood */  
 long ipmx; /* Number of contributions */  
 double sw; /* Sum of weights */  
 char filerespow[FILENAMELENGTH];   
 char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */  #include <math.h>
 FILE *ficresilk;  #include <stdio.h>
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;  #include <stdlib.h>
 FILE *ficresprobmorprev;  #include <string.h>
 FILE *fichtm, *fichtmcov; /* Html File */  #include <unistd.h>
 FILE *ficreseij;  
 char filerese[FILENAMELENGTH];  #include <limits.h>
 FILE  *ficresvij;  #include <sys/types.h>
 char fileresv[FILENAMELENGTH];  #include <sys/stat.h>
 FILE  *ficresvpl;  #include <errno.h>
 char fileresvpl[FILENAMELENGTH];  extern int errno;
 char title[MAXLINE];  
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];  /* #include <sys/time.h> */
 char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];  #include <time.h>
 char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH];   #include "timeval.h"
 char command[FILENAMELENGTH];  
 int  outcmd=0;  /* #include <libintl.h> */
   /* #define _(String) gettext (String) */
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];  
   #define MAXLINE 256
 char filelog[FILENAMELENGTH]; /* Log file */  
 char filerest[FILENAMELENGTH];  #define GNUPLOTPROGRAM "gnuplot"
 char fileregp[FILENAMELENGTH];  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
 char popfile[FILENAMELENGTH];  #define FILENAMELENGTH 132
   
 char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
   #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
 struct timeval start_time, end_time, curr_time, last_time, forecast_time;  
 struct timezone tzp;  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
 extern int gettimeofday();  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
 struct tm tmg, tm, tmf, *gmtime(), *localtime();  
 long time_value;  #define NINTERVMAX 8
 extern long time();  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
 char strcurr[80], strfor[80];  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
   #define NCOVMAX 8 /* Maximum number of covariates */
 char *endptr;  #define MAXN 20000
 long lval;  #define YEARM 12. /* Number of months per year */
   #define AGESUP 130
 #define NR_END 1  #define AGEBASE 40
 #define FREE_ARG char*  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
 #define FTOL 1.0e-10  #ifdef UNIX
   #define DIRSEPARATOR '/'
 #define NRANSI   #define CHARSEPARATOR "/"
 #define ITMAX 200   #define ODIRSEPARATOR '\\'
   #else
 #define TOL 2.0e-4   #define DIRSEPARATOR '\\'
   #define CHARSEPARATOR "\\"
 #define CGOLD 0.3819660   #define ODIRSEPARATOR '/'
 #define ZEPS 1.0e-10   #endif
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);   
   /* $Id$ */
 #define GOLD 1.618034   /* $State$ */
 #define GLIMIT 100.0   
 #define TINY 1.0e-20   char version[]="Imach version 0.98g, March 2006, INED-EUROREVES-Institut de longevite ";
   char fullversion[]="$Revision$ $Date$";
 static double maxarg1,maxarg2;  char strstart[80];
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))  int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
     int nvar;
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
 #define rint(a) floor(a+0.5)  int npar=NPARMAX;
   int nlstate=2; /* Number of live states */
 static double sqrarg;  int ndeath=1; /* Number of dead states */
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}   int popbased=0;
 int agegomp= AGEGOMP;  
   int *wav; /* Number of waves for this individuual 0 is possible */
 int imx;   int maxwav; /* Maxim number of waves */
 int stepm=1;  int jmin, jmax; /* min, max spacing between 2 waves */
 /* Stepm, step in month: minimum step interpolation*/  int ijmin, ijmax; /* Individuals having jmin and jmax */
   int gipmx, gsw; /* Global variables on the number of contributions
 int estepm;                     to the likelihood and the sum of weights (done by funcone)*/
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/  int mle, weightopt;
   int **mw; /* mw[mi][i] is number of the mi wave for this individual */
 int m,nb;  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
 long *num;  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
 int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;             * wave mi and wave mi+1 is not an exact multiple of stepm. */
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;  double jmean; /* Mean space between 2 waves */
 double **pmmij, ***probs;  double **oldm, **newm, **savm; /* Working pointers to matrices */
 double *ageexmed,*agecens;  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
 double dateintmean=0;  FILE *fic,*ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
   FILE *ficlog, *ficrespow;
 double *weight;  int globpr; /* Global variable for printing or not */
 int **s; /* Status */  double fretone; /* Only one call to likelihood */
 double *agedc, **covar, idx;  long ipmx; /* Number of contributions */
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;  double sw; /* Sum of weights */
 double *lsurv, *lpop, *tpop;  char filerespow[FILENAMELENGTH];
   char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */  FILE *ficresilk;
 double ftolhess; /* Tolerance for computing hessian */  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
   FILE *ficresprobmorprev;
 /**************** split *************************/  FILE *fichtm, *fichtmcov; /* Html File */
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )  FILE *ficreseij;
 {  char filerese[FILENAMELENGTH];
   /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)  FILE *ficresstdeij;
      the name of the file (name), its extension only (ext) and its first part of the name (finame)  char fileresstde[FILENAMELENGTH];
   */   FILE *ficrescveij;
   char  *ss;                            /* pointer */  char filerescve[FILENAMELENGTH];
   int   l1, l2;                         /* length counters */  FILE  *ficresvij;
   char fileresv[FILENAMELENGTH];
   l1 = strlen(path );                   /* length of path */  FILE  *ficresvpl;
   if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );  char fileresvpl[FILENAMELENGTH];
   ss= strrchr( path, DIRSEPARATOR );            /* find last / */  char title[MAXLINE];
   if ( ss == NULL ) {                   /* no directory, so determine current directory */  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
     strcpy( name, path );               /* we got the fullname name because no directory */  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
     /*if(strrchr(path, ODIRSEPARATOR )==NULL)  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH];
       printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/  char command[FILENAMELENGTH];
     /* get current working directory */  int  outcmd=0;
     /*    extern  char* getcwd ( char *buf , int len);*/  
     if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
       return( GLOCK_ERROR_GETCWD );  
     }  char filelog[FILENAMELENGTH]; /* Log file */
     /* got dirc from getcwd*/  char filerest[FILENAMELENGTH];
     printf(" DIRC = %s \n",dirc);  char fileregp[FILENAMELENGTH];
   } else {                              /* strip direcotry from path */  char popfile[FILENAMELENGTH];
     ss++;                               /* after this, the filename */  
     l2 = strlen( ss );                  /* length of filename */  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
     if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );  
     strcpy( name, ss );         /* save file name */  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
     strncpy( dirc, path, l1 - l2 );     /* now the directory */  struct timezone tzp;
     dirc[l1-l2] = 0;                    /* add zero */  extern int gettimeofday();
     printf(" DIRC2 = %s \n",dirc);  struct tm tmg, tm, tmf, *gmtime(), *localtime();
   }  long time_value;
   /* We add a separator at the end of dirc if not exists */  extern long time();
   l1 = strlen( dirc );                  /* length of directory */  char strcurr[80], strfor[80];
   if( dirc[l1-1] != DIRSEPARATOR ){  
     dirc[l1] =  DIRSEPARATOR;  char *endptr;
     dirc[l1+1] = 0;   long lval;
     printf(" DIRC3 = %s \n",dirc);  double dval;
   }  
   ss = strrchr( name, '.' );            /* find last / */  #define NR_END 1
   if (ss >0){  #define FREE_ARG char*
     ss++;  #define FTOL 1.0e-10
     strcpy(ext,ss);                     /* save extension */  
     l1= strlen( name);  #define NRANSI
     l2= strlen(ss)+1;  #define ITMAX 200
     strncpy( finame, name, l1-l2);  
     finame[l1-l2]= 0;  #define TOL 2.0e-4
   }  
   #define CGOLD 0.3819660
   return( 0 );                          /* we're done */  #define ZEPS 1.0e-10
 }  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);
   
   #define GOLD 1.618034
 /******************************************/  #define GLIMIT 100.0
   #define TINY 1.0e-20
 void replace_back_to_slash(char *s, char*t)  
 {  static double maxarg1,maxarg2;
   int i;  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
   int lg=0;  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
   i=0;   
   lg=strlen(t);  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
   for(i=0; i<= lg; i++) {  #define rint(a) floor(a+0.5)
     (s[i] = t[i]);  
     if (t[i]== '\\') s[i]='/';  static double sqrarg;
   }  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
 }  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}
   int agegomp= AGEGOMP;
 int nbocc(char *s, char occ)  
 {  int imx;
   int i,j=0;  int stepm=1;
   int lg=20;  /* Stepm, step in month: minimum step interpolation*/
   i=0;  
   lg=strlen(s);  int estepm;
   for(i=0; i<= lg; i++) {  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
   if  (s[i] == occ ) j++;  
   }  int m,nb;
   return j;  long *num;
 }  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
   double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
 void cutv(char *u,char *v, char*t, char occ)  double **pmmij, ***probs;
 {  double *ageexmed,*agecens;
   /* cuts string t into u and v where u ends before first occurence of char 'occ'   double dateintmean=0;
      and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')  
      gives u="abcedf" and v="ghi2j" */  double *weight;
   int i,lg,j,p=0;  int **s; /* Status */
   i=0;  double *agedc, **covar, idx;
   for(j=0; j<=strlen(t)-1; j++) {  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  double *lsurv, *lpop, *tpop;
   }  
   double ftol=FTOL; /* Tolerance for computing Max Likelihood */
   lg=strlen(t);  double ftolhess; /* Tolerance for computing hessian */
   for(j=0; j<p; j++) {  
     (u[j] = t[j]);  /**************** split *************************/
   }  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
      u[p]='\0';  {
     /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
    for(j=0; j<= lg; j++) {       the name of the file (name), its extension only (ext) and its first part of the name (finame)
     if (j>=(p+1))(v[j-p-1] = t[j]);    */
   }    char  *ss;                            /* pointer */
 }    int   l1, l2;                         /* length counters */
   
 /********************** nrerror ********************/    l1 = strlen(path );                   /* length of path */
     if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
 void nrerror(char error_text[])    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
 {    if ( ss == NULL ) {                   /* no directory, so determine current directory */
   fprintf(stderr,"ERREUR ...\n");      strcpy( name, path );               /* we got the fullname name because no directory */
   fprintf(stderr,"%s\n",error_text);      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
   exit(EXIT_FAILURE);        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
 }      /* get current working directory */
 /*********************** vector *******************/      /*    extern  char* getcwd ( char *buf , int len);*/
 double *vector(int nl, int nh)      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
 {        return( GLOCK_ERROR_GETCWD );
   double *v;      }
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));      /* got dirc from getcwd*/
   if (!v) nrerror("allocation failure in vector");      printf(" DIRC = %s \n",dirc);
   return v-nl+NR_END;    } else {                              /* strip direcotry from path */
 }      ss++;                               /* after this, the filename */
       l2 = strlen( ss );                  /* length of filename */
 /************************ free vector ******************/      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
 void free_vector(double*v, int nl, int nh)      strcpy( name, ss );         /* save file name */
 {      strncpy( dirc, path, l1 - l2 );     /* now the directory */
   free((FREE_ARG)(v+nl-NR_END));      dirc[l1-l2] = 0;                    /* add zero */
 }      printf(" DIRC2 = %s \n",dirc);
     }
 /************************ivector *******************************/    /* We add a separator at the end of dirc if not exists */
 int *ivector(long nl,long nh)    l1 = strlen( dirc );                  /* length of directory */
 {    if( dirc[l1-1] != DIRSEPARATOR ){
   int *v;      dirc[l1] =  DIRSEPARATOR;
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));      dirc[l1+1] = 0;
   if (!v) nrerror("allocation failure in ivector");      printf(" DIRC3 = %s \n",dirc);
   return v-nl+NR_END;    }
 }    ss = strrchr( name, '.' );            /* find last / */
     if (ss >0){
 /******************free ivector **************************/      ss++;
 void free_ivector(int *v, long nl, long nh)      strcpy(ext,ss);                     /* save extension */
 {      l1= strlen( name);
   free((FREE_ARG)(v+nl-NR_END));      l2= strlen(ss)+1;
 }      strncpy( finame, name, l1-l2);
       finame[l1-l2]= 0;
 /************************lvector *******************************/    }
 long *lvector(long nl,long nh)  
 {    return( 0 );                          /* we're done */
   long *v;  }
   v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));  
   if (!v) nrerror("allocation failure in ivector");  
   return v-nl+NR_END;  /******************************************/
 }  
   void replace_back_to_slash(char *s, char*t)
 /******************free lvector **************************/  {
 void free_lvector(long *v, long nl, long nh)    int i;
 {    int lg=0;
   free((FREE_ARG)(v+nl-NR_END));    i=0;
 }    lg=strlen(t);
     for(i=0; i<= lg; i++) {
 /******************* imatrix *******************************/      (s[i] = t[i]);
 int **imatrix(long nrl, long nrh, long ncl, long nch)       if (t[i]== '\\') s[i]='/';
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */     }
 {   }
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;   
   int **m;   int nbocc(char *s, char occ)
     {
   /* allocate pointers to rows */     int i,j=0;
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));     int lg=20;
   if (!m) nrerror("allocation failure 1 in matrix()");     i=0;
   m += NR_END;     lg=strlen(s);
   m -= nrl;     for(i=0; i<= lg; i++) {
       if  (s[i] == occ ) j++;
       }
   /* allocate rows and set pointers to them */     return j;
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));   }
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");   
   m[nrl] += NR_END;   void cutv(char *u,char *v, char*t, char occ)
   m[nrl] -= ncl;   {
       /* cuts string t into u and v where u ends before first occurence of char 'occ'
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;        and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
          gives u="abcedf" and v="ghi2j" */
   /* return pointer to array of pointers to rows */     int i,lg,j,p=0;
   return m;     i=0;
 }     for(j=0; j<=strlen(t)-1; j++) {
       if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
 /****************** free_imatrix *************************/    }
 void free_imatrix(m,nrl,nrh,ncl,nch)  
       int **m;    lg=strlen(t);
       long nch,ncl,nrh,nrl;     for(j=0; j<p; j++) {
      /* free an int matrix allocated by imatrix() */       (u[j] = t[j]);
 {     }
   free((FREE_ARG) (m[nrl]+ncl-NR_END));        u[p]='\0';
   free((FREE_ARG) (m+nrl-NR_END));   
 }      for(j=0; j<= lg; j++) {
       if (j>=(p+1))(v[j-p-1] = t[j]);
 /******************* matrix *******************************/    }
 double **matrix(long nrl, long nrh, long ncl, long nch)  }
 {  
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  /********************** nrerror ********************/
   double **m;  
   void nrerror(char error_text[])
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  {
   if (!m) nrerror("allocation failure 1 in matrix()");    fprintf(stderr,"ERREUR ...\n");
   m += NR_END;    fprintf(stderr,"%s\n",error_text);
   m -= nrl;    exit(EXIT_FAILURE);
   }
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  /*********************** vector *******************/
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  double *vector(int nl, int nh)
   m[nrl] += NR_END;  {
   m[nrl] -= ncl;    double *v;
     v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    if (!v) nrerror("allocation failure in vector");
   return m;    return v-nl+NR_END;
   /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1])   }
    */  
 }  /************************ free vector ******************/
   void free_vector(double*v, int nl, int nh)
 /*************************free matrix ************************/  {
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)    free((FREE_ARG)(v+nl-NR_END));
 {  }
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  
   free((FREE_ARG)(m+nrl-NR_END));  /************************ivector *******************************/
 }  int *ivector(long nl,long nh)
   {
 /******************* ma3x *******************************/    int *v;
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
 {    if (!v) nrerror("allocation failure in ivector");
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;    return v-nl+NR_END;
   double ***m;  }
   
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  /******************free ivector **************************/
   if (!m) nrerror("allocation failure 1 in matrix()");  void free_ivector(int *v, long nl, long nh)
   m += NR_END;  {
   m -= nrl;    free((FREE_ARG)(v+nl-NR_END));
   }
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  /************************lvector *******************************/
   m[nrl] += NR_END;  long *lvector(long nl,long nh)
   m[nrl] -= ncl;  {
     long *v;
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
     if (!v) nrerror("allocation failure in ivector");
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));    return v-nl+NR_END;
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  }
   m[nrl][ncl] += NR_END;  
   m[nrl][ncl] -= nll;  /******************free lvector **************************/
   for (j=ncl+1; j<=nch; j++)   void free_lvector(long *v, long nl, long nh)
     m[nrl][j]=m[nrl][j-1]+nlay;  {
       free((FREE_ARG)(v+nl-NR_END));
   for (i=nrl+1; i<=nrh; i++) {  }
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  
     for (j=ncl+1; j<=nch; j++)   /******************* imatrix *******************************/
       m[i][j]=m[i][j-1]+nlay;  int **imatrix(long nrl, long nrh, long ncl, long nch)
   }       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */
   return m;   {
   /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;
            &(m[i][j][k]) <=> *((*(m+i) + j)+k)    int **m;
   */   
 }    /* allocate pointers to rows */
     m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));
 /*************************free ma3x ************************/    if (!m) nrerror("allocation failure 1 in matrix()");
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)    m += NR_END;
 {    m -= nrl;
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));   
   free((FREE_ARG)(m[nrl]+ncl-NR_END));   
   free((FREE_ARG)(m+nrl-NR_END));    /* allocate rows and set pointers to them */
 }    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));
     if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
 /*************** function subdirf ***********/    m[nrl] += NR_END;
 char *subdirf(char fileres[])    m[nrl] -= ncl;
 {   
   /* Caution optionfilefiname is hidden */    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;
   strcpy(tmpout,optionfilefiname);   
   strcat(tmpout,"/"); /* Add to the right */    /* return pointer to array of pointers to rows */
   strcat(tmpout,fileres);    return m;
   return tmpout;  }
 }  
   /****************** free_imatrix *************************/
 /*************** function subdirf2 ***********/  void free_imatrix(m,nrl,nrh,ncl,nch)
 char *subdirf2(char fileres[], char *preop)        int **m;
 {        long nch,ncl,nrh,nrl;
          /* free an int matrix allocated by imatrix() */
   /* Caution optionfilefiname is hidden */  {
   strcpy(tmpout,optionfilefiname);    free((FREE_ARG) (m[nrl]+ncl-NR_END));
   strcat(tmpout,"/");    free((FREE_ARG) (m+nrl-NR_END));
   strcat(tmpout,preop);  }
   strcat(tmpout,fileres);  
   return tmpout;  /******************* matrix *******************************/
 }  double **matrix(long nrl, long nrh, long ncl, long nch)
   {
 /*************** function subdirf3 ***********/    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
 char *subdirf3(char fileres[], char *preop, char *preop2)    double **m;
 {  
       m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   /* Caution optionfilefiname is hidden */    if (!m) nrerror("allocation failure 1 in matrix()");
   strcpy(tmpout,optionfilefiname);    m += NR_END;
   strcat(tmpout,"/");    m -= nrl;
   strcat(tmpout,preop);  
   strcat(tmpout,preop2);    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   strcat(tmpout,fileres);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   return tmpout;    m[nrl] += NR_END;
 }    m[nrl] -= ncl;
   
 /***************** f1dim *************************/    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
 extern int ncom;     return m;
 extern double *pcom,*xicom;    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1])
 extern double (*nrfunc)(double []);      */
    }
 double f1dim(double x)   
 {   /*************************free matrix ************************/
   int j;   void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
   double f;  {
   double *xt;     free((FREE_ARG)(m[nrl]+ncl-NR_END));
      free((FREE_ARG)(m+nrl-NR_END));
   xt=vector(1,ncom);   }
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];   
   f=(*nrfunc)(xt);   /******************* ma3x *******************************/
   free_vector(xt,1,ncom);   double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
   return f;   {
 }     long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
     double ***m;
 /*****************brent *************************/  
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)     m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
 {     if (!m) nrerror("allocation failure 1 in matrix()");
   int iter;     m += NR_END;
   double a,b,d,etemp;    m -= nrl;
   double fu,fv,fw,fx;  
   double ftemp;    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   double p,q,r,tol1,tol2,u,v,w,x,xm;     if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   double e=0.0;     m[nrl] += NR_END;
      m[nrl] -= ncl;
   a=(ax < cx ? ax : cx);   
   b=(ax > cx ? ax : cx);     for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   x=w=v=bx;   
   fw=fv=fx=(*f)(x);     m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
   for (iter=1;iter<=ITMAX;iter++) {     if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
     xm=0.5*(a+b);     m[nrl][ncl] += NR_END;
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);     m[nrl][ncl] -= nll;
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/    for (j=ncl+1; j<=nch; j++)
     printf(".");fflush(stdout);      m[nrl][j]=m[nrl][j-1]+nlay;
     fprintf(ficlog,".");fflush(ficlog);   
 #ifdef DEBUG    for (i=nrl+1; i<=nrh; i++) {
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
     fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);      for (j=ncl+1; j<=nch; j++)
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */        m[i][j]=m[i][j-1]+nlay;
 #endif    }
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){     return m;
       *xmin=x;     /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
       return fx;              &(m[i][j][k]) <=> *((*(m+i) + j)+k)
     }     */
     ftemp=fu;  }
     if (fabs(e) > tol1) {   
       r=(x-w)*(fx-fv);   /*************************free ma3x ************************/
       q=(x-v)*(fx-fw);   void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
       p=(x-v)*q-(x-w)*r;   {
       q=2.0*(q-r);     free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
       if (q > 0.0) p = -p;     free((FREE_ARG)(m[nrl]+ncl-NR_END));
       q=fabs(q);     free((FREE_ARG)(m+nrl-NR_END));
       etemp=e;   }
       e=d;   
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))   /*************** function subdirf ***********/
         d=CGOLD*(e=(x >= xm ? a-x : b-x));   char *subdirf(char fileres[])
       else {   {
         d=p/q;     /* Caution optionfilefiname is hidden */
         u=x+d;     strcpy(tmpout,optionfilefiname);
         if (u-a < tol2 || b-u < tol2)     strcat(tmpout,"/"); /* Add to the right */
           d=SIGN(tol1,xm-x);     strcat(tmpout,fileres);
       }     return tmpout;
     } else {   }
       d=CGOLD*(e=(x >= xm ? a-x : b-x));   
     }   /*************** function subdirf2 ***********/
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));   char *subdirf2(char fileres[], char *preop)
     fu=(*f)(u);   {
     if (fu <= fx) {    
       if (u >= x) a=x; else b=x;     /* Caution optionfilefiname is hidden */
       SHFT(v,w,x,u)     strcpy(tmpout,optionfilefiname);
         SHFT(fv,fw,fx,fu)     strcat(tmpout,"/");
         } else {     strcat(tmpout,preop);
           if (u < x) a=u; else b=u;     strcat(tmpout,fileres);
           if (fu <= fw || w == x) {     return tmpout;
             v=w;   }
             w=u;   
             fv=fw;   /*************** function subdirf3 ***********/
             fw=fu;   char *subdirf3(char fileres[], char *preop, char *preop2)
           } else if (fu <= fv || v == x || v == w) {   {
             v=u;    
             fv=fu;     /* Caution optionfilefiname is hidden */
           }     strcpy(tmpout,optionfilefiname);
         }     strcat(tmpout,"/");
   }     strcat(tmpout,preop);
   nrerror("Too many iterations in brent");     strcat(tmpout,preop2);
   *xmin=x;     strcat(tmpout,fileres);
   return fx;     return tmpout;
 }   }
   
 /****************** mnbrak ***********************/  /***************** f1dim *************************/
   extern int ncom;
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,   extern double *pcom,*xicom;
             double (*func)(double))   extern double (*nrfunc)(double []);
 {    
   double ulim,u,r,q, dum;  double f1dim(double x)
   double fu;   {
      int j;
   *fa=(*func)(*ax);     double f;
   *fb=(*func)(*bx);     double *xt;
   if (*fb > *fa) {    
     SHFT(dum,*ax,*bx,dum)     xt=vector(1,ncom);
       SHFT(dum,*fb,*fa,dum)     for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];
       }     f=(*nrfunc)(xt);
   *cx=(*bx)+GOLD*(*bx-*ax);     free_vector(xt,1,ncom);
   *fc=(*func)(*cx);     return f;
   while (*fb > *fc) {   }
     r=(*bx-*ax)*(*fb-*fc);   
     q=(*bx-*cx)*(*fb-*fa);   /*****************brent *************************/
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/   double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));   {
     ulim=(*bx)+GLIMIT*(*cx-*bx);     int iter;
     if ((*bx-u)*(u-*cx) > 0.0) {     double a,b,d,etemp;
       fu=(*func)(u);     double fu,fv,fw,fx;
     } else if ((*cx-u)*(u-ulim) > 0.0) {     double ftemp;
       fu=(*func)(u);     double p,q,r,tol1,tol2,u,v,w,x,xm;
       if (fu < *fc) {     double e=0.0;
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))    
           SHFT(*fb,*fc,fu,(*func)(u))     a=(ax < cx ? ax : cx);
           }     b=(ax > cx ? ax : cx);
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {     x=w=v=bx;
       u=ulim;     fw=fv=fx=(*f)(x);
       fu=(*func)(u);     for (iter=1;iter<=ITMAX;iter++) {
     } else {       xm=0.5*(a+b);
       u=(*cx)+GOLD*(*cx-*bx);       tol2=2.0*(tol1=tol*fabs(x)+ZEPS);
       fu=(*func)(u);       /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
     }       printf(".");fflush(stdout);
     SHFT(*ax,*bx,*cx,u)       fprintf(ficlog,".");fflush(ficlog);
       SHFT(*fa,*fb,*fc,fu)   #ifdef DEBUG
       }       printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
 }       fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
 /*************** linmin ************************/  #endif
       if (fabs(x-xm) <= (tol2-0.5*(b-a))){
 int ncom;         *xmin=x;
 double *pcom,*xicom;        return fx;
 double (*nrfunc)(double []);       }
        ftemp=fu;
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))       if (fabs(e) > tol1) {
 {         r=(x-w)*(fx-fv);
   double brent(double ax, double bx, double cx,         q=(x-v)*(fx-fw);
                double (*f)(double), double tol, double *xmin);         p=(x-v)*q-(x-w)*r;
   double f1dim(double x);         q=2.0*(q-r);
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,         if (q > 0.0) p = -p;
               double *fc, double (*func)(double));         q=fabs(q);
   int j;         etemp=e;
   double xx,xmin,bx,ax;         e=d;
   double fx,fb,fa;        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))
            d=CGOLD*(e=(x >= xm ? a-x : b-x));
   ncom=n;         else {
   pcom=vector(1,n);           d=p/q;
   xicom=vector(1,n);           u=x+d;
   nrfunc=func;           if (u-a < tol2 || b-u < tol2)
   for (j=1;j<=n;j++) {             d=SIGN(tol1,xm-x);
     pcom[j]=p[j];         }
     xicom[j]=xi[j];       } else {
   }         d=CGOLD*(e=(x >= xm ? a-x : b-x));
   ax=0.0;       }
   xx=1.0;       u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);       fu=(*f)(u);
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);       if (fu <= fx) {
 #ifdef DEBUG        if (u >= x) a=x; else b=x;
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);        SHFT(v,w,x,u)
   fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);          SHFT(fv,fw,fx,fu)
 #endif          } else {
   for (j=1;j<=n;j++) {             if (u < x) a=u; else b=u;
     xi[j] *= xmin;             if (fu <= fw || w == x) {
     p[j] += xi[j];               v=w;
   }               w=u;
   free_vector(xicom,1,n);               fv=fw;
   free_vector(pcom,1,n);               fw=fu;
 }             } else if (fu <= fv || v == x || v == w) {
               v=u;
 char *asc_diff_time(long time_sec, char ascdiff[])              fv=fu;
 {            }
   long sec_left, days, hours, minutes;          }
   days = (time_sec) / (60*60*24);    }
   sec_left = (time_sec) % (60*60*24);    nrerror("Too many iterations in brent");
   hours = (sec_left) / (60*60) ;    *xmin=x;
   sec_left = (sec_left) %(60*60);    return fx;
   minutes = (sec_left) /60;  }
   sec_left = (sec_left) % (60);  
   sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);    /****************** mnbrak ***********************/
   return ascdiff;  
 }  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,
               double (*func)(double))
 /*************** powell ************************/  {
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,     double ulim,u,r,q, dum;
             double (*func)(double []))     double fu;
 {    
   void linmin(double p[], double xi[], int n, double *fret,     *fa=(*func)(*ax);
               double (*func)(double []));     *fb=(*func)(*bx);
   int i,ibig,j;     if (*fb > *fa) {
   double del,t,*pt,*ptt,*xit;      SHFT(dum,*ax,*bx,dum)
   double fp,fptt;        SHFT(dum,*fb,*fa,dum)
   double *xits;        }
   int niterf, itmp;    *cx=(*bx)+GOLD*(*bx-*ax);
     *fc=(*func)(*cx);
   pt=vector(1,n);     while (*fb > *fc) {
   ptt=vector(1,n);       r=(*bx-*ax)*(*fb-*fc);
   xit=vector(1,n);       q=(*bx-*cx)*(*fb-*fa);
   xits=vector(1,n);       u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/
   *fret=(*func)(p);         (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));
   for (j=1;j<=n;j++) pt[j]=p[j];       ulim=(*bx)+GLIMIT*(*cx-*bx);
   for (*iter=1;;++(*iter)) {       if ((*bx-u)*(u-*cx) > 0.0) {
     fp=(*fret);         fu=(*func)(u);
     ibig=0;       } else if ((*cx-u)*(u-ulim) > 0.0) {
     del=0.0;         fu=(*func)(u);
     last_time=curr_time;        if (fu < *fc) {
     (void) gettimeofday(&curr_time,&tzp);          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))
     printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);            SHFT(*fb,*fc,fu,(*func)(u))
     /*    fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);            }
     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);      } else if ((u-ulim)*(ulim-*cx) >= 0.0) {
     */        u=ulim;
    for (i=1;i<=n;i++) {        fu=(*func)(u);
       printf(" %d %.12f",i, p[i]);      } else {
       fprintf(ficlog," %d %.12lf",i, p[i]);        u=(*cx)+GOLD*(*cx-*bx);
       fprintf(ficrespow," %.12lf", p[i]);        fu=(*func)(u);
     }      }
     printf("\n");      SHFT(*ax,*bx,*cx,u)
     fprintf(ficlog,"\n");        SHFT(*fa,*fb,*fc,fu)
     fprintf(ficrespow,"\n");fflush(ficrespow);        }
     if(*iter <=3){  }
       tm = *localtime(&curr_time.tv_sec);  
       strcpy(strcurr,asctime(&tm));  /*************** linmin ************************/
 /*       asctime_r(&tm,strcurr); */  
       forecast_time=curr_time;   int ncom;
       itmp = strlen(strcurr);  double *pcom,*xicom;
       if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */  double (*nrfunc)(double []);
         strcurr[itmp-1]='\0';   
       printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))
       fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);  {
       for(niterf=10;niterf<=30;niterf+=10){    double brent(double ax, double bx, double cx,
         forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);                 double (*f)(double), double tol, double *xmin);
         tmf = *localtime(&forecast_time.tv_sec);    double f1dim(double x);
 /*      asctime_r(&tmf,strfor); */    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,
         strcpy(strfor,asctime(&tmf));                double *fc, double (*func)(double));
         itmp = strlen(strfor);    int j;
         if(strfor[itmp-1]=='\n')    double xx,xmin,bx,ax;
         strfor[itmp-1]='\0';    double fx,fb,fa;
         printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);   
         fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);    ncom=n;
       }    pcom=vector(1,n);
     }    xicom=vector(1,n);
     for (i=1;i<=n;i++) {     nrfunc=func;
       for (j=1;j<=n;j++) xit[j]=xi[j][i];     for (j=1;j<=n;j++) {
       fptt=(*fret);       pcom[j]=p[j];
 #ifdef DEBUG      xicom[j]=xi[j];
       printf("fret=%lf \n",*fret);    }
       fprintf(ficlog,"fret=%lf \n",*fret);    ax=0.0;
 #endif    xx=1.0;
       printf("%d",i);fflush(stdout);    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);
       fprintf(ficlog,"%d",i);fflush(ficlog);    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);
       linmin(p,xit,n,fret,func);   #ifdef DEBUG
       if (fabs(fptt-(*fret)) > del) {     printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
         del=fabs(fptt-(*fret));     fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
         ibig=i;   #endif
       }     for (j=1;j<=n;j++) {
 #ifdef DEBUG      xi[j] *= xmin;
       printf("%d %.12e",i,(*fret));      p[j] += xi[j];
       fprintf(ficlog,"%d %.12e",i,(*fret));    }
       for (j=1;j<=n;j++) {    free_vector(xicom,1,n);
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);    free_vector(pcom,1,n);
         printf(" x(%d)=%.12e",j,xit[j]);  }
         fprintf(ficlog," x(%d)=%.12e",j,xit[j]);  
       }  char *asc_diff_time(long time_sec, char ascdiff[])
       for(j=1;j<=n;j++) {  {
         printf(" p=%.12e",p[j]);    long sec_left, days, hours, minutes;
         fprintf(ficlog," p=%.12e",p[j]);    days = (time_sec) / (60*60*24);
       }    sec_left = (time_sec) % (60*60*24);
       printf("\n");    hours = (sec_left) / (60*60) ;
       fprintf(ficlog,"\n");    sec_left = (sec_left) %(60*60);
 #endif    minutes = (sec_left) /60;
     }     sec_left = (sec_left) % (60);
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
 #ifdef DEBUG    return ascdiff;
       int k[2],l;  }
       k[0]=1;  
       k[1]=-1;  /*************** powell ************************/
       printf("Max: %.12e",(*func)(p));  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,
       fprintf(ficlog,"Max: %.12e",(*func)(p));              double (*func)(double []))
       for (j=1;j<=n;j++) {  {
         printf(" %.12e",p[j]);    void linmin(double p[], double xi[], int n, double *fret,
         fprintf(ficlog," %.12e",p[j]);                double (*func)(double []));
       }    int i,ibig,j;
       printf("\n");    double del,t,*pt,*ptt,*xit;
       fprintf(ficlog,"\n");    double fp,fptt;
       for(l=0;l<=1;l++) {    double *xits;
         for (j=1;j<=n;j++) {    int niterf, itmp;
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];  
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);    pt=vector(1,n);
           fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);    ptt=vector(1,n);
         }    xit=vector(1,n);
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    xits=vector(1,n);
         fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    *fret=(*func)(p);
       }    for (j=1;j<=n;j++) pt[j]=p[j];
 #endif    for (*iter=1;;++(*iter)) {
       fp=(*fret);
       ibig=0;
       free_vector(xit,1,n);       del=0.0;
       free_vector(xits,1,n);       last_time=curr_time;
       free_vector(ptt,1,n);       (void) gettimeofday(&curr_time,&tzp);
       free_vector(pt,1,n);       printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
       return;       fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec); fflush(ficlog);
     }   /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec); */
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");      for (i=1;i<=n;i++) {
     for (j=1;j<=n;j++) {         printf(" %d %.12f",i, p[i]);
       ptt[j]=2.0*p[j]-pt[j];         fprintf(ficlog," %d %.12lf",i, p[i]);
       xit[j]=p[j]-pt[j];         fprintf(ficrespow," %.12lf", p[i]);
       pt[j]=p[j];       }
     }       printf("\n");
     fptt=(*func)(ptt);       fprintf(ficlog,"\n");
     if (fptt < fp) {       fprintf(ficrespow,"\n");fflush(ficrespow);
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);       if(*iter <=3){
       if (t < 0.0) {         tm = *localtime(&curr_time.tv_sec);
         linmin(p,xit,n,fret,func);         strcpy(strcurr,asctime(&tm));
         for (j=1;j<=n;j++) {   /*       asctime_r(&tm,strcurr); */
           xi[j][ibig]=xi[j][n];         forecast_time=curr_time;
           xi[j][n]=xit[j];         itmp = strlen(strcurr);
         }        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
 #ifdef DEBUG          strcurr[itmp-1]='\0';
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
         fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
         for(j=1;j<=n;j++){        for(niterf=10;niterf<=30;niterf+=10){
           printf(" %.12e",xit[j]);          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
           fprintf(ficlog," %.12e",xit[j]);          tmf = *localtime(&forecast_time.tv_sec);
         }  /*      asctime_r(&tmf,strfor); */
         printf("\n");          strcpy(strfor,asctime(&tmf));
         fprintf(ficlog,"\n");          itmp = strlen(strfor);
 #endif          if(strfor[itmp-1]=='\n')
       }          strfor[itmp-1]='\0';
     }           printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
   }           fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
 }         }
       }
 /**** Prevalence limit (stable prevalence)  ****************/      for (i=1;i<=n;i++) {
         for (j=1;j<=n;j++) xit[j]=xi[j][i];
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)        fptt=(*fret);
 {  #ifdef DEBUG
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit        printf("fret=%lf \n",*fret);
      matrix by transitions matrix until convergence is reached */        fprintf(ficlog,"fret=%lf \n",*fret);
   #endif
   int i, ii,j,k;        printf("%d",i);fflush(stdout);
   double min, max, maxmin, maxmax,sumnew=0.;        fprintf(ficlog,"%d",i);fflush(ficlog);
   double **matprod2();        linmin(p,xit,n,fret,func);
   double **out, cov[NCOVMAX], **pmij();        if (fabs(fptt-(*fret)) > del) {
   double **newm;          del=fabs(fptt-(*fret));
   double agefin, delaymax=50 ; /* Max number of years to converge */          ibig=i;
         }
   for (ii=1;ii<=nlstate+ndeath;ii++)  #ifdef DEBUG
     for (j=1;j<=nlstate+ndeath;j++){        printf("%d %.12e",i,(*fret));
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);        fprintf(ficlog,"%d %.12e",i,(*fret));
     }        for (j=1;j<=n;j++) {
           xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
    cov[1]=1.;          printf(" x(%d)=%.12e",j,xit[j]);
            fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */        }
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){        for(j=1;j<=n;j++) {
     newm=savm;          printf(" p=%.12e",p[j]);
     /* Covariates have to be included here again */          fprintf(ficlog," p=%.12e",p[j]);
      cov[2]=agefin;        }
           printf("\n");
       for (k=1; k<=cptcovn;k++) {        fprintf(ficlog,"\n");
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  #endif
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/      }
       }      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  #ifdef DEBUG
       for (k=1; k<=cptcovprod;k++)        int k[2],l;
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];        k[0]=1;
         k[1]=-1;
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/        printf("Max: %.12e",(*func)(p));
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/        fprintf(ficlog,"Max: %.12e",(*func)(p));
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/        for (j=1;j<=n;j++) {
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);          printf(" %.12e",p[j]);
           fprintf(ficlog," %.12e",p[j]);
     savm=oldm;        }
     oldm=newm;        printf("\n");
     maxmax=0.;        fprintf(ficlog,"\n");
     for(j=1;j<=nlstate;j++){        for(l=0;l<=1;l++) {
       min=1.;          for (j=1;j<=n;j++) {
       max=0.;            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
       for(i=1; i<=nlstate; i++) {            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
         sumnew=0;            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];          }
         prlim[i][j]= newm[i][j]/(1-sumnew);          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
         max=FMAX(max,prlim[i][j]);          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
         min=FMIN(min,prlim[i][j]);        }
       }  #endif
       maxmin=max-min;  
       maxmax=FMAX(maxmax,maxmin);  
     }        free_vector(xit,1,n);
     if(maxmax < ftolpl){        free_vector(xits,1,n);
       return prlim;        free_vector(ptt,1,n);
     }        free_vector(pt,1,n);
   }        return;
 }      }
       if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");
 /*************** transition probabilities ***************/       for (j=1;j<=n;j++) {
         ptt[j]=2.0*p[j]-pt[j];
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )        xit[j]=p[j]-pt[j];
 {        pt[j]=p[j];
   double s1, s2;      }
   /*double t34;*/      fptt=(*func)(ptt);
   int i,j,j1, nc, ii, jj;      if (fptt < fp) {
         t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);
     for(i=1; i<= nlstate; i++){        if (t < 0.0) {
       for(j=1; j<i;j++){          linmin(p,xit,n,fret,func);
         for (nc=1, s2=0.;nc <=ncovmodel; nc++){          for (j=1;j<=n;j++) {
           /*s2 += param[i][j][nc]*cov[nc];*/            xi[j][ibig]=xi[j][n];
           s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];            xi[j][n]=xit[j];
 /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */          }
         }  #ifdef DEBUG
         ps[i][j]=s2;          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
 /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
       }          for(j=1;j<=n;j++){
       for(j=i+1; j<=nlstate+ndeath;j++){            printf(" %.12e",xit[j]);
         for (nc=1, s2=0.;nc <=ncovmodel; nc++){            fprintf(ficlog," %.12e",xit[j]);
           s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];          }
 /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */          printf("\n");
         }          fprintf(ficlog,"\n");
         ps[i][j]=s2;  #endif
       }        }
     }      }
     /*ps[3][2]=1;*/    }
       }
     for(i=1; i<= nlstate; i++){  
       s1=0;  /**** Prevalence limit (stable or period prevalence)  ****************/
       for(j=1; j<i; j++)  
         s1+=exp(ps[i][j]);  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
       for(j=i+1; j<=nlstate+ndeath; j++)  {
         s1+=exp(ps[i][j]);    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
       ps[i][i]=1./(s1+1.);       matrix by transitions matrix until convergence is reached */
       for(j=1; j<i; j++)  
         ps[i][j]= exp(ps[i][j])*ps[i][i];    int i, ii,j,k;
       for(j=i+1; j<=nlstate+ndeath; j++)    double min, max, maxmin, maxmax,sumnew=0.;
         ps[i][j]= exp(ps[i][j])*ps[i][i];    double **matprod2();
       /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */    double **out, cov[NCOVMAX], **pmij();
     } /* end i */    double **newm;
         double agefin, delaymax=50 ; /* Max number of years to converge */
     for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){  
       for(jj=1; jj<= nlstate+ndeath; jj++){    for (ii=1;ii<=nlstate+ndeath;ii++)
         ps[ii][jj]=0;      for (j=1;j<=nlstate+ndeath;j++){
         ps[ii][ii]=1;        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       }      }
     }  
          cov[1]=1.;
    
 /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
 /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
 /*         printf("ddd %lf ",ps[ii][jj]); */      newm=savm;
 /*       } */      /* Covariates have to be included here again */
 /*       printf("\n "); */       cov[2]=agefin;
 /*        } */   
 /*        printf("\n ");printf("%lf ",cov[2]); */        for (k=1; k<=cptcovn;k++) {
        /*          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
       for(i=1; i<= npar; i++) printf("%f ",x[i]);          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
       goto end;*/        }
     return ps;        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
 }        for (k=1; k<=cptcovprod;k++)
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
 /**************** Product of 2 matrices ******************/  
         /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
 {        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */  
   /* in, b, out are matrice of pointers which should have been initialized       savm=oldm;
      before: only the contents of out is modified. The function returns      oldm=newm;
      a pointer to pointers identical to out */      maxmax=0.;
   long i, j, k;      for(j=1;j<=nlstate;j++){
   for(i=nrl; i<= nrh; i++)        min=1.;
     for(k=ncolol; k<=ncoloh; k++)        max=0.;
       for(j=ncl,out[i][k]=0.; j<=nch; j++)        for(i=1; i<=nlstate; i++) {
         out[i][k] +=in[i][j]*b[j][k];          sumnew=0;
           for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
   return out;          prlim[i][j]= newm[i][j]/(1-sumnew);
 }          max=FMAX(max,prlim[i][j]);
           min=FMIN(min,prlim[i][j]);
         }
 /************* Higher Matrix Product ***************/        maxmin=max-min;
         maxmax=FMAX(maxmax,maxmin);
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )      }
 {      if(maxmax < ftolpl){
   /* Computes the transition matrix starting at age 'age' over         return prlim;
      'nhstepm*hstepm*stepm' months (i.e. until      }
      age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying     }
      nhstepm*hstepm matrices.   }
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step   
      (typically every 2 years instead of every month which is too big   /*************** transition probabilities ***************/
      for the memory).  
      Model is determined by parameters x and covariates have to be   double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
      included manually here.   {
     double s1, s2;
      */    /*double t34;*/
     int i,j,j1, nc, ii, jj;
   int i, j, d, h, k;  
   double **out, cov[NCOVMAX];      for(i=1; i<= nlstate; i++){
   double **newm;        for(j=1; j<i;j++){
           for (nc=1, s2=0.;nc <=ncovmodel; nc++){
   /* Hstepm could be zero and should return the unit matrix */            /*s2 += param[i][j][nc]*cov[nc];*/
   for (i=1;i<=nlstate+ndeath;i++)            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
     for (j=1;j<=nlstate+ndeath;j++){  /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
       oldm[i][j]=(i==j ? 1.0 : 0.0);          }
       po[i][j][0]=(i==j ? 1.0 : 0.0);          ps[i][j]=s2;
     }  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */        }
   for(h=1; h <=nhstepm; h++){        for(j=i+1; j<=nlstate+ndeath;j++){
     for(d=1; d <=hstepm; d++){          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
       newm=savm;            s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
       /* Covariates have to be included here again */  /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
       cov[1]=1.;          }
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;          ps[i][j]=s2;
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];        }
       for (k=1; k<=cptcovage;k++)      }
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];      /*ps[3][2]=1;*/
       for (k=1; k<=cptcovprod;k++)     
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];      for(i=1; i<= nlstate; i++){
         s1=0;
         for(j=1; j<i; j++)
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/          s1+=exp(ps[i][j]);
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/        for(j=i+1; j<=nlstate+ndeath; j++)
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,           s1+=exp(ps[i][j]);
                    pmij(pmmij,cov,ncovmodel,x,nlstate));        ps[i][i]=1./(s1+1.);
       savm=oldm;        for(j=1; j<i; j++)
       oldm=newm;          ps[i][j]= exp(ps[i][j])*ps[i][i];
     }        for(j=i+1; j<=nlstate+ndeath; j++)
     for(i=1; i<=nlstate+ndeath; i++)          ps[i][j]= exp(ps[i][j])*ps[i][i];
       for(j=1;j<=nlstate+ndeath;j++) {        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
         po[i][j][h]=newm[i][j];      } /* end i */
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);     
          */      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
       }        for(jj=1; jj<= nlstate+ndeath; jj++){
   } /* end h */          ps[ii][jj]=0;
   return po;          ps[ii][ii]=1;
 }        }
       }
      
 /*************** log-likelihood *************/  
 double func( double *x)  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
 {  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
   int i, ii, j, k, mi, d, kk;  /*         printf("ddd %lf ",ps[ii][jj]); */
   double l, ll[NLSTATEMAX], cov[NCOVMAX];  /*       } */
   double **out;  /*       printf("\n "); */
   double sw; /* Sum of weights */  /*        } */
   double lli; /* Individual log likelihood */  /*        printf("\n ");printf("%lf ",cov[2]); */
   int s1, s2;         /*
   double bbh, survp;        for(i=1; i<= npar; i++) printf("%f ",x[i]);
   long ipmx;        goto end;*/
   /*extern weight */      return ps;
   /* We are differentiating ll according to initial status */  }
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/  
   /*for(i=1;i<imx;i++)   /**************** Product of 2 matrices ******************/
     printf(" %d\n",s[4][i]);  
   */  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
   cov[1]=1.;  {
     /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
   for(k=1; k<=nlstate; k++) ll[k]=0.;       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
     /* in, b, out are matrice of pointers which should have been initialized
   if(mle==1){       before: only the contents of out is modified. The function returns
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){       a pointer to pointers identical to out */
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];    long i, j, k;
       for(mi=1; mi<= wav[i]-1; mi++){    for(i=nrl; i<= nrh; i++)
         for (ii=1;ii<=nlstate+ndeath;ii++)      for(k=ncolol; k<=ncoloh; k++)
           for (j=1;j<=nlstate+ndeath;j++){        for(j=ncl,out[i][k]=0.; j<=nch; j++)
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);          out[i][k] +=in[i][j]*b[j][k];
             savm[ii][j]=(ii==j ? 1.0 : 0.0);  
           }    return out;
         for(d=0; d<dh[mi][i]; d++){  }
           newm=savm;  
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;  
           for (kk=1; kk<=cptcovage;kk++) {  /************* Higher Matrix Product ***************/
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];  
           }  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,  {
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));    /* Computes the transition matrix starting at age 'age' over
           savm=oldm;       'nhstepm*hstepm*stepm' months (i.e. until
           oldm=newm;       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying
         } /* end mult */       nhstepm*hstepm matrices.
              Output is stored in matrix po[i][j][h] for h every 'hstepm' step
         /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */       (typically every 2 years instead of every month which is too big
         /* But now since version 0.9 we anticipate for bias at large stepm.       for the memory).
          * If stepm is larger than one month (smallest stepm) and if the exact delay        Model is determined by parameters x and covariates have to be
          * (in months) between two waves is not a multiple of stepm, we rounded to        included manually here.
          * the nearest (and in case of equal distance, to the lowest) interval but now  
          * we keep into memory the bias bh[mi][i] and also the previous matrix product       */
          * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the  
          * probability in order to take into account the bias as a fraction of the way    int i, j, d, h, k;
          * from savm to out if bh is negative or even beyond if bh is positive. bh varies    double **out, cov[NCOVMAX];
          * -stepm/2 to stepm/2 .    double **newm;
          * For stepm=1 the results are the same as for previous versions of Imach.  
          * For stepm > 1 the results are less biased than in previous versions.     /* Hstepm could be zero and should return the unit matrix */
          */    for (i=1;i<=nlstate+ndeath;i++)
         s1=s[mw[mi][i]][i];      for (j=1;j<=nlstate+ndeath;j++){
         s2=s[mw[mi+1][i]][i];        oldm[i][j]=(i==j ? 1.0 : 0.0);
         bbh=(double)bh[mi][i]/(double)stepm;         po[i][j][0]=(i==j ? 1.0 : 0.0);
         /* bias bh is positive if real duration      }
          * is higher than the multiple of stepm and negative otherwise.    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
          */    for(h=1; h <=nhstepm; h++){
         /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/      for(d=1; d <=hstepm; d++){
         if( s2 > nlstate){         newm=savm;
           /* i.e. if s2 is a death state and if the date of death is known         /* Covariates have to be included here again */
              then the contribution to the likelihood is the probability to         cov[1]=1.;
              die between last step unit time and current  step unit time,         cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
              which is also equal to probability to die before dh         for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
              minus probability to die before dh-stepm .         for (k=1; k<=cptcovage;k++)
              In version up to 0.92 likelihood was computed          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
         as if date of death was unknown. Death was treated as any other        for (k=1; k<=cptcovprod;k++)
         health state: the date of the interview describes the actual state          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
         and not the date of a change in health state. The former idea was  
         to consider that at each interview the state was recorded  
         (healthy, disable or death) and IMaCh was corrected; but when we        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
         introduced the exact date of death then we should have modified        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
         the contribution of an exact death to the likelihood. This new        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,
         contribution is smaller and very dependent of the step unit                     pmij(pmmij,cov,ncovmodel,x,nlstate));
         stepm. It is no more the probability to die between last interview        savm=oldm;
         and month of death but the probability to survive from last        oldm=newm;
         interview up to one month before death multiplied by the      }
         probability to die within a month. Thanks to Chris      for(i=1; i<=nlstate+ndeath; i++)
         Jackson for correcting this bug.  Former versions increased        for(j=1;j<=nlstate+ndeath;j++) {
         mortality artificially. The bad side is that we add another loop          po[i][j][h]=newm[i][j];
         which slows down the processing. The difference can be up to 10%          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
         lower mortality.           */
           */        }
           lli=log(out[s1][s2] - savm[s1][s2]);    } /* end h */
     return po;
   }
         } else if  (s2==-2) {  
           for (j=1,survp=0. ; j<=nlstate; j++)   
             survp += out[s1][j];  /*************** log-likelihood *************/
           lli= survp;  double func( double *x)
         }  {
             int i, ii, j, k, mi, d, kk;
         else if  (s2==-4) {    double l, ll[NLSTATEMAX], cov[NCOVMAX];
           for (j=3,survp=0. ; j<=nlstate; j++)     double **out;
             survp += out[s1][j];    double sw; /* Sum of weights */
           lli= survp;    double lli; /* Individual log likelihood */
         }    int s1, s2;
             double bbh, survp;
         else if  (s2==-5) {    long ipmx;
           for (j=1,survp=0. ; j<=2; j++)     /*extern weight */
             survp += out[s1][j];    /* We are differentiating ll according to initial status */
           lli= survp;    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
         }    /*for(i=1;i<imx;i++)
       printf(" %d\n",s[4][i]);
     */
         else{    cov[1]=1.;
           lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */  
           /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */    for(k=1; k<=nlstate; k++) ll[k]=0.;
         }   
         /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/    if(mle==1){
         /*if(lli ==000.0)*/      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         ipmx +=1;        for(mi=1; mi<= wav[i]-1; mi++){
         sw += weight[i];          for (ii=1;ii<=nlstate+ndeath;ii++)
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;            for (j=1;j<=nlstate+ndeath;j++){
       } /* end of wave */              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     } /* end of individual */              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   }  else if(mle==2){            }
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){          for(d=0; d<dh[mi][i]; d++){
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];            newm=savm;
       for(mi=1; mi<= wav[i]-1; mi++){            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         for (ii=1;ii<=nlstate+ndeath;ii++)            for (kk=1; kk<=cptcovage;kk++) {
           for (j=1;j<=nlstate+ndeath;j++){              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);            }
             savm[ii][j]=(ii==j ? 1.0 : 0.0);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
           }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         for(d=0; d<=dh[mi][i]; d++){            savm=oldm;
           newm=savm;            oldm=newm;
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;          } /* end mult */
           for (kk=1; kk<=cptcovage;kk++) {       
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
           }          /* But now since version 0.9 we anticipate for bias at large stepm.
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,           * If stepm is larger than one month (smallest stepm) and if the exact delay
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));           * (in months) between two waves is not a multiple of stepm, we rounded to
           savm=oldm;           * the nearest (and in case of equal distance, to the lowest) interval but now
           oldm=newm;           * we keep into memory the bias bh[mi][i] and also the previous matrix product
         } /* end mult */           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
                  * probability in order to take into account the bias as a fraction of the way
         s1=s[mw[mi][i]][i];           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
         s2=s[mw[mi+1][i]][i];           * -stepm/2 to stepm/2 .
         bbh=(double)bh[mi][i]/(double)stepm;            * For stepm=1 the results are the same as for previous versions of Imach.
         lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */           * For stepm > 1 the results are less biased than in previous versions.
         ipmx +=1;           */
         sw += weight[i];          s1=s[mw[mi][i]][i];
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;          s2=s[mw[mi+1][i]][i];
       } /* end of wave */          bbh=(double)bh[mi][i]/(double)stepm;
     } /* end of individual */          /* bias bh is positive if real duration
   }  else if(mle==3){  /* exponential inter-extrapolation */           * is higher than the multiple of stepm and negative otherwise.
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){           */
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
       for(mi=1; mi<= wav[i]-1; mi++){          if( s2 > nlstate){
         for (ii=1;ii<=nlstate+ndeath;ii++)            /* i.e. if s2 is a death state and if the date of death is known
           for (j=1;j<=nlstate+ndeath;j++){               then the contribution to the likelihood is the probability to
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);               die between last step unit time and current  step unit time,
             savm[ii][j]=(ii==j ? 1.0 : 0.0);               which is also equal to probability to die before dh
           }               minus probability to die before dh-stepm .
         for(d=0; d<dh[mi][i]; d++){               In version up to 0.92 likelihood was computed
           newm=savm;          as if date of death was unknown. Death was treated as any other
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;          health state: the date of the interview describes the actual state
           for (kk=1; kk<=cptcovage;kk++) {          and not the date of a change in health state. The former idea was
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];          to consider that at each interview the state was recorded
           }          (healthy, disable or death) and IMaCh was corrected; but when we
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,          introduced the exact date of death then we should have modified
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));          the contribution of an exact death to the likelihood. This new
           savm=oldm;          contribution is smaller and very dependent of the step unit
           oldm=newm;          stepm. It is no more the probability to die between last interview
         } /* end mult */          and month of death but the probability to survive from last
                 interview up to one month before death multiplied by the
         s1=s[mw[mi][i]][i];          probability to die within a month. Thanks to Chris
         s2=s[mw[mi+1][i]][i];          Jackson for correcting this bug.  Former versions increased
         bbh=(double)bh[mi][i]/(double)stepm;           mortality artificially. The bad side is that we add another loop
         lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */          which slows down the processing. The difference can be up to 10%
         ipmx +=1;          lower mortality.
         sw += weight[i];            */
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;            lli=log(out[s1][s2] - savm[s1][s2]);
       } /* end of wave */  
     } /* end of individual */  
   }else if (mle==4){  /* ml=4 no inter-extrapolation */          } else if  (s2==-2) {
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){            for (j=1,survp=0. ; j<=nlstate; j++)
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
       for(mi=1; mi<= wav[i]-1; mi++){            /*survp += out[s1][j]; */
         for (ii=1;ii<=nlstate+ndeath;ii++)            lli= log(survp);
           for (j=1;j<=nlstate+ndeath;j++){          }
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);         
             savm[ii][j]=(ii==j ? 1.0 : 0.0);          else if  (s2==-4) {
           }            for (j=3,survp=0. ; j<=nlstate; j++)  
         for(d=0; d<dh[mi][i]; d++){              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
           newm=savm;            lli= log(survp);
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;          }
           for (kk=1; kk<=cptcovage;kk++) {  
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];          else if  (s2==-5) {
           }            for (j=1,survp=0. ; j<=2; j++)  
                       survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,            lli= log(survp);
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));          }
           savm=oldm;         
           oldm=newm;          else{
         } /* end mult */            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
                   /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
         s1=s[mw[mi][i]][i];          }
         s2=s[mw[mi+1][i]][i];          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
         if( s2 > nlstate){           /*if(lli ==000.0)*/
           lli=log(out[s1][s2] - savm[s1][s2]);          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
         }else{          ipmx +=1;
           lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */          sw += weight[i];
         }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         ipmx +=1;        } /* end of wave */
         sw += weight[i];      } /* end of individual */
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;    }  else if(mle==2){
 /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       } /* end of wave */        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     } /* end of individual */        for(mi=1; mi<= wav[i]-1; mi++){
   }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */          for (ii=1;ii<=nlstate+ndeath;ii++)
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){            for (j=1;j<=nlstate+ndeath;j++){
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       for(mi=1; mi<= wav[i]-1; mi++){              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         for (ii=1;ii<=nlstate+ndeath;ii++)            }
           for (j=1;j<=nlstate+ndeath;j++){          for(d=0; d<=dh[mi][i]; d++){
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);            newm=savm;
             savm[ii][j]=(ii==j ? 1.0 : 0.0);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           }            for (kk=1; kk<=cptcovage;kk++) {
         for(d=0; d<dh[mi][i]; d++){              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           newm=savm;            }
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
           for (kk=1; kk<=cptcovage;kk++) {                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];            savm=oldm;
           }            oldm=newm;
                   } /* end mult */
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,       
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));          s1=s[mw[mi][i]][i];
           savm=oldm;          s2=s[mw[mi+1][i]][i];
           oldm=newm;          bbh=(double)bh[mi][i]/(double)stepm;
         } /* end mult */          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
                 ipmx +=1;
         s1=s[mw[mi][i]][i];          sw += weight[i];
         s2=s[mw[mi+1][i]][i];          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */        } /* end of wave */
         ipmx +=1;      } /* end of individual */
         sw += weight[i];    }  else if(mle==3){  /* exponential inter-extrapolation */
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       } /* end of wave */        for(mi=1; mi<= wav[i]-1; mi++){
     } /* end of individual */          for (ii=1;ii<=nlstate+ndeath;ii++)
   } /* End of if */            for (j=1;j<=nlstate+ndeath;j++){
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */            }
   return -l;          for(d=0; d<dh[mi][i]; d++){
 }            newm=savm;
             cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 /*************** log-likelihood *************/            for (kk=1; kk<=cptcovage;kk++) {
 double funcone( double *x)              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 {            }
   /* Same as likeli but slower because of a lot of printf and if */            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   int i, ii, j, k, mi, d, kk;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   double l, ll[NLSTATEMAX], cov[NCOVMAX];            savm=oldm;
   double **out;            oldm=newm;
   double lli; /* Individual log likelihood */          } /* end mult */
   double llt;       
   int s1, s2;          s1=s[mw[mi][i]][i];
   double bbh, survp;          s2=s[mw[mi+1][i]][i];
   /*extern weight */          bbh=(double)bh[mi][i]/(double)stepm;
   /* We are differentiating ll according to initial status */          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/          ipmx +=1;
   /*for(i=1;i<imx;i++)           sw += weight[i];
     printf(" %d\n",s[4][i]);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   */        } /* end of wave */
   cov[1]=1.;      } /* end of individual */
     }else if (mle==4){  /* ml=4 no inter-extrapolation */
   for(k=1; k<=nlstate; k++) ll[k]=0.;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){        for(mi=1; mi<= wav[i]-1; mi++){
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];          for (ii=1;ii<=nlstate+ndeath;ii++)
     for(mi=1; mi<= wav[i]-1; mi++){            for (j=1;j<=nlstate+ndeath;j++){
       for (ii=1;ii<=nlstate+ndeath;ii++)              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         for (j=1;j<=nlstate+ndeath;j++){              savm[ii][j]=(ii==j ? 1.0 : 0.0);
           oldm[ii][j]=(ii==j ? 1.0 : 0.0);            }
           savm[ii][j]=(ii==j ? 1.0 : 0.0);          for(d=0; d<dh[mi][i]; d++){
         }            newm=savm;
       for(d=0; d<dh[mi][i]; d++){            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         newm=savm;            for (kk=1; kk<=cptcovage;kk++) {
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         for (kk=1; kk<=cptcovage;kk++) {            }
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];         
         }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));            savm=oldm;
         savm=oldm;            oldm=newm;
         oldm=newm;          } /* end mult */
       } /* end mult */       
                 s1=s[mw[mi][i]][i];
       s1=s[mw[mi][i]][i];          s2=s[mw[mi+1][i]][i];
       s2=s[mw[mi+1][i]][i];          if( s2 > nlstate){
       bbh=(double)bh[mi][i]/(double)stepm;             lli=log(out[s1][s2] - savm[s1][s2]);
       /* bias is positive if real duration          }else{
        * is higher than the multiple of stepm and negative otherwise.            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
        */          }
       if( s2 > nlstate && (mle <5) ){  /* Jackson */          ipmx +=1;
         lli=log(out[s1][s2] - savm[s1][s2]);          sw += weight[i];
       } else if (mle==1){          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
       } else if(mle==2){        } /* end of wave */
         lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */      } /* end of individual */
       } else if(mle==3){  /* exponential inter-extrapolation */    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
         lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       } else if (mle==4){  /* mle=4 no inter-extrapolation */        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         lli=log(out[s1][s2]); /* Original formula */        for(mi=1; mi<= wav[i]-1; mi++){
       } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */          for (ii=1;ii<=nlstate+ndeath;ii++)
         lli=log(out[s1][s2]); /* Original formula */            for (j=1;j<=nlstate+ndeath;j++){
       } /* End of if */              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       ipmx +=1;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       sw += weight[i];            }
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;          for(d=0; d<dh[mi][i]; d++){
 /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */            newm=savm;
       if(globpr){            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         fprintf(ficresilk,"%9d %6d %1d %1d %1d %1d %3d %10.6f %6.4f\            for (kk=1; kk<=cptcovage;kk++) {
  %10.6f %10.6f %10.6f ", \              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
                 num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],            }
                 2*weight[i]*lli,out[s1][s2],savm[s1][s2]);         
         for(k=1,llt=0.,l=0.; k<=nlstate; k++){            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
           llt +=ll[k]*gipmx/gsw;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);            savm=oldm;
         }            oldm=newm;
         fprintf(ficresilk," %10.6f\n", -llt);          } /* end mult */
       }       
     } /* end of wave */          s1=s[mw[mi][i]][i];
   } /* end of individual */          s2=s[mw[mi+1][i]][i];
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */          ipmx +=1;
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */          sw += weight[i];
   if(globpr==0){ /* First time we count the contributions and weights */          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     gipmx=ipmx;          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
     gsw=sw;        } /* end of wave */
   }      } /* end of individual */
   return -l;    } /* End of if */
 }    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
     /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
     l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
 /*************** function likelione ***********/    return -l;
 void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))  }
 {  
   /* This routine should help understanding what is done with   /*************** log-likelihood *************/
      the selection of individuals/waves and  double funcone( double *x)
      to check the exact contribution to the likelihood.  {
      Plotting could be done.    /* Same as likeli but slower because of a lot of printf and if */
    */    int i, ii, j, k, mi, d, kk;
   int k;    double l, ll[NLSTATEMAX], cov[NCOVMAX];
     double **out;
   if(*globpri !=0){ /* Just counts and sums, no printings */    double lli; /* Individual log likelihood */
     strcpy(fileresilk,"ilk");     double llt;
     strcat(fileresilk,fileres);    int s1, s2;
     if((ficresilk=fopen(fileresilk,"w"))==NULL) {    double bbh, survp;
       printf("Problem with resultfile: %s\n", fileresilk);    /*extern weight */
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);    /* We are differentiating ll according to initial status */
     }    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");    /*for(i=1;i<imx;i++)
     fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");      printf(" %d\n",s[4][i]);
     /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */    */
     for(k=1; k<=nlstate; k++)     cov[1]=1.;
       fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);  
     fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");    for(k=1; k<=nlstate; k++) ll[k]=0.;
   }  
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   *fretone=(*funcone)(p);      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   if(*globpri !=0){      for(mi=1; mi<= wav[i]-1; mi++){
     fclose(ficresilk);        for (ii=1;ii<=nlstate+ndeath;ii++)
     fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));          for (j=1;j<=nlstate+ndeath;j++){
     fflush(fichtm);             oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   }             savm[ii][j]=(ii==j ? 1.0 : 0.0);
   return;          }
 }        for(d=0; d<dh[mi][i]; d++){
           newm=savm;
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 /*********** Maximum Likelihood Estimation ***************/          for (kk=1; kk<=cptcovage;kk++) {
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))          }
 {          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   int i,j, iter;                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   double **xi;          savm=oldm;
   double fret;          oldm=newm;
   double fretone; /* Only one call to likelihood */        } /* end mult */
   /*  char filerespow[FILENAMELENGTH];*/       
   xi=matrix(1,npar,1,npar);        s1=s[mw[mi][i]][i];
   for (i=1;i<=npar;i++)        s2=s[mw[mi+1][i]][i];
     for (j=1;j<=npar;j++)        bbh=(double)bh[mi][i]/(double)stepm;
       xi[i][j]=(i==j ? 1.0 : 0.0);        /* bias is positive if real duration
   printf("Powell\n");  fprintf(ficlog,"Powell\n");         * is higher than the multiple of stepm and negative otherwise.
   strcpy(filerespow,"pow");          */
   strcat(filerespow,fileres);        if( s2 > nlstate && (mle <5) ){  /* Jackson */
   if((ficrespow=fopen(filerespow,"w"))==NULL) {          lli=log(out[s1][s2] - savm[s1][s2]);
     printf("Problem with resultfile: %s\n", filerespow);        } else if  (s2==-2) {
     fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);          for (j=1,survp=0. ; j<=nlstate; j++)
   }            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   fprintf(ficrespow,"# Powell\n# iter -2*LL");          lli= log(survp);
   for (i=1;i<=nlstate;i++)        }else if (mle==1){
     for(j=1;j<=nlstate+ndeath;j++)          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
       if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);        } else if(mle==2){
   fprintf(ficrespow,"\n");          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
         } else if(mle==3){  /* exponential inter-extrapolation */
   powell(p,xi,npar,ftol,&iter,&fret,func);          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
         } else if (mle==4){  /* mle=4 no inter-extrapolation */
   fclose(ficrespow);          lli=log(out[s1][s2]); /* Original formula */
   printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
   fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));          lli=log(out[s1][s2]); /* Original formula */
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));        } /* End of if */
         ipmx +=1;
 }        sw += weight[i];
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 /**** Computes Hessian and covariance matrix ***/  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))        if(globpr){
 {          fprintf(ficresilk,"%9d %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
   double  **a,**y,*x,pd;   %11.6f %11.6f %11.6f ", \
   double **hess;                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
   int i, j,jk;                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
   int *indx;          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
             llt +=ll[k]*gipmx/gsw;
   double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
   double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);          }
   void lubksb(double **a, int npar, int *indx, double b[]) ;          fprintf(ficresilk," %10.6f\n", -llt);
   void ludcmp(double **a, int npar, int *indx, double *d) ;        }
   double gompertz(double p[]);      } /* end of wave */
   hess=matrix(1,npar,1,npar);    } /* end of individual */
     for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   printf("\nCalculation of the hessian matrix. Wait...\n");    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   for (i=1;i<=npar;i++){    if(globpr==0){ /* First time we count the contributions and weights */
     printf("%d",i);fflush(stdout);      gipmx=ipmx;
     fprintf(ficlog,"%d",i);fflush(ficlog);      gsw=sw;
        }
      hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);    return -l;
       }
     /*  printf(" %f ",p[i]);  
         printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/  
   }  /*************** function likelione ***********/
     void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
   for (i=1;i<=npar;i++) {  {
     for (j=1;j<=npar;j++)  {    /* This routine should help understanding what is done with
       if (j>i) {        the selection of individuals/waves and
         printf(".%d%d",i,j);fflush(stdout);       to check the exact contribution to the likelihood.
         fprintf(ficlog,".%d%d",i,j);fflush(ficlog);       Plotting could be done.
         hess[i][j]=hessij(p,delti,i,j,func,npar);     */
             int k;
         hess[j][i]=hess[i][j];      
         /*printf(" %lf ",hess[i][j]);*/    if(*globpri !=0){ /* Just counts and sums, no printings */
       }      strcpy(fileresilk,"ilk");
     }      strcat(fileresilk,fileres);
   }      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
   printf("\n");        printf("Problem with resultfile: %s\n", fileresilk);
   fprintf(ficlog,"\n");        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
       }
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
   fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
         /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
   a=matrix(1,npar,1,npar);      for(k=1; k<=nlstate; k++)
   y=matrix(1,npar,1,npar);        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
   x=vector(1,npar);      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
   indx=ivector(1,npar);    }
   for (i=1;i<=npar;i++)  
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];    *fretone=(*funcone)(p);
   ludcmp(a,npar,indx,&pd);    if(*globpri !=0){
       fclose(ficresilk);
   for (j=1;j<=npar;j++) {      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
     for (i=1;i<=npar;i++) x[i]=0;      fflush(fichtm);
     x[j]=1;    }
     lubksb(a,npar,indx,x);    return;
     for (i=1;i<=npar;i++){   }
       matcov[i][j]=x[i];  
     }  
   }  /*********** Maximum Likelihood Estimation ***************/
   
   printf("\n#Hessian matrix#\n");  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
   fprintf(ficlog,"\n#Hessian matrix#\n");  {
   for (i=1;i<=npar;i++) {     int i,j, iter;
     for (j=1;j<=npar;j++) {     double **xi;
       printf("%.3e ",hess[i][j]);    double fret;
       fprintf(ficlog,"%.3e ",hess[i][j]);    double fretone; /* Only one call to likelihood */
     }    /*  char filerespow[FILENAMELENGTH];*/
     printf("\n");    xi=matrix(1,npar,1,npar);
     fprintf(ficlog,"\n");    for (i=1;i<=npar;i++)
   }      for (j=1;j<=npar;j++)
         xi[i][j]=(i==j ? 1.0 : 0.0);
   /* Recompute Inverse */    printf("Powell\n");  fprintf(ficlog,"Powell\n");
   for (i=1;i<=npar;i++)    strcpy(filerespow,"pow");
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];    strcat(filerespow,fileres);
   ludcmp(a,npar,indx,&pd);    if((ficrespow=fopen(filerespow,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", filerespow);
   /*  printf("\n#Hessian matrix recomputed#\n");      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
     }
   for (j=1;j<=npar;j++) {    fprintf(ficrespow,"# Powell\n# iter -2*LL");
     for (i=1;i<=npar;i++) x[i]=0;    for (i=1;i<=nlstate;i++)
     x[j]=1;      for(j=1;j<=nlstate+ndeath;j++)
     lubksb(a,npar,indx,x);        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
     for (i=1;i<=npar;i++){     fprintf(ficrespow,"\n");
       y[i][j]=x[i];  
       printf("%.3e ",y[i][j]);    powell(p,xi,npar,ftol,&iter,&fret,func);
       fprintf(ficlog,"%.3e ",y[i][j]);  
     }    free_matrix(xi,1,npar,1,npar);
     printf("\n");    fclose(ficrespow);
     fprintf(ficlog,"\n");    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
   }    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   */    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   
   free_matrix(a,1,npar,1,npar);  }
   free_matrix(y,1,npar,1,npar);  
   free_vector(x,1,npar);  /**** Computes Hessian and covariance matrix ***/
   free_ivector(indx,1,npar);  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
   free_matrix(hess,1,npar,1,npar);  {
     double  **a,**y,*x,pd;
     double **hess;
 }    int i, j,jk;
     int *indx;
 /*************** hessian matrix ****************/  
 double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
 {    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
   int i;    void lubksb(double **a, int npar, int *indx, double b[]) ;
   int l=1, lmax=20;    void ludcmp(double **a, int npar, int *indx, double *d) ;
   double k1,k2;    double gompertz(double p[]);
   double p2[NPARMAX+1];    hess=matrix(1,npar,1,npar);
   double res;  
   double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;    printf("\nCalculation of the hessian matrix. Wait...\n");
   double fx;    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
   int k=0,kmax=10;    for (i=1;i<=npar;i++){
   double l1;      printf("%d",i);fflush(stdout);
       fprintf(ficlog,"%d",i);fflush(ficlog);
   fx=func(x);     
   for (i=1;i<=npar;i++) p2[i]=x[i];       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
   for(l=0 ; l <=lmax; l++){     
     l1=pow(10,l);      /*  printf(" %f ",p[i]);
     delts=delt;          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
     for(k=1 ; k <kmax; k=k+1){    }
       delt = delta*(l1*k);   
       p2[theta]=x[theta] +delt;    for (i=1;i<=npar;i++) {
       k1=func(p2)-fx;      for (j=1;j<=npar;j++)  {
       p2[theta]=x[theta]-delt;        if (j>i) {
       k2=func(p2)-fx;          printf(".%d%d",i,j);fflush(stdout);
       /*res= (k1-2.0*fx+k2)/delt/delt; */          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */          hess[i][j]=hessij(p,delti,i,j,func,npar);
                
 #ifdef DEBUG          hess[j][i]=hess[i][j];    
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);          /*printf(" %lf ",hess[i][j]);*/
       fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);        }
 #endif      }
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */    }
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){    printf("\n");
         k=kmax;    fprintf(ficlog,"\n");
       }  
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
         k=kmax; l=lmax*10.;    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
       }   
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){     a=matrix(1,npar,1,npar);
         delts=delt;    y=matrix(1,npar,1,npar);
       }    x=vector(1,npar);
     }    indx=ivector(1,npar);
   }    for (i=1;i<=npar;i++)
   delti[theta]=delts;      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
   return res;     ludcmp(a,npar,indx,&pd);
     
 }    for (j=1;j<=npar;j++) {
       for (i=1;i<=npar;i++) x[i]=0;
 double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)      x[j]=1;
 {      lubksb(a,npar,indx,x);
   int i;      for (i=1;i<=npar;i++){
   int l=1, l1, lmax=20;        matcov[i][j]=x[i];
   double k1,k2,k3,k4,res,fx;      }
   double p2[NPARMAX+1];    }
   int k;  
     printf("\n#Hessian matrix#\n");
   fx=func(x);    fprintf(ficlog,"\n#Hessian matrix#\n");
   for (k=1; k<=2; k++) {    for (i=1;i<=npar;i++) {
     for (i=1;i<=npar;i++) p2[i]=x[i];      for (j=1;j<=npar;j++) {
     p2[thetai]=x[thetai]+delti[thetai]/k;        printf("%.3e ",hess[i][j]);
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;        fprintf(ficlog,"%.3e ",hess[i][j]);
     k1=func(p2)-fx;      }
         printf("\n");
     p2[thetai]=x[thetai]+delti[thetai]/k;      fprintf(ficlog,"\n");
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;    }
     k2=func(p2)-fx;  
       /* Recompute Inverse */
     p2[thetai]=x[thetai]-delti[thetai]/k;    for (i=1;i<=npar;i++)
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
     k3=func(p2)-fx;    ludcmp(a,npar,indx,&pd);
     
     p2[thetai]=x[thetai]-delti[thetai]/k;    /*  printf("\n#Hessian matrix recomputed#\n");
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;  
     k4=func(p2)-fx;    for (j=1;j<=npar;j++) {
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */      for (i=1;i<=npar;i++) x[i]=0;
 #ifdef DEBUG      x[j]=1;
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);      lubksb(a,npar,indx,x);
     fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);      for (i=1;i<=npar;i++){
 #endif        y[i][j]=x[i];
   }        printf("%.3e ",y[i][j]);
   return res;        fprintf(ficlog,"%.3e ",y[i][j]);
 }      }
       printf("\n");
 /************** Inverse of matrix **************/      fprintf(ficlog,"\n");
 void ludcmp(double **a, int n, int *indx, double *d)     }
 {     */
   int i,imax,j,k;   
   double big,dum,sum,temp;     free_matrix(a,1,npar,1,npar);
   double *vv;     free_matrix(y,1,npar,1,npar);
      free_vector(x,1,npar);
   vv=vector(1,n);     free_ivector(indx,1,npar);
   *d=1.0;     free_matrix(hess,1,npar,1,npar);
   for (i=1;i<=n;i++) {   
     big=0.0;   
     for (j=1;j<=n;j++)   }
       if ((temp=fabs(a[i][j])) > big) big=temp;   
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");   /*************** hessian matrix ****************/
     vv[i]=1.0/big;   double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
   }   {
   for (j=1;j<=n;j++) {     int i;
     for (i=1;i<j;i++) {     int l=1, lmax=20;
       sum=a[i][j];     double k1,k2;
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];     double p2[NPARMAX+1];
       a[i][j]=sum;     double res;
     }     double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
     big=0.0;     double fx;
     for (i=j;i<=n;i++) {     int k=0,kmax=10;
       sum=a[i][j];     double l1;
       for (k=1;k<j;k++)   
         sum -= a[i][k]*a[k][j];     fx=func(x);
       a[i][j]=sum;     for (i=1;i<=npar;i++) p2[i]=x[i];
       if ( (dum=vv[i]*fabs(sum)) >= big) {     for(l=0 ; l <=lmax; l++){
         big=dum;       l1=pow(10,l);
         imax=i;       delts=delt;
       }       for(k=1 ; k <kmax; k=k+1){
     }         delt = delta*(l1*k);
     if (j != imax) {         p2[theta]=x[theta] +delt;
       for (k=1;k<=n;k++) {         k1=func(p2)-fx;
         dum=a[imax][k];         p2[theta]=x[theta]-delt;
         a[imax][k]=a[j][k];         k2=func(p2)-fx;
         a[j][k]=dum;         /*res= (k1-2.0*fx+k2)/delt/delt; */
       }         res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
       *d = -(*d);        
       vv[imax]=vv[j];   #ifdef DEBUG
     }         printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
     indx[j]=imax;         fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
     if (a[j][j] == 0.0) a[j][j]=TINY;   #endif
     if (j != n) {         /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
       dum=1.0/(a[j][j]);         if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
       for (i=j+1;i<=n;i++) a[i][j] *= dum;           k=kmax;
     }         }
   }         else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
   free_vector(vv,1,n);  /* Doesn't work */          k=kmax; l=lmax*10.;
 ;        }
 }         else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){
           delts=delt;
 void lubksb(double **a, int n, int *indx, double b[])         }
 {       }
   int i,ii=0,ip,j;     }
   double sum;     delti[theta]=delts;
      return res;
   for (i=1;i<=n;i++) {    
     ip=indx[i];   }
     sum=b[ip];   
     b[ip]=b[i];   double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
     if (ii)   {
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];     int i;
     else if (sum) ii=i;     int l=1, l1, lmax=20;
     b[i]=sum;     double k1,k2,k3,k4,res,fx;
   }     double p2[NPARMAX+1];
   for (i=n;i>=1;i--) {     int k;
     sum=b[i];   
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];     fx=func(x);
     b[i]=sum/a[i][i];     for (k=1; k<=2; k++) {
   }       for (i=1;i<=npar;i++) p2[i]=x[i];
 }       p2[thetai]=x[thetai]+delti[thetai]/k;
       p2[thetaj]=x[thetaj]+delti[thetaj]/k;
 /************ Frequencies ********************/      k1=func(p2)-fx;
 void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])   
 {  /* Some frequencies */      p2[thetai]=x[thetai]+delti[thetai]/k;
         p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;      k2=func(p2)-fx;
   int first;   
   double ***freq; /* Frequencies */      p2[thetai]=x[thetai]-delti[thetai]/k;
   double *pp, **prop;      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   double pos,posprop, k2, dateintsum=0,k2cpt=0;      k3=func(p2)-fx;
   FILE *ficresp;   
   char fileresp[FILENAMELENGTH];      p2[thetai]=x[thetai]-delti[thetai]/k;
         p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   pp=vector(1,nlstate);      k4=func(p2)-fx;
   prop=matrix(1,nlstate,iagemin,iagemax+3);      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
   strcpy(fileresp,"p");  #ifdef DEBUG
   strcat(fileresp,fileres);      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   if((ficresp=fopen(fileresp,"w"))==NULL) {      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
     printf("Problem with prevalence resultfile: %s\n", fileresp);  #endif
     fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);    }
     exit(0);    return res;
   }  }
   freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);  
   j1=0;  /************** Inverse of matrix **************/
     void ludcmp(double **a, int n, int *indx, double *d)
   j=cptcoveff;  {
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    int i,imax,j,k;
     double big,dum,sum,temp;
   first=1;    double *vv;
    
   for(k1=1; k1<=j;k1++){    vv=vector(1,n);
     for(i1=1; i1<=ncodemax[k1];i1++){    *d=1.0;
       j1++;    for (i=1;i<=n;i++) {
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);      big=0.0;
         scanf("%d", i);*/      for (j=1;j<=n;j++)
       for (i=-5; i<=nlstate+ndeath; i++)          if ((temp=fabs(a[i][j])) > big) big=temp;
         for (jk=-5; jk<=nlstate+ndeath; jk++)        if (big == 0.0) nrerror("Singular matrix in routine ludcmp");
           for(m=iagemin; m <= iagemax+3; m++)      vv[i]=1.0/big;
             freq[i][jk][m]=0;    }
     for (j=1;j<=n;j++) {
     for (i=1; i<=nlstate; i++)        for (i=1;i<j;i++) {
       for(m=iagemin; m <= iagemax+3; m++)        sum=a[i][j];
         prop[i][m]=0;        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];
               a[i][j]=sum;
       dateintsum=0;      }
       k2cpt=0;      big=0.0;
       for (i=1; i<=imx; i++) {      for (i=j;i<=n;i++) {
         bool=1;        sum=a[i][j];
         if  (cptcovn>0) {        for (k=1;k<j;k++)
           for (z1=1; z1<=cptcoveff; z1++)           sum -= a[i][k]*a[k][j];
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])         a[i][j]=sum;
               bool=0;        if ( (dum=vv[i]*fabs(sum)) >= big) {
         }          big=dum;
         if (bool==1){          imax=i;
           for(m=firstpass; m<=lastpass; m++){        }
             k2=anint[m][i]+(mint[m][i]/12.);      }
             /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/      if (j != imax) {
               if(agev[m][i]==0) agev[m][i]=iagemax+1;        for (k=1;k<=n;k++) {
               if(agev[m][i]==1) agev[m][i]=iagemax+2;          dum=a[imax][k];
               if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];          a[imax][k]=a[j][k];
               if (m<lastpass) {          a[j][k]=dum;
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];        }
                 freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];        *d = -(*d);
               }        vv[imax]=vv[j];
                     }
               if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {      indx[j]=imax;
                 dateintsum=dateintsum+k2;      if (a[j][j] == 0.0) a[j][j]=TINY;
                 k2cpt++;      if (j != n) {
               }        dum=1.0/(a[j][j]);
               /*}*/        for (i=j+1;i<=n;i++) a[i][j] *= dum;
           }      }
         }    }
       }    free_vector(vv,1,n);  /* Doesn't work */
          ;
       /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/  }
 fprintf(ficresp, "#Local time at start: %s", strstart);  
       if  (cptcovn>0) {  void lubksb(double **a, int n, int *indx, double b[])
         fprintf(ficresp, "\n#********** Variable ");   {
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    int i,ii=0,ip,j;
         fprintf(ficresp, "**********\n#");    double sum;
       }   
       for(i=1; i<=nlstate;i++)     for (i=1;i<=n;i++) {
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);      ip=indx[i];
       fprintf(ficresp, "\n");      sum=b[ip];
             b[ip]=b[i];
       for(i=iagemin; i <= iagemax+3; i++){      if (ii)
         if(i==iagemax+3){        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];
           fprintf(ficlog,"Total");      else if (sum) ii=i;
         }else{      b[i]=sum;
           if(first==1){    }
             first=0;    for (i=n;i>=1;i--) {
             printf("See log file for details...\n");      sum=b[i];
           }      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];
           fprintf(ficlog,"Age %d", i);      b[i]=sum/a[i][i];
         }    }
         for(jk=1; jk <=nlstate ; jk++){  }
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)  
             pp[jk] += freq[jk][m][i];   void pstamp(FILE *fichier)
         }  {
         for(jk=1; jk <=nlstate ; jk++){    fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
           for(m=-1, pos=0; m <=0 ; m++)  }
             pos += freq[jk][m][i];  
           if(pp[jk]>=1.e-10){  /************ Frequencies ********************/
             if(first==1){  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);  {  /* Some frequencies */
             }   
             fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
           }else{    int first;
             if(first==1)    double ***freq; /* Frequencies */
               printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);    double *pp, **prop;
             fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);    double pos,posprop, k2, dateintsum=0,k2cpt=0;
           }    char fileresp[FILENAMELENGTH];
         }   
     pp=vector(1,nlstate);
         for(jk=1; jk <=nlstate ; jk++){    prop=matrix(1,nlstate,iagemin,iagemax+3);
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)    strcpy(fileresp,"p");
             pp[jk] += freq[jk][m][i];    strcat(fileresp,fileres);
         }           if((ficresp=fopen(fileresp,"w"))==NULL) {
         for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){      printf("Problem with prevalence resultfile: %s\n", fileresp);
           pos += pp[jk];      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
           posprop += prop[jk][i];      exit(0);
         }    }
         for(jk=1; jk <=nlstate ; jk++){    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
           if(pos>=1.e-5){    j1=0;
             if(first==1)   
               printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);    j=cptcoveff;
             fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);    if (cptcovn<1) {j=1;ncodemax[1]=1;}
           }else{  
             if(first==1)    first=1;
               printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);  
             fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);    for(k1=1; k1<=j;k1++){
           }      for(i1=1; i1<=ncodemax[k1];i1++){
           if( i <= iagemax){        j1++;
             if(pos>=1.e-5){        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
               fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);          scanf("%d", i);*/
               /*probs[i][jk][j1]= pp[jk]/pos;*/        for (i=-5; i<=nlstate+ndeath; i++)  
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/          for (jk=-5; jk<=nlstate+ndeath; jk++)  
             }            for(m=iagemin; m <= iagemax+3; m++)
             else              freq[i][jk][m]=0;
               fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);  
           }      for (i=1; i<=nlstate; i++)  
         }        for(m=iagemin; m <= iagemax+3; m++)
                   prop[i][m]=0;
         for(jk=-1; jk <=nlstate+ndeath; jk++)       
           for(m=-1; m <=nlstate+ndeath; m++)        dateintsum=0;
             if(freq[jk][m][i] !=0 ) {        k2cpt=0;
             if(first==1)        for (i=1; i<=imx; i++) {
               printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);          bool=1;
               fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);          if  (cptcovn>0) {
             }            for (z1=1; z1<=cptcoveff; z1++)
         if(i <= iagemax)              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])
           fprintf(ficresp,"\n");                bool=0;
         if(first==1)          }
           printf("Others in log...\n");          if (bool==1){
         fprintf(ficlog,"\n");            for(m=firstpass; m<=lastpass; m++){
       }              k2=anint[m][i]+(mint[m][i]/12.);
     }              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
   }                if(agev[m][i]==0) agev[m][i]=iagemax+1;
   dateintmean=dateintsum/k2cpt;                 if(agev[m][i]==1) agev[m][i]=iagemax+2;
                  if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
   fclose(ficresp);                if (m<lastpass) {
   free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
   free_vector(pp,1,nlstate);                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
   free_matrix(prop,1,nlstate,iagemin, iagemax+3);                }
   /* End of Freq */               
 }                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
                   dateintsum=dateintsum+k2;
 /************ Prevalence ********************/                  k2cpt++;
 void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)                }
 {                  /*}*/
   /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people            }
      in each health status at the date of interview (if between dateprev1 and dateprev2).          }
      We still use firstpass and lastpass as another selection.        }
   */         
          /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;        pstamp(ficresp);
   double ***freq; /* Frequencies */        if  (cptcovn>0) {
   double *pp, **prop;          fprintf(ficresp, "\n#********** Variable ");
   double pos,posprop;           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   double  y2; /* in fractional years */          fprintf(ficresp, "**********\n#");
   int iagemin, iagemax;        }
         for(i=1; i<=nlstate;i++)
   iagemin= (int) agemin;          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
   iagemax= (int) agemax;        fprintf(ficresp, "\n");
   /*pp=vector(1,nlstate);*/       
   prop=matrix(1,nlstate,iagemin,iagemax+3);         for(i=iagemin; i <= iagemax+3; i++){
   /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/          if(i==iagemax+3){
   j1=0;            fprintf(ficlog,"Total");
             }else{
   j=cptcoveff;            if(first==1){
   if (cptcovn<1) {j=1;ncodemax[1]=1;}              first=0;
                 printf("See log file for details...\n");
   for(k1=1; k1<=j;k1++){            }
     for(i1=1; i1<=ncodemax[k1];i1++){            fprintf(ficlog,"Age %d", i);
       j1++;          }
                 for(jk=1; jk <=nlstate ; jk++){
       for (i=1; i<=nlstate; i++)              for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
         for(m=iagemin; m <= iagemax+3; m++)              pp[jk] += freq[jk][m][i];
           prop[i][m]=0.0;          }
                for(jk=1; jk <=nlstate ; jk++){
       for (i=1; i<=imx; i++) { /* Each individual */            for(m=-1, pos=0; m <=0 ; m++)
         bool=1;              pos += freq[jk][m][i];
         if  (cptcovn>0) {            if(pp[jk]>=1.e-10){
           for (z1=1; z1<=cptcoveff; z1++)               if(first==1){
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])               printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
               bool=0;              }
         }               fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
         if (bool==1) {             }else{
           for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/              if(first==1)
             y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
             if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
               if(agev[m][i]==0) agev[m][i]=iagemax+1;            }
               if(agev[m][i]==1) agev[m][i]=iagemax+2;          }
               if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m);   
               if (s[m][i]>0 && s[m][i]<=nlstate) {           for(jk=1; jk <=nlstate ; jk++){
                 /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
                 prop[s[m][i]][(int)agev[m][i]] += weight[i];              pp[jk] += freq[jk][m][i];
                 prop[s[m][i]][iagemax+3] += weight[i];           }      
               }           for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
             }            pos += pp[jk];
           } /* end selection of waves */            posprop += prop[jk][i];
         }          }
       }          for(jk=1; jk <=nlstate ; jk++){
       for(i=iagemin; i <= iagemax+3; i++){              if(pos>=1.e-5){
                       if(first==1)
         for(jk=1,posprop=0; jk <=nlstate ; jk++) {                 printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
           posprop += prop[jk][i];               fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
         }             }else{
               if(first==1)
         for(jk=1; jk <=nlstate ; jk++){                     printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
           if( i <=  iagemax){               fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
             if(posprop>=1.e-5){             }
               probs[i][jk][j1]= prop[jk][i]/posprop;            if( i <= iagemax){
             }               if(pos>=1.e-5){
           }                 fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
         }/* end jk */                 /*probs[i][jk][j1]= pp[jk]/pos;*/
       }/* end i */                 /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
     } /* end i1 */              }
   } /* end k1 */              else
                   fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
   /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/            }
   /*free_vector(pp,1,nlstate);*/          }
   free_matrix(prop,1,nlstate, iagemin,iagemax+3);         
 }  /* End of prevalence */          for(jk=-1; jk <=nlstate+ndeath; jk++)
             for(m=-1; m <=nlstate+ndeath; m++)
 /************* Waves Concatenation ***************/              if(freq[jk][m][i] !=0 ) {
               if(first==1)
 void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
 {                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.              }
      Death is a valid wave (if date is known).          if(i <= iagemax)
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i            fprintf(ficresp,"\n");
      dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]          if(first==1)
      and mw[mi+1][i]. dh depends on stepm.            printf("Others in log...\n");
      */          fprintf(ficlog,"\n");
         }
   int i, mi, m;      }
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;    }
      double sum=0., jmean=0.;*/    dateintmean=dateintsum/k2cpt;
   int first;   
   int j, k=0,jk, ju, jl;    fclose(ficresp);
   double sum=0.;    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
   first=0;    free_vector(pp,1,nlstate);
   jmin=1e+5;    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
   jmax=-1;    /* End of Freq */
   jmean=0.;  }
   for(i=1; i<=imx; i++){  
     mi=0;  /************ Prevalence ********************/
     m=firstpass;  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
     while(s[m][i] <= nlstate){  {  
       if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
         mw[++mi][i]=m;       in each health status at the date of interview (if between dateprev1 and dateprev2).
       if(m >=lastpass)       We still use firstpass and lastpass as another selection.
         break;    */
       else   
         m++;    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
     }/* end while */    double ***freq; /* Frequencies */
     if (s[m][i] > nlstate){    double *pp, **prop;
       mi++;     /* Death is another wave */    double pos,posprop;
       /* if(mi==0)  never been interviewed correctly before death */    double  y2; /* in fractional years */
          /* Only death is a correct wave */    int iagemin, iagemax;
       mw[mi][i]=m;  
     }    iagemin= (int) agemin;
     iagemax= (int) agemax;
     wav[i]=mi;    /*pp=vector(1,nlstate);*/
     if(mi==0){    prop=matrix(1,nlstate,iagemin,iagemax+3);
       nbwarn++;    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
       if(first==0){    j1=0;
         printf("Warning! None valid information for:%ld line=%d (skipped) and may be others, see log file\n",num[i],i);   
         first=1;    j=cptcoveff;
       }    if (cptcovn<1) {j=1;ncodemax[1]=1;}
       if(first==1){   
         fprintf(ficlog,"Warning! None valid information for:%ld line=%d (skipped)\n",num[i],i);    for(k1=1; k1<=j;k1++){
       }      for(i1=1; i1<=ncodemax[k1];i1++){
     } /* end mi==0 */        j1++;
   } /* End individuals */       
         for (i=1; i<=nlstate; i++)  
   for(i=1; i<=imx; i++){          for(m=iagemin; m <= iagemax+3; m++)
     for(mi=1; mi<wav[i];mi++){            prop[i][m]=0.0;
       if (stepm <=0)       
         dh[mi][i]=1;        for (i=1; i<=imx; i++) { /* Each individual */
       else{          bool=1;
         if (s[mw[mi+1][i]][i] > nlstate) { /* A death */          if  (cptcovn>0) {
           if (agedc[i] < 2*AGESUP) {            for (z1=1; z1<=cptcoveff; z1++)
             j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);               if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])
             if(j==0) j=1;  /* Survives at least one month after exam */                bool=0;
             else if(j<0){          }
               nberr++;          if (bool==1) {
               printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
               j=1; /* Temporary Dangerous patch */              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
               printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
               fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);                if(agev[m][i]==0) agev[m][i]=iagemax+1;
               fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
             }                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m);
             k=k+1;                if (s[m][i]>0 && s[m][i]<=nlstate) {
             if (j >= jmax) jmax=j;                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
             if (j <= jmin) jmin=j;                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
             sum=sum+j;                  prop[s[m][i]][iagemax+3] += weight[i];
             /*if (j<0) printf("j=%d num=%d \n",j,i);*/                }
             /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/              }
           }            } /* end selection of waves */
         }          }
         else{        }
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));        for(i=iagemin; i <= iagemax+3; i++){  
 /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */         
           for(jk=1,posprop=0; jk <=nlstate ; jk++) {
           k=k+1;            posprop += prop[jk][i];
           if (j >= jmax) jmax=j;          }
           else if (j <= jmin)jmin=j;  
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */          for(jk=1; jk <=nlstate ; jk++){    
           /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/            if( i <=  iagemax){
           if(j<0){              if(posprop>=1.e-5){
             nberr++;                probs[i][jk][j1]= prop[jk][i]/posprop;
             printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);              }
             fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);            }
           }          }/* end jk */
           sum=sum+j;        }/* end i */
         }      } /* end i1 */
         jk= j/stepm;    } /* end k1 */
         jl= j -jk*stepm;   
         ju= j -(jk+1)*stepm;    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
         if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */    /*free_vector(pp,1,nlstate);*/
           if(jl==0){    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
             dh[mi][i]=jk;  }  /* End of prevalence */
             bh[mi][i]=0;  
           }else{ /* We want a negative bias in order to only have interpolation ie  /************* Waves Concatenation ***************/
                   * at the price of an extra matrix product in likelihood */  
             dh[mi][i]=jk+1;  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
             bh[mi][i]=ju;  {
           }    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
         }else{       Death is a valid wave (if date is known).
           if(jl <= -ju){       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
             dh[mi][i]=jk;       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
             bh[mi][i]=jl;       /* bias is positive if real duration       and mw[mi+1][i]. dh depends on stepm.
                                  * is higher than the multiple of stepm and negative otherwise.       */
                                  */  
           }    int i, mi, m;
           else{    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
             dh[mi][i]=jk+1;       double sum=0., jmean=0.;*/
             bh[mi][i]=ju;    int first;
           }    int j, k=0,jk, ju, jl;
           if(dh[mi][i]==0){    double sum=0.;
             dh[mi][i]=1; /* At least one step */    first=0;
             bh[mi][i]=ju; /* At least one step */    jmin=1e+5;
             /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/    jmax=-1;
           }    jmean=0.;
         } /* end if mle */    for(i=1; i<=imx; i++){
       }      mi=0;
     } /* end wave */      m=firstpass;
   }      while(s[m][i] <= nlstate){
   jmean=sum/k;        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);          mw[++mi][i]=m;
   fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);        if(m >=lastpass)
  }          break;
         else
 /*********** Tricode ****************************/          m++;
 void tricode(int *Tvar, int **nbcode, int imx)      }/* end while */
 {      if (s[m][i] > nlstate){
           mi++;     /* Death is another wave */
   int Ndum[20],ij=1, k, j, i, maxncov=19;        /* if(mi==0)  never been interviewed correctly before death */
   int cptcode=0;           /* Only death is a correct wave */
   cptcoveff=0;         mw[mi][i]=m;
        }
   for (k=0; k<maxncov; k++) Ndum[k]=0;  
   for (k=1; k<=7; k++) ncodemax[k]=0;      wav[i]=mi;
       if(mi==0){
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {        nbwarn++;
     for (i=1; i<=imx; i++) { /*reads the data file to get the maximum         if(first==0){
                                modality*/           printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
       ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/          first=1;
       Ndum[ij]++; /*store the modality */        }
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/        if(first==1){
       if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable           fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
                                        Tvar[j]. If V=sex and male is 0 and         }
                                        female is 1, then  cptcode=1.*/      } /* end mi==0 */
     }    } /* End individuals */
   
     for (i=0; i<=cptcode; i++) {    for(i=1; i<=imx; i++){
       if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */      for(mi=1; mi<wav[i];mi++){
     }        if (stepm <=0)
           dh[mi][i]=1;
     ij=1;         else{
     for (i=1; i<=ncodemax[j]; i++) {          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
       for (k=0; k<= maxncov; k++) {            if (agedc[i] < 2*AGESUP) {
         if (Ndum[k] != 0) {              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);
           nbcode[Tvar[j]][ij]=k;               if(j==0) j=1;  /* Survives at least one month after exam */
           /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */              else if(j<0){
                           nberr++;
           ij++;                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
         }                j=1; /* Temporary Dangerous patch */
         if (ij > ncodemax[j]) break;                 printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
       }                  fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     }                 fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
   }                }
               k=k+1;
  for (k=0; k< maxncov; k++) Ndum[k]=0;              if (j >= jmax){
                 jmax=j;
  for (i=1; i<=ncovmodel-2; i++) {                 ijmax=i;
    /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/              }
    ij=Tvar[i];              if (j <= jmin){
    Ndum[ij]++;                jmin=j;
  }                ijmin=i;
               }
  ij=1;              sum=sum+j;
  for (i=1; i<= maxncov; i++) {              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
    if((Ndum[i]!=0) && (i<=ncovcol)){              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
      Tvaraff[ij]=i; /*For printing */            }
      ij++;          }
    }          else{
  }            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
    /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
  cptcoveff=ij-1; /*Number of simple covariates*/  
 }            k=k+1;
             if (j >= jmax) {
 /*********** Health Expectancies ****************/              jmax=j;
               ijmax=i;
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov,char strstart[] )            }
             else if (j <= jmin){
 {              jmin=j;
   /* Health expectancies */              ijmin=i;
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;            }
   double age, agelim, hf;            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
   double ***p3mat,***varhe;            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
   double **dnewm,**doldm;            if(j<0){
   double *xp;              nberr++;
   double **gp, **gm;              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   double ***gradg, ***trgradg;              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   int theta;            }
             sum=sum+j;
   varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);          }
   xp=vector(1,npar);          jk= j/stepm;
   dnewm=matrix(1,nlstate*nlstate,1,npar);          jl= j -jk*stepm;
   doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);          ju= j -(jk+1)*stepm;
             if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
   fprintf(ficreseij,"# Local time at start: %s", strstart);            if(jl==0){
   fprintf(ficreseij,"# Health expectancies\n");              dh[mi][i]=jk;
   fprintf(ficreseij,"# Age");              bh[mi][i]=0;
   for(i=1; i<=nlstate;i++)            }else{ /* We want a negative bias in order to only have interpolation ie
     for(j=1; j<=nlstate;j++)                    * at the price of an extra matrix product in likelihood */
       fprintf(ficreseij," %1d-%1d (SE)",i,j);              dh[mi][i]=jk+1;
   fprintf(ficreseij,"\n");              bh[mi][i]=ju;
             }
   if(estepm < stepm){          }else{
     printf ("Problem %d lower than %d\n",estepm, stepm);            if(jl <= -ju){
   }              dh[mi][i]=jk;
   else  hstepm=estepm;                 bh[mi][i]=jl;       /* bias is positive if real duration
   /* We compute the life expectancy from trapezoids spaced every estepm months                                   * is higher than the multiple of stepm and negative otherwise.
    * This is mainly to measure the difference between two models: for example                                   */
    * if stepm=24 months pijx are given only every 2 years and by summing them            }
    * we are calculating an estimate of the Life Expectancy assuming a linear             else{
    * progression in between and thus overestimating or underestimating according              dh[mi][i]=jk+1;
    * to the curvature of the survival function. If, for the same date, we               bh[mi][i]=ju;
    * estimate the model with stepm=1 month, we can keep estepm to 24 months            }
    * to compare the new estimate of Life expectancy with the same linear             if(dh[mi][i]==0){
    * hypothesis. A more precise result, taking into account a more precise              dh[mi][i]=1; /* At least one step */
    * curvature will be obtained if estepm is as small as stepm. */              bh[mi][i]=ju; /* At least one step */
               /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
   /* For example we decided to compute the life expectancy with the smallest unit */            }
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.           } /* end if mle */
      nhstepm is the number of hstepm from age to agelim         }
      nstepm is the number of stepm from age to agelin.       } /* end wave */
      Look at hpijx to understand the reason of that which relies in memory size    }
      and note for a fixed period like estepm months */    jmean=sum/k;
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
      survival function given by stepm (the optimization length). Unfortunately it    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
      means that if the survival funtion is printed only each two years of age and if   }
      you sum them up and add 1 year (area under the trapezoids) you won't get the same   
      results. So we changed our mind and took the option of the best precision.  /*********** Tricode ****************************/
   */  void tricode(int *Tvar, int **nbcode, int imx)
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */   {
    
   agelim=AGESUP;    int Ndum[20],ij=1, k, j, i, maxncov=19;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    int cptcode=0;
     /* nhstepm age range expressed in number of stepm */    cptcoveff=0;
     nstepm=(int) rint((agelim-age)*YEARM/stepm);    
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */     for (k=0; k<maxncov; k++) Ndum[k]=0;
     /* if (stepm >= YEARM) hstepm=1;*/    for (k=1; k<=7; k++) ncodemax[k]=0;
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */  
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum
     gp=matrix(0,nhstepm,1,nlstate*nlstate);                                 modality*/
     gm=matrix(0,nhstepm,1,nlstate*nlstate);        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
         Ndum[ij]++; /*store the modality */
     /* Computed by stepm unit matrices, product of hstepm matrices, stored        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);                                           Tvar[j]. If V=sex and male is 0 and
                                           female is 1, then  cptcode=1.*/
       }
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */  
       for (i=0; i<=cptcode; i++) {
     /* Computing  Variances of health expectancies */        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
       }
      for(theta=1; theta <=npar; theta++){  
       for(i=1; i<=npar; i++){       ij=1;
         xp[i] = x[i] + (i==theta ?delti[theta]:0);      for (i=1; i<=ncodemax[j]; i++) {
       }        for (k=0; k<= maxncov; k++) {
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            if (Ndum[k] != 0) {
               nbcode[Tvar[j]][ij]=k;
       cptj=0;            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
       for(j=1; j<= nlstate; j++){           
         for(i=1; i<=nlstate; i++){            ij++;
           cptj=cptj+1;          }
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){          if (ij > ncodemax[j]) break;
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;        }  
           }      }
         }    }  
       }  
         for (k=0; k< maxncov; k++) Ndum[k]=0;
        
       for(i=1; i<=npar; i++)    for (i=1; i<=ncovmodel-2; i++) {
         xp[i] = x[i] - (i==theta ?delti[theta]:0);     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);       ij=Tvar[i];
            Ndum[ij]++;
       cptj=0;   }
       for(j=1; j<= nlstate; j++){  
         for(i=1;i<=nlstate;i++){   ij=1;
           cptj=cptj+1;   for (i=1; i<= maxncov; i++) {
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){     if((Ndum[i]!=0) && (i<=ncovcol)){
        Tvaraff[ij]=i; /*For printing */
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;       ij++;
           }     }
         }   }
       }   
       for(j=1; j<= nlstate*nlstate; j++)   cptcoveff=ij-1; /*Number of simple covariates*/
         for(h=0; h<=nhstepm-1; h++){  }
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];  
         }  /*********** Health Expectancies ****************/
      }   
      void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
 /* End theta */  
   {
      trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);    /* Health expectancies, no variances */
     int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;
      for(h=0; h<=nhstepm-1; h++)    double age, agelim, hf;
       for(j=1; j<=nlstate*nlstate;j++)    double ***p3mat;
         for(theta=1; theta <=npar; theta++)    double eip;
           trgradg[h][j][theta]=gradg[h][theta][j];  
          pstamp(ficreseij);
     fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
      for(i=1;i<=nlstate*nlstate;i++)    fprintf(ficreseij,"# Age");
       for(j=1;j<=nlstate*nlstate;j++)    for(i=1; i<=nlstate;i++){
         varhe[i][j][(int)age] =0.;      for(j=1; j<=nlstate;j++){
         fprintf(ficreseij," e%1d%1d ",i,j);
      printf("%d|",(int)age);fflush(stdout);      }
      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);      fprintf(ficreseij," e%1d. ",i);
      for(h=0;h<=nhstepm-1;h++){    }
       for(k=0;k<=nhstepm-1;k++){    fprintf(ficreseij,"\n");
         matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);  
         matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);   
         for(i=1;i<=nlstate*nlstate;i++)    if(estepm < stepm){
           for(j=1;j<=nlstate*nlstate;j++)      printf ("Problem %d lower than %d\n",estepm, stepm);
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;    }
       }    else  hstepm=estepm;  
     }    /* We compute the life expectancy from trapezoids spaced every estepm months
     /* Computing expectancies */     * This is mainly to measure the difference between two models: for example
     for(i=1; i<=nlstate;i++)     * if stepm=24 months pijx are given only every 2 years and by summing them
       for(j=1; j<=nlstate;j++)     * we are calculating an estimate of the Life Expectancy assuming a linear
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){     * progression in between and thus overestimating or underestimating according
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;     * to the curvature of the survival function. If, for the same date, we
                * estimate the model with stepm=1 month, we can keep estepm to 24 months
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/     * to compare the new estimate of Life expectancy with the same linear
      * hypothesis. A more precise result, taking into account a more precise
         }     * curvature will be obtained if estepm is as small as stepm. */
   
     fprintf(ficreseij,"%3.0f",age );    /* For example we decided to compute the life expectancy with the smallest unit */
     cptj=0;    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.
     for(i=1; i<=nlstate;i++)       nhstepm is the number of hstepm from age to agelim
       for(j=1; j<=nlstate;j++){       nstepm is the number of stepm from age to agelin.
         cptj++;       Look at hpijx to understand the reason of that which relies in memory size
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );       and note for a fixed period like estepm months */
       }    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
     fprintf(ficreseij,"\n");       survival function given by stepm (the optimization length). Unfortunately it
           means that if the survival funtion is printed only each two years of age and if
     free_matrix(gm,0,nhstepm,1,nlstate*nlstate);       you sum them up and add 1 year (area under the trapezoids) you won't get the same
     free_matrix(gp,0,nhstepm,1,nlstate*nlstate);       results. So we changed our mind and took the option of the best precision.
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);    */
     free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
   }    agelim=AGESUP;
   printf("\n");    /* If stepm=6 months */
   fprintf(ficlog,"\n");      /* Computed by stepm unit matrices, product of hstepm matrices, stored
          in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
   free_vector(xp,1,npar);     
   free_matrix(dnewm,1,nlstate*nlstate,1,npar);  /* nhstepm age range expressed in number of stepm */
   free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);    nstepm=(int) rint((agelim-bage)*YEARM/stepm);
   free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);    /* Typically if 20 years nstepm = 20*12/6=40 stepm */
 }    /* if (stepm >= YEARM) hstepm=1;*/
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
 /************ Variance ******************/    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])  
 {    for (age=bage; age<=fage; age ++){
   /* Variance of health expectancies */  
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/  
   /* double **newm;*/      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
   double **dnewm,**doldm;     
   double **dnewmp,**doldmp;      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   int i, j, nhstepm, hstepm, h, nstepm ;     
   int k, cptcode;      printf("%d|",(int)age);fflush(stdout);
   double *xp;      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
   double **gp, **gm;  /* for var eij */     
   double ***gradg, ***trgradg; /*for var eij */  
   double **gradgp, **trgradgp; /* for var p point j */      /* Computing expectancies */
   double *gpp, *gmp; /* for var p point j */      for(i=1; i<=nlstate;i++)
   double **varppt; /* for var p point j nlstate to nlstate+ndeath */        for(j=1; j<=nlstate;j++)
   double ***p3mat;          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
   double age,agelim, hf;            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
   double ***mobaverage;           
   int theta;            /*if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   char digit[4];  
   char digitp[25];          }
      
   char fileresprobmorprev[FILENAMELENGTH];      fprintf(ficreseij,"%3.0f",age );
       for(i=1; i<=nlstate;i++){
   if(popbased==1){        eip=0;
     if(mobilav!=0)        for(j=1; j<=nlstate;j++){
       strcpy(digitp,"-populbased-mobilav-");          eip +=eij[i][j][(int)age];
     else strcpy(digitp,"-populbased-nomobil-");          fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
   }        }
   else         fprintf(ficreseij,"%9.4f", eip );
     strcpy(digitp,"-stablbased-");      }
       fprintf(ficreseij,"\n");
   if (mobilav!=0) {     
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    }
     if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){    free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);    printf("\n");
       printf(" Error in movingaverage mobilav=%d\n",mobilav);    fprintf(ficlog,"\n");
     }   
   }  }
   
   strcpy(fileresprobmorprev,"prmorprev");   void cvevsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
   sprintf(digit,"%-d",ij);  
   /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/  {
   strcat(fileresprobmorprev,digit); /* Tvar to be done */    /* Covariances of health expectancies eij and of total life expectancies according
   strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */     to initial status i, ei. .
   strcat(fileresprobmorprev,fileres);    */
   if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
     printf("Problem with resultfile: %s\n", fileresprobmorprev);    double age, agelim, hf;
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);    double ***p3matp, ***p3matm, ***varhe;
   }    double **dnewm,**doldm;
   printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);    double *xp, *xm;
      double **gp, **gm;
   fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);    double ***gradg, ***trgradg;
   fprintf(ficresprobmorprev, "#Local time at start: %s", strstart);    int theta;
   fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);  
   fprintf(ficresprobmorprev,"# Age cov=%-d",ij);    double eip, vip;
   for(j=nlstate+1; j<=(nlstate+ndeath);j++){  
     fprintf(ficresprobmorprev," p.%-d SE",j);    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
     for(i=1; i<=nlstate;i++)    xp=vector(1,npar);
       fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);    xm=vector(1,npar);
   }      dnewm=matrix(1,nlstate*nlstate,1,npar);
   fprintf(ficresprobmorprev,"\n");    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
   fprintf(ficgp,"\n# Routine varevsij");   
   /* fprintf(fichtm, "#Local time at start: %s", strstart);*/    pstamp(ficresstdeij);
   fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");    fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
   fprintf(fichtm,"\n<br>%s  <br>\n",digitp);    fprintf(ficresstdeij,"# Age");
 /*   } */    for(i=1; i<=nlstate;i++){
   varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);      for(j=1; j<=nlstate;j++)
  fprintf(ficresvij, "#Local time at start: %s", strstart);        fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");      fprintf(ficresstdeij," e%1d. ",i);
   fprintf(ficresvij,"# Age");    }
   for(i=1; i<=nlstate;i++)    fprintf(ficresstdeij,"\n");
     for(j=1; j<=nlstate;j++)  
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);    pstamp(ficrescveij);
   fprintf(ficresvij,"\n");    fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
     fprintf(ficrescveij,"# Age");
   xp=vector(1,npar);    for(i=1; i<=nlstate;i++)
   dnewm=matrix(1,nlstate,1,npar);      for(j=1; j<=nlstate;j++){
   doldm=matrix(1,nlstate,1,nlstate);        cptj= (j-1)*nlstate+i;
   dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);        for(i2=1; i2<=nlstate;i2++)
   doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);          for(j2=1; j2<=nlstate;j2++){
             cptj2= (j2-1)*nlstate+i2;
   gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);            if(cptj2 <= cptj)
   gpp=vector(nlstate+1,nlstate+ndeath);              fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
   gmp=vector(nlstate+1,nlstate+ndeath);          }
   trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/      }
       fprintf(ficrescveij,"\n");
   if(estepm < stepm){   
     printf ("Problem %d lower than %d\n",estepm, stepm);    if(estepm < stepm){
   }      printf ("Problem %d lower than %d\n",estepm, stepm);
   else  hstepm=estepm;       }
   /* For example we decided to compute the life expectancy with the smallest unit */    else  hstepm=estepm;  
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.     /* We compute the life expectancy from trapezoids spaced every estepm months
      nhstepm is the number of hstepm from age to agelim      * This is mainly to measure the difference between two models: for example
      nstepm is the number of stepm from age to agelin.      * if stepm=24 months pijx are given only every 2 years and by summing them
      Look at hpijx to understand the reason of that which relies in memory size     * we are calculating an estimate of the Life Expectancy assuming a linear
      and note for a fixed period like k years */     * progression in between and thus overestimating or underestimating according
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the     * to the curvature of the survival function. If, for the same date, we
      survival function given by stepm (the optimization length). Unfortunately it     * estimate the model with stepm=1 month, we can keep estepm to 24 months
      means that if the survival funtion is printed every two years of age and if     * to compare the new estimate of Life expectancy with the same linear
      you sum them up and add 1 year (area under the trapezoids) you won't get the same      * hypothesis. A more precise result, taking into account a more precise
      results. So we changed our mind and took the option of the best precision.     * curvature will be obtained if estepm is as small as stepm. */
   */  
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */     /* For example we decided to compute the life expectancy with the smallest unit */
   agelim = AGESUP;    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */       nhstepm is the number of hstepm from age to agelim
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */        nstepm is the number of stepm from age to agelin.
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */       Look at hpijx to understand the reason of that which relies in memory size
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);       and note for a fixed period like estepm months */
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
     gp=matrix(0,nhstepm,1,nlstate);       survival function given by stepm (the optimization length). Unfortunately it
     gm=matrix(0,nhstepm,1,nlstate);       means that if the survival funtion is printed only each two years of age and if
        you sum them up and add 1 year (area under the trapezoids) you won't get the same
        results. So we changed our mind and took the option of the best precision.
     for(theta=1; theta <=npar; theta++){    */
       for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */
         xp[i] = x[i] + (i==theta ?delti[theta]:0);  
       }    /* If stepm=6 months */
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      /* nhstepm age range expressed in number of stepm */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    agelim=AGESUP;
     nstepm=(int) rint((agelim-bage)*YEARM/stepm);
       if (popbased==1) {    /* Typically if 20 years nstepm = 20*12/6=40 stepm */
         if(mobilav ==0){    /* if (stepm >= YEARM) hstepm=1;*/
           for(i=1; i<=nlstate;i++)    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
             prlim[i][i]=probs[(int)age][i][ij];   
         }else{ /* mobilav */     p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           for(i=1; i<=nlstate;i++)    p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             prlim[i][i]=mobaverage[(int)age][i][ij];    gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
         }    trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
       }    gp=matrix(0,nhstepm,1,nlstate*nlstate);
       gm=matrix(0,nhstepm,1,nlstate*nlstate);
       for(j=1; j<= nlstate; j++){  
         for(h=0; h<=nhstepm; h++){    for (age=bage; age<=fage; age ++){
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)  
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];      /* Computed by stepm unit matrices, product of hstepm matrices, stored
         }         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
       }   
       /* This for computing probability of death (h=1 means      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
          computed over hstepm matrices product = hstepm*stepm months)   
          as a weighted average of prlim.      /* Computing  Variances of health expectancies */
       */      /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
       for(j=nlstate+1;j<=nlstate+ndeath;j++){         decrease memory allocation */
         for(i=1,gpp[j]=0.; i<= nlstate; i++)      for(theta=1; theta <=npar; theta++){
           gpp[j] += prlim[i][i]*p3mat[i][j][1];        for(i=1; i<=npar; i++){
       }              xp[i] = x[i] + (i==theta ?delti[theta]:0);
       /* end probability of death */          xm[i] = x[i] - (i==theta ?delti[theta]:0);
         }
       for(i=1; i<=npar; i++) /* Computes gradient x - delta */        hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
         xp[i] = x[i] - (i==theta ?delti[theta]:0);        hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);     
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        for(j=1; j<= nlstate; j++){
            for(i=1; i<=nlstate; i++){
       if (popbased==1) {            for(h=0; h<=nhstepm-1; h++){
         if(mobilav ==0){              gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
           for(i=1; i<=nlstate;i++)              gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
             prlim[i][i]=probs[(int)age][i][ij];            }
         }else{ /* mobilav */           }
           for(i=1; i<=nlstate;i++)        }
             prlim[i][i]=mobaverage[(int)age][i][ij];       
         }        for(ij=1; ij<= nlstate*nlstate; ij++)
       }          for(h=0; h<=nhstepm-1; h++){
             gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
       for(j=1; j<= nlstate; j++){          }
         for(h=0; h<=nhstepm; h++){      }/* End theta */
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)     
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];     
         }      for(h=0; h<=nhstepm-1; h++)
       }        for(j=1; j<=nlstate*nlstate;j++)
       /* This for computing probability of death (h=1 means          for(theta=1; theta <=npar; theta++)
          computed over hstepm matrices product = hstepm*stepm months)             trgradg[h][j][theta]=gradg[h][theta][j];
          as a weighted average of prlim.     
       */  
       for(j=nlstate+1;j<=nlstate+ndeath;j++){       for(ij=1;ij<=nlstate*nlstate;ij++)
         for(i=1,gmp[j]=0.; i<= nlstate; i++)        for(ji=1;ji<=nlstate*nlstate;ji++)
          gmp[j] += prlim[i][i]*p3mat[i][j][1];          varhe[ij][ji][(int)age] =0.;
       }      
       /* end probability of death */       printf("%d|",(int)age);fflush(stdout);
        fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
       for(j=1; j<= nlstate; j++) /* vareij */       for(h=0;h<=nhstepm-1;h++){
         for(h=0; h<=nhstepm; h++){        for(k=0;k<=nhstepm-1;k++){
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
         }          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
           for(ij=1;ij<=nlstate*nlstate;ij++)
       for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */            for(ji=1;ji<=nlstate*nlstate;ji++)
         gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];              varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
       }        }
       }
     } /* End theta */  
       /* Computing expectancies */
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */      hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
       for(i=1; i<=nlstate;i++)
     for(h=0; h<=nhstepm; h++) /* veij */        for(j=1; j<=nlstate;j++)
       for(j=1; j<=nlstate;j++)          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
         for(theta=1; theta <=npar; theta++)            eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
           trgradg[h][j][theta]=gradg[h][theta][j];           
             /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
     for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */  
       for(theta=1; theta <=npar; theta++)          }
         trgradgp[j][theta]=gradgp[theta][j];  
         fprintf(ficresstdeij,"%3.0f",age );
       for(i=1; i<=nlstate;i++){
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */        eip=0.;
     for(i=1;i<=nlstate;i++)        vip=0.;
       for(j=1;j<=nlstate;j++)        for(j=1; j<=nlstate;j++){
         vareij[i][j][(int)age] =0.;          eip += eij[i][j][(int)age];
           for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
     for(h=0;h<=nhstepm;h++){            vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
       for(k=0;k<=nhstepm;k++){          fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);        }
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);        fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
         for(i=1;i<=nlstate;i++)      }
           for(j=1;j<=nlstate;j++)      fprintf(ficresstdeij,"\n");
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;  
       }      fprintf(ficrescveij,"%3.0f",age );
     }      for(i=1; i<=nlstate;i++)
           for(j=1; j<=nlstate;j++){
     /* pptj */          cptj= (j-1)*nlstate+i;
     matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);          for(i2=1; i2<=nlstate;i2++)
     matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);            for(j2=1; j2<=nlstate;j2++){
     for(j=nlstate+1;j<=nlstate+ndeath;j++)              cptj2= (j2-1)*nlstate+i2;
       for(i=nlstate+1;i<=nlstate+ndeath;i++)              if(cptj2 <= cptj)
         varppt[j][i]=doldmp[j][i];                fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
     /* end ppptj */            }
     /*  x centered again */        }
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);        fprintf(ficrescveij,"\n");
     prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);     
      }
     if (popbased==1) {    free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
       if(mobilav ==0){    free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
         for(i=1; i<=nlstate;i++)    free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
           prlim[i][i]=probs[(int)age][i][ij];    free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
       }else{ /* mobilav */     free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         for(i=1; i<=nlstate;i++)    free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           prlim[i][i]=mobaverage[(int)age][i][ij];    printf("\n");
       }    fprintf(ficlog,"\n");
     }  
                  free_vector(xm,1,npar);
     /* This for computing probability of death (h=1 means    free_vector(xp,1,npar);
        computed over hstepm (estepm) matrices product = hstepm*stepm months)     free_matrix(dnewm,1,nlstate*nlstate,1,npar);
        as a weighted average of prlim.    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
     */    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
     for(j=nlstate+1;j<=nlstate+ndeath;j++){  }
       for(i=1,gmp[j]=0.;i<= nlstate; i++)   
         gmp[j] += prlim[i][i]*p3mat[i][j][1];   /************ Variance ******************/
     }      void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
     /* end probability of death */  {
     /* Variance of health expectancies */
     fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){    /* double **newm;*/
       fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));    double **dnewm,**doldm;
       for(i=1; i<=nlstate;i++){    double **dnewmp,**doldmp;
         fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);    int i, j, nhstepm, hstepm, h, nstepm ;
       }    int k, cptcode;
     }     double *xp;
     fprintf(ficresprobmorprev,"\n");    double **gp, **gm;  /* for var eij */
     double ***gradg, ***trgradg; /*for var eij */
     fprintf(ficresvij,"%.0f ",age );    double **gradgp, **trgradgp; /* for var p point j */
     for(i=1; i<=nlstate;i++)    double *gpp, *gmp; /* for var p point j */
       for(j=1; j<=nlstate;j++){    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);    double ***p3mat;
       }    double age,agelim, hf;
     fprintf(ficresvij,"\n");    double ***mobaverage;
     free_matrix(gp,0,nhstepm,1,nlstate);    int theta;
     free_matrix(gm,0,nhstepm,1,nlstate);    char digit[4];
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);    char digitp[25];
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);  
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    char fileresprobmorprev[FILENAMELENGTH];
   } /* End age */  
   free_vector(gpp,nlstate+1,nlstate+ndeath);    if(popbased==1){
   free_vector(gmp,nlstate+1,nlstate+ndeath);      if(mobilav!=0)
   free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);        strcpy(digitp,"-populbased-mobilav-");
   free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/      else strcpy(digitp,"-populbased-nomobil-");
   fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");    }
   /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */    else
   fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");      strcpy(digitp,"-stablbased-");
 /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */  
 /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */    if (mobilav!=0) {
 /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));        printf(" Error in movingaverage mobilav=%d\n",mobilav);
   fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));      }
   fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);    }
   /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);  
 */    strcpy(fileresprobmorprev,"prmorprev");
 /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */    sprintf(digit,"%-d",ij);
   fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
     strcat(fileresprobmorprev,digit); /* Tvar to be done */
   free_vector(xp,1,npar);    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
   free_matrix(doldm,1,nlstate,1,nlstate);    strcat(fileresprobmorprev,fileres);
   free_matrix(dnewm,1,nlstate,1,npar);    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
   free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);      printf("Problem with resultfile: %s\n", fileresprobmorprev);
   free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
   free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);    }
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   fclose(ficresprobmorprev);   
   fflush(ficgp);    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   fflush(fichtm);     pstamp(ficresprobmorprev);
 }  /* end varevsij */    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
     fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
 /************ Variance of prevlim ******************/    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])      fprintf(ficresprobmorprev," p.%-d SE",j);
 {      for(i=1; i<=nlstate;i++)
   /* Variance of prevalence limit */        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/    }  
   double **newm;    fprintf(ficresprobmorprev,"\n");
   double **dnewm,**doldm;    fprintf(ficgp,"\n# Routine varevsij");
   int i, j, nhstepm, hstepm;    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
   int k, cptcode;    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
   double *xp;    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
   double *gp, *gm;  /*   } */
   double **gradg, **trgradg;    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   double age,agelim;    pstamp(ficresvij);
   int theta;    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
   fprintf(ficresvpl, "#Local time at start: %s", strstart);     if(popbased==1)
   fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");      fprintf(ficresvij,"the age specific prevalence observed in the population i.e cross-sectionally\n in each health state (popbased=1)");
   fprintf(ficresvpl,"# Age");    else
   for(i=1; i<=nlstate;i++)      fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
       fprintf(ficresvpl," %1d-%1d",i,i);    fprintf(ficresvij,"# Age");
   fprintf(ficresvpl,"\n");    for(i=1; i<=nlstate;i++)
       for(j=1; j<=nlstate;j++)
   xp=vector(1,npar);        fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
   dnewm=matrix(1,nlstate,1,npar);    fprintf(ficresvij,"\n");
   doldm=matrix(1,nlstate,1,nlstate);  
       xp=vector(1,npar);
   hstepm=1*YEARM; /* Every year of age */    dnewm=matrix(1,nlstate,1,npar);
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */     doldm=matrix(1,nlstate,1,nlstate);
   agelim = AGESUP;    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */   
     if (stepm >= YEARM) hstepm=1;    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    gpp=vector(nlstate+1,nlstate+ndeath);
     gradg=matrix(1,npar,1,nlstate);    gmp=vector(nlstate+1,nlstate+ndeath);
     gp=vector(1,nlstate);    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     gm=vector(1,nlstate);   
     if(estepm < stepm){
     for(theta=1; theta <=npar; theta++){      printf ("Problem %d lower than %d\n",estepm, stepm);
       for(i=1; i<=npar; i++){ /* Computes gradient */    }
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    else  hstepm=estepm;  
       }    /* For example we decided to compute the life expectancy with the smallest unit */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.
       for(i=1;i<=nlstate;i++)       nhstepm is the number of hstepm from age to agelim
         gp[i] = prlim[i][i];       nstepm is the number of stepm from age to agelin.
            Look at hpijx to understand the reason of that which relies in memory size
       for(i=1; i<=npar; i++) /* Computes gradient */       and note for a fixed period like k years */
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);       survival function given by stepm (the optimization length). Unfortunately it
       for(i=1;i<=nlstate;i++)       means that if the survival funtion is printed every two years of age and if
         gm[i] = prlim[i][i];       you sum them up and add 1 year (area under the trapezoids) you won't get the same
        results. So we changed our mind and took the option of the best precision.
       for(i=1;i<=nlstate;i++)    */
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */
     } /* End theta */    agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
     trgradg =matrix(1,nlstate,1,npar);      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */
       nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     for(j=1; j<=nlstate;j++)      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       for(theta=1; theta <=npar; theta++)      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
         trgradg[j][theta]=gradg[theta][j];      gp=matrix(0,nhstepm,1,nlstate);
       gm=matrix(0,nhstepm,1,nlstate);
     for(i=1;i<=nlstate;i++)  
       varpl[i][(int)age] =0.;  
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);      for(theta=1; theta <=npar; theta++){
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
     for(i=1;i<=nlstate;i++)          xp[i] = x[i] + (i==theta ?delti[theta]:0);
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */        }
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
     fprintf(ficresvpl,"%.0f ",age );        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     for(i=1; i<=nlstate;i++)  
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));        if (popbased==1) {
     fprintf(ficresvpl,"\n");          if(mobilav ==0){
     free_vector(gp,1,nlstate);            for(i=1; i<=nlstate;i++)
     free_vector(gm,1,nlstate);              prlim[i][i]=probs[(int)age][i][ij];
     free_matrix(gradg,1,npar,1,nlstate);          }else{ /* mobilav */
     free_matrix(trgradg,1,nlstate,1,npar);            for(i=1; i<=nlstate;i++)
   } /* End age */              prlim[i][i]=mobaverage[(int)age][i][ij];
           }
   free_vector(xp,1,npar);        }
   free_matrix(doldm,1,nlstate,1,npar);   
   free_matrix(dnewm,1,nlstate,1,nlstate);        for(j=1; j<= nlstate; j++){
           for(h=0; h<=nhstepm; h++){
 }            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
               gp[h][j] += prlim[i][i]*p3mat[i][j][h];
 /************ Variance of one-step probabilities  ******************/          }
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])        }
 {        /* This for computing probability of death (h=1 means
   int i, j=0,  i1, k1, l1, t, tj;           computed over hstepm matrices product = hstepm*stepm months)
   int k2, l2, j1,  z1;           as a weighted average of prlim.
   int k=0,l, cptcode;        */
   int first=1, first1;        for(j=nlstate+1;j<=nlstate+ndeath;j++){
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;          for(i=1,gpp[j]=0.; i<= nlstate; i++)
   double **dnewm,**doldm;            gpp[j] += prlim[i][i]*p3mat[i][j][1];
   double *xp;        }    
   double *gp, *gm;        /* end probability of death */
   double **gradg, **trgradg;  
   double **mu;        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
   double age,agelim, cov[NCOVMAX];          xp[i] = x[i] - (i==theta ?delti[theta]:0);
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   int theta;        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   char fileresprob[FILENAMELENGTH];   
   char fileresprobcov[FILENAMELENGTH];        if (popbased==1) {
   char fileresprobcor[FILENAMELENGTH];          if(mobilav ==0){
             for(i=1; i<=nlstate;i++)
   double ***varpij;              prlim[i][i]=probs[(int)age][i][ij];
           }else{ /* mobilav */
   strcpy(fileresprob,"prob");             for(i=1; i<=nlstate;i++)
   strcat(fileresprob,fileres);              prlim[i][i]=mobaverage[(int)age][i][ij];
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {          }
     printf("Problem with resultfile: %s\n", fileresprob);        }
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);  
   }        for(j=1; j<= nlstate; j++){
   strcpy(fileresprobcov,"probcov");           for(h=0; h<=nhstepm; h++){
   strcat(fileresprobcov,fileres);            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
     printf("Problem with resultfile: %s\n", fileresprobcov);          }
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);        }
   }        /* This for computing probability of death (h=1 means
   strcpy(fileresprobcor,"probcor");            computed over hstepm matrices product = hstepm*stepm months)
   strcat(fileresprobcor,fileres);           as a weighted average of prlim.
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {        */
     printf("Problem with resultfile: %s\n", fileresprobcor);        for(j=nlstate+1;j<=nlstate+ndeath;j++){
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);          for(i=1,gmp[j]=0.; i<= nlstate; i++)
   }           gmp[j] += prlim[i][i]*p3mat[i][j][1];
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);        }    
   fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);        /* end probability of death */
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);  
   fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);        for(j=1; j<= nlstate; j++) /* vareij */
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);          for(h=0; h<=nhstepm; h++){
   fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
   fprintf(ficresprob, "#Local time at start: %s", strstart);          }
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");  
   fprintf(ficresprob,"# Age");        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
   fprintf(ficresprobcov, "#Local time at start: %s", strstart);          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");        }
   fprintf(ficresprobcov,"# Age");  
   fprintf(ficresprobcor, "#Local time at start: %s", strstart);      } /* End theta */
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");  
   fprintf(ficresprobcov,"# Age");      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
   
       for(h=0; h<=nhstepm; h++) /* veij */
   for(i=1; i<=nlstate;i++)        for(j=1; j<=nlstate;j++)
     for(j=1; j<=(nlstate+ndeath);j++){          for(theta=1; theta <=npar; theta++)
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);            trgradg[h][j][theta]=gradg[h][theta][j];
       fprintf(ficresprobcov," p%1d-%1d ",i,j);  
       fprintf(ficresprobcor," p%1d-%1d ",i,j);      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
     }          for(theta=1; theta <=npar; theta++)
  /* fprintf(ficresprob,"\n");          trgradgp[j][theta]=gradgp[theta][j];
   fprintf(ficresprobcov,"\n");   
   fprintf(ficresprobcor,"\n");  
  */      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
  xp=vector(1,npar);      for(i=1;i<=nlstate;i++)
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);        for(j=1;j<=nlstate;j++)
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));          vareij[i][j][(int)age] =0.;
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);  
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);      for(h=0;h<=nhstepm;h++){
   first=1;        for(k=0;k<=nhstepm;k++){
   fprintf(ficgp,"\n# Routine varprob");          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
   fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
   fprintf(fichtm,"\n");          for(i=1;i<=nlstate;i++)
             for(j=1;j<=nlstate;j++)
   fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
   fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\        }
   file %s<br>\n",optionfilehtmcov);      }
   fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\   
 and drawn. It helps understanding how is the covariance between two incidences.\      /* pptj */
  They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
   fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
 It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \      for(j=nlstate+1;j<=nlstate+ndeath;j++)
 would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \        for(i=nlstate+1;i<=nlstate+ndeath;i++)
 standard deviations wide on each axis. <br>\          varppt[j][i]=doldmp[j][i];
  Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\      /* end ppptj */
  and made the appropriate rotation to look at the uncorrelated principal directions.<br>\      /*  x centered again */
 To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
       prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
   cov[1]=1;   
   tj=cptcoveff;      if (popbased==1) {
   if (cptcovn<1) {tj=1;ncodemax[1]=1;}        if(mobilav ==0){
   j1=0;          for(i=1; i<=nlstate;i++)
   for(t=1; t<=tj;t++){            prlim[i][i]=probs[(int)age][i][ij];
     for(i1=1; i1<=ncodemax[t];i1++){         }else{ /* mobilav */
       j1++;          for(i=1; i<=nlstate;i++)
       if  (cptcovn>0) {            prlim[i][i]=mobaverage[(int)age][i][ij];
         fprintf(ficresprob, "\n#********** Variable ");         }
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);      }
         fprintf(ficresprob, "**********\n#\n");               
         fprintf(ficresprobcov, "\n#********** Variable ");       /* This for computing probability of death (h=1 means
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);         computed over hstepm (estepm) matrices product = hstepm*stepm months)
         fprintf(ficresprobcov, "**********\n#\n");         as a weighted average of prlim.
               */
         fprintf(ficgp, "\n#********** Variable ");       for(j=nlstate+1;j<=nlstate+ndeath;j++){
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        for(i=1,gmp[j]=0.;i<= nlstate; i++)
         fprintf(ficgp, "**********\n#\n");          gmp[j] += prlim[i][i]*p3mat[i][j][1];
               }    
               /* end probability of death */
         fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable ");   
         for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
         fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
                 fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
         fprintf(ficresprobcor, "\n#********** Variable ");            for(i=1; i<=nlstate;i++){
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
         fprintf(ficresprobcor, "**********\n#");            }
       }      }
             fprintf(ficresprobmorprev,"\n");
       for (age=bage; age<=fage; age ++){   
         cov[2]=age;      fprintf(ficresvij,"%.0f ",age );
         for (k=1; k<=cptcovn;k++) {      for(i=1; i<=nlstate;i++)
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];        for(j=1; j<=nlstate;j++){
         }          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];        }
         for (k=1; k<=cptcovprod;k++)      fprintf(ficresvij,"\n");
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];      free_matrix(gp,0,nhstepm,1,nlstate);
               free_matrix(gm,0,nhstepm,1,nlstate);
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
         gp=vector(1,(nlstate)*(nlstate+ndeath));      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         gm=vector(1,(nlstate)*(nlstate+ndeath));    } /* End age */
         free_vector(gpp,nlstate+1,nlstate+ndeath);
         for(theta=1; theta <=npar; theta++){    free_vector(gmp,nlstate+1,nlstate+ndeath);
           for(i=1; i<=npar; i++)    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
             xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
               fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
           pmij(pmmij,cov,ncovmodel,xp,nlstate);    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
               fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
           k=0;  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
           for(i=1; i<= (nlstate); i++){  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
             for(j=1; j<=(nlstate+ndeath);j++){  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
               k=k+1;    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
               gp[k]=pmmij[i][j];    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
             }    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
           }    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
               fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
           for(i=1; i<=npar; i++)    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
             xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);  */
       /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
           pmij(pmmij,cov,ncovmodel,xp,nlstate);    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
           k=0;  
           for(i=1; i<=(nlstate); i++){    free_vector(xp,1,npar);
             for(j=1; j<=(nlstate+ndeath);j++){    free_matrix(doldm,1,nlstate,1,nlstate);
               k=k+1;    free_matrix(dnewm,1,nlstate,1,npar);
               gm[k]=pmmij[i][j];    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
             }    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
           }    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
          if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)     fclose(ficresprobmorprev);
             gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];      fflush(ficgp);
         }    fflush(fichtm);
   }  /* end varevsij */
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)  
           for(theta=1; theta <=npar; theta++)  /************ Variance of prevlim ******************/
             trgradg[j][theta]=gradg[theta][j];  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
           {
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);     /* Variance of prevalence limit */
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
         free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));    double **newm;
         free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));    double **dnewm,**doldm;
         free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    int i, j, nhstepm, hstepm;
         free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    int k, cptcode;
     double *xp;
         pmij(pmmij,cov,ncovmodel,x,nlstate);    double *gp, *gm;
             double **gradg, **trgradg;
         k=0;    double age,agelim;
         for(i=1; i<=(nlstate); i++){    int theta;
           for(j=1; j<=(nlstate+ndeath);j++){   
             k=k+1;    pstamp(ficresvpl);
             mu[k][(int) age]=pmmij[i][j];    fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
           }    fprintf(ficresvpl,"# Age");
         }    for(i=1; i<=nlstate;i++)
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)        fprintf(ficresvpl," %1d-%1d",i,i);
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)    fprintf(ficresvpl,"\n");
             varpij[i][j][(int)age] = doldm[i][j];  
     xp=vector(1,npar);
         /*printf("\n%d ",(int)age);    dnewm=matrix(1,nlstate,1,npar);
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){    doldm=matrix(1,nlstate,1,nlstate);
           printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));   
           fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));    hstepm=1*YEARM; /* Every year of age */
           }*/    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */
     agelim = AGESUP;
         fprintf(ficresprob,"\n%d ",(int)age);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
         fprintf(ficresprobcov,"\n%d ",(int)age);      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */
         fprintf(ficresprobcor,"\n%d ",(int)age);      if (stepm >= YEARM) hstepm=1;
       nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)      gradg=matrix(1,npar,1,nlstate);
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));      gp=vector(1,nlstate);
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){      gm=vector(1,nlstate);
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);  
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);      for(theta=1; theta <=npar; theta++){
         }        for(i=1; i<=npar; i++){ /* Computes gradient */
         i=0;          xp[i] = x[i] + (i==theta ?delti[theta]:0);
         for (k=1; k<=(nlstate);k++){        }
           for (l=1; l<=(nlstate+ndeath);l++){         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
             i=i++;        for(i=1;i<=nlstate;i++)
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);          gp[i] = prlim[i][i];
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);     
             for (j=1; j<=i;j++){        for(i=1; i<=npar; i++) /* Computes gradient */
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
             }        for(i=1;i<=nlstate;i++)
           }          gm[i] = prlim[i][i];
         }/* end of loop for state */  
       } /* end of loop for age */        for(i=1;i<=nlstate;i++)
           gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
       /* Confidence intervalle of pij  */      } /* End theta */
       /*  
         fprintf(ficgp,"\nset noparametric;unset label");      trgradg =matrix(1,nlstate,1,npar);
         fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");  
         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");      for(j=1; j<=nlstate;j++)
         fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);        for(theta=1; theta <=npar; theta++)
         fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);          trgradg[j][theta]=gradg[theta][j];
         fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);  
         fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);      for(i=1;i<=nlstate;i++)
       */        varpl[i][(int)age] =0.;
       matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
       /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
       first1=1;      for(i=1;i<=nlstate;i++)
       for (k2=1; k2<=(nlstate);k2++){        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
         for (l2=1; l2<=(nlstate+ndeath);l2++){   
           if(l2==k2) continue;      fprintf(ficresvpl,"%.0f ",age );
           j=(k2-1)*(nlstate+ndeath)+l2;      for(i=1; i<=nlstate;i++)
           for (k1=1; k1<=(nlstate);k1++){        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
             for (l1=1; l1<=(nlstate+ndeath);l1++){       fprintf(ficresvpl,"\n");
               if(l1==k1) continue;      free_vector(gp,1,nlstate);
               i=(k1-1)*(nlstate+ndeath)+l1;      free_vector(gm,1,nlstate);
               if(i<=j) continue;      free_matrix(gradg,1,npar,1,nlstate);
               for (age=bage; age<=fage; age ++){       free_matrix(trgradg,1,nlstate,1,npar);
                 if ((int)age %5==0){    } /* End age */
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;  
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;    free_vector(xp,1,npar);
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;    free_matrix(doldm,1,nlstate,1,npar);
                   mu1=mu[i][(int) age]/stepm*YEARM ;    free_matrix(dnewm,1,nlstate,1,nlstate);
                   mu2=mu[j][(int) age]/stepm*YEARM;  
                   c12=cv12/sqrt(v1*v2);  }
                   /* Computing eigen value of matrix of covariance */  
                   lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;  /************ Variance of one-step probabilities  ******************/
                   lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
                   /* Eigen vectors */  {
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));    int i, j=0,  i1, k1, l1, t, tj;
                   /*v21=sqrt(1.-v11*v11); *//* error */    int k2, l2, j1,  z1;
                   v21=(lc1-v1)/cv12*v11;    int k=0,l, cptcode;
                   v12=-v21;    int first=1, first1;
                   v22=v11;    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
                   tnalp=v21/v11;    double **dnewm,**doldm;
                   if(first1==1){    double *xp;
                     first1=0;    double *gp, *gm;
                     printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);    double **gradg, **trgradg;
                   }    double **mu;
                   fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);    double age,agelim, cov[NCOVMAX];
                   /*printf(fignu*/    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */    int theta;
                   /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */    char fileresprob[FILENAMELENGTH];
                   if(first==1){    char fileresprobcov[FILENAMELENGTH];
                     first=0;    char fileresprobcor[FILENAMELENGTH];
                     fprintf(ficgp,"\nset parametric;unset label");  
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);    double ***varpij;
                     fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");  
                     fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\    strcpy(fileresprob,"prob");
  :<a href=\"%s%d%1d%1d-%1d%1d.png\">\    strcat(fileresprob,fileres);
 %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
                             subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\      printf("Problem with resultfile: %s\n", fileresprob);
                             subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
                     fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);    }
                     fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);    strcpy(fileresprobcov,"probcov");
                     fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);    strcat(fileresprobcov,fileres);
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);      printf("Problem with resultfile: %s\n", fileresprobcov);
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\    }
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));    strcpy(fileresprobcor,"probcor");
                   }else{    strcat(fileresprobcor,fileres);
                     first=0;    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
                     fprintf(fichtmcov," %d (%.3f),",(int) age, c12);      printf("Problem with resultfile: %s\n", fileresprobcor);
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);    }
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
                   }/* if first */    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
                 } /* age mod 5 */    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
               } /* end loop age */    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
               fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);    pstamp(ficresprob);
               first=1;    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
             } /*l12 */    fprintf(ficresprob,"# Age");
           } /* k12 */    pstamp(ficresprobcov);
         } /*l1 */    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
       }/* k1 */    fprintf(ficresprobcov,"# Age");
     } /* loop covariates */    pstamp(ficresprobcor);
   }    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
   free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);    fprintf(ficresprobcor,"# Age");
   free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);  
   free_vector(xp,1,npar);  
   fclose(ficresprob);    for(i=1; i<=nlstate;i++)
   fclose(ficresprobcov);      for(j=1; j<=(nlstate+ndeath);j++){
   fclose(ficresprobcor);        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
   fflush(ficgp);        fprintf(ficresprobcov," p%1d-%1d ",i,j);
   fflush(fichtmcov);        fprintf(ficresprobcor," p%1d-%1d ",i,j);
 }      }  
    /* fprintf(ficresprob,"\n");
     fprintf(ficresprobcov,"\n");
 /******************* Printing html file ***********/    fprintf(ficresprobcor,"\n");
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \   */
                   int lastpass, int stepm, int weightopt, char model[],\   xp=vector(1,npar);
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
                   int popforecast, int estepm ,\    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
                   double jprev1, double mprev1,double anprev1, \    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
                   double jprev2, double mprev2,double anprev2){    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
   int jj1, k1, i1, cpt;    first=1;
     fprintf(ficgp,"\n# Routine varprob");
    fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
    <li><a href='#secondorder'>Result files (second order (variance)</a>\n \    fprintf(fichtm,"\n");
 </ul>");  
    fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",    fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
            jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));    file %s<br>\n",optionfilehtmcov);
    fprintf(fichtm,"\    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
  - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",  and drawn. It helps understanding how is the covariance between two incidences.\
            stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
    fprintf(fichtm,"\    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
  - Stable prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
            subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
    fprintf(fichtm,"\  standard deviations wide on each axis. <br>\
  - Life expectancies by age and initial health status (estepm=%2d months): \   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
    <a href=\"%s\">%s</a> <br>\n</li>",   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
            estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
   
 fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");    cov[1]=1;
     tj=cptcoveff;
  m=cptcoveff;    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}    j1=0;
     for(t=1; t<=tj;t++){
  jj1=0;      for(i1=1; i1<=ncodemax[t];i1++){
  for(k1=1; k1<=m;k1++){        j1++;
    for(i1=1; i1<=ncodemax[k1];i1++){        if  (cptcovn>0) {
      jj1++;          fprintf(ficresprob, "\n#********** Variable ");
      if (cptcovn > 0) {          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");          fprintf(ficresprob, "**********\n#\n");
        for (cpt=1; cpt<=cptcoveff;cpt++)           fprintf(ficresprobcov, "\n#********** Variable ");
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");          fprintf(ficresprobcov, "**********\n#\n");
      }         
      /* Pij */          fprintf(ficgp, "\n#********** Variable ");
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: %s%d1.png<br> \          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);               fprintf(ficgp, "**********\n#\n");
      /* Quasi-incidences */         
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\         
  before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: %s%d2.png<br> \          fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable ");
 <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);           for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
        /* Stable prevalence in each health state */          fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
        for(cpt=1; cpt<nlstate;cpt++){         
          fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \          fprintf(ficresprobcor, "\n#********** Variable ");    
 <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
        }          fprintf(ficresprobcor, "**********\n#");    
      for(cpt=1; cpt<=nlstate;cpt++) {        }
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): %s%d%d.png <br> \       
 <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);        for (age=bage; age<=fage; age ++){
      }          cov[2]=age;
    } /* end i1 */          for (k=1; k<=cptcovn;k++) {
  }/* End k1 */            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
  fprintf(fichtm,"</ul>");          }
           for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           for (k=1; k<=cptcovprod;k++)
  fprintf(fichtm,"\            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
 \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\         
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
           trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
  fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",          gp=vector(1,(nlstate)*(nlstate+ndeath));
          subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));          gm=vector(1,(nlstate)*(nlstate+ndeath));
  fprintf(fichtm,"\     
  - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",          for(theta=1; theta <=npar; theta++){
          subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));            for(i=1; i<=npar; i++)
               xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
  fprintf(fichtm,"\           
  - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",            pmij(pmmij,cov,ncovmodel,xp,nlstate);
          subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));           
  fprintf(fichtm,"\            k=0;
  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"%s\">%s</a><br>\n",            for(i=1; i<= (nlstate); i++){
          estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));              for(j=1; j<=(nlstate+ndeath);j++){
  fprintf(fichtm,"\                k=k+1;
  - Health expectancies with their variances (no covariance): <a href=\"%s\">%s</a> <br>\n",                gp[k]=pmmij[i][j];
          subdirf2(fileres,"t"),subdirf2(fileres,"t"));              }
  fprintf(fichtm,"\            }
  - Standard deviation of stable prevalences: <a href=\"%s\">%s</a> <br>\n",\           
          subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));            for(i=1; i<=npar; i++)
               xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
 /*  if(popforecast==1) fprintf(fichtm,"\n */     
 /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */            pmij(pmmij,cov,ncovmodel,xp,nlstate);
 /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */            k=0;
 /*      <br>",fileres,fileres,fileres,fileres); */            for(i=1; i<=(nlstate); i++){
 /*  else  */              for(j=1; j<=(nlstate+ndeath);j++){
 /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */                k=k+1;
  fflush(fichtm);                gm[k]=pmmij[i][j];
  fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");              }
             }
  m=cptcoveff;       
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)
               gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
  jj1=0;          }
  for(k1=1; k1<=m;k1++){  
    for(i1=1; i1<=ncodemax[k1];i1++){          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
      jj1++;            for(theta=1; theta <=npar; theta++)
      if (cptcovn > 0) {              trgradg[j][theta]=gradg[theta][j];
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");         
        for (cpt=1; cpt<=cptcoveff;cpt++)           matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
      }          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
      for(cpt=1; cpt<=nlstate;cpt++) {          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
        fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
 prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\  
 <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);            pmij(pmmij,cov,ncovmodel,x,nlstate);
      }         
      fprintf(fichtm,"\n<br>- Total life expectancy by age and \          k=0;
 health expectancies in states (1) and (2): %s%d.png<br>\          for(i=1; i<=(nlstate); i++){
 <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);            for(j=1; j<=(nlstate+ndeath);j++){
    } /* end i1 */              k=k+1;
  }/* End k1 */              mu[k][(int) age]=pmmij[i][j];
  fprintf(fichtm,"</ul>");            }
  fflush(fichtm);          }
 }          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
             for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
 /******************* Gnuplot file **************/              varpij[i][j][(int)age] = doldm[i][j];
 void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){  
           /*printf("\n%d ",(int)age);
   char dirfileres[132],optfileres[132];            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
   int ng;            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
 /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */            }*/
 /*     printf("Problem with file %s",optionfilegnuplot); */  
 /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */          fprintf(ficresprob,"\n%d ",(int)age);
 /*   } */          fprintf(ficresprobcov,"\n%d ",(int)age);
           fprintf(ficresprobcor,"\n%d ",(int)age);
   /*#ifdef windows */  
   fprintf(ficgp,"cd \"%s\" \n",pathc);          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
     /*#endif */            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
   m=pow(2,cptcoveff);          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
   strcpy(dirfileres,optionfilefiname);            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
   strcpy(optfileres,"vpl");          }
  /* 1eme*/          i=0;
   for (cpt=1; cpt<= nlstate ; cpt ++) {          for (k=1; k<=(nlstate);k++){
    for (k1=1; k1<= m ; k1 ++) {            for (l=1; l<=(nlstate+ndeath);l++){
      fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);              i=i++;
      fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
      fprintf(ficgp,"set xlabel \"Age\" \n\              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
 set ylabel \"Probability\" \n\              for (j=1; j<=i;j++){
 set ter png small\n\                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
 set size 0.65,0.65\n\                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
 plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);              }
             }
      for (i=1; i<= nlstate ; i ++) {          }/* end of loop for state */
        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");        } /* end of loop for age */
        else fprintf(ficgp," \%%*lf (\%%*lf)");  
      }        /* Confidence intervalle of pij  */
      fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);        /*
      for (i=1; i<= nlstate ; i ++) {          fprintf(ficgp,"\nset noparametric;unset label");
        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
        else fprintf(ficgp," \%%*lf (\%%*lf)");          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
      }           fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
      fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);           fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
      for (i=1; i<= nlstate ; i ++) {          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
        else fprintf(ficgp," \%%*lf (\%%*lf)");        */
      }    
      fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
    }        first1=1;
   }        for (k2=1; k2<=(nlstate);k2++){
   /*2 eme*/          for (l2=1; l2<=(nlstate+ndeath);l2++){
               if(l2==k2) continue;
   for (k1=1; k1<= m ; k1 ++) {             j=(k2-1)*(nlstate+ndeath)+l2;
     fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);            for (k1=1; k1<=(nlstate);k1++){
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);              for (l1=1; l1<=(nlstate+ndeath);l1++){
                     if(l1==k1) continue;
     for (i=1; i<= nlstate+1 ; i ++) {                i=(k1-1)*(nlstate+ndeath)+l1;
       k=2*i;                if(i<=j) continue;
       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);                for (age=bage; age<=fage; age ++){
       for (j=1; j<= nlstate+1 ; j ++) {                  if ((int)age %5==0){
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
         else fprintf(ficgp," \%%*lf (\%%*lf)");                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
       }                       cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");                    mu1=mu[i][(int) age]/stepm*YEARM ;
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);                    mu2=mu[j][(int) age]/stepm*YEARM;
       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);                    c12=cv12/sqrt(v1*v2);
       for (j=1; j<= nlstate+1 ; j ++) {                    /* Computing eigen value of matrix of covariance */
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
         else fprintf(ficgp," \%%*lf (\%%*lf)");                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
       }                       /* Eigen vectors */
       fprintf(ficgp,"\" t\"\" w l 0,");                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);                    /*v21=sqrt(1.-v11*v11); *//* error */
       for (j=1; j<= nlstate+1 ; j ++) {                    v21=(lc1-v1)/cv12*v11;
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");                    v12=-v21;
         else fprintf(ficgp," \%%*lf (\%%*lf)");                    v22=v11;
       }                       tnalp=v21/v11;
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");                    if(first1==1){
       else fprintf(ficgp,"\" t\"\" w l 0,");                      first1=0;
     }                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
   }                    }
                       fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
   /*3eme*/                    /*printf(fignu*/
                       /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
   for (k1=1; k1<= m ; k1 ++) {                     /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
     for (cpt=1; cpt<= nlstate ; cpt ++) {                    if(first==1){
       k=2+nlstate*(2*cpt-2);                      first=0;
       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);                      fprintf(ficgp,"\nset parametric;unset label");
       fprintf(ficgp,"set ter png small\n\                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
 set size 0.65,0.65\n\                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
 plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);                      fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);   :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
         for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");  %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
         fprintf(ficgp,"\" t \"e%d1\" w l",cpt);                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
         for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");                      fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
         fprintf(ficgp,"\" t \"e%d1\" w l",cpt);                      fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                               fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
       */                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
       for (i=1; i< nlstate ; i ++) {                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                                       mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
       }                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
     }                    }else{
   }                      first=0;
                         fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
   /* CV preval stable (period) */                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
   for (k1=1; k1<= m ; k1 ++) {                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
     for (cpt=1; cpt<=nlstate ; cpt ++) {                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
       k=3;                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\                    }/* if first */
 set ter png small\nset size 0.65,0.65\n\                  } /* age mod 5 */
 unset log y\n\                } /* end loop age */
 plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);                fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       first=1;
       for (i=1; i< nlstate ; i ++)              } /*l12 */
         fprintf(ficgp,"+$%d",k+i+1);            } /* k12 */
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);          } /*l1 */
               }/* k1 */
       l=3+(nlstate+ndeath)*cpt;      } /* loop covariates */
       fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);    }
       for (i=1; i< nlstate ; i ++) {    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
         l=3+(nlstate+ndeath)*cpt;    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
         fprintf(ficgp,"+$%d",l+i+1);    free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
       }    free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);       free_vector(xp,1,npar);
     }     fclose(ficresprob);
   }      fclose(ficresprobcov);
       fclose(ficresprobcor);
   /* proba elementaires */    fflush(ficgp);
   for(i=1,jk=1; i <=nlstate; i++){    fflush(fichtmcov);
     for(k=1; k <=(nlstate+ndeath); k++){  }
       if (k != i) {  
         for(j=1; j <=ncovmodel; j++){  
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);  /******************* Printing html file ***********/
           jk++;   void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
           fprintf(ficgp,"\n");                    int lastpass, int stepm, int weightopt, char model[],\
         }                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
       }                    int popforecast, int estepm ,\
     }                    double jprev1, double mprev1,double anprev1, \
    }                    double jprev2, double mprev2,double anprev2){
     int jj1, k1, i1, cpt;
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/  
      for(jk=1; jk <=m; jk++) {     fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng);      <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
        if (ng==2)  </ul>");
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");     fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
        else   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
          fprintf(ficgp,"\nset title \"Probability\"\n");             jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);     fprintf(fichtm,"\
        i=1;   - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
        for(k2=1; k2<=nlstate; k2++) {             stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
          k3=i;     fprintf(fichtm,"\
          for(k=1; k<=(nlstate+ndeath); k++) {   - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
            if (k != k2){             subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
              if(ng==2)     fprintf(fichtm,"\
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);   - (a) Life expectancies by health status at initial age, (b) health expectancies by health status at initial age:  ei., eij . If one or more covariate are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
              else     <a href=\"%s\">%s</a> <br>\n",
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);             estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
              ij=1;     fprintf(fichtm,"\
              for(j=3; j <=ncovmodel; j++) {   - Population projections by age and states: \
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {     <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);  
                  ij++;  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
                }  
                else   m=cptcoveff;
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
              }  
              fprintf(ficgp,")/(1");   jj1=0;
                 for(k1=1; k1<=m;k1++){
              for(k1=1; k1 <=nlstate; k1++){        for(i1=1; i1<=ncodemax[k1];i1++){
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);       jj1++;
                ij=1;       if (cptcovn > 0) {
                for(j=3; j <=ncovmodel; j++){         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {         for (cpt=1; cpt<=cptcoveff;cpt++)
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
                    ij++;         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
                  }       }
                  else       /* Pij */
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d1.png\">%s%d1.png</a><br> \
                }  <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);    
                fprintf(ficgp,")");       /* Quasi-incidences */
              }       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);   before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d2.png\">%s%d2.png</a><br> \
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");  <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);
              i=i+ncovmodel;         /* Period (stable) prevalence in each health state */
            }         for(cpt=1; cpt<nlstate;cpt++){
          } /* end k */           fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d%d.png\">%s%d%d.png</a><br> \
        } /* end k2 */  <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
      } /* end jk */         }
    } /* end ng */       for(cpt=1; cpt<=nlstate;cpt++) {
    fflush(ficgp);           fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
 }  /* end gnuplot */  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
        }
      } /* end i1 */
 /*************** Moving average **************/   }/* End k1 */
 int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){   fprintf(fichtm,"</ul>");
   
   int i, cpt, cptcod;  
   int modcovmax =1;   fprintf(fichtm,"\
   int mobilavrange, mob;  \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
   double age;   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
   
   modcovmax=2*cptcoveff;/* Max number of modalities. We suppose    fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
                            a covariate has 2 modalities */           subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
   if (cptcovn<1) modcovmax=1; /* At least 1 pass */   fprintf(fichtm,"\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
   if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){           subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
     if(mobilav==1) mobilavrange=5; /* default */  
     else mobilavrange=mobilav;   fprintf(fichtm,"\
     for (age=bage; age<=fage; age++)   - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
       for (i=1; i<=nlstate;i++)           subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
         for (cptcod=1;cptcod<=modcovmax;cptcod++)   fprintf(fichtm,"\
           mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];   - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
     /* We keep the original values on the extreme ages bage, fage and for      <a href=\"%s\">%s</a> <br>\n</li>",
        fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2             estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
        we use a 5 terms etc. until the borders are no more concerned.    fprintf(fichtm,"\
     */    - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
     for (mob=3;mob <=mobilavrange;mob=mob+2){     <a href=\"%s\">%s</a> <br>\n</li>",
       for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){             estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
         for (i=1; i<=nlstate;i++){   fprintf(fichtm,"\
           for (cptcod=1;cptcod<=modcovmax;cptcod++){   - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), eij are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences (i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
             mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];           estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
               for (cpt=1;cpt<=(mob-1)/2;cpt++){   fprintf(fichtm,"\
                 mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];   - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors: <a href=\"%s\">%s</a> <br>\n",
                 mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];           subdirf2(fileres,"t"),subdirf2(fileres,"t"));
               }   fprintf(fichtm,"\
             mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;   - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
           }           subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
         }  
       }/* end age */  /*  if(popforecast==1) fprintf(fichtm,"\n */
     }/* end mob */  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   }else return -1;  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   return 0;  /*      <br>",fileres,fileres,fileres,fileres); */
 }/* End movingaverage */  /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    fflush(fichtm);
 /************** Forecasting ******************/   fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
 prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){  
   /* proj1, year, month, day of starting projection    m=cptcoveff;
      agemin, agemax range of age   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
      dateprev1 dateprev2 range of dates during which prevalence is computed  
      anproj2 year of en of projection (same day and month as proj1).   jj1=0;
   */   for(k1=1; k1<=m;k1++){
   int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;     for(i1=1; i1<=ncodemax[k1];i1++){
   int *popage;       jj1++;
   double agec; /* generic age */       if (cptcovn > 0) {
   double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
   double *popeffectif,*popcount;         for (cpt=1; cpt<=cptcoveff;cpt++)
   double ***p3mat;           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
   double ***mobaverage;         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
   char fileresf[FILENAMELENGTH];       }
        for(cpt=1; cpt<=nlstate;cpt++) {
   agelim=AGESUP;         fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);  prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
    <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
   strcpy(fileresf,"f");        }
   strcat(fileresf,fileres);       fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   if((ficresf=fopen(fileresf,"w"))==NULL) {  health expectancies in states (1) and (2): %s%d.png<br>\
     printf("Problem with forecast resultfile: %s\n", fileresf);  <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);     } /* end i1 */
   }   }/* End k1 */
   printf("Computing forecasting: result on file '%s' \n", fileresf);   fprintf(fichtm,"</ul>");
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);   fflush(fichtm);
   }
   if (cptcoveff==0) ncodemax[cptcoveff]=1;  
   /******************* Gnuplot file **************/
   if (mobilav!=0) {  void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
     if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){    char dirfileres[132],optfileres[132];
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
       printf(" Error in movingaverage mobilav=%d\n",mobilav);    int ng;
     }  /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   }  /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   stepsize=(int) (stepm+YEARM-1)/YEARM;  /*   } */
   if (stepm<=12) stepsize=1;  
   if(estepm < stepm){    /*#ifdef windows */
     printf ("Problem %d lower than %d\n",estepm, stepm);    fprintf(ficgp,"cd \"%s\" \n",pathc);
   }      /*#endif */
   else  hstepm=estepm;       m=pow(2,cptcoveff);
   
   hstepm=hstepm/stepm;     strcpy(dirfileres,optionfilefiname);
   yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and    strcpy(optfileres,"vpl");
                                fractional in yp1 */   /* 1eme*/
   anprojmean=yp;    for (cpt=1; cpt<= nlstate ; cpt ++) {
   yp2=modf((yp1*12),&yp);     for (k1=1; k1<= m ; k1 ++) {
   mprojmean=yp;       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
   yp1=modf((yp2*30.5),&yp);       fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
   jprojmean=yp;       fprintf(ficgp,"set xlabel \"Age\" \n\
   if(jprojmean==0) jprojmean=1;  set ylabel \"Probability\" \n\
   if(mprojmean==0) jprojmean=1;  set ter png small\n\
   set size 0.65,0.65\n\
   i1=cptcoveff;  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   if (cptcovn < 1){i1=1;}  
          for (i=1; i<= nlstate ; i ++) {
   fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2);          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
            else fprintf(ficgp," \%%*lf (\%%*lf)");
   fprintf(ficresf,"#****** Routine prevforecast **\n");       }
        fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
 /*            if (h==(int)(YEARM*yearp)){ */       for (i=1; i<= nlstate ; i ++) {
   for(cptcov=1, k=0;cptcov<=i1;cptcov++){         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){         else fprintf(ficgp," \%%*lf (\%%*lf)");
       k=k+1;       }
       fprintf(ficresf,"\n#******");       fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
       for(j=1;j<=cptcoveff;j++) {       for (i=1; i<= nlstate ; i ++) {
         fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
       }         else fprintf(ficgp," \%%*lf (\%%*lf)");
       fprintf(ficresf,"******\n");       }  
       fprintf(ficresf,"# Covariate valuofcovar yearproj age");       fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
       for(j=1; j<=nlstate+ndeath;j++){      }
         for(i=1; i<=nlstate;i++)                  }
           fprintf(ficresf," p%d%d",i,j);    /*2 eme*/
         fprintf(ficresf," p.%d",j);   
       }    for (k1=1; k1<= m ; k1 ++) {
       for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) {       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
         fprintf(ficresf,"\n");      fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);        
       for (i=1; i<= nlstate+1 ; i ++) {
         for (agec=fage; agec>=(ageminpar-1); agec--){         k=2*i;
           nhstepm=(int) rint((agelim-agec)*YEARM/stepm);         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
           nhstepm = nhstepm/hstepm;         for (j=1; j<= nlstate+1 ; j ++) {
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           oldm=oldms;savm=savms;          else fprintf(ficgp," \%%*lf (\%%*lf)");
           hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);          }  
                 if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
           for (h=0; h<=nhstepm; h++){        else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
             if (h*hstepm/YEARM*stepm ==yearp) {        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
               fprintf(ficresf,"\n");        for (j=1; j<= nlstate+1 ; j ++) {
               for(j=1;j<=cptcoveff;j++)           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
                 fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          else fprintf(ficgp," \%%*lf (\%%*lf)");
               fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);        }  
             }         fprintf(ficgp,"\" t\"\" w l 0,");
             for(j=1; j<=nlstate+ndeath;j++) {        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
               ppij=0.;        for (j=1; j<= nlstate+1 ; j ++) {
               for(i=1; i<=nlstate;i++) {          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
                 if (mobilav==1)           else fprintf(ficgp," \%%*lf (\%%*lf)");
                   ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];        }  
                 else {        if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
                   ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];        else fprintf(ficgp,"\" t\"\" w l 0,");
                 }      }
                 if (h*hstepm/YEARM*stepm== yearp) {    }
                   fprintf(ficresf," %.3f", p3mat[i][j][h]);   
                 }    /*3eme*/
               } /* end i */   
               if (h*hstepm/YEARM*stepm==yearp) {    for (k1=1; k1<= m ; k1 ++) {
                 fprintf(ficresf," %.3f", ppij);      for (cpt=1; cpt<= nlstate ; cpt ++) {
               }        /*       k=2+nlstate*(2*cpt-2); */
             }/* end j */        k=2+(nlstate+1)*(cpt-1);
           } /* end h */        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        fprintf(ficgp,"set ter png small\n\
         } /* end agec */  set size 0.65,0.65\n\
       } /* end yearp */  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
     } /* end cptcod */        /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
   } /* end  cptcov */          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
                  fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
   fclose(ficresf);          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
 }         
         */
 /************** Forecasting *****not tested NB*************/        for (i=1; i< nlstate ; i ++) {
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){          fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
             /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;         
   int *popage;        }
   double calagedatem, agelim, kk1, kk2;        fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
   double *popeffectif,*popcount;      }
   double ***p3mat,***tabpop,***tabpopprev;    }
   double ***mobaverage;   
   char filerespop[FILENAMELENGTH];    /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) {
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      for (cpt=1; cpt<=nlstate ; cpt ++) {
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        k=3;
   agelim=AGESUP;        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
   calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
     set ter png small\nset size 0.65,0.65\n\
   prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);  unset log y\n\
     plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
          
   strcpy(filerespop,"pop");         for (i=1; i< nlstate ; i ++)
   strcat(filerespop,fileres);          fprintf(ficgp,"+$%d",k+i+1);
   if((ficrespop=fopen(filerespop,"w"))==NULL) {        fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
     printf("Problem with forecast resultfile: %s\n", filerespop);       
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);        l=3+(nlstate+ndeath)*cpt;
   }        fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
   printf("Computing forecasting: result on file '%s' \n", filerespop);        for (i=1; i< nlstate ; i ++) {
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);          l=3+(nlstate+ndeath)*cpt;
           fprintf(ficgp,"+$%d",l+i+1);
   if (cptcoveff==0) ncodemax[cptcoveff]=1;        }
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);  
   if (mobilav!=0) {      }
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    }  
     if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){   
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);    /* proba elementaires */
       printf(" Error in movingaverage mobilav=%d\n",mobilav);    for(i=1,jk=1; i <=nlstate; i++){
     }      for(k=1; k <=(nlstate+ndeath); k++){
   }        if (k != i) {
           for(j=1; j <=ncovmodel; j++){
   stepsize=(int) (stepm+YEARM-1)/YEARM;            fprintf(ficgp,"p%d=%f ",jk,p[jk]);
   if (stepm<=12) stepsize=1;            jk++;
               fprintf(ficgp,"\n");
   agelim=AGESUP;          }
           }
   hstepm=1;      }
   hstepm=hstepm/stepm;      }
     
   if (popforecast==1) {     for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
     if((ficpop=fopen(popfile,"r"))==NULL) {       for(jk=1; jk <=m; jk++) {
       printf("Problem with population file : %s\n",popfile);exit(0);         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng);
       fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);         if (ng==2)
     }            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
     popage=ivector(0,AGESUP);         else
     popeffectif=vector(0,AGESUP);           fprintf(ficgp,"\nset title \"Probability\"\n");
     popcount=vector(0,AGESUP);         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
              i=1;
     i=1;            for(k2=1; k2<=nlstate; k2++) {
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;           k3=i;
               for(k=1; k<=(nlstate+ndeath); k++) {
     imx=i;             if (k != k2){
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];               if(ng==2)
   }                 fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
   for(cptcov=1,k=0;cptcov<=i2;cptcov++){                 fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){               ij=1;
       k=k+1;               for(j=3; j <=ncovmodel; j++) {
       fprintf(ficrespop,"\n#******");                 if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
       for(j=1;j<=cptcoveff;j++) {                   fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                   ij++;
       }                 }
       fprintf(ficrespop,"******\n");                 else
       fprintf(ficrespop,"# Age");                   fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);               }
       if (popforecast==1)  fprintf(ficrespop," [Population]");               fprintf(ficgp,")/(1");
                      
       for (cpt=0; cpt<=0;cpt++) {                for(k1=1; k1 <=nlstate; k1++){  
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);                    fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                          ij=1;
         for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){                  for(j=3; j <=ncovmodel; j++){
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);                    if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
           nhstepm = nhstepm/hstepm;                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                                ij++;
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                   }
           oldm=oldms;savm=savms;                   else
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);                       fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                          }
           for (h=0; h<=nhstepm; h++){                 fprintf(ficgp,")");
             if (h==(int) (calagedatem+YEARM*cpt)) {               }
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);               fprintf(ficgp,") t \"p%d%d\" ", k2,k);
             }                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
             for(j=1; j<=nlstate+ndeath;j++) {               i=i+ncovmodel;
               kk1=0.;kk2=0;             }
               for(i=1; i<=nlstate;i++) {                         } /* end k */
                 if (mobilav==1)          } /* end k2 */
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];       } /* end jk */
                 else {     } /* end ng */
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];     fflush(ficgp);
                 }  }  /* end gnuplot */
               }  
               if (h==(int)(calagedatem+12*cpt)){  
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;  /*************** Moving average **************/
                   /*fprintf(ficrespop," %.3f", kk1);  int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/  
               }    int i, cpt, cptcod;
             }    int modcovmax =1;
             for(i=1; i<=nlstate;i++){    int mobilavrange, mob;
               kk1=0.;    double age;
                 for(j=1; j<=nlstate;j++){  
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose
                 }                             a covariate has 2 modalities */
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];    if (cptcovn<1) modcovmax=1; /* At least 1 pass */
             }  
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
             if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++)       if(mobilav==1) mobilavrange=5; /* default */
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);      else mobilavrange=mobilav;
           }      for (age=bage; age<=fage; age++)
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        for (i=1; i<=nlstate;i++)
         }          for (cptcod=1;cptcod<=modcovmax;cptcod++)
       }            mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
        /* We keep the original values on the extreme ages bage, fage and for
   /******/         fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned.
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {       */
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);         for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);           for (i=1; i<=nlstate;i++){
           nhstepm = nhstepm/hstepm;             for (cptcod=1;cptcod<=modcovmax;cptcod++){
                         mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                for (cpt=1;cpt<=(mob-1)/2;cpt++){
           oldm=oldms;savm=savms;                  mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);                    mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
           for (h=0; h<=nhstepm; h++){                }
             if (h==(int) (calagedatem+YEARM*cpt)) {              mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);            }
             }           }
             for(j=1; j<=nlstate+ndeath;j++) {        }/* end age */
               kk1=0.;kk2=0;      }/* end mob */
               for(i=1; i<=nlstate;i++) {                  }else return -1;
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];        return 0;
               }  }/* End movingaverage */
               if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);          
             }  
           }  /************** Forecasting ******************/
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
         }    /* proj1, year, month, day of starting projection
       }       agemin, agemax range of age
    }        dateprev1 dateprev2 range of dates during which prevalence is computed
   }       anproj2 year of en of projection (same day and month as proj1).
      */
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
   if (popforecast==1) {    double agec; /* generic age */
     free_ivector(popage,0,AGESUP);    double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     free_vector(popeffectif,0,AGESUP);    double *popeffectif,*popcount;
     free_vector(popcount,0,AGESUP);    double ***p3mat;
   }    double ***mobaverage;
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    char fileresf[FILENAMELENGTH];
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
   fclose(ficrespop);    agelim=AGESUP;
 } /* End of popforecast */    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
 int fileappend(FILE *fichier, char *optionfich)    strcpy(fileresf,"f");
 {    strcat(fileresf,fileres);
   if((fichier=fopen(optionfich,"a"))==NULL) {    if((ficresf=fopen(fileresf,"w"))==NULL) {
     printf("Problem with file: %s\n", optionfich);      printf("Problem with forecast resultfile: %s\n", fileresf);
     fprintf(ficlog,"Problem with file: %s\n", optionfich);      fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     return (0);    }
   }    printf("Computing forecasting: result on file '%s' \n", fileresf);
   fflush(fichier);    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   return (1);  
 }    if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
 /**************** function prwizard **********************/      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
 {        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
   /* Wizard to print covariance matrix template */      }
     }
   char ca[32], cb[32], cc[32];  
   int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;    stepsize=(int) (stepm+YEARM-1)/YEARM;
   int numlinepar;    if (stepm<=12) stepsize=1;
     if(estepm < stepm){
   printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");      printf ("Problem %d lower than %d\n",estepm, stepm);
   fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    }
   for(i=1; i <=nlstate; i++){    else  hstepm=estepm;  
     jj=0;  
     for(j=1; j <=nlstate+ndeath; j++){    hstepm=hstepm/stepm;
       if(j==i) continue;    yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
       jj++;                                 fractional in yp1 */
       /*ca[0]= k+'a'-1;ca[1]='\0';*/    anprojmean=yp;
       printf("%1d%1d",i,j);    yp2=modf((yp1*12),&yp);
       fprintf(ficparo,"%1d%1d",i,j);    mprojmean=yp;
       for(k=1; k<=ncovmodel;k++){    yp1=modf((yp2*30.5),&yp);
         /*        printf(" %lf",param[i][j][k]); */    jprojmean=yp;
         /*        fprintf(ficparo," %lf",param[i][j][k]); */    if(jprojmean==0) jprojmean=1;
         printf(" 0.");    if(mprojmean==0) jprojmean=1;
         fprintf(ficparo," 0.");  
       }    i1=cptcoveff;
       printf("\n");    if (cptcovn < 1){i1=1;}
       fprintf(ficparo,"\n");   
     }    fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2);
   }   
   printf("# Scales (for hessian or gradient estimation)\n");    fprintf(ficresf,"#****** Routine prevforecast **\n");
   fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");  
   npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/   /*            if (h==(int)(YEARM*yearp)){ */
   for(i=1; i <=nlstate; i++){    for(cptcov=1, k=0;cptcov<=i1;cptcov++){
     jj=0;      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
     for(j=1; j <=nlstate+ndeath; j++){        k=k+1;
       if(j==i) continue;        fprintf(ficresf,"\n#******");
       jj++;        for(j=1;j<=cptcoveff;j++) {
       fprintf(ficparo,"%1d%1d",i,j);          fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
       printf("%1d%1d",i,j);        }
       fflush(stdout);        fprintf(ficresf,"******\n");
       for(k=1; k<=ncovmodel;k++){        fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         /*      printf(" %le",delti3[i][j][k]); */        for(j=1; j<=nlstate+ndeath;j++){
         /*      fprintf(ficparo," %le",delti3[i][j][k]); */          for(i=1; i<=nlstate;i++)              
         printf(" 0.");            fprintf(ficresf," p%d%d",i,j);
         fprintf(ficparo," 0.");          fprintf(ficresf," p.%d",j);
       }        }
       numlinepar++;        for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) {
       printf("\n");          fprintf(ficresf,"\n");
       fprintf(ficparo,"\n");          fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);  
     }  
   }          for (agec=fage; agec>=(ageminpar-1); agec--){
   printf("# Covariance matrix\n");            nhstepm=(int) rint((agelim-agec)*YEARM/stepm);
 /* # 121 Var(a12)\n\ */            nhstepm = nhstepm/hstepm;
 /* # 122 Cov(b12,a12) Var(b12)\n\ */            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */            oldm=oldms;savm=savms;
 /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */            hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
 /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */         
 /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */            for (h=0; h<=nhstepm; h++){
 /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */              if (h*hstepm/YEARM*stepm ==yearp) {
 /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */                fprintf(ficresf,"\n");
   fflush(stdout);                for(j=1;j<=cptcoveff;j++)
   fprintf(ficparo,"# Covariance matrix\n");                  fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
   /* # 121 Var(a12)\n\ */                fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
   /* # 122 Cov(b12,a12) Var(b12)\n\ */              }
   /* #   ...\n\ */              for(j=1; j<=nlstate+ndeath;j++) {
   /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */                ppij=0.;
                   for(i=1; i<=nlstate;i++) {
   for(itimes=1;itimes<=2;itimes++){                  if (mobilav==1)
     jj=0;                    ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
     for(i=1; i <=nlstate; i++){                  else {
       for(j=1; j <=nlstate+ndeath; j++){                    ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
         if(j==i) continue;                  }
         for(k=1; k<=ncovmodel;k++){                  if (h*hstepm/YEARM*stepm== yearp) {
           jj++;                    fprintf(ficresf," %.3f", p3mat[i][j][h]);
           ca[0]= k+'a'-1;ca[1]='\0';                  }
           if(itimes==1){                } /* end i */
             printf("#%1d%1d%d",i,j,k);                if (h*hstepm/YEARM*stepm==yearp) {
             fprintf(ficparo,"#%1d%1d%d",i,j,k);                  fprintf(ficresf," %.3f", ppij);
           }else{                }
             printf("%1d%1d%d",i,j,k);              }/* end j */
             fprintf(ficparo,"%1d%1d%d",i,j,k);            } /* end h */
             /*  printf(" %.5le",matcov[i][j]); */            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }          } /* end agec */
           ll=0;        } /* end yearp */
           for(li=1;li <=nlstate; li++){      } /* end cptcod */
             for(lj=1;lj <=nlstate+ndeath; lj++){    } /* end  cptcov */
               if(lj==li) continue;         
               for(lk=1;lk<=ncovmodel;lk++){    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
                 ll++;  
                 if(ll<=jj){    fclose(ficresf);
                   cb[0]= lk +'a'-1;cb[1]='\0';  }
                   if(ll<jj){  
                     if(itimes==1){  /************** Forecasting *****not tested NB*************/
                       printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);  populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
                       fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);   
                     }else{    int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
                       printf(" 0.");    int *popage;
                       fprintf(ficparo," 0.");    double calagedatem, agelim, kk1, kk2;
                     }    double *popeffectif,*popcount;
                   }else{    double ***p3mat,***tabpop,***tabpopprev;
                     if(itimes==1){    double ***mobaverage;
                       printf(" Var(%s%1d%1d)",ca,i,j);    char filerespop[FILENAMELENGTH];
                       fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);  
                     }else{    tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
                       printf(" 0.");    tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
                       fprintf(ficparo," 0.");    agelim=AGESUP;
                     }    calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
                   }   
                 }    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
               } /* end lk */   
             } /* end lj */   
           } /* end li */    strcpy(filerespop,"pop");
           printf("\n");    strcat(filerespop,fileres);
           fprintf(ficparo,"\n");    if((ficrespop=fopen(filerespop,"w"))==NULL) {
           numlinepar++;      printf("Problem with forecast resultfile: %s\n", filerespop);
         } /* end k*/      fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
       } /*end j */    }
     } /* end i */    printf("Computing forecasting: result on file '%s' \n", filerespop);
   } /* end itimes */    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
 } /* end of prwizard */    if (cptcoveff==0) ncodemax[cptcoveff]=1;
 /******************* Gompertz Likelihood ******************************/  
 double gompertz(double x[])    if (mobilav!=0) {
 {       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   double A,B,L=0.0,sump=0.,num=0.;      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
   int i,n=0; /* n is the size of the sample */        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
   for (i=0;i<=imx-1 ; i++) {        printf(" Error in movingaverage mobilav=%d\n",mobilav);
     sump=sump+weight[i];      }
     /*    sump=sump+1;*/    }
     num=num+1;  
   }    stepsize=(int) (stepm+YEARM-1)/YEARM;
      if (stepm<=12) stepsize=1;
     
   /* for (i=0; i<=imx; i++)     agelim=AGESUP;
      if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/   
     hstepm=1;
   for (i=1;i<=imx ; i++)    hstepm=hstepm/stepm;
     {   
       if (cens[i]==1 & wav[i]>1)    if (popforecast==1) {
         A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));      if((ficpop=fopen(popfile,"r"))==NULL) {
               printf("Problem with population file : %s\n",popfile);exit(0);
       if (cens[i]==0 & wav[i]>1)        fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
         A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))      }
              +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);        popage=ivector(0,AGESUP);
             popeffectif=vector(0,AGESUP);
       if (wav[i]>1 & agecens[i]>15) {      popcount=vector(0,AGESUP);
         L=L+A*weight[i];     
         /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/      i=1;  
       }      while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
     }     
       imx=i;
  /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/      for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
      }
   return -2*L*num/sump;  
 }    for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
 /******************* Printing html file ***********/        k=k+1;
 void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \        fprintf(ficrespop,"\n#******");
                   int lastpass, int stepm, int weightopt, char model[],\        for(j=1;j<=cptcoveff;j++) {
                   int imx,  double p[],double **matcov,double agemortsup){          fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
   int i,k;        }
         fprintf(ficrespop,"******\n");
   fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");        fprintf(ficrespop,"# Age");
   fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);        for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
   for (i=1;i<=2;i++)         if (popforecast==1)  fprintf(ficrespop," [Population]");
     fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));       
   fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");        for (cpt=0; cpt<=0;cpt++) {
   fprintf(fichtm,"</ul>");          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);  
          
 fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);
  fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");            nhstepm = nhstepm/hstepm;
            
  for (k=agegomp;k<(agemortsup-2);k++)             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
    fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);            oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
   fflush(fichtm);            for (h=0; h<=nhstepm; h++){
 }              if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
 /******************* Gnuplot file **************/              }
 void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){              for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
   char dirfileres[132],optfileres[132];                for(i=1; i<=nlstate;i++) {              
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;                  if (mobilav==1)
   int ng;                    kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
   /*#ifdef windows */                  }
   fprintf(ficgp,"cd \"%s\" \n",pathc);                }
     /*#endif */                if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
   strcpy(dirfileres,optionfilefiname);                      if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
   strcpy(optfileres,"vpl");                }
   fprintf(ficgp,"set out \"graphmort.png\"\n ");               }
   fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n ");               for(i=1; i<=nlstate;i++){
   fprintf(ficgp, "set ter png small\n set log y\n");                 kk1=0.;
   fprintf(ficgp, "set size 0.65,0.65\n");                  for(j=1; j<=nlstate;j++){
   fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);                    kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];
                   }
 }                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++)
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
 /***********************************************/            }
 /**************** Main Program *****************/            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 /***********************************************/          }
         }
 int main(int argc, char *argv[])   
 {    /******/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);  
   int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;        for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {
   int linei;          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);  
   int jj, ll, li, lj, lk, imk;          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){
   int numlinepar=0; /* Current linenumber of parameter file */            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);
   int itimes;            nhstepm = nhstepm/hstepm;
   int NDIM=2;           
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   char ca[32], cb[32], cc[32];            oldm=oldms;savm=savms;
   /*  FILE *fichtm; *//* Html File */            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
   /* FILE *ficgp;*/ /*Gnuplot File */            for (h=0; h<=nhstepm; h++){
   struct stat info;              if (h==(int) (calagedatem+YEARM*cpt)) {
   double agedeb, agefin,hf;                fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;              }
               for(j=1; j<=nlstate+ndeath;j++) {
   double fret;                kk1=0.;kk2=0;
   double **xi,tmp,delta;                for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
   double dum; /* Dummy variable */                }
   double ***p3mat;                if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
   double ***mobaverage;              }
   int *indx;            }
   char line[MAXLINE], linepar[MAXLINE];            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];          }
   char pathr[MAXLINE], pathimach[MAXLINE];         }
   int firstobs=1, lastobs=10;     }
   int sdeb, sfin; /* Status at beginning and end */    }
   int c,  h , cpt,l;   
   int ju,jl, mi;    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;  
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab;     if (popforecast==1) {
   int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */      free_ivector(popage,0,AGESUP);
   int mobilav=0,popforecast=0;      free_vector(popeffectif,0,AGESUP);
   int hstepm, nhstepm;      free_vector(popcount,0,AGESUP);
   int agemortsup;    }
   float  sumlpop=0.;    free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;    free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;    fclose(ficrespop);
   } /* End of popforecast */
   double bage, fage, age, agelim, agebase;  
   double ftolpl=FTOL;  int fileappend(FILE *fichier, char *optionfich)
   double **prlim;  {
   double *severity;    if((fichier=fopen(optionfich,"a"))==NULL) {
   double ***param; /* Matrix of parameters */      printf("Problem with file: %s\n", optionfich);
   double  *p;      fprintf(ficlog,"Problem with file: %s\n", optionfich);
   double **matcov; /* Matrix of covariance */      return (0);
   double ***delti3; /* Scale */    }
   double *delti; /* Scale */    fflush(fichier);
   double ***eij, ***vareij;    return (1);
   double **varpl; /* Variances of prevalence limits by age */  }
   double *epj, vepp;  
   double kk1, kk2;  
   double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;  /**************** function prwizard **********************/
   double **ximort;  void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   char *alph[]={"a","a","b","c","d","e"}, str[4];  {
   int *dcwave;  
     /* Wizard to print covariance matrix template */
   char z[1]="c", occ;  
     char ca[32], cb[32], cc[32];
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];    int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
   char strstart[80], *strt, strtend[80];    int numlinepar;
   char *stratrunc;  
   int lstra;    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
   long total_usecs;    for(i=1; i <=nlstate; i++){
        jj=0;
 /*   setlocale (LC_ALL, ""); */      for(j=1; j <=nlstate+ndeath; j++){
 /*   bindtextdomain (PACKAGE, LOCALEDIR); */        if(j==i) continue;
 /*   textdomain (PACKAGE); */        jj++;
 /*   setlocale (LC_CTYPE, ""); */        /*ca[0]= k+'a'-1;ca[1]='\0';*/
 /*   setlocale (LC_MESSAGES, ""); */        printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
   /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */        for(k=1; k<=ncovmodel;k++){
   (void) gettimeofday(&start_time,&tzp);          /*        printf(" %lf",param[i][j][k]); */
   curr_time=start_time;          /*        fprintf(ficparo," %lf",param[i][j][k]); */
   tm = *localtime(&start_time.tv_sec);          printf(" 0.");
   tmg = *gmtime(&start_time.tv_sec);          fprintf(ficparo," 0.");
   strcpy(strstart,asctime(&tm));        }
         printf("\n");
 /*  printf("Localtime (at start)=%s",strstart); */        fprintf(ficparo,"\n");
 /*  tp.tv_sec = tp.tv_sec +86400; */      }
 /*  tm = *localtime(&start_time.tv_sec); */    }
 /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */    printf("# Scales (for hessian or gradient estimation)\n");
 /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */    fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
 /*   tmg.tm_hour=tmg.tm_hour + 1; */    npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
 /*   tp.tv_sec = mktime(&tmg); */    for(i=1; i <=nlstate; i++){
 /*   strt=asctime(&tmg); */      jj=0;
 /*   printf("Time(after) =%s",strstart);  */      for(j=1; j <=nlstate+ndeath; j++){
 /*  (void) time (&time_value);        if(j==i) continue;
 *  printf("time=%d,t-=%d\n",time_value,time_value-86400);        jj++;
 *  tm = *localtime(&time_value);        fprintf(ficparo,"%1d%1d",i,j);
 *  strstart=asctime(&tm);        printf("%1d%1d",i,j);
 *  printf("tim_value=%d,asctime=%s\n",time_value,strstart);         fflush(stdout);
 */        for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
   nberr=0; /* Number of errors and warnings */          /*      fprintf(ficparo," %le",delti3[i][j][k]); */
   nbwarn=0;          printf(" 0.");
   getcwd(pathcd, size);          fprintf(ficparo," 0.");
         }
   printf("\n%s\n%s",version,fullversion);        numlinepar++;
   if(argc <=1){        printf("\n");
     printf("\nEnter the parameter file name: ");        fprintf(ficparo,"\n");
     scanf("%s",pathtot);      }
   }    }
   else{    printf("# Covariance matrix\n");
     strcpy(pathtot,argv[1]);  /* # 121 Var(a12)\n\ */
   }  /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/  /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /*cygwin_split_path(pathtot,path,optionfile);  /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/  /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* cutv(path,optionfile,pathtot,'\\');*/  /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* Split argv[0], imach program to get pathimach */  /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
   printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);    fflush(stdout);
   split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);    fprintf(ficparo,"# Covariance matrix\n");
   printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);    /* # 121 Var(a12)\n\ */
  /*   strcpy(pathimach,argv[0]); */    /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */    /* #   ...\n\ */
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);    /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
   printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);   
   chdir(path);    for(itimes=1;itimes<=2;itimes++){
   strcpy(command,"mkdir ");      jj=0;
   strcat(command,optionfilefiname);      for(i=1; i <=nlstate; i++){
   if((outcmd=system(command)) != 0){        for(j=1; j <=nlstate+ndeath; j++){
     printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);          if(j==i) continue;
     /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */          for(k=1; k<=ncovmodel;k++){
     /* fclose(ficlog); */            jj++;
 /*     exit(1); */            ca[0]= k+'a'-1;ca[1]='\0';
   }            if(itimes==1){
 /*   if((imk=mkdir(optionfilefiname))<0){ */              printf("#%1d%1d%d",i,j,k);
 /*     perror("mkdir"); */              fprintf(ficparo,"#%1d%1d%d",i,j,k);
 /*   } */            }else{
               printf("%1d%1d%d",i,j,k);
   /*-------- arguments in the command line --------*/              fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
   /* Log file */            }
   strcat(filelog, optionfilefiname);            ll=0;
   strcat(filelog,".log");    /* */            for(li=1;li <=nlstate; li++){
   if((ficlog=fopen(filelog,"w"))==NULL)    {              for(lj=1;lj <=nlstate+ndeath; lj++){
     printf("Problem with logfile %s\n",filelog);                if(lj==li) continue;
     goto end;                for(lk=1;lk<=ncovmodel;lk++){
   }                  ll++;
   fprintf(ficlog,"Log filename:%s\n",filelog);                  if(ll<=jj){
   fprintf(ficlog,"\n%s\n%s",version,fullversion);                    cb[0]= lk +'a'-1;cb[1]='\0';
   fprintf(ficlog,"\nEnter the parameter file name: \n");                    if(ll<jj){
   fprintf(ficlog,"pathimach=%s\npathtot=%s\n\                      if(itimes==1){
  path=%s \n\                        printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
  optionfile=%s\n\                        fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
  optionfilext=%s\n\                      }else{
  optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);                        printf(" 0.");
                         fprintf(ficparo," 0.");
   printf("Local time (at start):%s",strstart);                      }
   fprintf(ficlog,"Local time (at start): %s",strstart);                    }else{
   fflush(ficlog);                      if(itimes==1){
 /*   (void) gettimeofday(&curr_time,&tzp); */                        printf(" Var(%s%1d%1d)",ca,i,j);
 /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */                        fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
   /* */                        printf(" 0.");
   strcpy(fileres,"r");                        fprintf(ficparo," 0.");
   strcat(fileres, optionfilefiname);                      }
   strcat(fileres,".txt");    /* Other files have txt extension */                    }
                   }
   /*---------arguments file --------*/                } /* end lk */
               } /* end lj */
   if((ficpar=fopen(optionfile,"r"))==NULL)    {            } /* end li */
     printf("Problem with optionfile %s\n",optionfile);            printf("\n");
     fprintf(ficlog,"Problem with optionfile %s\n",optionfile);            fprintf(ficparo,"\n");
     fflush(ficlog);            numlinepar++;
     goto end;          } /* end k*/
   }        } /*end j */
       } /* end i */
     } /* end itimes */
   
   strcpy(filereso,"o");  } /* end of prwizard */
   strcat(filereso,fileres);  /******************* Gompertz Likelihood ******************************/
   if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */  double gompertz(double x[])
     printf("Problem with Output resultfile: %s\n", filereso);  {
     fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);    double A,B,L=0.0,sump=0.,num=0.;
     fflush(ficlog);    int i,n=0; /* n is the size of the sample */
     goto end;  
   }    for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
   /* Reads comments: lines beginning with '#' */      /*    sump=sump+1;*/
   numlinepar=0;      num=num+1;
   while((c=getc(ficpar))=='#' && c!= EOF){    }
     ungetc(c,ficpar);   
     fgets(line, MAXLINE, ficpar);   
     numlinepar++;    /* for (i=0; i<=imx; i++)
     puts(line);       if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
     fputs(line,ficparo);  
     fputs(line,ficlog);    for (i=1;i<=imx ; i++)
   }      {
   ungetc(c,ficpar);        if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);       
   numlinepar++;        if (cens[i] == 0 && wav[i]>1)
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);          A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);               +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
   fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);       
   fflush(ficlog);        /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
   while((c=getc(ficpar))=='#' && c!= EOF){        if (wav[i] > 1 ) { /* ??? */
     ungetc(c,ficpar);          L=L+A*weight[i];
     fgets(line, MAXLINE, ficpar);          /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
     numlinepar++;        }
     puts(line);      }
     fputs(line,ficparo);  
     fputs(line,ficlog);   /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
   }   
   ungetc(c,ficpar);    return -2*L*num/sump;
   }
      
   covar=matrix(0,NCOVMAX,1,n);   /******************* Printing html file ***********/
   cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/  void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;                    int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
   ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */    int i,k;
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */  
   npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/    fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    for (i=1;i<=2;i++)
   delti=delti3[1][1];      fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/    fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
   if(mle==-1){ /* Print a wizard for help writing covariance matrix */    fprintf(fichtm,"</ul>");
     prwizard(ncovmodel, nlstate, ndeath, model, ficparo);  
     printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);  fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
     fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);  
     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
     fclose (ficparo);  
     fclose (ficlog);   for (k=agegomp;k<(agemortsup-2);k++)
     exit(0);     fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   }  
   else if(mle==-3) {   
     prwizard(ncovmodel, nlstate, ndeath, model, ficparo);    fflush(fichtm);
     printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);  }
     fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);  
     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);  /******************* Gnuplot file **************/
     matcov=matrix(1,npar,1,npar);  void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   }  
   else{    char dirfileres[132],optfileres[132];
     /* Read guess parameters */    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     /* Reads comments: lines beginning with '#' */    int ng;
     while((c=getc(ficpar))=='#' && c!= EOF){  
       ungetc(c,ficpar);  
       fgets(line, MAXLINE, ficpar);    /*#ifdef windows */
       numlinepar++;    fprintf(ficgp,"cd \"%s\" \n",pathc);
       puts(line);      /*#endif */
       fputs(line,ficparo);  
       fputs(line,ficlog);  
     }    strcpy(dirfileres,optionfilefiname);
     ungetc(c,ficpar);    strcpy(optfileres,"vpl");
         fprintf(ficgp,"set out \"graphmort.png\"\n ");
     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n ");
     for(i=1; i <=nlstate; i++){    fprintf(ficgp, "set ter png small\n set log y\n");
       j=0;    fprintf(ficgp, "set size 0.65,0.65\n");
       for(jj=1; jj <=nlstate+ndeath; jj++){    fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
         if(jj==i) continue;  
         j++;  }
         fscanf(ficpar,"%1d%1d",&i1,&j1);  
         if ((i1 != i) && (j1 != j)){  
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);  
           exit(1);  
         }  
         fprintf(ficparo,"%1d%1d",i1,j1);  /***********************************************/
         if(mle==1)  /**************** Main Program *****************/
           printf("%1d%1d",i,j);  /***********************************************/
         fprintf(ficlog,"%1d%1d",i,j);  
         for(k=1; k<=ncovmodel;k++){  int main(int argc, char *argv[])
           fscanf(ficpar," %lf",&param[i][j][k]);  {
           if(mle==1){    int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
             printf(" %lf",param[i][j][k]);    int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
             fprintf(ficlog," %lf",param[i][j][k]);    int linei, month, year,iout;
           }    int jj, ll, li, lj, lk, imk;
           else    int numlinepar=0; /* Current linenumber of parameter file */
             fprintf(ficlog," %lf",param[i][j][k]);    int itimes;
           fprintf(ficparo," %lf",param[i][j][k]);    int NDIM=2;
         }  
         fscanf(ficpar,"\n");    char ca[32], cb[32], cc[32];
         numlinepar++;    char dummy[]="                         ";
         if(mle==1)    /*  FILE *fichtm; *//* Html File */
           printf("\n");    /* FILE *ficgp;*/ /*Gnuplot File */
         fprintf(ficlog,"\n");    struct stat info;
         fprintf(ficparo,"\n");    double agedeb, agefin,hf;
       }    double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
     }    
     fflush(ficlog);    double fret;
     double **xi,tmp,delta;
     p=param[1][1];  
         double dum; /* Dummy variable */
     /* Reads comments: lines beginning with '#' */    double ***p3mat;
     while((c=getc(ficpar))=='#' && c!= EOF){    double ***mobaverage;
       ungetc(c,ficpar);    int *indx;
       fgets(line, MAXLINE, ficpar);    char line[MAXLINE], linepar[MAXLINE];
       numlinepar++;    char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
       puts(line);    char pathr[MAXLINE], pathimach[MAXLINE];
       fputs(line,ficparo);    char **bp, *tok, *val; /* pathtot */
       fputs(line,ficlog);    int firstobs=1, lastobs=10;
     }    int sdeb, sfin; /* Status at beginning and end */
     ungetc(c,ficpar);    int c,  h , cpt,l;
     int ju,jl, mi;
     for(i=1; i <=nlstate; i++){    int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
       for(j=1; j <=nlstate+ndeath-1; j++){    int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab;
         fscanf(ficpar,"%1d%1d",&i1,&j1);    int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
         if ((i1-i)*(j1-j)!=0){    int mobilav=0,popforecast=0;
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);    int hstepm, nhstepm;
           exit(1);    int agemortsup;
         }    float  sumlpop=0.;
         printf("%1d%1d",i,j);    double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
         fprintf(ficparo,"%1d%1d",i1,j1);    double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
         fprintf(ficlog,"%1d%1d",i1,j1);  
         for(k=1; k<=ncovmodel;k++){    double bage, fage, age, agelim, agebase;
           fscanf(ficpar,"%le",&delti3[i][j][k]);    double ftolpl=FTOL;
           printf(" %le",delti3[i][j][k]);    double **prlim;
           fprintf(ficparo," %le",delti3[i][j][k]);    double *severity;
           fprintf(ficlog," %le",delti3[i][j][k]);    double ***param; /* Matrix of parameters */
         }    double  *p;
         fscanf(ficpar,"\n");    double **matcov; /* Matrix of covariance */
         numlinepar++;    double ***delti3; /* Scale */
         printf("\n");    double *delti; /* Scale */
         fprintf(ficparo,"\n");    double ***eij, ***vareij;
         fprintf(ficlog,"\n");    double **varpl; /* Variances of prevalence limits by age */
       }    double *epj, vepp;
     }    double kk1, kk2;
     fflush(ficlog);    double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     delti=delti3[1][1];    char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */    char z[1]="c", occ;
     
     /* Reads comments: lines beginning with '#' */    char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     while((c=getc(ficpar))=='#' && c!= EOF){    char  *strt, strtend[80];
       ungetc(c,ficpar);    char *stratrunc;
       fgets(line, MAXLINE, ficpar);    int lstra;
       numlinepar++;  
       puts(line);    long total_usecs;
       fputs(line,ficparo);   
       fputs(line,ficlog);  /*   setlocale (LC_ALL, ""); */
     }  /*   bindtextdomain (PACKAGE, LOCALEDIR); */
     ungetc(c,ficpar);  /*   textdomain (PACKAGE); */
     /*   setlocale (LC_CTYPE, ""); */
     matcov=matrix(1,npar,1,npar);  /*   setlocale (LC_MESSAGES, ""); */
     for(i=1; i <=npar; i++){  
       fscanf(ficpar,"%s",&str);    /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
       if(mle==1)    (void) gettimeofday(&start_time,&tzp);
         printf("%s",str);    curr_time=start_time;
       fprintf(ficlog,"%s",str);    tm = *localtime(&start_time.tv_sec);
       fprintf(ficparo,"%s",str);    tmg = *gmtime(&start_time.tv_sec);
       for(j=1; j <=i; j++){    strcpy(strstart,asctime(&tm));
         fscanf(ficpar," %le",&matcov[i][j]);  
         if(mle==1){  /*  printf("Localtime (at start)=%s",strstart); */
           printf(" %.5le",matcov[i][j]);  /*  tp.tv_sec = tp.tv_sec +86400; */
         }  /*  tm = *localtime(&start_time.tv_sec); */
         fprintf(ficlog," %.5le",matcov[i][j]);  /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
         fprintf(ficparo," %.5le",matcov[i][j]);  /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
       }  /*   tmg.tm_hour=tmg.tm_hour + 1; */
       fscanf(ficpar,"\n");  /*   tp.tv_sec = mktime(&tmg); */
       numlinepar++;  /*   strt=asctime(&tmg); */
       if(mle==1)  /*   printf("Time(after) =%s",strstart);  */
         printf("\n");  /*  (void) time (&time_value);
       fprintf(ficlog,"\n");  *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
       fprintf(ficparo,"\n");  *  tm = *localtime(&time_value);
     }  *  strstart=asctime(&tm);
     for(i=1; i <=npar; i++)  *  printf("tim_value=%d,asctime=%s\n",time_value,strstart);
       for(j=i+1;j<=npar;j++)  */
         matcov[i][j]=matcov[j][i];  
         nberr=0; /* Number of errors and warnings */
     if(mle==1)    nbwarn=0;
       printf("\n");    getcwd(pathcd, size);
     fprintf(ficlog,"\n");  
         printf("\n%s\n%s",version,fullversion);
     fflush(ficlog);    if(argc <=1){
           printf("\nEnter the parameter file name: ");
     /*-------- Rewriting parameter file ----------*/      fgets(pathr,FILENAMELENGTH,stdin);
     strcpy(rfileres,"r");    /* "Rparameterfile */      i=strlen(pathr);
     strcat(rfileres,optionfilefiname);    /* Parameter file first name*/      if(pathr[i-1]=='\n')
     strcat(rfileres,".");    /* */        pathr[i-1]='\0';
     strcat(rfileres,optionfilext);    /* Other files have txt extension */     for (tok = pathr; tok != NULL; ){
     if((ficres =fopen(rfileres,"w"))==NULL) {        printf("Pathr |%s|\n",pathr);
       printf("Problem writing new parameter file: %s\n", fileres);goto end;        while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;        printf("val= |%s| pathr=%s\n",val,pathr);
     }        strcpy (pathtot, val);
     fprintf(ficres,"#%s\n",version);        if(pathr[0] == '\0') break; /* Dirty */
   }    /* End of mle != -3 */      }
     }
   /*-------- data file ----------*/    else{
   if((fic=fopen(datafile,"r"))==NULL)    {      strcpy(pathtot,argv[1]);
     printf("Problem with datafile: %s\n", datafile);goto end;    }
     fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;    /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
   }    /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
   n= lastobs;    /* cutv(path,optionfile,pathtot,'\\');*/
   severity = vector(1,maxwav);  
   outcome=imatrix(1,maxwav+1,1,n);    /* Split argv[0], imach program to get pathimach */
   num=lvector(1,n);    printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
   moisnais=vector(1,n);    split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
   annais=vector(1,n);    printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
   moisdc=vector(1,n);   /*   strcpy(pathimach,argv[0]); */
   andc=vector(1,n);    /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
   agedc=vector(1,n);    split(pathtot,path,optionfile,optionfilext,optionfilefiname);
   cod=ivector(1,n);    printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
   weight=vector(1,n);    chdir(path); /* Can be a relative path */
   for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */    if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
   mint=matrix(1,maxwav,1,n);      printf("Current directory %s!\n",pathcd);
   anint=matrix(1,maxwav,1,n);    strcpy(command,"mkdir ");
   s=imatrix(1,maxwav+1,1,n);    strcat(command,optionfilefiname);
   tab=ivector(1,NCOVMAX);    if((outcmd=system(command)) != 0){
   ncodemax=ivector(1,8);      printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
   i=1;      /* fclose(ficlog); */
   linei=0;  /*     exit(1); */
   while ((fgets(line, MAXLINE, fic) != NULL) ||((i >= firstobs) && (i <=lastobs)))    {    }
     linei=linei+1;  /*   if((imk=mkdir(optionfilefiname))<0){ */
     printf("IIIII= %d linei=%d\n",i,linei);  /*     perror("mkdir"); */
     for(j=strlen(line); j>=0;j--){  /* Untabifies line */  /*   } */
         if(line[j] == '\t')  
           line[j] = ' ';    /*-------- arguments in the command line --------*/
       }  
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10);j--){;};line[j+1]=0;  /* Trims blanks at end of line */    /* Log file */
       if(line[0]=='#'){    strcat(filelog, optionfilefiname);
         fprintf(ficlog,"Comment line\n%s\n",line);    strcat(filelog,".log");    /* */
         printf("Comment line\n%s\n",line);    if((ficlog=fopen(filelog,"w"))==NULL)    {
         continue;      printf("Problem with logfile %s\n",filelog);
       }      goto end;
       for (j=maxwav;j>=1;j--){    }
         cutv(stra, strb,line,' ');     fprintf(ficlog,"Log filename:%s\n",filelog);
         errno=0;    fprintf(ficlog,"\n%s\n%s",version,fullversion);
         lval=strtol(strb,&endptr,10);     fprintf(ficlog,"\nEnter the parameter file name: \n");
         /*      if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/    fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
         if( strb[0]=='\0' || (*endptr != '\0')){   path=%s \n\
           printf("Error reading data around '%d' at line number %d %s for individual %d\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n",lval, i,line,linei,j,maxwav);   optionfile=%s\n\
           exit(1);   optionfilext=%s\n\
         }   optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
         s[j][i]=lval;  
     printf("Local time (at start):%s",strstart);
         strcpy(line,stra);    fprintf(ficlog,"Local time (at start): %s",strstart);
         cutv(stra, strb,line,'/');    fflush(ficlog);
         errno=0;  /*   (void) gettimeofday(&curr_time,&tzp); */
         lval=strtol(strb,&endptr,10);   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
         if( strb[0]=='\0' || (*endptr != '\0')){  
           printf("Error reading data around '%d'.at line number %ld %s for individual %d\nShould be a year of exam at wave %d.  Exiting.\n",lval, i,line,linei,j);    /* */
           exit(1);    strcpy(fileres,"r");
         }    strcat(fileres, optionfilefiname);
         anint[j][i]=(double)(lval);     strcat(fileres,".txt");    /* Other files have txt extension */
   
         strcpy(line,stra);    /*---------arguments file --------*/
         cutv(stra, strb,line,' ');  
         errno=0;    if((ficpar=fopen(optionfile,"r"))==NULL)    {
         lval=strtol(strb,&endptr,10);       printf("Problem with optionfile %s\n",optionfile);
         if( strb[0]=='\0' || (*endptr != '\0')){      fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
           printf("Error reading data around '%d' at line number %ld %s for individual %d\nShould be a month of exam at wave %d.  Exiting.\n",lval, i,line, linei,j);      fflush(ficlog);
           exit(1);      goto end;
         }    }
         mint[j][i]=(double)(lval);   
         strcpy(line,stra);  
       }  
             strcpy(filereso,"o");
       cutv(stra, strb,line,'/');     strcat(filereso,fileres);
       errno=0;    if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       lval=strtol(strb,&endptr,10);       printf("Problem with Output resultfile: %s\n", filereso);
       if( strb[0]=='\0' || (*endptr != '\0')){      fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
         printf("Error reading data around '%d' at line number %ld %s for individual %d\nShould be a year of death.  Exiting.\n",lval, i,line,linei);      fflush(ficlog);
         exit(1);      goto end;
       }    }
       andc[i]=(double)(lval);   
       strcpy(line,stra);    /* Reads comments: lines beginning with '#' */
     numlinepar=0;
       cutv(stra, strb,line,' ');     while((c=getc(ficpar))=='#' && c!= EOF){
       errno=0;      ungetc(c,ficpar);
       lval=strtol(strb,&endptr,10);       fgets(line, MAXLINE, ficpar);
       if( strb[0]=='\0' || (*endptr != '\0')){      numlinepar++;
         printf("Error reading data around '%d' at line number %ld %s for individual %d\nShould be a month of death.  Exiting.\n",lval,i,line, linei);      puts(line);
         exit(1);      fputs(line,ficparo);
       }      fputs(line,ficlog);
       moisdc[i]=(double)(lval);     }
     ungetc(c,ficpar);
       strcpy(line,stra);  
       cutv(stra, strb,line,'/');     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
       errno=0;    numlinepar++;
       lval=strtol(strb,&endptr,10);     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
       if( strb[0]=='\0' || (*endptr != '\0')){    fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
         printf("Error reading data around '%d' at line number %ld %s for individual %d\nShould be a year of birth.  Exiting.\n",lval, i,line, linei);    fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
         exit(1);    fflush(ficlog);
       }    while((c=getc(ficpar))=='#' && c!= EOF){
       annais[i]=(double)(lval);      ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       strcpy(line,stra);      numlinepar++;
       cutv(stra, strb,line,' ');      puts(line);
       errno=0;      fputs(line,ficparo);
       lval=strtol(strb,&endptr,10);       fputs(line,ficlog);
       if( strb[0]=='\0' || (*endptr != '\0')){    }
         printf("Error reading data around '%d' at line number %ld %s for individual %d\nShould be a month of birth.  Exiting.\n",lval,i,line,linei);    ungetc(c,ficpar);
         exit(1);  
       }     
       moisnais[i]=(double)(lval);     covar=matrix(0,NCOVMAX,1,n);
       strcpy(line,stra);    cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
       cutv(stra, strb,line,' ');   
       errno=0;    ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
       lval=strtol(strb,&endptr,10);     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
       if( strb[0]=='\0' || (*endptr != '\0')){    npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
         printf("Error reading data around '%d' at line number %ld %s for individual %d\nShould be a weight.  Exiting.\n",lval, i,line,linei);  
         exit(1);    delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       }    delti=delti3[1][1];
       weight[i]=(double)(lval);     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
       strcpy(line,stra);    if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       for (j=ncovcol;j>=1;j--){      printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
         cutv(stra, strb,line,' ');       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
         errno=0;      free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
         lval=strtol(strb,&endptr,10);       fclose (ficparo);
         if( strb[0]=='\0' || (*endptr != '\0')){      fclose (ficlog);
           printf("Error reading data around '%d' at line number %ld %s for individual %d\nShould be a covar (meaning 0 for the reference or 1).  Exiting.\n",lval, i,line,linei);      goto end;
           exit(1);      exit(0);
         }    }
         if(lval <0 || lval >1){    else if(mle==-3) {
           printf("Error reading data around '%d' at line number %ld %s for individual %d\nShould be a value of the %d covar (meaning 0 for the reference or 1. IMaCh does not build design variables, do it your self).  Exiting.\n",lval,i,line,linei,j);      prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
           exit(1);      printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
         }      fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
         covar[j][i]=(double)(lval);      param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
         strcpy(line,stra);      matcov=matrix(1,npar,1,npar);
       }     }
       lstra=strlen(stra);    else{
       /* Read guess parameters */
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */      /* Reads comments: lines beginning with '#' */
         stratrunc = &(stra[lstra-9]);      while((c=getc(ficpar))=='#' && c!= EOF){
         num[i]=atol(stratrunc);        ungetc(c,ficpar);
       }        fgets(line, MAXLINE, ficpar);
       else        numlinepar++;
         num[i]=atol(stra);        puts(line);
       printf ("num [i] %ld %d\n",i, num[i]);fflush(stdout);        fputs(line,ficparo);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){        fputs(line,ficlog);
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/      }
       ungetc(c,ficpar);
       i=i+1;     
   } /* End loop reading  data */      param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
   /* printf("ii=%d", ij);      for(i=1; i <=nlstate; i++){
      scanf("%d",i);*/        j=0;
   imx=i-1; /* Number of individuals */        for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
   /* for (i=1; i<=imx; i++){          j++;
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;          fscanf(ficpar,"%1d%1d",&i1,&j1);
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;          if ((i1 != i) && (j1 != j)){
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;            printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
     }*/  It might be a problem of design; if ncovcol and the model are correct\n \
    /*  for (i=1; i<=imx; i++){  run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
      if (s[4][i]==9)  s[4][i]=-1;             exit(1);
      printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/          }
             fprintf(ficparo,"%1d%1d",i1,j1);
   /* for (i=1; i<=imx; i++) */          if(mle==1)
              printf("%1d%1d",i,j);
    /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;          fprintf(ficlog,"%1d%1d",i,j);
      else weight[i]=1;*/          for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
   /* Calculation of the number of parameters from char model */            if(mle==1){
   Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */              printf(" %lf",param[i][j][k]);
   Tprod=ivector(1,15);               fprintf(ficlog," %lf",param[i][j][k]);
   Tvaraff=ivector(1,15);             }
   Tvard=imatrix(1,15,1,2);            else
   Tage=ivector(1,15);                    fprintf(ficlog," %lf",param[i][j][k]);
                fprintf(ficparo," %lf",param[i][j][k]);
   if (strlen(model) >1){ /* If there is at least 1 covariate */          }
     j=0, j1=0, k1=1, k2=1;          fscanf(ficpar,"\n");
     j=nbocc(model,'+'); /* j=Number of '+' */          numlinepar++;
     j1=nbocc(model,'*'); /* j1=Number of '*' */          if(mle==1)
     cptcovn=j+1;             printf("\n");
     cptcovprod=j1; /*Number of products */          fprintf(ficlog,"\n");
               fprintf(ficparo,"\n");
     strcpy(modelsav,model);         }
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){      }  
       printf("Error. Non available option model=%s ",model);      fflush(ficlog);
       fprintf(ficlog,"Error. Non available option model=%s ",model);  
       goto end;      p=param[1][1];
     }     
           /* Reads comments: lines beginning with '#' */
     /* This loop fills the array Tvar from the string 'model'.*/      while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
     for(i=(j+1); i>=1;i--){        fgets(line, MAXLINE, ficpar);
       cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */         numlinepar++;
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */        puts(line);
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/        fputs(line,ficparo);
       /*scanf("%d",i);*/        fputs(line,ficlog);
       if (strchr(strb,'*')) {  /* Model includes a product */      }
         cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/      ungetc(c,ficpar);
         if (strcmp(strc,"age")==0) { /* Vn*age */  
           cptcovprod--;      for(i=1; i <=nlstate; i++){
           cutv(strb,stre,strd,'V');        for(j=1; j <=nlstate+ndeath-1; j++){
           Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/          fscanf(ficpar,"%1d%1d",&i1,&j1);
           cptcovage++;          if ((i1-i)*(j1-j)!=0){
             Tage[cptcovage]=i;            printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             /*printf("stre=%s ", stre);*/            exit(1);
         }          }
         else if (strcmp(strd,"age")==0) { /* or age*Vn */          printf("%1d%1d",i,j);
           cptcovprod--;          fprintf(ficparo,"%1d%1d",i1,j1);
           cutv(strb,stre,strc,'V');          fprintf(ficlog,"%1d%1d",i1,j1);
           Tvar[i]=atoi(stre);          for(k=1; k<=ncovmodel;k++){
           cptcovage++;            fscanf(ficpar,"%le",&delti3[i][j][k]);
           Tage[cptcovage]=i;            printf(" %le",delti3[i][j][k]);
         }            fprintf(ficparo," %le",delti3[i][j][k]);
         else {  /* Age is not in the model */            fprintf(ficlog," %le",delti3[i][j][k]);
           cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/          }
           Tvar[i]=ncovcol+k1;          fscanf(ficpar,"\n");
           cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */          numlinepar++;
           Tprod[k1]=i;          printf("\n");
           Tvard[k1][1]=atoi(strc); /* m*/          fprintf(ficparo,"\n");
           Tvard[k1][2]=atoi(stre); /* n */          fprintf(ficlog,"\n");
           Tvar[cptcovn+k2]=Tvard[k1][1];        }
           Tvar[cptcovn+k2+1]=Tvard[k1][2];       }
           for (k=1; k<=lastobs;k++)       fflush(ficlog);
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];  
           k1++;      delti=delti3[1][1];
           k2=k2+2;  
         }  
       }      /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
       else { /* no more sum */   
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/      /* Reads comments: lines beginning with '#' */
        /*  scanf("%d",i);*/      while((c=getc(ficpar))=='#' && c!= EOF){
       cutv(strd,strc,strb,'V');        ungetc(c,ficpar);
       Tvar[i]=atoi(strc);        fgets(line, MAXLINE, ficpar);
       }        numlinepar++;
       strcpy(modelsav,stra);          puts(line);
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);        fputs(line,ficparo);
         scanf("%d",i);*/        fputs(line,ficlog);
     } /* end of loop + */      }
   } /* end model */      ungetc(c,ficpar);
      
   /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.      matcov=matrix(1,npar,1,npar);
     If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/      for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);        if(mle==1)
   printf("cptcovprod=%d ", cptcovprod);          printf("%s",str);
   fprintf(ficlog,"cptcovprod=%d ", cptcovprod);        fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
   scanf("%d ",i);        for(j=1; j <=i; j++){
   fclose(fic);*/          fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
     /*  if(mle==1){*/            printf(" %.5le",matcov[i][j]);
   if (weightopt != 1) { /* Maximisation without weights*/          }
     for(i=1;i<=n;i++) weight[i]=1.0;          fprintf(ficlog," %.5le",matcov[i][j]);
   }          fprintf(ficparo," %.5le",matcov[i][j]);
     /*-calculation of age at interview from date of interview and age at death -*/        }
   agev=matrix(1,maxwav,1,imx);        fscanf(ficpar,"\n");
         numlinepar++;
   for (i=1; i<=imx; i++) {        if(mle==1)
     for(m=2; (m<= maxwav); m++) {          printf("\n");
       if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){        fprintf(ficlog,"\n");
         anint[m][i]=9999;        fprintf(ficparo,"\n");
         s[m][i]=-1;      }
       }      for(i=1; i <=npar; i++)
       if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){        for(j=i+1;j<=npar;j++)
         nberr++;          matcov[i][j]=matcov[j][i];
         printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);     
         fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);      if(mle==1)
         s[m][i]=-1;        printf("\n");
       }      fprintf(ficlog,"\n");
       if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){     
         nberr++;      fflush(ficlog);
         printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]);      
         fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]);       /*-------- Rewriting parameter file ----------*/
         s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */      strcpy(rfileres,"r");    /* "Rparameterfile */
       }      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
     }      strcat(rfileres,".");    /* */
   }      strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
   for (i=1; i<=imx; i++)  {        printf("Problem writing new parameter file: %s\n", fileres);goto end;
     agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);        fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
     for(m=firstpass; (m<= lastpass); m++){      }
       if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){      fprintf(ficres,"#%s\n",version);
         if (s[m][i] >= nlstate+1) {    }    /* End of mle != -3 */
           if(agedc[i]>0)  
             if((int)moisdc[i]!=99 && (int)andc[i]!=9999)    /*-------- data file ----------*/
               agev[m][i]=agedc[i];    if((fic=fopen(datafile,"r"))==NULL)    {
           /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/      printf("Problem while opening datafile: %s\n", datafile);goto end;
             else {      fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);goto end;
               if ((int)andc[i]!=9999){    }
                 nbwarn++;  
                 printf("Warning negative age at death: %ld line:%d\n",num[i],i);    n= lastobs;
                 fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);    severity = vector(1,maxwav);
                 agev[m][i]=-1;    outcome=imatrix(1,maxwav+1,1,n);
               }    num=lvector(1,n);
             }    moisnais=vector(1,n);
         }    annais=vector(1,n);
         else if(s[m][i] !=9){ /* Standard case, age in fractional    moisdc=vector(1,n);
                                  years but with the precision of a month */    andc=vector(1,n);
           agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);    agedc=vector(1,n);
           if((int)mint[m][i]==99 || (int)anint[m][i]==9999)    cod=ivector(1,n);
             agev[m][i]=1;    weight=vector(1,n);
           else if(agev[m][i] <agemin){     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
             agemin=agev[m][i];    mint=matrix(1,maxwav,1,n);
             /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/    anint=matrix(1,maxwav,1,n);
           }    s=imatrix(1,maxwav+1,1,n);
           else if(agev[m][i] >agemax){    tab=ivector(1,NCOVMAX);
             agemax=agev[m][i];    ncodemax=ivector(1,8);
             /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/  
           }    i=1;
           /*agev[m][i]=anint[m][i]-annais[i];*/    linei=0;
           /*     agev[m][i] = age[i]+2*m;*/    while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
         }      linei=linei+1;
         else { /* =9 */      for(j=strlen(line); j>=0;j--){  /* Untabifies line */
           agev[m][i]=1;        if(line[j] == '\t')
           s[m][i]=-1;          line[j] = ' ';
         }      }
       }      for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
       else /*= 0 Unknown */        ;
         agev[m][i]=1;      };
     }      line[j+1]=0;  /* Trims blanks at end of line */
           if(line[0]=='#'){
   }        fprintf(ficlog,"Comment line\n%s\n",line);
   for (i=1; i<=imx; i++)  {        printf("Comment line\n%s\n",line);
     for(m=firstpass; (m<=lastpass); m++){        continue;
       if (s[m][i] > (nlstate+ndeath)) {      }
         nberr++;  
         printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);           for (j=maxwav;j>=1;j--){
         fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);             cutv(stra, strb,line,' ');
         goto end;        errno=0;
       }        lval=strtol(strb,&endptr,10);
     }        /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
   }        if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %d %s for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
   /*for (i=1; i<=imx; i++){          exit(1);
   for (m=firstpass; (m<lastpass); m++){        }
      printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);        s[j][i]=lval;
 }       
         strcpy(line,stra);
 }*/        cutv(stra, strb,line,' ');
         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }
   printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);        else  if(iout=sscanf(strb,"%s.") != 0){
   fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);           month=99;
           year=9999;
   agegomp=(int)agemin;        }else{
   free_vector(severity,1,maxwav);          printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
   free_imatrix(outcome,1,maxwav+1,1,n);          exit(1);
   free_vector(moisnais,1,n);        }
   free_vector(annais,1,n);        anint[j][i]= (double) year;
   /* free_matrix(mint,1,maxwav,1,n);        mint[j][i]= (double)month;
      free_matrix(anint,1,maxwav,1,n);*/        strcpy(line,stra);
   free_vector(moisdc,1,n);      } /* ENd Waves */
   free_vector(andc,1,n);     
       cutv(stra, strb,line,' ');
          if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
   wav=ivector(1,imx);      }
   dh=imatrix(1,lastpass-firstpass+1,1,imx);      else  if(iout=sscanf(strb,"%s.",dummy) != 0){
   bh=imatrix(1,lastpass-firstpass+1,1,imx);        month=99;
   mw=imatrix(1,lastpass-firstpass+1,1,imx);        year=9999;
          }else{
   /* Concatenates waves */        printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
   concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);        exit(1);
       }
   /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */      andc[i]=(double) year;
       moisdc[i]=(double) month;
   Tcode=ivector(1,100);      strcpy(line,stra);
   nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);      
   ncodemax[1]=1;      cutv(stra, strb,line,' ');
   if (cptcovn > 0) tricode(Tvar,nbcode,imx);      if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
             }
   codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of       else  if(iout=sscanf(strb,"%s.") != 0){
                                  the estimations*/        month=99;
   h=0;        year=9999;
   m=pow(2,cptcoveff);      }else{
          printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line,j);
   for(k=1;k<=cptcoveff; k++){        exit(1);
     for(i=1; i <=(m/pow(2,k));i++){      }
       for(j=1; j <= ncodemax[k]; j++){      annais[i]=(double)(year);
         for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){      moisnais[i]=(double)(month);
           h++;      strcpy(line,stra);
           if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;     
           /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/      cutv(stra, strb,line,' ');
         }       errno=0;
       }      dval=strtod(strb,&endptr);
     }      if( strb[0]=='\0' || (*endptr != '\0')){
   }         printf("Error reading data around '%f' at line number %ld, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
   /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);         exit(1);
      codtab[1][2]=1;codtab[2][2]=2; */      }
   /* for(i=1; i <=m ;i++){       weight[i]=dval;
      for(k=1; k <=cptcovn; k++){      strcpy(line,stra);
      printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);     
      }      for (j=ncovcol;j>=1;j--){
      printf("\n");        cutv(stra, strb,line,' ');
      }        errno=0;
      scanf("%d",i);*/        lval=strtol(strb,&endptr,10);
             if( strb[0]=='\0' || (*endptr != '\0')){
   /*------------ gnuplot -------------*/          printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a covar (meaning 0 for the reference or 1).  Exiting.\n",lval, linei,i, line);
   strcpy(optionfilegnuplot,optionfilefiname);          exit(1);
   if(mle==-3)        }
     strcat(optionfilegnuplot,"-mort");        if(lval <-1 || lval >1){
   strcat(optionfilegnuplot,".gp");          printf("Error reading data around '%d' at line number %ld for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {   for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
     printf("Problem with file %s",optionfilegnuplot);   For example, for multinomial values like 1, 2 and 3,\n \
   }   build V1=0 V2=0 for the reference value (1),\n \
   else{          V1=1 V2=0 for (2) \n \
     fprintf(ficgp,"\n# %s\n", version);    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
     fprintf(ficgp,"# %s\n", optionfilegnuplot);    output of IMaCh is often meaningless.\n \
     fprintf(ficgp,"set missing 'NaNq'\n");   Exiting.\n",lval,linei, i,line,j);
   }          exit(1);
   /*  fclose(ficgp);*/        }
   /*--------- index.htm --------*/        covar[j][i]=(double)(lval);
         strcpy(line,stra);
   strcpy(optionfilehtm,optionfilefiname); /* Main html file */      }
   if(mle==-3)      lstra=strlen(stra);
     strcat(optionfilehtm,"-mort");     
   strcat(optionfilehtm,".htm");      if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {        stratrunc = &(stra[lstra-9]);
     printf("Problem with %s \n",optionfilehtm), exit(0);        num[i]=atol(stratrunc);
   }      }
       else
   strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */        num[i]=atol(stra);
   strcat(optionfilehtmcov,"-cov.htm");      /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
   if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
     printf("Problem with %s \n",optionfilehtmcov), exit(0);     
   }      i=i+1;
   else{    } /* End loop reading  data */
   fprintf(fichtmcov,"<body>\n<title>IMaCh Cov %s</title>\n <font size=\"2\">%s <br> %s</font> \    fclose(fic);
 <hr size=\"2\" color=\"#EC5E5E\"> \n\    /* printf("ii=%d", ij);
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\       scanf("%d",i);*/
           fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);    imx=i-1; /* Number of individuals */
   }  
     /* for (i=1; i<=imx; i++){
   fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \      if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
 <hr size=\"2\" color=\"#EC5E5E\"> \n\      if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\      if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
 \n\      }*/
 <hr  size=\"2\" color=\"#EC5E5E\">\     /*  for (i=1; i<=imx; i++){
  <ul><li><h4>Parameter files</h4>\n\       if (s[4][i]==9)  s[4][i]=-1;
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\       printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
  - Log file of the run: <a href=\"%s\">%s</a><br>\n\   
  - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\    /* for (i=1; i<=imx; i++) */
  - Date and time at start: %s</ul>\n",\   
           fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\     /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
           fileres,fileres,\       else weight[i]=1;*/
           filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);  
   fflush(fichtm);    /* Calculation of the number of parameters from char model */
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
   strcpy(pathr,path);    Tprod=ivector(1,15);
   strcat(pathr,optionfilefiname);    Tvaraff=ivector(1,15);
   chdir(optionfilefiname); /* Move to directory named optionfile */    Tvard=imatrix(1,15,1,2);
       Tage=ivector(1,15);      
   /* Calculates basic frequencies. Computes observed prevalence at single age     
      and prints on file fileres'p'. */    if (strlen(model) >1){ /* If there is at least 1 covariate */
   freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);      j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
   fprintf(fichtm,"\n");      j1=nbocc(model,'*'); /* j1=Number of '*' */
   fprintf(fichtm,"<br>Total number of observations=%d <br>\n\      cptcovn=j+1;
 Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\      cptcovprod=j1; /*Number of products */
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\     
           imx,agemin,agemax,jmin,jmax,jmean);      strcpy(modelsav,model);
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        printf("Error. Non available option model=%s ",model);
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        fprintf(ficlog,"Error. Non available option model=%s ",model);
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        goto end;
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */      }
          
          /* This loop fills the array Tvar from the string 'model'.*/
   /* For Powell, parameters are in a vector p[] starting at p[1]  
      so we point p on param[1][1] so that p[1] maps on param[1][1][1] */      for(i=(j+1); i>=1;i--){
   p=param[1][1]; /* *(*(*(param +1)+1)+0) */        cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
   globpr=0; /* To get the number ipmx of contributions and the sum of weights*/        /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
   if (mle==-3){        /*scanf("%d",i);*/
     ximort=matrix(1,NDIM,1,NDIM);        if (strchr(strb,'*')) {  /* Model includes a product */
     cens=ivector(1,n);          cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
     ageexmed=vector(1,n);          if (strcmp(strc,"age")==0) { /* Vn*age */
     agecens=vector(1,n);            cptcovprod--;
     dcwave=ivector(1,n);            cutv(strb,stre,strd,'V');
              Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
     for (i=1; i<=imx; i++){            cptcovage++;
       dcwave[i]=-1;              Tage[cptcovage]=i;
       for (j=1; j<=lastpass; j++)              /*printf("stre=%s ", stre);*/
         if (s[j][i]>nlstate) {          }
           dcwave[i]=j;          else if (strcmp(strd,"age")==0) { /* or age*Vn */
           /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/            cptcovprod--;
           break;            cutv(strb,stre,strc,'V');
         }            Tvar[i]=atoi(stre);
     }            cptcovage++;
             Tage[cptcovage]=i;
     for (i=1; i<=imx; i++) {          }
       if (wav[i]>0){          else {  /* Age is not in the model */
         ageexmed[i]=agev[mw[1][i]][i];            cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
         j=wav[i];agecens[i]=1.;             Tvar[i]=ncovcol+k1;
         if (ageexmed[i]>1 & wav[i]>0) agecens[i]=agev[mw[j][i]][i];            cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
         cens[i]=1;            Tprod[k1]=i;
                     Tvard[k1][1]=atoi(strc); /* m*/
         if (ageexmed[i]<1) cens[i]=-1;            Tvard[k1][2]=atoi(stre); /* n */
         if (agedc[i]< AGESUP & agedc[i]>1 & dcwave[i]>firstpass & dcwave[i]<=lastpass) cens[i]=0 ;            Tvar[cptcovn+k2]=Tvard[k1][1];
       }            Tvar[cptcovn+k2+1]=Tvard[k1][2];
       else cens[i]=-1;            for (k=1; k<=lastobs;k++)
     }              covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
                 k1++;
     for (i=1;i<=NDIM;i++) {            k2=k2+2;
       for (j=1;j<=NDIM;j++)          }
         ximort[i][j]=(i == j ? 1.0 : 0.0);        }
     }        else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
     p[1]=0.1; p[2]=0.1;         /*  scanf("%d",i);*/
     /*printf("%lf %lf", p[1], p[2]);*/        cutv(strd,strc,strb,'V');
             Tvar[i]=atoi(strc);
             }
   printf("Powell\n");  fprintf(ficlog,"Powell\n");        strcpy(modelsav,stra);  
   strcpy(filerespow,"pow-mort");         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
   strcat(filerespow,fileres);          scanf("%d",i);*/
   if((ficrespow=fopen(filerespow,"w"))==NULL) {      } /* end of loop + */
     printf("Problem with resultfile: %s\n", filerespow);    } /* end model */
     fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);   
   }    /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
   fprintf(ficrespow,"# Powell\n# iter -2*LL");      If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   /*  for (i=1;i<=nlstate;i++)  
     for(j=1;j<=nlstate+ndeath;j++)    /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
       if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);    printf("cptcovprod=%d ", cptcovprod);
   */    fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   fprintf(ficrespow,"\n");  
     scanf("%d ",i);*/
     powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);  
     fclose(ficrespow);      /*  if(mle==1){*/
         if (weightopt != 1) { /* Maximisation without weights*/
     hesscov(matcov, p, NDIM,delti, 1e-4, gompertz);       for(i=1;i<=n;i++) weight[i]=1.0;
     }
     for(i=1; i <=NDIM; i++)      /*-calculation of age at interview from date of interview and age at death -*/
       for(j=i+1;j<=NDIM;j++)    agev=matrix(1,maxwav,1,imx);
         matcov[i][j]=matcov[j][i];  
         for (i=1; i<=imx; i++) {
     printf("\nCovariance matrix\n ");      for(m=2; (m<= maxwav); m++) {
     for(i=1; i <=NDIM; i++) {        if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
       for(j=1;j<=NDIM;j++){           anint[m][i]=9999;
         printf("%f ",matcov[i][j]);          s[m][i]=-1;
       }        }
       printf("\n ");        if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
     }          nberr++;
               printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
     printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);          fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
     for (i=1;i<=NDIM;i++)           s[m][i]=-1;
       printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));        }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
 lsurv=vector(1,AGESUP);          nberr++;
     lpop=vector(1,AGESUP);          printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]);
     tpop=vector(1,AGESUP);          fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]);
     lsurv[agegomp]=100000;          s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
            }
      for (k=agegomp;k<=AGESUP;k++) {      }
       agemortsup=k;    }
       if (p[1]*exp(p[2]*(k-agegomp))>1) break;  
     }    for (i=1; i<=imx; i++)  {
          agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for (k=agegomp;k<agemortsup;k++)      for(m=firstpass; (m<= lastpass); m++){
       lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));        if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
     for (k=agegomp;k<agemortsup;k++){            if(agedc[i]>0)
       lpop[k]=(lsurv[k]+lsurv[k+1])/2.;              if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
       sumlpop=sumlpop+lpop[k];                agev[m][i]=agedc[i];
     }            /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
  tpop[agegomp]=sumlpop;                if ((int)andc[i]!=9999){
     for (k=agegomp;k<(agemortsup-3);k++){                  nbwarn++;
       /*  tpop[k+1]=2;*/                  printf("Warning negative age at death: %ld line:%d\n",num[i],i);
       tpop[k+1]=tpop[k]-lpop[k];                  fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
        }                  agev[m][i]=-1;
                    }
                  }
        printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");          }
     for (k=agegomp;k<(agemortsup-2);k++)           else if(s[m][i] !=9){ /* Standard case, age in fractional
       printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);                                   years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
     replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */              agev[m][i]=1;
     printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);            else if(agev[m][i] <agemin){
                   agemin=agev[m][i];
     printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \              /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
                      stepm, weightopt,\            }
                      model,imx,p,matcov,agemortsup);            else if(agev[m][i] >agemax){
               agemax=agev[m][i];
     free_vector(lsurv,1,AGESUP);              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
     free_vector(lpop,1,AGESUP);            }
     free_vector(tpop,1,AGESUP);            /*agev[m][i]=anint[m][i]-annais[i];*/
   } /* Endof if mle==-3 */            /*     agev[m][i] = age[i]+2*m;*/
           }
   else{ /* For mle >=1 */          else { /* =9 */
               agev[m][i]=1;
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */            s[m][i]=-1;
     printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);          }
     for (k=1; k<=npar;k++)        }
       printf(" %d %8.5f",k,p[k]);        else /*= 0 Unknown */
     printf("\n");          agev[m][i]=1;
     globpr=1; /* to print the contributions */      }
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */     
     printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);    }
     for (k=1; k<=npar;k++)    for (i=1; i<=imx; i++)  {
       printf(" %d %8.5f",k,p[k]);      for(m=firstpass; (m<=lastpass); m++){
     printf("\n");        if (s[m][i] > (nlstate+ndeath)) {
     if(mle>=1){ /* Could be 1 or 2 */          nberr++;
       mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);          printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);    
     }          fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);    
               goto end;
     /*--------- results files --------------*/        }
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);      }
         }
       
     fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    /*for (i=1; i<=imx; i++){
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    for (m=firstpass; (m<lastpass); m++){
     fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");       printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
     for(i=1,jk=1; i <=nlstate; i++){  }
       for(k=1; k <=(nlstate+ndeath); k++){  
         if (k != i) {  }*/
           printf("%d%d ",i,k);  
           fprintf(ficlog,"%d%d ",i,k);  
           fprintf(ficres,"%1d%1d ",i,k);    printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
           for(j=1; j <=ncovmodel; j++){    fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
             printf("%f ",p[jk]);  
             fprintf(ficlog,"%f ",p[jk]);    agegomp=(int)agemin;
             fprintf(ficres,"%f ",p[jk]);    free_vector(severity,1,maxwav);
             jk++;     free_imatrix(outcome,1,maxwav+1,1,n);
           }    free_vector(moisnais,1,n);
           printf("\n");    free_vector(annais,1,n);
           fprintf(ficlog,"\n");    /* free_matrix(mint,1,maxwav,1,n);
           fprintf(ficres,"\n");       free_matrix(anint,1,maxwav,1,n);*/
         }    free_vector(moisdc,1,n);
       }    free_vector(andc,1,n);
     }  
     if(mle!=0){     
       /* Computing hessian and covariance matrix */    wav=ivector(1,imx);
       ftolhess=ftol; /* Usually correct */    dh=imatrix(1,lastpass-firstpass+1,1,imx);
       hesscov(matcov, p, npar, delti, ftolhess, func);    bh=imatrix(1,lastpass-firstpass+1,1,imx);
     }    mw=imatrix(1,lastpass-firstpass+1,1,imx);
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");     
     printf("# Scales (for hessian or gradient estimation)\n");    /* Concatenates waves */
     fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");    concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
     for(i=1,jk=1; i <=nlstate; i++){  
       for(j=1; j <=nlstate+ndeath; j++){    /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
         if (j!=i) {  
           fprintf(ficres,"%1d%1d",i,j);    Tcode=ivector(1,100);
           printf("%1d%1d",i,j);    nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);
           fprintf(ficlog,"%1d%1d",i,j);    ncodemax[1]=1;
           for(k=1; k<=ncovmodel;k++){    if (cptcovn > 0) tricode(Tvar,nbcode,imx);
             printf(" %.5e",delti[jk]);       
             fprintf(ficlog," %.5e",delti[jk]);    codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of
             fprintf(ficres," %.5e",delti[jk]);                                   the estimations*/
             jk++;    h=0;
           }    m=pow(2,cptcoveff);
           printf("\n");   
           fprintf(ficlog,"\n");    for(k=1;k<=cptcoveff; k++){
           fprintf(ficres,"\n");      for(i=1; i <=(m/pow(2,k));i++){
         }        for(j=1; j <= ncodemax[k]; j++){
       }          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
     }            h++;
                 if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
     if(mle>=1)          }
       printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");        }
     fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");      }
     /* # 121 Var(a12)\n\ */    }
     /* # 122 Cov(b12,a12) Var(b12)\n\ */    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);
     /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */       codtab[1][2]=1;codtab[2][2]=2; */
     /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */    /* for(i=1; i <=m ;i++){
     /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */       for(k=1; k <=cptcovn; k++){
     /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
     /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */       }
     /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */       printf("\n");
            }
            scanf("%d",i);*/
     /* Just to have a covariance matrix which will be more understandable     
        even is we still don't want to manage dictionary of variables    /*------------ gnuplot -------------*/
     */    strcpy(optionfilegnuplot,optionfilefiname);
     for(itimes=1;itimes<=2;itimes++){    if(mle==-3)
       jj=0;      strcat(optionfilegnuplot,"-mort");
       for(i=1; i <=nlstate; i++){    strcat(optionfilegnuplot,".gp");
         for(j=1; j <=nlstate+ndeath; j++){  
           if(j==i) continue;    if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
           for(k=1; k<=ncovmodel;k++){      printf("Problem with file %s",optionfilegnuplot);
             jj++;    }
             ca[0]= k+'a'-1;ca[1]='\0';    else{
             if(itimes==1){      fprintf(ficgp,"\n# %s\n", version);
               if(mle>=1)      fprintf(ficgp,"# %s\n", optionfilegnuplot);
                 printf("#%1d%1d%d",i,j,k);      fprintf(ficgp,"set missing 'NaNq'\n");
               fprintf(ficlog,"#%1d%1d%d",i,j,k);    }
               fprintf(ficres,"#%1d%1d%d",i,j,k);    /*  fclose(ficgp);*/
             }else{    /*--------- index.htm --------*/
               if(mle>=1)  
                 printf("%1d%1d%d",i,j,k);    strcpy(optionfilehtm,optionfilefiname); /* Main html file */
               fprintf(ficlog,"%1d%1d%d",i,j,k);    if(mle==-3)
               fprintf(ficres,"%1d%1d%d",i,j,k);      strcat(optionfilehtm,"-mort");
             }    strcat(optionfilehtm,".htm");
             ll=0;    if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
             for(li=1;li <=nlstate; li++){      printf("Problem with %s \n",optionfilehtm), exit(0);
               for(lj=1;lj <=nlstate+ndeath; lj++){    }
                 if(lj==li) continue;  
                 for(lk=1;lk<=ncovmodel;lk++){    strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
                   ll++;    strcat(optionfilehtmcov,"-cov.htm");
                   if(ll<=jj){    if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
                     cb[0]= lk +'a'-1;cb[1]='\0';      printf("Problem with %s \n",optionfilehtmcov), exit(0);
                     if(ll<jj){    }
                       if(itimes==1){    else{
                         if(mle>=1)    fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
                           printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);  <hr size=\"2\" color=\"#EC5E5E\"> \n\
                         fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);  Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
                         fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);            optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
                       }else{    }
                         if(mle>=1)  
                           printf(" %.5e",matcov[jj][ll]);     fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
                         fprintf(ficlog," %.5e",matcov[jj][ll]);   <hr size=\"2\" color=\"#EC5E5E\"> \n\
                         fprintf(ficres," %.5e",matcov[jj][ll]);   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
                       }  \n\
                     }else{  <hr  size=\"2\" color=\"#EC5E5E\">\
                       if(itimes==1){   <ul><li><h4>Parameter files</h4>\n\
                         if(mle>=1)   - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
                           printf(" Var(%s%1d%1d)",ca,i,j);   - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
                         fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);   - Log file of the run: <a href=\"%s\">%s</a><br>\n\
                         fprintf(ficres," Var(%s%1d%1d)",ca,i,j);   - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
                       }else{   - Date and time at start: %s</ul>\n",\
                         if(mle>=1)            optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
                           printf(" %.5e",matcov[jj][ll]);             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
                         fprintf(ficlog," %.5e",matcov[jj][ll]);             fileres,fileres,\
                         fprintf(ficres," %.5e",matcov[jj][ll]);             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
                       }    fflush(fichtm);
                     }  
                   }    strcpy(pathr,path);
                 } /* end lk */    strcat(pathr,optionfilefiname);
               } /* end lj */    chdir(optionfilefiname); /* Move to directory named optionfile */
             } /* end li */   
             if(mle>=1)    /* Calculates basic frequencies. Computes observed prevalence at single age
               printf("\n");       and prints on file fileres'p'. */
             fprintf(ficlog,"\n");    freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
             fprintf(ficres,"\n");  
             numlinepar++;    fprintf(fichtm,"\n");
           } /* end k*/    fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
         } /*end j */  Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
       } /* end i */  Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
     } /* end itimes */            imx,agemin,agemax,jmin,jmax,jmean);
         pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
     fflush(ficlog);      oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
     fflush(ficres);      newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
           savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
     while((c=getc(ficpar))=='#' && c!= EOF){      oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       ungetc(c,ficpar);     
       fgets(line, MAXLINE, ficpar);     
       puts(line);    /* For Powell, parameters are in a vector p[] starting at p[1]
       fputs(line,ficparo);       so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     }    p=param[1][1]; /* *(*(*(param +1)+1)+0) */
     ungetc(c,ficpar);  
         globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
     estepm=0;  
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);    if (mle==-3){
     if (estepm==0 || estepm < stepm) estepm=stepm;      ximort=matrix(1,NDIM,1,NDIM);
     if (fage <= 2) {      cens=ivector(1,n);
       bage = ageminpar;      ageexmed=vector(1,n);
       fage = agemaxpar;      agecens=vector(1,n);
     }      dcwave=ivector(1,n);
        
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");      for (i=1; i<=imx; i++){
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);        dcwave[i]=-1;
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);        for (m=firstpass; m<=lastpass; m++)
               if (s[m][i]>nlstate) {
     while((c=getc(ficpar))=='#' && c!= EOF){            dcwave[i]=m;
       ungetc(c,ficpar);            /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
       fgets(line, MAXLINE, ficpar);            break;
       puts(line);          }
       fputs(line,ficparo);      }
     }  
     ungetc(c,ficpar);      for (i=1; i<=imx; i++) {
             if (wav[i]>0){
     fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);          ageexmed[i]=agev[mw[1][i]][i];
     fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);          j=wav[i];
     fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);          agecens[i]=1.;
     printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);  
     fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);          if (ageexmed[i]> 1 && wav[i] > 0){
                 agecens[i]=agev[mw[j][i]][i];
     while((c=getc(ficpar))=='#' && c!= EOF){            cens[i]= 1;
       ungetc(c,ficpar);          }else if (ageexmed[i]< 1)
       fgets(line, MAXLINE, ficpar);            cens[i]= -1;
       puts(line);          if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
       fputs(line,ficparo);            cens[i]=0 ;
     }        }
     ungetc(c,ficpar);        else cens[i]=-1;
           }
          
     dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;      for (i=1;i<=NDIM;i++) {
     dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;        for (j=1;j<=NDIM;j++)
               ximort[i][j]=(i == j ? 1.0 : 0.0);
     fscanf(ficpar,"pop_based=%d\n",&popbased);      }
     fprintf(ficparo,"pop_based=%d\n",popbased);        
     fprintf(ficres,"pop_based=%d\n",popbased);         p[1]=0.0268; p[NDIM]=0.083;
           /*printf("%lf %lf", p[1], p[2]);*/
     while((c=getc(ficpar))=='#' && c!= EOF){     
       ungetc(c,ficpar);     
       fgets(line, MAXLINE, ficpar);      printf("Powell\n");  fprintf(ficlog,"Powell\n");
       puts(line);      strcpy(filerespow,"pow-mort");
       fputs(line,ficparo);      strcat(filerespow,fileres);
     }      if((ficrespow=fopen(filerespow,"w"))==NULL) {
     ungetc(c,ficpar);        printf("Problem with resultfile: %s\n", filerespow);
             fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
     fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);      }
     fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);      fprintf(ficrespow,"# Powell\n# iter -2*LL");
     printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);      /*  for (i=1;i<=nlstate;i++)
     fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);          for(j=1;j<=nlstate+ndeath;j++)
     fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);          if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
     /* day and month of proj2 are not used but only year anproj2.*/      */
           fprintf(ficrespow,"\n");
          
           powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
     /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/      fclose(ficrespow);
     /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/     
           hesscov(matcov, p, NDIM, delti, 1e-4, gompertz);
     replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */  
     printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);      for(i=1; i <=NDIM; i++)
             for(j=i+1;j<=NDIM;j++)
     printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\          matcov[i][j]=matcov[j][i];
                  model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\     
                  jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);      printf("\nCovariance matrix\n ");
             for(i=1; i <=NDIM; i++) {
    /*------------ free_vector  -------------*/        for(j=1;j<=NDIM;j++){
    /*  chdir(path); */          printf("%f ",matcov[i][j]);
          }
     free_ivector(wav,1,imx);        printf("\n ");
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);      }
     free_imatrix(bh,1,lastpass-firstpass+1,1,imx);     
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);         printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
     free_lvector(num,1,n);      for (i=1;i<=NDIM;i++)
     free_vector(agedc,1,n);        printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     /*free_matrix(covar,0,NCOVMAX,1,n);*/  
     /*free_matrix(covar,1,NCOVMAX,1,n);*/      lsurv=vector(1,AGESUP);
     fclose(ficparo);      lpop=vector(1,AGESUP);
     fclose(ficres);      tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
      
     /*--------------- Prevalence limit  (stable prevalence) --------------*/      for (k=agegomp;k<=AGESUP;k++) {
           agemortsup=k;
     strcpy(filerespl,"pl");        if (p[1]*exp(p[2]*(k-agegomp))>1) break;
     strcat(filerespl,fileres);      }
     if((ficrespl=fopen(filerespl,"w"))==NULL) {     
       printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;      for (k=agegomp;k<agemortsup;k++)
       fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;        lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
     }     
     printf("Computing stable prevalence: result on file '%s' \n", filerespl);      for (k=agegomp;k<agemortsup;k++){
     fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);        lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
     fprintf(ficrespl, "#Local time at start: %s", strstart);        sumlpop=sumlpop+lpop[k];
     fprintf(ficrespl,"#Stable prevalence \n");      }
     fprintf(ficrespl,"#Age ");     
     for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);      tpop[agegomp]=sumlpop;
     fprintf(ficrespl,"\n");      for (k=agegomp;k<(agemortsup-3);k++){
           /*  tpop[k+1]=2;*/
     prlim=matrix(1,nlstate,1,nlstate);        tpop[k+1]=tpop[k]-lpop[k];
       }
     agebase=ageminpar;     
     agelim=agemaxpar;     
     ftolpl=1.e-10;      printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
     i1=cptcoveff;      for (k=agegomp;k<(agemortsup-2);k++)
     if (cptcovn < 1){i1=1;}        printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
      
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){     
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
         k=k+1;      printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/     
         fprintf(ficrespl,"\n#******");      printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
         printf("\n#******");                       stepm, weightopt,\
         fprintf(ficlog,"\n#******");                       model,imx,p,matcov,agemortsup);
         for(j=1;j<=cptcoveff;j++) {     
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      free_vector(lsurv,1,AGESUP);
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      free_vector(lpop,1,AGESUP);
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      free_vector(tpop,1,AGESUP);
         }    } /* Endof if mle==-3 */
         fprintf(ficrespl,"******\n");   
         printf("******\n");    else{ /* For mle >=1 */
         fprintf(ficlog,"******\n");   
               likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
         for (age=agebase; age<=agelim; age++){      printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);      for (k=1; k<=npar;k++)
           fprintf(ficrespl,"%.0f ",age );        printf(" %d %8.5f",k,p[k]);
           for(j=1;j<=cptcoveff;j++)      printf("\n");
             fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      globpr=1; /* to print the contributions */
           for(i=1; i<=nlstate;i++)      likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
             fprintf(ficrespl," %.5f", prlim[i][i]);      printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
           fprintf(ficrespl,"\n");      for (k=1; k<=npar;k++)
         }        printf(" %d %8.5f",k,p[k]);
       }      printf("\n");
     }      if(mle>=1){ /* Could be 1 or 2 */
     fclose(ficrespl);        mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
     /*------------- h Pij x at various ages ------------*/     
         /*--------- results files --------------*/
     strcpy(filerespij,"pij");  strcat(filerespij,fileres);      fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
     if((ficrespij=fopen(filerespij,"w"))==NULL) {     
       printf("Problem with Pij resultfile: %s\n", filerespij);goto end;     
       fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;      fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     }      printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     printf("Computing pij: result on file '%s' \n", filerespij);      fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);      for(i=1,jk=1; i <=nlstate; i++){
           for(k=1; k <=(nlstate+ndeath); k++){
     stepsize=(int) (stepm+YEARM-1)/YEARM;          if (k != i) {
     /*if (stepm<=24) stepsize=2;*/            printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
     agelim=AGESUP;            fprintf(ficres,"%1d%1d ",i,k);
     hstepm=stepsize*YEARM; /* Every year of age */            for(j=1; j <=ncovmodel; j++){
     hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */               printf("%lf ",p[jk]);
               fprintf(ficlog,"%lf ",p[jk]);
     /* hstepm=1;   aff par mois*/              fprintf(ficres,"%lf ",p[jk]);
     fprintf(ficrespij, "#Local time at start: %s", strstart);              jk++;
     fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");            }
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){            printf("\n");
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){            fprintf(ficlog,"\n");
         k=k+1;            fprintf(ficres,"\n");
         fprintf(ficrespij,"\n#****** ");          }
         for(j=1;j<=cptcoveff;j++)         }
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      }
         fprintf(ficrespij,"******\n");      if(mle!=0){
                 /* Computing hessian and covariance matrix */
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */        ftolhess=ftol; /* Usually correct */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */         hesscov(matcov, p, npar, delti, ftolhess, func);
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */      }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
           /*      nhstepm=nhstepm*YEARM; aff par mois*/      printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      for(i=1,jk=1; i <=nlstate; i++){
           oldm=oldms;savm=savms;        for(j=1; j <=nlstate+ndeath; j++){
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);            if (j!=i) {
           fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");            fprintf(ficres,"%1d%1d",i,j);
           for(i=1; i<=nlstate;i++)            printf("%1d%1d",i,j);
             for(j=1; j<=nlstate+ndeath;j++)            fprintf(ficlog,"%1d%1d",i,j);
               fprintf(ficrespij," %1d-%1d",i,j);            for(k=1; k<=ncovmodel;k++){
           fprintf(ficrespij,"\n");              printf(" %.5e",delti[jk]);
           for (h=0; h<=nhstepm; h++){              fprintf(ficlog," %.5e",delti[jk]);
             fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );              fprintf(ficres," %.5e",delti[jk]);
             for(i=1; i<=nlstate;i++)              jk++;
               for(j=1; j<=nlstate+ndeath;j++)            }
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);            printf("\n");
             fprintf(ficrespij,"\n");            fprintf(ficlog,"\n");
           }            fprintf(ficres,"\n");
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          }
           fprintf(ficrespij,"\n");        }
         }      }
       }     
     }      fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
     varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);        printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     fclose(ficrespij);      /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
     probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);      /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
     for(i=1;i<=AGESUP;i++)      /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       for(j=1;j<=NCOVMAX;j++)      /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
         for(k=1;k<=NCOVMAX;k++)      /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
           probs[i][j][k]=0.;      /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     /*---------- Forecasting ------------------*/     
     /*if((stepm == 1) && (strcmp(model,".")==0)){*/     
     if(prevfcast==1){      /* Just to have a covariance matrix which will be more understandable
       /*    if(stepm ==1){*/         even is we still don't want to manage dictionary of variables
       prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);      */
       /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/      for(itimes=1;itimes<=2;itimes++){
       /*      }  */        jj=0;
       /*      else{ */        for(i=1; i <=nlstate; i++){
       /*        erreur=108; */          for(j=1; j <=nlstate+ndeath; j++){
       /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */            if(j==i) continue;
       /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */            for(k=1; k<=ncovmodel;k++){
       /*      } */              jj++;
     }              ca[0]= k+'a'-1;ca[1]='\0';
                 if(itimes==1){
                 if(mle>=1)
     /*---------- Health expectancies and variances ------------*/                  printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
     strcpy(filerest,"t");                fprintf(ficres,"#%1d%1d%d",i,j,k);
     strcat(filerest,fileres);              }else{
     if((ficrest=fopen(filerest,"w"))==NULL) {                if(mle>=1)
       printf("Problem with total LE resultfile: %s\n", filerest);goto end;                  printf("%1d%1d%d",i,j,k);
       fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;                fprintf(ficlog,"%1d%1d%d",i,j,k);
     }                fprintf(ficres,"%1d%1d%d",i,j,k);
     printf("Computing Total LEs with variances: file '%s' \n", filerest);               }
     fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest);               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
     strcpy(filerese,"e");                  if(lj==li) continue;
     strcat(filerese,fileres);                  for(lk=1;lk<=ncovmodel;lk++){
     if((ficreseij=fopen(filerese,"w"))==NULL) {                    ll++;
       printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);                    if(ll<=jj){
       fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);                      cb[0]= lk +'a'-1;cb[1]='\0';
     }                      if(ll<jj){
     printf("Computing Health Expectancies: result on file '%s' \n", filerese);                        if(itimes==1){
     fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);                          if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
     strcpy(fileresv,"v");                          fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
     strcat(fileresv,fileres);                          fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
     if((ficresvij=fopen(fileresv,"w"))==NULL) {                        }else{
       printf("Problem with variance resultfile: %s\n", fileresv);exit(0);                          if(mle>=1)
       fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);                            printf(" %.5e",matcov[jj][ll]);
     }                          fprintf(ficlog," %.5e",matcov[jj][ll]);
     printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);                          fprintf(ficres," %.5e",matcov[jj][ll]);
     fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);                        }
                       }else{
     /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */                        if(itimes==1){
     prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);                          if(mle>=1)
     /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\                            printf(" Var(%s%1d%1d)",ca,i,j);
         ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);                          fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
     */                          fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
     if (mobilav!=0) {                          if(mle>=1)
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);                            printf(" %.5e",matcov[jj][ll]);
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){                          fprintf(ficlog," %.5e",matcov[jj][ll]);
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);                          fprintf(ficres," %.5e",matcov[jj][ll]);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);                        }
       }                      }
     }                    }
                   } /* end lk */
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){                } /* end lj */
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){              } /* end li */
         k=k+1;               if(mle>=1)
         fprintf(ficrest,"\n#****** ");                printf("\n");
         for(j=1;j<=cptcoveff;j++)               fprintf(ficlog,"\n");
           fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);              fprintf(ficres,"\n");
         fprintf(ficrest,"******\n");              numlinepar++;
             } /* end k*/
         fprintf(ficreseij,"\n#****** ");          } /*end j */
         for(j=1;j<=cptcoveff;j++)         } /* end i */
           fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      } /* end itimes */
         fprintf(ficreseij,"******\n");     
       fflush(ficlog);
         fprintf(ficresvij,"\n#****** ");      fflush(ficres);
         for(j=1;j<=cptcoveff;j++)      
           fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      while((c=getc(ficpar))=='#' && c!= EOF){
         fprintf(ficresvij,"******\n");        ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);        puts(line);
         oldm=oldms;savm=savms;        fputs(line,ficparo);
         evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);        }
        ungetc(c,ficpar);
         vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);     
         oldm=oldms;savm=savms;      estepm=0;
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav, strstart);      fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
         if(popbased==1){      if (estepm==0 || estepm < stepm) estepm=stepm;
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav, strstart);      if (fage <= 2) {
         }        bage = ageminpar;
         fage = agemaxpar;
         fprintf(ficrest, "#Local time at start: %s", strstart);      }
         fprintf(ficrest,"#Total LEs with variances: e.. (std) ");     
         for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);      fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
         fprintf(ficrest,"\n");      fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
         epj=vector(1,nlstate+1);     
         for(age=bage; age <=fage ;age++){      while((c=getc(ficpar))=='#' && c!= EOF){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);        ungetc(c,ficpar);
           if (popbased==1) {        fgets(line, MAXLINE, ficpar);
             if(mobilav ==0){        puts(line);
               for(i=1; i<=nlstate;i++)        fputs(line,ficparo);
                 prlim[i][i]=probs[(int)age][i][k];      }
             }else{ /* mobilav */       ungetc(c,ficpar);
               for(i=1; i<=nlstate;i++)     
                 prlim[i][i]=mobaverage[(int)age][i][k];      fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
             }      fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
           }      fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
               printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
           fprintf(ficrest," %4.0f",age);      fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
           for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){     
             for(i=1, epj[j]=0.;i <=nlstate;i++) {      while((c=getc(ficpar))=='#' && c!= EOF){
               epj[j] += prlim[i][i]*eij[i][j][(int)age];        ungetc(c,ficpar);
               /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/        fgets(line, MAXLINE, ficpar);
             }        puts(line);
             epj[nlstate+1] +=epj[j];        fputs(line,ficparo);
           }      }
       ungetc(c,ficpar);
           for(i=1, vepp=0.;i <=nlstate;i++)     
             for(j=1;j <=nlstate;j++)     
               vepp += vareij[i][j][(int)age];      dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
           fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));      dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
           for(j=1;j <=nlstate;j++){     
             fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));      fscanf(ficpar,"pop_based=%d\n",&popbased);
           }      fprintf(ficparo,"pop_based=%d\n",popbased);  
           fprintf(ficrest,"\n");      fprintf(ficres,"pop_based=%d\n",popbased);  
         }     
         free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);      while((c=getc(ficpar))=='#' && c!= EOF){
         free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);        ungetc(c,ficpar);
         free_vector(epj,1,nlstate+1);        fgets(line, MAXLINE, ficpar);
       }        puts(line);
     }        fputs(line,ficparo);
     free_vector(weight,1,n);      }
     free_imatrix(Tvard,1,15,1,2);      ungetc(c,ficpar);
     free_imatrix(s,1,maxwav+1,1,n);     
     free_matrix(anint,1,maxwav,1,n);       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
     free_matrix(mint,1,maxwav,1,n);      fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     free_ivector(cod,1,n);      printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     free_ivector(tab,1,NCOVMAX);      fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fclose(ficreseij);      fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fclose(ficresvij);      /* day and month of proj2 are not used but only year anproj2.*/
     fclose(ficrest);     
     fclose(ficpar);     
        
     /*------- Variance of stable prevalence------*/         /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
     strcpy(fileresvpl,"vpl");     
     strcat(fileresvpl,fileres);      replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
     if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {      printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);     
       exit(0);      printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
     }                   model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
     printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);                   jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
        
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){     /*------------ free_vector  -------------*/
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){     /*  chdir(path); */
         k=k+1;   
         fprintf(ficresvpl,"\n#****** ");      free_ivector(wav,1,imx);
         for(j=1;j<=cptcoveff;j++)       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
           fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
         fprintf(ficresvpl,"******\n");      free_imatrix(mw,1,lastpass-firstpass+1,1,imx);  
             free_lvector(num,1,n);
         varpl=matrix(1,nlstate,(int) bage, (int) fage);      free_vector(agedc,1,n);
         oldm=oldms;savm=savms;      /*free_matrix(covar,0,NCOVMAX,1,n);*/
         varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);      /*free_matrix(covar,1,NCOVMAX,1,n);*/
         free_matrix(varpl,1,nlstate,(int) bage, (int)fage);      fclose(ficparo);
       }      fclose(ficres);
     }  
   
     fclose(ficresvpl);      /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
    
     /*---------- End : free ----------------*/      strcpy(filerespl,"pl");
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      strcat(filerespl,fileres);
     free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);      if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
   }  /* mle==-3 arrives here for freeing */        fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
     free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);      }
     free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);      printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
     free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);      fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
     free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);      pstamp(ficrespl);
         fprintf(ficrespl,"# Period (stable) prevalence \n");
     free_matrix(covar,0,NCOVMAX,1,n);      fprintf(ficrespl,"#Age ");
     free_matrix(matcov,1,npar,1,npar);      for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
     /*free_vector(delti,1,npar);*/      fprintf(ficrespl,"\n");
     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);    
     free_matrix(agev,1,maxwav,1,imx);      prlim=matrix(1,nlstate,1,nlstate);
     free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);  
       agebase=ageminpar;
     free_ivector(ncodemax,1,8);      agelim=agemaxpar;
     free_ivector(Tvar,1,15);      ftolpl=1.e-10;
     free_ivector(Tprod,1,15);      i1=cptcoveff;
     free_ivector(Tvaraff,1,15);      if (cptcovn < 1){i1=1;}
     free_ivector(Tage,1,15);  
     free_ivector(Tcode,1,100);      for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
   fflush(fichtm);          /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
   fflush(ficgp);          fprintf(ficrespl,"\n#******");
             printf("\n#******");
           fprintf(ficlog,"\n#******");
   if((nberr >0) || (nbwarn>0)){          for(j=1;j<=cptcoveff;j++) {
     printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);            fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
     fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);            printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
   }else{            fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
     printf("End of Imach\n");          }
     fprintf(ficlog,"End of Imach\n");          fprintf(ficrespl,"******\n");
   }          printf("******\n");
   printf("See log file on %s\n",filelog);          fprintf(ficlog,"******\n");
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */         
   (void) gettimeofday(&end_time,&tzp);          for (age=agebase; age<=agelim; age++){
   tm = *localtime(&end_time.tv_sec);            prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
   tmg = *gmtime(&end_time.tv_sec);            fprintf(ficrespl,"%.0f ",age );
   strcpy(strtend,asctime(&tm));            for(j=1;j<=cptcoveff;j++)
   printf("Local time at start %s\nLocal time at end   %s",strstart, strtend);               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
   fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend);             for(i=1; i<=nlstate;i++)
   printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));              fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
   printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);          }
   fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));        }
   fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);      }
   /*  printf("Total time was %d uSec.\n", total_usecs);*/      fclose(ficrespl);
 /*   if(fileappend(fichtm,optionfilehtm)){ */  
   fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);      /*------------- h Pij x at various ages ------------*/
   fclose(fichtm);   
   fclose(fichtmcov);      strcpy(filerespij,"pij");  strcat(filerespij,fileres);
   fclose(ficgp);      if((ficrespij=fopen(filerespij,"w"))==NULL) {
   fclose(ficlog);        printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
   /*------ End -----------*/        fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
   chdir(path);      printf("Computing pij: result on file '%s' \n", filerespij);
 #ifndef UNIX      fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
   /*  strcpy(plotcmd,"\""); */   
 #endif      stepsize=(int) (stepm+YEARM-1)/YEARM;
   strcpy(plotcmd,pathimach);      /*if (stepm<=24) stepsize=2;*/
   /*strcat(plotcmd,CHARSEPARATOR);*/  
   strcat(plotcmd,GNUPLOTPROGRAM);      agelim=AGESUP;
 #ifndef UNIX      hstepm=stepsize*YEARM; /* Every year of age */
   strcat(plotcmd,".exe");      hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */
   /*  strcat(plotcmd,"\"");*/  
 #endif      /* hstepm=1;   aff par mois*/
   if(stat(plotcmd,&info)){      pstamp(ficrespij);
     printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);      fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
   }      for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
 #ifndef UNIX          k=k+1;
   strcpy(plotcmd,"\"");          fprintf(ficrespij,"\n#****** ");
 #endif          for(j=1;j<=cptcoveff;j++)
   strcat(plotcmd,pathimach);            fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
   strcat(plotcmd,GNUPLOTPROGRAM);          fprintf(ficrespij,"******\n");
 #ifndef UNIX         
   strcat(plotcmd,".exe");          for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
   strcat(plotcmd,"\"");            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */
 #endif            nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   strcat(plotcmd," ");  
   strcat(plotcmd,optionfilegnuplot);            /*      nhstepm=nhstepm*YEARM; aff par mois*/
   printf("Starting graphs with: %s",plotcmd);fflush(stdout);  
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   if((outcmd=system(plotcmd)) != 0){            oldm=oldms;savm=savms;
     printf("\n Problem with gnuplot\n");            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
   }            fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
   printf(" Wait...");            for(i=1; i<=nlstate;i++)
   while (z[0] != 'q') {              for(j=1; j<=nlstate+ndeath;j++)
     /* chdir(path); */                fprintf(ficrespij," %1d-%1d",i,j);
     printf("\nType e to edit output files, g to graph again and q for exiting: ");            fprintf(ficrespij,"\n");
     scanf("%s",z);            for (h=0; h<=nhstepm; h++){
 /*     if (z[0] == 'c') system("./imach"); */              fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
     if (z[0] == 'e') {              for(i=1; i<=nlstate;i++)
       printf("Starting browser with: %s",optionfilehtm);fflush(stdout);                for(j=1; j<=nlstate+ndeath;j++)
       system(optionfilehtm);                  fprintf(ficrespij," %.5f", p3mat[i][j][h]);
     }              fprintf(ficrespij,"\n");
     else if (z[0] == 'g') system(plotcmd);            }
     else if (z[0] == 'q') exit(0);            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   }            fprintf(ficrespij,"\n");
   end:          }
   while (z[0] != 'q') {        }
     printf("\nType  q for exiting: ");      }
     scanf("%s",z);  
   }      varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
 }  
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
    
   
       /*---------- Health expectancies and variances ------------*/
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest);
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest);
   
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficreseij,"\n#****** ");
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
           cvevsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav, strstart);
           if(popbased==1){
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav, strstart);
           }
   
           pstamp(ficrest);
           fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n# Age ( e.. (std) ");
           for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
           fprintf(ficrest,"\n");
   
           epj=vector(1,nlstate+1);
           for(age=bage; age <=fage ;age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             if (popbased==1) {
               if(mobilav ==0){
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=probs[(int)age][i][k];
               }else{ /* mobilav */
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=mobaverage[(int)age][i][k];
               }
             }
          
             fprintf(ficrest," %4.0f",age);
             for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
               for(i=1, epj[j]=0.;i <=nlstate;i++) {
                 epj[j] += prlim[i][i]*eij[i][j][(int)age];
                 /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
               }
               epj[nlstate+1] +=epj[j];
             }
   
             for(i=1, vepp=0.;i <=nlstate;i++)
               for(j=1;j <=nlstate;j++)
                 vepp += vareij[i][j][(int)age];
             fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
             for(j=1;j <=nlstate;j++){
               fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
             }
             fprintf(ficrest,"\n");
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n);
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficreseij);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
    
       /*------- Variance of period (stable) prevalence------*/  
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
        
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
     free_matrix(prlim,1,nlstate,1,nlstate);
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
       free_ivector(Tcode,1,100);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
    
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend);
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend);
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
    
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.109  
changed lines
  Added in v.1.125


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>