Diff for /imach/src/imach.c between versions 1.51 and 1.109

version 1.51, 2002/07/19 12:22:25 version 1.109, 2006/01/24 19:37:15
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.109  2006/01/24 19:37:15  brouard
      (Module): Comments (lines starting with a #) are allowed in data.
   This program computes Healthy Life Expectancies from  
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    Revision 1.108  2006/01/19 18:05:42  lievre
   first survey ("cross") where individuals from different ages are    Gnuplot problem appeared...
   interviewed on their health status or degree of disability (in the    To be fixed
   case of a health survey which is our main interest) -2- at least a  
   second wave of interviews ("longitudinal") which measure each change    Revision 1.107  2006/01/19 16:20:37  brouard
   (if any) in individual health status.  Health expectancies are    Test existence of gnuplot in imach path
   computed from the time spent in each health state according to a  
   model. More health states you consider, more time is necessary to reach the    Revision 1.106  2006/01/19 13:24:36  brouard
   Maximum Likelihood of the parameters involved in the model.  The    Some cleaning and links added in html output
   simplest model is the multinomial logistic model where pij is the  
   probability to be observed in state j at the second wave    Revision 1.105  2006/01/05 20:23:19  lievre
   conditional to be observed in state i at the first wave. Therefore    *** empty log message ***
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where  
   'age' is age and 'sex' is a covariate. If you want to have a more    Revision 1.104  2005/09/30 16:11:43  lievre
   complex model than "constant and age", you should modify the program    (Module): sump fixed, loop imx fixed, and simplifications.
   where the markup *Covariates have to be included here again* invites    (Module): If the status is missing at the last wave but we know
   you to do it.  More covariates you add, slower the    that the person is alive, then we can code his/her status as -2
   convergence.    (instead of missing=-1 in earlier versions) and his/her
     contributions to the likelihood is 1 - Prob of dying from last
   The advantage of this computer programme, compared to a simple    health status (= 1-p13= p11+p12 in the easiest case of somebody in
   multinomial logistic model, is clear when the delay between waves is not    the healthy state at last known wave). Version is 0.98
   identical for each individual. Also, if a individual missed an  
   intermediate interview, the information is lost, but taken into    Revision 1.103  2005/09/30 15:54:49  lievre
   account using an interpolation or extrapolation.      (Module): sump fixed, loop imx fixed, and simplifications.
   
   hPijx is the probability to be observed in state i at age x+h    Revision 1.102  2004/09/15 17:31:30  brouard
   conditional to the observed state i at age x. The delay 'h' can be    Add the possibility to read data file including tab characters.
   split into an exact number (nh*stepm) of unobserved intermediate  
   states. This elementary transition (by month or quarter trimester,    Revision 1.101  2004/09/15 10:38:38  brouard
   semester or year) is model as a multinomial logistic.  The hPx    Fix on curr_time
   matrix is simply the matrix product of nh*stepm elementary matrices  
   and the contribution of each individual to the likelihood is simply    Revision 1.100  2004/07/12 18:29:06  brouard
   hPijx.    Add version for Mac OS X. Just define UNIX in Makefile
   
   Also this programme outputs the covariance matrix of the parameters but also    Revision 1.99  2004/06/05 08:57:40  brouard
   of the life expectancies. It also computes the prevalence limits.    *** empty log message ***
    
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    Revision 1.98  2004/05/16 15:05:56  brouard
            Institut national d'études démographiques, Paris.    New version 0.97 . First attempt to estimate force of mortality
   This software have been partly granted by Euro-REVES, a concerted action    directly from the data i.e. without the need of knowing the health
   from the European Union.    state at each age, but using a Gompertz model: log u =a + b*age .
   It is copyrighted identically to a GNU software product, ie programme and    This is the basic analysis of mortality and should be done before any
   software can be distributed freely for non commercial use. Latest version    other analysis, in order to test if the mortality estimated from the
   can be accessed at http://euroreves.ined.fr/imach .    cross-longitudinal survey is different from the mortality estimated
   **********************************************************************/    from other sources like vital statistic data.
    
 #include <math.h>    The same imach parameter file can be used but the option for mle should be -3.
 #include <stdio.h>  
 #include <stdlib.h>    Agnès, who wrote this part of the code, tried to keep most of the
 #include <unistd.h>    former routines in order to include the new code within the former code.
   
 #define MAXLINE 256    The output is very simple: only an estimate of the intercept and of
 #define GNUPLOTPROGRAM "gnuplot"    the slope with 95% confident intervals.
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/  
 #define FILENAMELENGTH 80    Current limitations:
 /*#define DEBUG*/    A) Even if you enter covariates, i.e. with the
 #define windows    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    B) There is no computation of Life Expectancy nor Life Table.
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */  
     Revision 1.97  2004/02/20 13:25:42  lievre
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    Version 0.96d. Population forecasting command line is (temporarily)
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    suppressed.
   
 #define NINTERVMAX 8    Revision 1.96  2003/07/15 15:38:55  brouard
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    rewritten within the same printf. Workaround: many printfs.
 #define NCOVMAX 8 /* Maximum number of covariates */  
 #define MAXN 20000    Revision 1.95  2003/07/08 07:54:34  brouard
 #define YEARM 12. /* Number of months per year */    * imach.c (Repository):
 #define AGESUP 130    (Repository): Using imachwizard code to output a more meaningful covariance
 #define AGEBASE 40    matrix (cov(a12,c31) instead of numbers.
 #ifdef windows  
 #define DIRSEPARATOR '\\'    Revision 1.94  2003/06/27 13:00:02  brouard
 #define ODIRSEPARATOR '/'    Just cleaning
 #else  
 #define DIRSEPARATOR '/'    Revision 1.93  2003/06/25 16:33:55  brouard
 #define ODIRSEPARATOR '\\'    (Module): On windows (cygwin) function asctime_r doesn't
 #endif    exist so I changed back to asctime which exists.
     (Module): Version 0.96b
 char version[80]="Imach version 0.8i, June 2002, INED-EUROREVES ";  
 int erreur; /* Error number */    Revision 1.92  2003/06/25 16:30:45  brouard
 int nvar;    (Module): On windows (cygwin) function asctime_r doesn't
 int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;    exist so I changed back to asctime which exists.
 int npar=NPARMAX;  
 int nlstate=2; /* Number of live states */    Revision 1.91  2003/06/25 15:30:29  brouard
 int ndeath=1; /* Number of dead states */    * imach.c (Repository): Duplicated warning errors corrected.
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    (Repository): Elapsed time after each iteration is now output. It
 int popbased=0;    helps to forecast when convergence will be reached. Elapsed time
     is stamped in powell.  We created a new html file for the graphs
 int *wav; /* Number of waves for this individuual 0 is possible */    concerning matrix of covariance. It has extension -cov.htm.
 int maxwav; /* Maxim number of waves */  
 int jmin, jmax; /* min, max spacing between 2 waves */    Revision 1.90  2003/06/24 12:34:15  brouard
 int mle, weightopt;    (Module): Some bugs corrected for windows. Also, when
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    mle=-1 a template is output in file "or"mypar.txt with the design
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    of the covariance matrix to be input.
 double jmean; /* Mean space between 2 waves */  
 double **oldm, **newm, **savm; /* Working pointers to matrices */    Revision 1.89  2003/06/24 12:30:52  brouard
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    (Module): Some bugs corrected for windows. Also, when
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    mle=-1 a template is output in file "or"mypar.txt with the design
 FILE *ficlog;    of the covariance matrix to be input.
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;  
 FILE *ficresprobmorprev;    Revision 1.88  2003/06/23 17:54:56  brouard
 FILE *fichtm; /* Html File */    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
 FILE *ficreseij;  
 char filerese[FILENAMELENGTH];    Revision 1.87  2003/06/18 12:26:01  brouard
 FILE  *ficresvij;    Version 0.96
 char fileresv[FILENAMELENGTH];  
 FILE  *ficresvpl;    Revision 1.86  2003/06/17 20:04:08  brouard
 char fileresvpl[FILENAMELENGTH];    (Module): Change position of html and gnuplot routines and added
 char title[MAXLINE];    routine fileappend.
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];  
 char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];    Revision 1.85  2003/06/17 13:12:43  brouard
     * imach.c (Repository): Check when date of death was earlier that
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];    current date of interview. It may happen when the death was just
 char filelog[FILENAMELENGTH]; /* Log file */    prior to the death. In this case, dh was negative and likelihood
 char filerest[FILENAMELENGTH];    was wrong (infinity). We still send an "Error" but patch by
 char fileregp[FILENAMELENGTH];    assuming that the date of death was just one stepm after the
 char popfile[FILENAMELENGTH];    interview.
     (Repository): Because some people have very long ID (first column)
 char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];    we changed int to long in num[] and we added a new lvector for
     memory allocation. But we also truncated to 8 characters (left
 #define NR_END 1    truncation)
 #define FREE_ARG char*    (Repository): No more line truncation errors.
 #define FTOL 1.0e-10  
     Revision 1.84  2003/06/13 21:44:43  brouard
 #define NRANSI    * imach.c (Repository): Replace "freqsummary" at a correct
 #define ITMAX 200    place. It differs from routine "prevalence" which may be called
     many times. Probs is memory consuming and must be used with
 #define TOL 2.0e-4    parcimony.
     Version 0.95a3 (should output exactly the same maximization than 0.8a2)
 #define CGOLD 0.3819660  
 #define ZEPS 1.0e-10    Revision 1.83  2003/06/10 13:39:11  lievre
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    *** empty log message ***
   
 #define GOLD 1.618034    Revision 1.82  2003/06/05 15:57:20  brouard
 #define GLIMIT 100.0    Add log in  imach.c and  fullversion number is now printed.
 #define TINY 1.0e-20  
   */
 static double maxarg1,maxarg2;  /*
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))     Interpolated Markov Chain
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))  
      Short summary of the programme:
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    
 #define rint(a) floor(a+0.5)    This program computes Healthy Life Expectancies from
     cross-longitudinal data. Cross-longitudinal data consist in: -1- a
 static double sqrarg;    first survey ("cross") where individuals from different ages are
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    interviewed on their health status or degree of disability (in the
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    case of a health survey which is our main interest) -2- at least a
     second wave of interviews ("longitudinal") which measure each change
 int imx;    (if any) in individual health status.  Health expectancies are
 int stepm;    computed from the time spent in each health state according to a
 /* Stepm, step in month: minimum step interpolation*/    model. More health states you consider, more time is necessary to reach the
     Maximum Likelihood of the parameters involved in the model.  The
 int estepm;    simplest model is the multinomial logistic model where pij is the
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/    probability to be observed in state j at the second wave
     conditional to be observed in state i at the first wave. Therefore
 int m,nb;    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    'age' is age and 'sex' is a covariate. If you want to have a more
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    complex model than "constant and age", you should modify the program
 double **pmmij, ***probs, ***mobaverage;    where the markup *Covariates have to be included here again* invites
 double dateintmean=0;    you to do it.  More covariates you add, slower the
     convergence.
 double *weight;  
 int **s; /* Status */    The advantage of this computer programme, compared to a simple
 double *agedc, **covar, idx;    multinomial logistic model, is clear when the delay between waves is not
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    identical for each individual. Also, if a individual missed an
     intermediate interview, the information is lost, but taken into
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    account using an interpolation or extrapolation.  
 double ftolhess; /* Tolerance for computing hessian */  
     hPijx is the probability to be observed in state i at age x+h
 /**************** split *************************/    conditional to the observed state i at age x. The delay 'h' can be
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    split into an exact number (nh*stepm) of unobserved intermediate
 {    states. This elementary transition (by month, quarter,
    char *s;                             /* pointer */    semester or year) is modelled as a multinomial logistic.  The hPx
    int  l1, l2;                         /* length counters */    matrix is simply the matrix product of nh*stepm elementary matrices
     and the contribution of each individual to the likelihood is simply
    l1 = strlen( path );                 /* length of path */    hPijx.
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );  
    s= strrchr( path, DIRSEPARATOR );            /* find last / */    Also this programme outputs the covariance matrix of the parameters but also
    if ( s == NULL ) {                   /* no directory, so use current */    of the life expectancies. It also computes the stable prevalence. 
      /*if(strrchr(path, ODIRSEPARATOR )==NULL)    
        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
 #if     defined(__bsd__)                /* get current working directory */             Institut national d'études démographiques, Paris.
       extern char       *getwd( );    This software have been partly granted by Euro-REVES, a concerted action
     from the European Union.
       if ( getwd( dirc ) == NULL ) {    It is copyrighted identically to a GNU software product, ie programme and
 #else    software can be distributed freely for non commercial use. Latest version
       extern char       *getcwd( );    can be accessed at http://euroreves.ined.fr/imach .
   
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
 #endif    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
          return( GLOCK_ERROR_GETCWD );    
       }    **********************************************************************/
       strcpy( name, path );             /* we've got it */  /*
    } else {                             /* strip direcotry from path */    main
       s++;                              /* after this, the filename */    read parameterfile
       l2 = strlen( s );                 /* length of filename */    read datafile
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    concatwav
       strcpy( name, s );                /* save file name */    freqsummary
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    if (mle >= 1)
       dirc[l1-l2] = 0;                  /* add zero */      mlikeli
    }    print results files
    l1 = strlen( dirc );                 /* length of directory */    if mle==1 
 #ifdef windows       computes hessian
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    read end of parameter file: agemin, agemax, bage, fage, estepm
 #else        begin-prev-date,...
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }    open gnuplot file
 #endif    open html file
    s = strrchr( name, '.' );            /* find last / */    stable prevalence
    s++;     for age prevalim()
    strcpy(ext,s);                       /* save extension */    h Pij x
    l1= strlen( name);    variance of p varprob
    l2= strlen( s)+1;    forecasting if prevfcast==1 prevforecast call prevalence()
    strncpy( finame, name, l1-l2);    health expectancies
    finame[l1-l2]= 0;    Variance-covariance of DFLE
    return( 0 );                         /* we're done */    prevalence()
 }     movingaverage()
     varevsij() 
     if popbased==1 varevsij(,popbased)
 /******************************************/    total life expectancies
     Variance of stable prevalence
 void replace(char *s, char*t)   end
 {  */
   int i;  
   int lg=20;  
   i=0;  
   lg=strlen(t);   
   for(i=0; i<= lg; i++) {  #include <math.h>
     (s[i] = t[i]);  #include <stdio.h>
     if (t[i]== '\\') s[i]='/';  #include <stdlib.h>
   }  #include <string.h>
 }  #include <unistd.h>
   
 int nbocc(char *s, char occ)  #include <limits.h>
 {  #include <sys/types.h>
   int i,j=0;  #include <sys/stat.h>
   int lg=20;  #include <errno.h>
   i=0;  extern int errno;
   lg=strlen(s);  
   for(i=0; i<= lg; i++) {  /* #include <sys/time.h> */
   if  (s[i] == occ ) j++;  #include <time.h>
   }  #include "timeval.h"
   return j;  
 }  /* #include <libintl.h> */
   /* #define _(String) gettext (String) */
 void cutv(char *u,char *v, char*t, char occ)  
 {  #define MAXLINE 256
   /* cuts string t into u and v where u is ended by char occ excluding it  
      and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)  #define GNUPLOTPROGRAM "gnuplot"
      gives u="abcedf" and v="ghi2j" */  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
   int i,lg,j,p=0;  #define FILENAMELENGTH 132
   i=0;  
   for(j=0; j<=strlen(t)-1; j++) {  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
   }  
   #define MAXPARM 30 /* Maximum number of parameters for the optimization */
   lg=strlen(t);  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
   for(j=0; j<p; j++) {  
     (u[j] = t[j]);  #define NINTERVMAX 8
   }  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
      u[p]='\0';  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
   #define NCOVMAX 8 /* Maximum number of covariates */
    for(j=0; j<= lg; j++) {  #define MAXN 20000
     if (j>=(p+1))(v[j-p-1] = t[j]);  #define YEARM 12. /* Number of months per year */
   }  #define AGESUP 130
 }  #define AGEBASE 40
   #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
 /********************** nrerror ********************/  #ifdef UNIX
   #define DIRSEPARATOR '/'
 void nrerror(char error_text[])  #define CHARSEPARATOR "/"
 {  #define ODIRSEPARATOR '\\'
   fprintf(stderr,"ERREUR ...\n");  #else
   fprintf(stderr,"%s\n",error_text);  #define DIRSEPARATOR '\\'
   exit(1);  #define CHARSEPARATOR "\\"
 }  #define ODIRSEPARATOR '/'
 /*********************** vector *******************/  #endif
 double *vector(int nl, int nh)  
 {  /* $Id$ */
   double *v;  /* $State$ */
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  
   if (!v) nrerror("allocation failure in vector");  char version[]="Imach version 0.98a, January 2006, INED-EUROREVES ";
   return v-nl+NR_END;  char fullversion[]="$Revision$ $Date$"; 
 }  int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
   int nvar;
 /************************ free vector ******************/  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
 void free_vector(double*v, int nl, int nh)  int npar=NPARMAX;
 {  int nlstate=2; /* Number of live states */
   free((FREE_ARG)(v+nl-NR_END));  int ndeath=1; /* Number of dead states */
 }  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
   int popbased=0;
 /************************ivector *******************************/  
 int *ivector(long nl,long nh)  int *wav; /* Number of waves for this individuual 0 is possible */
 {  int maxwav; /* Maxim number of waves */
   int *v;  int jmin, jmax; /* min, max spacing between 2 waves */
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  int gipmx, gsw; /* Global variables on the number of contributions 
   if (!v) nrerror("allocation failure in ivector");                     to the likelihood and the sum of weights (done by funcone)*/
   return v-nl+NR_END;  int mle, weightopt;
 }  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
   int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
 /******************free ivector **************************/  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
 void free_ivector(int *v, long nl, long nh)             * wave mi and wave mi+1 is not an exact multiple of stepm. */
 {  double jmean; /* Mean space between 2 waves */
   free((FREE_ARG)(v+nl-NR_END));  double **oldm, **newm, **savm; /* Working pointers to matrices */
 }  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
   FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
 /******************* imatrix *******************************/  FILE *ficlog, *ficrespow;
 int **imatrix(long nrl, long nrh, long ncl, long nch)  int globpr; /* Global variable for printing or not */
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  double fretone; /* Only one call to likelihood */
 {  long ipmx; /* Number of contributions */
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  double sw; /* Sum of weights */
   int **m;  char filerespow[FILENAMELENGTH];
    char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
   /* allocate pointers to rows */  FILE *ficresilk;
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
   if (!m) nrerror("allocation failure 1 in matrix()");  FILE *ficresprobmorprev;
   m += NR_END;  FILE *fichtm, *fichtmcov; /* Html File */
   m -= nrl;  FILE *ficreseij;
    char filerese[FILENAMELENGTH];
    FILE  *ficresvij;
   /* allocate rows and set pointers to them */  char fileresv[FILENAMELENGTH];
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  FILE  *ficresvpl;
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  char fileresvpl[FILENAMELENGTH];
   m[nrl] += NR_END;  char title[MAXLINE];
   m[nrl] -= ncl;  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
    char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
    char command[FILENAMELENGTH];
   /* return pointer to array of pointers to rows */  int  outcmd=0;
   return m;  
 }  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
   
 /****************** free_imatrix *************************/  char filelog[FILENAMELENGTH]; /* Log file */
 void free_imatrix(m,nrl,nrh,ncl,nch)  char filerest[FILENAMELENGTH];
       int **m;  char fileregp[FILENAMELENGTH];
       long nch,ncl,nrh,nrl;  char popfile[FILENAMELENGTH];
      /* free an int matrix allocated by imatrix() */  
 {  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  
   free((FREE_ARG) (m+nrl-NR_END));  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
 }  struct timezone tzp;
   extern int gettimeofday();
 /******************* matrix *******************************/  struct tm tmg, tm, tmf, *gmtime(), *localtime();
 double **matrix(long nrl, long nrh, long ncl, long nch)  long time_value;
 {  extern long time();
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  char strcurr[80], strfor[80];
   double **m;  
   char *endptr;
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  long lval;
   if (!m) nrerror("allocation failure 1 in matrix()");  
   m += NR_END;  #define NR_END 1
   m -= nrl;  #define FREE_ARG char*
   #define FTOL 1.0e-10
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  #define NRANSI 
   m[nrl] += NR_END;  #define ITMAX 200 
   m[nrl] -= ncl;  
   #define TOL 2.0e-4 
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  
   return m;  #define CGOLD 0.3819660 
 }  #define ZEPS 1.0e-10 
   #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
 /*************************free matrix ************************/  
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  #define GOLD 1.618034 
 {  #define GLIMIT 100.0 
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  #define TINY 1.0e-20 
   free((FREE_ARG)(m+nrl-NR_END));  
 }  static double maxarg1,maxarg2;
   #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
 /******************* ma3x *******************************/  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)    
 {  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  #define rint(a) floor(a+0.5)
   double ***m;  
   static double sqrarg;
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   if (!m) nrerror("allocation failure 1 in matrix()");  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
   m += NR_END;  int agegomp= AGEGOMP;
   m -= nrl;  
   int imx; 
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  int stepm=1;
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  /* Stepm, step in month: minimum step interpolation*/
   m[nrl] += NR_END;  
   m[nrl] -= ncl;  int estepm;
   /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  
   int m,nb;
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  long *num;
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
   m[nrl][ncl] += NR_END;  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
   m[nrl][ncl] -= nll;  double **pmmij, ***probs;
   for (j=ncl+1; j<=nch; j++)  double *ageexmed,*agecens;
     m[nrl][j]=m[nrl][j-1]+nlay;  double dateintmean=0;
    
   for (i=nrl+1; i<=nrh; i++) {  double *weight;
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  int **s; /* Status */
     for (j=ncl+1; j<=nch; j++)  double *agedc, **covar, idx;
       m[i][j]=m[i][j-1]+nlay;  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
   }  double *lsurv, *lpop, *tpop;
   return m;  
 }  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
   double ftolhess; /* Tolerance for computing hessian */
 /*************************free ma3x ************************/  
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  /**************** split *************************/
 {  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  {
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
   free((FREE_ARG)(m+nrl-NR_END));       the name of the file (name), its extension only (ext) and its first part of the name (finame)
 }    */ 
     char  *ss;                            /* pointer */
 /***************** f1dim *************************/    int   l1, l2;                         /* length counters */
 extern int ncom;  
 extern double *pcom,*xicom;    l1 = strlen(path );                   /* length of path */
 extern double (*nrfunc)(double []);    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
      ss= strrchr( path, DIRSEPARATOR );            /* find last / */
 double f1dim(double x)    if ( ss == NULL ) {                   /* no directory, so determine current directory */
 {      strcpy( name, path );               /* we got the fullname name because no directory */
   int j;      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
   double f;        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
   double *xt;      /* get current working directory */
        /*    extern  char* getcwd ( char *buf , int len);*/
   xt=vector(1,ncom);      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];        return( GLOCK_ERROR_GETCWD );
   f=(*nrfunc)(xt);      }
   free_vector(xt,1,ncom);      /* got dirc from getcwd*/
   return f;      printf(" DIRC = %s \n",dirc);
 }    } else {                              /* strip direcotry from path */
       ss++;                               /* after this, the filename */
 /*****************brent *************************/      l2 = strlen( ss );                  /* length of filename */
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
 {      strcpy( name, ss );         /* save file name */
   int iter;      strncpy( dirc, path, l1 - l2 );     /* now the directory */
   double a,b,d,etemp;      dirc[l1-l2] = 0;                    /* add zero */
   double fu,fv,fw,fx;      printf(" DIRC2 = %s \n",dirc);
   double ftemp;    }
   double p,q,r,tol1,tol2,u,v,w,x,xm;    /* We add a separator at the end of dirc if not exists */
   double e=0.0;    l1 = strlen( dirc );                  /* length of directory */
      if( dirc[l1-1] != DIRSEPARATOR ){
   a=(ax < cx ? ax : cx);      dirc[l1] =  DIRSEPARATOR;
   b=(ax > cx ? ax : cx);      dirc[l1+1] = 0; 
   x=w=v=bx;      printf(" DIRC3 = %s \n",dirc);
   fw=fv=fx=(*f)(x);    }
   for (iter=1;iter<=ITMAX;iter++) {    ss = strrchr( name, '.' );            /* find last / */
     xm=0.5*(a+b);    if (ss >0){
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);      ss++;
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/      strcpy(ext,ss);                     /* save extension */
     printf(".");fflush(stdout);      l1= strlen( name);
     fprintf(ficlog,".");fflush(ficlog);      l2= strlen(ss)+1;
 #ifdef DEBUG      strncpy( finame, name, l1-l2);
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);      finame[l1-l2]= 0;
     fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    }
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  
 #endif    return( 0 );                          /* we're done */
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  }
       *xmin=x;  
       return fx;  
     }  /******************************************/
     ftemp=fu;  
     if (fabs(e) > tol1) {  void replace_back_to_slash(char *s, char*t)
       r=(x-w)*(fx-fv);  {
       q=(x-v)*(fx-fw);    int i;
       p=(x-v)*q-(x-w)*r;    int lg=0;
       q=2.0*(q-r);    i=0;
       if (q > 0.0) p = -p;    lg=strlen(t);
       q=fabs(q);    for(i=0; i<= lg; i++) {
       etemp=e;      (s[i] = t[i]);
       e=d;      if (t[i]== '\\') s[i]='/';
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))    }
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  }
       else {  
         d=p/q;  int nbocc(char *s, char occ)
         u=x+d;  {
         if (u-a < tol2 || b-u < tol2)    int i,j=0;
           d=SIGN(tol1,xm-x);    int lg=20;
       }    i=0;
     } else {    lg=strlen(s);
       d=CGOLD*(e=(x >= xm ? a-x : b-x));    for(i=0; i<= lg; i++) {
     }    if  (s[i] == occ ) j++;
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));    }
     fu=(*f)(u);    return j;
     if (fu <= fx) {  }
       if (u >= x) a=x; else b=x;  
       SHFT(v,w,x,u)  void cutv(char *u,char *v, char*t, char occ)
         SHFT(fv,fw,fx,fu)  {
         } else {    /* cuts string t into u and v where u ends before first occurence of char 'occ' 
           if (u < x) a=u; else b=u;       and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
           if (fu <= fw || w == x) {       gives u="abcedf" and v="ghi2j" */
             v=w;    int i,lg,j,p=0;
             w=u;    i=0;
             fv=fw;    for(j=0; j<=strlen(t)-1; j++) {
             fw=fu;      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
           } else if (fu <= fv || v == x || v == w) {    }
             v=u;  
             fv=fu;    lg=strlen(t);
           }    for(j=0; j<p; j++) {
         }      (u[j] = t[j]);
   }    }
   nrerror("Too many iterations in brent");       u[p]='\0';
   *xmin=x;  
   return fx;     for(j=0; j<= lg; j++) {
 }      if (j>=(p+1))(v[j-p-1] = t[j]);
     }
 /****************** mnbrak ***********************/  }
   
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  /********************** nrerror ********************/
             double (*func)(double))  
 {  void nrerror(char error_text[])
   double ulim,u,r,q, dum;  {
   double fu;    fprintf(stderr,"ERREUR ...\n");
      fprintf(stderr,"%s\n",error_text);
   *fa=(*func)(*ax);    exit(EXIT_FAILURE);
   *fb=(*func)(*bx);  }
   if (*fb > *fa) {  /*********************** vector *******************/
     SHFT(dum,*ax,*bx,dum)  double *vector(int nl, int nh)
       SHFT(dum,*fb,*fa,dum)  {
       }    double *v;
   *cx=(*bx)+GOLD*(*bx-*ax);    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
   *fc=(*func)(*cx);    if (!v) nrerror("allocation failure in vector");
   while (*fb > *fc) {    return v-nl+NR_END;
     r=(*bx-*ax)*(*fb-*fc);  }
     q=(*bx-*cx)*(*fb-*fa);  
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/  /************************ free vector ******************/
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  void free_vector(double*v, int nl, int nh)
     ulim=(*bx)+GLIMIT*(*cx-*bx);  {
     if ((*bx-u)*(u-*cx) > 0.0) {    free((FREE_ARG)(v+nl-NR_END));
       fu=(*func)(u);  }
     } else if ((*cx-u)*(u-ulim) > 0.0) {  
       fu=(*func)(u);  /************************ivector *******************************/
       if (fu < *fc) {  int *ivector(long nl,long nh)
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))  {
           SHFT(*fb,*fc,fu,(*func)(u))    int *v;
           }    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {    if (!v) nrerror("allocation failure in ivector");
       u=ulim;    return v-nl+NR_END;
       fu=(*func)(u);  }
     } else {  
       u=(*cx)+GOLD*(*cx-*bx);  /******************free ivector **************************/
       fu=(*func)(u);  void free_ivector(int *v, long nl, long nh)
     }  {
     SHFT(*ax,*bx,*cx,u)    free((FREE_ARG)(v+nl-NR_END));
       SHFT(*fa,*fb,*fc,fu)  }
       }  
 }  /************************lvector *******************************/
   long *lvector(long nl,long nh)
 /*************** linmin ************************/  {
     long *v;
 int ncom;    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
 double *pcom,*xicom;    if (!v) nrerror("allocation failure in ivector");
 double (*nrfunc)(double []);    return v-nl+NR_END;
    }
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))  
 {  /******************free lvector **************************/
   double brent(double ax, double bx, double cx,  void free_lvector(long *v, long nl, long nh)
                double (*f)(double), double tol, double *xmin);  {
   double f1dim(double x);    free((FREE_ARG)(v+nl-NR_END));
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,  }
               double *fc, double (*func)(double));  
   int j;  /******************* imatrix *******************************/
   double xx,xmin,bx,ax;  int **imatrix(long nrl, long nrh, long ncl, long nch) 
   double fx,fb,fa;       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
    { 
   ncom=n;    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
   pcom=vector(1,n);    int **m; 
   xicom=vector(1,n);    
   nrfunc=func;    /* allocate pointers to rows */ 
   for (j=1;j<=n;j++) {    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
     pcom[j]=p[j];    if (!m) nrerror("allocation failure 1 in matrix()"); 
     xicom[j]=xi[j];    m += NR_END; 
   }    m -= nrl; 
   ax=0.0;    
   xx=1.0;    
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);    /* allocate rows and set pointers to them */ 
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
 #ifdef DEBUG    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    m[nrl] += NR_END; 
   fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    m[nrl] -= ncl; 
 #endif    
   for (j=1;j<=n;j++) {    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
     xi[j] *= xmin;    
     p[j] += xi[j];    /* return pointer to array of pointers to rows */ 
   }    return m; 
   free_vector(xicom,1,n);  } 
   free_vector(pcom,1,n);  
 }  /****************** free_imatrix *************************/
   void free_imatrix(m,nrl,nrh,ncl,nch)
 /*************** powell ************************/        int **m;
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,        long nch,ncl,nrh,nrl; 
             double (*func)(double []))       /* free an int matrix allocated by imatrix() */ 
 {  { 
   void linmin(double p[], double xi[], int n, double *fret,    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
               double (*func)(double []));    free((FREE_ARG) (m+nrl-NR_END)); 
   int i,ibig,j;  } 
   double del,t,*pt,*ptt,*xit;  
   double fp,fptt;  /******************* matrix *******************************/
   double *xits;  double **matrix(long nrl, long nrh, long ncl, long nch)
   pt=vector(1,n);  {
   ptt=vector(1,n);    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
   xit=vector(1,n);    double **m;
   xits=vector(1,n);  
   *fret=(*func)(p);    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   for (j=1;j<=n;j++) pt[j]=p[j];    if (!m) nrerror("allocation failure 1 in matrix()");
   for (*iter=1;;++(*iter)) {    m += NR_END;
     fp=(*fret);    m -= nrl;
     ibig=0;  
     del=0.0;    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f",*iter,*fret);    m[nrl] += NR_END;
     for (i=1;i<=n;i++)    m[nrl] -= ncl;
       printf(" %d %.12f",i, p[i]);  
     fprintf(ficlog," %d %.12f",i, p[i]);    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
     printf("\n");    return m;
     fprintf(ficlog,"\n");    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
     for (i=1;i<=n;i++) {     */
       for (j=1;j<=n;j++) xit[j]=xi[j][i];  }
       fptt=(*fret);  
 #ifdef DEBUG  /*************************free matrix ************************/
       printf("fret=%lf \n",*fret);  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
       fprintf(ficlog,"fret=%lf \n",*fret);  {
 #endif    free((FREE_ARG)(m[nrl]+ncl-NR_END));
       printf("%d",i);fflush(stdout);    free((FREE_ARG)(m+nrl-NR_END));
       fprintf(ficlog,"%d",i);fflush(ficlog);  }
       linmin(p,xit,n,fret,func);  
       if (fabs(fptt-(*fret)) > del) {  /******************* ma3x *******************************/
         del=fabs(fptt-(*fret));  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
         ibig=i;  {
       }    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
 #ifdef DEBUG    double ***m;
       printf("%d %.12e",i,(*fret));  
       fprintf(ficlog,"%d %.12e",i,(*fret));    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
       for (j=1;j<=n;j++) {    if (!m) nrerror("allocation failure 1 in matrix()");
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);    m += NR_END;
         printf(" x(%d)=%.12e",j,xit[j]);    m -= nrl;
         fprintf(ficlog," x(%d)=%.12e",j,xit[j]);  
       }    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
       for(j=1;j<=n;j++) {    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
         printf(" p=%.12e",p[j]);    m[nrl] += NR_END;
         fprintf(ficlog," p=%.12e",p[j]);    m[nrl] -= ncl;
       }  
       printf("\n");    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
       fprintf(ficlog,"\n");  
 #endif    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
     }    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {    m[nrl][ncl] += NR_END;
 #ifdef DEBUG    m[nrl][ncl] -= nll;
       int k[2],l;    for (j=ncl+1; j<=nch; j++) 
       k[0]=1;      m[nrl][j]=m[nrl][j-1]+nlay;
       k[1]=-1;    
       printf("Max: %.12e",(*func)(p));    for (i=nrl+1; i<=nrh; i++) {
       fprintf(ficlog,"Max: %.12e",(*func)(p));      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
       for (j=1;j<=n;j++) {      for (j=ncl+1; j<=nch; j++) 
         printf(" %.12e",p[j]);        m[i][j]=m[i][j-1]+nlay;
         fprintf(ficlog," %.12e",p[j]);    }
       }    return m; 
       printf("\n");    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
       fprintf(ficlog,"\n");             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
       for(l=0;l<=1;l++) {    */
         for (j=1;j<=n;j++) {  }
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];  
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  /*************************free ma3x ************************/
           fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
         }  {
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
         fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    free((FREE_ARG)(m[nrl]+ncl-NR_END));
       }    free((FREE_ARG)(m+nrl-NR_END));
 #endif  }
   
   /*************** function subdirf ***********/
       free_vector(xit,1,n);  char *subdirf(char fileres[])
       free_vector(xits,1,n);  {
       free_vector(ptt,1,n);    /* Caution optionfilefiname is hidden */
       free_vector(pt,1,n);    strcpy(tmpout,optionfilefiname);
       return;    strcat(tmpout,"/"); /* Add to the right */
     }    strcat(tmpout,fileres);
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");    return tmpout;
     for (j=1;j<=n;j++) {  }
       ptt[j]=2.0*p[j]-pt[j];  
       xit[j]=p[j]-pt[j];  /*************** function subdirf2 ***********/
       pt[j]=p[j];  char *subdirf2(char fileres[], char *preop)
     }  {
     fptt=(*func)(ptt);    
     if (fptt < fp) {    /* Caution optionfilefiname is hidden */
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);    strcpy(tmpout,optionfilefiname);
       if (t < 0.0) {    strcat(tmpout,"/");
         linmin(p,xit,n,fret,func);    strcat(tmpout,preop);
         for (j=1;j<=n;j++) {    strcat(tmpout,fileres);
           xi[j][ibig]=xi[j][n];    return tmpout;
           xi[j][n]=xit[j];  }
         }  
 #ifdef DEBUG  /*************** function subdirf3 ***********/
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  char *subdirf3(char fileres[], char *preop, char *preop2)
         fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  {
         for(j=1;j<=n;j++){    
           printf(" %.12e",xit[j]);    /* Caution optionfilefiname is hidden */
           fprintf(ficlog," %.12e",xit[j]);    strcpy(tmpout,optionfilefiname);
         }    strcat(tmpout,"/");
         printf("\n");    strcat(tmpout,preop);
         fprintf(ficlog,"\n");    strcat(tmpout,preop2);
 #endif    strcat(tmpout,fileres);
       }    return tmpout;
     }  }
   }  
 }  /***************** f1dim *************************/
   extern int ncom; 
 /**** Prevalence limit ****************/  extern double *pcom,*xicom;
   extern double (*nrfunc)(double []); 
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)   
 {  double f1dim(double x) 
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit  { 
      matrix by transitions matrix until convergence is reached */    int j; 
     double f;
   int i, ii,j,k;    double *xt; 
   double min, max, maxmin, maxmax,sumnew=0.;   
   double **matprod2();    xt=vector(1,ncom); 
   double **out, cov[NCOVMAX], **pmij();    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
   double **newm;    f=(*nrfunc)(xt); 
   double agefin, delaymax=50 ; /* Max number of years to converge */    free_vector(xt,1,ncom); 
     return f; 
   for (ii=1;ii<=nlstate+ndeath;ii++)  } 
     for (j=1;j<=nlstate+ndeath;j++){  
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);  /*****************brent *************************/
     }  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
   { 
    cov[1]=1.;    int iter; 
      double a,b,d,etemp;
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */    double fu,fv,fw,fx;
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){    double ftemp;
     newm=savm;    double p,q,r,tol1,tol2,u,v,w,x,xm; 
     /* Covariates have to be included here again */    double e=0.0; 
      cov[2]=agefin;   
      a=(ax < cx ? ax : cx); 
       for (k=1; k<=cptcovn;k++) {    b=(ax > cx ? ax : cx); 
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    x=w=v=bx; 
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/    fw=fv=fx=(*f)(x); 
       }    for (iter=1;iter<=ITMAX;iter++) { 
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];      xm=0.5*(a+b); 
       for (k=1; k<=cptcovprod;k++)      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
       printf(".");fflush(stdout);
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/      fprintf(ficlog,".");fflush(ficlog);
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/  #ifdef DEBUG
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
     savm=oldm;  #endif
     oldm=newm;      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
     maxmax=0.;        *xmin=x; 
     for(j=1;j<=nlstate;j++){        return fx; 
       min=1.;      } 
       max=0.;      ftemp=fu;
       for(i=1; i<=nlstate; i++) {      if (fabs(e) > tol1) { 
         sumnew=0;        r=(x-w)*(fx-fv); 
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];        q=(x-v)*(fx-fw); 
         prlim[i][j]= newm[i][j]/(1-sumnew);        p=(x-v)*q-(x-w)*r; 
         max=FMAX(max,prlim[i][j]);        q=2.0*(q-r); 
         min=FMIN(min,prlim[i][j]);        if (q > 0.0) p = -p; 
       }        q=fabs(q); 
       maxmin=max-min;        etemp=e; 
       maxmax=FMAX(maxmax,maxmin);        e=d; 
     }        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
     if(maxmax < ftolpl){          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
       return prlim;        else { 
     }          d=p/q; 
   }          u=x+d; 
 }          if (u-a < tol2 || b-u < tol2) 
             d=SIGN(tol1,xm-x); 
 /*************** transition probabilities ***************/        } 
       } else { 
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
 {      } 
   double s1, s2;      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
   /*double t34;*/      fu=(*f)(u); 
   int i,j,j1, nc, ii, jj;      if (fu <= fx) { 
         if (u >= x) a=x; else b=x; 
     for(i=1; i<= nlstate; i++){        SHFT(v,w,x,u) 
     for(j=1; j<i;j++){          SHFT(fv,fw,fx,fu) 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){          } else { 
         /*s2 += param[i][j][nc]*cov[nc];*/            if (u < x) a=u; else b=u; 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];            if (fu <= fw || w == x) { 
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/              v=w; 
       }              w=u; 
       ps[i][j]=s2;              fv=fw; 
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/              fw=fu; 
     }            } else if (fu <= fv || v == x || v == w) { 
     for(j=i+1; j<=nlstate+ndeath;j++){              v=u; 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){              fv=fu; 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];            } 
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/          } 
       }    } 
       ps[i][j]=s2;    nrerror("Too many iterations in brent"); 
     }    *xmin=x; 
   }    return fx; 
     /*ps[3][2]=1;*/  } 
   
   for(i=1; i<= nlstate; i++){  /****************** mnbrak ***********************/
      s1=0;  
     for(j=1; j<i; j++)  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
       s1+=exp(ps[i][j]);              double (*func)(double)) 
     for(j=i+1; j<=nlstate+ndeath; j++)  { 
       s1+=exp(ps[i][j]);    double ulim,u,r,q, dum;
     ps[i][i]=1./(s1+1.);    double fu; 
     for(j=1; j<i; j++)   
       ps[i][j]= exp(ps[i][j])*ps[i][i];    *fa=(*func)(*ax); 
     for(j=i+1; j<=nlstate+ndeath; j++)    *fb=(*func)(*bx); 
       ps[i][j]= exp(ps[i][j])*ps[i][i];    if (*fb > *fa) { 
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */      SHFT(dum,*ax,*bx,dum) 
   } /* end i */        SHFT(dum,*fb,*fa,dum) 
         } 
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){    *cx=(*bx)+GOLD*(*bx-*ax); 
     for(jj=1; jj<= nlstate+ndeath; jj++){    *fc=(*func)(*cx); 
       ps[ii][jj]=0;    while (*fb > *fc) { 
       ps[ii][ii]=1;      r=(*bx-*ax)*(*fb-*fc); 
     }      q=(*bx-*cx)*(*fb-*fa); 
   }      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
         (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
       ulim=(*bx)+GLIMIT*(*cx-*bx); 
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){      if ((*bx-u)*(u-*cx) > 0.0) { 
     for(jj=1; jj<= nlstate+ndeath; jj++){        fu=(*func)(u); 
      printf("%lf ",ps[ii][jj]);      } else if ((*cx-u)*(u-ulim) > 0.0) { 
    }        fu=(*func)(u); 
     printf("\n ");        if (fu < *fc) { 
     }          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
     printf("\n ");printf("%lf ",cov[2]);*/            SHFT(*fb,*fc,fu,(*func)(u)) 
 /*            } 
   for(i=1; i<= npar; i++) printf("%f ",x[i]);      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
   goto end;*/        u=ulim; 
     return ps;        fu=(*func)(u); 
 }      } else { 
         u=(*cx)+GOLD*(*cx-*bx); 
 /**************** Product of 2 matrices ******************/        fu=(*func)(u); 
       } 
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)      SHFT(*ax,*bx,*cx,u) 
 {        SHFT(*fa,*fb,*fc,fu) 
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times        } 
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */  } 
   /* in, b, out are matrice of pointers which should have been initialized  
      before: only the contents of out is modified. The function returns  /*************** linmin ************************/
      a pointer to pointers identical to out */  
   long i, j, k;  int ncom; 
   for(i=nrl; i<= nrh; i++)  double *pcom,*xicom;
     for(k=ncolol; k<=ncoloh; k++)  double (*nrfunc)(double []); 
       for(j=ncl,out[i][k]=0.; j<=nch; j++)   
         out[i][k] +=in[i][j]*b[j][k];  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
   { 
   return out;    double brent(double ax, double bx, double cx, 
 }                 double (*f)(double), double tol, double *xmin); 
     double f1dim(double x); 
     void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
 /************* Higher Matrix Product ***************/                double *fc, double (*func)(double)); 
     int j; 
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )    double xx,xmin,bx,ax; 
 {    double fx,fb,fa;
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month   
      duration (i.e. until    ncom=n; 
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.    pcom=vector(1,n); 
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step    xicom=vector(1,n); 
      (typically every 2 years instead of every month which is too big).    nrfunc=func; 
      Model is determined by parameters x and covariates have to be    for (j=1;j<=n;j++) { 
      included manually here.      pcom[j]=p[j]; 
       xicom[j]=xi[j]; 
      */    } 
     ax=0.0; 
   int i, j, d, h, k;    xx=1.0; 
   double **out, cov[NCOVMAX];    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
   double **newm;    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
   #ifdef DEBUG
   /* Hstepm could be zero and should return the unit matrix */    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   for (i=1;i<=nlstate+ndeath;i++)    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
     for (j=1;j<=nlstate+ndeath;j++){  #endif
       oldm[i][j]=(i==j ? 1.0 : 0.0);    for (j=1;j<=n;j++) { 
       po[i][j][0]=(i==j ? 1.0 : 0.0);      xi[j] *= xmin; 
     }      p[j] += xi[j]; 
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */    } 
   for(h=1; h <=nhstepm; h++){    free_vector(xicom,1,n); 
     for(d=1; d <=hstepm; d++){    free_vector(pcom,1,n); 
       newm=savm;  } 
       /* Covariates have to be included here again */  
       cov[1]=1.;  char *asc_diff_time(long time_sec, char ascdiff[])
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;  {
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    long sec_left, days, hours, minutes;
       for (k=1; k<=cptcovage;k++)    days = (time_sec) / (60*60*24);
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    sec_left = (time_sec) % (60*60*24);
       for (k=1; k<=cptcovprod;k++)    hours = (sec_left) / (60*60) ;
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    sec_left = (sec_left) %(60*60);
     minutes = (sec_left) /60;
     sec_left = (sec_left) % (60);
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/    return ascdiff;
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,  }
                    pmij(pmmij,cov,ncovmodel,x,nlstate));  
       savm=oldm;  /*************** powell ************************/
       oldm=newm;  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
     }              double (*func)(double [])) 
     for(i=1; i<=nlstate+ndeath; i++)  { 
       for(j=1;j<=nlstate+ndeath;j++) {    void linmin(double p[], double xi[], int n, double *fret, 
         po[i][j][h]=newm[i][j];                double (*func)(double [])); 
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);    int i,ibig,j; 
          */    double del,t,*pt,*ptt,*xit;
       }    double fp,fptt;
   } /* end h */    double *xits;
   return po;    int niterf, itmp;
 }  
     pt=vector(1,n); 
     ptt=vector(1,n); 
 /*************** log-likelihood *************/    xit=vector(1,n); 
 double func( double *x)    xits=vector(1,n); 
 {    *fret=(*func)(p); 
   int i, ii, j, k, mi, d, kk;    for (j=1;j<=n;j++) pt[j]=p[j]; 
   double l, ll[NLSTATEMAX], cov[NCOVMAX];    for (*iter=1;;++(*iter)) { 
   double **out;      fp=(*fret); 
   double sw; /* Sum of weights */      ibig=0; 
   double lli; /* Individual log likelihood */      del=0.0; 
   long ipmx;      last_time=curr_time;
   /*extern weight */      (void) gettimeofday(&curr_time,&tzp);
   /* We are differentiating ll according to initial status */      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/      /*    fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);
   /*for(i=1;i<imx;i++)      fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);
     printf(" %d\n",s[4][i]);      */
   */     for (i=1;i<=n;i++) {
   cov[1]=1.;        printf(" %d %.12f",i, p[i]);
         fprintf(ficlog," %d %.12lf",i, p[i]);
   for(k=1; k<=nlstate; k++) ll[k]=0.;        fprintf(ficrespow," %.12lf", p[i]);
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){      }
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];      printf("\n");
     for(mi=1; mi<= wav[i]-1; mi++){      fprintf(ficlog,"\n");
       for (ii=1;ii<=nlstate+ndeath;ii++)      fprintf(ficrespow,"\n");fflush(ficrespow);
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);      if(*iter <=3){
       for(d=0; d<dh[mi][i]; d++){        tm = *localtime(&curr_time.tv_sec);
         newm=savm;        strcpy(strcurr,asctime(&tm));
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;  /*       asctime_r(&tm,strcurr); */
         for (kk=1; kk<=cptcovage;kk++) {        forecast_time=curr_time; 
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];        itmp = strlen(strcurr);
         }        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
                  strcurr[itmp-1]='\0';
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
         savm=oldm;        for(niterf=10;niterf<=30;niterf+=10){
         oldm=newm;          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
                  tmf = *localtime(&forecast_time.tv_sec);
          /*      asctime_r(&tmf,strfor); */
       } /* end mult */          strcpy(strfor,asctime(&tmf));
                itmp = strlen(strfor);
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);          if(strfor[itmp-1]=='\n')
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/          strfor[itmp-1]='\0';
       ipmx +=1;          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
       sw += weight[i];          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;        }
     } /* end of wave */      }
   } /* end of individual */      for (i=1;i<=n;i++) { 
         for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];        fptt=(*fret); 
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */  #ifdef DEBUG
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */        printf("fret=%lf \n",*fret);
   return -l;        fprintf(ficlog,"fret=%lf \n",*fret);
 }  #endif
         printf("%d",i);fflush(stdout);
         fprintf(ficlog,"%d",i);fflush(ficlog);
 /*********** Maximum Likelihood Estimation ***************/        linmin(p,xit,n,fret,func); 
         if (fabs(fptt-(*fret)) > del) { 
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))          del=fabs(fptt-(*fret)); 
 {          ibig=i; 
   int i,j, iter;        } 
   double **xi,*delti;  #ifdef DEBUG
   double fret;        printf("%d %.12e",i,(*fret));
   xi=matrix(1,npar,1,npar);        fprintf(ficlog,"%d %.12e",i,(*fret));
   for (i=1;i<=npar;i++)        for (j=1;j<=n;j++) {
     for (j=1;j<=npar;j++)          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
       xi[i][j]=(i==j ? 1.0 : 0.0);          printf(" x(%d)=%.12e",j,xit[j]);
   printf("Powell\n");  fprintf(ficlog,"Powell\n");          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
   powell(p,xi,npar,ftol,&iter,&fret,func);        }
         for(j=1;j<=n;j++) {
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));          printf(" p=%.12e",p[j]);
   fprintf(ficlog,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));          fprintf(ficlog," p=%.12e",p[j]);
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));        }
         printf("\n");
 }        fprintf(ficlog,"\n");
   #endif
 /**** Computes Hessian and covariance matrix ***/      } 
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
 {  #ifdef DEBUG
   double  **a,**y,*x,pd;        int k[2],l;
   double **hess;        k[0]=1;
   int i, j,jk;        k[1]=-1;
   int *indx;        printf("Max: %.12e",(*func)(p));
         fprintf(ficlog,"Max: %.12e",(*func)(p));
   double hessii(double p[], double delta, int theta, double delti[]);        for (j=1;j<=n;j++) {
   double hessij(double p[], double delti[], int i, int j);          printf(" %.12e",p[j]);
   void lubksb(double **a, int npar, int *indx, double b[]) ;          fprintf(ficlog," %.12e",p[j]);
   void ludcmp(double **a, int npar, int *indx, double *d) ;        }
         printf("\n");
   hess=matrix(1,npar,1,npar);        fprintf(ficlog,"\n");
         for(l=0;l<=1;l++) {
   printf("\nCalculation of the hessian matrix. Wait...\n");          for (j=1;j<=n;j++) {
   fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
   for (i=1;i<=npar;i++){            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
     printf("%d",i);fflush(stdout);            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
     fprintf(ficlog,"%d",i);fflush(ficlog);          }
     hess[i][i]=hessii(p,ftolhess,i,delti);          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
     /*printf(" %f ",p[i]);*/          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
     /*printf(" %lf ",hess[i][i]);*/        }
   }  #endif
    
   for (i=1;i<=npar;i++) {  
     for (j=1;j<=npar;j++)  {        free_vector(xit,1,n); 
       if (j>i) {        free_vector(xits,1,n); 
         printf(".%d%d",i,j);fflush(stdout);        free_vector(ptt,1,n); 
         fprintf(ficlog,".%d%d",i,j);fflush(ficlog);        free_vector(pt,1,n); 
         hess[i][j]=hessij(p,delti,i,j);        return; 
         hess[j][i]=hess[i][j];          } 
         /*printf(" %lf ",hess[i][j]);*/      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
       }      for (j=1;j<=n;j++) { 
     }        ptt[j]=2.0*p[j]-pt[j]; 
   }        xit[j]=p[j]-pt[j]; 
   printf("\n");        pt[j]=p[j]; 
   fprintf(ficlog,"\n");      } 
       fptt=(*func)(ptt); 
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");      if (fptt < fp) { 
   fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
          if (t < 0.0) { 
   a=matrix(1,npar,1,npar);          linmin(p,xit,n,fret,func); 
   y=matrix(1,npar,1,npar);          for (j=1;j<=n;j++) { 
   x=vector(1,npar);            xi[j][ibig]=xi[j][n]; 
   indx=ivector(1,npar);            xi[j][n]=xit[j]; 
   for (i=1;i<=npar;i++)          }
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];  #ifdef DEBUG
   ludcmp(a,npar,indx,&pd);          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
           fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   for (j=1;j<=npar;j++) {          for(j=1;j<=n;j++){
     for (i=1;i<=npar;i++) x[i]=0;            printf(" %.12e",xit[j]);
     x[j]=1;            fprintf(ficlog," %.12e",xit[j]);
     lubksb(a,npar,indx,x);          }
     for (i=1;i<=npar;i++){          printf("\n");
       matcov[i][j]=x[i];          fprintf(ficlog,"\n");
     }  #endif
   }        }
       } 
   printf("\n#Hessian matrix#\n");    } 
   fprintf(ficlog,"\n#Hessian matrix#\n");  } 
   for (i=1;i<=npar;i++) {  
     for (j=1;j<=npar;j++) {  /**** Prevalence limit (stable prevalence)  ****************/
       printf("%.3e ",hess[i][j]);  
       fprintf(ficlog,"%.3e ",hess[i][j]);  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
     }  {
     printf("\n");    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
     fprintf(ficlog,"\n");       matrix by transitions matrix until convergence is reached */
   }  
     int i, ii,j,k;
   /* Recompute Inverse */    double min, max, maxmin, maxmax,sumnew=0.;
   for (i=1;i<=npar;i++)    double **matprod2();
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];    double **out, cov[NCOVMAX], **pmij();
   ludcmp(a,npar,indx,&pd);    double **newm;
     double agefin, delaymax=50 ; /* Max number of years to converge */
   /*  printf("\n#Hessian matrix recomputed#\n");  
     for (ii=1;ii<=nlstate+ndeath;ii++)
   for (j=1;j<=npar;j++) {      for (j=1;j<=nlstate+ndeath;j++){
     for (i=1;i<=npar;i++) x[i]=0;        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     x[j]=1;      }
     lubksb(a,npar,indx,x);  
     for (i=1;i<=npar;i++){     cov[1]=1.;
       y[i][j]=x[i];   
       printf("%.3e ",y[i][j]);   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
       fprintf(ficlog,"%.3e ",y[i][j]);    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
     }      newm=savm;
     printf("\n");      /* Covariates have to be included here again */
     fprintf(ficlog,"\n");       cov[2]=agefin;
   }    
   */        for (k=1; k<=cptcovn;k++) {
           cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   free_matrix(a,1,npar,1,npar);          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
   free_matrix(y,1,npar,1,npar);        }
   free_vector(x,1,npar);        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   free_ivector(indx,1,npar);        for (k=1; k<=cptcovprod;k++)
   free_matrix(hess,1,npar,1,npar);          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   
         /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
 }        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
         /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
 /*************** hessian matrix ****************/      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
 double hessii( double x[], double delta, int theta, double delti[])  
 {      savm=oldm;
   int i;      oldm=newm;
   int l=1, lmax=20;      maxmax=0.;
   double k1,k2;      for(j=1;j<=nlstate;j++){
   double p2[NPARMAX+1];        min=1.;
   double res;        max=0.;
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;        for(i=1; i<=nlstate; i++) {
   double fx;          sumnew=0;
   int k=0,kmax=10;          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
   double l1;          prlim[i][j]= newm[i][j]/(1-sumnew);
           max=FMAX(max,prlim[i][j]);
   fx=func(x);          min=FMIN(min,prlim[i][j]);
   for (i=1;i<=npar;i++) p2[i]=x[i];        }
   for(l=0 ; l <=lmax; l++){        maxmin=max-min;
     l1=pow(10,l);        maxmax=FMAX(maxmax,maxmin);
     delts=delt;      }
     for(k=1 ; k <kmax; k=k+1){      if(maxmax < ftolpl){
       delt = delta*(l1*k);        return prlim;
       p2[theta]=x[theta] +delt;      }
       k1=func(p2)-fx;    }
       p2[theta]=x[theta]-delt;  }
       k2=func(p2)-fx;  
       /*res= (k1-2.0*fx+k2)/delt/delt; */  /*************** transition probabilities ***************/ 
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */  
        double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
 #ifdef DEBUG  {
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);    double s1, s2;
       fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);    /*double t34;*/
 #endif    int i,j,j1, nc, ii, jj;
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */  
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){      for(i=1; i<= nlstate; i++){
         k=kmax;        for(j=1; j<i;j++){
       }          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */            /*s2 += param[i][j][nc]*cov[nc];*/
         k=kmax; l=lmax*10.;            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
       }  /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){          }
         delts=delt;          ps[i][j]=s2;
       }  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
     }        }
   }        for(j=i+1; j<=nlstate+ndeath;j++){
   delti[theta]=delts;          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
   return res;            s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
    /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
 }          }
           ps[i][j]=s2;
 double hessij( double x[], double delti[], int thetai,int thetaj)        }
 {      }
   int i;      /*ps[3][2]=1;*/
   int l=1, l1, lmax=20;      
   double k1,k2,k3,k4,res,fx;      for(i=1; i<= nlstate; i++){
   double p2[NPARMAX+1];        s1=0;
   int k;        for(j=1; j<i; j++)
           s1+=exp(ps[i][j]);
   fx=func(x);        for(j=i+1; j<=nlstate+ndeath; j++)
   for (k=1; k<=2; k++) {          s1+=exp(ps[i][j]);
     for (i=1;i<=npar;i++) p2[i]=x[i];        ps[i][i]=1./(s1+1.);
     p2[thetai]=x[thetai]+delti[thetai]/k;        for(j=1; j<i; j++)
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;          ps[i][j]= exp(ps[i][j])*ps[i][i];
     k1=func(p2)-fx;        for(j=i+1; j<=nlstate+ndeath; j++)
            ps[i][j]= exp(ps[i][j])*ps[i][i];
     p2[thetai]=x[thetai]+delti[thetai]/k;        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;      } /* end i */
     k2=func(p2)-fx;      
        for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
     p2[thetai]=x[thetai]-delti[thetai]/k;        for(jj=1; jj<= nlstate+ndeath; jj++){
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;          ps[ii][jj]=0;
     k3=func(p2)-fx;          ps[ii][ii]=1;
          }
     p2[thetai]=x[thetai]-delti[thetai]/k;      }
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;      
     k4=func(p2)-fx;  
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
 #ifdef DEBUG  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);  /*         printf("ddd %lf ",ps[ii][jj]); */
     fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);  /*       } */
 #endif  /*       printf("\n "); */
   }  /*        } */
   return res;  /*        printf("\n ");printf("%lf ",cov[2]); */
 }         /*
         for(i=1; i<= npar; i++) printf("%f ",x[i]);
 /************** Inverse of matrix **************/        goto end;*/
 void ludcmp(double **a, int n, int *indx, double *d)      return ps;
 {  }
   int i,imax,j,k;  
   double big,dum,sum,temp;  /**************** Product of 2 matrices ******************/
   double *vv;  
    double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
   vv=vector(1,n);  {
   *d=1.0;    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
   for (i=1;i<=n;i++) {       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
     big=0.0;    /* in, b, out are matrice of pointers which should have been initialized 
     for (j=1;j<=n;j++)       before: only the contents of out is modified. The function returns
       if ((temp=fabs(a[i][j])) > big) big=temp;       a pointer to pointers identical to out */
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");    long i, j, k;
     vv[i]=1.0/big;    for(i=nrl; i<= nrh; i++)
   }      for(k=ncolol; k<=ncoloh; k++)
   for (j=1;j<=n;j++) {        for(j=ncl,out[i][k]=0.; j<=nch; j++)
     for (i=1;i<j;i++) {          out[i][k] +=in[i][j]*b[j][k];
       sum=a[i][j];  
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];    return out;
       a[i][j]=sum;  }
     }  
     big=0.0;  
     for (i=j;i<=n;i++) {  /************* Higher Matrix Product ***************/
       sum=a[i][j];  
       for (k=1;k<j;k++)  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
         sum -= a[i][k]*a[k][j];  {
       a[i][j]=sum;    /* Computes the transition matrix starting at age 'age' over 
       if ( (dum=vv[i]*fabs(sum)) >= big) {       'nhstepm*hstepm*stepm' months (i.e. until
         big=dum;       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
         imax=i;       nhstepm*hstepm matrices. 
       }       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
     }       (typically every 2 years instead of every month which is too big 
     if (j != imax) {       for the memory).
       for (k=1;k<=n;k++) {       Model is determined by parameters x and covariates have to be 
         dum=a[imax][k];       included manually here. 
         a[imax][k]=a[j][k];  
         a[j][k]=dum;       */
       }  
       *d = -(*d);    int i, j, d, h, k;
       vv[imax]=vv[j];    double **out, cov[NCOVMAX];
     }    double **newm;
     indx[j]=imax;  
     if (a[j][j] == 0.0) a[j][j]=TINY;    /* Hstepm could be zero and should return the unit matrix */
     if (j != n) {    for (i=1;i<=nlstate+ndeath;i++)
       dum=1.0/(a[j][j]);      for (j=1;j<=nlstate+ndeath;j++){
       for (i=j+1;i<=n;i++) a[i][j] *= dum;        oldm[i][j]=(i==j ? 1.0 : 0.0);
     }        po[i][j][0]=(i==j ? 1.0 : 0.0);
   }      }
   free_vector(vv,1,n);  /* Doesn't work */    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
 ;    for(h=1; h <=nhstepm; h++){
 }      for(d=1; d <=hstepm; d++){
         newm=savm;
 void lubksb(double **a, int n, int *indx, double b[])        /* Covariates have to be included here again */
 {        cov[1]=1.;
   int i,ii=0,ip,j;        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
   double sum;        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
          for (k=1; k<=cptcovage;k++)
   for (i=1;i<=n;i++) {          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
     ip=indx[i];        for (k=1; k<=cptcovprod;k++)
     sum=b[ip];          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
     b[ip]=b[i];  
     if (ii)  
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
     else if (sum) ii=i;        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
     b[i]=sum;        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
   }                     pmij(pmmij,cov,ncovmodel,x,nlstate));
   for (i=n;i>=1;i--) {        savm=oldm;
     sum=b[i];        oldm=newm;
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];      }
     b[i]=sum/a[i][i];      for(i=1; i<=nlstate+ndeath; i++)
   }        for(j=1;j<=nlstate+ndeath;j++) {
 }          po[i][j][h]=newm[i][j];
           /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
 /************ Frequencies ********************/           */
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)        }
 {  /* Some frequencies */    } /* end h */
      return po;
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;  }
   int first;  
   double ***freq; /* Frequencies */  
   double *pp;  /*************** log-likelihood *************/
   double pos, k2, dateintsum=0,k2cpt=0;  double func( double *x)
   FILE *ficresp;  {
   char fileresp[FILENAMELENGTH];    int i, ii, j, k, mi, d, kk;
      double l, ll[NLSTATEMAX], cov[NCOVMAX];
   pp=vector(1,nlstate);    double **out;
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);    double sw; /* Sum of weights */
   strcpy(fileresp,"p");    double lli; /* Individual log likelihood */
   strcat(fileresp,fileres);    int s1, s2;
   if((ficresp=fopen(fileresp,"w"))==NULL) {    double bbh, survp;
     printf("Problem with prevalence resultfile: %s\n", fileresp);    long ipmx;
     fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);    /*extern weight */
     exit(0);    /* We are differentiating ll according to initial status */
   }    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);    /*for(i=1;i<imx;i++) 
   j1=0;      printf(" %d\n",s[4][i]);
      */
   j=cptcoveff;    cov[1]=1.;
   if (cptcovn<1) {j=1;ncodemax[1]=1;}  
     for(k=1; k<=nlstate; k++) ll[k]=0.;
   first=1;  
     if(mle==1){
   for(k1=1; k1<=j;k1++){      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     for(i1=1; i1<=ncodemax[k1];i1++){        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       j1++;        for(mi=1; mi<= wav[i]-1; mi++){
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);          for (ii=1;ii<=nlstate+ndeath;ii++)
         scanf("%d", i);*/            for (j=1;j<=nlstate+ndeath;j++){
       for (i=-1; i<=nlstate+ndeath; i++)                oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         for (jk=-1; jk<=nlstate+ndeath; jk++)                savm[ii][j]=(ii==j ? 1.0 : 0.0);
           for(m=agemin; m <= agemax+3; m++)            }
             freq[i][jk][m]=0;          for(d=0; d<dh[mi][i]; d++){
                  newm=savm;
       dateintsum=0;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       k2cpt=0;            for (kk=1; kk<=cptcovage;kk++) {
       for (i=1; i<=imx; i++) {              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         bool=1;            }
         if  (cptcovn>0) {            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
           for (z1=1; z1<=cptcoveff; z1++)                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])            savm=oldm;
               bool=0;            oldm=newm;
         }          } /* end mult */
         if (bool==1) {        
           for(m=firstpass; m<=lastpass; m++){          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
             k2=anint[m][i]+(mint[m][i]/12.);          /* But now since version 0.9 we anticipate for bias at large stepm.
             if ((k2>=dateprev1) && (k2<=dateprev2)) {           * If stepm is larger than one month (smallest stepm) and if the exact delay 
               if(agev[m][i]==0) agev[m][i]=agemax+1;           * (in months) between two waves is not a multiple of stepm, we rounded to 
               if(agev[m][i]==1) agev[m][i]=agemax+2;           * the nearest (and in case of equal distance, to the lowest) interval but now
               if (m<lastpass) {           * we keep into memory the bias bh[mi][i] and also the previous matrix product
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];           * probability in order to take into account the bias as a fraction of the way
               }           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
                         * -stepm/2 to stepm/2 .
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {           * For stepm=1 the results are the same as for previous versions of Imach.
                 dateintsum=dateintsum+k2;           * For stepm > 1 the results are less biased than in previous versions. 
                 k2cpt++;           */
               }          s1=s[mw[mi][i]][i];
             }          s2=s[mw[mi+1][i]][i];
           }          bbh=(double)bh[mi][i]/(double)stepm; 
         }          /* bias bh is positive if real duration
       }           * is higher than the multiple of stepm and negative otherwise.
                   */
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
           if( s2 > nlstate){ 
       if  (cptcovn>0) {            /* i.e. if s2 is a death state and if the date of death is known 
         fprintf(ficresp, "\n#********** Variable ");               then the contribution to the likelihood is the probability to 
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);               die between last step unit time and current  step unit time, 
         fprintf(ficresp, "**********\n#");               which is also equal to probability to die before dh 
       }               minus probability to die before dh-stepm . 
       for(i=1; i<=nlstate;i++)               In version up to 0.92 likelihood was computed
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);          as if date of death was unknown. Death was treated as any other
       fprintf(ficresp, "\n");          health state: the date of the interview describes the actual state
                and not the date of a change in health state. The former idea was
       for(i=(int)agemin; i <= (int)agemax+3; i++){          to consider that at each interview the state was recorded
         if(i==(int)agemax+3){          (healthy, disable or death) and IMaCh was corrected; but when we
           fprintf(ficlog,"Total");          introduced the exact date of death then we should have modified
         }else{          the contribution of an exact death to the likelihood. This new
           if(first==1){          contribution is smaller and very dependent of the step unit
             first=0;          stepm. It is no more the probability to die between last interview
             printf("See log file for details...\n");          and month of death but the probability to survive from last
           }          interview up to one month before death multiplied by the
           fprintf(ficlog,"Age %d", i);          probability to die within a month. Thanks to Chris
         }          Jackson for correcting this bug.  Former versions increased
         for(jk=1; jk <=nlstate ; jk++){          mortality artificially. The bad side is that we add another loop
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)          which slows down the processing. The difference can be up to 10%
             pp[jk] += freq[jk][m][i];          lower mortality.
         }            */
         for(jk=1; jk <=nlstate ; jk++){            lli=log(out[s1][s2] - savm[s1][s2]);
           for(m=-1, pos=0; m <=0 ; m++)  
             pos += freq[jk][m][i];  
           if(pp[jk]>=1.e-10){          } else if  (s2==-2) {
             if(first==1){            for (j=1,survp=0. ; j<=nlstate; j++) 
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);              survp += out[s1][j];
             }            lli= survp;
             fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);          }
           }else{          
             if(first==1)          else if  (s2==-4) {
               printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);            for (j=3,survp=0. ; j<=nlstate; j++) 
             fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);              survp += out[s1][j];
           }            lli= survp;
         }          }
           
         for(jk=1; jk <=nlstate ; jk++){          else if  (s2==-5) {
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)            for (j=1,survp=0. ; j<=2; j++) 
             pp[jk] += freq[jk][m][i];              survp += out[s1][j];
         }            lli= survp;
           }
         for(jk=1,pos=0; jk <=nlstate ; jk++)  
           pos += pp[jk];  
         for(jk=1; jk <=nlstate ; jk++){          else{
           if(pos>=1.e-5){            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
             if(first==1)            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
               printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);          } 
             fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
           }else{          /*if(lli ==000.0)*/
             if(first==1)          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
               printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);          ipmx +=1;
             fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);          sw += weight[i];
           }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           if( i <= (int) agemax){        } /* end of wave */
             if(pos>=1.e-5){      } /* end of individual */
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);    }  else if(mle==2){
               probs[i][jk][j1]= pp[jk]/pos;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
             }        for(mi=1; mi<= wav[i]-1; mi++){
             else          for (ii=1;ii<=nlstate+ndeath;ii++)
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);            for (j=1;j<=nlstate+ndeath;j++){
           }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
                    }
         for(jk=-1; jk <=nlstate+ndeath; jk++)          for(d=0; d<=dh[mi][i]; d++){
           for(m=-1; m <=nlstate+ndeath; m++)            newm=savm;
             if(freq[jk][m][i] !=0 ) {            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             if(first==1)            for (kk=1; kk<=cptcovage;kk++) {
               printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
               fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);            }
             }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         if(i <= (int) agemax)                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           fprintf(ficresp,"\n");            savm=oldm;
         if(first==1)            oldm=newm;
           printf("Others in log...\n");          } /* end mult */
         fprintf(ficlog,"\n");        
       }          s1=s[mw[mi][i]][i];
     }          s2=s[mw[mi+1][i]][i];
   }          bbh=(double)bh[mi][i]/(double)stepm; 
   dateintmean=dateintsum/k2cpt;          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
            ipmx +=1;
   fclose(ficresp);          sw += weight[i];
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   free_vector(pp,1,nlstate);        } /* end of wave */
        } /* end of individual */
   /* End of Freq */    }  else if(mle==3){  /* exponential inter-extrapolation */
 }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 /************ Prevalence ********************/        for(mi=1; mi<= wav[i]-1; mi++){
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)          for (ii=1;ii<=nlstate+ndeath;ii++)
 {  /* Some frequencies */            for (j=1;j<=nlstate+ndeath;j++){
                oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   double ***freq; /* Frequencies */            }
   double *pp;          for(d=0; d<dh[mi][i]; d++){
   double pos, k2;            newm=savm;
             cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   pp=vector(1,nlstate);            for (kk=1; kk<=cptcovage;kk++) {
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
              }
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   j1=0;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
              savm=oldm;
   j=cptcoveff;            oldm=newm;
   if (cptcovn<1) {j=1;ncodemax[1]=1;}          } /* end mult */
          
   for(k1=1; k1<=j;k1++){          s1=s[mw[mi][i]][i];
     for(i1=1; i1<=ncodemax[k1];i1++){          s2=s[mw[mi+1][i]][i];
       j1++;          bbh=(double)bh[mi][i]/(double)stepm; 
                lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
       for (i=-1; i<=nlstate+ndeath; i++)            ipmx +=1;
         for (jk=-1; jk<=nlstate+ndeath; jk++)            sw += weight[i];
           for(m=agemin; m <= agemax+3; m++)          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
             freq[i][jk][m]=0;        } /* end of wave */
            } /* end of individual */
       for (i=1; i<=imx; i++) {    }else if (mle==4){  /* ml=4 no inter-extrapolation */
         bool=1;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         if  (cptcovn>0) {        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
           for (z1=1; z1<=cptcoveff; z1++)        for(mi=1; mi<= wav[i]-1; mi++){
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])          for (ii=1;ii<=nlstate+ndeath;ii++)
               bool=0;            for (j=1;j<=nlstate+ndeath;j++){
         }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         if (bool==1) {              savm[ii][j]=(ii==j ? 1.0 : 0.0);
           for(m=firstpass; m<=lastpass; m++){            }
             k2=anint[m][i]+(mint[m][i]/12.);          for(d=0; d<dh[mi][i]; d++){
             if ((k2>=dateprev1) && (k2<=dateprev2)) {            newm=savm;
               if(agev[m][i]==0) agev[m][i]=agemax+1;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
               if(agev[m][i]==1) agev[m][i]=agemax+2;            for (kk=1; kk<=cptcovage;kk++) {
               if (m<lastpass) {              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
                 if (calagedate>0)            }
                   freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];          
                 else            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                   freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
                 freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];            savm=oldm;
               }            oldm=newm;
             }          } /* end mult */
           }        
         }          s1=s[mw[mi][i]][i];
       }          s2=s[mw[mi+1][i]][i];
       for(i=(int)agemin; i <= (int)agemax+3; i++){          if( s2 > nlstate){ 
         for(jk=1; jk <=nlstate ; jk++){            lli=log(out[s1][s2] - savm[s1][s2]);
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)          }else{
             pp[jk] += freq[jk][m][i];            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
         }          }
         for(jk=1; jk <=nlstate ; jk++){          ipmx +=1;
           for(m=-1, pos=0; m <=0 ; m++)          sw += weight[i];
             pos += freq[jk][m][i];          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         }  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
                } /* end of wave */
         for(jk=1; jk <=nlstate ; jk++){      } /* end of individual */
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
             pp[jk] += freq[jk][m][i];      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
                for(mi=1; mi<= wav[i]-1; mi++){
         for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];          for (ii=1;ii<=nlstate+ndeath;ii++)
                    for (j=1;j<=nlstate+ndeath;j++){
         for(jk=1; jk <=nlstate ; jk++){                  oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           if( i <= (int) agemax){              savm[ii][j]=(ii==j ? 1.0 : 0.0);
             if(pos>=1.e-5){            }
               probs[i][jk][j1]= pp[jk]/pos;          for(d=0; d<dh[mi][i]; d++){
             }            newm=savm;
           }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         }/* end jk */            for (kk=1; kk<=cptcovage;kk++) {
       }/* end i */              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     } /* end i1 */            }
   } /* end k1 */          
             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);            savm=oldm;
   free_vector(pp,1,nlstate);            oldm=newm;
            } /* end mult */
 }  /* End of Freq */        
           s1=s[mw[mi][i]][i];
 /************* Waves Concatenation ***************/          s2=s[mw[mi+1][i]][i];
           lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)          ipmx +=1;
 {          sw += weight[i];
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
      Death is a valid wave (if date is known).          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i        } /* end of wave */
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]      } /* end of individual */
      and mw[mi+1][i]. dh depends on stepm.    } /* End of if */
      */    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
     /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   int i, mi, m;    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;    return -l;
      double sum=0., jmean=0.;*/  }
   int first;  
   int j, k=0,jk, ju, jl;  /*************** log-likelihood *************/
   double sum=0.;  double funcone( double *x)
   first=0;  {
   jmin=1e+5;    /* Same as likeli but slower because of a lot of printf and if */
   jmax=-1;    int i, ii, j, k, mi, d, kk;
   jmean=0.;    double l, ll[NLSTATEMAX], cov[NCOVMAX];
   for(i=1; i<=imx; i++){    double **out;
     mi=0;    double lli; /* Individual log likelihood */
     m=firstpass;    double llt;
     while(s[m][i] <= nlstate){    int s1, s2;
       if(s[m][i]>=1)    double bbh, survp;
         mw[++mi][i]=m;    /*extern weight */
       if(m >=lastpass)    /* We are differentiating ll according to initial status */
         break;    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
       else    /*for(i=1;i<imx;i++) 
         m++;      printf(" %d\n",s[4][i]);
     }/* end while */    */
     if (s[m][i] > nlstate){    cov[1]=1.;
       mi++;     /* Death is another wave */  
       /* if(mi==0)  never been interviewed correctly before death */    for(k=1; k<=nlstate; k++) ll[k]=0.;
          /* Only death is a correct wave */  
       mw[mi][i]=m;    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     }      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       for(mi=1; mi<= wav[i]-1; mi++){
     wav[i]=mi;        for (ii=1;ii<=nlstate+ndeath;ii++)
     if(mi==0){          for (j=1;j<=nlstate+ndeath;j++){
       if(first==0){            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         printf("Warning, no any valid information for:%d line=%d and may be others, see log file\n",num[i],i);            savm[ii][j]=(ii==j ? 1.0 : 0.0);
         first=1;          }
       }        for(d=0; d<dh[mi][i]; d++){
       if(first==1){          newm=savm;
         fprintf(ficlog,"Warning, no any valid information for:%d line=%d\n",num[i],i);          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       }          for (kk=1; kk<=cptcovage;kk++) {
     } /* end mi==0 */            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   }          }
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   for(i=1; i<=imx; i++){                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     for(mi=1; mi<wav[i];mi++){          savm=oldm;
       if (stepm <=0)          oldm=newm;
         dh[mi][i]=1;        } /* end mult */
       else{        
         if (s[mw[mi+1][i]][i] > nlstate) {        s1=s[mw[mi][i]][i];
           if (agedc[i] < 2*AGESUP) {        s2=s[mw[mi+1][i]][i];
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);        bbh=(double)bh[mi][i]/(double)stepm; 
           if(j==0) j=1;  /* Survives at least one month after exam */        /* bias is positive if real duration
           k=k+1;         * is higher than the multiple of stepm and negative otherwise.
           if (j >= jmax) jmax=j;         */
           if (j <= jmin) jmin=j;        if( s2 > nlstate && (mle <5) ){  /* Jackson */
           sum=sum+j;          lli=log(out[s1][s2] - savm[s1][s2]);
           /*if (j<0) printf("j=%d num=%d \n",j,i); */        } else if (mle==1){
           }          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
         }        } else if(mle==2){
         else{          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));        } else if(mle==3){  /* exponential inter-extrapolation */
           k=k+1;          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
           if (j >= jmax) jmax=j;        } else if (mle==4){  /* mle=4 no inter-extrapolation */
           else if (j <= jmin)jmin=j;          lli=log(out[s1][s2]); /* Original formula */
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
           sum=sum+j;          lli=log(out[s1][s2]); /* Original formula */
         }        } /* End of if */
         jk= j/stepm;        ipmx +=1;
         jl= j -jk*stepm;        sw += weight[i];
         ju= j -(jk+1)*stepm;        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         if(jl <= -ju)  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
           dh[mi][i]=jk;        if(globpr){
         else          fprintf(ficresilk,"%9d %6d %1d %1d %1d %1d %3d %10.6f %6.4f\
           dh[mi][i]=jk+1;   %10.6f %10.6f %10.6f ", \
         if(dh[mi][i]==0)                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
           dh[mi][i]=1; /* At least one step */                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
       }          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
     }            llt +=ll[k]*gipmx/gsw;
   }            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
   jmean=sum/k;          }
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);          fprintf(ficresilk," %10.6f\n", -llt);
   fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);        }
  }      } /* end of wave */
     } /* end of individual */
 /*********** Tricode ****************************/    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
 void tricode(int *Tvar, int **nbcode, int imx)    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
 {    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   int Ndum[20],ij=1, k, j, i;    if(globpr==0){ /* First time we count the contributions and weights */
   int cptcode=0;      gipmx=ipmx;
   cptcoveff=0;      gsw=sw;
      }
   for (k=0; k<19; k++) Ndum[k]=0;    return -l;
   for (k=1; k<=7; k++) ncodemax[k]=0;  }
   
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {  
     for (i=1; i<=imx; i++) {  /*************** function likelione ***********/
       ij=(int)(covar[Tvar[j]][i]);  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
       Ndum[ij]++;  {
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/    /* This routine should help understanding what is done with 
       if (ij > cptcode) cptcode=ij;       the selection of individuals/waves and
     }       to check the exact contribution to the likelihood.
        Plotting could be done.
     for (i=0; i<=cptcode; i++) {     */
       if(Ndum[i]!=0) ncodemax[j]++;    int k;
     }  
     ij=1;    if(*globpri !=0){ /* Just counts and sums, no printings */
       strcpy(fileresilk,"ilk"); 
       strcat(fileresilk,fileres);
     for (i=1; i<=ncodemax[j]; i++) {      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
       for (k=0; k<=19; k++) {        printf("Problem with resultfile: %s\n", fileresilk);
         if (Ndum[k] != 0) {        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
           nbcode[Tvar[j]][ij]=k;      }
                fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
           ij++;      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
         }      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
         if (ij > ncodemax[j]) break;      for(k=1; k<=nlstate; k++) 
       }          fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
     }      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
   }      }
   
  for (k=0; k<19; k++) Ndum[k]=0;    *fretone=(*funcone)(p);
     if(*globpri !=0){
  for (i=1; i<=ncovmodel-2; i++) {      fclose(ficresilk);
    ij=Tvar[i];      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
    Ndum[ij]++;      fflush(fichtm); 
  }    } 
     return;
  ij=1;  }
  for (i=1; i<=10; i++) {  
    if((Ndum[i]!=0) && (i<=ncovcol)){  
      Tvaraff[ij]=i;  /*********** Maximum Likelihood Estimation ***************/
      ij++;  
    }  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
  }  {
      int i,j, iter;
  cptcoveff=ij-1;    double **xi;
 }    double fret;
     double fretone; /* Only one call to likelihood */
 /*********** Health Expectancies ****************/    /*  char filerespow[FILENAMELENGTH];*/
     xi=matrix(1,npar,1,npar);
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )    for (i=1;i<=npar;i++)
       for (j=1;j<=npar;j++)
 {        xi[i][j]=(i==j ? 1.0 : 0.0);
   /* Health expectancies */    printf("Powell\n");  fprintf(ficlog,"Powell\n");
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;    strcpy(filerespow,"pow"); 
   double age, agelim, hf;    strcat(filerespow,fileres);
   double ***p3mat,***varhe;    if((ficrespow=fopen(filerespow,"w"))==NULL) {
   double **dnewm,**doldm;      printf("Problem with resultfile: %s\n", filerespow);
   double *xp;      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
   double **gp, **gm;    }
   double ***gradg, ***trgradg;    fprintf(ficrespow,"# Powell\n# iter -2*LL");
   int theta;    for (i=1;i<=nlstate;i++)
       for(j=1;j<=nlstate+ndeath;j++)
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
   xp=vector(1,npar);    fprintf(ficrespow,"\n");
   dnewm=matrix(1,nlstate*2,1,npar);  
   doldm=matrix(1,nlstate*2,1,nlstate*2);    powell(p,xi,npar,ftol,&iter,&fret,func);
    
   fprintf(ficreseij,"# Health expectancies\n");    fclose(ficrespow);
   fprintf(ficreseij,"# Age");    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
   for(i=1; i<=nlstate;i++)    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
     for(j=1; j<=nlstate;j++)    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
       fprintf(ficreseij," %1d-%1d (SE)",i,j);  
   fprintf(ficreseij,"\n");  }
   
   if(estepm < stepm){  /**** Computes Hessian and covariance matrix ***/
     printf ("Problem %d lower than %d\n",estepm, stepm);  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
   }  {
   else  hstepm=estepm;      double  **a,**y,*x,pd;
   /* We compute the life expectancy from trapezoids spaced every estepm months    double **hess;
    * This is mainly to measure the difference between two models: for example    int i, j,jk;
    * if stepm=24 months pijx are given only every 2 years and by summing them    int *indx;
    * we are calculating an estimate of the Life Expectancy assuming a linear  
    * progression inbetween and thus overestimating or underestimating according    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
    * to the curvature of the survival function. If, for the same date, we    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
    * estimate the model with stepm=1 month, we can keep estepm to 24 months    void lubksb(double **a, int npar, int *indx, double b[]) ;
    * to compare the new estimate of Life expectancy with the same linear    void ludcmp(double **a, int npar, int *indx, double *d) ;
    * hypothesis. A more precise result, taking into account a more precise    double gompertz(double p[]);
    * curvature will be obtained if estepm is as small as stepm. */    hess=matrix(1,npar,1,npar);
   
   /* For example we decided to compute the life expectancy with the smallest unit */    printf("\nCalculation of the hessian matrix. Wait...\n");
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
      nhstepm is the number of hstepm from age to agelim    for (i=1;i<=npar;i++){
      nstepm is the number of stepm from age to agelin.      printf("%d",i);fflush(stdout);
      Look at hpijx to understand the reason of that which relies in memory size      fprintf(ficlog,"%d",i);fflush(ficlog);
      and note for a fixed period like estepm months */     
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
      survival function given by stepm (the optimization length). Unfortunately it      
      means that if the survival funtion is printed only each two years of age and if      /*  printf(" %f ",p[i]);
      you sum them up and add 1 year (area under the trapezoids) you won't get the same          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
      results. So we changed our mind and took the option of the best precision.    }
   */    
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */    for (i=1;i<=npar;i++) {
       for (j=1;j<=npar;j++)  {
   agelim=AGESUP;        if (j>i) { 
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */          printf(".%d%d",i,j);fflush(stdout);
     /* nhstepm age range expressed in number of stepm */          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
     nstepm=(int) rint((agelim-age)*YEARM/stepm);          hess[i][j]=hessij(p,delti,i,j,func,npar);
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */          
     /* if (stepm >= YEARM) hstepm=1;*/          hess[j][i]=hess[i][j];    
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */          /*printf(" %lf ",hess[i][j]);*/
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        }
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);      }
     gp=matrix(0,nhstepm,1,nlstate*2);    }
     gm=matrix(0,nhstepm,1,nlstate*2);    printf("\n");
     fprintf(ficlog,"\n");
     /* Computed by stepm unit matrices, product of hstepm matrices, stored  
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);      fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
      
     a=matrix(1,npar,1,npar);
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */    y=matrix(1,npar,1,npar);
     x=vector(1,npar);
     /* Computing Variances of health expectancies */    indx=ivector(1,npar);
     for (i=1;i<=npar;i++)
      for(theta=1; theta <=npar; theta++){      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
       for(i=1; i<=npar; i++){    ludcmp(a,npar,indx,&pd);
         xp[i] = x[i] + (i==theta ?delti[theta]:0);  
       }    for (j=1;j<=npar;j++) {
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        for (i=1;i<=npar;i++) x[i]=0;
        x[j]=1;
       cptj=0;      lubksb(a,npar,indx,x);
       for(j=1; j<= nlstate; j++){      for (i=1;i<=npar;i++){ 
         for(i=1; i<=nlstate; i++){        matcov[i][j]=x[i];
           cptj=cptj+1;      }
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){    }
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;  
           }    printf("\n#Hessian matrix#\n");
         }    fprintf(ficlog,"\n#Hessian matrix#\n");
       }    for (i=1;i<=npar;i++) { 
            for (j=1;j<=npar;j++) { 
              printf("%.3e ",hess[i][j]);
       for(i=1; i<=npar; i++)        fprintf(ficlog,"%.3e ",hess[i][j]);
         xp[i] = x[i] - (i==theta ?delti[theta]:0);      }
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        printf("\n");
            fprintf(ficlog,"\n");
       cptj=0;    }
       for(j=1; j<= nlstate; j++){  
         for(i=1;i<=nlstate;i++){    /* Recompute Inverse */
           cptj=cptj+1;    for (i=1;i<=npar;i++)
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;    ludcmp(a,npar,indx,&pd);
           }  
         }    /*  printf("\n#Hessian matrix recomputed#\n");
       }  
       for(j=1; j<= nlstate*2; j++)    for (j=1;j<=npar;j++) {
         for(h=0; h<=nhstepm-1; h++){      for (i=1;i<=npar;i++) x[i]=0;
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];      x[j]=1;
         }      lubksb(a,npar,indx,x);
      }      for (i=1;i<=npar;i++){ 
            y[i][j]=x[i];
 /* End theta */        printf("%.3e ",y[i][j]);
         fprintf(ficlog,"%.3e ",y[i][j]);
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);      }
       printf("\n");
      for(h=0; h<=nhstepm-1; h++)      fprintf(ficlog,"\n");
       for(j=1; j<=nlstate*2;j++)    }
         for(theta=1; theta <=npar; theta++)    */
           trgradg[h][j][theta]=gradg[h][theta][j];  
          free_matrix(a,1,npar,1,npar);
     free_matrix(y,1,npar,1,npar);
      for(i=1;i<=nlstate*2;i++)    free_vector(x,1,npar);
       for(j=1;j<=nlstate*2;j++)    free_ivector(indx,1,npar);
         varhe[i][j][(int)age] =0.;    free_matrix(hess,1,npar,1,npar);
   
      printf("%d|",(int)age);fflush(stdout);  
      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);  }
      for(h=0;h<=nhstepm-1;h++){  
       for(k=0;k<=nhstepm-1;k++){  /*************** hessian matrix ****************/
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);  {
         for(i=1;i<=nlstate*2;i++)    int i;
           for(j=1;j<=nlstate*2;j++)    int l=1, lmax=20;
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;    double k1,k2;
       }    double p2[NPARMAX+1];
     }    double res;
     /* Computing expectancies */    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
     for(i=1; i<=nlstate;i++)    double fx;
       for(j=1; j<=nlstate;j++)    int k=0,kmax=10;
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){    double l1;
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;  
              fx=func(x);
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/    for (i=1;i<=npar;i++) p2[i]=x[i];
     for(l=0 ; l <=lmax; l++){
         }      l1=pow(10,l);
       delts=delt;
     fprintf(ficreseij,"%3.0f",age );      for(k=1 ; k <kmax; k=k+1){
     cptj=0;        delt = delta*(l1*k);
     for(i=1; i<=nlstate;i++)        p2[theta]=x[theta] +delt;
       for(j=1; j<=nlstate;j++){        k1=func(p2)-fx;
         cptj++;        p2[theta]=x[theta]-delt;
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );        k2=func(p2)-fx;
       }        /*res= (k1-2.0*fx+k2)/delt/delt; */
     fprintf(ficreseij,"\n");        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
            
     free_matrix(gm,0,nhstepm,1,nlstate*2);  #ifdef DEBUG
     free_matrix(gp,0,nhstepm,1,nlstate*2);        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);  #endif
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
   }        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
   printf("\n");          k=kmax;
   fprintf(ficlog,"\n");        }
         else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
   free_vector(xp,1,npar);          k=kmax; l=lmax*10.;
   free_matrix(dnewm,1,nlstate*2,1,npar);        }
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);          delts=delt;
 }        }
       }
 /************ Variance ******************/    }
 void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased)    delti[theta]=delts;
 {    return res; 
   /* Variance of health expectancies */    
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/  }
   /* double **newm;*/  
   double **dnewm,**doldm;  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
   double **dnewmp,**doldmp;  {
   int i, j, nhstepm, hstepm, h, nstepm ;    int i;
   int k, cptcode;    int l=1, l1, lmax=20;
   double *xp;    double k1,k2,k3,k4,res,fx;
   double **gp, **gm;  /* for var eij */    double p2[NPARMAX+1];
   double ***gradg, ***trgradg; /*for var eij */    int k;
   double **gradgp, **trgradgp; /* for var p point j */  
   double *gpp, *gmp; /* for var p point j */    fx=func(x);
   double **varppt; /* for var p point j nlstate to nlstate+ndeath */    for (k=1; k<=2; k++) {
   double ***p3mat;      for (i=1;i<=npar;i++) p2[i]=x[i];
   double age,agelim, hf;      p2[thetai]=x[thetai]+delti[thetai]/k;
   int theta;      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   char digit[4];      k1=func(p2)-fx;
   char digitp[16];    
       p2[thetai]=x[thetai]+delti[thetai]/k;
   char fileresprobmorprev[FILENAMELENGTH];      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
       k2=func(p2)-fx;
   if(popbased==1)    
     strcpy(digitp,"-populbased-");      p2[thetai]=x[thetai]-delti[thetai]/k;
   else      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
     strcpy(digitp,"-stablbased-");      k3=func(p2)-fx;
     
   strcpy(fileresprobmorprev,"prmorprev");      p2[thetai]=x[thetai]-delti[thetai]/k;
   sprintf(digit,"%-d",ij);      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/      k4=func(p2)-fx;
   strcat(fileresprobmorprev,digit); /* Tvar to be done */      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
   strcat(fileresprobmorprev,digitp); /* Popbased or not */  #ifdef DEBUG
   strcat(fileresprobmorprev,fileres);      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
     printf("Problem with resultfile: %s\n", fileresprobmorprev);  #endif
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);    }
   }    return res;
   printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);  }
   fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);  
   fprintf(ficresprobmorprev,"# probabilities of dying during a year and weighted mean w1*p1j+w2*p2j+... stand dev in()\n");  /************** Inverse of matrix **************/
   fprintf(ficresprobmorprev,"# Age cov=%-d",ij);  void ludcmp(double **a, int n, int *indx, double *d) 
   for(j=nlstate+1; j<=(nlstate+ndeath);j++){  { 
     fprintf(ficresprobmorprev," p.%-d SE",j);    int i,imax,j,k; 
     for(i=1; i<=nlstate;i++)    double big,dum,sum,temp; 
       fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);    double *vv; 
   }     
   fprintf(ficresprobmorprev,"\n");    vv=vector(1,n); 
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {    *d=1.0; 
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);    for (i=1;i<=n;i++) { 
     fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);      big=0.0; 
     exit(0);      for (j=1;j<=n;j++) 
   }        if ((temp=fabs(a[i][j])) > big) big=temp; 
   else{      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
     fprintf(ficgp,"\n# Routine varevsij");      vv[i]=1.0/big; 
   }    } 
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {    for (j=1;j<=n;j++) { 
     printf("Problem with html file: %s\n", optionfilehtm);      for (i=1;i<j;i++) { 
     fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);        sum=a[i][j]; 
     exit(0);        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
   }        a[i][j]=sum; 
   else{      } 
     fprintf(fichtm,"\n<li><h4> Computing step probabilities of dying and weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");      big=0.0; 
   }      for (i=j;i<=n;i++) { 
   varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);        sum=a[i][j]; 
         for (k=1;k<j;k++) 
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");          sum -= a[i][k]*a[k][j]; 
   fprintf(ficresvij,"# Age");        a[i][j]=sum; 
   for(i=1; i<=nlstate;i++)        if ( (dum=vv[i]*fabs(sum)) >= big) { 
     for(j=1; j<=nlstate;j++)          big=dum; 
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);          imax=i; 
   fprintf(ficresvij,"\n");        } 
       } 
   xp=vector(1,npar);      if (j != imax) { 
   dnewm=matrix(1,nlstate,1,npar);        for (k=1;k<=n;k++) { 
   doldm=matrix(1,nlstate,1,nlstate);          dum=a[imax][k]; 
   dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);          a[imax][k]=a[j][k]; 
   doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);          a[j][k]=dum; 
         } 
   gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);        *d = -(*d); 
   gpp=vector(nlstate+1,nlstate+ndeath);        vv[imax]=vv[j]; 
   gmp=vector(nlstate+1,nlstate+ndeath);      } 
   trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/      indx[j]=imax; 
        if (a[j][j] == 0.0) a[j][j]=TINY; 
   if(estepm < stepm){      if (j != n) { 
     printf ("Problem %d lower than %d\n",estepm, stepm);        dum=1.0/(a[j][j]); 
   }        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
   else  hstepm=estepm;        } 
   /* For example we decided to compute the life expectancy with the smallest unit */    } 
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.    free_vector(vv,1,n);  /* Doesn't work */
      nhstepm is the number of hstepm from age to agelim  ;
      nstepm is the number of stepm from age to agelin.  } 
      Look at hpijx to understand the reason of that which relies in memory size  
      and note for a fixed period like k years */  void lubksb(double **a, int n, int *indx, double b[]) 
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the  { 
      survival function given by stepm (the optimization length). Unfortunately it    int i,ii=0,ip,j; 
      means that if the survival funtion is printed only each two years of age and if    double sum; 
      you sum them up and add 1 year (area under the trapezoids) you won't get the same   
      results. So we changed our mind and took the option of the best precision.    for (i=1;i<=n;i++) { 
   */      ip=indx[i]; 
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */      sum=b[ip]; 
   agelim = AGESUP;      b[ip]=b[i]; 
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */      if (ii) 
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */      else if (sum) ii=i; 
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      b[i]=sum; 
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);    } 
     gp=matrix(0,nhstepm,1,nlstate);    for (i=n;i>=1;i--) { 
     gm=matrix(0,nhstepm,1,nlstate);      sum=b[i]; 
       for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
       b[i]=sum/a[i][i]; 
     for(theta=1; theta <=npar; theta++){    } 
       for(i=1; i<=npar; i++){ /* Computes gradient */  } 
         xp[i] = x[i] + (i==theta ?delti[theta]:0);  
       }  /************ Frequencies ********************/
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);    void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  {  /* Some frequencies */
     
       if (popbased==1) {    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
         for(i=1; i<=nlstate;i++)    int first;
           prlim[i][i]=probs[(int)age][i][ij];    double ***freq; /* Frequencies */
       }    double *pp, **prop;
      double pos,posprop, k2, dateintsum=0,k2cpt=0;
       for(j=1; j<= nlstate; j++){    FILE *ficresp;
         for(h=0; h<=nhstepm; h++){    char fileresp[FILENAMELENGTH];
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)    
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];    pp=vector(1,nlstate);
         }    prop=matrix(1,nlstate,iagemin,iagemax+3);
       }    strcpy(fileresp,"p");
       /* This for computing forces of mortality (h=1)as a weighted average */    strcat(fileresp,fileres);
       for(j=nlstate+1,gpp[j]=0.;j<=nlstate+ndeath;j++){    if((ficresp=fopen(fileresp,"w"))==NULL) {
         for(i=1; i<= nlstate; i++)      printf("Problem with prevalence resultfile: %s\n", fileresp);
           gpp[j] += prlim[i][i]*p3mat[i][j][1];      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
       }          exit(0);
       /* end force of mortality */    }
     freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
       for(i=1; i<=npar; i++) /* Computes gradient */    j1=0;
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      j=cptcoveff;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    if (cptcovn<1) {j=1;ncodemax[1]=1;}
    
       if (popbased==1) {    first=1;
         for(i=1; i<=nlstate;i++)  
           prlim[i][i]=probs[(int)age][i][ij];    for(k1=1; k1<=j;k1++){
       }      for(i1=1; i1<=ncodemax[k1];i1++){
         j1++;
       for(j=1; j<= nlstate; j++){        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
         for(h=0; h<=nhstepm; h++){          scanf("%d", i);*/
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)        for (i=-5; i<=nlstate+ndeath; i++)  
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];          for (jk=-5; jk<=nlstate+ndeath; jk++)  
         }            for(m=iagemin; m <= iagemax+3; m++)
       }              freq[i][jk][m]=0;
       /* This for computing force of mortality (h=1)as a weighted average */  
       for(j=nlstate+1,gmp[j]=0.;j<=nlstate+ndeath;j++){      for (i=1; i<=nlstate; i++)  
         for(i=1; i<= nlstate; i++)        for(m=iagemin; m <= iagemax+3; m++)
           gmp[j] += prlim[i][i]*p3mat[i][j][1];          prop[i][m]=0;
       }            
       /* end force of mortality */        dateintsum=0;
         k2cpt=0;
       for(j=1; j<= nlstate; j++) /* vareij */        for (i=1; i<=imx; i++) {
         for(h=0; h<=nhstepm; h++){          bool=1;
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];          if  (cptcovn>0) {
         }            for (z1=1; z1<=cptcoveff; z1++) 
       for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
         gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];                bool=0;
       }          }
           if (bool==1){
     } /* End theta */            for(m=firstpass; m<=lastpass; m++){
               k2=anint[m][i]+(mint[m][i]/12.);
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
                 if(agev[m][i]==0) agev[m][i]=iagemax+1;
     for(h=0; h<=nhstepm; h++) /* veij */                if(agev[m][i]==1) agev[m][i]=iagemax+2;
       for(j=1; j<=nlstate;j++)                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
         for(theta=1; theta <=npar; theta++)                if (m<lastpass) {
           trgradg[h][j][theta]=gradg[h][theta][j];                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
                   freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
     for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */                }
       for(theta=1; theta <=npar; theta++)                
         trgradgp[j][theta]=gradgp[theta][j];                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
                   dateintsum=dateintsum+k2;
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */                  k2cpt++;
     for(i=1;i<=nlstate;i++)                }
       for(j=1;j<=nlstate;j++)                /*}*/
         vareij[i][j][(int)age] =0.;            }
           }
     for(h=0;h<=nhstepm;h++){        }
       for(k=0;k<=nhstepm;k++){         
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);  fprintf(ficresp, "#Local time at start: %s", strstart);
         for(i=1;i<=nlstate;i++)        if  (cptcovn>0) {
           for(j=1;j<=nlstate;j++)          fprintf(ficresp, "\n#********** Variable "); 
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       }          fprintf(ficresp, "**********\n#");
     }        }
         for(i=1; i<=nlstate;i++) 
     /* pptj */          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
     matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);        fprintf(ficresp, "\n");
     matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);        
     for(j=nlstate+1;j<=nlstate+ndeath;j++)        for(i=iagemin; i <= iagemax+3; i++){
       for(i=nlstate+1;i<=nlstate+ndeath;i++)          if(i==iagemax+3){
         varppt[j][i]=doldmp[j][i];            fprintf(ficlog,"Total");
     /* end ppptj */          }else{
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);              if(first==1){
     prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);              first=0;
                printf("See log file for details...\n");
     if (popbased==1) {            }
       for(i=1; i<=nlstate;i++)            fprintf(ficlog,"Age %d", i);
         prlim[i][i]=probs[(int)age][i][ij];          }
     }          for(jk=1; jk <=nlstate ; jk++){
                for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
     /* This for computing force of mortality (h=1)as a weighted average */              pp[jk] += freq[jk][m][i]; 
     for(j=nlstate+1,gmp[j]=0.;j<=nlstate+ndeath;j++){          }
       for(i=1; i<= nlstate; i++)          for(jk=1; jk <=nlstate ; jk++){
         gmp[j] += prlim[i][i]*p3mat[i][j][1];            for(m=-1, pos=0; m <=0 ; m++)
     }                  pos += freq[jk][m][i];
     /* end force of mortality */            if(pp[jk]>=1.e-10){
               if(first==1){
     fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){              }
       fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
       for(i=1; i<=nlstate;i++){            }else{
         fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);              if(first==1)
       }                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
     }              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
     fprintf(ficresprobmorprev,"\n");            }
           }
     fprintf(ficresvij,"%.0f ",age );  
     for(i=1; i<=nlstate;i++)          for(jk=1; jk <=nlstate ; jk++){
       for(j=1; j<=nlstate;j++){            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);              pp[jk] += freq[jk][m][i];
       }          }       
     fprintf(ficresvij,"\n");          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
     free_matrix(gp,0,nhstepm,1,nlstate);            pos += pp[jk];
     free_matrix(gm,0,nhstepm,1,nlstate);            posprop += prop[jk][i];
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);          }
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);          for(jk=1; jk <=nlstate ; jk++){
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            if(pos>=1.e-5){
   } /* End age */              if(first==1)
   free_vector(gpp,nlstate+1,nlstate+ndeath);                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   free_vector(gmp,nlstate+1,nlstate+ndeath);              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);            }else{
   free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/              if(first==1)
   fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
   /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
   fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");            }
   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm);            if( i <= iagemax){
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm);              if(pos>=1.e-5){
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm);                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
   fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",fileresprobmorprev,fileresprobmorprev);                /*probs[i][jk][j1]= pp[jk]/pos;*/
   fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
   fprintf(ficgp,"\nset out \"varmuptjgr%s%s.png\";replot;",digitp,digit);              }
               else
   free_vector(xp,1,npar);                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
   free_matrix(doldm,1,nlstate,1,nlstate);            }
   free_matrix(dnewm,1,nlstate,1,npar);          }
   free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);          
   free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);          for(jk=-1; jk <=nlstate+ndeath; jk++)
   free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);            for(m=-1; m <=nlstate+ndeath; m++)
   fclose(ficresprobmorprev);              if(freq[jk][m][i] !=0 ) {
   fclose(ficgp);              if(first==1)
   fclose(fichtm);                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
                 fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
 }              }
           if(i <= iagemax)
 /************ Variance of prevlim ******************/            fprintf(ficresp,"\n");
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)          if(first==1)
 {            printf("Others in log...\n");
   /* Variance of prevalence limit */          fprintf(ficlog,"\n");
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/        }
   double **newm;      }
   double **dnewm,**doldm;    }
   int i, j, nhstepm, hstepm;    dateintmean=dateintsum/k2cpt; 
   int k, cptcode;   
   double *xp;    fclose(ficresp);
   double *gp, *gm;    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
   double **gradg, **trgradg;    free_vector(pp,1,nlstate);
   double age,agelim;    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
   int theta;    /* End of Freq */
      }
   fprintf(ficresvpl,"# Standard deviation of prevalence's limit\n");  
   fprintf(ficresvpl,"# Age");  /************ Prevalence ********************/
   for(i=1; i<=nlstate;i++)  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
       fprintf(ficresvpl," %1d-%1d",i,i);  {  
   fprintf(ficresvpl,"\n");    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
        in each health status at the date of interview (if between dateprev1 and dateprev2).
   xp=vector(1,npar);       We still use firstpass and lastpass as another selection.
   dnewm=matrix(1,nlstate,1,npar);    */
   doldm=matrix(1,nlstate,1,nlstate);   
      int i, m, jk, k1, i1, j1, bool, z1,z2,j;
   hstepm=1*YEARM; /* Every year of age */    double ***freq; /* Frequencies */
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */    double *pp, **prop;
   agelim = AGESUP;    double pos,posprop; 
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    double  y2; /* in fractional years */
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    int iagemin, iagemax;
     if (stepm >= YEARM) hstepm=1;  
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    iagemin= (int) agemin;
     gradg=matrix(1,npar,1,nlstate);    iagemax= (int) agemax;
     gp=vector(1,nlstate);    /*pp=vector(1,nlstate);*/
     gm=vector(1,nlstate);    prop=matrix(1,nlstate,iagemin,iagemax+3); 
     /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
     for(theta=1; theta <=npar; theta++){    j1=0;
       for(i=1; i<=npar; i++){ /* Computes gradient */    
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    j=cptcoveff;
       }    if (cptcovn<1) {j=1;ncodemax[1]=1;}
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    
       for(i=1;i<=nlstate;i++)    for(k1=1; k1<=j;k1++){
         gp[i] = prlim[i][i];      for(i1=1; i1<=ncodemax[k1];i1++){
            j1++;
       for(i=1; i<=npar; i++) /* Computes gradient */        
         xp[i] = x[i] - (i==theta ?delti[theta]:0);        for (i=1; i<=nlstate; i++)  
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          for(m=iagemin; m <= iagemax+3; m++)
       for(i=1;i<=nlstate;i++)            prop[i][m]=0.0;
         gm[i] = prlim[i][i];       
         for (i=1; i<=imx; i++) { /* Each individual */
       for(i=1;i<=nlstate;i++)          bool=1;
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];          if  (cptcovn>0) {
     } /* End theta */            for (z1=1; z1<=cptcoveff; z1++) 
               if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
     trgradg =matrix(1,nlstate,1,npar);                bool=0;
           } 
     for(j=1; j<=nlstate;j++)          if (bool==1) { 
       for(theta=1; theta <=npar; theta++)            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
         trgradg[j][theta]=gradg[theta][j];              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
               if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
     for(i=1;i<=nlstate;i++)                if(agev[m][i]==0) agev[m][i]=iagemax+1;
       varpl[i][(int)age] =0.;                if(agev[m][i]==1) agev[m][i]=iagemax+2;
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);                if (s[m][i]>0 && s[m][i]<=nlstate) { 
     for(i=1;i<=nlstate;i++)                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
                   prop[s[m][i]][iagemax+3] += weight[i]; 
     fprintf(ficresvpl,"%.0f ",age );                } 
     for(i=1; i<=nlstate;i++)              }
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));            } /* end selection of waves */
     fprintf(ficresvpl,"\n");          }
     free_vector(gp,1,nlstate);        }
     free_vector(gm,1,nlstate);        for(i=iagemin; i <= iagemax+3; i++){  
     free_matrix(gradg,1,npar,1,nlstate);          
     free_matrix(trgradg,1,nlstate,1,npar);          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
   } /* End age */            posprop += prop[jk][i]; 
           } 
   free_vector(xp,1,npar);  
   free_matrix(doldm,1,nlstate,1,npar);          for(jk=1; jk <=nlstate ; jk++){     
   free_matrix(dnewm,1,nlstate,1,nlstate);            if( i <=  iagemax){ 
               if(posprop>=1.e-5){ 
 }                probs[i][jk][j1]= prop[jk][i]/posprop;
               } 
 /************ Variance of one-step probabilities  ******************/            } 
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)          }/* end jk */ 
 {        }/* end i */ 
   int i, j=0,  i1, k1, l1, t, tj;      } /* end i1 */
   int k2, l2, j1,  z1;    } /* end k1 */
   int k=0,l, cptcode;    
   int first=1, first1;    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;    /*free_vector(pp,1,nlstate);*/
   double **dnewm,**doldm;    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
   double *xp;  }  /* End of prevalence */
   double *gp, *gm;  
   double **gradg, **trgradg;  /************* Waves Concatenation ***************/
   double **mu;  
   double age,agelim, cov[NCOVMAX];  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */  {
   int theta;    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
   char fileresprob[FILENAMELENGTH];       Death is a valid wave (if date is known).
   char fileresprobcov[FILENAMELENGTH];       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
   char fileresprobcor[FILENAMELENGTH];       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
        and mw[mi+1][i]. dh depends on stepm.
   double ***varpij;       */
   
   strcpy(fileresprob,"prob");    int i, mi, m;
   strcat(fileresprob,fileres);    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {       double sum=0., jmean=0.;*/
     printf("Problem with resultfile: %s\n", fileresprob);    int first;
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);    int j, k=0,jk, ju, jl;
   }    double sum=0.;
   strcpy(fileresprobcov,"probcov");    first=0;
   strcat(fileresprobcov,fileres);    jmin=1e+5;
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {    jmax=-1;
     printf("Problem with resultfile: %s\n", fileresprobcov);    jmean=0.;
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);    for(i=1; i<=imx; i++){
   }      mi=0;
   strcpy(fileresprobcor,"probcor");      m=firstpass;
   strcat(fileresprobcor,fileres);      while(s[m][i] <= nlstate){
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
     printf("Problem with resultfile: %s\n", fileresprobcor);          mw[++mi][i]=m;
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);        if(m >=lastpass)
   }          break;
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);        else
   fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);          m++;
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);      }/* end while */
   fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);      if (s[m][i] > nlstate){
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);        mi++;     /* Death is another wave */
   fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);        /* if(mi==0)  never been interviewed correctly before death */
             /* Only death is a correct wave */
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");        mw[mi][i]=m;
   fprintf(ficresprob,"# Age");      }
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");  
   fprintf(ficresprobcov,"# Age");      wav[i]=mi;
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");      if(mi==0){
   fprintf(ficresprobcov,"# Age");        nbwarn++;
         if(first==0){
           printf("Warning! None valid information for:%ld line=%d (skipped) and may be others, see log file\n",num[i],i);
   for(i=1; i<=nlstate;i++)          first=1;
     for(j=1; j<=(nlstate+ndeath);j++){        }
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);        if(first==1){
       fprintf(ficresprobcov," p%1d-%1d ",i,j);          fprintf(ficlog,"Warning! None valid information for:%ld line=%d (skipped)\n",num[i],i);
       fprintf(ficresprobcor," p%1d-%1d ",i,j);        }
     }        } /* end mi==0 */
   fprintf(ficresprob,"\n");    } /* End individuals */
   fprintf(ficresprobcov,"\n");  
   fprintf(ficresprobcor,"\n");    for(i=1; i<=imx; i++){
   xp=vector(1,npar);      for(mi=1; mi<wav[i];mi++){
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);        if (stepm <=0)
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));          dh[mi][i]=1;
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);        else{
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
   first=1;            if (agedc[i] < 2*AGESUP) {
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);              if(j==0) j=1;  /* Survives at least one month after exam */
     fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);              else if(j<0){
     exit(0);                nberr++;
   }                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   else{                j=1; /* Temporary Dangerous patch */
     fprintf(ficgp,"\n# Routine varprob");                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
   }                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
     printf("Problem with html file: %s\n", optionfilehtm);              }
     fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);              k=k+1;
     exit(0);              if (j >= jmax) jmax=j;
   }              if (j <= jmin) jmin=j;
   else{              sum=sum+j;
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
     fprintf(fichtm,"\n");              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
             }
     fprintf(fichtm,"\n<li><h4> Computing matrix of variance-covariance of step probabilities</h4></li>\n");          }
     fprintf(fichtm,"\nWe have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");          else{
     fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
   /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
   }  
             k=k+1;
              if (j >= jmax) jmax=j;
   cov[1]=1;            else if (j <= jmin)jmin=j;
   tj=cptcoveff;            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
   if (cptcovn<1) {tj=1;ncodemax[1]=1;}            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
   j1=0;            if(j<0){
   for(t=1; t<=tj;t++){              nberr++;
     for(i1=1; i1<=ncodemax[t];i1++){              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
       j1++;              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                  }
       if  (cptcovn>0) {            sum=sum+j;
         fprintf(ficresprob, "\n#********** Variable ");          }
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          jk= j/stepm;
         fprintf(ficresprob, "**********\n#");          jl= j -jk*stepm;
         fprintf(ficresprobcov, "\n#********** Variable ");          ju= j -(jk+1)*stepm;
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
         fprintf(ficresprobcov, "**********\n#");            if(jl==0){
                      dh[mi][i]=jk;
         fprintf(ficgp, "\n#********** Variable ");              bh[mi][i]=0;
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, "# V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);            }else{ /* We want a negative bias in order to only have interpolation ie
         fprintf(ficgp, "**********\n#");                    * at the price of an extra matrix product in likelihood */
                      dh[mi][i]=jk+1;
                      bh[mi][i]=ju;
         fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable ");            }
         for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          }else{
         fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");            if(jl <= -ju){
                      dh[mi][i]=jk;
         fprintf(ficresprobcor, "\n#********** Variable ");                  bh[mi][i]=jl;       /* bias is positive if real duration
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);                                   * is higher than the multiple of stepm and negative otherwise.
         fprintf(ficgp, "**********\n#");                                       */
       }            }
                  else{
       for (age=bage; age<=fage; age ++){              dh[mi][i]=jk+1;
         cov[2]=age;              bh[mi][i]=ju;
         for (k=1; k<=cptcovn;k++) {            }
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];            if(dh[mi][i]==0){
         }              dh[mi][i]=1; /* At least one step */
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];              bh[mi][i]=ju; /* At least one step */
         for (k=1; k<=cptcovprod;k++)              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];            }
                  } /* end if mle */
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));        }
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);      } /* end wave */
         gp=vector(1,(nlstate)*(nlstate+ndeath));    }
         gm=vector(1,(nlstate)*(nlstate+ndeath));    jmean=sum/k;
        printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
         for(theta=1; theta <=npar; theta++){    fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
           for(i=1; i<=npar; i++)   }
             xp[i] = x[i] + (i==theta ?delti[theta]:0);  
            /*********** Tricode ****************************/
           pmij(pmmij,cov,ncovmodel,xp,nlstate);  void tricode(int *Tvar, int **nbcode, int imx)
            {
           k=0;    
           for(i=1; i<= (nlstate); i++){    int Ndum[20],ij=1, k, j, i, maxncov=19;
             for(j=1; j<=(nlstate+ndeath);j++){    int cptcode=0;
               k=k+1;    cptcoveff=0; 
               gp[k]=pmmij[i][j];   
             }    for (k=0; k<maxncov; k++) Ndum[k]=0;
           }    for (k=1; k<=7; k++) ncodemax[k]=0;
            
           for(i=1; i<=npar; i++)    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
             xp[i] = x[i] - (i==theta ?delti[theta]:0);      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
                                     modality*/ 
           pmij(pmmij,cov,ncovmodel,xp,nlstate);        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
           k=0;        Ndum[ij]++; /*store the modality */
           for(i=1; i<=(nlstate); i++){        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
             for(j=1; j<=(nlstate+ndeath);j++){        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
               k=k+1;                                         Tvar[j]. If V=sex and male is 0 and 
               gm[k]=pmmij[i][j];                                         female is 1, then  cptcode=1.*/
             }      }
           }  
            for (i=0; i<=cptcode; i++) {
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];        }
         }  
       ij=1; 
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)      for (i=1; i<=ncodemax[j]; i++) {
           for(theta=1; theta <=npar; theta++)        for (k=0; k<= maxncov; k++) {
             trgradg[j][theta]=gradg[theta][j];          if (Ndum[k] != 0) {
                    nbcode[Tvar[j]][ij]=k; 
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);            
                    ij++;
         pmij(pmmij,cov,ncovmodel,x,nlstate);          }
                  if (ij > ncodemax[j]) break; 
         k=0;        }  
         for(i=1; i<=(nlstate); i++){      } 
           for(j=1; j<=(nlstate+ndeath);j++){    }  
             k=k+1;  
             mu[k][(int) age]=pmmij[i][j];   for (k=0; k< maxncov; k++) Ndum[k]=0;
           }  
         }   for (i=1; i<=ncovmodel-2; i++) { 
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)     ij=Tvar[i];
             varpij[i][j][(int)age] = doldm[i][j];     Ndum[ij]++;
    }
         /*printf("\n%d ",(int)age);  
      for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){   ij=1;
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));   for (i=1; i<= maxncov; i++) {
        fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));     if((Ndum[i]!=0) && (i<=ncovcol)){
      }*/       Tvaraff[ij]=i; /*For printing */
        ij++;
         fprintf(ficresprob,"\n%d ",(int)age);     }
         fprintf(ficresprobcov,"\n%d ",(int)age);   }
         fprintf(ficresprobcor,"\n%d ",(int)age);   
    cptcoveff=ij-1; /*Number of simple covariates*/
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)  }
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));  
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){  /*********** Health Expectancies ****************/
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);  
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov,char strstart[] )
         }  
         i=0;  {
         for (k=1; k<=(nlstate);k++){    /* Health expectancies */
           for (l=1; l<=(nlstate+ndeath);l++){    int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
             i=i++;    double age, agelim, hf;
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);    double ***p3mat,***varhe;
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);    double **dnewm,**doldm;
             for (j=1; j<=i;j++){    double *xp;
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);    double **gp, **gm;
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));    double ***gradg, ***trgradg;
             }    int theta;
           }  
         }/* end of loop for state */    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
       } /* end of loop for age */    xp=vector(1,npar);
     dnewm=matrix(1,nlstate*nlstate,1,npar);
       /* Confidence intervalle of pij  */    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
       /*    
       fprintf(ficgp,"\nset noparametric;unset label");    fprintf(ficreseij,"# Local time at start: %s", strstart);
       fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");    fprintf(ficreseij,"# Health expectancies\n");
       fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");    fprintf(ficreseij,"# Age");
       fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);    for(i=1; i<=nlstate;i++)
       fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);      for(j=1; j<=nlstate;j++)
       fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);        fprintf(ficreseij," %1d-%1d (SE)",i,j);
       fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);    fprintf(ficreseij,"\n");
       */  
     if(estepm < stepm){
       /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/      printf ("Problem %d lower than %d\n",estepm, stepm);
       first1=1;    }
       for (k2=1; k2<=(nlstate);k2++){    else  hstepm=estepm;   
         for (l2=1; l2<=(nlstate+ndeath);l2++){    /* We compute the life expectancy from trapezoids spaced every estepm months
           if(l2==k2) continue;     * This is mainly to measure the difference between two models: for example
           j=(k2-1)*(nlstate+ndeath)+l2;     * if stepm=24 months pijx are given only every 2 years and by summing them
           for (k1=1; k1<=(nlstate);k1++){     * we are calculating an estimate of the Life Expectancy assuming a linear 
             for (l1=1; l1<=(nlstate+ndeath);l1++){     * progression in between and thus overestimating or underestimating according
               if(l1==k1) continue;     * to the curvature of the survival function. If, for the same date, we 
               i=(k1-1)*(nlstate+ndeath)+l1;     * estimate the model with stepm=1 month, we can keep estepm to 24 months
               if(i<=j) continue;     * to compare the new estimate of Life expectancy with the same linear 
               for (age=bage; age<=fage; age ++){     * hypothesis. A more precise result, taking into account a more precise
                 if ((int)age %5==0){     * curvature will be obtained if estepm is as small as stepm. */
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;  
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;    /* For example we decided to compute the life expectancy with the smallest unit */
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
                   mu1=mu[i][(int) age]/stepm*YEARM ;       nhstepm is the number of hstepm from age to agelim 
                   mu2=mu[j][(int) age]/stepm*YEARM;       nstepm is the number of stepm from age to agelin. 
                   c12=cv12/sqrt(v1*v2);       Look at hpijx to understand the reason of that which relies in memory size
                   /* Computing eigen value of matrix of covariance */       and note for a fixed period like estepm months */
                   lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
                   lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;       survival function given by stepm (the optimization length). Unfortunately it
                   /* Eigen vectors */       means that if the survival funtion is printed only each two years of age and if
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
                   /*v21=sqrt(1.-v11*v11); *//* error */       results. So we changed our mind and took the option of the best precision.
                   v21=(lc1-v1)/cv12*v11;    */
                   v12=-v21;    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
                   v22=v11;  
                   tnalp=v21/v11;    agelim=AGESUP;
                   if(first1==1){    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
                     first1=0;      /* nhstepm age range expressed in number of stepm */
                     printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);      nstepm=(int) rint((agelim-age)*YEARM/stepm); 
                   }      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
                   fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);      /* if (stepm >= YEARM) hstepm=1;*/
                   /*printf(fignu*/      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                   /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */      gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
                   if(first==1){      gp=matrix(0,nhstepm,1,nlstate*nlstate);
                     first=0;      gm=matrix(0,nhstepm,1,nlstate*nlstate);
                     fprintf(ficgp,"\nset parametric;unset label");  
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);      /* Computed by stepm unit matrices, product of hstepm matrices, stored
                     fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
                     fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%d%1d%1d-%1d%1d.png\">varpijgr%s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2);      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
                     fprintf(fichtm,"\n<br><img src=\"varpijgr%s%d%1d%1d-%1d%1d.png\"> ",optionfilefiname, j1,k1,l1,k2,l2);   
                     fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\"",optionfilefiname, j1,k1,l1,k2,l2);  
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);  
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\      /* Computing  Variances of health expectancies */
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\  
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));       for(theta=1; theta <=npar; theta++){
                   }else{        for(i=1; i<=npar; i++){ 
                     first=0;          xp[i] = x[i] + (i==theta ?delti[theta]:0);
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);        }
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\    
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\        cptj=0;
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));        for(j=1; j<= nlstate; j++){
                   }/* if first */          for(i=1; i<=nlstate; i++){
                 } /* age mod 5 */            cptj=cptj+1;
               } /* end loop age */            for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
               fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\";replot;",optionfilefiname, j1,k1,l1,k2,l2);              gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
               first=1;            }
             } /*l12 */          }
           } /* k12 */        }
         } /*l1 */       
       }/* k1 */       
     } /* loop covariates */        for(i=1; i<=npar; i++) 
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));        
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);        cptj=0;
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);        for(j=1; j<= nlstate; j++){
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);          for(i=1;i<=nlstate;i++){
   }            cptj=cptj+1;
   free_vector(xp,1,npar);            for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
   fclose(ficresprob);  
   fclose(ficresprobcov);              gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
   fclose(ficresprobcor);            }
   fclose(ficgp);          }
   fclose(fichtm);        }
 }        for(j=1; j<= nlstate*nlstate; j++)
           for(h=0; h<=nhstepm-1; h++){
             gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
 /******************* Printing html file ***********/          }
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \       } 
                   int lastpass, int stepm, int weightopt, char model[],\     
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\  /* End theta */
                   int popforecast, int estepm ,\  
                   double jprev1, double mprev1,double anprev1, \       trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
                   double jprev2, double mprev2,double anprev2){  
   int jj1, k1, i1, cpt;       for(h=0; h<=nhstepm-1; h++)
   /*char optionfilehtm[FILENAMELENGTH];*/        for(j=1; j<=nlstate*nlstate;j++)
   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {          for(theta=1; theta <=npar; theta++)
     printf("Problem with %s \n",optionfilehtm), exit(0);            trgradg[h][j][theta]=gradg[h][theta][j];
     fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0);       
   }  
        for(i=1;i<=nlstate*nlstate;i++)
    fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n        for(j=1;j<=nlstate*nlstate;j++)
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n          varhe[i][j][(int)age] =0.;
  - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n  
  - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n       printf("%d|",(int)age);fflush(stdout);
  - Life expectancies by age and initial health status (estepm=%2d months):       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
    <a href=\"e%s\">e%s</a> <br>\n</li>", \       for(h=0;h<=nhstepm-1;h++){
   jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);        for(k=0;k<=nhstepm-1;k++){
           matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
 fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
           for(i=1;i<=nlstate*nlstate;i++)
  m=cptcoveff;            for(j=1;j<=nlstate*nlstate;j++)
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}              varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
         }
  jj1=0;      }
  for(k1=1; k1<=m;k1++){      /* Computing expectancies */
    for(i1=1; i1<=ncodemax[k1];i1++){      for(i=1; i<=nlstate;i++)
      jj1++;        for(j=1; j<=nlstate;j++)
      if (cptcovn > 0) {          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
        for (cpt=1; cpt<=cptcoveff;cpt++)            
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");  
      }          }
      /* Pij */  
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before: pe%s%d1.png<br>      fprintf(ficreseij,"%3.0f",age );
 <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);          cptj=0;
      /* Quasi-incidences */      for(i=1; i<=nlstate;i++)
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>        for(j=1; j<=nlstate;j++){
 <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);          cptj++;
        /* Stable prevalence in each health state */          fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
        for(cpt=1; cpt<nlstate;cpt++){        }
          fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>      fprintf(ficreseij,"\n");
 <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);     
        }      free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
      for(cpt=1; cpt<=nlstate;cpt++) {      free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
 <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);      free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
      }      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
      fprintf(fichtm,"\n<br>- Total life expectancy by age and    }
 health expectancies in states (1) and (2): e%s%d.png<br>    printf("\n");
 <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);    fprintf(ficlog,"\n");
    } /* end i1 */  
  }/* End k1 */    free_vector(xp,1,npar);
  fprintf(fichtm,"</ul>");    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
     free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
     free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
  fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n  }
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n  
  - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n  /************ Variance ******************/
  - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
  - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n  {
  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n    /* Variance of health expectancies */
  - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
  - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);    /* double **newm;*/
     double **dnewm,**doldm;
  if(popforecast==1) fprintf(fichtm,"\n    double **dnewmp,**doldmp;
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n    int i, j, nhstepm, hstepm, h, nstepm ;
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n    int k, cptcode;
         <br>",fileres,fileres,fileres,fileres);    double *xp;
  else    double **gp, **gm;  /* for var eij */
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);    double ***gradg, ***trgradg; /*for var eij */
 fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");    double **gradgp, **trgradgp; /* for var p point j */
     double *gpp, *gmp; /* for var p point j */
  m=cptcoveff;    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}    double ***p3mat;
     double age,agelim, hf;
  jj1=0;    double ***mobaverage;
  for(k1=1; k1<=m;k1++){    int theta;
    for(i1=1; i1<=ncodemax[k1];i1++){    char digit[4];
      jj1++;    char digitp[25];
      if (cptcovn > 0) {  
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");    char fileresprobmorprev[FILENAMELENGTH];
        for (cpt=1; cpt<=cptcoveff;cpt++)  
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);    if(popbased==1){
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");      if(mobilav!=0)
      }        strcpy(digitp,"-populbased-mobilav-");
      for(cpt=1; cpt<=nlstate;cpt++) {      else strcpy(digitp,"-populbased-nomobil-");
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident    }
 interval) in state (%d): v%s%d%d.png <br>    else 
 <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);        strcpy(digitp,"-stablbased-");
      }  
    } /* end i1 */    if (mobilav!=0) {
  }/* End k1 */      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
  fprintf(fichtm,"</ul>");      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
 fclose(fichtm);        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
 }        printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
 /******************* Gnuplot file **************/    }
 void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){  
     strcpy(fileresprobmorprev,"prmorprev"); 
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;    sprintf(digit,"%-d",ij);
   int ng;    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {    strcat(fileresprobmorprev,digit); /* Tvar to be done */
     printf("Problem with file %s",optionfilegnuplot);    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
     fprintf(ficlog,"Problem with file %s",optionfilegnuplot);    strcat(fileresprobmorprev,fileres);
   }    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobmorprev);
 #ifdef windows      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
     fprintf(ficgp,"cd \"%s\" \n",pathc);    }
 #endif    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
 m=pow(2,cptcoveff);   
      fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
  /* 1eme*/    fprintf(ficresprobmorprev, "#Local time at start: %s", strstart);
   for (cpt=1; cpt<= nlstate ; cpt ++) {    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
    for (k1=1; k1<= m ; k1 ++) {    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){
 #ifdef windows      fprintf(ficresprobmorprev," p.%-d SE",j);
      fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);      for(i=1; i<=nlstate;i++)
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
 #endif    }  
 #ifdef unix    fprintf(ficresprobmorprev,"\n");
 fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);    fprintf(ficgp,"\n# Routine varevsij");
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
 #endif    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
     fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
 for (i=1; i<= nlstate ; i ++) {  /*   } */
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   else fprintf(ficgp," \%%*lf (\%%*lf)");   fprintf(ficresvij, "#Local time at start: %s", strstart);
 }    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);    fprintf(ficresvij,"# Age");
     for (i=1; i<= nlstate ; i ++) {    for(i=1; i<=nlstate;i++)
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");      for(j=1; j<=nlstate;j++)
   else fprintf(ficgp," \%%*lf (\%%*lf)");        fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
 }    fprintf(ficresvij,"\n");
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);  
      for (i=1; i<= nlstate ; i ++) {    xp=vector(1,npar);
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    dnewm=matrix(1,nlstate,1,npar);
   else fprintf(ficgp," \%%*lf (\%%*lf)");    doldm=matrix(1,nlstate,1,nlstate);
 }      dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
 #ifdef unix  
 fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\n");    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
 #endif    gpp=vector(nlstate+1,nlstate+ndeath);
    }    gmp=vector(nlstate+1,nlstate+ndeath);
   }    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
   /*2 eme*/    
     if(estepm < stepm){
   for (k1=1; k1<= m ; k1 ++) {      printf ("Problem %d lower than %d\n",estepm, stepm);
     fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);    }
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);    else  hstepm=estepm;   
        /* For example we decided to compute the life expectancy with the smallest unit */
     for (i=1; i<= nlstate+1 ; i ++) {    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
       k=2*i;       nhstepm is the number of hstepm from age to agelim 
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);       nstepm is the number of stepm from age to agelin. 
       for (j=1; j<= nlstate+1 ; j ++) {       Look at hpijx to understand the reason of that which relies in memory size
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");       and note for a fixed period like k years */
   else fprintf(ficgp," \%%*lf (\%%*lf)");    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
 }         survival function given by stepm (the optimization length). Unfortunately it
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");       means that if the survival funtion is printed every two years of age and if
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);       results. So we changed our mind and took the option of the best precision.
       for (j=1; j<= nlstate+1 ; j ++) {    */
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
         else fprintf(ficgp," \%%*lf (\%%*lf)");    agelim = AGESUP;
 }      for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       fprintf(ficgp,"\" t\"\" w l 0,");      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       for (j=1; j<= nlstate+1 ; j ++) {      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
   else fprintf(ficgp," \%%*lf (\%%*lf)");      gp=matrix(0,nhstepm,1,nlstate);
 }        gm=matrix(0,nhstepm,1,nlstate);
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");  
       else fprintf(ficgp,"\" t\"\" w l 0,");  
     }      for(theta=1; theta <=npar; theta++){
   }        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
            xp[i] = x[i] + (i==theta ?delti[theta]:0);
   /*3eme*/        }
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   for (k1=1; k1<= m ; k1 ++) {        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     for (cpt=1; cpt<= nlstate ; cpt ++) {  
       k=2+nlstate*(2*cpt-2);        if (popbased==1) {
       fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);          if(mobilav ==0){
       fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);            for(i=1; i<=nlstate;i++)
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);              prlim[i][i]=probs[(int)age][i][ij];
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");          }else{ /* mobilav */ 
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);            for(i=1; i<=nlstate;i++)
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);              prlim[i][i]=mobaverage[(int)age][i][ij];
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");          }
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);        }
     
 */        for(j=1; j<= nlstate; j++){
       for (i=1; i< nlstate ; i ++) {          for(h=0; h<=nhstepm; h++){
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
               gp[h][j] += prlim[i][i]*p3mat[i][j][h];
       }          }
     }        }
   }        /* This for computing probability of death (h=1 means
             computed over hstepm matrices product = hstepm*stepm months) 
   /* CV preval stat */           as a weighted average of prlim.
     for (k1=1; k1<= m ; k1 ++) {        */
     for (cpt=1; cpt<nlstate ; cpt ++) {        for(j=nlstate+1;j<=nlstate+ndeath;j++){
       k=3;          for(i=1,gpp[j]=0.; i<= nlstate; i++)
       fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);            gpp[j] += prlim[i][i]*p3mat[i][j][1];
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);        }    
         /* end probability of death */
       for (i=1; i< nlstate ; i ++)  
         fprintf(ficgp,"+$%d",k+i+1);        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
              hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
       l=3+(nlstate+ndeath)*cpt;        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);   
       for (i=1; i< nlstate ; i ++) {        if (popbased==1) {
         l=3+(nlstate+ndeath)*cpt;          if(mobilav ==0){
         fprintf(ficgp,"+$%d",l+i+1);            for(i=1; i<=nlstate;i++)
       }              prlim[i][i]=probs[(int)age][i][ij];
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);            }else{ /* mobilav */ 
     }            for(i=1; i<=nlstate;i++)
   }                prlim[i][i]=mobaverage[(int)age][i][ij];
            }
   /* proba elementaires */        }
    for(i=1,jk=1; i <=nlstate; i++){  
     for(k=1; k <=(nlstate+ndeath); k++){        for(j=1; j<= nlstate; j++){
       if (k != i) {          for(h=0; h<=nhstepm; h++){
         for(j=1; j <=ncovmodel; j++){            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
           jk++;          }
           fprintf(ficgp,"\n");        }
         }        /* This for computing probability of death (h=1 means
       }           computed over hstepm matrices product = hstepm*stepm months) 
     }           as a weighted average of prlim.
    }        */
         for(j=nlstate+1;j<=nlstate+ndeath;j++){
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/          for(i=1,gmp[j]=0.; i<= nlstate; i++)
      for(jk=1; jk <=m; jk++) {           gmp[j] += prlim[i][i]*p3mat[i][j][1];
        fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng);        }    
        if (ng==2)        /* end probability of death */
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");  
        else        for(j=1; j<= nlstate; j++) /* vareij */
          fprintf(ficgp,"\nset title \"Probability\"\n");          for(h=0; h<=nhstepm; h++){
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
        i=1;          }
        for(k2=1; k2<=nlstate; k2++) {  
          k3=i;        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
          for(k=1; k<=(nlstate+ndeath); k++) {          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
            if (k != k2){        }
              if(ng==2)  
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);      } /* End theta */
              else  
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
              ij=1;  
              for(j=3; j <=ncovmodel; j++) {      for(h=0; h<=nhstepm; h++) /* veij */
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {        for(j=1; j<=nlstate;j++)
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);          for(theta=1; theta <=npar; theta++)
                  ij++;            trgradg[h][j][theta]=gradg[h][theta][j];
                }  
                else      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);        for(theta=1; theta <=npar; theta++)
              }          trgradgp[j][theta]=gradgp[theta][j];
              fprintf(ficgp,")/(1");    
                
              for(k1=1; k1 <=nlstate; k1++){        hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);      for(i=1;i<=nlstate;i++)
                ij=1;        for(j=1;j<=nlstate;j++)
                for(j=3; j <=ncovmodel; j++){          vareij[i][j][(int)age] =0.;
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {  
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);      for(h=0;h<=nhstepm;h++){
                    ij++;        for(k=0;k<=nhstepm;k++){
                  }          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
                  else          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);          for(i=1;i<=nlstate;i++)
                }            for(j=1;j<=nlstate;j++)
                fprintf(ficgp,")");              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
              }        }
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);      }
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");    
              i=i+ncovmodel;      /* pptj */
            }      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
          } /* end k */      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
        } /* end k2 */      for(j=nlstate+1;j<=nlstate+ndeath;j++)
      } /* end jk */        for(i=nlstate+1;i<=nlstate+ndeath;i++)
    } /* end ng */          varppt[j][i]=doldmp[j][i];
    fclose(ficgp);      /* end ppptj */
 }  /* end gnuplot */      /*  x centered again */
       hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
       prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
 /*************** Moving average **************/   
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){      if (popbased==1) {
         if(mobilav ==0){
   int i, cpt, cptcod;          for(i=1; i<=nlstate;i++)
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)            prlim[i][i]=probs[(int)age][i][ij];
       for (i=1; i<=nlstate;i++)        }else{ /* mobilav */ 
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)          for(i=1; i<=nlstate;i++)
           mobaverage[(int)agedeb][i][cptcod]=0.;            prlim[i][i]=mobaverage[(int)age][i][ij];
            }
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){      }
       for (i=1; i<=nlstate;i++){               
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){      /* This for computing probability of death (h=1 means
           for (cpt=0;cpt<=4;cpt++){         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];         as a weighted average of prlim.
           }      */
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;      for(j=nlstate+1;j<=nlstate+ndeath;j++){
         }        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
       }          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
     }      }    
          /* end probability of death */
 }  
       fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
       for(j=nlstate+1; j<=(nlstate+ndeath);j++){
 /************** Forecasting ******************/        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){        for(i=1; i<=nlstate;i++){
            fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;        }
   int *popage;      } 
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;      fprintf(ficresprobmorprev,"\n");
   double *popeffectif,*popcount;  
   double ***p3mat;      fprintf(ficresvij,"%.0f ",age );
   char fileresf[FILENAMELENGTH];      for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++){
  agelim=AGESUP;          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;        }
       fprintf(ficresvij,"\n");
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);      free_matrix(gp,0,nhstepm,1,nlstate);
        free_matrix(gm,0,nhstepm,1,nlstate);
        free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
   strcpy(fileresf,"f");      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
   strcat(fileresf,fileres);      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   if((ficresf=fopen(fileresf,"w"))==NULL) {    } /* End age */
     printf("Problem with forecast resultfile: %s\n", fileresf);    free_vector(gpp,nlstate+1,nlstate+ndeath);
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);    free_vector(gmp,nlstate+1,nlstate+ndeath);
   }    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
   printf("Computing forecasting: result on file '%s' \n", fileresf);    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
     /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
   if (cptcoveff==0) ncodemax[cptcoveff]=1;    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
   /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   if (mobilav==1) {  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
     movingaverage(agedeb, fage, ageminpar, mobaverage);    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
   }    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
   stepsize=(int) (stepm+YEARM-1)/YEARM;    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
   if (stepm<=12) stepsize=1;    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
      /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
   agelim=AGESUP;  */
    /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
   hstepm=1;    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   hstepm=hstepm/stepm;  
   yp1=modf(dateintmean,&yp);    free_vector(xp,1,npar);
   anprojmean=yp;    free_matrix(doldm,1,nlstate,1,nlstate);
   yp2=modf((yp1*12),&yp);    free_matrix(dnewm,1,nlstate,1,npar);
   mprojmean=yp;    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   yp1=modf((yp2*30.5),&yp);    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
   jprojmean=yp;    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   if(jprojmean==0) jprojmean=1;    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   if(mprojmean==0) jprojmean=1;    fclose(ficresprobmorprev);
      fflush(ficgp);
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);    fflush(fichtm); 
    }  /* end varevsij */
   for(cptcov=1;cptcov<=i2;cptcov++){  
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){  /************ Variance of prevlim ******************/
       k=k+1;  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
       fprintf(ficresf,"\n#******");  {
       for(j=1;j<=cptcoveff;j++) {    /* Variance of prevalence limit */
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
       }    double **newm;
       fprintf(ficresf,"******\n");    double **dnewm,**doldm;
       fprintf(ficresf,"# StartingAge FinalAge");    int i, j, nhstepm, hstepm;
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);    int k, cptcode;
          double *xp;
          double *gp, *gm;
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {    double **gradg, **trgradg;
         fprintf(ficresf,"\n");    double age,agelim;
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);      int theta;
     fprintf(ficresvpl, "#Local time at start: %s", strstart); 
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    fprintf(ficresvpl,"# Age");
           nhstepm = nhstepm/hstepm;    for(i=1; i<=nlstate;i++)
                  fprintf(ficresvpl," %1d-%1d",i,i);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    fprintf(ficresvpl,"\n");
           oldm=oldms;savm=savms;  
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      xp=vector(1,npar);
            dnewm=matrix(1,nlstate,1,npar);
           for (h=0; h<=nhstepm; h++){    doldm=matrix(1,nlstate,1,nlstate);
             if (h==(int) (calagedate+YEARM*cpt)) {    
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);    hstepm=1*YEARM; /* Every year of age */
             }    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
             for(j=1; j<=nlstate+ndeath;j++) {    agelim = AGESUP;
               kk1=0.;kk2=0;    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
               for(i=1; i<=nlstate;i++) {                    nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
                 if (mobilav==1)      if (stepm >= YEARM) hstepm=1;
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
                 else {      gradg=matrix(1,npar,1,nlstate);
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];      gp=vector(1,nlstate);
                 }      gm=vector(1,nlstate);
                  
               }      for(theta=1; theta <=npar; theta++){
               if (h==(int)(calagedate+12*cpt)){        for(i=1; i<=npar; i++){ /* Computes gradient */
                 fprintf(ficresf," %.3f", kk1);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
                                }
               }        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
             }        for(i=1;i<=nlstate;i++)
           }          gp[i] = prlim[i][i];
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      
         }        for(i=1; i<=npar; i++) /* Computes gradient */
       }          xp[i] = x[i] - (i==theta ?delti[theta]:0);
     }        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   }        for(i=1;i<=nlstate;i++)
                  gm[i] = prlim[i][i];
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
         for(i=1;i<=nlstate;i++)
   fclose(ficresf);          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
 }      } /* End theta */
 /************** Forecasting ******************/  
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){      trgradg =matrix(1,nlstate,1,npar);
    
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;      for(j=1; j<=nlstate;j++)
   int *popage;        for(theta=1; theta <=npar; theta++)
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;          trgradg[j][theta]=gradg[theta][j];
   double *popeffectif,*popcount;  
   double ***p3mat,***tabpop,***tabpopprev;      for(i=1;i<=nlstate;i++)
   char filerespop[FILENAMELENGTH];        varpl[i][(int)age] =0.;
       matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      for(i=1;i<=nlstate;i++)
   agelim=AGESUP;        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;  
        fprintf(ficresvpl,"%.0f ",age );
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);      for(i=1; i<=nlstate;i++)
          fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
        fprintf(ficresvpl,"\n");
   strcpy(filerespop,"pop");      free_vector(gp,1,nlstate);
   strcat(filerespop,fileres);      free_vector(gm,1,nlstate);
   if((ficrespop=fopen(filerespop,"w"))==NULL) {      free_matrix(gradg,1,npar,1,nlstate);
     printf("Problem with forecast resultfile: %s\n", filerespop);      free_matrix(trgradg,1,nlstate,1,npar);
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);    } /* End age */
   }  
   printf("Computing forecasting: result on file '%s' \n", filerespop);    free_vector(xp,1,npar);
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);    free_matrix(doldm,1,nlstate,1,npar);
     free_matrix(dnewm,1,nlstate,1,nlstate);
   if (cptcoveff==0) ncodemax[cptcoveff]=1;  
   }
   if (mobilav==1) {  
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  /************ Variance of one-step probabilities  ******************/
     movingaverage(agedeb, fage, ageminpar, mobaverage);  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
   }  {
     int i, j=0,  i1, k1, l1, t, tj;
   stepsize=(int) (stepm+YEARM-1)/YEARM;    int k2, l2, j1,  z1;
   if (stepm<=12) stepsize=1;    int k=0,l, cptcode;
      int first=1, first1;
   agelim=AGESUP;    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
      double **dnewm,**doldm;
   hstepm=1;    double *xp;
   hstepm=hstepm/stepm;    double *gp, *gm;
      double **gradg, **trgradg;
   if (popforecast==1) {    double **mu;
     if((ficpop=fopen(popfile,"r"))==NULL) {    double age,agelim, cov[NCOVMAX];
       printf("Problem with population file : %s\n",popfile);exit(0);    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
       fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);    int theta;
     }    char fileresprob[FILENAMELENGTH];
     popage=ivector(0,AGESUP);    char fileresprobcov[FILENAMELENGTH];
     popeffectif=vector(0,AGESUP);    char fileresprobcor[FILENAMELENGTH];
     popcount=vector(0,AGESUP);  
        double ***varpij;
     i=1;    
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;    strcpy(fileresprob,"prob"); 
        strcat(fileresprob,fileres);
     imx=i;    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];      printf("Problem with resultfile: %s\n", fileresprob);
   }      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     }
   for(cptcov=1;cptcov<=i2;cptcov++){    strcpy(fileresprobcov,"probcov"); 
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    strcat(fileresprobcov,fileres);
       k=k+1;    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
       fprintf(ficrespop,"\n#******");      printf("Problem with resultfile: %s\n", fileresprobcov);
       for(j=1;j<=cptcoveff;j++) {      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    }
       }    strcpy(fileresprobcor,"probcor"); 
       fprintf(ficrespop,"******\n");    strcat(fileresprobcor,fileres);
       fprintf(ficrespop,"# Age");    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);      printf("Problem with resultfile: %s\n", fileresprobcor);
       if (popforecast==1)  fprintf(ficrespop," [Population]");      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
          }
       for (cpt=0; cpt<=0;cpt++) {    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);      fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
            printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
           nhstepm = nhstepm/hstepm;    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
              fprintf(ficresprob, "#Local time at start: %s", strstart);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
           oldm=oldms;savm=savms;    fprintf(ficresprob,"# Age");
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      fprintf(ficresprobcov, "#Local time at start: %s", strstart);
            fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
           for (h=0; h<=nhstepm; h++){    fprintf(ficresprobcov,"# Age");
             if (h==(int) (calagedate+YEARM*cpt)) {    fprintf(ficresprobcor, "#Local time at start: %s", strstart);
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
             }    fprintf(ficresprobcov,"# Age");
             for(j=1; j<=nlstate+ndeath;j++) {  
               kk1=0.;kk2=0;  
               for(i=1; i<=nlstate;i++) {                  for(i=1; i<=nlstate;i++)
                 if (mobilav==1)      for(j=1; j<=(nlstate+ndeath);j++){
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
                 else {        fprintf(ficresprobcov," p%1d-%1d ",i,j);
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];        fprintf(ficresprobcor," p%1d-%1d ",i,j);
                 }      }  
               }   /* fprintf(ficresprob,"\n");
               if (h==(int)(calagedate+12*cpt)){    fprintf(ficresprobcov,"\n");
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;    fprintf(ficresprobcor,"\n");
                   /*fprintf(ficrespop," %.3f", kk1);   */
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/   xp=vector(1,npar);
               }    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
             }    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
             for(i=1; i<=nlstate;i++){    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
               kk1=0.;    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
                 for(j=1; j<=nlstate;j++){    first=1;
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];    fprintf(ficgp,"\n# Routine varprob");
                 }    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];    fprintf(fichtm,"\n");
             }  
     fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)    fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);    file %s<br>\n",optionfilehtmcov);
           }    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  and drawn. It helps understanding how is the covariance between two incidences.\
         }   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
       }    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
    It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
   /******/  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
   standard deviations wide on each axis. <br>\
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);     and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);  
           nhstepm = nhstepm/hstepm;    cov[1]=1;
              tj=cptcoveff;
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
           oldm=oldms;savm=savms;    j1=0;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      for(t=1; t<=tj;t++){
           for (h=0; h<=nhstepm; h++){      for(i1=1; i1<=ncodemax[t];i1++){ 
             if (h==(int) (calagedate+YEARM*cpt)) {        j1++;
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);        if  (cptcovn>0) {
             }          fprintf(ficresprob, "\n#********** Variable "); 
             for(j=1; j<=nlstate+ndeath;j++) {          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
               kk1=0.;kk2=0;          fprintf(ficresprob, "**********\n#\n");
               for(i=1; i<=nlstate;i++) {                        fprintf(ficresprobcov, "\n#********** Variable "); 
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];              for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
               }          fprintf(ficresprobcov, "**********\n#\n");
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);          
             }          fprintf(ficgp, "\n#********** Variable "); 
           }          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          fprintf(ficgp, "**********\n#\n");
         }          
       }          
    }          fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
   }          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
            fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          
           fprintf(ficresprobcor, "\n#********** Variable ");    
   if (popforecast==1) {          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     free_ivector(popage,0,AGESUP);          fprintf(ficresprobcor, "**********\n#");    
     free_vector(popeffectif,0,AGESUP);        }
     free_vector(popcount,0,AGESUP);        
   }        for (age=bage; age<=fage; age ++){ 
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          cov[2]=age;
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          for (k=1; k<=cptcovn;k++) {
   fclose(ficrespop);            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
 }          }
           for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
 /***********************************************/          for (k=1; k<=cptcovprod;k++)
 /**************** Main Program *****************/            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
 /***********************************************/          
           gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
 int main(int argc, char *argv[])          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
 {          gp=vector(1,(nlstate)*(nlstate+ndeath));
           gm=vector(1,(nlstate)*(nlstate+ndeath));
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;      
   double agedeb, agefin,hf;          for(theta=1; theta <=npar; theta++){
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;            for(i=1; i<=npar; i++)
               xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
   double fret;            
   double **xi,tmp,delta;            pmij(pmmij,cov,ncovmodel,xp,nlstate);
             
   double dum; /* Dummy variable */            k=0;
   double ***p3mat;            for(i=1; i<= (nlstate); i++){
   int *indx;              for(j=1; j<=(nlstate+ndeath);j++){
   char line[MAXLINE], linepar[MAXLINE];                k=k+1;
   char path[80],pathc[80],pathcd[80],pathtot[80],model[80];                gp[k]=pmmij[i][j];
   int firstobs=1, lastobs=10;              }
   int sdeb, sfin; /* Status at beginning and end */            }
   int c,  h , cpt,l;            
   int ju,jl, mi;            for(i=1; i<=npar; i++)
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;      
   int mobilav=0,popforecast=0;            pmij(pmmij,cov,ncovmodel,xp,nlstate);
   int hstepm, nhstepm;            k=0;
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;            for(i=1; i<=(nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
   double bage, fage, age, agelim, agebase;                k=k+1;
   double ftolpl=FTOL;                gm[k]=pmmij[i][j];
   double **prlim;              }
   double *severity;            }
   double ***param; /* Matrix of parameters */       
   double  *p;            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
   double **matcov; /* Matrix of covariance */              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
   double ***delti3; /* Scale */          }
   double *delti; /* Scale */  
   double ***eij, ***vareij;          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
   double **varpl; /* Variances of prevalence limits by age */            for(theta=1; theta <=npar; theta++)
   double *epj, vepp;              trgradg[j][theta]=gradg[theta][j];
   double kk1, kk2;          
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
            matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
           free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
   char *alph[]={"a","a","b","c","d","e"}, str[4];          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
           free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   char z[1]="c", occ;  
 #include <sys/time.h>          pmij(pmmij,cov,ncovmodel,x,nlstate);
 #include <time.h>          
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];          k=0;
            for(i=1; i<=(nlstate); i++){
   /* long total_usecs;            for(j=1; j<=(nlstate+ndeath);j++){
   struct timeval start_time, end_time;              k=k+1;
                mu[k][(int) age]=pmmij[i][j];
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */            }
   getcwd(pathcd, size);          }
           for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
   printf("\n%s",version);            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
   if(argc <=1){              varpij[i][j][(int)age] = doldm[i][j];
     printf("\nEnter the parameter file name: ");  
     scanf("%s",pathtot);          /*printf("\n%d ",(int)age);
   }            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
   else{            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
     strcpy(pathtot,argv[1]);            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
   }            }*/
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/  
   /*cygwin_split_path(pathtot,path,optionfile);          fprintf(ficresprob,"\n%d ",(int)age);
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/          fprintf(ficresprobcov,"\n%d ",(int)age);
   /* cutv(path,optionfile,pathtot,'\\');*/          fprintf(ficresprobcor,"\n%d ",(int)age);
   
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
   chdir(path);          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
   replace(pathc,path);            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
             fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
 /*-------- arguments in the command line --------*/          }
           i=0;
   /* Log file */          for (k=1; k<=(nlstate);k++){
   strcat(filelog, optionfilefiname);            for (l=1; l<=(nlstate+ndeath);l++){ 
   strcat(filelog,".log");    /* */              i=i++;
   if((ficlog=fopen(filelog,"w"))==NULL)    {              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
     printf("Problem with logfile %s\n",filelog);              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
     goto end;              for (j=1; j<=i;j++){
   }                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
   fprintf(ficlog,"Log filename:%s\n",filelog);                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
   fprintf(ficlog,"\n%s",version);              }
   fprintf(ficlog,"\nEnter the parameter file name: ");            }
   fprintf(ficlog,"pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);          }/* end of loop for state */
   fflush(ficlog);        } /* end of loop for age */
   
   /* */        /* Confidence intervalle of pij  */
   strcpy(fileres,"r");        /*
   strcat(fileres, optionfilefiname);          fprintf(ficgp,"\nset noparametric;unset label");
   strcat(fileres,".txt");    /* Other files have txt extension */          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
           fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
   /*---------arguments file --------*/          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
   if((ficpar=fopen(optionfile,"r"))==NULL)    {          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
     printf("Problem with optionfile %s\n",optionfile);          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
     fprintf(ficlog,"Problem with optionfile %s\n",optionfile);        */
     goto end;  
   }        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
         first1=1;
   strcpy(filereso,"o");        for (k2=1; k2<=(nlstate);k2++){
   strcat(filereso,fileres);          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
   if((ficparo=fopen(filereso,"w"))==NULL) {            if(l2==k2) continue;
     printf("Problem with Output resultfile: %s\n", filereso);            j=(k2-1)*(nlstate+ndeath)+l2;
     fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);            for (k1=1; k1<=(nlstate);k1++){
     goto end;              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
   }                if(l1==k1) continue;
                 i=(k1-1)*(nlstate+ndeath)+l1;
   /* Reads comments: lines beginning with '#' */                if(i<=j) continue;
   while((c=getc(ficpar))=='#' && c!= EOF){                for (age=bage; age<=fage; age ++){ 
     ungetc(c,ficpar);                  if ((int)age %5==0){
     fgets(line, MAXLINE, ficpar);                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
     puts(line);                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
     fputs(line,ficparo);                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
   }                    mu1=mu[i][(int) age]/stepm*YEARM ;
   ungetc(c,ficpar);                    mu2=mu[j][(int) age]/stepm*YEARM;
                     c12=cv12/sqrt(v1*v2);
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);                    /* Computing eigen value of matrix of covariance */
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
 while((c=getc(ficpar))=='#' && c!= EOF){                    /* Eigen vectors */
     ungetc(c,ficpar);                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
     fgets(line, MAXLINE, ficpar);                    /*v21=sqrt(1.-v11*v11); *//* error */
     puts(line);                    v21=(lc1-v1)/cv12*v11;
     fputs(line,ficparo);                    v12=-v21;
   }                    v22=v11;
   ungetc(c,ficpar);                    tnalp=v21/v11;
                      if(first1==1){
                          first1=0;
   covar=matrix(0,NCOVMAX,1,n);                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
   cptcovn=0;                    }
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     /*printf(fignu*/
   ncovmodel=2+cptcovn;                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                      if(first==1){
   /* Read guess parameters */                      first=0;
   /* Reads comments: lines beginning with '#' */                      fprintf(ficgp,"\nset parametric;unset label");
   while((c=getc(ficpar))=='#' && c!= EOF){                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
     ungetc(c,ficpar);                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
     fgets(line, MAXLINE, ficpar);                      fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
     puts(line);   :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
     fputs(line,ficparo);  %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
   }                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
   ungetc(c,ficpar);                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                        fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);                      fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
     for(i=1; i <=nlstate; i++)                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
     for(j=1; j <=nlstate+ndeath-1; j++){                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
       fscanf(ficpar,"%1d%1d",&i1,&j1);                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
       fprintf(ficparo,"%1d%1d",i1,j1);                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
       if(mle==1)                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
         printf("%1d%1d",i,j);                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
       fprintf(ficlog,"%1d%1d",i,j);                    }else{
       for(k=1; k<=ncovmodel;k++){                      first=0;
         fscanf(ficpar," %lf",&param[i][j][k]);                      fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
         if(mle==1){                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
           printf(" %lf",param[i][j][k]);                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
           fprintf(ficlog," %lf",param[i][j][k]);                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
         }                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
         else                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
           fprintf(ficlog," %lf",param[i][j][k]);                    }/* if first */
         fprintf(ficparo," %lf",param[i][j][k]);                  } /* age mod 5 */
       }                } /* end loop age */
       fscanf(ficpar,"\n");                fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
       if(mle==1)                first=1;
         printf("\n");              } /*l12 */
       fprintf(ficlog,"\n");            } /* k12 */
       fprintf(ficparo,"\n");          } /*l1 */
     }        }/* k1 */
        } /* loop covariates */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;    }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
   p=param[1][1];    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
      free_vector(xp,1,npar);
   /* Reads comments: lines beginning with '#' */    fclose(ficresprob);
   while((c=getc(ficpar))=='#' && c!= EOF){    fclose(ficresprobcov);
     ungetc(c,ficpar);    fclose(ficresprobcor);
     fgets(line, MAXLINE, ficpar);    fflush(ficgp);
     puts(line);    fflush(fichtmcov);
     fputs(line,ficparo);  }
   }  
   ungetc(c,ficpar);  
   /******************* Printing html file ***********/
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */                    int lastpass, int stepm, int weightopt, char model[],\
   for(i=1; i <=nlstate; i++){                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
     for(j=1; j <=nlstate+ndeath-1; j++){                    int popforecast, int estepm ,\
       fscanf(ficpar,"%1d%1d",&i1,&j1);                    double jprev1, double mprev1,double anprev1, \
       printf("%1d%1d",i,j);                    double jprev2, double mprev2,double anprev2){
       fprintf(ficparo,"%1d%1d",i1,j1);    int jj1, k1, i1, cpt;
       for(k=1; k<=ncovmodel;k++){  
         fscanf(ficpar,"%le",&delti3[i][j][k]);     fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
         printf(" %le",delti3[i][j][k]);     <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
         fprintf(ficparo," %le",delti3[i][j][k]);  </ul>");
       }     fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
       fscanf(ficpar,"\n");   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
       printf("\n");             jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
       fprintf(ficparo,"\n");     fprintf(fichtm,"\
     }   - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
   }             stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
   delti=delti3[1][1];     fprintf(fichtm,"\
     - Stable prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
   /* Reads comments: lines beginning with '#' */             subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
   while((c=getc(ficpar))=='#' && c!= EOF){     fprintf(fichtm,"\
     ungetc(c,ficpar);   - Life expectancies by age and initial health status (estepm=%2d months): \
     fgets(line, MAXLINE, ficpar);     <a href=\"%s\">%s</a> <br>\n</li>",
     puts(line);             estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
     fputs(line,ficparo);  
   }  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   ungetc(c,ficpar);  
     m=cptcoveff;
   matcov=matrix(1,npar,1,npar);   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   for(i=1; i <=npar; i++){  
     fscanf(ficpar,"%s",&str);   jj1=0;
     if(mle==1)   for(k1=1; k1<=m;k1++){
       printf("%s",str);     for(i1=1; i1<=ncodemax[k1];i1++){
     fprintf(ficlog,"%s",str);       jj1++;
     fprintf(ficparo,"%s",str);       if (cptcovn > 0) {
     for(j=1; j <=i; j++){         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
       fscanf(ficpar," %le",&matcov[i][j]);         for (cpt=1; cpt<=cptcoveff;cpt++) 
       if(mle==1){           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
         printf(" %.5le",matcov[i][j]);         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
         fprintf(ficlog," %.5le",matcov[i][j]);       }
       }       /* Pij */
       else       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: %s%d1.png<br> \
         fprintf(ficlog," %.5le",matcov[i][j]);  <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
       fprintf(ficparo," %.5le",matcov[i][j]);       /* Quasi-incidences */
     }       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
     fscanf(ficpar,"\n");   before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: %s%d2.png<br> \
     if(mle==1)  <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
       printf("\n");         /* Stable prevalence in each health state */
     fprintf(ficlog,"\n");         for(cpt=1; cpt<nlstate;cpt++){
     fprintf(ficparo,"\n");           fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \
   }  <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
   for(i=1; i <=npar; i++)         }
     for(j=i+1;j<=npar;j++)       for(cpt=1; cpt<=nlstate;cpt++) {
       matcov[i][j]=matcov[j][i];          fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): %s%d%d.png <br> \
      <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
   if(mle==1)       }
     printf("\n");     } /* end i1 */
   fprintf(ficlog,"\n");   }/* End k1 */
    fprintf(fichtm,"</ul>");
   
     /*-------- Rewriting paramater file ----------*/  
      strcpy(rfileres,"r");    /* "Rparameterfile */   fprintf(fichtm,"\
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/  \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
      strcat(rfileres,".");    /* */   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
      strcat(rfileres,optionfilext);    /* Other files have txt extension */  
     if((ficres =fopen(rfileres,"w"))==NULL) {   fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
       printf("Problem writing new parameter file: %s\n", fileres);goto end;           subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;   fprintf(fichtm,"\
     }   - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
     fprintf(ficres,"#%s\n",version);           subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
      
     /*-------- data file ----------*/   fprintf(fichtm,"\
     if((fic=fopen(datafile,"r"))==NULL)    {   - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
       printf("Problem with datafile: %s\n", datafile);goto end;           subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;   fprintf(fichtm,"\
     }   - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
            estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
     n= lastobs;   fprintf(fichtm,"\
     severity = vector(1,maxwav);   - Health expectancies with their variances (no covariance): <a href=\"%s\">%s</a> <br>\n",
     outcome=imatrix(1,maxwav+1,1,n);           subdirf2(fileres,"t"),subdirf2(fileres,"t"));
     num=ivector(1,n);   fprintf(fichtm,"\
     moisnais=vector(1,n);   - Standard deviation of stable prevalences: <a href=\"%s\">%s</a> <br>\n",\
     annais=vector(1,n);           subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
     moisdc=vector(1,n);  
     andc=vector(1,n);  /*  if(popforecast==1) fprintf(fichtm,"\n */
     agedc=vector(1,n);  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
     cod=ivector(1,n);  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
     weight=vector(1,n);  /*      <br>",fileres,fileres,fileres,fileres); */
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */  /*  else  */
     mint=matrix(1,maxwav,1,n);  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
     anint=matrix(1,maxwav,1,n);   fflush(fichtm);
     s=imatrix(1,maxwav+1,1,n);   fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
     adl=imatrix(1,maxwav+1,1,n);      
     tab=ivector(1,NCOVMAX);   m=cptcoveff;
     ncodemax=ivector(1,8);   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
     i=1;   jj1=0;
     while (fgets(line, MAXLINE, fic) != NULL)    {   for(k1=1; k1<=m;k1++){
       if ((i >= firstobs) && (i <=lastobs)) {     for(i1=1; i1<=ncodemax[k1];i1++){
               jj1++;
         for (j=maxwav;j>=1;j--){       if (cptcovn > 0) {
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
           strcpy(line,stra);         for (cpt=1; cpt<=cptcoveff;cpt++) 
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
         }       }
               for(cpt=1; cpt<=nlstate;cpt++) {
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);         fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);  prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);       }
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);       fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2): %s%d.png<br>\
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);  <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
         for (j=ncovcol;j>=1;j--){     } /* end i1 */
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);   }/* End k1 */
         }   fprintf(fichtm,"</ul>");
         num[i]=atol(stra);   fflush(fichtm);
          }
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){  
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/  /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
         i=i+1;  
       }    char dirfileres[132],optfileres[132];
     }    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     /* printf("ii=%d", ij);    int ng;
        scanf("%d",i);*/  /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   imx=i-1; /* Number of individuals */  /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /* for (i=1; i<=imx; i++){  /*   } */
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;  
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;    /*#ifdef windows */
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;    fprintf(ficgp,"cd \"%s\" \n",pathc);
     }*/      /*#endif */
    /*  for (i=1; i<=imx; i++){    m=pow(2,cptcoveff);
      if (s[4][i]==9)  s[4][i]=-1;  
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/    strcpy(dirfileres,optionfilefiname);
      strcpy(optfileres,"vpl");
     /* 1eme*/
   /* Calculation of the number of parameter from char model*/    for (cpt=1; cpt<= nlstate ; cpt ++) {
   Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */     for (k1=1; k1<= m ; k1 ++) {
   Tprod=ivector(1,15);       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
   Tvaraff=ivector(1,15);       fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
   Tvard=imatrix(1,15,1,2);       fprintf(ficgp,"set xlabel \"Age\" \n\
   Tage=ivector(1,15);        set ylabel \"Probability\" \n\
      set ter png small\n\
   if (strlen(model) >1){  set size 0.65,0.65\n\
     j=0, j1=0, k1=1, k2=1;  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
     j=nbocc(model,'+');  
     j1=nbocc(model,'*');       for (i=1; i<= nlstate ; i ++) {
     cptcovn=j+1;         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
     cptcovprod=j1;         else fprintf(ficgp," \%%*lf (\%%*lf)");
           }
     strcpy(modelsav,model);       fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){       for (i=1; i<= nlstate ; i ++) {
       printf("Error. Non available option model=%s ",model);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
       fprintf(ficlog,"Error. Non available option model=%s ",model);         else fprintf(ficgp," \%%*lf (\%%*lf)");
       goto end;       } 
     }       fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
           for (i=1; i<= nlstate ; i ++) {
     for(i=(j+1); i>=1;i--){         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
       cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */         else fprintf(ficgp," \%%*lf (\%%*lf)");
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyze it */       }  
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/       fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
       /*scanf("%d",i);*/     }
       if (strchr(strb,'*')) {  /* Model includes a product */    }
         cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/    /*2 eme*/
         if (strcmp(strc,"age")==0) { /* Vn*age */    
           cptcovprod--;    for (k1=1; k1<= m ; k1 ++) { 
           cutv(strb,stre,strd,'V');      fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
           Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/      fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
           cptcovage++;      
             Tage[cptcovage]=i;      for (i=1; i<= nlstate+1 ; i ++) {
             /*printf("stre=%s ", stre);*/        k=2*i;
         }        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         else if (strcmp(strd,"age")==0) { /* or age*Vn */        for (j=1; j<= nlstate+1 ; j ++) {
           cptcovprod--;          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           cutv(strb,stre,strc,'V');          else fprintf(ficgp," \%%*lf (\%%*lf)");
           Tvar[i]=atoi(stre);        }   
           cptcovage++;        if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
           Tage[cptcovage]=i;        else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         }        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         else {  /* Age is not in the model */        for (j=1; j<= nlstate+1 ; j ++) {
           cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           Tvar[i]=ncovcol+k1;          else fprintf(ficgp," \%%*lf (\%%*lf)");
           cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */        }   
           Tprod[k1]=i;        fprintf(ficgp,"\" t\"\" w l 0,");
           Tvard[k1][1]=atoi(strc); /* m*/        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
           Tvard[k1][2]=atoi(stre); /* n */        for (j=1; j<= nlstate+1 ; j ++) {
           Tvar[cptcovn+k2]=Tvard[k1][1];          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           Tvar[cptcovn+k2+1]=Tvard[k1][2];          else fprintf(ficgp," \%%*lf (\%%*lf)");
           for (k=1; k<=lastobs;k++)        }   
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];        if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
           k1++;        else fprintf(ficgp,"\" t\"\" w l 0,");
           k2=k2+2;      }
         }    }
       }    
       else { /* no more sum */    /*3eme*/
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/    
        /*  scanf("%d",i);*/    for (k1=1; k1<= m ; k1 ++) { 
       cutv(strd,strc,strb,'V');      for (cpt=1; cpt<= nlstate ; cpt ++) {
       Tvar[i]=atoi(strc);        k=2+nlstate*(2*cpt-2);
       }        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
       strcpy(modelsav,stra);          fprintf(ficgp,"set ter png small\n\
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);  set size 0.65,0.65\n\
         scanf("%d",i);*/  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
     } /* end of loop + */        /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
   } /* end model */          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
            fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);          fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
   printf("cptcovprod=%d ", cptcovprod);          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
   fprintf(ficlog,"cptcovprod=%d ", cptcovprod);          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
   scanf("%d ",i);*/          
     fclose(fic);        */
         for (i=1; i< nlstate ; i ++) {
     /*  if(mle==1){*/          fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);
     if (weightopt != 1) { /* Maximisation without weights*/          
       for(i=1;i<=n;i++) weight[i]=1.0;        } 
     }      }
     /*-calculation of age at interview from date of interview and age at death -*/    }
     agev=matrix(1,maxwav,1,imx);    
     /* CV preval stable (period) */
     for (i=1; i<=imx; i++) {    for (k1=1; k1<= m ; k1 ++) { 
       for(m=2; (m<= maxwav); m++) {      for (cpt=1; cpt<=nlstate ; cpt ++) {
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){        k=3;
          anint[m][i]=9999;        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
          s[m][i]=-1;        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
        }  set ter png small\nset size 0.65,0.65\n\
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;  unset log y\n\
       }  plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
     }        
         for (i=1; i< nlstate ; i ++)
     for (i=1; i<=imx; i++)  {          fprintf(ficgp,"+$%d",k+i+1);
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);        fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
       for(m=1; (m<= maxwav); m++){        
         if(s[m][i] >0){        l=3+(nlstate+ndeath)*cpt;
           if (s[m][i] >= nlstate+1) {        fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
             if(agedc[i]>0)        for (i=1; i< nlstate ; i ++) {
               if(moisdc[i]!=99 && andc[i]!=9999)          l=3+(nlstate+ndeath)*cpt;
                 agev[m][i]=agedc[i];          fprintf(ficgp,"+$%d",l+i+1);
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/        }
            else {        fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
               if (andc[i]!=9999){      } 
               printf("Warning negative age at death: %d line:%d\n",num[i],i);    }  
               fprintf(ficlog,"Warning negative age at death: %d line:%d\n",num[i],i);    
               agev[m][i]=-1;    /* proba elementaires */
               }    for(i=1,jk=1; i <=nlstate; i++){
             }      for(k=1; k <=(nlstate+ndeath); k++){
           }        if (k != i) {
           else if(s[m][i] !=9){ /* Should no more exist */          for(j=1; j <=ncovmodel; j++){
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);            fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             if(mint[m][i]==99 || anint[m][i]==9999)            jk++; 
               agev[m][i]=1;            fprintf(ficgp,"\n");
             else if(agev[m][i] <agemin){          }
               agemin=agev[m][i];        }
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/      }
             }     }
             else if(agev[m][i] >agemax){  
               agemax=agev[m][i];     for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/       for(jk=1; jk <=m; jk++) {
             }         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
             /*agev[m][i]=anint[m][i]-annais[i];*/         if (ng==2)
             /*   agev[m][i] = age[i]+2*m;*/           fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
           }         else
           else { /* =9 */           fprintf(ficgp,"\nset title \"Probability\"\n");
             agev[m][i]=1;         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
             s[m][i]=-1;         i=1;
           }         for(k2=1; k2<=nlstate; k2++) {
         }           k3=i;
         else /*= 0 Unknown */           for(k=1; k<=(nlstate+ndeath); k++) {
           agev[m][i]=1;             if (k != k2){
       }               if(ng==2)
                     fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
     }               else
     for (i=1; i<=imx; i++)  {                 fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
       for(m=1; (m<= maxwav); m++){               ij=1;
         if (s[m][i] > (nlstate+ndeath)) {               for(j=3; j <=ncovmodel; j++) {
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);                   if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);                     fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
           goto end;                   ij++;
         }                 }
       }                 else
     }                   fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);               fprintf(ficgp,")/(1");
  fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);               
                for(k1=1; k1 <=nlstate; k1++){   
     free_vector(severity,1,maxwav);                 fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
     free_imatrix(outcome,1,maxwav+1,1,n);                 ij=1;
     free_vector(moisnais,1,n);                 for(j=3; j <=ncovmodel; j++){
     free_vector(annais,1,n);                   if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
     /* free_matrix(mint,1,maxwav,1,n);                     fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
        free_matrix(anint,1,maxwav,1,n);*/                     ij++;
     free_vector(moisdc,1,n);                   }
     free_vector(andc,1,n);                   else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                     }
     wav=ivector(1,imx);                 fprintf(ficgp,")");
     dh=imatrix(1,lastpass-firstpass+1,1,imx);               }
     mw=imatrix(1,lastpass-firstpass+1,1,imx);               fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                   if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
     /* Concatenates waves */               i=i+ncovmodel;
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);             }
            } /* end k */
          } /* end k2 */
       Tcode=ivector(1,100);       } /* end jk */
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);     } /* end ng */
       ncodemax[1]=1;     fflush(ficgp); 
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);  }  /* end gnuplot */
        
    codtab=imatrix(1,100,1,10);  
    h=0;  /*************** Moving average **************/
    m=pow(2,cptcoveff);  int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
    
    for(k=1;k<=cptcoveff; k++){    int i, cpt, cptcod;
      for(i=1; i <=(m/pow(2,k));i++){    int modcovmax =1;
        for(j=1; j <= ncodemax[k]; j++){    int mobilavrange, mob;
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){    double age;
            h++;  
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;    modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/                             a covariate has 2 modalities */
          }    if (cptcovn<1) modcovmax=1; /* At least 1 pass */
        }  
      }    if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
    }      if(mobilav==1) mobilavrange=5; /* default */
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);      else mobilavrange=mobilav;
       codtab[1][2]=1;codtab[2][2]=2; */      for (age=bage; age<=fage; age++)
    /* for(i=1; i <=m ;i++){        for (i=1; i<=nlstate;i++)
       for(k=1; k <=cptcovn; k++){          for (cptcod=1;cptcod<=modcovmax;cptcod++)
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);            mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       }      /* We keep the original values on the extreme ages bage, fage and for 
       printf("\n");         fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
       }         we use a 5 terms etc. until the borders are no more concerned. 
       scanf("%d",i);*/      */ 
          for (mob=3;mob <=mobilavrange;mob=mob+2){
    /* Calculates basic frequencies. Computes observed prevalence at single age        for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
        and prints on file fileres'p'. */          for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
                  mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                    for (cpt=1;cpt<=(mob-1)/2;cpt++){
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                  mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                  mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                }
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */              mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */            }
                }
     /* For Powell, parameters are in a vector p[] starting at p[1]        }/* end age */
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */      }/* end mob */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */    }else return -1;
     return 0;
     if(mle==1){  }/* End movingaverage */
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);  
     }  
      /************** Forecasting ******************/
     /*--------- results files --------------*/  prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);    /* proj1, year, month, day of starting projection 
         agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
    jk=1;       anproj2 year of en of projection (same day and month as proj1).
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    */
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
    fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    int *popage;
    for(i=1,jk=1; i <=nlstate; i++){    double agec; /* generic age */
      for(k=1; k <=(nlstate+ndeath); k++){    double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
        if (k != i)    double *popeffectif,*popcount;
          {    double ***p3mat;
            printf("%d%d ",i,k);    double ***mobaverage;
            fprintf(ficlog,"%d%d ",i,k);    char fileresf[FILENAMELENGTH];
            fprintf(ficres,"%1d%1d ",i,k);  
            for(j=1; j <=ncovmodel; j++){    agelim=AGESUP;
              printf("%f ",p[jk]);    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
              fprintf(ficlog,"%f ",p[jk]);   
              fprintf(ficres,"%f ",p[jk]);    strcpy(fileresf,"f"); 
              jk++;    strcat(fileresf,fileres);
            }    if((ficresf=fopen(fileresf,"w"))==NULL) {
            printf("\n");      printf("Problem with forecast resultfile: %s\n", fileresf);
            fprintf(ficlog,"\n");      fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
            fprintf(ficres,"\n");    }
          }    printf("Computing forecasting: result on file '%s' \n", fileresf);
      }    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
    }  
    if(mle==1){    if (cptcoveff==0) ncodemax[cptcoveff]=1;
      /* Computing hessian and covariance matrix */  
      ftolhess=ftol; /* Usually correct */    if (mobilav!=0) {
      hesscov(matcov, p, npar, delti, ftolhess, func);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
    }      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
    fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
    printf("# Scales (for hessian or gradient estimation)\n");        printf(" Error in movingaverage mobilav=%d\n",mobilav);
    fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");      }
    for(i=1,jk=1; i <=nlstate; i++){    }
      for(j=1; j <=nlstate+ndeath; j++){  
        if (j!=i) {    stepsize=(int) (stepm+YEARM-1)/YEARM;
          fprintf(ficres,"%1d%1d",i,j);    if (stepm<=12) stepsize=1;
          printf("%1d%1d",i,j);    if(estepm < stepm){
          fprintf(ficlog,"%1d%1d",i,j);      printf ("Problem %d lower than %d\n",estepm, stepm);
          for(k=1; k<=ncovmodel;k++){    }
            printf(" %.5e",delti[jk]);    else  hstepm=estepm;   
            fprintf(ficlog," %.5e",delti[jk]);  
            fprintf(ficres," %.5e",delti[jk]);    hstepm=hstepm/stepm; 
            jk++;    yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
          }                                 fractional in yp1 */
          printf("\n");    anprojmean=yp;
          fprintf(ficlog,"\n");    yp2=modf((yp1*12),&yp);
          fprintf(ficres,"\n");    mprojmean=yp;
        }    yp1=modf((yp2*30.5),&yp);
      }    jprojmean=yp;
    }    if(jprojmean==0) jprojmean=1;
        if(mprojmean==0) jprojmean=1;
    k=1;  
    fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");    i1=cptcoveff;
    if(mle==1)    if (cptcovn < 1){i1=1;}
      printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");    
    fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");    fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
    for(i=1;i<=npar;i++){    
      /*  if (k>nlstate) k=1;    fprintf(ficresf,"#****** Routine prevforecast **\n");
          i1=(i-1)/(ncovmodel*nlstate)+1;  
          fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);  /*            if (h==(int)(YEARM*yearp)){ */
          printf("%s%d%d",alph[k],i1,tab[i]);*/    for(cptcov=1, k=0;cptcov<=i1;cptcov++){
      fprintf(ficres,"%3d",i);      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
      if(mle==1)        k=k+1;
        printf("%3d",i);        fprintf(ficresf,"\n#******");
      fprintf(ficlog,"%3d",i);        for(j=1;j<=cptcoveff;j++) {
      for(j=1; j<=i;j++){          fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
        fprintf(ficres," %.5e",matcov[i][j]);        }
        if(mle==1)        fprintf(ficresf,"******\n");
          printf(" %.5e",matcov[i][j]);        fprintf(ficresf,"# Covariate valuofcovar yearproj age");
        fprintf(ficlog," %.5e",matcov[i][j]);        for(j=1; j<=nlstate+ndeath;j++){ 
      }          for(i=1; i<=nlstate;i++)              
      fprintf(ficres,"\n");            fprintf(ficresf," p%d%d",i,j);
      if(mle==1)          fprintf(ficresf," p.%d",j);
        printf("\n");        }
      fprintf(ficlog,"\n");        for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
      k++;          fprintf(ficresf,"\n");
    }          fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
      
    while((c=getc(ficpar))=='#' && c!= EOF){          for (agec=fage; agec>=(ageminpar-1); agec--){ 
      ungetc(c,ficpar);            nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
      fgets(line, MAXLINE, ficpar);            nhstepm = nhstepm/hstepm; 
      puts(line);            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
      fputs(line,ficparo);            oldm=oldms;savm=savms;
    }            hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
    ungetc(c,ficpar);          
    estepm=0;            for (h=0; h<=nhstepm; h++){
    fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);              if (h*hstepm/YEARM*stepm ==yearp) {
    if (estepm==0 || estepm < stepm) estepm=stepm;                fprintf(ficresf,"\n");
    if (fage <= 2) {                for(j=1;j<=cptcoveff;j++) 
      bage = ageminpar;                  fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
      fage = agemaxpar;                fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
    }              } 
                  for(j=1; j<=nlstate+ndeath;j++) {
    fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");                ppij=0.;
    fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);                for(i=1; i<=nlstate;i++) {
    fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);                  if (mobilav==1) 
                        ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
    while((c=getc(ficpar))=='#' && c!= EOF){                  else {
      ungetc(c,ficpar);                    ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
      fgets(line, MAXLINE, ficpar);                  }
      puts(line);                  if (h*hstepm/YEARM*stepm== yearp) {
      fputs(line,ficparo);                    fprintf(ficresf," %.3f", p3mat[i][j][h]);
    }                  }
    ungetc(c,ficpar);                } /* end i */
                  if (h*hstepm/YEARM*stepm==yearp) {
    fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);                  fprintf(ficresf," %.3f", ppij);
    fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);                }
    fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);              }/* end j */
                } /* end h */
    while((c=getc(ficpar))=='#' && c!= EOF){            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
      ungetc(c,ficpar);          } /* end agec */
      fgets(line, MAXLINE, ficpar);        } /* end yearp */
      puts(line);      } /* end cptcod */
      fputs(line,ficparo);    } /* end  cptcov */
    }         
    ungetc(c,ficpar);    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
    
     fclose(ficresf);
    dateprev1=anprev1+mprev1/12.+jprev1/365.;  }
    dateprev2=anprev2+mprev2/12.+jprev2/365.;  
   /************** Forecasting *****not tested NB*************/
   fscanf(ficpar,"pop_based=%d\n",&popbased);  populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
   fprintf(ficparo,"pop_based=%d\n",popbased);      
   fprintf(ficres,"pop_based=%d\n",popbased);      int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
      int *popage;
   while((c=getc(ficpar))=='#' && c!= EOF){    double calagedatem, agelim, kk1, kk2;
     ungetc(c,ficpar);    double *popeffectif,*popcount;
     fgets(line, MAXLINE, ficpar);    double ***p3mat,***tabpop,***tabpopprev;
     puts(line);    double ***mobaverage;
     fputs(line,ficparo);    char filerespop[FILENAMELENGTH];
   }  
   ungetc(c,ficpar);    tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);    agelim=AGESUP;
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);    calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);    
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
 while((c=getc(ficpar))=='#' && c!= EOF){    
     ungetc(c,ficpar);    strcpy(filerespop,"pop"); 
     fgets(line, MAXLINE, ficpar);    strcat(filerespop,fileres);
     puts(line);    if((ficrespop=fopen(filerespop,"w"))==NULL) {
     fputs(line,ficparo);      printf("Problem with forecast resultfile: %s\n", filerespop);
   }      fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
   ungetc(c,ficpar);    }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);  
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);    if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 /*------------ gnuplot -------------*/      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
   strcpy(optionfilegnuplot,optionfilefiname);        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
   strcat(optionfilegnuplot,".gp");        printf(" Error in movingaverage mobilav=%d\n",mobilav);
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {      }
     printf("Problem with file %s",optionfilegnuplot);    }
   }  
   fclose(ficgp);    stepsize=(int) (stepm+YEARM-1)/YEARM;
  printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);    if (stepm<=12) stepsize=1;
 /*--------- index.htm --------*/    
     agelim=AGESUP;
   strcpy(optionfilehtm,optionfile);    
   strcat(optionfilehtm,".htm");    hstepm=1;
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {    hstepm=hstepm/stepm; 
     printf("Problem with %s \n",optionfilehtm), exit(0);    
   }    if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
   fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n        printf("Problem with population file : %s\n",popfile);exit(0);
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n        fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
 \n      } 
 Total number of observations=%d <br>\n      popage=ivector(0,AGESUP);
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n      popeffectif=vector(0,AGESUP);
 <hr  size=\"2\" color=\"#EC5E5E\">      popcount=vector(0,AGESUP);
  <ul><li><h4>Parameter files</h4>\n      
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n      i=1;   
  - Log file of the run: <a href=\"%s\">%s</a><br>\n      while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
  - Gnuplot file name: <a href=\"%s\">%s</a></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,filelog,filelog,optionfilegnuplot,optionfilegnuplot);     
   fclose(fichtm);      imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
  printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);    }
    
 /*------------ free_vector  -------------*/    for(cptcov=1,k=0;cptcov<=i2;cptcov++){
  chdir(path);     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
          k=k+1;
  free_ivector(wav,1,imx);        fprintf(ficrespop,"\n#******");
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);        for(j=1;j<=cptcoveff;j++) {
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);            fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
  free_ivector(num,1,n);        }
  free_vector(agedc,1,n);        fprintf(ficrespop,"******\n");
  /*free_matrix(covar,1,NCOVMAX,1,n);*/        fprintf(ficrespop,"# Age");
  fclose(ficparo);        for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
  fclose(ficres);        if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
   /*--------------- Prevalence limit --------------*/          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
            
   strcpy(filerespl,"pl");          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
   strcat(filerespl,fileres);            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
   if((ficrespl=fopen(filerespl,"w"))==NULL) {            nhstepm = nhstepm/hstepm; 
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;            
     fprintf(ficlog,"Problem with Prev limit resultfile: %s\n", filerespl);goto end;            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   }            oldm=oldms;savm=savms;
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
   fprintf(ficlog,"Computing prevalence limit: result on file '%s' \n", filerespl);          
   fprintf(ficrespl,"#Prevalence limit\n");            for (h=0; h<=nhstepm; h++){
   fprintf(ficrespl,"#Age ");              if (h==(int) (calagedatem+YEARM*cpt)) {
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);                fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
   fprintf(ficrespl,"\n");              } 
                for(j=1; j<=nlstate+ndeath;j++) {
   prlim=matrix(1,nlstate,1,nlstate);                kk1=0.;kk2=0;
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                for(i=1; i<=nlstate;i++) {              
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                  if (mobilav==1) 
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                    kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                  else {
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */                    kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
   k=0;                  }
   agebase=ageminpar;                }
   agelim=agemaxpar;                if (h==(int)(calagedatem+12*cpt)){
   ftolpl=1.e-10;                  tabpop[(int)(agedeb)][j][cptcod]=kk1;
   i1=cptcoveff;                    /*fprintf(ficrespop," %.3f", kk1);
   if (cptcovn < 1){i1=1;}                      if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
   for(cptcov=1;cptcov<=i1;cptcov++){              }
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){              for(i=1; i<=nlstate;i++){
         k=k+1;                kk1=0.;
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/                  for(j=1; j<=nlstate;j++){
         fprintf(ficrespl,"\n#******");                    kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
         printf("\n#******");                  }
         fprintf(ficlog,"\n#******");                    tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
         for(j=1;j<=cptcoveff;j++) {              }
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);              if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
         }            }
         fprintf(ficrespl,"******\n");            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         printf("******\n");          }
         fprintf(ficlog,"******\n");        }
           
         for (age=agebase; age<=agelim; age++){    /******/
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);  
           fprintf(ficrespl,"%.0f",age );        for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           for(i=1; i<=nlstate;i++)          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           fprintf(ficrespl," %.5f", prlim[i][i]);          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
           fprintf(ficrespl,"\n");            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
         }            nhstepm = nhstepm/hstepm; 
       }            
     }            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   fclose(ficrespl);            oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
   /*------------- h Pij x at various ages ------------*/            for (h=0; h<=nhstepm; h++){
                if (h==(int) (calagedatem+YEARM*cpt)) {
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);                fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
   if((ficrespij=fopen(filerespij,"w"))==NULL) {              } 
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;              for(j=1; j<=nlstate+ndeath;j++) {
     fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;                kk1=0.;kk2=0;
   }                for(i=1; i<=nlstate;i++) {              
   printf("Computing pij: result on file '%s' \n", filerespij);                  kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
   fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);                }
                  if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
   stepsize=(int) (stepm+YEARM-1)/YEARM;              }
   /*if (stepm<=24) stepsize=2;*/            }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   agelim=AGESUP;          }
   hstepm=stepsize*YEARM; /* Every year of age */        }
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */     } 
     }
   /* hstepm=1;   aff par mois*/   
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   k=0;  
   for(cptcov=1;cptcov<=i1;cptcov++){    if (popforecast==1) {
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      free_ivector(popage,0,AGESUP);
       k=k+1;      free_vector(popeffectif,0,AGESUP);
         fprintf(ficrespij,"\n#****** ");      free_vector(popcount,0,AGESUP);
         for(j=1;j<=cptcoveff;j++)    }
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         fprintf(ficrespij,"******\n");    free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
            fclose(ficrespop);
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */  } /* End of popforecast */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */  
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */  int fileappend(FILE *fichier, char *optionfich)
   {
           /*      nhstepm=nhstepm*YEARM; aff par mois*/    if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      fprintf(ficlog,"Problem with file: %s\n", optionfich);
           oldm=oldms;savm=savms;      return (0);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      }
           fprintf(ficrespij,"# Age");    fflush(fichier);
           for(i=1; i<=nlstate;i++)    return (1);
             for(j=1; j<=nlstate+ndeath;j++)  }
               fprintf(ficrespij," %1d-%1d",i,j);  
           fprintf(ficrespij,"\n");  
            for (h=0; h<=nhstepm; h++){  /**************** function prwizard **********************/
             fprintf(ficrespij,"%d %f %f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );  void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
             for(i=1; i<=nlstate;i++)  {
               for(j=1; j<=nlstate+ndeath;j++)  
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);    /* Wizard to print covariance matrix template */
             fprintf(ficrespij,"\n");  
              }    char ca[32], cb[32], cc[32];
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
           fprintf(ficrespij,"\n");    int numlinepar;
         }  
     }    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
   }    fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
   varprob(optionfilefiname, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);      jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
   fclose(ficrespij);        if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
   /*---------- Forecasting ------------------*/        printf("%1d%1d",i,j);
   if((stepm == 1) && (strcmp(model,".")==0)){        fprintf(ficparo,"%1d%1d",i,j);
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);        for(k=1; k<=ncovmodel;k++){
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);          /*        printf(" %lf",param[i][j][k]); */
   }          /*        fprintf(ficparo," %lf",param[i][j][k]); */
   else{          printf(" 0.");
     erreur=108;          fprintf(ficparo," 0.");
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);        }
     fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);        printf("\n");
   }        fprintf(ficparo,"\n");
        }
     }
   /*---------- Health expectancies and variances ------------*/    printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
   strcpy(filerest,"t");    npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
   strcat(filerest,fileres);    for(i=1; i <=nlstate; i++){
   if((ficrest=fopen(filerest,"w"))==NULL) {      jj=0;
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;      for(j=1; j <=nlstate+ndeath; j++){
     fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;        if(j==i) continue;
   }        jj++;
   printf("Computing Total LEs with variances: file '%s' \n", filerest);        fprintf(ficparo,"%1d%1d",i,j);
   fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest);        printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
   strcpy(filerese,"e");          /*      printf(" %le",delti3[i][j][k]); */
   strcat(filerese,fileres);          /*      fprintf(ficparo," %le",delti3[i][j][k]); */
   if((ficreseij=fopen(filerese,"w"))==NULL) {          printf(" 0.");
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);          fprintf(ficparo," 0.");
     fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);        }
   }        numlinepar++;
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);        printf("\n");
   fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);        fprintf(ficparo,"\n");
       }
   strcpy(fileresv,"v");    }
   strcat(fileresv,fileres);    printf("# Covariance matrix\n");
   if((ficresvij=fopen(fileresv,"w"))==NULL) {  /* # 121 Var(a12)\n\ */
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);  /* # 122 Cov(b12,a12) Var(b12)\n\ */
     fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);  /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   }  /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);  /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);  /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   calagedate=-1;  /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);  /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
   k=0;    fprintf(ficparo,"# Covariance matrix\n");
   for(cptcov=1;cptcov<=i1;cptcov++){    /* # 121 Var(a12)\n\ */
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    /* # 122 Cov(b12,a12) Var(b12)\n\ */
       k=k+1;    /* #   ...\n\ */
       fprintf(ficrest,"\n#****** ");    /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
       for(j=1;j<=cptcoveff;j++)    
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    for(itimes=1;itimes<=2;itimes++){
       fprintf(ficrest,"******\n");      jj=0;
       for(i=1; i <=nlstate; i++){
       fprintf(ficreseij,"\n#****** ");        for(j=1; j <=nlstate+ndeath; j++){
       for(j=1;j<=cptcoveff;j++)          if(j==i) continue;
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          for(k=1; k<=ncovmodel;k++){
       fprintf(ficreseij,"******\n");            jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
       fprintf(ficresvij,"\n#****** ");            if(itimes==1){
       for(j=1;j<=cptcoveff;j++)              printf("#%1d%1d%d",i,j,k);
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);              fprintf(ficparo,"#%1d%1d%d",i,j,k);
       fprintf(ficresvij,"******\n");            }else{
               printf("%1d%1d%d",i,j,k);
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);              fprintf(ficparo,"%1d%1d%d",i,j,k);
       oldm=oldms;savm=savms;              /*  printf(" %.5le",matcov[i][j]); */
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);              }
              ll=0;
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);            for(li=1;li <=nlstate; li++){
       oldm=oldms;savm=savms;              for(lj=1;lj <=nlstate+ndeath; lj++){
       varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0);                if(lj==li) continue;
       if(popbased==1){                for(lk=1;lk<=ncovmodel;lk++){
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased);                  ll++;
        }                  if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                      if(ll<jj){
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");                      if(itimes==1){
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);                        printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
       fprintf(ficrest,"\n");                        fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
       epj=vector(1,nlstate+1);                        printf(" 0.");
       for(age=bage; age <=fage ;age++){                        fprintf(ficparo," 0.");
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);                      }
         if (popbased==1) {                    }else{
           for(i=1; i<=nlstate;i++)                      if(itimes==1){
             prlim[i][i]=probs[(int)age][i][k];                        printf(" Var(%s%1d%1d)",ca,i,j);
         }                        fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                              }else{
         fprintf(ficrest," %4.0f",age);                        printf(" 0.");
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){                        fprintf(ficparo," 0.");
           for(i=1, epj[j]=0.;i <=nlstate;i++) {                      }
             epj[j] += prlim[i][i]*eij[i][j][(int)age];                    }
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/                  }
           }                } /* end lk */
           epj[nlstate+1] +=epj[j];              } /* end lj */
         }            } /* end li */
             printf("\n");
         for(i=1, vepp=0.;i <=nlstate;i++)            fprintf(ficparo,"\n");
           for(j=1;j <=nlstate;j++)            numlinepar++;
             vepp += vareij[i][j][(int)age];          } /* end k*/
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));        } /*end j */
         for(j=1;j <=nlstate;j++){      } /* end i */
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));    } /* end itimes */
         }  
         fprintf(ficrest,"\n");  } /* end of prwizard */
       }  /******************* Gompertz Likelihood ******************************/
     }  double gompertz(double x[])
   }  { 
 free_matrix(mint,1,maxwav,1,n);    double A,B,L=0.0,sump=0.,num=0.;
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);    int i,n=0; /* n is the size of the sample */
     free_vector(weight,1,n);    for (i=0;i<=imx-1 ; i++) {
   fclose(ficreseij);      sump=sump+weight[i];
   fclose(ficresvij);      /*    sump=sump+1;*/
   fclose(ficrest);      num=num+1;
   fclose(ficpar);    }
   free_vector(epj,1,nlstate+1);   
     
   /*------- Variance limit prevalence------*/      /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   strcpy(fileresvpl,"vpl");  
   strcat(fileresvpl,fileres);    for (i=1;i<=imx ; i++)
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {      {
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);        if (cens[i]==1 & wav[i]>1)
     exit(0);          A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
   }        
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);        if (cens[i]==0 & wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
   k=0;               +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
   for(cptcov=1;cptcov<=i1;cptcov++){        
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        if (wav[i]>1 & agecens[i]>15) {
       k=k+1;          L=L+A*weight[i];
       fprintf(ficresvpl,"\n#****** ");          /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
       for(j=1;j<=cptcoveff;j++)        }
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      }
       fprintf(ficresvpl,"******\n");  
         /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
       varpl=matrix(1,nlstate,(int) bage, (int) fage);   
       oldm=oldms;savm=savms;    return -2*L*num/sump;
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);  }
     }  
  }  /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
   fclose(ficresvpl);                    int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
   /*---------- End : free ----------------*/    int i,k;
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);  
      fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);    fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);    for (i=1;i<=2;i++) 
        fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
      fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);    fprintf(fichtm,"</ul>");
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);  
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);  fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);  
     fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   free_matrix(matcov,1,npar,1,npar);  
   free_vector(delti,1,npar);   for (k=agegomp;k<(agemortsup-2);k++) 
   free_matrix(agev,1,maxwav,1,imx);     fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);  
    
   fprintf(fichtm,"\n</body>");    fflush(fichtm);
   fclose(fichtm);  }
   fclose(ficgp);  
    /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   if(erreur >0){  
     printf("End of Imach with error or warning %d\n",erreur);    char dirfileres[132],optfileres[132];
     fprintf(ficlog,"End of Imach with error or warning %d\n",erreur);    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
   }else{    int ng;
    printf("End of Imach\n");  
    fprintf(ficlog,"End of Imach\n");  
   }    /*#ifdef windows */
   printf("See log file on %s\n",filelog);    fprintf(ficgp,"cd \"%s\" \n",pathc);
   fclose(ficlog);      /*#endif */
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */  
    
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/    strcpy(dirfileres,optionfilefiname);
   /*printf("Total time was %d uSec.\n", total_usecs);*/    strcpy(optfileres,"vpl");
   /*------ End -----------*/    fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small\n set log y\n"); 
  end:    fprintf(ficgp, "set size 0.65,0.65\n");
 #ifdef windows    fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   /* chdir(pathcd);*/  
 #endif  } 
  /*system("wgnuplot graph.plt");*/  
  /*system("../gp37mgw/wgnuplot graph.plt");*/  
  /*system("cd ../gp37mgw");*/  
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/  
  strcpy(plotcmd,GNUPLOTPROGRAM);  /***********************************************/
  strcat(plotcmd," ");  /**************** Main Program *****************/
  strcat(plotcmd,optionfilegnuplot);  /***********************************************/
  system(plotcmd);  
   int main(int argc, char *argv[])
 #ifdef windows  {
   while (z[0] != 'q') {    int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     /* chdir(path); */    int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");    int linei;
     scanf("%s",z);    int jj, ll, li, lj, lk, imk;
     if (z[0] == 'c') system("./imach");    int numlinepar=0; /* Current linenumber of parameter file */
     else if (z[0] == 'e') system(optionfilehtm);    int itimes;
     else if (z[0] == 'g') system(plotcmd);    int NDIM=2;
     else if (z[0] == 'q') exit(0);  
   }    char ca[32], cb[32], cc[32];
 #endif    /*  FILE *fichtm; *//* Html File */
 }    /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char strstart[80], *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       scanf("%s",pathtot);
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem with datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) ||((i >= firstobs) && (i <=lastobs)))    {
       linei=linei+1;
       printf("IIIII= %d linei=%d\n",i,linei);
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
           if(line[j] == '\t')
             line[j] = ' ';
         }
         for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10);j--){;};line[j+1]=0;  /* Trims blanks at end of line */
         if(line[0]=='#'){
           fprintf(ficlog,"Comment line\n%s\n",line);
           printf("Comment line\n%s\n",line);
           continue;
         }
         for (j=maxwav;j>=1;j--){
           cutv(stra, strb,line,' '); 
           errno=0;
           lval=strtol(strb,&endptr,10); 
           /*      if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%d' at line number %d %s for individual %d\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n",lval, i,line,linei,j,maxwav);
             exit(1);
           }
           s[j][i]=lval;
   
           strcpy(line,stra);
           cutv(stra, strb,line,'/');
           errno=0;
           lval=strtol(strb,&endptr,10); 
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%d'.at line number %ld %s for individual %d\nShould be a year of exam at wave %d.  Exiting.\n",lval, i,line,linei,j);
             exit(1);
           }
           anint[j][i]=(double)(lval); 
   
           strcpy(line,stra);
           cutv(stra, strb,line,' ');
           errno=0;
           lval=strtol(strb,&endptr,10); 
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%d' at line number %ld %s for individual %d\nShould be a month of exam at wave %d.  Exiting.\n",lval, i,line, linei,j);
             exit(1);
           }
           mint[j][i]=(double)(lval); 
           strcpy(line,stra);
         }
           
         cutv(stra, strb,line,'/'); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %ld %s for individual %d\nShould be a year of death.  Exiting.\n",lval, i,line,linei);
           exit(1);
         }
         andc[i]=(double)(lval); 
         strcpy(line,stra);
   
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %ld %s for individual %d\nShould be a month of death.  Exiting.\n",lval,i,line, linei);
           exit(1);
         }
         moisdc[i]=(double)(lval); 
   
         strcpy(line,stra);
         cutv(stra, strb,line,'/'); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %ld %s for individual %d\nShould be a year of birth.  Exiting.\n",lval, i,line, linei);
           exit(1);
         }
         annais[i]=(double)(lval);
   
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         errno=0;
         lval=strtol(strb,&endptr,10); 
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %ld %s for individual %d\nShould be a month of birth.  Exiting.\n",lval,i,line,linei);
           exit(1);
         }
         moisnais[i]=(double)(lval); 
         strcpy(line,stra);
   
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %ld %s for individual %d\nShould be a weight.  Exiting.\n",lval, i,line,linei);
           exit(1);
         }
         weight[i]=(double)(lval); 
         strcpy(line,stra);
   
         for (j=ncovcol;j>=1;j--){
           cutv(stra, strb,line,' '); 
           errno=0;
           lval=strtol(strb,&endptr,10); 
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%d' at line number %ld %s for individual %d\nShould be a covar (meaning 0 for the reference or 1).  Exiting.\n",lval, i,line,linei);
             exit(1);
           }
           if(lval <0 || lval >1){
             printf("Error reading data around '%d' at line number %ld %s for individual %d\nShould be a value of the %d covar (meaning 0 for the reference or 1. IMaCh does not build design variables, do it your self).  Exiting.\n",lval,i,line,linei,j);
             exit(1);
           }
           covar[j][i]=(double)(lval);
           strcpy(line,stra);
         } 
         lstra=strlen(stra);
   
         if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
           stratrunc = &(stra[lstra-9]);
           num[i]=atol(stratrunc);
         }
         else
           num[i]=atol(stra);
         printf ("num [i] %ld %d\n",i, num[i]);fflush(stdout);
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
           printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
   
         i=i+1;
     } /* End loop reading  data */
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
     /* for (i=1; i<=imx; i++) */
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameters from char model */
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);
     fclose(fic);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     agegomp=(int)agemin;
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<body>\n<title>IMaCh Cov %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (j=1; j<=lastpass; j++)
           if (s[j][i]>nlstate) {
             dcwave[i]=j;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];agecens[i]=1.; 
           if (ageexmed[i]>1 & wav[i]>0) agecens[i]=agev[mw[j][i]][i];
           cens[i]=1;
           
           if (ageexmed[i]<1) cens[i]=-1;
           if (agedc[i]< AGESUP & agedc[i]>1 & dcwave[i]>firstpass & dcwave[i]<=lastpass) cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
   
       p[1]=0.1; p[2]=0.1;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
     printf("Powell\n");  fprintf(ficlog,"Powell\n");
     strcpy(filerespow,"pow-mort"); 
     strcat(filerespow,fileres);
     if((ficrespow=fopen(filerespow,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", filerespow);
       fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
     }
     fprintf(ficrespow,"# Powell\n# iter -2*LL");
     /*  for (i=1;i<=nlstate;i++)
       for(j=1;j<=nlstate+ndeath;j++)
         if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
     */
     fprintf(ficrespow,"\n");
   
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM,delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
   lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
      
        for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
      
         for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
   
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
   
    tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
          }
      
      
          printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
   
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
   
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
     } /* Endof if mle==-3 */
   
     else{ /* For mle >=1 */
     
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing stable prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
       fprintf(ficrespl, "#Local time at start: %s", strstart);
       fprintf(ficrespl,"#Stable prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       fprintf(ficrespij, "#Local time at start: %s", strstart);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /*---------- Health expectancies and variances ------------*/
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total LEs with variances: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficreseij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav, strstart);
           if(popbased==1){
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav, strstart);
           }
   
           fprintf(ficrest, "#Local time at start: %s", strstart);
           fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
           for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
           fprintf(ficrest,"\n");
   
           epj=vector(1,nlstate+1);
           for(age=bage; age <=fage ;age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             if (popbased==1) {
               if(mobilav ==0){
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=probs[(int)age][i][k];
               }else{ /* mobilav */ 
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=mobaverage[(int)age][i][k];
               }
             }
           
             fprintf(ficrest," %4.0f",age);
             for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
               for(i=1, epj[j]=0.;i <=nlstate;i++) {
                 epj[j] += prlim[i][i]*eij[i][j][(int)age];
                 /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
               }
               epj[nlstate+1] +=epj[j];
             }
   
             for(i=1, vepp=0.;i <=nlstate;i++)
               for(j=1;j <=nlstate;j++)
                 vepp += vareij[i][j][(int)age];
             fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
             for(j=1;j <=nlstate;j++){
               fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
             }
             fprintf(ficrest,"\n");
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficreseij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of stable prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
     
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
       free_ivector(Tcode,1,100);
   
   
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);
     fclose(fichtm);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
     chdir(path);
   #ifndef UNIX
     /*  strcpy(plotcmd,"\""); */
   #endif
     strcpy(plotcmd,pathimach);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     strcat(plotcmd,GNUPLOTPROGRAM);
   #ifndef UNIX
     strcat(plotcmd,".exe");
     /*  strcat(plotcmd,"\"");*/
   #endif
     if(stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
     }
   
   #ifndef UNIX
     strcpy(plotcmd,"\"");
   #endif
     strcat(plotcmd,pathimach);
     strcat(plotcmd,GNUPLOTPROGRAM);
   #ifndef UNIX
     strcat(plotcmd,".exe");
     strcat(plotcmd,"\"");
   #endif
     strcat(plotcmd," ");
     strcat(plotcmd,optionfilegnuplot);
     printf("Starting graphs with: %s",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.51  
changed lines
  Added in v.1.109


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>