Diff for /imach/src/imach.c between versions 1.6 and 1.115

version 1.6, 2001/05/02 17:47:10 version 1.115, 2006/02/27 12:17:45
Line 1 Line 1
      /* $Id$
 /*********************** Imach **************************************            $State$
   This program computes Healthy Life Expectancies from cross-longitudinal    $Log$
   data. Cross-longitudinal consist in a first survey ("cross") where    Revision 1.115  2006/02/27 12:17:45  brouard
   individuals from different ages are interviewed on their health status    (Module): One freematrix added in mlikeli! 0.98c
   or degree of  disability. At least a second wave of interviews  
   ("longitudinal") should  measure each new individual health status.    Revision 1.114  2006/02/26 12:57:58  brouard
   Health expectancies are computed from the transistions observed between    (Module): Some improvements in processing parameter
   waves and are computed for each degree of severity of disability (number    filename with strsep.
   of life states). More degrees you consider, more time is necessary to  
   reach the Maximum Likelihood of the parameters involved in the model.    Revision 1.113  2006/02/24 14:20:24  brouard
   The simplest model is the multinomial logistic model where pij is    (Module): Memory leaks checks with valgrind and:
   the probabibility to be observed in state j at the second wave conditional    datafile was not closed, some imatrix were not freed and on matrix
   to be observed in state i at the first wave. Therefore the model is:    allocation too.
   log(pij/pii)= aij + bij*age+ cij*sex + etc , where 'age' is age and 'sex'  
   is a covariate. If you want to have a more complex model than "constant and    Revision 1.112  2006/01/30 09:55:26  brouard
   age", you should modify the program where the markup    (Module): Back to gnuplot.exe instead of wgnuplot.exe
     *Covariates have to be included here again* invites you to do it.  
   More covariates you add, less is the speed of the convergence.    Revision 1.111  2006/01/25 20:38:18  brouard
     (Module): Lots of cleaning and bugs added (Gompertz)
   The advantage that this computer programme claims, comes from that if the    (Module): Comments can be added in data file. Missing date values
   delay between waves is not identical for each individual, or if some    can be a simple dot '.'.
   individual missed an interview, the information is not rounded or lost, but  
   taken into account using an interpolation or extrapolation.    Revision 1.110  2006/01/25 00:51:50  brouard
   hPijx is the probability to be    (Module): Lots of cleaning and bugs added (Gompertz)
   observed in state i at age x+h conditional to the observed state i at age  
   x. The delay 'h' can be split into an exact number (nh*stepm) of    Revision 1.109  2006/01/24 19:37:15  brouard
   unobserved intermediate  states. This elementary transition (by month or    (Module): Comments (lines starting with a #) are allowed in data.
   quarter trimester, semester or year) is model as a multinomial logistic.  
   The hPx matrix is simply the matrix product of nh*stepm elementary matrices    Revision 1.108  2006/01/19 18:05:42  lievre
   and the contribution of each individual to the likelihood is simply hPijx.    Gnuplot problem appeared...
     To be fixed
   Also this programme outputs the covariance matrix of the parameters but also  
   of the life expectancies. It also computes the prevalence limits.    Revision 1.107  2006/01/19 16:20:37  brouard
      Test existence of gnuplot in imach path
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).  
            Institut national d'études démographiques, Paris.    Revision 1.106  2006/01/19 13:24:36  brouard
   This software have been partly granted by Euro-REVES, a concerted action    Some cleaning and links added in html output
   from the European Union.  
   It is copyrighted identically to a GNU software product, ie programme and    Revision 1.105  2006/01/05 20:23:19  lievre
   software can be distributed freely for non commercial use. Latest version    *** empty log message ***
   can be accessed at http://euroreves.ined.fr/imach .  
   **********************************************************************/    Revision 1.104  2005/09/30 16:11:43  lievre
      (Module): sump fixed, loop imx fixed, and simplifications.
 #include <math.h>    (Module): If the status is missing at the last wave but we know
 #include <stdio.h>    that the person is alive, then we can code his/her status as -2
 #include <stdlib.h>    (instead of missing=-1 in earlier versions) and his/her
 #include <unistd.h>    contributions to the likelihood is 1 - Prob of dying from last
     health status (= 1-p13= p11+p12 in the easiest case of somebody in
 #define MAXLINE 256    the healthy state at last known wave). Version is 0.98
 #define FILENAMELENGTH 80  
 /*#define DEBUG*/    Revision 1.103  2005/09/30 15:54:49  lievre
 #define windows    (Module): sump fixed, loop imx fixed, and simplifications.
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */  
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    Revision 1.102  2004/09/15 17:31:30  brouard
     Add the possibility to read data file including tab characters.
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */  
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    Revision 1.101  2004/09/15 10:38:38  brouard
     Fix on curr_time
 #define NINTERVMAX 8  
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    Revision 1.100  2004/07/12 18:29:06  brouard
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    Add version for Mac OS X. Just define UNIX in Makefile
 #define NCOVMAX 8 /* Maximum number of covariates */  
 #define MAXN 20000    Revision 1.99  2004/06/05 08:57:40  brouard
 #define YEARM 12. /* Number of months per year */    *** empty log message ***
 #define AGESUP 130  
 #define AGEBASE 40    Revision 1.98  2004/05/16 15:05:56  brouard
     New version 0.97 . First attempt to estimate force of mortality
     directly from the data i.e. without the need of knowing the health
 int nvar;    state at each age, but using a Gompertz model: log u =a + b*age .
 static int cptcov;    This is the basic analysis of mortality and should be done before any
 int cptcovn, cptcovage=0;    other analysis, in order to test if the mortality estimated from the
 int npar=NPARMAX;    cross-longitudinal survey is different from the mortality estimated
 int nlstate=2; /* Number of live states */    from other sources like vital statistic data.
 int ndeath=1; /* Number of dead states */  
 int ncovmodel, ncov;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    The same imach parameter file can be used but the option for mle should be -3.
   
 int *wav; /* Number of waves for this individuual 0 is possible */    Agnès, who wrote this part of the code, tried to keep most of the
 int maxwav; /* Maxim number of waves */    former routines in order to include the new code within the former code.
 int mle, weightopt;  
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    The output is very simple: only an estimate of the intercept and of
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    the slope with 95% confident intervals.
 double **oldm, **newm, **savm; /* Working pointers to matrices */  
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    Current limitations:
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest;    A) Even if you enter covariates, i.e. with the
 FILE *ficgp, *fichtm;    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
 FILE *ficreseij;    B) There is no computation of Life Expectancy nor Life Table.
   char filerese[FILENAMELENGTH];  
  FILE  *ficresvij;    Revision 1.97  2004/02/20 13:25:42  lievre
   char fileresv[FILENAMELENGTH];    Version 0.96d. Population forecasting command line is (temporarily)
  FILE  *ficresvpl;    suppressed.
   char fileresvpl[FILENAMELENGTH];  
     Revision 1.96  2003/07/15 15:38:55  brouard
 #define NR_END 1    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
 #define FREE_ARG char*    rewritten within the same printf. Workaround: many printfs.
 #define FTOL 1.0e-10  
     Revision 1.95  2003/07/08 07:54:34  brouard
 #define NRANSI    * imach.c (Repository):
 #define ITMAX 200    (Repository): Using imachwizard code to output a more meaningful covariance
     matrix (cov(a12,c31) instead of numbers.
 #define TOL 2.0e-4  
     Revision 1.94  2003/06/27 13:00:02  brouard
 #define CGOLD 0.3819660    Just cleaning
 #define ZEPS 1.0e-10  
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    Revision 1.93  2003/06/25 16:33:55  brouard
     (Module): On windows (cygwin) function asctime_r doesn't
 #define GOLD 1.618034    exist so I changed back to asctime which exists.
 #define GLIMIT 100.0    (Module): Version 0.96b
 #define TINY 1.0e-20  
     Revision 1.92  2003/06/25 16:30:45  brouard
 static double maxarg1,maxarg2;    (Module): On windows (cygwin) function asctime_r doesn't
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    exist so I changed back to asctime which exists.
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))  
      Revision 1.91  2003/06/25 15:30:29  brouard
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    * imach.c (Repository): Duplicated warning errors corrected.
 #define rint(a) floor(a+0.5)    (Repository): Elapsed time after each iteration is now output. It
     helps to forecast when convergence will be reached. Elapsed time
 static double sqrarg;    is stamped in powell.  We created a new html file for the graphs
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    concerning matrix of covariance. It has extension -cov.htm.
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}  
     Revision 1.90  2003/06/24 12:34:15  brouard
 int imx;    (Module): Some bugs corrected for windows. Also, when
 int stepm;    mle=-1 a template is output in file "or"mypar.txt with the design
 /* Stepm, step in month: minimum step interpolation*/    of the covariance matrix to be input.
   
 int m,nb;    Revision 1.89  2003/06/24 12:30:52  brouard
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    (Module): Some bugs corrected for windows. Also, when
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    mle=-1 a template is output in file "or"mypar.txt with the design
 double **pmmij;    of the covariance matrix to be input.
   
 double *weight;    Revision 1.88  2003/06/23 17:54:56  brouard
 int **s; /* Status */    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
 double *agedc, **covar, idx;  
 int **nbcode, *Tcode, *Tvar, **codtab;    Revision 1.87  2003/06/18 12:26:01  brouard
     Version 0.96
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */  
 double ftolhess; /* Tolerance for computing hessian */    Revision 1.86  2003/06/17 20:04:08  brouard
     (Module): Change position of html and gnuplot routines and added
     routine fileappend.
 static  int split( char *path, char *dirc, char *name )  
 {    Revision 1.85  2003/06/17 13:12:43  brouard
    char *s;                             /* pointer */    * imach.c (Repository): Check when date of death was earlier that
    int  l1, l2;                         /* length counters */    current date of interview. It may happen when the death was just
     prior to the death. In this case, dh was negative and likelihood
    l1 = strlen( path );                 /* length of path */    was wrong (infinity). We still send an "Error" but patch by
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    assuming that the date of death was just one stepm after the
    s = strrchr( path, '\\' );           /* find last / */    interview.
    if ( s == NULL ) {                   /* no directory, so use current */    (Repository): Because some people have very long ID (first column)
 #if     defined(__bsd__)                /* get current working directory */    we changed int to long in num[] and we added a new lvector for
       extern char       *getwd( );    memory allocation. But we also truncated to 8 characters (left
     truncation)
       if ( getwd( dirc ) == NULL ) {    (Repository): No more line truncation errors.
 #else  
       extern char       *getcwd( );    Revision 1.84  2003/06/13 21:44:43  brouard
     * imach.c (Repository): Replace "freqsummary" at a correct
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    place. It differs from routine "prevalence" which may be called
 #endif    many times. Probs is memory consuming and must be used with
          return( GLOCK_ERROR_GETCWD );    parcimony.
       }    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
       strcpy( name, path );             /* we've got it */  
    } else {                             /* strip direcotry from path */    Revision 1.83  2003/06/10 13:39:11  lievre
       s++;                              /* after this, the filename */    *** empty log message ***
       l2 = strlen( s );                 /* length of filename */  
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    Revision 1.82  2003/06/05 15:57:20  brouard
       strcpy( name, s );                /* save file name */    Add log in  imach.c and  fullversion number is now printed.
       strncpy( dirc, path, l1 - l2 );   /* now the directory */  
       dirc[l1-l2] = 0;                  /* add zero */  */
    }  /*
    l1 = strlen( dirc );                 /* length of directory */     Interpolated Markov Chain
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }  
    return( 0 );                         /* we're done */    Short summary of the programme:
 }    
     This program computes Healthy Life Expectancies from
     cross-longitudinal data. Cross-longitudinal data consist in: -1- a
 /******************************************/    first survey ("cross") where individuals from different ages are
     interviewed on their health status or degree of disability (in the
 void replace(char *s, char*t)    case of a health survey which is our main interest) -2- at least a
 {    second wave of interviews ("longitudinal") which measure each change
   int i;    (if any) in individual health status.  Health expectancies are
   int lg=20;    computed from the time spent in each health state according to a
   i=0;    model. More health states you consider, more time is necessary to reach the
   lg=strlen(t);    Maximum Likelihood of the parameters involved in the model.  The
   for(i=0; i<= lg; i++) {    simplest model is the multinomial logistic model where pij is the
     (s[i] = t[i]);    probability to be observed in state j at the second wave
     if (t[i]== '\\') s[i]='/';    conditional to be observed in state i at the first wave. Therefore
   }    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
 }    'age' is age and 'sex' is a covariate. If you want to have a more
     complex model than "constant and age", you should modify the program
 int nbocc(char *s, char occ)    where the markup *Covariates have to be included here again* invites
 {    you to do it.  More covariates you add, slower the
   int i,j=0;    convergence.
   int lg=20;  
   i=0;    The advantage of this computer programme, compared to a simple
   lg=strlen(s);    multinomial logistic model, is clear when the delay between waves is not
   for(i=0; i<= lg; i++) {    identical for each individual. Also, if a individual missed an
   if  (s[i] == occ ) j++;    intermediate interview, the information is lost, but taken into
   }    account using an interpolation or extrapolation.  
   return j;  
 }    hPijx is the probability to be observed in state i at age x+h
     conditional to the observed state i at age x. The delay 'h' can be
 void cutv(char *u,char *v, char*t, char occ)    split into an exact number (nh*stepm) of unobserved intermediate
 {    states. This elementary transition (by month, quarter,
   int i,lg,j,p=0;    semester or year) is modelled as a multinomial logistic.  The hPx
   i=0;    matrix is simply the matrix product of nh*stepm elementary matrices
   for(j=0; j<=strlen(t)-1; j++) {    and the contribution of each individual to the likelihood is simply
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;    hPijx.
   }  
     Also this programme outputs the covariance matrix of the parameters but also
   lg=strlen(t);    of the life expectancies. It also computes the stable prevalence. 
   for(j=0; j<p; j++) {    
     (u[j] = t[j]);    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
   }             Institut national d'études démographiques, Paris.
      u[p]='\0';    This software have been partly granted by Euro-REVES, a concerted action
     from the European Union.
    for(j=0; j<= lg; j++) {    It is copyrighted identically to a GNU software product, ie programme and
     if (j>=(p+1))(v[j-p-1] = t[j]);    software can be distributed freely for non commercial use. Latest version
   }    can be accessed at http://euroreves.ined.fr/imach .
 }  
     Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
 /********************** nrerror ********************/    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
     
 void nrerror(char error_text[])    **********************************************************************/
 {  /*
   fprintf(stderr,"ERREUR ...\n");    main
   fprintf(stderr,"%s\n",error_text);    read parameterfile
   exit(1);    read datafile
 }    concatwav
 /*********************** vector *******************/    freqsummary
 double *vector(int nl, int nh)    if (mle >= 1)
 {      mlikeli
   double *v;    print results files
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));    if mle==1 
   if (!v) nrerror("allocation failure in vector");       computes hessian
   return v-nl+NR_END;    read end of parameter file: agemin, agemax, bage, fage, estepm
 }        begin-prev-date,...
     open gnuplot file
 /************************ free vector ******************/    open html file
 void free_vector(double*v, int nl, int nh)    stable prevalence
 {     for age prevalim()
   free((FREE_ARG)(v+nl-NR_END));    h Pij x
 }    variance of p varprob
     forecasting if prevfcast==1 prevforecast call prevalence()
 /************************ivector *******************************/    health expectancies
 int *ivector(long nl,long nh)    Variance-covariance of DFLE
 {    prevalence()
   int *v;     movingaverage()
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));    varevsij() 
   if (!v) nrerror("allocation failure in ivector");    if popbased==1 varevsij(,popbased)
   return v-nl+NR_END;    total life expectancies
 }    Variance of stable prevalence
    end
 /******************free ivector **************************/  */
 void free_ivector(int *v, long nl, long nh)  
 {  
   free((FREE_ARG)(v+nl-NR_END));  
 }   
   #include <math.h>
 /******************* imatrix *******************************/  #include <stdio.h>
 int **imatrix(long nrl, long nrh, long ncl, long nch)  #include <stdlib.h>
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  #include <string.h>
 {  #include <unistd.h>
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  
   int **m;  #include <limits.h>
    #include <sys/types.h>
   /* allocate pointers to rows */  #include <sys/stat.h>
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  #include <errno.h>
   if (!m) nrerror("allocation failure 1 in matrix()");  extern int errno;
   m += NR_END;  
   m -= nrl;  /* #include <sys/time.h> */
    #include <time.h>
    #include "timeval.h"
   /* allocate rows and set pointers to them */  
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  /* #include <libintl.h> */
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  /* #define _(String) gettext (String) */
   m[nrl] += NR_END;  
   m[nrl] -= ncl;  #define MAXLINE 256
    
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  #define GNUPLOTPROGRAM "gnuplot"
    /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
   /* return pointer to array of pointers to rows */  #define FILENAMELENGTH 132
   return m;  
 }  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
   #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
 /****************** free_imatrix *************************/  
 void free_imatrix(m,nrl,nrh,ncl,nch)  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
       int **m;  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
       long nch,ncl,nrh,nrl;  
      /* free an int matrix allocated by imatrix() */  #define NINTERVMAX 8
 {  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
   free((FREE_ARG) (m+nrl-NR_END));  #define NCOVMAX 8 /* Maximum number of covariates */
 }  #define MAXN 20000
   #define YEARM 12. /* Number of months per year */
 /******************* matrix *******************************/  #define AGESUP 130
 double **matrix(long nrl, long nrh, long ncl, long nch)  #define AGEBASE 40
 {  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  #ifdef UNIX
   double **m;  #define DIRSEPARATOR '/'
   #define CHARSEPARATOR "/"
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  #define ODIRSEPARATOR '\\'
   if (!m) nrerror("allocation failure 1 in matrix()");  #else
   m += NR_END;  #define DIRSEPARATOR '\\'
   m -= nrl;  #define CHARSEPARATOR "\\"
   #define ODIRSEPARATOR '/'
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  #endif
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  
   m[nrl] += NR_END;  /* $Id$ */
   m[nrl] -= ncl;  /* $State$ */
   
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  char version[]="Imach version 0.98c, February 2006, INED-EUROREVES ";
   return m;  char fullversion[]="$Revision$ $Date$"; 
 }  int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
   int nvar;
 /*************************free matrix ************************/  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  int npar=NPARMAX;
 {  int nlstate=2; /* Number of live states */
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  int ndeath=1; /* Number of dead states */
   free((FREE_ARG)(m+nrl-NR_END));  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
 }  int popbased=0;
   
 /******************* ma3x *******************************/  int *wav; /* Number of waves for this individuual 0 is possible */
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  int maxwav; /* Maxim number of waves */
 {  int jmin, jmax; /* min, max spacing between 2 waves */
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  int ijmin, ijmax; /* Individuals having jmin and jmax */ 
   double ***m;  int gipmx, gsw; /* Global variables on the number of contributions 
                      to the likelihood and the sum of weights (done by funcone)*/
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  int mle, weightopt;
   if (!m) nrerror("allocation failure 1 in matrix()");  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
   m += NR_END;  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
   m -= nrl;  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
              * wave mi and wave mi+1 is not an exact multiple of stepm. */
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  double jmean; /* Mean space between 2 waves */
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  double **oldm, **newm, **savm; /* Working pointers to matrices */
   m[nrl] += NR_END;  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
   m[nrl] -= ncl;  FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
   FILE *ficlog, *ficrespow;
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  int globpr; /* Global variable for printing or not */
   double fretone; /* Only one call to likelihood */
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  long ipmx; /* Number of contributions */
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  double sw; /* Sum of weights */
   m[nrl][ncl] += NR_END;  char filerespow[FILENAMELENGTH];
   m[nrl][ncl] -= nll;  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
   for (j=ncl+1; j<=nch; j++)  FILE *ficresilk;
     m[nrl][j]=m[nrl][j-1]+nlay;  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
    FILE *ficresprobmorprev;
   for (i=nrl+1; i<=nrh; i++) {  FILE *fichtm, *fichtmcov; /* Html File */
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  FILE *ficreseij;
     for (j=ncl+1; j<=nch; j++)  char filerese[FILENAMELENGTH];
       m[i][j]=m[i][j-1]+nlay;  FILE  *ficresvij;
   }  char fileresv[FILENAMELENGTH];
   return m;  FILE  *ficresvpl;
 }  char fileresvpl[FILENAMELENGTH];
   char title[MAXLINE];
 /*************************free ma3x ************************/  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
 {  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  char command[FILENAMELENGTH];
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  int  outcmd=0;
   free((FREE_ARG)(m+nrl-NR_END));  
 }  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
   
 /***************** f1dim *************************/  char filelog[FILENAMELENGTH]; /* Log file */
 extern int ncom;  char filerest[FILENAMELENGTH];
 extern double *pcom,*xicom;  char fileregp[FILENAMELENGTH];
 extern double (*nrfunc)(double []);  char popfile[FILENAMELENGTH];
    
 double f1dim(double x)  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
 {  
   int j;  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
   double f;  struct timezone tzp;
   double *xt;  extern int gettimeofday();
    struct tm tmg, tm, tmf, *gmtime(), *localtime();
   xt=vector(1,ncom);  long time_value;
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  extern long time();
   f=(*nrfunc)(xt);  char strcurr[80], strfor[80];
   free_vector(xt,1,ncom);  
   return f;  char *endptr;
 }  long lval;
   
 /*****************brent *************************/  #define NR_END 1
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  #define FREE_ARG char*
 {  #define FTOL 1.0e-10
   int iter;  
   double a,b,d,etemp;  #define NRANSI 
   double fu,fv,fw,fx;  #define ITMAX 200 
   double ftemp;  
   double p,q,r,tol1,tol2,u,v,w,x,xm;  #define TOL 2.0e-4 
   double e=0.0;  
    #define CGOLD 0.3819660 
   a=(ax < cx ? ax : cx);  #define ZEPS 1.0e-10 
   b=(ax > cx ? ax : cx);  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
   x=w=v=bx;  
   fw=fv=fx=(*f)(x);  #define GOLD 1.618034 
   for (iter=1;iter<=ITMAX;iter++) {  #define GLIMIT 100.0 
     xm=0.5*(a+b);  #define TINY 1.0e-20 
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  static double maxarg1,maxarg2;
     printf(".");fflush(stdout);  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
 #ifdef DEBUG  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
 #endif  #define rint(a) floor(a+0.5)
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  
       *xmin=x;  static double sqrarg;
       return fx;  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
     }  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
     ftemp=fu;  int agegomp= AGEGOMP;
     if (fabs(e) > tol1) {  
       r=(x-w)*(fx-fv);  int imx; 
       q=(x-v)*(fx-fw);  int stepm=1;
       p=(x-v)*q-(x-w)*r;  /* Stepm, step in month: minimum step interpolation*/
       q=2.0*(q-r);  
       if (q > 0.0) p = -p;  int estepm;
       q=fabs(q);  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
       etemp=e;  
       e=d;  int m,nb;
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  long *num;
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
       else {  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
         d=p/q;  double **pmmij, ***probs;
         u=x+d;  double *ageexmed,*agecens;
         if (u-a < tol2 || b-u < tol2)  double dateintmean=0;
           d=SIGN(tol1,xm-x);  
       }  double *weight;
     } else {  int **s; /* Status */
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  double *agedc, **covar, idx;
     }  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  double *lsurv, *lpop, *tpop;
     fu=(*f)(u);  
     if (fu <= fx) {  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
       if (u >= x) a=x; else b=x;  double ftolhess; /* Tolerance for computing hessian */
       SHFT(v,w,x,u)  
         SHFT(fv,fw,fx,fu)  /**************** split *************************/
         } else {  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
           if (u < x) a=u; else b=u;  {
           if (fu <= fw || w == x) {    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
             v=w;       the name of the file (name), its extension only (ext) and its first part of the name (finame)
             w=u;    */ 
             fv=fw;    char  *ss;                            /* pointer */
             fw=fu;    int   l1, l2;                         /* length counters */
           } else if (fu <= fv || v == x || v == w) {  
             v=u;    l1 = strlen(path );                   /* length of path */
             fv=fu;    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
           }    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
         }    if ( ss == NULL ) {                   /* no directory, so determine current directory */
   }      strcpy( name, path );               /* we got the fullname name because no directory */
   nrerror("Too many iterations in brent");      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
   *xmin=x;        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
   return fx;      /* get current working directory */
 }      /*    extern  char* getcwd ( char *buf , int len);*/
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
 /****************** mnbrak ***********************/        return( GLOCK_ERROR_GETCWD );
       }
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,      /* got dirc from getcwd*/
             double (*func)(double))      printf(" DIRC = %s \n",dirc);
 {    } else {                              /* strip direcotry from path */
   double ulim,u,r,q, dum;      ss++;                               /* after this, the filename */
   double fu;      l2 = strlen( ss );                  /* length of filename */
        if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
   *fa=(*func)(*ax);      strcpy( name, ss );         /* save file name */
   *fb=(*func)(*bx);      strncpy( dirc, path, l1 - l2 );     /* now the directory */
   if (*fb > *fa) {      dirc[l1-l2] = 0;                    /* add zero */
     SHFT(dum,*ax,*bx,dum)      printf(" DIRC2 = %s \n",dirc);
       SHFT(dum,*fb,*fa,dum)    }
       }    /* We add a separator at the end of dirc if not exists */
   *cx=(*bx)+GOLD*(*bx-*ax);    l1 = strlen( dirc );                  /* length of directory */
   *fc=(*func)(*cx);    if( dirc[l1-1] != DIRSEPARATOR ){
   while (*fb > *fc) {      dirc[l1] =  DIRSEPARATOR;
     r=(*bx-*ax)*(*fb-*fc);      dirc[l1+1] = 0; 
     q=(*bx-*cx)*(*fb-*fa);      printf(" DIRC3 = %s \n",dirc);
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/    }
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));    ss = strrchr( name, '.' );            /* find last / */
     ulim=(*bx)+GLIMIT*(*cx-*bx);    if (ss >0){
     if ((*bx-u)*(u-*cx) > 0.0) {      ss++;
       fu=(*func)(u);      strcpy(ext,ss);                     /* save extension */
     } else if ((*cx-u)*(u-ulim) > 0.0) {      l1= strlen( name);
       fu=(*func)(u);      l2= strlen(ss)+1;
       if (fu < *fc) {      strncpy( finame, name, l1-l2);
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))      finame[l1-l2]= 0;
           SHFT(*fb,*fc,fu,(*func)(u))    }
           }  
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {    return( 0 );                          /* we're done */
       u=ulim;  }
       fu=(*func)(u);  
     } else {  
       u=(*cx)+GOLD*(*cx-*bx);  /******************************************/
       fu=(*func)(u);  
     }  void replace_back_to_slash(char *s, char*t)
     SHFT(*ax,*bx,*cx,u)  {
       SHFT(*fa,*fb,*fc,fu)    int i;
       }    int lg=0;
 }    i=0;
     lg=strlen(t);
 /*************** linmin ************************/    for(i=0; i<= lg; i++) {
       (s[i] = t[i]);
 int ncom;      if (t[i]== '\\') s[i]='/';
 double *pcom,*xicom;    }
 double (*nrfunc)(double []);  }
    
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))  int nbocc(char *s, char occ)
 {  {
   double brent(double ax, double bx, double cx,    int i,j=0;
                double (*f)(double), double tol, double *xmin);    int lg=20;
   double f1dim(double x);    i=0;
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,    lg=strlen(s);
               double *fc, double (*func)(double));    for(i=0; i<= lg; i++) {
   int j;    if  (s[i] == occ ) j++;
   double xx,xmin,bx,ax;    }
   double fx,fb,fa;    return j;
    }
   ncom=n;  
   pcom=vector(1,n);  void cutv(char *u,char *v, char*t, char occ)
   xicom=vector(1,n);  {
   nrfunc=func;    /* cuts string t into u and v where u ends before first occurence of char 'occ' 
   for (j=1;j<=n;j++) {       and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
     pcom[j]=p[j];       gives u="abcedf" and v="ghi2j" */
     xicom[j]=xi[j];    int i,lg,j,p=0;
   }    i=0;
   ax=0.0;    for(j=0; j<=strlen(t)-1; j++) {
   xx=1.0;      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);    }
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);  
 #ifdef DEBUG    lg=strlen(t);
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    for(j=0; j<p; j++) {
 #endif      (u[j] = t[j]);
   for (j=1;j<=n;j++) {    }
     xi[j] *= xmin;       u[p]='\0';
     p[j] += xi[j];  
   }     for(j=0; j<= lg; j++) {
   free_vector(xicom,1,n);      if (j>=(p+1))(v[j-p-1] = t[j]);
   free_vector(pcom,1,n);    }
 }  }
   
 /*************** powell ************************/  /********************** nrerror ********************/
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,  
             double (*func)(double []))  void nrerror(char error_text[])
 {  {
   void linmin(double p[], double xi[], int n, double *fret,    fprintf(stderr,"ERREUR ...\n");
               double (*func)(double []));    fprintf(stderr,"%s\n",error_text);
   int i,ibig,j;    exit(EXIT_FAILURE);
   double del,t,*pt,*ptt,*xit;  }
   double fp,fptt;  /*********************** vector *******************/
   double *xits;  double *vector(int nl, int nh)
   pt=vector(1,n);  {
   ptt=vector(1,n);    double *v;
   xit=vector(1,n);    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
   xits=vector(1,n);    if (!v) nrerror("allocation failure in vector");
   *fret=(*func)(p);    return v-nl+NR_END;
   for (j=1;j<=n;j++) pt[j]=p[j];  }
   for (*iter=1;;++(*iter)) {  
     fp=(*fret);  /************************ free vector ******************/
     ibig=0;  void free_vector(double*v, int nl, int nh)
     del=0.0;  {
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);    free((FREE_ARG)(v+nl-NR_END));
     for (i=1;i<=n;i++)  }
       printf(" %d %.12f",i, p[i]);  
     printf("\n");  /************************ivector *******************************/
     for (i=1;i<=n;i++) {  int *ivector(long nl,long nh)
       for (j=1;j<=n;j++) xit[j]=xi[j][i];  {
       fptt=(*fret);    int *v;
 #ifdef DEBUG    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
       printf("fret=%lf \n",*fret);    if (!v) nrerror("allocation failure in ivector");
 #endif    return v-nl+NR_END;
       printf("%d",i);fflush(stdout);  }
       linmin(p,xit,n,fret,func);  
       if (fabs(fptt-(*fret)) > del) {  /******************free ivector **************************/
         del=fabs(fptt-(*fret));  void free_ivector(int *v, long nl, long nh)
         ibig=i;  {
       }    free((FREE_ARG)(v+nl-NR_END));
 #ifdef DEBUG  }
       printf("%d %.12e",i,(*fret));  
       for (j=1;j<=n;j++) {  /************************lvector *******************************/
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);  long *lvector(long nl,long nh)
         printf(" x(%d)=%.12e",j,xit[j]);  {
       }    long *v;
       for(j=1;j<=n;j++)    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
         printf(" p=%.12e",p[j]);    if (!v) nrerror("allocation failure in ivector");
       printf("\n");    return v-nl+NR_END;
 #endif  }
     }  
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {  /******************free lvector **************************/
 #ifdef DEBUG  void free_lvector(long *v, long nl, long nh)
       int k[2],l;  {
       k[0]=1;    free((FREE_ARG)(v+nl-NR_END));
       k[1]=-1;  }
       printf("Max: %.12e",(*func)(p));  
       for (j=1;j<=n;j++)  /******************* imatrix *******************************/
         printf(" %.12e",p[j]);  int **imatrix(long nrl, long nrh, long ncl, long nch) 
       printf("\n");       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
       for(l=0;l<=1;l++) {  { 
         for (j=1;j<=n;j++) {    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];    int **m; 
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);    
         }    /* allocate pointers to rows */ 
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
       }    if (!m) nrerror("allocation failure 1 in matrix()"); 
 #endif    m += NR_END; 
     m -= nrl; 
     
       free_vector(xit,1,n);    
       free_vector(xits,1,n);    /* allocate rows and set pointers to them */ 
       free_vector(ptt,1,n);    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
       free_vector(pt,1,n);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
       return;    m[nrl] += NR_END; 
     }    m[nrl] -= ncl; 
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");    
     for (j=1;j<=n;j++) {    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
       ptt[j]=2.0*p[j]-pt[j];    
       xit[j]=p[j]-pt[j];    /* return pointer to array of pointers to rows */ 
       pt[j]=p[j];    return m; 
     }  } 
     fptt=(*func)(ptt);  
     if (fptt < fp) {  /****************** free_imatrix *************************/
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);  void free_imatrix(m,nrl,nrh,ncl,nch)
       if (t < 0.0) {        int **m;
         linmin(p,xit,n,fret,func);        long nch,ncl,nrh,nrl; 
         for (j=1;j<=n;j++) {       /* free an int matrix allocated by imatrix() */ 
           xi[j][ibig]=xi[j][n];  { 
           xi[j][n]=xit[j];    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
         }    free((FREE_ARG) (m+nrl-NR_END)); 
 #ifdef DEBUG  } 
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  
         for(j=1;j<=n;j++)  /******************* matrix *******************************/
           printf(" %.12e",xit[j]);  double **matrix(long nrl, long nrh, long ncl, long nch)
         printf("\n");  {
 #endif    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
       }    double **m;
     }  
   }    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
 }    if (!m) nrerror("allocation failure 1 in matrix()");
     m += NR_END;
 /**** Prevalence limit ****************/    m -= nrl;
   
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
 {    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit    m[nrl] += NR_END;
      matrix by transitions matrix until convergence is reached */    m[nrl] -= ncl;
   
   int i, ii,j,k;    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   double min, max, maxmin, maxmax,sumnew=0.;    return m;
   double **matprod2();    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
   double **out, cov[NCOVMAX], **pmij();     */
   double **newm;  }
   double agefin, delaymax=50 ; /* Max number of years to converge */  
   /*************************free matrix ************************/
   for (ii=1;ii<=nlstate+ndeath;ii++)  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
     for (j=1;j<=nlstate+ndeath;j++){  {
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);    free((FREE_ARG)(m[nrl]+ncl-NR_END));
     }    free((FREE_ARG)(m+nrl-NR_END));
   }
    cov[1]=1.;  
    /******************* ma3x *******************************/
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){  {
     newm=savm;    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
     /* Covariates have to be included here again */    double ***m;
      cov[2]=agefin;  
      m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
       for (k=1; k<=cptcovn;k++) {    if (!m) nrerror("allocation failure 1 in matrix()");
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][k]];    m += NR_END;
     m -= nrl;
 /*printf("Tcode[ij]=%d nbcode=%d\n",Tcode[ij],nbcode[k][Tcode[ij]]);*/  
       }    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
       for (k=1; k<=cptcovage;k++)    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    m[nrl] += NR_END;
        m[nrl] -= ncl;
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);  
     for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
     savm=oldm;  
     oldm=newm;    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
     maxmax=0.;    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
     for(j=1;j<=nlstate;j++){    m[nrl][ncl] += NR_END;
       min=1.;    m[nrl][ncl] -= nll;
       max=0.;    for (j=ncl+1; j<=nch; j++) 
       for(i=1; i<=nlstate; i++) {      m[nrl][j]=m[nrl][j-1]+nlay;
         sumnew=0;    
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];    for (i=nrl+1; i<=nrh; i++) {
         prlim[i][j]= newm[i][j]/(1-sumnew);      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
         max=FMAX(max,prlim[i][j]);      for (j=ncl+1; j<=nch; j++) 
         min=FMIN(min,prlim[i][j]);        m[i][j]=m[i][j-1]+nlay;
       }    }
       maxmin=max-min;    return m; 
       maxmax=FMAX(maxmax,maxmin);    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
     }             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
     if(maxmax < ftolpl){    */
       return prlim;  }
     }  
   }  /*************************free ma3x ************************/
 }  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
   {
 /*************** transition probabilities **********/    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
     free((FREE_ARG)(m[nrl]+ncl-NR_END));
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )    free((FREE_ARG)(m+nrl-NR_END));
 {  }
   double s1, s2;  
   /*double t34;*/  /*************** function subdirf ***********/
   int i,j,j1, nc, ii, jj;  char *subdirf(char fileres[])
   {
     for(i=1; i<= nlstate; i++){    /* Caution optionfilefiname is hidden */
     for(j=1; j<i;j++){    strcpy(tmpout,optionfilefiname);
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    strcat(tmpout,"/"); /* Add to the right */
         /*s2 += param[i][j][nc]*cov[nc];*/    strcat(tmpout,fileres);
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    return tmpout;
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/  }
       }  
       ps[i][j]=s2;  /*************** function subdirf2 ***********/
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/  char *subdirf2(char fileres[], char *preop)
     }  {
     for(j=i+1; j<=nlstate+ndeath;j++){    
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    /* Caution optionfilefiname is hidden */
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    strcpy(tmpout,optionfilefiname);
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/    strcat(tmpout,"/");
       }    strcat(tmpout,preop);
       ps[i][j]=s2;    strcat(tmpout,fileres);
     }    return tmpout;
   }  }
   for(i=1; i<= nlstate; i++){  
      s1=0;  /*************** function subdirf3 ***********/
     for(j=1; j<i; j++)  char *subdirf3(char fileres[], char *preop, char *preop2)
       s1+=exp(ps[i][j]);  {
     for(j=i+1; j<=nlstate+ndeath; j++)    
       s1+=exp(ps[i][j]);    /* Caution optionfilefiname is hidden */
     ps[i][i]=1./(s1+1.);    strcpy(tmpout,optionfilefiname);
     for(j=1; j<i; j++)    strcat(tmpout,"/");
       ps[i][j]= exp(ps[i][j])*ps[i][i];    strcat(tmpout,preop);
     for(j=i+1; j<=nlstate+ndeath; j++)    strcat(tmpout,preop2);
       ps[i][j]= exp(ps[i][j])*ps[i][i];    strcat(tmpout,fileres);
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */    return tmpout;
   } /* end i */  }
   
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){  /***************** f1dim *************************/
     for(jj=1; jj<= nlstate+ndeath; jj++){  extern int ncom; 
       ps[ii][jj]=0;  extern double *pcom,*xicom;
       ps[ii][ii]=1;  extern double (*nrfunc)(double []); 
     }   
   }  double f1dim(double x) 
   { 
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){    int j; 
     for(jj=1; jj<= nlstate+ndeath; jj++){    double f;
      printf("%lf ",ps[ii][jj]);    double *xt; 
    }   
     printf("\n ");    xt=vector(1,ncom); 
     }    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
     printf("\n ");printf("%lf ",cov[2]);*/    f=(*nrfunc)(xt); 
 /*    free_vector(xt,1,ncom); 
   for(i=1; i<= npar; i++) printf("%f ",x[i]);    return f; 
   goto end;*/  } 
     return ps;  
 }  /*****************brent *************************/
   double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
 /**************** Product of 2 matrices ******************/  { 
     int iter; 
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)    double a,b,d,etemp;
 {    double fu,fv,fw,fx;
   /* Computes the matric product of in(1,nrh-nrl+1)(1,nch-ncl+1) times    double ftemp;
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */    double p,q,r,tol1,tol2,u,v,w,x,xm; 
   /* in, b, out are matrice of pointers which should have been initialized    double e=0.0; 
      before: only the contents of out is modified. The function returns   
      a pointer to pointers identical to out */    a=(ax < cx ? ax : cx); 
   long i, j, k;    b=(ax > cx ? ax : cx); 
   for(i=nrl; i<= nrh; i++)    x=w=v=bx; 
     for(k=ncolol; k<=ncoloh; k++)    fw=fv=fx=(*f)(x); 
       for(j=ncl,out[i][k]=0.; j<=nch; j++)    for (iter=1;iter<=ITMAX;iter++) { 
         out[i][k] +=in[i][j]*b[j][k];      xm=0.5*(a+b); 
       tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
   return out;      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
 }      printf(".");fflush(stdout);
       fprintf(ficlog,".");fflush(ficlog);
   #ifdef DEBUG
 /************* Higher Matrix Product ***************/      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
 {  #endif
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
      duration (i.e. until        *xmin=x; 
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.        return fx; 
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step      } 
      (typically every 2 years instead of every month which is too big).      ftemp=fu;
      Model is determined by parameters x and covariates have to be      if (fabs(e) > tol1) { 
      included manually here.        r=(x-w)*(fx-fv); 
         q=(x-v)*(fx-fw); 
      */        p=(x-v)*q-(x-w)*r; 
         q=2.0*(q-r); 
   int i, j, d, h, k;        if (q > 0.0) p = -p; 
   double **out, cov[NCOVMAX];        q=fabs(q); 
   double **newm;        etemp=e; 
         e=d; 
   /* Hstepm could be zero and should return the unit matrix */        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
   for (i=1;i<=nlstate+ndeath;i++)          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
     for (j=1;j<=nlstate+ndeath;j++){        else { 
       oldm[i][j]=(i==j ? 1.0 : 0.0);          d=p/q; 
       po[i][j][0]=(i==j ? 1.0 : 0.0);          u=x+d; 
     }          if (u-a < tol2 || b-u < tol2) 
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */            d=SIGN(tol1,xm-x); 
   for(h=1; h <=nhstepm; h++){        } 
     for(d=1; d <=hstepm; d++){      } else { 
       newm=savm;        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
       /* Covariates have to be included here again */      } 
       cov[1]=1.;      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;      fu=(*f)(u); 
       if (cptcovn>0){      if (fu <= fx) { 
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][k]];        if (u >= x) a=x; else b=x; 
     }        SHFT(v,w,x,u) 
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/          SHFT(fv,fw,fx,fu) 
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/          } else { 
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,            if (u < x) a=u; else b=u; 
                    pmij(pmmij,cov,ncovmodel,x,nlstate));            if (fu <= fw || w == x) { 
       savm=oldm;              v=w; 
       oldm=newm;              w=u; 
     }              fv=fw; 
     for(i=1; i<=nlstate+ndeath; i++)              fw=fu; 
       for(j=1;j<=nlstate+ndeath;j++) {            } else if (fu <= fv || v == x || v == w) { 
         po[i][j][h]=newm[i][j];              v=u; 
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);              fv=fu; 
          */            } 
       }          } 
   } /* end h */    } 
   return po;    nrerror("Too many iterations in brent"); 
 }    *xmin=x; 
     return fx; 
   } 
 /*************** log-likelihood *************/  
 double func( double *x)  /****************** mnbrak ***********************/
 {  
   int i, ii, j, k, mi, d, kk;  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
   double l, ll[NLSTATEMAX], cov[NCOVMAX];              double (*func)(double)) 
   double **out;  { 
   double sw; /* Sum of weights */    double ulim,u,r,q, dum;
   double lli; /* Individual log likelihood */    double fu; 
   long ipmx;   
   /*extern weight */    *fa=(*func)(*ax); 
   /* We are differentiating ll according to initial status */    *fb=(*func)(*bx); 
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/    if (*fb > *fa) { 
   /*for(i=1;i<imx;i++)      SHFT(dum,*ax,*bx,dum) 
 printf(" %d\n",s[4][i]);        SHFT(dum,*fb,*fa,dum) 
   */        } 
   cov[1]=1.;    *cx=(*bx)+GOLD*(*bx-*ax); 
     *fc=(*func)(*cx); 
   for(k=1; k<=nlstate; k++) ll[k]=0.;    while (*fb > *fc) { 
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){      r=(*bx-*ax)*(*fb-*fc); 
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];      q=(*bx-*cx)*(*fb-*fa); 
        for(mi=1; mi<= wav[i]-1; mi++){      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
       for (ii=1;ii<=nlstate+ndeath;ii++)        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);      ulim=(*bx)+GLIMIT*(*cx-*bx); 
             for(d=0; d<dh[mi][i]; d++){      if ((*bx-u)*(u-*cx) > 0.0) { 
               newm=savm;        fu=(*func)(u); 
               cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;      } else if ((*cx-u)*(u-ulim) > 0.0) { 
               for (kk=1; kk<=cptcovage;kk++) {        fu=(*func)(u); 
                  cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];        if (fu < *fc) { 
                  /*printf("%d %d",kk,Tage[kk]);*/          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
               }            SHFT(*fb,*fc,fu,(*func)(u)) 
               /*cov[4]=covar[1][i]*cov[2];scanf("%d", i);*/            } 
               /*cov[3]=pow(cov[2],2)/1000.;*/      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
         u=ulim; 
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,        fu=(*func)(u); 
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));      } else { 
           savm=oldm;        u=(*cx)+GOLD*(*cx-*bx); 
           oldm=newm;        fu=(*func)(u); 
       } 
       SHFT(*ax,*bx,*cx,u) 
       } /* end mult */        SHFT(*fa,*fb,*fc,fu) 
            } 
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);  } 
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/  
       ipmx +=1;  /*************** linmin ************************/
       sw += weight[i];  
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;  int ncom; 
     } /* end of wave */  double *pcom,*xicom;
   } /* end of individual */  double (*nrfunc)(double []); 
    
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */  { 
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */    double brent(double ax, double bx, double cx, 
   return -l;                 double (*f)(double), double tol, double *xmin); 
 }    double f1dim(double x); 
     void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
                 double *fc, double (*func)(double)); 
 /*********** Maximum Likelihood Estimation ***************/    int j; 
     double xx,xmin,bx,ax; 
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))    double fx,fb,fa;
 {   
   int i,j, iter;    ncom=n; 
   double **xi,*delti;    pcom=vector(1,n); 
   double fret;    xicom=vector(1,n); 
   xi=matrix(1,npar,1,npar);    nrfunc=func; 
   for (i=1;i<=npar;i++)    for (j=1;j<=n;j++) { 
     for (j=1;j<=npar;j++)      pcom[j]=p[j]; 
       xi[i][j]=(i==j ? 1.0 : 0.0);      xicom[j]=xi[j]; 
   printf("Powell\n");    } 
   powell(p,xi,npar,ftol,&iter,&fret,func);    ax=0.0; 
     xx=1.0; 
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f ",iter,func(p));    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
   #ifdef DEBUG
 }    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
     fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
 /**** Computes Hessian and covariance matrix ***/  #endif
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))    for (j=1;j<=n;j++) { 
 {      xi[j] *= xmin; 
   double  **a,**y,*x,pd;      p[j] += xi[j]; 
   double **hess;    } 
   int i, j,jk;    free_vector(xicom,1,n); 
   int *indx;    free_vector(pcom,1,n); 
   } 
   double hessii(double p[], double delta, int theta, double delti[]);  
   double hessij(double p[], double delti[], int i, int j);  char *asc_diff_time(long time_sec, char ascdiff[])
   void lubksb(double **a, int npar, int *indx, double b[]) ;  {
   void ludcmp(double **a, int npar, int *indx, double *d) ;    long sec_left, days, hours, minutes;
     days = (time_sec) / (60*60*24);
     sec_left = (time_sec) % (60*60*24);
   hess=matrix(1,npar,1,npar);    hours = (sec_left) / (60*60) ;
     sec_left = (sec_left) %(60*60);
   printf("\nCalculation of the hessian matrix. Wait...\n");    minutes = (sec_left) /60;
   for (i=1;i<=npar;i++){    sec_left = (sec_left) % (60);
     printf("%d",i);fflush(stdout);    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
     hess[i][i]=hessii(p,ftolhess,i,delti);    return ascdiff;
     /*printf(" %f ",p[i]);*/  }
   }  
   /*************** powell ************************/
   for (i=1;i<=npar;i++) {  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
     for (j=1;j<=npar;j++)  {              double (*func)(double [])) 
       if (j>i) {  { 
         printf(".%d%d",i,j);fflush(stdout);    void linmin(double p[], double xi[], int n, double *fret, 
         hess[i][j]=hessij(p,delti,i,j);                double (*func)(double [])); 
         hess[j][i]=hess[i][j];    int i,ibig,j; 
       }    double del,t,*pt,*ptt,*xit;
     }    double fp,fptt;
   }    double *xits;
   printf("\n");    int niterf, itmp;
   
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");    pt=vector(1,n); 
      ptt=vector(1,n); 
   a=matrix(1,npar,1,npar);    xit=vector(1,n); 
   y=matrix(1,npar,1,npar);    xits=vector(1,n); 
   x=vector(1,npar);    *fret=(*func)(p); 
   indx=ivector(1,npar);    for (j=1;j<=n;j++) pt[j]=p[j]; 
   for (i=1;i<=npar;i++)    for (*iter=1;;++(*iter)) { 
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];      fp=(*fret); 
   ludcmp(a,npar,indx,&pd);      ibig=0; 
       del=0.0; 
   for (j=1;j<=npar;j++) {      last_time=curr_time;
     for (i=1;i<=npar;i++) x[i]=0;      (void) gettimeofday(&curr_time,&tzp);
     x[j]=1;      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
     lubksb(a,npar,indx,x);      /*    fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);
     for (i=1;i<=npar;i++){      fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);
       matcov[i][j]=x[i];      */
     }     for (i=1;i<=n;i++) {
   }        printf(" %d %.12f",i, p[i]);
         fprintf(ficlog," %d %.12lf",i, p[i]);
   printf("\n#Hessian matrix#\n");        fprintf(ficrespow," %.12lf", p[i]);
   for (i=1;i<=npar;i++) {      }
     for (j=1;j<=npar;j++) {      printf("\n");
       printf("%.3e ",hess[i][j]);      fprintf(ficlog,"\n");
     }      fprintf(ficrespow,"\n");fflush(ficrespow);
     printf("\n");      if(*iter <=3){
   }        tm = *localtime(&curr_time.tv_sec);
         strcpy(strcurr,asctime(&tm));
   /* Recompute Inverse */  /*       asctime_r(&tm,strcurr); */
   for (i=1;i<=npar;i++)        forecast_time=curr_time; 
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];        itmp = strlen(strcurr);
   ludcmp(a,npar,indx,&pd);        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
           strcurr[itmp-1]='\0';
   /*  printf("\n#Hessian matrix recomputed#\n");        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
         fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
   for (j=1;j<=npar;j++) {        for(niterf=10;niterf<=30;niterf+=10){
     for (i=1;i<=npar;i++) x[i]=0;          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
     x[j]=1;          tmf = *localtime(&forecast_time.tv_sec);
     lubksb(a,npar,indx,x);  /*      asctime_r(&tmf,strfor); */
     for (i=1;i<=npar;i++){          strcpy(strfor,asctime(&tmf));
       y[i][j]=x[i];          itmp = strlen(strfor);
       printf("%.3e ",y[i][j]);          if(strfor[itmp-1]=='\n')
     }          strfor[itmp-1]='\0';
     printf("\n");          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
   }          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
   */        }
       }
   free_matrix(a,1,npar,1,npar);      for (i=1;i<=n;i++) { 
   free_matrix(y,1,npar,1,npar);        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
   free_vector(x,1,npar);        fptt=(*fret); 
   free_ivector(indx,1,npar);  #ifdef DEBUG
   free_matrix(hess,1,npar,1,npar);        printf("fret=%lf \n",*fret);
         fprintf(ficlog,"fret=%lf \n",*fret);
   #endif
 }        printf("%d",i);fflush(stdout);
         fprintf(ficlog,"%d",i);fflush(ficlog);
 /*************** hessian matrix ****************/        linmin(p,xit,n,fret,func); 
 double hessii( double x[], double delta, int theta, double delti[])        if (fabs(fptt-(*fret)) > del) { 
 {          del=fabs(fptt-(*fret)); 
   int i;          ibig=i; 
   int l=1, lmax=20;        } 
   double k1,k2;  #ifdef DEBUG
   double p2[NPARMAX+1];        printf("%d %.12e",i,(*fret));
   double res;        fprintf(ficlog,"%d %.12e",i,(*fret));
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;        for (j=1;j<=n;j++) {
   double fx;          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
   int k=0,kmax=10;          printf(" x(%d)=%.12e",j,xit[j]);
   double l1;          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
         }
   fx=func(x);        for(j=1;j<=n;j++) {
   for (i=1;i<=npar;i++) p2[i]=x[i];          printf(" p=%.12e",p[j]);
   for(l=0 ; l <=lmax; l++){          fprintf(ficlog," p=%.12e",p[j]);
     l1=pow(10,l);        }
     delts=delt;        printf("\n");
     for(k=1 ; k <kmax; k=k+1){        fprintf(ficlog,"\n");
       delt = delta*(l1*k);  #endif
       p2[theta]=x[theta] +delt;      } 
       k1=func(p2)-fx;      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
       p2[theta]=x[theta]-delt;  #ifdef DEBUG
       k2=func(p2)-fx;        int k[2],l;
       /*res= (k1-2.0*fx+k2)/delt/delt; */        k[0]=1;
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */        k[1]=-1;
              printf("Max: %.12e",(*func)(p));
 #ifdef DEBUG        fprintf(ficlog,"Max: %.12e",(*func)(p));
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);        for (j=1;j<=n;j++) {
 #endif          printf(" %.12e",p[j]);
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */          fprintf(ficlog," %.12e",p[j]);
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){        }
         k=kmax;        printf("\n");
       }        fprintf(ficlog,"\n");
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */        for(l=0;l<=1;l++) {
         k=kmax; l=lmax*10.;          for (j=1;j<=n;j++) {
       }            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
         delts=delt;            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
       }          }
     }          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   }          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   delti[theta]=delts;        }
   return res;  #endif
    
 }  
         free_vector(xit,1,n); 
 double hessij( double x[], double delti[], int thetai,int thetaj)        free_vector(xits,1,n); 
 {        free_vector(ptt,1,n); 
   int i;        free_vector(pt,1,n); 
   int l=1, l1, lmax=20;        return; 
   double k1,k2,k3,k4,res,fx;      } 
   double p2[NPARMAX+1];      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
   int k;      for (j=1;j<=n;j++) { 
         ptt[j]=2.0*p[j]-pt[j]; 
   fx=func(x);        xit[j]=p[j]-pt[j]; 
   for (k=1; k<=2; k++) {        pt[j]=p[j]; 
     for (i=1;i<=npar;i++) p2[i]=x[i];      } 
     p2[thetai]=x[thetai]+delti[thetai]/k;      fptt=(*func)(ptt); 
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;      if (fptt < fp) { 
     k1=func(p2)-fx;        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
          if (t < 0.0) { 
     p2[thetai]=x[thetai]+delti[thetai]/k;          linmin(p,xit,n,fret,func); 
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;          for (j=1;j<=n;j++) { 
     k2=func(p2)-fx;            xi[j][ibig]=xi[j][n]; 
              xi[j][n]=xit[j]; 
     p2[thetai]=x[thetai]-delti[thetai]/k;          }
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;  #ifdef DEBUG
     k3=func(p2)-fx;          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
            fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
     p2[thetai]=x[thetai]-delti[thetai]/k;          for(j=1;j<=n;j++){
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;            printf(" %.12e",xit[j]);
     k4=func(p2)-fx;            fprintf(ficlog," %.12e",xit[j]);
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */          }
 #ifdef DEBUG          printf("\n");
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);          fprintf(ficlog,"\n");
 #endif  #endif
   }        }
   return res;      } 
 }    } 
   } 
 /************** Inverse of matrix **************/  
 void ludcmp(double **a, int n, int *indx, double *d)  /**** Prevalence limit (stable prevalence)  ****************/
 {  
   int i,imax,j,k;  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
   double big,dum,sum,temp;  {
   double *vv;    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
         matrix by transitions matrix until convergence is reached */
   vv=vector(1,n);  
   *d=1.0;    int i, ii,j,k;
   for (i=1;i<=n;i++) {    double min, max, maxmin, maxmax,sumnew=0.;
     big=0.0;    double **matprod2();
     for (j=1;j<=n;j++)    double **out, cov[NCOVMAX], **pmij();
       if ((temp=fabs(a[i][j])) > big) big=temp;    double **newm;
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");    double agefin, delaymax=50 ; /* Max number of years to converge */
     vv[i]=1.0/big;  
   }    for (ii=1;ii<=nlstate+ndeath;ii++)
   for (j=1;j<=n;j++) {      for (j=1;j<=nlstate+ndeath;j++){
     for (i=1;i<j;i++) {        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       sum=a[i][j];      }
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];  
       a[i][j]=sum;     cov[1]=1.;
     }   
     big=0.0;   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     for (i=j;i<=n;i++) {    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
       sum=a[i][j];      newm=savm;
       for (k=1;k<j;k++)      /* Covariates have to be included here again */
         sum -= a[i][k]*a[k][j];       cov[2]=agefin;
       a[i][j]=sum;    
       if ( (dum=vv[i]*fabs(sum)) >= big) {        for (k=1; k<=cptcovn;k++) {
         big=dum;          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
         imax=i;          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
       }        }
     }        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
     if (j != imax) {        for (k=1; k<=cptcovprod;k++)
       for (k=1;k<=n;k++) {          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
         dum=a[imax][k];  
         a[imax][k]=a[j][k];        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
         a[j][k]=dum;        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
       }        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
       *d = -(*d);      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
       vv[imax]=vv[j];  
     }      savm=oldm;
     indx[j]=imax;      oldm=newm;
     if (a[j][j] == 0.0) a[j][j]=TINY;      maxmax=0.;
     if (j != n) {      for(j=1;j<=nlstate;j++){
       dum=1.0/(a[j][j]);        min=1.;
       for (i=j+1;i<=n;i++) a[i][j] *= dum;        max=0.;
     }        for(i=1; i<=nlstate; i++) {
   }          sumnew=0;
   free_vector(vv,1,n);  /* Doesn't work */          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
 ;          prlim[i][j]= newm[i][j]/(1-sumnew);
 }          max=FMAX(max,prlim[i][j]);
           min=FMIN(min,prlim[i][j]);
 void lubksb(double **a, int n, int *indx, double b[])        }
 {        maxmin=max-min;
   int i,ii=0,ip,j;        maxmax=FMAX(maxmax,maxmin);
   double sum;      }
        if(maxmax < ftolpl){
   for (i=1;i<=n;i++) {        return prlim;
     ip=indx[i];      }
     sum=b[ip];    }
     b[ip]=b[i];  }
     if (ii)  
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];  /*************** transition probabilities ***************/ 
     else if (sum) ii=i;  
     b[i]=sum;  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
   }  {
   for (i=n;i>=1;i--) {    double s1, s2;
     sum=b[i];    /*double t34;*/
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];    int i,j,j1, nc, ii, jj;
     b[i]=sum/a[i][i];  
   }      for(i=1; i<= nlstate; i++){
 }        for(j=1; j<i;j++){
           for (nc=1, s2=0.;nc <=ncovmodel; nc++){
 /************ Frequencies ********************/            /*s2 += param[i][j][nc]*cov[nc];*/
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax)            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
 {  /* Some frequencies */  /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
            }
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;          ps[i][j]=s2;
   double ***freq; /* Frequencies */  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
   double *pp;        }
   double pos;        for(j=i+1; j<=nlstate+ndeath;j++){
   FILE *ficresp;          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
   char fileresp[FILENAMELENGTH];            s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
   /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
   pp=vector(1,nlstate);          }
           ps[i][j]=s2;
   strcpy(fileresp,"p");        }
   strcat(fileresp,fileres);      }
   if((ficresp=fopen(fileresp,"w"))==NULL) {      /*ps[3][2]=1;*/
     printf("Problem with prevalence resultfile: %s\n", fileresp);      
     exit(0);      for(i=1; i<= nlstate; i++){
   }        s1=0;
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);        for(j=1; j<i; j++)
   j1=0;          s1+=exp(ps[i][j]);
         for(j=i+1; j<=nlstate+ndeath; j++)
   j=cptcovn;          s1+=exp(ps[i][j]);
   if (cptcovn<1) {j=1;ncodemax[1]=1;}        ps[i][i]=1./(s1+1.);
         for(j=1; j<i; j++)
   for(k1=1; k1<=j;k1++){          ps[i][j]= exp(ps[i][j])*ps[i][i];
    for(i1=1; i1<=ncodemax[k1];i1++){        for(j=i+1; j<=nlstate+ndeath; j++)
        j1++;          ps[i][j]= exp(ps[i][j])*ps[i][i];
         /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
         for (i=-1; i<=nlstate+ndeath; i++)        } /* end i */
          for (jk=-1; jk<=nlstate+ndeath; jk++)        
            for(m=agemin; m <= agemax+3; m++)      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
              freq[i][jk][m]=0;        for(jj=1; jj<= nlstate+ndeath; jj++){
                  ps[ii][jj]=0;
        for (i=1; i<=imx; i++) {          ps[ii][ii]=1;
          bool=1;        }
          if  (cptcovn>0) {      }
            for (z1=1; z1<=cptcovn; z1++)      
              if (covar[Tvar[z1]][i]!= nbcode[Tvar[z1]][codtab[j1][z1]]) bool=0;  
          }  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
           if (bool==1) {  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
            for(m=firstpass; m<=lastpass-1; m++){  /*         printf("ddd %lf ",ps[ii][jj]); */
              if(agev[m][i]==0) agev[m][i]=agemax+1;  /*       } */
              if(agev[m][i]==1) agev[m][i]=agemax+2;  /*       printf("\n "); */
              freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];  /*        } */
              freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];  /*        printf("\n ");printf("%lf ",cov[2]); */
            }         /*
          }        for(i=1; i<= npar; i++) printf("%f ",x[i]);
        }        goto end;*/
         if  (cptcovn>0) {      return ps;
          fprintf(ficresp, "\n#Variable");  }
          for (z1=1; z1<=cptcovn; z1++) fprintf(ficresp, " V%d=%d",Tvar[z1],nbcode[Tvar[z1]][codtab[j1][z1]]);  
        }  /**************** Product of 2 matrices ******************/
        fprintf(ficresp, "\n#");  
        for(i=1; i<=nlstate;i++)  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);  {
        fprintf(ficresp, "\n");    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
               b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
   for(i=(int)agemin; i <= (int)agemax+3; i++){    /* in, b, out are matrice of pointers which should have been initialized 
     if(i==(int)agemax+3)       before: only the contents of out is modified. The function returns
       printf("Total");       a pointer to pointers identical to out */
     else    long i, j, k;
       printf("Age %d", i);    for(i=nrl; i<= nrh; i++)
     for(jk=1; jk <=nlstate ; jk++){      for(k=ncolol; k<=ncoloh; k++)
       for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)        for(j=ncl,out[i][k]=0.; j<=nch; j++)
         pp[jk] += freq[jk][m][i];          out[i][k] +=in[i][j]*b[j][k];
     }  
     for(jk=1; jk <=nlstate ; jk++){    return out;
       for(m=-1, pos=0; m <=0 ; m++)  }
         pos += freq[jk][m][i];  
       if(pp[jk]>=1.e-10)  
         printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);  /************* Higher Matrix Product ***************/
       else  
         printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
     }  {
     for(jk=1; jk <=nlstate ; jk++){    /* Computes the transition matrix starting at age 'age' over 
       for(m=1, pp[jk]=0; m <=nlstate+ndeath; m++)       'nhstepm*hstepm*stepm' months (i.e. until
         pp[jk] += freq[jk][m][i];       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
     }       nhstepm*hstepm matrices. 
     for(jk=1,pos=0; jk <=nlstate ; jk++)       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
       pos += pp[jk];       (typically every 2 years instead of every month which is too big 
     for(jk=1; jk <=nlstate ; jk++){       for the memory).
       if(pos>=1.e-5)       Model is determined by parameters x and covariates have to be 
         printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);       included manually here. 
       else  
         printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);       */
       if( i <= (int) agemax){  
         if(pos>=1.e-5)    int i, j, d, h, k;
           fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);    double **out, cov[NCOVMAX];
       else    double **newm;
           fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);  
       }    /* Hstepm could be zero and should return the unit matrix */
     }    for (i=1;i<=nlstate+ndeath;i++)
     for(jk=-1; jk <=nlstate+ndeath; jk++)      for (j=1;j<=nlstate+ndeath;j++){
       for(m=-1; m <=nlstate+ndeath; m++)        oldm[i][j]=(i==j ? 1.0 : 0.0);
         if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);        po[i][j][0]=(i==j ? 1.0 : 0.0);
     if(i <= (int) agemax)      }
       fprintf(ficresp,"\n");    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     printf("\n");    for(h=1; h <=nhstepm; h++){
     }      for(d=1; d <=hstepm; d++){
     }        newm=savm;
  }        /* Covariates have to be included here again */
          cov[1]=1.;
   fclose(ficresp);        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   free_vector(pp,1,nlstate);        for (k=1; k<=cptcovage;k++)
           cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
 }  /* End of Freq */        for (k=1; k<=cptcovprod;k++)
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
 /************* Waves Concatenation ***************/  
   
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
 {        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
      Death is a valid wave (if date is known).                     pmij(pmmij,cov,ncovmodel,x,nlstate));
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i        savm=oldm;
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]        oldm=newm;
      and mw[mi+1][i]. dh depends on stepm.      }
      */      for(i=1; i<=nlstate+ndeath; i++)
         for(j=1;j<=nlstate+ndeath;j++) {
   int i, mi, m;          po[i][j][h]=newm[i][j];
   int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
 float sum=0.;           */
         }
   for(i=1; i<=imx; i++){    } /* end h */
     mi=0;    return po;
     m=firstpass;  }
     while(s[m][i] <= nlstate){  
       if(s[m][i]>=1)  
         mw[++mi][i]=m;  /*************** log-likelihood *************/
       if(m >=lastpass)  double func( double *x)
         break;  {
       else    int i, ii, j, k, mi, d, kk;
         m++;    double l, ll[NLSTATEMAX], cov[NCOVMAX];
     }/* end while */    double **out;
     if (s[m][i] > nlstate){    double sw; /* Sum of weights */
       mi++;     /* Death is another wave */    double lli; /* Individual log likelihood */
       /* if(mi==0)  never been interviewed correctly before death */    int s1, s2;
          /* Only death is a correct wave */    double bbh, survp;
       mw[mi][i]=m;    long ipmx;
     }    /*extern weight */
     /* We are differentiating ll according to initial status */
     wav[i]=mi;    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     if(mi==0)    /*for(i=1;i<imx;i++) 
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);      printf(" %d\n",s[4][i]);
   }    */
     cov[1]=1.;
   for(i=1; i<=imx; i++){  
     for(mi=1; mi<wav[i];mi++){    for(k=1; k<=nlstate; k++) ll[k]=0.;
       if (stepm <=0)  
         dh[mi][i]=1;    if(mle==1){
       else{      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         if (s[mw[mi+1][i]][i] > nlstate) {        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);        for(mi=1; mi<= wav[i]-1; mi++){
           if(j=0) j=1;  /* Survives at least one month after exam */          for (ii=1;ii<=nlstate+ndeath;ii++)
         }            for (j=1;j<=nlstate+ndeath;j++){
         else{              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));              savm[ii][j]=(ii==j ? 1.0 : 0.0);
           k=k+1;            }
           if (j >= jmax) jmax=j;          for(d=0; d<dh[mi][i]; d++){
           else if (j <= jmin)jmin=j;            newm=savm;
           sum=sum+j;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         }            for (kk=1; kk<=cptcovage;kk++) {
         jk= j/stepm;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         jl= j -jk*stepm;            }
         ju= j -(jk+1)*stepm;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         if(jl <= -ju)                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           dh[mi][i]=jk;            savm=oldm;
         else            oldm=newm;
           dh[mi][i]=jk+1;          } /* end mult */
         if(dh[mi][i]==0)        
           dh[mi][i]=1; /* At least one step */          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
       }          /* But now since version 0.9 we anticipate for bias at large stepm.
     }           * If stepm is larger than one month (smallest stepm) and if the exact delay 
   }           * (in months) between two waves is not a multiple of stepm, we rounded to 
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,sum/k);           * the nearest (and in case of equal distance, to the lowest) interval but now
 }           * we keep into memory the bias bh[mi][i] and also the previous matrix product
 /*********** Tricode ****************************/           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
 void tricode(int *Tvar, int **nbcode, int imx)           * probability in order to take into account the bias as a fraction of the way
 {           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
   int Ndum[80],ij=1, k, j, i, Ntvar[20];           * -stepm/2 to stepm/2 .
   int cptcode=0;           * For stepm=1 the results are the same as for previous versions of Imach.
   for (k=0; k<79; k++) Ndum[k]=0;           * For stepm > 1 the results are less biased than in previous versions. 
   for (k=1; k<=7; k++) ncodemax[k]=0;           */
           s1=s[mw[mi][i]][i];
   for (j=1; j<=cptcovn; j++) {          s2=s[mw[mi+1][i]][i];
     for (i=1; i<=imx; i++) {          bbh=(double)bh[mi][i]/(double)stepm; 
       ij=(int)(covar[Tvar[j]][i]);          /* bias bh is positive if real duration
       Ndum[ij]++;           * is higher than the multiple of stepm and negative otherwise.
       if (ij > cptcode) cptcode=ij;           */
     }          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
     /*printf("cptcode=%d cptcovn=%d ",cptcode,cptcovn);*/          if( s2 > nlstate){ 
     for (i=0; i<=cptcode; i++) {            /* i.e. if s2 is a death state and if the date of death is known 
       if(Ndum[i]!=0) ncodemax[j]++;               then the contribution to the likelihood is the probability to 
     }               die between last step unit time and current  step unit time, 
                 which is also equal to probability to die before dh 
     ij=1;               minus probability to die before dh-stepm . 
     for (i=1; i<=ncodemax[j]; i++) {               In version up to 0.92 likelihood was computed
       for (k=0; k<=79; k++) {          as if date of death was unknown. Death was treated as any other
         if (Ndum[k] != 0) {          health state: the date of the interview describes the actual state
           nbcode[Tvar[j]][ij]=k;          and not the date of a change in health state. The former idea was
           ij++;          to consider that at each interview the state was recorded
         }          (healthy, disable or death) and IMaCh was corrected; but when we
         if (ij > ncodemax[j]) break;          introduced the exact date of death then we should have modified
       }            the contribution of an exact death to the likelihood. This new
     }          contribution is smaller and very dependent of the step unit
   }            stepm. It is no more the probability to die between last interview
            and month of death but the probability to survive from last
 }          interview up to one month before death multiplied by the
           probability to die within a month. Thanks to Chris
 /*********** Health Expectancies ****************/          Jackson for correcting this bug.  Former versions increased
           mortality artificially. The bad side is that we add another loop
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij)          which slows down the processing. The difference can be up to 10%
 {          lower mortality.
   /* Health expectancies */            */
   int i, j, nhstepm, hstepm, h;            lli=log(out[s1][s2] - savm[s1][s2]);
   double age, agelim,hf;  
   double ***p3mat;  
            } else if  (s2==-2) {
   fprintf(ficreseij,"# Health expectancies\n");            for (j=1,survp=0. ; j<=nlstate; j++) 
   fprintf(ficreseij,"# Age");              survp += out[s1][j];
   for(i=1; i<=nlstate;i++)            lli= survp;
     for(j=1; j<=nlstate;j++)          }
       fprintf(ficreseij," %1d-%1d",i,j);          
   fprintf(ficreseij,"\n");          else if  (s2==-4) {
             for (j=3,survp=0. ; j<=nlstate; j++) 
   hstepm=1*YEARM; /*  Every j years of age (in month) */              survp += out[s1][j];
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */            lli= survp;
           }
   agelim=AGESUP;          
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */          else if  (s2==-5) {
     /* nhstepm age range expressed in number of stepm */            for (j=1,survp=0. ; j<=2; j++) 
     nhstepm=(int) rint((agelim-age)*YEARM/stepm);              survp += out[s1][j];
     /* Typically if 20 years = 20*12/6=40 stepm */            lli= survp;
     if (stepm >= YEARM) hstepm=1;          }
     nhstepm = nhstepm/hstepm;/* Expressed in hstepm, typically 40/4=10 */  
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
     /* Computed by stepm unit matrices, product of hstepm matrices, stored          else{
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);              /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
           } 
           /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
     for(i=1; i<=nlstate;i++)          /*if(lli ==000.0)*/
       for(j=1; j<=nlstate;j++)          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm; h++){          ipmx +=1;
           eij[i][j][(int)age] +=p3mat[i][j][h];          sw += weight[i];
         }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
            } /* end of wave */
     hf=1;      } /* end of individual */
     if (stepm >= YEARM) hf=stepm/YEARM;    }  else if(mle==2){
     fprintf(ficreseij,"%.0f",age );      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     for(i=1; i<=nlstate;i++)        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       for(j=1; j<=nlstate;j++){        for(mi=1; mi<= wav[i]-1; mi++){
         fprintf(ficreseij," %.4f", hf*eij[i][j][(int)age]);          for (ii=1;ii<=nlstate+ndeath;ii++)
       }            for (j=1;j<=nlstate+ndeath;j++){
     fprintf(ficreseij,"\n");              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   }            }
 }          for(d=0; d<=dh[mi][i]; d++){
             newm=savm;
 /************ Variance ******************/            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)            for (kk=1; kk<=cptcovage;kk++) {
 {              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   /* Variance of health expectancies */            }
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   double **newm;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   double **dnewm,**doldm;            savm=oldm;
   int i, j, nhstepm, hstepm, h;            oldm=newm;
   int k, cptcode;          } /* end mult */
    double *xp;        
   double **gp, **gm;          s1=s[mw[mi][i]][i];
   double ***gradg, ***trgradg;          s2=s[mw[mi+1][i]][i];
   double ***p3mat;          bbh=(double)bh[mi][i]/(double)stepm; 
   double age,agelim;          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
   int theta;          ipmx +=1;
           sw += weight[i];
    fprintf(ficresvij,"# Covariances of life expectancies\n");          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   fprintf(ficresvij,"# Age");        } /* end of wave */
   for(i=1; i<=nlstate;i++)      } /* end of individual */
     for(j=1; j<=nlstate;j++)    }  else if(mle==3){  /* exponential inter-extrapolation */
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   fprintf(ficresvij,"\n");        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(mi=1; mi<= wav[i]-1; mi++){
   xp=vector(1,npar);          for (ii=1;ii<=nlstate+ndeath;ii++)
   dnewm=matrix(1,nlstate,1,npar);            for (j=1;j<=nlstate+ndeath;j++){
   doldm=matrix(1,nlstate,1,nlstate);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                savm[ii][j]=(ii==j ? 1.0 : 0.0);
   hstepm=1*YEARM; /* Every year of age */            }
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */          for(d=0; d<dh[mi][i]; d++){
   agelim = AGESUP;            newm=savm;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */            for (kk=1; kk<=cptcovage;kk++) {
     if (stepm >= YEARM) hstepm=1;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */            }
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     gp=matrix(0,nhstepm,1,nlstate);            savm=oldm;
     gm=matrix(0,nhstepm,1,nlstate);            oldm=newm;
           } /* end mult */
     for(theta=1; theta <=npar; theta++){        
       for(i=1; i<=npar; i++){ /* Computes gradient */          s1=s[mw[mi][i]][i];
         xp[i] = x[i] + (i==theta ?delti[theta]:0);          s2=s[mw[mi+1][i]][i];
       }          bbh=(double)bh[mi][i]/(double)stepm; 
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          ipmx +=1;
       for(j=1; j<= nlstate; j++){          sw += weight[i];
         for(h=0; h<=nhstepm; h++){          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)        } /* end of wave */
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];      } /* end of individual */
         }    }else if (mle==4){  /* ml=4 no inter-extrapolation */
       }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
            for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       for(i=1; i<=npar; i++) /* Computes gradient */        for(mi=1; mi<= wav[i]-1; mi++){
         xp[i] = x[i] - (i==theta ?delti[theta]:0);          for (ii=1;ii<=nlstate+ndeath;ii++)
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);              for (j=1;j<=nlstate+ndeath;j++){
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       for(j=1; j<= nlstate; j++){              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         for(h=0; h<=nhstepm; h++){            }
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)          for(d=0; d<dh[mi][i]; d++){
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];            newm=savm;
         }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       }            for (kk=1; kk<=cptcovage;kk++) {
       for(j=1; j<= nlstate; j++)              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         for(h=0; h<=nhstepm; h++){            }
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];          
         }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     } /* End theta */                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             savm=oldm;
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);            oldm=newm;
           } /* end mult */
     for(h=0; h<=nhstepm; h++)        
       for(j=1; j<=nlstate;j++)          s1=s[mw[mi][i]][i];
         for(theta=1; theta <=npar; theta++)          s2=s[mw[mi+1][i]][i];
           trgradg[h][j][theta]=gradg[h][theta][j];          if( s2 > nlstate){ 
             lli=log(out[s1][s2] - savm[s1][s2]);
     for(i=1;i<=nlstate;i++)          }else{
       for(j=1;j<=nlstate;j++)            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
         vareij[i][j][(int)age] =0.;          }
     for(h=0;h<=nhstepm;h++){          ipmx +=1;
       for(k=0;k<=nhstepm;k++){          sw += weight[i];
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
         for(i=1;i<=nlstate;i++)        } /* end of wave */
           for(j=1;j<=nlstate;j++)      } /* end of individual */
             vareij[i][j][(int)age] += doldm[i][j];    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
       }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     h=1;        for(mi=1; mi<= wav[i]-1; mi++){
     if (stepm >= YEARM) h=stepm/YEARM;          for (ii=1;ii<=nlstate+ndeath;ii++)
     fprintf(ficresvij,"%.0f ",age );            for (j=1;j<=nlstate+ndeath;j++){
     for(i=1; i<=nlstate;i++)              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       for(j=1; j<=nlstate;j++){              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         fprintf(ficresvij," %.4f", h*vareij[i][j][(int)age]);            }
       }          for(d=0; d<dh[mi][i]; d++){
     fprintf(ficresvij,"\n");            newm=savm;
     free_matrix(gp,0,nhstepm,1,nlstate);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     free_matrix(gm,0,nhstepm,1,nlstate);            for (kk=1; kk<=cptcovage;kk++) {
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);            }
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          
   } /* End age */            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   free_vector(xp,1,npar);            savm=oldm;
   free_matrix(doldm,1,nlstate,1,npar);            oldm=newm;
   free_matrix(dnewm,1,nlstate,1,nlstate);          } /* end mult */
         
 }          s1=s[mw[mi][i]][i];
           s2=s[mw[mi+1][i]][i];
 /************ Variance of prevlim ******************/          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)          ipmx +=1;
 {          sw += weight[i];
   /* Variance of prevalence limit */          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
   double **newm;        } /* end of wave */
   double **dnewm,**doldm;      } /* end of individual */
   int i, j, nhstepm, hstepm;    } /* End of if */
   int k, cptcode;    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   double *xp;    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   double *gp, *gm;    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   double **gradg, **trgradg;    return -l;
   double age,agelim;  }
   int theta;  
      /*************** log-likelihood *************/
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");  double funcone( double *x)
   fprintf(ficresvpl,"# Age");  {
   for(i=1; i<=nlstate;i++)    /* Same as likeli but slower because of a lot of printf and if */
       fprintf(ficresvpl," %1d-%1d",i,i);    int i, ii, j, k, mi, d, kk;
   fprintf(ficresvpl,"\n");    double l, ll[NLSTATEMAX], cov[NCOVMAX];
     double **out;
   xp=vector(1,npar);    double lli; /* Individual log likelihood */
   dnewm=matrix(1,nlstate,1,npar);    double llt;
   doldm=matrix(1,nlstate,1,nlstate);    int s1, s2;
      double bbh, survp;
   hstepm=1*YEARM; /* Every year of age */    /*extern weight */
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */    /* We are differentiating ll according to initial status */
   agelim = AGESUP;    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    /*for(i=1;i<imx;i++) 
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */      printf(" %d\n",s[4][i]);
     if (stepm >= YEARM) hstepm=1;    */
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    cov[1]=1.;
     gradg=matrix(1,npar,1,nlstate);  
     gp=vector(1,nlstate);    for(k=1; k<=nlstate; k++) ll[k]=0.;
     gm=vector(1,nlstate);  
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     for(theta=1; theta <=npar; theta++){      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       for(i=1; i<=npar; i++){ /* Computes gradient */      for(mi=1; mi<= wav[i]-1; mi++){
         xp[i] = x[i] + (i==theta ?delti[theta]:0);        for (ii=1;ii<=nlstate+ndeath;ii++)
       }          for (j=1;j<=nlstate+ndeath;j++){
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       for(i=1;i<=nlstate;i++)            savm[ii][j]=(ii==j ? 1.0 : 0.0);
         gp[i] = prlim[i][i];          }
            for(d=0; d<dh[mi][i]; d++){
       for(i=1; i<=npar; i++) /* Computes gradient */          newm=savm;
         xp[i] = x[i] - (i==theta ?delti[theta]:0);          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          for (kk=1; kk<=cptcovage;kk++) {
       for(i=1;i<=nlstate;i++)            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         gm[i] = prlim[i][i];          }
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       for(i=1;i<=nlstate;i++)                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];          savm=oldm;
     } /* End theta */          oldm=newm;
         } /* end mult */
     trgradg =matrix(1,nlstate,1,npar);        
         s1=s[mw[mi][i]][i];
     for(j=1; j<=nlstate;j++)        s2=s[mw[mi+1][i]][i];
       for(theta=1; theta <=npar; theta++)        bbh=(double)bh[mi][i]/(double)stepm; 
         trgradg[j][theta]=gradg[theta][j];        /* bias is positive if real duration
          * is higher than the multiple of stepm and negative otherwise.
     for(i=1;i<=nlstate;i++)         */
       varpl[i][(int)age] =0.;        if( s2 > nlstate && (mle <5) ){  /* Jackson */
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);          lli=log(out[s1][s2] - savm[s1][s2]);
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);        } else if (mle==1){
     for(i=1;i<=nlstate;i++)          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */        } else if(mle==2){
           lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
     fprintf(ficresvpl,"%.0f ",age );        } else if(mle==3){  /* exponential inter-extrapolation */
     for(i=1; i<=nlstate;i++)          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));        } else if (mle==4){  /* mle=4 no inter-extrapolation */
     fprintf(ficresvpl,"\n");          lli=log(out[s1][s2]); /* Original formula */
     free_vector(gp,1,nlstate);        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
     free_vector(gm,1,nlstate);          lli=log(out[s1][s2]); /* Original formula */
     free_matrix(gradg,1,npar,1,nlstate);        } /* End of if */
     free_matrix(trgradg,1,nlstate,1,npar);        ipmx +=1;
   } /* End age */        sw += weight[i];
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   free_vector(xp,1,npar);  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
   free_matrix(doldm,1,nlstate,1,npar);        if(globpr){
   free_matrix(dnewm,1,nlstate,1,nlstate);          fprintf(ficresilk,"%9d %6d %1d %1d %1d %1d %3d %10.6f %6.4f\
    %10.6f %10.6f %10.6f ", \
 }                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
                   2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
           for(k=1,llt=0.,l=0.; k<=nlstate; k++){
             llt +=ll[k]*gipmx/gsw;
 /***********************************************/            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
 /**************** Main Program *****************/          }
 /***********************************************/          fprintf(ficresilk," %10.6f\n", -llt);
         }
 /*int main(int argc, char *argv[])*/      } /* end of wave */
 int main()    } /* end of individual */
 {    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
     /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   int i,j, k, n=MAXN,iter,m,size,cptcode, aaa, cptcod;    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   double agedeb, agefin,hf;    if(globpr==0){ /* First time we count the contributions and weights */
   double agemin=1.e20, agemax=-1.e20;      gipmx=ipmx;
       gsw=sw;
   double fret;    }
   double **xi,tmp,delta;    return -l;
   }
   double dum; /* Dummy variable */  
   double ***p3mat;  
   int *indx;  /*************** function likelione ***********/
   char line[MAXLINE], linepar[MAXLINE];  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
   char title[MAXLINE];  {
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];    /* This routine should help understanding what is done with 
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH];       the selection of individuals/waves and
   char filerest[FILENAMELENGTH];       to check the exact contribution to the likelihood.
   char fileregp[FILENAMELENGTH];       Plotting could be done.
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];     */
   int firstobs=1, lastobs=10;    int k;
   int sdeb, sfin; /* Status at beginning and end */  
   int c,  h , cpt,l;    if(*globpri !=0){ /* Just counts and sums, no printings */
   int ju,jl, mi;      strcpy(fileresilk,"ilk"); 
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize;      strcat(fileresilk,fileres);
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
          printf("Problem with resultfile: %s\n", fileresilk);
   int hstepm, nhstepm;        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
   double bage, fage, age, agelim, agebase;      }
   double ftolpl=FTOL;      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
   double **prlim;      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
   double *severity;      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
   double ***param; /* Matrix of parameters */      for(k=1; k<=nlstate; k++) 
   double  *p;        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
   double **matcov; /* Matrix of covariance */      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
   double ***delti3; /* Scale */    }
   double *delti; /* Scale */  
   double ***eij, ***vareij;    *fretone=(*funcone)(p);
   double **varpl; /* Variances of prevalence limits by age */    if(*globpri !=0){
   double *epj, vepp;      fclose(ficresilk);
   char version[80]="Imach version 62c, May 1999, INED-EUROREVES ";      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
   char *alph[]={"a","a","b","c","d","e"}, str[4];      fflush(fichtm); 
     } 
   char z[1]="c", occ;    return;
 #include <sys/time.h>  }
 #include <time.h>  
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];  
   /* long total_usecs;  /*********** Maximum Likelihood Estimation ***************/
   struct timeval start_time, end_time;  
    void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */  {
     int i,j, iter;
     double **xi;
   printf("\nIMACH, Version 0.64a");    double fret;
   printf("\nEnter the parameter file name: ");    double fretone; /* Only one call to likelihood */
     /*  char filerespow[FILENAMELENGTH];*/
 #ifdef windows    xi=matrix(1,npar,1,npar);
   scanf("%s",pathtot);    for (i=1;i<=npar;i++)
   getcwd(pathcd, size);      for (j=1;j<=npar;j++)
   /*cygwin_split_path(pathtot,path,optionfile);        xi[i][j]=(i==j ? 1.0 : 0.0);
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/    printf("Powell\n");  fprintf(ficlog,"Powell\n");
   /* cutv(path,optionfile,pathtot,'\\');*/    strcpy(filerespow,"pow"); 
     strcat(filerespow,fileres);
 split(pathtot, path,optionfile);    if((ficrespow=fopen(filerespow,"w"))==NULL) {
   chdir(path);      printf("Problem with resultfile: %s\n", filerespow);
   replace(pathc,path);      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
 #endif    }
 #ifdef unix    fprintf(ficrespow,"# Powell\n# iter -2*LL");
   scanf("%s",optionfile);    for (i=1;i<=nlstate;i++)
 #endif      for(j=1;j<=nlstate+ndeath;j++)
         if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
 /*-------- arguments in the command line --------*/    fprintf(ficrespow,"\n");
   
   strcpy(fileres,"r");    powell(p,xi,npar,ftol,&iter,&fret,func);
   strcat(fileres, optionfile);  
     free_matrix(xi,1,npar,1,npar);
   /*---------arguments file --------*/    fclose(ficrespow);
     printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
   if((ficpar=fopen(optionfile,"r"))==NULL)    {    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
     printf("Problem with optionfile %s\n",optionfile);    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
     goto end;  
   }  }
   
   strcpy(filereso,"o");  /**** Computes Hessian and covariance matrix ***/
   strcat(filereso,fileres);  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
   if((ficparo=fopen(filereso,"w"))==NULL) {  {
     printf("Problem with Output resultfile: %s\n", filereso);goto end;    double  **a,**y,*x,pd;
   }    double **hess;
     int i, j,jk;
   /* Reads comments: lines beginning with '#' */    int *indx;
   while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
     fgets(line, MAXLINE, ficpar);    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
     puts(line);    void lubksb(double **a, int npar, int *indx, double b[]) ;
     fputs(line,ficparo);    void ludcmp(double **a, int npar, int *indx, double *d) ;
   }    double gompertz(double p[]);
   ungetc(c,ficpar);    hess=matrix(1,npar,1,npar);
   
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncov, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);    printf("\nCalculation of the hessian matrix. Wait...\n");
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate,ndeath, maxwav, mle, weightopt,model);    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncov,nlstate,ndeath,maxwav, mle, weightopt,model);    for (i=1;i<=npar;i++){
       printf("%d",i);fflush(stdout);
   covar=matrix(0,NCOVMAX,1,n);          fprintf(ficlog,"%d",i);fflush(ficlog);
   if (strlen(model)<=1) cptcovn=0;     
   else {       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
     j=0;      
     j=nbocc(model,'+');      /*  printf(" %f ",p[i]);
     cptcovn=j+1;          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
   }    }
     
   ncovmodel=2+cptcovn;    for (i=1;i<=npar;i++) {
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */      for (j=1;j<=npar;j++)  {
          if (j>i) { 
   /* Read guess parameters */          printf(".%d%d",i,j);fflush(stdout);
   /* Reads comments: lines beginning with '#' */          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
   while((c=getc(ficpar))=='#' && c!= EOF){          hess[i][j]=hessij(p,delti,i,j,func,npar);
     ungetc(c,ficpar);          
     fgets(line, MAXLINE, ficpar);          hess[j][i]=hess[i][j];    
     puts(line);          /*printf(" %lf ",hess[i][j]);*/
     fputs(line,ficparo);        }
   }      }
   ungetc(c,ficpar);    }
      printf("\n");
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    fprintf(ficlog,"\n");
     for(i=1; i <=nlstate; i++)  
     for(j=1; j <=nlstate+ndeath-1; j++){    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
       fscanf(ficpar,"%1d%1d",&i1,&j1);    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
       fprintf(ficparo,"%1d%1d",i1,j1);    
       printf("%1d%1d",i,j);    a=matrix(1,npar,1,npar);
       for(k=1; k<=ncovmodel;k++){    y=matrix(1,npar,1,npar);
         fscanf(ficpar," %lf",&param[i][j][k]);    x=vector(1,npar);
         printf(" %lf",param[i][j][k]);    indx=ivector(1,npar);
         fprintf(ficparo," %lf",param[i][j][k]);    for (i=1;i<=npar;i++)
       }      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
       fscanf(ficpar,"\n");    ludcmp(a,npar,indx,&pd);
       printf("\n");  
       fprintf(ficparo,"\n");    for (j=1;j<=npar;j++) {
     }      for (i=1;i<=npar;i++) x[i]=0;
        x[j]=1;
   npar= (nlstate+ndeath-1)*nlstate*ncovmodel;      lubksb(a,npar,indx,x);
   p=param[1][1];      for (i=1;i<=npar;i++){ 
          matcov[i][j]=x[i];
   /* Reads comments: lines beginning with '#' */      }
   while((c=getc(ficpar))=='#' && c!= EOF){    }
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);    printf("\n#Hessian matrix#\n");
     puts(line);    fprintf(ficlog,"\n#Hessian matrix#\n");
     fputs(line,ficparo);    for (i=1;i<=npar;i++) { 
   }      for (j=1;j<=npar;j++) { 
   ungetc(c,ficpar);        printf("%.3e ",hess[i][j]);
         fprintf(ficlog,"%.3e ",hess[i][j]);
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);      }
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */      printf("\n");
   for(i=1; i <=nlstate; i++){      fprintf(ficlog,"\n");
     for(j=1; j <=nlstate+ndeath-1; j++){    }
       fscanf(ficpar,"%1d%1d",&i1,&j1);  
       printf("%1d%1d",i,j);    /* Recompute Inverse */
       fprintf(ficparo,"%1d%1d",i1,j1);    for (i=1;i<=npar;i++)
       for(k=1; k<=ncovmodel;k++){      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
         fscanf(ficpar,"%le",&delti3[i][j][k]);    ludcmp(a,npar,indx,&pd);
         printf(" %le",delti3[i][j][k]);  
         fprintf(ficparo," %le",delti3[i][j][k]);    /*  printf("\n#Hessian matrix recomputed#\n");
       }  
       fscanf(ficpar,"\n");    for (j=1;j<=npar;j++) {
       printf("\n");      for (i=1;i<=npar;i++) x[i]=0;
       fprintf(ficparo,"\n");      x[j]=1;
     }      lubksb(a,npar,indx,x);
   }      for (i=1;i<=npar;i++){ 
   delti=delti3[1][1];        y[i][j]=x[i];
          printf("%.3e ",y[i][j]);
   /* Reads comments: lines beginning with '#' */        fprintf(ficlog,"%.3e ",y[i][j]);
   while((c=getc(ficpar))=='#' && c!= EOF){      }
     ungetc(c,ficpar);      printf("\n");
     fgets(line, MAXLINE, ficpar);      fprintf(ficlog,"\n");
     puts(line);    }
     fputs(line,ficparo);    */
   }  
   ungetc(c,ficpar);    free_matrix(a,1,npar,1,npar);
      free_matrix(y,1,npar,1,npar);
   matcov=matrix(1,npar,1,npar);    free_vector(x,1,npar);
   for(i=1; i <=npar; i++){    free_ivector(indx,1,npar);
     fscanf(ficpar,"%s",&str);    free_matrix(hess,1,npar,1,npar);
     printf("%s",str);  
     fprintf(ficparo,"%s",str);  
     for(j=1; j <=i; j++){  }
       fscanf(ficpar," %le",&matcov[i][j]);  
       printf(" %.5le",matcov[i][j]);  /*************** hessian matrix ****************/
       fprintf(ficparo," %.5le",matcov[i][j]);  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
     }  {
     fscanf(ficpar,"\n");    int i;
     printf("\n");    int l=1, lmax=20;
     fprintf(ficparo,"\n");    double k1,k2;
   }    double p2[NPARMAX+1];
   for(i=1; i <=npar; i++)    double res;
     for(j=i+1;j<=npar;j++)    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
       matcov[i][j]=matcov[j][i];    double fx;
        int k=0,kmax=10;
   printf("\n");    double l1;
   
     fx=func(x);
     /*-------- data file ----------*/    for (i=1;i<=npar;i++) p2[i]=x[i];
     if((ficres =fopen(fileres,"w"))==NULL) {    for(l=0 ; l <=lmax; l++){
       printf("Problem with resultfile: %s\n", fileres);goto end;      l1=pow(10,l);
     }      delts=delt;
     fprintf(ficres,"#%s\n",version);      for(k=1 ; k <kmax; k=k+1){
            delt = delta*(l1*k);
     if((fic=fopen(datafile,"r"))==NULL)    {        p2[theta]=x[theta] +delt;
       printf("Problem with datafile: %s\n", datafile);goto end;        k1=func(p2)-fx;
     }        p2[theta]=x[theta]-delt;
         k2=func(p2)-fx;
     n= lastobs;        /*res= (k1-2.0*fx+k2)/delt/delt; */
     severity = vector(1,maxwav);        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
     outcome=imatrix(1,maxwav+1,1,n);        
     num=ivector(1,n);  #ifdef DEBUG
     moisnais=vector(1,n);        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
     annais=vector(1,n);        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
     moisdc=vector(1,n);  #endif
     andc=vector(1,n);        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
     agedc=vector(1,n);        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
     cod=ivector(1,n);          k=kmax;
     weight=vector(1,n);        }
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
     mint=matrix(1,maxwav,1,n);          k=kmax; l=lmax*10.;
     anint=matrix(1,maxwav,1,n);        }
     s=imatrix(1,maxwav+1,1,n);        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
     adl=imatrix(1,maxwav+1,1,n);              delts=delt;
     tab=ivector(1,NCOVMAX);        }
     ncodemax=ivector(1,8);      }
     }
     i=1;    delti[theta]=delts;
     while (fgets(line, MAXLINE, fic) != NULL)    {    return res; 
       if ((i >= firstobs) && (i <=lastobs)) {    
          }
         for (j=maxwav;j>=1;j--){  
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
           strcpy(line,stra);  {
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);    int i;
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);    int l=1, l1, lmax=20;
         }    double k1,k2,k3,k4,res,fx;
            double p2[NPARMAX+1];
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);    int k;
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);  
     fx=func(x);
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);    for (k=1; k<=2; k++) {
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);      for (i=1;i<=npar;i++) p2[i]=x[i];
       p2[thetai]=x[thetai]+delti[thetai]/k;
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
         for (j=ncov;j>=1;j--){      k1=func(p2)-fx;
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);    
         }      p2[thetai]=x[thetai]+delti[thetai]/k;
         num[i]=atol(stra);      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
       k2=func(p2)-fx;
         /*printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));*/    
       p2[thetai]=x[thetai]-delti[thetai]/k;
         i=i+1;      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
       }      k3=func(p2)-fx;
     }    
       p2[thetai]=x[thetai]-delti[thetai]/k;
     /*scanf("%d",i);*/      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   imx=i-1; /* Number of individuals */      k4=func(p2)-fx;
       res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
   /* Calculation of the number of parameter from char model*/  #ifdef DEBUG
   Tvar=ivector(1,15);          printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   Tage=ivector(1,15);            fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
      #endif
   if (strlen(model) >1){    }
     j=0, j1=0;    return res;
     j=nbocc(model,'+');  }
     j1=nbocc(model,'*');  
     cptcovn=j+1;  /************** Inverse of matrix **************/
      void ludcmp(double **a, int n, int *indx, double *d) 
     strcpy(modelsav,model);  { 
     if (j==0) {    int i,imax,j,k; 
       if (j1==0){    double big,dum,sum,temp; 
        cutv(stra,strb,modelsav,'V');    double *vv; 
        Tvar[1]=atoi(strb);   
       }    vv=vector(1,n); 
       else if (j1==1) {    *d=1.0; 
        cutv(stra,strb,modelsav,'*');    for (i=1;i<=n;i++) { 
        /*      printf("stra=%s strb=%s modelsav=%s ",stra,strb,modelsav);*/      big=0.0; 
        Tage[1]=1; cptcovage++;      for (j=1;j<=n;j++) 
        if (strcmp(stra,"age")==0) {        if ((temp=fabs(a[i][j])) > big) big=temp; 
          cutv(strd,strc,strb,'V');      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
          Tvar[1]=atoi(strc);      vv[i]=1.0/big; 
        }    } 
        else if (strcmp(strb,"age")==0) {    for (j=1;j<=n;j++) { 
          cutv(strd,strc,stra,'V');      for (i=1;i<j;i++) { 
          Tvar[1]=atoi(strc);        sum=a[i][j]; 
        }        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
        else {printf("Error"); exit(0);}        a[i][j]=sum; 
       }      } 
     }      big=0.0; 
     else {      for (i=j;i<=n;i++) { 
       for(i=j; i>=1;i--){        sum=a[i][j]; 
         cutv(stra,strb,modelsav,'+');        for (k=1;k<j;k++) 
         /*printf("%s %s %s\n", stra,strb,modelsav);*/          sum -= a[i][k]*a[k][j]; 
         if (strchr(strb,'*')) {        a[i][j]=sum; 
           cutv(strd,strc,strb,'*');        if ( (dum=vv[i]*fabs(sum)) >= big) { 
           if (strcmp(strc,"age")==0) {          big=dum; 
             cutv(strb,stre,strd,'V');          imax=i; 
             Tvar[i+1]=atoi(stre);        } 
             cptcovage++;      } 
             Tage[cptcovage]=i+1;      if (j != imax) { 
             printf("stre=%s ", stre);        for (k=1;k<=n;k++) { 
           }          dum=a[imax][k]; 
           else if (strcmp(strd,"age")==0) {          a[imax][k]=a[j][k]; 
             cutv(strb,stre,strc,'V');          a[j][k]=dum; 
             Tvar[i+1]=atoi(stre);        } 
             cptcovage++;        *d = -(*d); 
             Tage[cptcovage]=i+1;        vv[imax]=vv[j]; 
           }      } 
           else {      indx[j]=imax; 
             cutv(strb,stre,strc,'V');      if (a[j][j] == 0.0) a[j][j]=TINY; 
             Tvar[i+1]=ncov+1;      if (j != n) { 
             cutv(strb,strc,strd,'V');        dum=1.0/(a[j][j]); 
             for (k=1; k<=lastobs;k++)        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
               covar[ncov+1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];      } 
           }    } 
         }    free_vector(vv,1,n);  /* Doesn't work */
         else {  ;
           cutv(strd,strc,strb,'V');  } 
           /* printf("%s %s %s", strd,strc,strb);*/  
   void lubksb(double **a, int n, int *indx, double b[]) 
         Tvar[i+1]=atoi(strc);  { 
         }    int i,ii=0,ip,j; 
         strcpy(modelsav,stra);      double sum; 
       }   
       cutv(strd,strc,stra,'V');    for (i=1;i<=n;i++) { 
       Tvar[1]=atoi(strc);      ip=indx[i]; 
     }      sum=b[ip]; 
   }      b[ip]=b[i]; 
       if (ii) 
   /* printf("tvar=%d %d cptcovage=%d %d",Tvar[1],Tvar[2],cptcovage,Tage[1]);        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
      scanf("%d ",i);*/      else if (sum) ii=i; 
     fclose(fic);      b[i]=sum; 
     } 
    if(mle==1){    for (i=n;i>=1;i--) { 
     if (weightopt != 1) { /* Maximisation without weights*/      sum=b[i]; 
       for(i=1;i<=n;i++) weight[i]=1.0;      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
     }      b[i]=sum/a[i][i]; 
     /*-calculation of age at interview from date of interview and age at death -*/    } 
     agev=matrix(1,maxwav,1,imx);  } 
      
     for (i=1; i<=imx; i++)  {  /************ Frequencies ********************/
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
       for(m=1; (m<= maxwav); m++){  {  /* Some frequencies */
         if(s[m][i] >0){    
           if (s[m][i] == nlstate+1) {    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
             if(agedc[i]>0)    int first;
               if(moisdc[i]!=99 && andc[i]!=9999)    double ***freq; /* Frequencies */
               agev[m][i]=agedc[i];    double *pp, **prop;
             else{    double pos,posprop, k2, dateintsum=0,k2cpt=0;
               printf("Warning negative age at death: %d line:%d\n",num[i],i);    FILE *ficresp;
               agev[m][i]=-1;    char fileresp[FILENAMELENGTH];
             }    
           }    pp=vector(1,nlstate);
           else if(s[m][i] !=9){ /* Should no more exist */    prop=matrix(1,nlstate,iagemin,iagemax+3);
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);    strcpy(fileresp,"p");
             if(mint[m][i]==99 || anint[m][i]==9999)    strcat(fileresp,fileres);
               agev[m][i]=1;    if((ficresp=fopen(fileresp,"w"))==NULL) {
             else if(agev[m][i] <agemin){      printf("Problem with prevalence resultfile: %s\n", fileresp);
               agemin=agev[m][i];      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/      exit(0);
             }    }
             else if(agev[m][i] >agemax){    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
               agemax=agev[m][i];    j1=0;
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/    
             }    j=cptcoveff;
             /*agev[m][i]=anint[m][i]-annais[i];*/    if (cptcovn<1) {j=1;ncodemax[1]=1;}
             /*   agev[m][i] = age[i]+2*m;*/  
           }    first=1;
           else { /* =9 */  
             agev[m][i]=1;    for(k1=1; k1<=j;k1++){
             s[m][i]=-1;      for(i1=1; i1<=ncodemax[k1];i1++){
           }        j1++;
         }        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
         else /*= 0 Unknown */          scanf("%d", i);*/
           agev[m][i]=1;        for (i=-5; i<=nlstate+ndeath; i++)  
       }          for (jk=-5; jk<=nlstate+ndeath; jk++)  
                for(m=iagemin; m <= iagemax+3; m++)
     }              freq[i][jk][m]=0;
     for (i=1; i<=imx; i++)  {  
       for(m=1; (m<= maxwav); m++){      for (i=1; i<=nlstate; i++)  
         if (s[m][i] > (nlstate+ndeath)) {        for(m=iagemin; m <= iagemax+3; m++)
           printf("Error: Wrong value in nlstate or ndeath\n");            prop[i][m]=0;
           goto end;        
         }        dateintsum=0;
       }        k2cpt=0;
     }        for (i=1; i<=imx; i++) {
           bool=1;
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);          if  (cptcovn>0) {
             for (z1=1; z1<=cptcoveff; z1++) 
     free_vector(severity,1,maxwav);              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
     free_imatrix(outcome,1,maxwav+1,1,n);                bool=0;
     free_vector(moisnais,1,n);          }
     free_vector(annais,1,n);          if (bool==1){
     free_matrix(mint,1,maxwav,1,n);            for(m=firstpass; m<=lastpass; m++){
     free_matrix(anint,1,maxwav,1,n);              k2=anint[m][i]+(mint[m][i]/12.);
     free_vector(moisdc,1,n);              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
     free_vector(andc,1,n);                if(agev[m][i]==0) agev[m][i]=iagemax+1;
                 if(agev[m][i]==1) agev[m][i]=iagemax+2;
                    if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
     wav=ivector(1,imx);                if (m<lastpass) {
     dh=imatrix(1,lastpass-firstpass+1,1,imx);                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
     mw=imatrix(1,lastpass-firstpass+1,1,imx);                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
                    }
     /* Concatenates waves */                
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
                   dateintsum=dateintsum+k2;
                   k2cpt++;
       Tcode=ivector(1,100);                }
    nbcode=imatrix(1,nvar,1,8);                  /*}*/
    ncodemax[1]=1;            }
    if (cptcovn > 0) tricode(Tvar,nbcode,imx);          }
          }
    codtab=imatrix(1,100,1,10);         
    h=0;        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
    m=pow(2,cptcovn);  fprintf(ficresp, "#Local time at start: %s", strstart);
          if  (cptcovn>0) {
    for(k=1;k<=cptcovn; k++){          fprintf(ficresp, "\n#********** Variable "); 
      for(i=1; i <=(m/pow(2,k));i++){          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
        for(j=1; j <= ncodemax[k]; j++){          fprintf(ficresp, "**********\n#");
          for(cpt=1; cpt <=(m/pow(2,cptcovn+1-k)); cpt++){        }
            h++;        for(i=1; i<=nlstate;i++) 
            if (h>m) h=1;codtab[h][k]=j;          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
          }        fprintf(ficresp, "\n");
        }        
      }        for(i=iagemin; i <= iagemax+3; i++){
    }          if(i==iagemax+3){
             fprintf(ficlog,"Total");
    /* for(i=1; i <=m ;i++){          }else{
      for(k=1; k <=cptcovn; k++){            if(first==1){
        printf("i=%d k=%d %d ",i,k,codtab[i][k]);              first=0;
      }              printf("See log file for details...\n");
      printf("\n");            }
    }            fprintf(ficlog,"Age %d", i);
    scanf("%d",i);*/          }
              for(jk=1; jk <=nlstate ; jk++){
    /* Calculates basic frequencies. Computes observed prevalence at single age            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
        and prints on file fileres'p'. */              pp[jk] += freq[jk][m][i]; 
    freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax);          }
           for(jk=1; jk <=nlstate ; jk++){
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */            for(m=-1, pos=0; m <=0 ; m++)
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */              pos += freq[jk][m][i];
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */            if(pp[jk]>=1.e-10){
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */              if(first==1){
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
                  }
     /* For Powell, parameters are in a vector p[] starting at p[1]              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */            }else{
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */              if(first==1)
                    printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
             }
              }
     /*--------- results files --------------*/  
     fprintf(ficres,"\ntitle=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate, ndeath, maxwav, mle,weightopt,model);          for(jk=1; jk <=nlstate ; jk++){
                for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
    jk=1;              pp[jk] += freq[jk][m][i];
    fprintf(ficres,"# Parameters\n");          }       
    printf("# Parameters\n");          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
    for(i=1,jk=1; i <=nlstate; i++){            pos += pp[jk];
      for(k=1; k <=(nlstate+ndeath); k++){            posprop += prop[jk][i];
        if (k != i)          }
          {          for(jk=1; jk <=nlstate ; jk++){
            printf("%d%d ",i,k);            if(pos>=1.e-5){
            fprintf(ficres,"%1d%1d ",i,k);              if(first==1)
            for(j=1; j <=ncovmodel; j++){                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
              printf("%f ",p[jk]);              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
              fprintf(ficres,"%f ",p[jk]);            }else{
              jk++;              if(first==1)
            }                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
            printf("\n");              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
            fprintf(ficres,"\n");            }
          }            if( i <= iagemax){
      }              if(pos>=1.e-5){
    }                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
                 /*probs[i][jk][j1]= pp[jk]/pos;*/
     /* Computing hessian and covariance matrix */                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
     ftolhess=ftol; /* Usually correct */              }
     hesscov(matcov, p, npar, delti, ftolhess, func);              else
     fprintf(ficres,"# Scales\n");                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
     printf("# Scales\n");            }
      for(i=1,jk=1; i <=nlstate; i++){          }
       for(j=1; j <=nlstate+ndeath; j++){          
         if (j!=i) {          for(jk=-1; jk <=nlstate+ndeath; jk++)
           fprintf(ficres,"%1d%1d",i,j);            for(m=-1; m <=nlstate+ndeath; m++)
           printf("%1d%1d",i,j);              if(freq[jk][m][i] !=0 ) {
           for(k=1; k<=ncovmodel;k++){              if(first==1)
             printf(" %.5e",delti[jk]);                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
             fprintf(ficres," %.5e",delti[jk]);                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
             jk++;              }
           }          if(i <= iagemax)
           printf("\n");            fprintf(ficresp,"\n");
           fprintf(ficres,"\n");          if(first==1)
         }            printf("Others in log...\n");
       }          fprintf(ficlog,"\n");
       }        }
          }
     k=1;    }
     fprintf(ficres,"# Covariance\n");    dateintmean=dateintsum/k2cpt; 
     printf("# Covariance\n");   
     for(i=1;i<=npar;i++){    fclose(ficresp);
       /*  if (k>nlstate) k=1;    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
       i1=(i-1)/(ncovmodel*nlstate)+1;    free_vector(pp,1,nlstate);
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
       printf("%s%d%d",alph[k],i1,tab[i]);*/    /* End of Freq */
       fprintf(ficres,"%3d",i);  }
       printf("%3d",i);  
       for(j=1; j<=i;j++){  /************ Prevalence ********************/
         fprintf(ficres," %.5e",matcov[i][j]);  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
         printf(" %.5e",matcov[i][j]);  {  
       }    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
       fprintf(ficres,"\n");       in each health status at the date of interview (if between dateprev1 and dateprev2).
       printf("\n");       We still use firstpass and lastpass as another selection.
       k++;    */
     }   
        int i, m, jk, k1, i1, j1, bool, z1,z2,j;
     while((c=getc(ficpar))=='#' && c!= EOF){    double ***freq; /* Frequencies */
       ungetc(c,ficpar);    double *pp, **prop;
       fgets(line, MAXLINE, ficpar);    double pos,posprop; 
       puts(line);    double  y2; /* in fractional years */
       fputs(line,ficparo);    int iagemin, iagemax;
     }  
     ungetc(c,ficpar);    iagemin= (int) agemin;
      iagemax= (int) agemax;
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);    /*pp=vector(1,nlstate);*/
        prop=matrix(1,nlstate,iagemin,iagemax+3); 
     if (fage <= 2) {    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
       bage = agemin;    j1=0;
       fage = agemax;    
     }    j=cptcoveff;
     if (cptcovn<1) {j=1;ncodemax[1]=1;}
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");    
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);    for(k1=1; k1<=j;k1++){
 /*------------ gnuplot -------------*/      for(i1=1; i1<=ncodemax[k1];i1++){
 chdir(pathcd);        j1++;
   if((ficgp=fopen("graph.plt","w"))==NULL) {        
     printf("Problem with file graph.gp");goto end;        for (i=1; i<=nlstate; i++)  
   }          for(m=iagemin; m <= iagemax+3; m++)
 #ifdef windows            prop[i][m]=0.0;
   fprintf(ficgp,"cd \"%s\" \n",pathc);       
 #endif        for (i=1; i<=imx; i++) { /* Each individual */
 m=pow(2,cptcovn);          bool=1;
            if  (cptcovn>0) {
  /* 1eme*/            for (z1=1; z1<=cptcoveff; z1++) 
   for (cpt=1; cpt<= nlstate ; cpt ++) {              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
    for (k1=1; k1<= m ; k1 ++) {                bool=0;
           } 
 #ifdef windows          if (bool==1) { 
     fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",agemin,fage,fileres,k1-1,k1-1);            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
 #endif              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
 #ifdef unix              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",agemin,fage,fileres);                if(agev[m][i]==0) agev[m][i]=iagemax+1;
 #endif                if(agev[m][i]==1) agev[m][i]=iagemax+2;
                 if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
 for (i=1; i<= nlstate ; i ++) {                if (s[m][i]>0 && s[m][i]<=nlstate) { 
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
   else fprintf(ficgp," \%%*lf (\%%*lf)");                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
 }                  prop[s[m][i]][iagemax+3] += weight[i]; 
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);                } 
     for (i=1; i<= nlstate ; i ++) {              }
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");            } /* end selection of waves */
   else fprintf(ficgp," \%%*lf (\%%*lf)");          }
 }        }
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);        for(i=iagemin; i <= iagemax+3; i++){  
      for (i=1; i<= nlstate ; i ++) {          
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
   else fprintf(ficgp," \%%*lf (\%%*lf)");            posprop += prop[jk][i]; 
 }            } 
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));  
 #ifdef unix          for(jk=1; jk <=nlstate ; jk++){     
 fprintf(ficgp,"\nset ter gif small size 400,300");            if( i <=  iagemax){ 
 #endif              if(posprop>=1.e-5){ 
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);                probs[i][jk][j1]= prop[jk][i]/posprop;
    }              } 
   }            } 
   /*2 eme*/          }/* end jk */ 
         }/* end i */ 
   for (k1=1; k1<= m ; k1 ++) {      } /* end i1 */
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",agemin,fage);    } /* end k1 */
        
     for (i=1; i<= nlstate+1 ; i ++) {    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
       k=2*i;    /*free_vector(pp,1,nlstate);*/
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
       for (j=1; j<= nlstate+1 ; j ++) {  }  /* End of prevalence */
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");  
   else fprintf(ficgp," \%%*lf (\%%*lf)");  /************* Waves Concatenation ***************/
 }    
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);  {
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
       for (j=1; j<= nlstate+1 ; j ++) {       Death is a valid wave (if date is known).
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
         else fprintf(ficgp," \%%*lf (\%%*lf)");       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
 }         and mw[mi+1][i]. dh depends on stepm.
       fprintf(ficgp,"\" t\"\" w l 0,");       */
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);  
       for (j=1; j<= nlstate+1 ; j ++) {    int i, mi, m;
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
   else fprintf(ficgp," \%%*lf (\%%*lf)");       double sum=0., jmean=0.;*/
 }      int first;
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");    int j, k=0,jk, ju, jl;
       else fprintf(ficgp,"\" t\"\" w l 0,");    double sum=0.;
     }    first=0;
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);    jmin=1e+5;
   }    jmax=-1;
      jmean=0.;
   /*3eme*/    for(i=1; i<=imx; i++){
       mi=0;
   for (k1=1; k1<= m ; k1 ++) {      m=firstpass;
     for (cpt=1; cpt<= nlstate ; cpt ++) {      while(s[m][i] <= nlstate){
       k=2+nlstate*(cpt-1);        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",agemin,fage,fileres,k1-1,k1-1,k,cpt);          mw[++mi][i]=m;
       for (i=1; i< nlstate ; i ++) {        if(m >=lastpass)
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+i,cpt,i+1);          break;
       }        else
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);          m++;
     }      }/* end while */
   }      if (s[m][i] > nlstate){
          mi++;     /* Death is another wave */
   /* CV preval stat */        /* if(mi==0)  never been interviewed correctly before death */
   for (k1=1; k1<= m ; k1 ++) {           /* Only death is a correct wave */
     for (cpt=1; cpt<nlstate ; cpt ++) {        mw[mi][i]=m;
       k=3;      }
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",agemin,agemax,fileres,k1,k+cpt+1,k+1);  
       for (i=1; i< nlstate ; i ++)      wav[i]=mi;
         fprintf(ficgp,"+$%d",k+i+1);      if(mi==0){
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);        nbwarn++;
              if(first==0){
       l=3+(nlstate+ndeath)*cpt;          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);          first=1;
       for (i=1; i< nlstate ; i ++) {        }
         l=3+(nlstate+ndeath)*cpt;        if(first==1){
         fprintf(ficgp,"+$%d",l+i+1);          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
       }        }
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);        } /* end mi==0 */
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);    } /* End individuals */
     }  
   }    for(i=1; i<=imx; i++){
       for(mi=1; mi<wav[i];mi++){
   /* proba elementaires */        if (stepm <=0)
    for(i=1,jk=1; i <=nlstate; i++){          dh[mi][i]=1;
     for(k=1; k <=(nlstate+ndeath); k++){        else{
       if (k != i) {          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
         for(j=1; j <=ncovmodel; j++){            if (agedc[i] < 2*AGESUP) {
           /*fprintf(ficgp,"%s%1d%1d=%f ",alph[j],i,k,p[jk]);*/              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
           /*fprintf(ficgp,"%s",alph[1]);*/              if(j==0) j=1;  /* Survives at least one month after exam */
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);              else if(j<0){
           jk++;                nberr++;
           fprintf(ficgp,"\n");                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
         }                j=1; /* Temporary Dangerous patch */
       }                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
     }                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     }                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
               }
   for(jk=1; jk <=m; jk++) {              k=k+1;
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",agemin,agemax);              if (j >= jmax){
    i=1;                jmax=j;
    for(k2=1; k2<=nlstate; k2++) {                ijmax=i;
      k3=i;              }
      for(k=1; k<=(nlstate+ndeath); k++) {              if (j <= jmin){
        if (k != k2){                jmin=j;
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);                ijmin=i;
               }
         for(j=3; j <=ncovmodel; j++)              sum=sum+j;
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
         fprintf(ficgp,")/(1");              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
                    }
         for(k1=1; k1 <=nlstate; k1++){            }
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);          else{
           for(j=3; j <=ncovmodel; j++)            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
           fprintf(ficgp,")");  
         }            k=k+1;
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);            if (j >= jmax) {
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");              jmax=j;
         i=i+ncovmodel;              ijmax=i;
        }            }
      }            else if (j <= jmin){
    }              jmin=j;
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);              ijmin=i;
   }            }
                /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
   fclose(ficgp);            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
                if(j<0){
 chdir(path);              nberr++;
     free_matrix(agev,1,maxwav,1,imx);              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     free_ivector(wav,1,imx);              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);            }
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);            sum=sum+j;
              }
     free_imatrix(s,1,maxwav+1,1,n);          jk= j/stepm;
              jl= j -jk*stepm;
              ju= j -(jk+1)*stepm;
     free_ivector(num,1,n);          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
     free_vector(agedc,1,n);            if(jl==0){
     free_vector(weight,1,n);              dh[mi][i]=jk;
     /*free_matrix(covar,1,NCOVMAX,1,n);*/              bh[mi][i]=0;
     fclose(ficparo);            }else{ /* We want a negative bias in order to only have interpolation ie
     fclose(ficres);                    * at the price of an extra matrix product in likelihood */
    }              dh[mi][i]=jk+1;
                  bh[mi][i]=ju;
    /*________fin mle=1_________*/            }
              }else{
             if(jl <= -ju){
                dh[mi][i]=jk;
     /* No more information from the sample is required now */              bh[mi][i]=jl;       /* bias is positive if real duration
   /* Reads comments: lines beginning with '#' */                                   * is higher than the multiple of stepm and negative otherwise.
   while((c=getc(ficpar))=='#' && c!= EOF){                                   */
     ungetc(c,ficpar);            }
     fgets(line, MAXLINE, ficpar);            else{
     puts(line);              dh[mi][i]=jk+1;
     fputs(line,ficparo);              bh[mi][i]=ju;
   }            }
   ungetc(c,ficpar);            if(dh[mi][i]==0){
                dh[mi][i]=1; /* At least one step */
   fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);              bh[mi][i]=ju; /* At least one step */
   printf("agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax, bage, fage);              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
   fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);            }
 /*--------- index.htm --------*/          } /* end if mle */
         }
   if((fichtm=fopen("index.htm","w"))==NULL)    {      } /* end wave */
     printf("Problem with index.htm \n");goto end;    }
   }    jmean=sum/k;
     printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
  fprintf(fichtm,"<body><ul> Imach, Version 0.64a<hr> <li>Outputs files<br><br>\n    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
         - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n   }
 - Estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>  
         - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>  /*********** Tricode ****************************/
         - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>  void tricode(int *Tvar, int **nbcode, int imx)
         - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>  {
         - Life expectancies by age and initial health status: <a href=\"e%s\">e%s</a> <br>    
         - Variances of life expectancies by age and initial health status: <a href=\"v%s\">v%s</a><br>    int Ndum[20],ij=1, k, j, i, maxncov=19;
         - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>    int cptcode=0;
         - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br><br>",fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres);    cptcoveff=0; 
    
  fprintf(fichtm," <li>Graphs</li>\n<p>");    for (k=0; k<maxncov; k++) Ndum[k]=0;
     for (k=1; k<=7; k++) ncodemax[k]=0;
  m=cptcovn;  
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
       for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
  j1=0;                                 modality*/ 
  for(k1=1; k1<=m;k1++){        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
    for(i1=1; i1<=ncodemax[k1];i1++){        Ndum[ij]++; /*store the modality */
        j1++;        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
        if (cptcovn > 0) {        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
          fprintf(fichtm,"<hr>************ Results for covariates");                                         Tvar[j]. If V=sex and male is 0 and 
          for (cpt=1; cpt<=cptcovn;cpt++)                                         female is 1, then  cptcode=1.*/
            fprintf(fichtm," V%d=%d ",Tvar[cpt],nbcode[Tvar[cpt]][codtab[j1][cpt]]);      }
          fprintf(fichtm," ************\n<hr>");  
        }      for (i=0; i<=cptcode; i++) {
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);          }
        for(cpt=1; cpt<nlstate;cpt++){  
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>      ij=1; 
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);      for (i=1; i<=ncodemax[j]; i++) {
        }        for (k=0; k<= maxncov; k++) {
     for(cpt=1; cpt<=nlstate;cpt++) {          if (Ndum[k] != 0) {
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident            nbcode[Tvar[j]][ij]=k; 
 interval) in state (%d): v%s%d%d.gif <br>            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);              
      }            ij++;
      for(cpt=1; cpt<=nlstate;cpt++) {          }
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>          if (ij > ncodemax[j]) break; 
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);        }  
      }      } 
      fprintf(fichtm,"\n<br>- Total life expectancy by age and    }  
 health expectancies in states (1) and (2): e%s%d.gif<br>  
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);   for (k=0; k< maxncov; k++) Ndum[k]=0;
 fprintf(fichtm,"\n</body>");  
    }   for (i=1; i<=ncovmodel-2; i++) { 
  }     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
 fclose(fichtm);     ij=Tvar[i];
      Ndum[ij]++;
   /*--------------- Prevalence limit --------------*/   }
    
   strcpy(filerespl,"pl");   ij=1;
   strcat(filerespl,fileres);   for (i=1; i<= maxncov; i++) {
   if((ficrespl=fopen(filerespl,"w"))==NULL) {     if((Ndum[i]!=0) && (i<=ncovcol)){
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;       Tvaraff[ij]=i; /*For printing */
   }       ij++;
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);     }
   fprintf(ficrespl,"#Prevalence limit\n");   }
   fprintf(ficrespl,"#Age ");   
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);   cptcoveff=ij-1; /*Number of simple covariates*/
   fprintf(ficrespl,"\n");  }
    
   prlim=matrix(1,nlstate,1,nlstate);  /*********** Health Expectancies ****************/
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov,char strstart[] )
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  {
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    /* Health expectancies */
   k=0;    int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
   agebase=agemin;    double age, agelim, hf;
   agelim=agemax;    double ***p3mat,***varhe;
   ftolpl=1.e-10;    double **dnewm,**doldm;
   i1=cptcovn;    double *xp;
   if (cptcovn < 1){i1=1;}    double **gp, **gm;
     double ***gradg, ***trgradg;
   for(cptcov=1;cptcov<=i1;cptcov++){    int theta;
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  
         k=k+1;    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/    xp=vector(1,npar);
         fprintf(ficrespl,"\n#******");    dnewm=matrix(1,nlstate*nlstate,1,npar);
         for(j=1;j<=cptcovn;j++)    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
           fprintf(ficrespl," V%d=%d ",Tvar[j],nbcode[Tvar[j]][codtab[k][j]]);    
         fprintf(ficrespl,"******\n");    fprintf(ficreseij,"# Local time at start: %s", strstart);
            fprintf(ficreseij,"# Health expectancies\n");
         for (age=agebase; age<=agelim; age++){    fprintf(ficreseij,"# Age");
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    for(i=1; i<=nlstate;i++)
           fprintf(ficrespl,"%.0f",age );      for(j=1; j<=nlstate;j++)
           for(i=1; i<=nlstate;i++)        fprintf(ficreseij," %1d-%1d (SE)",i,j);
           fprintf(ficrespl," %.5f", prlim[i][i]);    fprintf(ficreseij,"\n");
           fprintf(ficrespl,"\n");  
         }    if(estepm < stepm){
       }      printf ("Problem %d lower than %d\n",estepm, stepm);
     }    }
   fclose(ficrespl);    else  hstepm=estepm;   
   /*------------- h Pij x at various ages ------------*/    /* We compute the life expectancy from trapezoids spaced every estepm months
       * This is mainly to measure the difference between two models: for example
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);     * if stepm=24 months pijx are given only every 2 years and by summing them
   if((ficrespij=fopen(filerespij,"w"))==NULL) {     * we are calculating an estimate of the Life Expectancy assuming a linear 
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;     * progression in between and thus overestimating or underestimating according
   }     * to the curvature of the survival function. If, for the same date, we 
   printf("Computing pij: result on file '%s' \n", filerespij);     * estimate the model with stepm=1 month, we can keep estepm to 24 months
       * to compare the new estimate of Life expectancy with the same linear 
   stepsize=(int) (stepm+YEARM-1)/YEARM;     * hypothesis. A more precise result, taking into account a more precise
   if (stepm<=24) stepsize=2;     * curvature will be obtained if estepm is as small as stepm. */
   
   agelim=AGESUP;    /* For example we decided to compute the life expectancy with the smallest unit */
   hstepm=stepsize*YEARM; /* Every year of age */    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */       nhstepm is the number of hstepm from age to agelim 
         nstepm is the number of stepm from age to agelin. 
   k=0;       Look at hpijx to understand the reason of that which relies in memory size
   for(cptcov=1;cptcov<=i1;cptcov++){       and note for a fixed period like estepm months */
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
       k=k+1;       survival function given by stepm (the optimization length). Unfortunately it
         fprintf(ficrespij,"\n#****** ");       means that if the survival funtion is printed only each two years of age and if
         for(j=1;j<=cptcovn;j++)       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
           fprintf(ficrespij,"V%d=%d ",Tvar[j],nbcode[Tvar[j]][codtab[k][j]]);       results. So we changed our mind and took the option of the best precision.
         fprintf(ficrespij,"******\n");    */
            hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */  
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    agelim=AGESUP;
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      /* nhstepm age range expressed in number of stepm */
           oldm=oldms;savm=savms;      nstepm=(int) rint((agelim-age)*YEARM/stepm); 
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
           fprintf(ficrespij,"# Age");      /* if (stepm >= YEARM) hstepm=1;*/
           for(i=1; i<=nlstate;i++)      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
             for(j=1; j<=nlstate+ndeath;j++)      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
               fprintf(ficrespij," %1d-%1d",i,j);      gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
           fprintf(ficrespij,"\n");      gp=matrix(0,nhstepm,1,nlstate*nlstate);
           for (h=0; h<=nhstepm; h++){      gm=matrix(0,nhstepm,1,nlstate*nlstate);
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );  
             for(i=1; i<=nlstate;i++)      /* Computed by stepm unit matrices, product of hstepm matrices, stored
               for(j=1; j<=nlstate+ndeath;j++)         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
             fprintf(ficrespij,"\n");   
           }  
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
           fprintf(ficrespij,"\n");  
         }      /* Computing  Variances of health expectancies */
     }  
   }       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ 
   fclose(ficrespij);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
   /*---------- Health expectancies and variances ------------*/        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
     
   strcpy(filerest,"t");        cptj=0;
   strcat(filerest,fileres);        for(j=1; j<= nlstate; j++){
   if((ficrest=fopen(filerest,"w"))==NULL) {          for(i=1; i<=nlstate; i++){
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;            cptj=cptj+1;
   }            for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
   printf("Computing Total LEs with variances: file '%s' \n", filerest);              gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
             }
           }
   strcpy(filerese,"e");        }
   strcat(filerese,fileres);       
   if((ficreseij=fopen(filerese,"w"))==NULL) {       
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);        for(i=1; i<=npar; i++) 
   }          xp[i] = x[i] - (i==theta ?delti[theta]:0);
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         
  strcpy(fileresv,"v");        cptj=0;
   strcat(fileresv,fileres);        for(j=1; j<= nlstate; j++){
   if((ficresvij=fopen(fileresv,"w"))==NULL) {          for(i=1;i<=nlstate;i++){
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);            cptj=cptj+1;
   }            for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);  
               gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
   k=0;            }
   for(cptcov=1;cptcov<=i1;cptcov++){          }
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        }
       k=k+1;        for(j=1; j<= nlstate*nlstate; j++)
       fprintf(ficrest,"\n#****** ");          for(h=0; h<=nhstepm-1; h++){
       for(j=1;j<=cptcovn;j++)            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
         fprintf(ficrest,"V%d=%d ",Tvar[j],nbcode[Tvar[j]][codtab[k][j]]);          }
       fprintf(ficrest,"******\n");       } 
      
       fprintf(ficreseij,"\n#****** ");  /* End theta */
       for(j=1;j<=cptcovn;j++)  
         fprintf(ficreseij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);       trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
       fprintf(ficreseij,"******\n");  
        for(h=0; h<=nhstepm-1; h++)
       fprintf(ficresvij,"\n#****** ");        for(j=1; j<=nlstate*nlstate;j++)
       for(j=1;j<=cptcovn;j++)          for(theta=1; theta <=npar; theta++)
         fprintf(ficresvij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);            trgradg[h][j][theta]=gradg[h][theta][j];
       fprintf(ficresvij,"******\n");       
   
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);       for(i=1;i<=nlstate*nlstate;i++)
       oldm=oldms;savm=savms;        for(j=1;j<=nlstate*nlstate;j++)
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k);            varhe[i][j][(int)age] =0.;
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);  
       oldm=oldms;savm=savms;       printf("%d|",(int)age);fflush(stdout);
       varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
             for(h=0;h<=nhstepm-1;h++){
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");        for(k=0;k<=nhstepm-1;k++){
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
       fprintf(ficrest,"\n");          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
                  for(i=1;i<=nlstate*nlstate;i++)
       hf=1;            for(j=1;j<=nlstate*nlstate;j++)
       if (stepm >= YEARM) hf=stepm/YEARM;              varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
       epj=vector(1,nlstate+1);        }
       for(age=bage; age <=fage ;age++){      }
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);      /* Computing expectancies */
         fprintf(ficrest," %.0f",age);      for(i=1; i<=nlstate;i++)
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){        for(j=1; j<=nlstate;j++)
           for(i=1, epj[j]=0.;i <=nlstate;i++) {          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
             epj[j] += prlim[i][i]*hf*eij[i][j][(int)age];            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
           }            
           epj[nlstate+1] +=epj[j];  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
         }  
         for(i=1, vepp=0.;i <=nlstate;i++)          }
           for(j=1;j <=nlstate;j++)  
             vepp += vareij[i][j][(int)age];      fprintf(ficreseij,"%3.0f",age );
         fprintf(ficrest," %.2f (%.2f)", epj[nlstate+1],hf*sqrt(vepp));      cptj=0;
         for(j=1;j <=nlstate;j++){      for(i=1; i<=nlstate;i++)
           fprintf(ficrest," %.2f (%.2f)", epj[j],hf*sqrt(vareij[j][j][(int)age]));        for(j=1; j<=nlstate;j++){
         }          cptj++;
         fprintf(ficrest,"\n");          fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
       }        }
     }      fprintf(ficreseij,"\n");
   }     
              free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
  fclose(ficreseij);      free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
  fclose(ficresvij);      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
   fclose(ficrest);      free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
   fclose(ficpar);      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   free_vector(epj,1,nlstate+1);    }
   /*  scanf("%d ",i); */    printf("\n");
     fprintf(ficlog,"\n");
   /*------- Variance limit prevalence------*/    
     free_vector(xp,1,npar);
 strcpy(fileresvpl,"vpl");    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
   strcat(fileresvpl,fileres);    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);  }
     exit(0);  
   }  /************ Variance ******************/
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
   {
  k=0;    /* Variance of health expectancies */
  for(cptcov=1;cptcov<=i1;cptcov++){    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
    for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    /* double **newm;*/
      k=k+1;    double **dnewm,**doldm;
      fprintf(ficresvpl,"\n#****** ");    double **dnewmp,**doldmp;
      for(j=1;j<=cptcovn;j++)    int i, j, nhstepm, hstepm, h, nstepm ;
        fprintf(ficresvpl,"V%d=%d ",Tvar[j],nbcode[Tvar[j]][codtab[k][j]]);    int k, cptcode;
      fprintf(ficresvpl,"******\n");    double *xp;
          double **gp, **gm;  /* for var eij */
      varpl=matrix(1,nlstate,(int) bage, (int) fage);    double ***gradg, ***trgradg; /*for var eij */
      oldm=oldms;savm=savms;    double **gradgp, **trgradgp; /* for var p point j */
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);    double *gpp, *gmp; /* for var p point j */
    }    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
  }    double ***p3mat;
     double age,agelim, hf;
   fclose(ficresvpl);    double ***mobaverage;
     int theta;
   /*---------- End : free ----------------*/    char digit[4];
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);    char digitp[25];
    
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);    char fileresprobmorprev[FILENAMELENGTH];
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);  
      if(popbased==1){
        if(mobilav!=0)
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);        strcpy(digitp,"-populbased-mobilav-");
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);      else strcpy(digitp,"-populbased-nomobil-");
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);    }
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);    else 
        strcpy(digitp,"-stablbased-");
   free_matrix(matcov,1,npar,1,npar);  
   free_vector(delti,1,npar);    if (mobilav!=0) {
        mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
   printf("End of Imach\n");        printf(" Error in movingaverage mobilav=%d\n",mobilav);
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */      }
      }
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/  
   /*printf("Total time was %d uSec.\n", total_usecs);*/    strcpy(fileresprobmorprev,"prmorprev"); 
   /*------ End -----------*/    sprintf(digit,"%-d",ij);
     /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
  end:    strcat(fileresprobmorprev,digit); /* Tvar to be done */
 #ifdef windows    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
  chdir(pathcd);    strcat(fileresprobmorprev,fileres);
 #endif    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
  system("wgnuplot graph.plt");      printf("Problem with resultfile: %s\n", fileresprobmorprev);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
 #ifdef windows    }
   while (z[0] != 'q') {    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     chdir(pathcd);   
     printf("\nType e to edit output files, c to start again, and q for exiting: ");    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     scanf("%s",z);    fprintf(ficresprobmorprev, "#Local time at start: %s", strstart);
     if (z[0] == 'c') system("./imach");    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
     else if (z[0] == 'e') {    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
       chdir(path);    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
       system("index.htm");      fprintf(ficresprobmorprev," p.%-d SE",j);
     }      for(i=1; i<=nlstate;i++)
     else if (z[0] == 'q') exit(0);        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
   }    }  
 #endif    fprintf(ficresprobmorprev,"\n");
 }    fprintf(ficgp,"\n# Routine varevsij");
     /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
     fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
     fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
   /*   } */
     varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
    fprintf(ficresvij, "#Local time at start: %s", strstart);
     fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
     fprintf(ficresvij,"# Age");
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=nlstate;j++)
         fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
     fprintf(ficresvij,"\n");
   
     xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
     dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
     doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   
     gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
     gpp=vector(nlstate+1,nlstate+ndeath);
     gmp=vector(nlstate+1,nlstate+ndeath);
     trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
     /* For example we decided to compute the life expectancy with the smallest unit */
     /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
        nhstepm is the number of hstepm from age to agelim 
        nstepm is the number of stepm from age to agelin. 
        Look at hpijx to understand the reason of that which relies in memory size
        and note for a fixed period like k years */
     /* We decided (b) to get a life expectancy respecting the most precise curvature of the
        survival function given by stepm (the optimization length). Unfortunately it
        means that if the survival funtion is printed every two years of age and if
        you sum them up and add 1 year (area under the trapezoids) you won't get the same 
        results. So we changed our mind and took the option of the best precision.
     */
     hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
       gp=matrix(0,nhstepm,1,nlstate);
       gm=matrix(0,nhstepm,1,nlstate);
   
   
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   
         if (popbased==1) {
           if(mobilav ==0){
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=probs[(int)age][i][ij];
           }else{ /* mobilav */ 
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=mobaverage[(int)age][i][ij];
           }
         }
     
         for(j=1; j<= nlstate; j++){
           for(h=0; h<=nhstepm; h++){
             for(i=1, gp[h][j]=0.;i<=nlstate;i++)
               gp[h][j] += prlim[i][i]*p3mat[i][j][h];
           }
         }
         /* This for computing probability of death (h=1 means
            computed over hstepm matrices product = hstepm*stepm months) 
            as a weighted average of prlim.
         */
         for(j=nlstate+1;j<=nlstate+ndeath;j++){
           for(i=1,gpp[j]=0.; i<= nlstate; i++)
             gpp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
         /* end probability of death */
   
         for(i=1; i<=npar; i++) /* Computes gradient x - delta */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
    
         if (popbased==1) {
           if(mobilav ==0){
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=probs[(int)age][i][ij];
           }else{ /* mobilav */ 
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=mobaverage[(int)age][i][ij];
           }
         }
   
         for(j=1; j<= nlstate; j++){
           for(h=0; h<=nhstepm; h++){
             for(i=1, gm[h][j]=0.;i<=nlstate;i++)
               gm[h][j] += prlim[i][i]*p3mat[i][j][h];
           }
         }
         /* This for computing probability of death (h=1 means
            computed over hstepm matrices product = hstepm*stepm months) 
            as a weighted average of prlim.
         */
         for(j=nlstate+1;j<=nlstate+ndeath;j++){
           for(i=1,gmp[j]=0.; i<= nlstate; i++)
            gmp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
         /* end probability of death */
   
         for(j=1; j<= nlstate; j++) /* vareij */
           for(h=0; h<=nhstepm; h++){
             gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
           }
   
         for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
           gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
         }
   
       } /* End theta */
   
       trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
   
       for(h=0; h<=nhstepm; h++) /* veij */
         for(j=1; j<=nlstate;j++)
           for(theta=1; theta <=npar; theta++)
             trgradg[h][j][theta]=gradg[h][theta][j];
   
       for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
         for(theta=1; theta <=npar; theta++)
           trgradgp[j][theta]=gradgp[theta][j];
     
   
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       for(i=1;i<=nlstate;i++)
         for(j=1;j<=nlstate;j++)
           vareij[i][j][(int)age] =0.;
   
       for(h=0;h<=nhstepm;h++){
         for(k=0;k<=nhstepm;k++){
           matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
           matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
           for(i=1;i<=nlstate;i++)
             for(j=1;j<=nlstate;j++)
               vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
         }
       }
     
       /* pptj */
       matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
       matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
       for(j=nlstate+1;j<=nlstate+ndeath;j++)
         for(i=nlstate+1;i<=nlstate+ndeath;i++)
           varppt[j][i]=doldmp[j][i];
       /* end ppptj */
       /*  x centered again */
       hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
       prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
    
       if (popbased==1) {
         if(mobilav ==0){
           for(i=1; i<=nlstate;i++)
             prlim[i][i]=probs[(int)age][i][ij];
         }else{ /* mobilav */ 
           for(i=1; i<=nlstate;i++)
             prlim[i][i]=mobaverage[(int)age][i][ij];
         }
       }
                
       /* This for computing probability of death (h=1 means
          computed over hstepm (estepm) matrices product = hstepm*stepm months) 
          as a weighted average of prlim.
       */
       for(j=nlstate+1;j<=nlstate+ndeath;j++){
         for(i=1,gmp[j]=0.;i<= nlstate; i++) 
           gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
       }    
       /* end probability of death */
   
       fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
       for(j=nlstate+1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
         for(i=1; i<=nlstate;i++){
           fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
         }
       } 
       fprintf(ficresprobmorprev,"\n");
   
       fprintf(ficresvij,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++){
           fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
         }
       fprintf(ficresvij,"\n");
       free_matrix(gp,0,nhstepm,1,nlstate);
       free_matrix(gm,0,nhstepm,1,nlstate);
       free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
       free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
       free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     } /* End age */
     free_vector(gpp,nlstate+1,nlstate+ndeath);
     free_vector(gmp,nlstate+1,nlstate+ndeath);
     free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
     free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
     /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
     fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
   /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
     fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
     /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
   */
   /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
     fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,nlstate);
     free_matrix(dnewm,1,nlstate,1,npar);
     free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
     free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficresprobmorprev);
     fflush(ficgp);
     fflush(fichtm); 
   }  /* end varevsij */
   
   /************ Variance of prevlim ******************/
   void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
   {
     /* Variance of prevalence limit */
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
     double **newm;
     double **dnewm,**doldm;
     int i, j, nhstepm, hstepm;
     int k, cptcode;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double age,agelim;
     int theta;
     fprintf(ficresvpl, "#Local time at start: %s", strstart); 
     fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
     fprintf(ficresvpl,"# Age");
     for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %1d-%1d",i,i);
     fprintf(ficresvpl,"\n");
   
     xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
     
     hstepm=1*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
     agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       if (stepm >= YEARM) hstepm=1;
       nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
       gradg=matrix(1,npar,1,nlstate);
       gp=vector(1,nlstate);
       gm=vector(1,nlstate);
   
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient */
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
           gp[i] = prlim[i][i];
       
         for(i=1; i<=npar; i++) /* Computes gradient */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
           gm[i] = prlim[i][i];
   
         for(i=1;i<=nlstate;i++)
           gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
       } /* End theta */
   
       trgradg =matrix(1,nlstate,1,npar);
   
       for(j=1; j<=nlstate;j++)
         for(theta=1; theta <=npar; theta++)
           trgradg[j][theta]=gradg[theta][j];
   
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] =0.;
       matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
       matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   
       fprintf(ficresvpl,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
       fprintf(ficresvpl,"\n");
       free_vector(gp,1,nlstate);
       free_vector(gm,1,nlstate);
       free_matrix(gradg,1,npar,1,nlstate);
       free_matrix(trgradg,1,nlstate,1,npar);
     } /* End age */
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,npar);
     free_matrix(dnewm,1,nlstate,1,nlstate);
   
   }
   
   /************ Variance of one-step probabilities  ******************/
   void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
   {
     int i, j=0,  i1, k1, l1, t, tj;
     int k2, l2, j1,  z1;
     int k=0,l, cptcode;
     int first=1, first1;
     double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
     double **dnewm,**doldm;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double **mu;
     double age,agelim, cov[NCOVMAX];
     double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     int theta;
     char fileresprob[FILENAMELENGTH];
     char fileresprobcov[FILENAMELENGTH];
     char fileresprobcor[FILENAMELENGTH];
   
     double ***varpij;
   
     strcpy(fileresprob,"prob"); 
     strcat(fileresprob,fileres);
     if((ficresprob=fopen(fileresprob,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprob);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     }
     strcpy(fileresprobcov,"probcov"); 
     strcat(fileresprobcov,fileres);
     if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcov);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     }
     strcpy(fileresprobcor,"probcor"); 
     strcat(fileresprobcor,fileres);
     if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcor);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     }
     printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     fprintf(ficresprob, "#Local time at start: %s", strstart);
     fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     fprintf(ficresprob,"# Age");
     fprintf(ficresprobcov, "#Local time at start: %s", strstart);
     fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
     fprintf(ficresprobcov,"# Age");
     fprintf(ficresprobcor, "#Local time at start: %s", strstart);
     fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
     fprintf(ficresprobcov,"# Age");
   
   
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprob," p%1d-%1d (SE)",i,j);
         fprintf(ficresprobcov," p%1d-%1d ",i,j);
         fprintf(ficresprobcor," p%1d-%1d ",i,j);
       }  
    /* fprintf(ficresprob,"\n");
     fprintf(ficresprobcov,"\n");
     fprintf(ficresprobcor,"\n");
    */
    xp=vector(1,npar);
     dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
     varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     first=1;
     fprintf(ficgp,"\n# Routine varprob");
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
     fprintf(fichtm,"\n");
   
     fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
     file %s<br>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
   and drawn. It helps understanding how is the covariance between two incidences.\
    They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
     fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
   It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
   would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
   standard deviations wide on each axis. <br>\
    Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
    and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
   To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
   
     cov[1]=1;
     tj=cptcoveff;
     if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     j1=0;
     for(t=1; t<=tj;t++){
       for(i1=1; i1<=ncodemax[t];i1++){ 
         j1++;
         if  (cptcovn>0) {
           fprintf(ficresprob, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprob, "**********\n#\n");
           fprintf(ficresprobcov, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcov, "**********\n#\n");
           
           fprintf(ficgp, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficgp, "**********\n#\n");
           
           
           fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
           
           fprintf(ficresprobcor, "\n#********** Variable ");    
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcor, "**********\n#");    
         }
         
         for (age=bage; age<=fage; age ++){ 
           cov[2]=age;
           for (k=1; k<=cptcovn;k++) {
             cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
           }
           for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           for (k=1; k<=cptcovprod;k++)
             cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           
           gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
           trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
           gp=vector(1,(nlstate)*(nlstate+ndeath));
           gm=vector(1,(nlstate)*(nlstate+ndeath));
       
           for(theta=1; theta <=npar; theta++){
             for(i=1; i<=npar; i++)
               xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
             
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             
             k=0;
             for(i=1; i<= (nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gp[k]=pmmij[i][j];
               }
             }
             
             for(i=1; i<=npar; i++)
               xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
       
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             k=0;
             for(i=1; i<=(nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gm[k]=pmmij[i][j];
               }
             }
        
             for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
               gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
           }
   
           for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
             for(theta=1; theta <=npar; theta++)
               trgradg[j][theta]=gradg[theta][j];
           
           matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
           matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
           free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
           free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   
           pmij(pmmij,cov,ncovmodel,x,nlstate);
           
           k=0;
           for(i=1; i<=(nlstate); i++){
             for(j=1; j<=(nlstate+ndeath);j++){
               k=k+1;
               mu[k][(int) age]=pmmij[i][j];
             }
           }
           for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
             for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
               varpij[i][j][(int)age] = doldm[i][j];
   
           /*printf("\n%d ",(int)age);
             for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             }*/
   
           fprintf(ficresprob,"\n%d ",(int)age);
           fprintf(ficresprobcov,"\n%d ",(int)age);
           fprintf(ficresprobcor,"\n%d ",(int)age);
   
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
             fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
             fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
           }
           i=0;
           for (k=1; k<=(nlstate);k++){
             for (l=1; l<=(nlstate+ndeath);l++){ 
               i=i++;
               fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
               fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
               for (j=1; j<=i;j++){
                 fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                 fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
               }
             }
           }/* end of loop for state */
         } /* end of loop for age */
   
         /* Confidence intervalle of pij  */
         /*
           fprintf(ficgp,"\nset noparametric;unset label");
           fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
           fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
           fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
           fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
         */
   
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
         first1=1;
         for (k2=1; k2<=(nlstate);k2++){
           for (l2=1; l2<=(nlstate+ndeath);l2++){ 
             if(l2==k2) continue;
             j=(k2-1)*(nlstate+ndeath)+l2;
             for (k1=1; k1<=(nlstate);k1++){
               for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                 if(l1==k1) continue;
                 i=(k1-1)*(nlstate+ndeath)+l1;
                 if(i<=j) continue;
                 for (age=bage; age<=fage; age ++){ 
                   if ((int)age %5==0){
                     v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                     v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     mu1=mu[i][(int) age]/stepm*YEARM ;
                     mu2=mu[j][(int) age]/stepm*YEARM;
                     c12=cv12/sqrt(v1*v2);
                     /* Computing eigen value of matrix of covariance */
                     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     /* Eigen vectors */
                     v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                     /*v21=sqrt(1.-v11*v11); *//* error */
                     v21=(lc1-v1)/cv12*v11;
                     v12=-v21;
                     v22=v11;
                     tnalp=v21/v11;
                     if(first1==1){
                       first1=0;
                       printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     }
                     fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     /*printf(fignu*/
                     /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                     /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                     if(first==1){
                       first=0;
                       fprintf(ficgp,"\nset parametric;unset label");
                       fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                       fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
                       fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
    :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }else{
                       first=0;
                       fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }/* if first */
                   } /* age mod 5 */
                 } /* end loop age */
                 fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                 first=1;
               } /*l12 */
             } /* k12 */
           } /*l1 */
         }/* k1 */
       } /* loop covariates */
     }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
     free_vector(xp,1,npar);
     fclose(ficresprob);
     fclose(ficresprobcov);
     fclose(ficresprobcor);
     fflush(ficgp);
     fflush(fichtmcov);
   }
   
   
   /******************* Printing html file ***********/
   void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int estepm ,\
                     double jprev1, double mprev1,double anprev1, \
                     double jprev2, double mprev2,double anprev2){
     int jj1, k1, i1, cpt;
   
      fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
      <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   </ul>");
      fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
      fprintf(fichtm,"\
    - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
              stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
      fprintf(fichtm,"\
    - Stable prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
      fprintf(fichtm,"\
    - Life expectancies by age and initial health status (estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
   
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        /* Pij */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: %s%d1.png<br> \
   <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
        /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: %s%d2.png<br> \
   <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
          /* Stable prevalence in each health state */
          for(cpt=1; cpt<nlstate;cpt++){
            fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \
   <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
          }
        for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): %s%d%d.png <br> \
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
        }
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   
   
    fprintf(fichtm,"\
   \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
   
    fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
    fprintf(fichtm,"\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   
    fprintf(fichtm,"\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
    fprintf(fichtm,"\
    - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
            estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
    fprintf(fichtm,"\
    - Health expectancies with their variances (no covariance): <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"t"),subdirf2(fileres,"t"));
    fprintf(fichtm,"\
    - Standard deviation of stable prevalences: <a href=\"%s\">%s</a> <br>\n",\
            subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    fflush(fichtm);
    fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2): %s%d.png<br>\
   <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
    fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
     m=pow(2,cptcoveff);
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
    /* 1eme*/
     for (cpt=1; cpt<= nlstate ; cpt ++) {
      for (k1=1; k1<= m ; k1 ++) {
        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }
        fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l 0,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
         else fprintf(ficgp,"\" t\"\" w l 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         k=2+nlstate*(2*cpt-2);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);
           
         } 
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<=nlstate ; cpt ++) {
         k=3;
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small\nset size 0.65,0.65\n\
   unset log y\n\
   plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
         
         for (i=1; i< nlstate ; i ++)
           fprintf(ficgp,"+$%d",k+i+1);
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         
         l=3+(nlstate+ndeath)*cpt;
         fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
         for (i=1; i< nlstate ; i ++) {
           l=3+(nlstate+ndeath)*cpt;
           fprintf(ficgp,"+$%d",l+i+1);
         }
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       } 
     }  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
   
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;
                for(j=3; j <=ncovmodel; j++) {
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                    ij++;
                  }
                  else
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                      ij++;
                    }
                    else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small\n set log y\n"); 
     fprintf(ficgp, "set size 0.65,0.65\n");
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int linei, month, year,iout;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
   
     char ca[32], cb[32], cc[32];
     char dummy[]="                         ";
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char **bp, *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char strstart[80], *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Un peu sale */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem with datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %d %s for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
           exit(1);
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }
         else  if(iout=sscanf(strb,"%s.") != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           exit(1);
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.",dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         exit(1);
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.") != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line,j);
         exit(1);
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       lval=strtol(strb,&endptr,10); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%d' at line number %ld %s for individual %d\nShould be a weight.  Exiting.\n",lval, i,line,linei);
         exit(1);
       }
       weight[i]=(double)(lval); 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a covar (meaning 0 for the reference or 1).  Exiting.\n",lval, linei,i, line);
           exit(1);
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a value of the %d covar (meaning 0 for the reference or 1. IMaCh does not build design variables, do it your self).  Exiting.\n",lval,linei, i,line,j);
           exit(1);
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       } 
       lstra=strlen(stra);
       
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
     fclose(fic);
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
     /* for (i=1; i<=imx; i++) */
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameters from char model */
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     agegomp=(int)agemin;
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<body>\n<title>IMaCh Cov %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       p[1]=0.0268; p[NDIM]=0.083;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
       
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
     
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing stable prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
       fprintf(ficrespl, "#Local time at start: %s", strstart);
       fprintf(ficrespl,"#Stable prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       fprintf(ficrespij, "#Local time at start: %s", strstart);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /*---------- Health expectancies and variances ------------*/
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total LEs with variances: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficreseij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav, strstart);
           if(popbased==1){
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav, strstart);
           }
   
           fprintf(ficrest, "#Local time at start: %s", strstart);
           fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
           for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
           fprintf(ficrest,"\n");
   
           epj=vector(1,nlstate+1);
           for(age=bage; age <=fage ;age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             if (popbased==1) {
               if(mobilav ==0){
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=probs[(int)age][i][k];
               }else{ /* mobilav */ 
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=mobaverage[(int)age][i][k];
               }
             }
           
             fprintf(ficrest," %4.0f",age);
             for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
               for(i=1, epj[j]=0.;i <=nlstate;i++) {
                 epj[j] += prlim[i][i]*eij[i][j][(int)age];
                 /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
               }
               epj[nlstate+1] +=epj[j];
             }
   
             for(i=1, vepp=0.;i <=nlstate;i++)
               for(j=1;j <=nlstate;j++)
                 vepp += vareij[i][j][(int)age];
             fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
             for(j=1;j <=nlstate;j++){
               fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
             }
             fprintf(ficrest,"\n");
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficreseij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of stable prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
     free_matrix(prlim,1,nlstate,1,nlstate);
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
       free_ivector(Tcode,1,100);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);
     fclose(fichtm);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
     chdir(path);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.6  
changed lines
  Added in v.1.115


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>