Diff for /imach/src/imach.c between versions 1.35 and 1.117

version 1.35, 2002/03/26 17:08:39 version 1.117, 2006/03/14 17:16:22
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.117  2006/03/14 17:16:22  brouard
      (Module): varevsij Comments added explaining the second
   This program computes Healthy Life Expectancies from    table of variances if popbased=1 .
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   first survey ("cross") where individuals from different ages are    (Module): Function pstamp added
   interviewed on their health status or degree of disability (in the    (Module): Version 0.98d
   case of a health survey which is our main interest) -2- at least a  
   second wave of interviews ("longitudinal") which measure each change    Revision 1.116  2006/03/06 10:29:27  brouard
   (if any) in individual health status.  Health expectancies are    (Module): Variance-covariance wrong links and
   computed from the time spent in each health state according to a    varian-covariance of ej. is needed (Saito).
   model. More health states you consider, more time is necessary to reach the  
   Maximum Likelihood of the parameters involved in the model.  The    Revision 1.115  2006/02/27 12:17:45  brouard
   simplest model is the multinomial logistic model where pij is the    (Module): One freematrix added in mlikeli! 0.98c
   probabibility to be observed in state j at the second wave  
   conditional to be observed in state i at the first wave. Therefore    Revision 1.114  2006/02/26 12:57:58  brouard
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    (Module): Some improvements in processing parameter
   'age' is age and 'sex' is a covariate. If you want to have a more    filename with strsep.
   complex model than "constant and age", you should modify the program  
   where the markup *Covariates have to be included here again* invites    Revision 1.113  2006/02/24 14:20:24  brouard
   you to do it.  More covariates you add, slower the    (Module): Memory leaks checks with valgrind and:
   convergence.    datafile was not closed, some imatrix were not freed and on matrix
     allocation too.
   The advantage of this computer programme, compared to a simple  
   multinomial logistic model, is clear when the delay between waves is not    Revision 1.112  2006/01/30 09:55:26  brouard
   identical for each individual. Also, if a individual missed an    (Module): Back to gnuplot.exe instead of wgnuplot.exe
   intermediate interview, the information is lost, but taken into  
   account using an interpolation or extrapolation.      Revision 1.111  2006/01/25 20:38:18  brouard
     (Module): Lots of cleaning and bugs added (Gompertz)
   hPijx is the probability to be observed in state i at age x+h    (Module): Comments can be added in data file. Missing date values
   conditional to the observed state i at age x. The delay 'h' can be    can be a simple dot '.'.
   split into an exact number (nh*stepm) of unobserved intermediate  
   states. This elementary transition (by month or quarter trimester,    Revision 1.110  2006/01/25 00:51:50  brouard
   semester or year) is model as a multinomial logistic.  The hPx    (Module): Lots of cleaning and bugs added (Gompertz)
   matrix is simply the matrix product of nh*stepm elementary matrices  
   and the contribution of each individual to the likelihood is simply    Revision 1.109  2006/01/24 19:37:15  brouard
   hPijx.    (Module): Comments (lines starting with a #) are allowed in data.
   
   Also this programme outputs the covariance matrix of the parameters but also    Revision 1.108  2006/01/19 18:05:42  lievre
   of the life expectancies. It also computes the prevalence limits.    Gnuplot problem appeared...
      To be fixed
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).  
            Institut national d'études démographiques, Paris.    Revision 1.107  2006/01/19 16:20:37  brouard
   This software have been partly granted by Euro-REVES, a concerted action    Test existence of gnuplot in imach path
   from the European Union.  
   It is copyrighted identically to a GNU software product, ie programme and    Revision 1.106  2006/01/19 13:24:36  brouard
   software can be distributed freely for non commercial use. Latest version    Some cleaning and links added in html output
   can be accessed at http://euroreves.ined.fr/imach .  
   **********************************************************************/    Revision 1.105  2006/01/05 20:23:19  lievre
      *** empty log message ***
 #include <math.h>  
 #include <stdio.h>    Revision 1.104  2005/09/30 16:11:43  lievre
 #include <stdlib.h>    (Module): sump fixed, loop imx fixed, and simplifications.
 #include <unistd.h>    (Module): If the status is missing at the last wave but we know
     that the person is alive, then we can code his/her status as -2
 #define MAXLINE 256    (instead of missing=-1 in earlier versions) and his/her
 #define GNUPLOTPROGRAM "wgnuplot"    contributions to the likelihood is 1 - Prob of dying from last
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    health status (= 1-p13= p11+p12 in the easiest case of somebody in
 #define FILENAMELENGTH 80    the healthy state at last known wave). Version is 0.98
 /*#define DEBUG*/  
 #define windows    Revision 1.103  2005/09/30 15:54:49  lievre
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    (Module): sump fixed, loop imx fixed, and simplifications.
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */  
     Revision 1.102  2004/09/15 17:31:30  brouard
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    Add the possibility to read data file including tab characters.
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */  
     Revision 1.101  2004/09/15 10:38:38  brouard
 #define NINTERVMAX 8    Fix on curr_time
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */  
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    Revision 1.100  2004/07/12 18:29:06  brouard
 #define NCOVMAX 8 /* Maximum number of covariates */    Add version for Mac OS X. Just define UNIX in Makefile
 #define MAXN 20000  
 #define YEARM 12. /* Number of months per year */    Revision 1.99  2004/06/05 08:57:40  brouard
 #define AGESUP 130    *** empty log message ***
 #define AGEBASE 40  
     Revision 1.98  2004/05/16 15:05:56  brouard
     New version 0.97 . First attempt to estimate force of mortality
 int erreur; /* Error number */    directly from the data i.e. without the need of knowing the health
 int nvar;    state at each age, but using a Gompertz model: log u =a + b*age .
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    This is the basic analysis of mortality and should be done before any
 int npar=NPARMAX;    other analysis, in order to test if the mortality estimated from the
 int nlstate=2; /* Number of live states */    cross-longitudinal survey is different from the mortality estimated
 int ndeath=1; /* Number of dead states */    from other sources like vital statistic data.
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */  
 int popbased=0;    The same imach parameter file can be used but the option for mle should be -3.
   
 int *wav; /* Number of waves for this individuual 0 is possible */    Agnès, who wrote this part of the code, tried to keep most of the
 int maxwav; /* Maxim number of waves */    former routines in order to include the new code within the former code.
 int jmin, jmax; /* min, max spacing between 2 waves */  
 int mle, weightopt;    The output is very simple: only an estimate of the intercept and of
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    the slope with 95% confident intervals.
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */  
 double jmean; /* Mean space between 2 waves */    Current limitations:
 double **oldm, **newm, **savm; /* Working pointers to matrices */    A) Even if you enter covariates, i.e. with the
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    B) There is no computation of Life Expectancy nor Life Table.
 FILE *ficgp,*ficresprob,*ficpop;  
 FILE *ficreseij;    Revision 1.97  2004/02/20 13:25:42  lievre
   char filerese[FILENAMELENGTH];    Version 0.96d. Population forecasting command line is (temporarily)
  FILE  *ficresvij;    suppressed.
   char fileresv[FILENAMELENGTH];  
  FILE  *ficresvpl;    Revision 1.96  2003/07/15 15:38:55  brouard
   char fileresvpl[FILENAMELENGTH];    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
     rewritten within the same printf. Workaround: many printfs.
 #define NR_END 1  
 #define FREE_ARG char*    Revision 1.95  2003/07/08 07:54:34  brouard
 #define FTOL 1.0e-10    * imach.c (Repository):
     (Repository): Using imachwizard code to output a more meaningful covariance
 #define NRANSI    matrix (cov(a12,c31) instead of numbers.
 #define ITMAX 200  
     Revision 1.94  2003/06/27 13:00:02  brouard
 #define TOL 2.0e-4    Just cleaning
   
 #define CGOLD 0.3819660    Revision 1.93  2003/06/25 16:33:55  brouard
 #define ZEPS 1.0e-10    (Module): On windows (cygwin) function asctime_r doesn't
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    exist so I changed back to asctime which exists.
     (Module): Version 0.96b
 #define GOLD 1.618034  
 #define GLIMIT 100.0    Revision 1.92  2003/06/25 16:30:45  brouard
 #define TINY 1.0e-20    (Module): On windows (cygwin) function asctime_r doesn't
     exist so I changed back to asctime which exists.
 static double maxarg1,maxarg2;  
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    Revision 1.91  2003/06/25 15:30:29  brouard
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    * imach.c (Repository): Duplicated warning errors corrected.
      (Repository): Elapsed time after each iteration is now output. It
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    helps to forecast when convergence will be reached. Elapsed time
 #define rint(a) floor(a+0.5)    is stamped in powell.  We created a new html file for the graphs
     concerning matrix of covariance. It has extension -cov.htm.
 static double sqrarg;  
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    Revision 1.90  2003/06/24 12:34:15  brouard
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    (Module): Some bugs corrected for windows. Also, when
     mle=-1 a template is output in file "or"mypar.txt with the design
 int imx;    of the covariance matrix to be input.
 int stepm;  
 /* Stepm, step in month: minimum step interpolation*/    Revision 1.89  2003/06/24 12:30:52  brouard
     (Module): Some bugs corrected for windows. Also, when
 int m,nb;    mle=-1 a template is output in file "or"mypar.txt with the design
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    of the covariance matrix to be input.
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;  
 double **pmmij, ***probs, ***mobaverage;    Revision 1.88  2003/06/23 17:54:56  brouard
 double dateintmean=0;    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
   
 double *weight;    Revision 1.87  2003/06/18 12:26:01  brouard
 int **s; /* Status */    Version 0.96
 double *agedc, **covar, idx;  
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    Revision 1.86  2003/06/17 20:04:08  brouard
     (Module): Change position of html and gnuplot routines and added
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    routine fileappend.
 double ftolhess; /* Tolerance for computing hessian */  
     Revision 1.85  2003/06/17 13:12:43  brouard
 /**************** split *************************/    * imach.c (Repository): Check when date of death was earlier that
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    current date of interview. It may happen when the death was just
 {    prior to the death. In this case, dh was negative and likelihood
    char *s;                             /* pointer */    was wrong (infinity). We still send an "Error" but patch by
    int  l1, l2;                         /* length counters */    assuming that the date of death was just one stepm after the
     interview.
    l1 = strlen( path );                 /* length of path */    (Repository): Because some people have very long ID (first column)
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    we changed int to long in num[] and we added a new lvector for
 #ifdef windows    memory allocation. But we also truncated to 8 characters (left
    s = strrchr( path, '\\' );           /* find last / */    truncation)
 #else    (Repository): No more line truncation errors.
    s = strrchr( path, '/' );            /* find last / */  
 #endif    Revision 1.84  2003/06/13 21:44:43  brouard
    if ( s == NULL ) {                   /* no directory, so use current */    * imach.c (Repository): Replace "freqsummary" at a correct
 #if     defined(__bsd__)                /* get current working directory */    place. It differs from routine "prevalence" which may be called
       extern char       *getwd( );    many times. Probs is memory consuming and must be used with
     parcimony.
       if ( getwd( dirc ) == NULL ) {    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
 #else  
       extern char       *getcwd( );    Revision 1.83  2003/06/10 13:39:11  lievre
     *** empty log message ***
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {  
 #endif    Revision 1.82  2003/06/05 15:57:20  brouard
          return( GLOCK_ERROR_GETCWD );    Add log in  imach.c and  fullversion number is now printed.
       }  
       strcpy( name, path );             /* we've got it */  */
    } else {                             /* strip direcotry from path */  /*
       s++;                              /* after this, the filename */     Interpolated Markov Chain
       l2 = strlen( s );                 /* length of filename */  
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    Short summary of the programme:
       strcpy( name, s );                /* save file name */    
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    This program computes Healthy Life Expectancies from
       dirc[l1-l2] = 0;                  /* add zero */    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
    }    first survey ("cross") where individuals from different ages are
    l1 = strlen( dirc );                 /* length of directory */    interviewed on their health status or degree of disability (in the
 #ifdef windows    case of a health survey which is our main interest) -2- at least a
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    second wave of interviews ("longitudinal") which measure each change
 #else    (if any) in individual health status.  Health expectancies are
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }    computed from the time spent in each health state according to a
 #endif    model. More health states you consider, more time is necessary to reach the
    s = strrchr( name, '.' );            /* find last / */    Maximum Likelihood of the parameters involved in the model.  The
    s++;    simplest model is the multinomial logistic model where pij is the
    strcpy(ext,s);                       /* save extension */    probability to be observed in state j at the second wave
    l1= strlen( name);    conditional to be observed in state i at the first wave. Therefore
    l2= strlen( s)+1;    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
    strncpy( finame, name, l1-l2);    'age' is age and 'sex' is a covariate. If you want to have a more
    finame[l1-l2]= 0;    complex model than "constant and age", you should modify the program
    return( 0 );                         /* we're done */    where the markup *Covariates have to be included here again* invites
 }    you to do it.  More covariates you add, slower the
     convergence.
   
 /******************************************/    The advantage of this computer programme, compared to a simple
     multinomial logistic model, is clear when the delay between waves is not
 void replace(char *s, char*t)    identical for each individual. Also, if a individual missed an
 {    intermediate interview, the information is lost, but taken into
   int i;    account using an interpolation or extrapolation.  
   int lg=20;  
   i=0;    hPijx is the probability to be observed in state i at age x+h
   lg=strlen(t);    conditional to the observed state i at age x. The delay 'h' can be
   for(i=0; i<= lg; i++) {    split into an exact number (nh*stepm) of unobserved intermediate
     (s[i] = t[i]);    states. This elementary transition (by month, quarter,
     if (t[i]== '\\') s[i]='/';    semester or year) is modelled as a multinomial logistic.  The hPx
   }    matrix is simply the matrix product of nh*stepm elementary matrices
 }    and the contribution of each individual to the likelihood is simply
     hPijx.
 int nbocc(char *s, char occ)  
 {    Also this programme outputs the covariance matrix of the parameters but also
   int i,j=0;    of the life expectancies. It also computes the period (stable) prevalence. 
   int lg=20;    
   i=0;    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
   lg=strlen(s);             Institut national d'études démographiques, Paris.
   for(i=0; i<= lg; i++) {    This software have been partly granted by Euro-REVES, a concerted action
   if  (s[i] == occ ) j++;    from the European Union.
   }    It is copyrighted identically to a GNU software product, ie programme and
   return j;    software can be distributed freely for non commercial use. Latest version
 }    can be accessed at http://euroreves.ined.fr/imach .
   
 void cutv(char *u,char *v, char*t, char occ)    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
 {    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
   int i,lg,j,p=0;    
   i=0;    **********************************************************************/
   for(j=0; j<=strlen(t)-1; j++) {  /*
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;    main
   }    read parameterfile
     read datafile
   lg=strlen(t);    concatwav
   for(j=0; j<p; j++) {    freqsummary
     (u[j] = t[j]);    if (mle >= 1)
   }      mlikeli
      u[p]='\0';    print results files
     if mle==1 
    for(j=0; j<= lg; j++) {       computes hessian
     if (j>=(p+1))(v[j-p-1] = t[j]);    read end of parameter file: agemin, agemax, bage, fage, estepm
   }        begin-prev-date,...
 }    open gnuplot file
     open html file
 /********************** nrerror ********************/    period (stable) prevalence
      for age prevalim()
 void nrerror(char error_text[])    h Pij x
 {    variance of p varprob
   fprintf(stderr,"ERREUR ...\n");    forecasting if prevfcast==1 prevforecast call prevalence()
   fprintf(stderr,"%s\n",error_text);    health expectancies
   exit(1);    Variance-covariance of DFLE
 }    prevalence()
 /*********************** vector *******************/     movingaverage()
 double *vector(int nl, int nh)    varevsij() 
 {    if popbased==1 varevsij(,popbased)
   double *v;    total life expectancies
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));    Variance of period (stable) prevalence
   if (!v) nrerror("allocation failure in vector");   end
   return v-nl+NR_END;  */
 }  
   
 /************************ free vector ******************/  
 void free_vector(double*v, int nl, int nh)   
 {  #include <math.h>
   free((FREE_ARG)(v+nl-NR_END));  #include <stdio.h>
 }  #include <stdlib.h>
   #include <string.h>
 /************************ivector *******************************/  #include <unistd.h>
 int *ivector(long nl,long nh)  
 {  #include <limits.h>
   int *v;  #include <sys/types.h>
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  #include <sys/stat.h>
   if (!v) nrerror("allocation failure in ivector");  #include <errno.h>
   return v-nl+NR_END;  extern int errno;
 }  
   /* #include <sys/time.h> */
 /******************free ivector **************************/  #include <time.h>
 void free_ivector(int *v, long nl, long nh)  #include "timeval.h"
 {  
   free((FREE_ARG)(v+nl-NR_END));  /* #include <libintl.h> */
 }  /* #define _(String) gettext (String) */
   
 /******************* imatrix *******************************/  #define MAXLINE 256
 int **imatrix(long nrl, long nrh, long ncl, long nch)  
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  #define GNUPLOTPROGRAM "gnuplot"
 {  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  #define FILENAMELENGTH 132
   int **m;  
    #define GLOCK_ERROR_NOPATH              -1      /* empty path */
   /* allocate pointers to rows */  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  
   if (!m) nrerror("allocation failure 1 in matrix()");  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
   m += NR_END;  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
   m -= nrl;  
    #define NINTERVMAX 8
    #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
   /* allocate rows and set pointers to them */  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  #define NCOVMAX 8 /* Maximum number of covariates */
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  #define MAXN 20000
   m[nrl] += NR_END;  #define YEARM 12. /* Number of months per year */
   m[nrl] -= ncl;  #define AGESUP 130
    #define AGEBASE 40
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
    #ifdef UNIX
   /* return pointer to array of pointers to rows */  #define DIRSEPARATOR '/'
   return m;  #define CHARSEPARATOR "/"
 }  #define ODIRSEPARATOR '\\'
   #else
 /****************** free_imatrix *************************/  #define DIRSEPARATOR '\\'
 void free_imatrix(m,nrl,nrh,ncl,nch)  #define CHARSEPARATOR "\\"
       int **m;  #define ODIRSEPARATOR '/'
       long nch,ncl,nrh,nrl;  #endif
      /* free an int matrix allocated by imatrix() */  
 {  /* $Id$ */
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  /* $State$ */
   free((FREE_ARG) (m+nrl-NR_END));  
 }  char version[]="Imach version 0.98d, March 2006, INED-EUROREVES-Institut de longevite ";
   char fullversion[]="$Revision$ $Date$"; 
 /******************* matrix *******************************/  char strstart[80];
 double **matrix(long nrl, long nrh, long ncl, long nch)  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
 {  int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  int nvar;
   double **m;  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
   int npar=NPARMAX;
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  int nlstate=2; /* Number of live states */
   if (!m) nrerror("allocation failure 1 in matrix()");  int ndeath=1; /* Number of dead states */
   m += NR_END;  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
   m -= nrl;  int popbased=0;
   
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  int *wav; /* Number of waves for this individuual 0 is possible */
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  int maxwav; /* Maxim number of waves */
   m[nrl] += NR_END;  int jmin, jmax; /* min, max spacing between 2 waves */
   m[nrl] -= ncl;  int ijmin, ijmax; /* Individuals having jmin and jmax */ 
   int gipmx, gsw; /* Global variables on the number of contributions 
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;                     to the likelihood and the sum of weights (done by funcone)*/
   return m;  int mle, weightopt;
 }  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
   int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
 /*************************free matrix ************************/  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)             * wave mi and wave mi+1 is not an exact multiple of stepm. */
 {  double jmean; /* Mean space between 2 waves */
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  double **oldm, **newm, **savm; /* Working pointers to matrices */
   free((FREE_ARG)(m+nrl-NR_END));  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
 }  FILE *fic,*ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
   FILE *ficlog, *ficrespow;
 /******************* ma3x *******************************/  int globpr; /* Global variable for printing or not */
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  double fretone; /* Only one call to likelihood */
 {  long ipmx; /* Number of contributions */
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  double sw; /* Sum of weights */
   double ***m;  char filerespow[FILENAMELENGTH];
   char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  FILE *ficresilk;
   if (!m) nrerror("allocation failure 1 in matrix()");  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
   m += NR_END;  FILE *ficresprobmorprev;
   m -= nrl;  FILE *fichtm, *fichtmcov; /* Html File */
   FILE *ficreseij;
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  char filerese[FILENAMELENGTH];
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  FILE *ficresstdeij;
   m[nrl] += NR_END;  char fileresstde[FILENAMELENGTH];
   m[nrl] -= ncl;  FILE *ficrescveij;
   char filerescve[FILENAMELENGTH];
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  FILE  *ficresvij;
   char fileresv[FILENAMELENGTH];
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  FILE  *ficresvpl;
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  char fileresvpl[FILENAMELENGTH];
   m[nrl][ncl] += NR_END;  char title[MAXLINE];
   m[nrl][ncl] -= nll;  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
   for (j=ncl+1; j<=nch; j++)  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
     m[nrl][j]=m[nrl][j-1]+nlay;  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
    char command[FILENAMELENGTH];
   for (i=nrl+1; i<=nrh; i++) {  int  outcmd=0;
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  
     for (j=ncl+1; j<=nch; j++)  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
       m[i][j]=m[i][j-1]+nlay;  
   }  char filelog[FILENAMELENGTH]; /* Log file */
   return m;  char filerest[FILENAMELENGTH];
 }  char fileregp[FILENAMELENGTH];
   char popfile[FILENAMELENGTH];
 /*************************free ma3x ************************/  
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
 {  
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  struct timezone tzp;
   free((FREE_ARG)(m+nrl-NR_END));  extern int gettimeofday();
 }  struct tm tmg, tm, tmf, *gmtime(), *localtime();
   long time_value;
 /***************** f1dim *************************/  extern long time();
 extern int ncom;  char strcurr[80], strfor[80];
 extern double *pcom,*xicom;  
 extern double (*nrfunc)(double []);  char *endptr;
    long lval;
 double f1dim(double x)  
 {  #define NR_END 1
   int j;  #define FREE_ARG char*
   double f;  #define FTOL 1.0e-10
   double *xt;  
    #define NRANSI 
   xt=vector(1,ncom);  #define ITMAX 200 
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  
   f=(*nrfunc)(xt);  #define TOL 2.0e-4 
   free_vector(xt,1,ncom);  
   return f;  #define CGOLD 0.3819660 
 }  #define ZEPS 1.0e-10 
   #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
 /*****************brent *************************/  
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  #define GOLD 1.618034 
 {  #define GLIMIT 100.0 
   int iter;  #define TINY 1.0e-20 
   double a,b,d,etemp;  
   double fu,fv,fw,fx;  static double maxarg1,maxarg2;
   double ftemp;  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
   double p,q,r,tol1,tol2,u,v,w,x,xm;  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
   double e=0.0;    
    #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
   a=(ax < cx ? ax : cx);  #define rint(a) floor(a+0.5)
   b=(ax > cx ? ax : cx);  
   x=w=v=bx;  static double sqrarg;
   fw=fv=fx=(*f)(x);  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   for (iter=1;iter<=ITMAX;iter++) {  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
     xm=0.5*(a+b);  int agegomp= AGEGOMP;
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  int imx; 
     printf(".");fflush(stdout);  int stepm=1;
 #ifdef DEBUG  /* Stepm, step in month: minimum step interpolation*/
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  int estepm;
 #endif  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  
       *xmin=x;  int m,nb;
       return fx;  long *num;
     }  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
     ftemp=fu;  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
     if (fabs(e) > tol1) {  double **pmmij, ***probs;
       r=(x-w)*(fx-fv);  double *ageexmed,*agecens;
       q=(x-v)*(fx-fw);  double dateintmean=0;
       p=(x-v)*q-(x-w)*r;  
       q=2.0*(q-r);  double *weight;
       if (q > 0.0) p = -p;  int **s; /* Status */
       q=fabs(q);  double *agedc, **covar, idx;
       etemp=e;  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
       e=d;  double *lsurv, *lpop, *tpop;
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
       else {  double ftolhess; /* Tolerance for computing hessian */
         d=p/q;  
         u=x+d;  /**************** split *************************/
         if (u-a < tol2 || b-u < tol2)  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
           d=SIGN(tol1,xm-x);  {
       }    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
     } else {       the name of the file (name), its extension only (ext) and its first part of the name (finame)
       d=CGOLD*(e=(x >= xm ? a-x : b-x));    */ 
     }    char  *ss;                            /* pointer */
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));    int   l1, l2;                         /* length counters */
     fu=(*f)(u);  
     if (fu <= fx) {    l1 = strlen(path );                   /* length of path */
       if (u >= x) a=x; else b=x;    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
       SHFT(v,w,x,u)    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
         SHFT(fv,fw,fx,fu)    if ( ss == NULL ) {                   /* no directory, so determine current directory */
         } else {      strcpy( name, path );               /* we got the fullname name because no directory */
           if (u < x) a=u; else b=u;      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
           if (fu <= fw || w == x) {        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
             v=w;      /* get current working directory */
             w=u;      /*    extern  char* getcwd ( char *buf , int len);*/
             fv=fw;      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
             fw=fu;        return( GLOCK_ERROR_GETCWD );
           } else if (fu <= fv || v == x || v == w) {      }
             v=u;      /* got dirc from getcwd*/
             fv=fu;      printf(" DIRC = %s \n",dirc);
           }    } else {                              /* strip direcotry from path */
         }      ss++;                               /* after this, the filename */
   }      l2 = strlen( ss );                  /* length of filename */
   nrerror("Too many iterations in brent");      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
   *xmin=x;      strcpy( name, ss );         /* save file name */
   return fx;      strncpy( dirc, path, l1 - l2 );     /* now the directory */
 }      dirc[l1-l2] = 0;                    /* add zero */
       printf(" DIRC2 = %s \n",dirc);
 /****************** mnbrak ***********************/    }
     /* We add a separator at the end of dirc if not exists */
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,    l1 = strlen( dirc );                  /* length of directory */
             double (*func)(double))    if( dirc[l1-1] != DIRSEPARATOR ){
 {      dirc[l1] =  DIRSEPARATOR;
   double ulim,u,r,q, dum;      dirc[l1+1] = 0; 
   double fu;      printf(" DIRC3 = %s \n",dirc);
      }
   *fa=(*func)(*ax);    ss = strrchr( name, '.' );            /* find last / */
   *fb=(*func)(*bx);    if (ss >0){
   if (*fb > *fa) {      ss++;
     SHFT(dum,*ax,*bx,dum)      strcpy(ext,ss);                     /* save extension */
       SHFT(dum,*fb,*fa,dum)      l1= strlen( name);
       }      l2= strlen(ss)+1;
   *cx=(*bx)+GOLD*(*bx-*ax);      strncpy( finame, name, l1-l2);
   *fc=(*func)(*cx);      finame[l1-l2]= 0;
   while (*fb > *fc) {    }
     r=(*bx-*ax)*(*fb-*fc);  
     q=(*bx-*cx)*(*fb-*fa);    return( 0 );                          /* we're done */
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/  }
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  
     ulim=(*bx)+GLIMIT*(*cx-*bx);  
     if ((*bx-u)*(u-*cx) > 0.0) {  /******************************************/
       fu=(*func)(u);  
     } else if ((*cx-u)*(u-ulim) > 0.0) {  void replace_back_to_slash(char *s, char*t)
       fu=(*func)(u);  {
       if (fu < *fc) {    int i;
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))    int lg=0;
           SHFT(*fb,*fc,fu,(*func)(u))    i=0;
           }    lg=strlen(t);
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {    for(i=0; i<= lg; i++) {
       u=ulim;      (s[i] = t[i]);
       fu=(*func)(u);      if (t[i]== '\\') s[i]='/';
     } else {    }
       u=(*cx)+GOLD*(*cx-*bx);  }
       fu=(*func)(u);  
     }  int nbocc(char *s, char occ)
     SHFT(*ax,*bx,*cx,u)  {
       SHFT(*fa,*fb,*fc,fu)    int i,j=0;
       }    int lg=20;
 }    i=0;
     lg=strlen(s);
 /*************** linmin ************************/    for(i=0; i<= lg; i++) {
     if  (s[i] == occ ) j++;
 int ncom;    }
 double *pcom,*xicom;    return j;
 double (*nrfunc)(double []);  }
    
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))  void cutv(char *u,char *v, char*t, char occ)
 {  {
   double brent(double ax, double bx, double cx,    /* cuts string t into u and v where u ends before first occurence of char 'occ' 
                double (*f)(double), double tol, double *xmin);       and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
   double f1dim(double x);       gives u="abcedf" and v="ghi2j" */
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,    int i,lg,j,p=0;
               double *fc, double (*func)(double));    i=0;
   int j;    for(j=0; j<=strlen(t)-1; j++) {
   double xx,xmin,bx,ax;      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
   double fx,fb,fa;    }
    
   ncom=n;    lg=strlen(t);
   pcom=vector(1,n);    for(j=0; j<p; j++) {
   xicom=vector(1,n);      (u[j] = t[j]);
   nrfunc=func;    }
   for (j=1;j<=n;j++) {       u[p]='\0';
     pcom[j]=p[j];  
     xicom[j]=xi[j];     for(j=0; j<= lg; j++) {
   }      if (j>=(p+1))(v[j-p-1] = t[j]);
   ax=0.0;    }
   xx=1.0;  }
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);  /********************** nrerror ********************/
 #ifdef DEBUG  
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  void nrerror(char error_text[])
 #endif  {
   for (j=1;j<=n;j++) {    fprintf(stderr,"ERREUR ...\n");
     xi[j] *= xmin;    fprintf(stderr,"%s\n",error_text);
     p[j] += xi[j];    exit(EXIT_FAILURE);
   }  }
   free_vector(xicom,1,n);  /*********************** vector *******************/
   free_vector(pcom,1,n);  double *vector(int nl, int nh)
 }  {
     double *v;
 /*************** powell ************************/    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,    if (!v) nrerror("allocation failure in vector");
             double (*func)(double []))    return v-nl+NR_END;
 {  }
   void linmin(double p[], double xi[], int n, double *fret,  
               double (*func)(double []));  /************************ free vector ******************/
   int i,ibig,j;  void free_vector(double*v, int nl, int nh)
   double del,t,*pt,*ptt,*xit;  {
   double fp,fptt;    free((FREE_ARG)(v+nl-NR_END));
   double *xits;  }
   pt=vector(1,n);  
   ptt=vector(1,n);  /************************ivector *******************************/
   xit=vector(1,n);  int *ivector(long nl,long nh)
   xits=vector(1,n);  {
   *fret=(*func)(p);    int *v;
   for (j=1;j<=n;j++) pt[j]=p[j];    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
   for (*iter=1;;++(*iter)) {    if (!v) nrerror("allocation failure in ivector");
     fp=(*fret);    return v-nl+NR_END;
     ibig=0;  }
     del=0.0;  
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  /******************free ivector **************************/
     for (i=1;i<=n;i++)  void free_ivector(int *v, long nl, long nh)
       printf(" %d %.12f",i, p[i]);  {
     printf("\n");    free((FREE_ARG)(v+nl-NR_END));
     for (i=1;i<=n;i++) {  }
       for (j=1;j<=n;j++) xit[j]=xi[j][i];  
       fptt=(*fret);  /************************lvector *******************************/
 #ifdef DEBUG  long *lvector(long nl,long nh)
       printf("fret=%lf \n",*fret);  {
 #endif    long *v;
       printf("%d",i);fflush(stdout);    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
       linmin(p,xit,n,fret,func);    if (!v) nrerror("allocation failure in ivector");
       if (fabs(fptt-(*fret)) > del) {    return v-nl+NR_END;
         del=fabs(fptt-(*fret));  }
         ibig=i;  
       }  /******************free lvector **************************/
 #ifdef DEBUG  void free_lvector(long *v, long nl, long nh)
       printf("%d %.12e",i,(*fret));  {
       for (j=1;j<=n;j++) {    free((FREE_ARG)(v+nl-NR_END));
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);  }
         printf(" x(%d)=%.12e",j,xit[j]);  
       }  /******************* imatrix *******************************/
       for(j=1;j<=n;j++)  int **imatrix(long nrl, long nrh, long ncl, long nch) 
         printf(" p=%.12e",p[j]);       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
       printf("\n");  { 
 #endif    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
     }    int **m; 
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {    
 #ifdef DEBUG    /* allocate pointers to rows */ 
       int k[2],l;    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
       k[0]=1;    if (!m) nrerror("allocation failure 1 in matrix()"); 
       k[1]=-1;    m += NR_END; 
       printf("Max: %.12e",(*func)(p));    m -= nrl; 
       for (j=1;j<=n;j++)    
         printf(" %.12e",p[j]);    
       printf("\n");    /* allocate rows and set pointers to them */ 
       for(l=0;l<=1;l++) {    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
         for (j=1;j<=n;j++) {    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];    m[nrl] += NR_END; 
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);    m[nrl] -= ncl; 
         }    
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
       }    
 #endif    /* return pointer to array of pointers to rows */ 
     return m; 
   } 
       free_vector(xit,1,n);  
       free_vector(xits,1,n);  /****************** free_imatrix *************************/
       free_vector(ptt,1,n);  void free_imatrix(m,nrl,nrh,ncl,nch)
       free_vector(pt,1,n);        int **m;
       return;        long nch,ncl,nrh,nrl; 
     }       /* free an int matrix allocated by imatrix() */ 
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");  { 
     for (j=1;j<=n;j++) {    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
       ptt[j]=2.0*p[j]-pt[j];    free((FREE_ARG) (m+nrl-NR_END)); 
       xit[j]=p[j]-pt[j];  } 
       pt[j]=p[j];  
     }  /******************* matrix *******************************/
     fptt=(*func)(ptt);  double **matrix(long nrl, long nrh, long ncl, long nch)
     if (fptt < fp) {  {
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
       if (t < 0.0) {    double **m;
         linmin(p,xit,n,fret,func);  
         for (j=1;j<=n;j++) {    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
           xi[j][ibig]=xi[j][n];    if (!m) nrerror("allocation failure 1 in matrix()");
           xi[j][n]=xit[j];    m += NR_END;
         }    m -= nrl;
 #ifdef DEBUG  
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
         for(j=1;j<=n;j++)    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
           printf(" %.12e",xit[j]);    m[nrl] += NR_END;
         printf("\n");    m[nrl] -= ncl;
 #endif  
       }    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
     }    return m;
   }    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
 }     */
   }
 /**** Prevalence limit ****************/  
   /*************************free matrix ************************/
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
 {  {
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit    free((FREE_ARG)(m[nrl]+ncl-NR_END));
      matrix by transitions matrix until convergence is reached */    free((FREE_ARG)(m+nrl-NR_END));
   }
   int i, ii,j,k;  
   double min, max, maxmin, maxmax,sumnew=0.;  /******************* ma3x *******************************/
   double **matprod2();  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
   double **out, cov[NCOVMAX], **pmij();  {
   double **newm;    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
   double agefin, delaymax=50 ; /* Max number of years to converge */    double ***m;
   
   for (ii=1;ii<=nlstate+ndeath;ii++)    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     for (j=1;j<=nlstate+ndeath;j++){    if (!m) nrerror("allocation failure 1 in matrix()");
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);    m += NR_END;
     }    m -= nrl;
   
    cov[1]=1.;    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
      if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */    m[nrl] += NR_END;
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){    m[nrl] -= ncl;
     newm=savm;  
     /* Covariates have to be included here again */    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
      cov[2]=agefin;  
      m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
       for (k=1; k<=cptcovn;k++) {    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    m[nrl][ncl] += NR_END;
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/    m[nrl][ncl] -= nll;
       }    for (j=ncl+1; j<=nch; j++) 
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];      m[nrl][j]=m[nrl][j-1]+nlay;
       for (k=1; k<=cptcovprod;k++)    
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    for (i=nrl+1; i<=nrh; i++) {
       m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/      for (j=ncl+1; j<=nch; j++) 
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/        m[i][j]=m[i][j-1]+nlay;
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/    }
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);    return m; 
     /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
     savm=oldm;             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
     oldm=newm;    */
     maxmax=0.;  }
     for(j=1;j<=nlstate;j++){  
       min=1.;  /*************************free ma3x ************************/
       max=0.;  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
       for(i=1; i<=nlstate; i++) {  {
         sumnew=0;    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];    free((FREE_ARG)(m[nrl]+ncl-NR_END));
         prlim[i][j]= newm[i][j]/(1-sumnew);    free((FREE_ARG)(m+nrl-NR_END));
         max=FMAX(max,prlim[i][j]);  }
         min=FMIN(min,prlim[i][j]);  
       }  /*************** function subdirf ***********/
       maxmin=max-min;  char *subdirf(char fileres[])
       maxmax=FMAX(maxmax,maxmin);  {
     }    /* Caution optionfilefiname is hidden */
     if(maxmax < ftolpl){    strcpy(tmpout,optionfilefiname);
       return prlim;    strcat(tmpout,"/"); /* Add to the right */
     }    strcat(tmpout,fileres);
   }    return tmpout;
 }  }
   
 /*************** transition probabilities ***************/  /*************** function subdirf2 ***********/
   char *subdirf2(char fileres[], char *preop)
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )  {
 {    
   double s1, s2;    /* Caution optionfilefiname is hidden */
   /*double t34;*/    strcpy(tmpout,optionfilefiname);
   int i,j,j1, nc, ii, jj;    strcat(tmpout,"/");
     strcat(tmpout,preop);
     for(i=1; i<= nlstate; i++){    strcat(tmpout,fileres);
     for(j=1; j<i;j++){    return tmpout;
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  }
         /*s2 += param[i][j][nc]*cov[nc];*/  
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  /*************** function subdirf3 ***********/
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/  char *subdirf3(char fileres[], char *preop, char *preop2)
       }  {
       ps[i][j]=s2;    
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/    /* Caution optionfilefiname is hidden */
     }    strcpy(tmpout,optionfilefiname);
     for(j=i+1; j<=nlstate+ndeath;j++){    strcat(tmpout,"/");
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    strcat(tmpout,preop);
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    strcat(tmpout,preop2);
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/    strcat(tmpout,fileres);
       }    return tmpout;
       ps[i][j]=s2;  }
     }  
   }  /***************** f1dim *************************/
     /*ps[3][2]=1;*/  extern int ncom; 
   extern double *pcom,*xicom;
   for(i=1; i<= nlstate; i++){  extern double (*nrfunc)(double []); 
      s1=0;   
     for(j=1; j<i; j++)  double f1dim(double x) 
       s1+=exp(ps[i][j]);  { 
     for(j=i+1; j<=nlstate+ndeath; j++)    int j; 
       s1+=exp(ps[i][j]);    double f;
     ps[i][i]=1./(s1+1.);    double *xt; 
     for(j=1; j<i; j++)   
       ps[i][j]= exp(ps[i][j])*ps[i][i];    xt=vector(1,ncom); 
     for(j=i+1; j<=nlstate+ndeath; j++)    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
       ps[i][j]= exp(ps[i][j])*ps[i][i];    f=(*nrfunc)(xt); 
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */    free_vector(xt,1,ncom); 
   } /* end i */    return f; 
   } 
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){  
     for(jj=1; jj<= nlstate+ndeath; jj++){  /*****************brent *************************/
       ps[ii][jj]=0;  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
       ps[ii][ii]=1;  { 
     }    int iter; 
   }    double a,b,d,etemp;
     double fu,fv,fw,fx;
     double ftemp;
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){    double p,q,r,tol1,tol2,u,v,w,x,xm; 
     for(jj=1; jj<= nlstate+ndeath; jj++){    double e=0.0; 
      printf("%lf ",ps[ii][jj]);   
    }    a=(ax < cx ? ax : cx); 
     printf("\n ");    b=(ax > cx ? ax : cx); 
     }    x=w=v=bx; 
     printf("\n ");printf("%lf ",cov[2]);*/    fw=fv=fx=(*f)(x); 
 /*    for (iter=1;iter<=ITMAX;iter++) { 
   for(i=1; i<= npar; i++) printf("%f ",x[i]);      xm=0.5*(a+b); 
   goto end;*/      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
     return ps;      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
 }      printf(".");fflush(stdout);
       fprintf(ficlog,".");fflush(ficlog);
 /**************** Product of 2 matrices ******************/  #ifdef DEBUG
       printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
 {      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times  #endif
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
   /* in, b, out are matrice of pointers which should have been initialized        *xmin=x; 
      before: only the contents of out is modified. The function returns        return fx; 
      a pointer to pointers identical to out */      } 
   long i, j, k;      ftemp=fu;
   for(i=nrl; i<= nrh; i++)      if (fabs(e) > tol1) { 
     for(k=ncolol; k<=ncoloh; k++)        r=(x-w)*(fx-fv); 
       for(j=ncl,out[i][k]=0.; j<=nch; j++)        q=(x-v)*(fx-fw); 
         out[i][k] +=in[i][j]*b[j][k];        p=(x-v)*q-(x-w)*r; 
         q=2.0*(q-r); 
   return out;        if (q > 0.0) p = -p; 
 }        q=fabs(q); 
         etemp=e; 
         e=d; 
 /************* Higher Matrix Product ***************/        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
           d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )        else { 
 {          d=p/q; 
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month          u=x+d; 
      duration (i.e. until          if (u-a < tol2 || b-u < tol2) 
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.            d=SIGN(tol1,xm-x); 
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step        } 
      (typically every 2 years instead of every month which is too big).      } else { 
      Model is determined by parameters x and covariates have to be        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
      included manually here.      } 
       u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
      */      fu=(*f)(u); 
       if (fu <= fx) { 
   int i, j, d, h, k;        if (u >= x) a=x; else b=x; 
   double **out, cov[NCOVMAX];        SHFT(v,w,x,u) 
   double **newm;          SHFT(fv,fw,fx,fu) 
           } else { 
   /* Hstepm could be zero and should return the unit matrix */            if (u < x) a=u; else b=u; 
   for (i=1;i<=nlstate+ndeath;i++)            if (fu <= fw || w == x) { 
     for (j=1;j<=nlstate+ndeath;j++){              v=w; 
       oldm[i][j]=(i==j ? 1.0 : 0.0);              w=u; 
       po[i][j][0]=(i==j ? 1.0 : 0.0);              fv=fw; 
     }              fw=fu; 
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */            } else if (fu <= fv || v == x || v == w) { 
   for(h=1; h <=nhstepm; h++){              v=u; 
     for(d=1; d <=hstepm; d++){              fv=fu; 
       newm=savm;            } 
       /* Covariates have to be included here again */          } 
       cov[1]=1.;    } 
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;    nrerror("Too many iterations in brent"); 
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    *xmin=x; 
       for (k=1; k<=cptcovage;k++)    return fx; 
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  } 
       for (k=1; k<=cptcovprod;k++)  
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  /****************** mnbrak ***********************/
   
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/              double (*func)(double)) 
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/  { 
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,    double ulim,u,r,q, dum;
                    pmij(pmmij,cov,ncovmodel,x,nlstate));    double fu; 
       savm=oldm;   
       oldm=newm;    *fa=(*func)(*ax); 
     }    *fb=(*func)(*bx); 
     for(i=1; i<=nlstate+ndeath; i++)    if (*fb > *fa) { 
       for(j=1;j<=nlstate+ndeath;j++) {      SHFT(dum,*ax,*bx,dum) 
         po[i][j][h]=newm[i][j];        SHFT(dum,*fb,*fa,dum) 
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);        } 
          */    *cx=(*bx)+GOLD*(*bx-*ax); 
       }    *fc=(*func)(*cx); 
   } /* end h */    while (*fb > *fc) { 
   return po;      r=(*bx-*ax)*(*fb-*fc); 
 }      q=(*bx-*cx)*(*fb-*fa); 
       u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
         (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
 /*************** log-likelihood *************/      ulim=(*bx)+GLIMIT*(*cx-*bx); 
 double func( double *x)      if ((*bx-u)*(u-*cx) > 0.0) { 
 {        fu=(*func)(u); 
   int i, ii, j, k, mi, d, kk;      } else if ((*cx-u)*(u-ulim) > 0.0) { 
   double l, ll[NLSTATEMAX], cov[NCOVMAX];        fu=(*func)(u); 
   double **out;        if (fu < *fc) { 
   double sw; /* Sum of weights */          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
   double lli; /* Individual log likelihood */            SHFT(*fb,*fc,fu,(*func)(u)) 
   long ipmx;            } 
   /*extern weight */      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
   /* We are differentiating ll according to initial status */        u=ulim; 
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/        fu=(*func)(u); 
   /*for(i=1;i<imx;i++)      } else { 
     printf(" %d\n",s[4][i]);        u=(*cx)+GOLD*(*cx-*bx); 
   */        fu=(*func)(u); 
   cov[1]=1.;      } 
       SHFT(*ax,*bx,*cx,u) 
   for(k=1; k<=nlstate; k++) ll[k]=0.;        SHFT(*fa,*fb,*fc,fu) 
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){        } 
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];  } 
     for(mi=1; mi<= wav[i]-1; mi++){  
       for (ii=1;ii<=nlstate+ndeath;ii++)  /*************** linmin ************************/
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);  
       for(d=0; d<dh[mi][i]; d++){  int ncom; 
         newm=savm;  double *pcom,*xicom;
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;  double (*nrfunc)(double []); 
         for (kk=1; kk<=cptcovage;kk++) {   
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
         }  { 
            double brent(double ax, double bx, double cx, 
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,                 double (*f)(double), double tol, double *xmin); 
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));    double f1dim(double x); 
         savm=oldm;    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
         oldm=newm;                double *fc, double (*func)(double)); 
            int j; 
            double xx,xmin,bx,ax; 
       } /* end mult */    double fx,fb,fa;
         
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);    ncom=n; 
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/    pcom=vector(1,n); 
       ipmx +=1;    xicom=vector(1,n); 
       sw += weight[i];    nrfunc=func; 
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;    for (j=1;j<=n;j++) { 
     } /* end of wave */      pcom[j]=p[j]; 
   } /* end of individual */      xicom[j]=xi[j]; 
     } 
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];    ax=0.0; 
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */    xx=1.0; 
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
   return -l;    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
 }  #ifdef DEBUG
     printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
     fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
 /*********** Maximum Likelihood Estimation ***************/  #endif
     for (j=1;j<=n;j++) { 
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))      xi[j] *= xmin; 
 {      p[j] += xi[j]; 
   int i,j, iter;    } 
   double **xi,*delti;    free_vector(xicom,1,n); 
   double fret;    free_vector(pcom,1,n); 
   xi=matrix(1,npar,1,npar);  } 
   for (i=1;i<=npar;i++)  
     for (j=1;j<=npar;j++)  char *asc_diff_time(long time_sec, char ascdiff[])
       xi[i][j]=(i==j ? 1.0 : 0.0);  {
   printf("Powell\n");    long sec_left, days, hours, minutes;
   powell(p,xi,npar,ftol,&iter,&fret,func);    days = (time_sec) / (60*60*24);
     sec_left = (time_sec) % (60*60*24);
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));    hours = (sec_left) / (60*60) ;
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));    sec_left = (sec_left) %(60*60);
     minutes = (sec_left) /60;
 }    sec_left = (sec_left) % (60);
     sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
 /**** Computes Hessian and covariance matrix ***/    return ascdiff;
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))  }
 {  
   double  **a,**y,*x,pd;  /*************** powell ************************/
   double **hess;  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
   int i, j,jk;              double (*func)(double [])) 
   int *indx;  { 
     void linmin(double p[], double xi[], int n, double *fret, 
   double hessii(double p[], double delta, int theta, double delti[]);                double (*func)(double [])); 
   double hessij(double p[], double delti[], int i, int j);    int i,ibig,j; 
   void lubksb(double **a, int npar, int *indx, double b[]) ;    double del,t,*pt,*ptt,*xit;
   void ludcmp(double **a, int npar, int *indx, double *d) ;    double fp,fptt;
     double *xits;
   hess=matrix(1,npar,1,npar);    int niterf, itmp;
   
   printf("\nCalculation of the hessian matrix. Wait...\n");    pt=vector(1,n); 
   for (i=1;i<=npar;i++){    ptt=vector(1,n); 
     printf("%d",i);fflush(stdout);    xit=vector(1,n); 
     hess[i][i]=hessii(p,ftolhess,i,delti);    xits=vector(1,n); 
     /*printf(" %f ",p[i]);*/    *fret=(*func)(p); 
     /*printf(" %lf ",hess[i][i]);*/    for (j=1;j<=n;j++) pt[j]=p[j]; 
   }    for (*iter=1;;++(*iter)) { 
        fp=(*fret); 
   for (i=1;i<=npar;i++) {      ibig=0; 
     for (j=1;j<=npar;j++)  {      del=0.0; 
       if (j>i) {      last_time=curr_time;
         printf(".%d%d",i,j);fflush(stdout);      (void) gettimeofday(&curr_time,&tzp);
         hess[i][j]=hessij(p,delti,i,j);      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
         hess[j][i]=hess[i][j];          /*    fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);
         /*printf(" %lf ",hess[i][j]);*/      fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);
       }      */
     }     for (i=1;i<=n;i++) {
   }        printf(" %d %.12f",i, p[i]);
   printf("\n");        fprintf(ficlog," %d %.12lf",i, p[i]);
         fprintf(ficrespow," %.12lf", p[i]);
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");      }
        printf("\n");
   a=matrix(1,npar,1,npar);      fprintf(ficlog,"\n");
   y=matrix(1,npar,1,npar);      fprintf(ficrespow,"\n");fflush(ficrespow);
   x=vector(1,npar);      if(*iter <=3){
   indx=ivector(1,npar);        tm = *localtime(&curr_time.tv_sec);
   for (i=1;i<=npar;i++)        strcpy(strcurr,asctime(&tm));
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];  /*       asctime_r(&tm,strcurr); */
   ludcmp(a,npar,indx,&pd);        forecast_time=curr_time; 
         itmp = strlen(strcurr);
   for (j=1;j<=npar;j++) {        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
     for (i=1;i<=npar;i++) x[i]=0;          strcurr[itmp-1]='\0';
     x[j]=1;        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
     lubksb(a,npar,indx,x);        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
     for (i=1;i<=npar;i++){        for(niterf=10;niterf<=30;niterf+=10){
       matcov[i][j]=x[i];          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
     }          tmf = *localtime(&forecast_time.tv_sec);
   }  /*      asctime_r(&tmf,strfor); */
           strcpy(strfor,asctime(&tmf));
   printf("\n#Hessian matrix#\n");          itmp = strlen(strfor);
   for (i=1;i<=npar;i++) {          if(strfor[itmp-1]=='\n')
     for (j=1;j<=npar;j++) {          strfor[itmp-1]='\0';
       printf("%.3e ",hess[i][j]);          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
     }          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
     printf("\n");        }
   }      }
       for (i=1;i<=n;i++) { 
   /* Recompute Inverse */        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
   for (i=1;i<=npar;i++)        fptt=(*fret); 
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];  #ifdef DEBUG
   ludcmp(a,npar,indx,&pd);        printf("fret=%lf \n",*fret);
         fprintf(ficlog,"fret=%lf \n",*fret);
   /*  printf("\n#Hessian matrix recomputed#\n");  #endif
         printf("%d",i);fflush(stdout);
   for (j=1;j<=npar;j++) {        fprintf(ficlog,"%d",i);fflush(ficlog);
     for (i=1;i<=npar;i++) x[i]=0;        linmin(p,xit,n,fret,func); 
     x[j]=1;        if (fabs(fptt-(*fret)) > del) { 
     lubksb(a,npar,indx,x);          del=fabs(fptt-(*fret)); 
     for (i=1;i<=npar;i++){          ibig=i; 
       y[i][j]=x[i];        } 
       printf("%.3e ",y[i][j]);  #ifdef DEBUG
     }        printf("%d %.12e",i,(*fret));
     printf("\n");        fprintf(ficlog,"%d %.12e",i,(*fret));
   }        for (j=1;j<=n;j++) {
   */          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
           printf(" x(%d)=%.12e",j,xit[j]);
   free_matrix(a,1,npar,1,npar);          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
   free_matrix(y,1,npar,1,npar);        }
   free_vector(x,1,npar);        for(j=1;j<=n;j++) {
   free_ivector(indx,1,npar);          printf(" p=%.12e",p[j]);
   free_matrix(hess,1,npar,1,npar);          fprintf(ficlog," p=%.12e",p[j]);
         }
         printf("\n");
 }        fprintf(ficlog,"\n");
   #endif
 /*************** hessian matrix ****************/      } 
 double hessii( double x[], double delta, int theta, double delti[])      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
 {  #ifdef DEBUG
   int i;        int k[2],l;
   int l=1, lmax=20;        k[0]=1;
   double k1,k2;        k[1]=-1;
   double p2[NPARMAX+1];        printf("Max: %.12e",(*func)(p));
   double res;        fprintf(ficlog,"Max: %.12e",(*func)(p));
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;        for (j=1;j<=n;j++) {
   double fx;          printf(" %.12e",p[j]);
   int k=0,kmax=10;          fprintf(ficlog," %.12e",p[j]);
   double l1;        }
         printf("\n");
   fx=func(x);        fprintf(ficlog,"\n");
   for (i=1;i<=npar;i++) p2[i]=x[i];        for(l=0;l<=1;l++) {
   for(l=0 ; l <=lmax; l++){          for (j=1;j<=n;j++) {
     l1=pow(10,l);            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
     delts=delt;            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
     for(k=1 ; k <kmax; k=k+1){            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
       delt = delta*(l1*k);          }
       p2[theta]=x[theta] +delt;          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
       k1=func(p2)-fx;          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
       p2[theta]=x[theta]-delt;        }
       k2=func(p2)-fx;  #endif
       /*res= (k1-2.0*fx+k2)/delt/delt; */  
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */  
              free_vector(xit,1,n); 
 #ifdef DEBUG        free_vector(xits,1,n); 
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);        free_vector(ptt,1,n); 
 #endif        free_vector(pt,1,n); 
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */        return; 
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){      } 
         k=kmax;      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
       }      for (j=1;j<=n;j++) { 
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */        ptt[j]=2.0*p[j]-pt[j]; 
         k=kmax; l=lmax*10.;        xit[j]=p[j]-pt[j]; 
       }        pt[j]=p[j]; 
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){      } 
         delts=delt;      fptt=(*func)(ptt); 
       }      if (fptt < fp) { 
     }        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
   }        if (t < 0.0) { 
   delti[theta]=delts;          linmin(p,xit,n,fret,func); 
   return res;          for (j=1;j<=n;j++) { 
              xi[j][ibig]=xi[j][n]; 
 }            xi[j][n]=xit[j]; 
           }
 double hessij( double x[], double delti[], int thetai,int thetaj)  #ifdef DEBUG
 {          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   int i;          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   int l=1, l1, lmax=20;          for(j=1;j<=n;j++){
   double k1,k2,k3,k4,res,fx;            printf(" %.12e",xit[j]);
   double p2[NPARMAX+1];            fprintf(ficlog," %.12e",xit[j]);
   int k;          }
           printf("\n");
   fx=func(x);          fprintf(ficlog,"\n");
   for (k=1; k<=2; k++) {  #endif
     for (i=1;i<=npar;i++) p2[i]=x[i];        }
     p2[thetai]=x[thetai]+delti[thetai]/k;      } 
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;    } 
     k1=func(p2)-fx;  } 
    
     p2[thetai]=x[thetai]+delti[thetai]/k;  /**** Prevalence limit (stable or period prevalence)  ****************/
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;  
     k2=func(p2)-fx;  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
    {
     p2[thetai]=x[thetai]-delti[thetai]/k;    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;       matrix by transitions matrix until convergence is reached */
     k3=func(p2)-fx;  
      int i, ii,j,k;
     p2[thetai]=x[thetai]-delti[thetai]/k;    double min, max, maxmin, maxmax,sumnew=0.;
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;    double **matprod2();
     k4=func(p2)-fx;    double **out, cov[NCOVMAX], **pmij();
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */    double **newm;
 #ifdef DEBUG    double agefin, delaymax=50 ; /* Max number of years to converge */
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);  
 #endif    for (ii=1;ii<=nlstate+ndeath;ii++)
   }      for (j=1;j<=nlstate+ndeath;j++){
   return res;        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 }      }
   
 /************** Inverse of matrix **************/     cov[1]=1.;
 void ludcmp(double **a, int n, int *indx, double *d)   
 {   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   int i,imax,j,k;    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
   double big,dum,sum,temp;      newm=savm;
   double *vv;      /* Covariates have to be included here again */
         cov[2]=agefin;
   vv=vector(1,n);    
   *d=1.0;        for (k=1; k<=cptcovn;k++) {
   for (i=1;i<=n;i++) {          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
     big=0.0;          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
     for (j=1;j<=n;j++)        }
       if ((temp=fabs(a[i][j])) > big) big=temp;        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");        for (k=1; k<=cptcovprod;k++)
     vv[i]=1.0/big;          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   }  
   for (j=1;j<=n;j++) {        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
     for (i=1;i<j;i++) {        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
       sum=a[i][j];        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
       a[i][j]=sum;  
     }      savm=oldm;
     big=0.0;      oldm=newm;
     for (i=j;i<=n;i++) {      maxmax=0.;
       sum=a[i][j];      for(j=1;j<=nlstate;j++){
       for (k=1;k<j;k++)        min=1.;
         sum -= a[i][k]*a[k][j];        max=0.;
       a[i][j]=sum;        for(i=1; i<=nlstate; i++) {
       if ( (dum=vv[i]*fabs(sum)) >= big) {          sumnew=0;
         big=dum;          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
         imax=i;          prlim[i][j]= newm[i][j]/(1-sumnew);
       }          max=FMAX(max,prlim[i][j]);
     }          min=FMIN(min,prlim[i][j]);
     if (j != imax) {        }
       for (k=1;k<=n;k++) {        maxmin=max-min;
         dum=a[imax][k];        maxmax=FMAX(maxmax,maxmin);
         a[imax][k]=a[j][k];      }
         a[j][k]=dum;      if(maxmax < ftolpl){
       }        return prlim;
       *d = -(*d);      }
       vv[imax]=vv[j];    }
     }  }
     indx[j]=imax;  
     if (a[j][j] == 0.0) a[j][j]=TINY;  /*************** transition probabilities ***************/ 
     if (j != n) {  
       dum=1.0/(a[j][j]);  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
       for (i=j+1;i<=n;i++) a[i][j] *= dum;  {
     }    double s1, s2;
   }    /*double t34;*/
   free_vector(vv,1,n);  /* Doesn't work */    int i,j,j1, nc, ii, jj;
 ;  
 }      for(i=1; i<= nlstate; i++){
         for(j=1; j<i;j++){
 void lubksb(double **a, int n, int *indx, double b[])          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
 {            /*s2 += param[i][j][nc]*cov[nc];*/
   int i,ii=0,ip,j;            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
   double sum;  /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
            }
   for (i=1;i<=n;i++) {          ps[i][j]=s2;
     ip=indx[i];  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
     sum=b[ip];        }
     b[ip]=b[i];        for(j=i+1; j<=nlstate+ndeath;j++){
     if (ii)          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];            s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
     else if (sum) ii=i;  /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
     b[i]=sum;          }
   }          ps[i][j]=s2;
   for (i=n;i>=1;i--) {        }
     sum=b[i];      }
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];      /*ps[3][2]=1;*/
     b[i]=sum/a[i][i];      
   }      for(i=1; i<= nlstate; i++){
 }        s1=0;
         for(j=1; j<i; j++)
 /************ Frequencies ********************/          s1+=exp(ps[i][j]);
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)        for(j=i+1; j<=nlstate+ndeath; j++)
 {  /* Some frequencies */          s1+=exp(ps[i][j]);
          ps[i][i]=1./(s1+1.);
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;        for(j=1; j<i; j++)
   double ***freq; /* Frequencies */          ps[i][j]= exp(ps[i][j])*ps[i][i];
   double *pp;        for(j=i+1; j<=nlstate+ndeath; j++)
   double pos, k2, dateintsum=0,k2cpt=0;          ps[i][j]= exp(ps[i][j])*ps[i][i];
   FILE *ficresp;        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
   char fileresp[FILENAMELENGTH];      } /* end i */
        
   pp=vector(1,nlstate);      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);        for(jj=1; jj<= nlstate+ndeath; jj++){
   strcpy(fileresp,"p");          ps[ii][jj]=0;
   strcat(fileresp,fileres);          ps[ii][ii]=1;
   if((ficresp=fopen(fileresp,"w"))==NULL) {        }
     printf("Problem with prevalence resultfile: %s\n", fileresp);      }
     exit(0);      
   }  
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
   j1=0;  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
    /*         printf("ddd %lf ",ps[ii][jj]); */
   j=cptcoveff;  /*       } */
   if (cptcovn<1) {j=1;ncodemax[1]=1;}  /*       printf("\n "); */
    /*        } */
   for(k1=1; k1<=j;k1++){  /*        printf("\n ");printf("%lf ",cov[2]); */
     for(i1=1; i1<=ncodemax[k1];i1++){         /*
       j1++;        for(i=1; i<= npar; i++) printf("%f ",x[i]);
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);        goto end;*/
         scanf("%d", i);*/      return ps;
       for (i=-1; i<=nlstate+ndeath; i++)    }
         for (jk=-1; jk<=nlstate+ndeath; jk++)    
           for(m=agemin; m <= agemax+3; m++)  /**************** Product of 2 matrices ******************/
             freq[i][jk][m]=0;  
        double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
       dateintsum=0;  {
       k2cpt=0;    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
       for (i=1; i<=imx; i++) {       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
         bool=1;    /* in, b, out are matrice of pointers which should have been initialized 
         if  (cptcovn>0) {       before: only the contents of out is modified. The function returns
           for (z1=1; z1<=cptcoveff; z1++)       a pointer to pointers identical to out */
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])    long i, j, k;
               bool=0;    for(i=nrl; i<= nrh; i++)
         }      for(k=ncolol; k<=ncoloh; k++)
         if (bool==1) {        for(j=ncl,out[i][k]=0.; j<=nch; j++)
           for(m=firstpass; m<=lastpass; m++){          out[i][k] +=in[i][j]*b[j][k];
             k2=anint[m][i]+(mint[m][i]/12.);  
             if ((k2>=dateprev1) && (k2<=dateprev2)) {    return out;
               if(agev[m][i]==0) agev[m][i]=agemax+1;  }
               if(agev[m][i]==1) agev[m][i]=agemax+2;  
               if (m<lastpass) {  
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];  /************* Higher Matrix Product ***************/
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];  
               }  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
                {
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {    /* Computes the transition matrix starting at age 'age' over 
                 dateintsum=dateintsum+k2;       'nhstepm*hstepm*stepm' months (i.e. until
                 k2cpt++;       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
               }       nhstepm*hstepm matrices. 
             }       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
           }       (typically every 2 years instead of every month which is too big 
         }       for the memory).
       }       Model is determined by parameters x and covariates have to be 
               included manually here. 
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);  
        */
       if  (cptcovn>0) {  
         fprintf(ficresp, "\n#********** Variable ");    int i, j, d, h, k;
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    double **out, cov[NCOVMAX];
         fprintf(ficresp, "**********\n#");    double **newm;
       }  
       for(i=1; i<=nlstate;i++)    /* Hstepm could be zero and should return the unit matrix */
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);    for (i=1;i<=nlstate+ndeath;i++)
       fprintf(ficresp, "\n");      for (j=1;j<=nlstate+ndeath;j++){
              oldm[i][j]=(i==j ? 1.0 : 0.0);
       for(i=(int)agemin; i <= (int)agemax+3; i++){        po[i][j][0]=(i==j ? 1.0 : 0.0);
         if(i==(int)agemax+3)      }
           printf("Total");    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
         else    for(h=1; h <=nhstepm; h++){
           printf("Age %d", i);      for(d=1; d <=hstepm; d++){
         for(jk=1; jk <=nlstate ; jk++){        newm=savm;
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)        /* Covariates have to be included here again */
             pp[jk] += freq[jk][m][i];        cov[1]=1.;
         }        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
         for(jk=1; jk <=nlstate ; jk++){        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
           for(m=-1, pos=0; m <=0 ; m++)        for (k=1; k<=cptcovage;k++)
             pos += freq[jk][m][i];          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           if(pp[jk]>=1.e-10)        for (k=1; k<=cptcovprod;k++)
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           else  
             printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);  
         }        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
         /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
         for(jk=1; jk <=nlstate ; jk++){        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)                     pmij(pmmij,cov,ncovmodel,x,nlstate));
             pp[jk] += freq[jk][m][i];        savm=oldm;
         }        oldm=newm;
       }
         for(jk=1,pos=0; jk <=nlstate ; jk++)      for(i=1; i<=nlstate+ndeath; i++)
           pos += pp[jk];        for(j=1;j<=nlstate+ndeath;j++) {
         for(jk=1; jk <=nlstate ; jk++){          po[i][j][h]=newm[i][j];
           if(pos>=1.e-5)          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
             printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);           */
           else        }
             printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);    } /* end h */
           if( i <= (int) agemax){    return po;
             if(pos>=1.e-5){  }
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);  
               probs[i][jk][j1]= pp[jk]/pos;  
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/  /*************** log-likelihood *************/
             }  double func( double *x)
             else  {
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);    int i, ii, j, k, mi, d, kk;
           }    double l, ll[NLSTATEMAX], cov[NCOVMAX];
         }    double **out;
            double sw; /* Sum of weights */
         for(jk=-1; jk <=nlstate+ndeath; jk++)    double lli; /* Individual log likelihood */
           for(m=-1; m <=nlstate+ndeath; m++)    int s1, s2;
             if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);    double bbh, survp;
         if(i <= (int) agemax)    long ipmx;
           fprintf(ficresp,"\n");    /*extern weight */
         printf("\n");    /* We are differentiating ll according to initial status */
       }    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     }    /*for(i=1;i<imx;i++) 
   }      printf(" %d\n",s[4][i]);
   dateintmean=dateintsum/k2cpt;    */
      cov[1]=1.;
   fclose(ficresp);  
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);    for(k=1; k<=nlstate; k++) ll[k]=0.;
   free_vector(pp,1,nlstate);  
      if(mle==1){
   /* End of Freq */      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(mi=1; mi<= wav[i]-1; mi++){
 /************ Prevalence ********************/          for (ii=1;ii<=nlstate+ndeath;ii++)
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)            for (j=1;j<=nlstate+ndeath;j++){
 {  /* Some frequencies */              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                savm[ii][j]=(ii==j ? 1.0 : 0.0);
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;            }
   double ***freq; /* Frequencies */          for(d=0; d<dh[mi][i]; d++){
   double *pp;            newm=savm;
   double pos, k2;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             for (kk=1; kk<=cptcovage;kk++) {
   pp=vector(1,nlstate);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);            }
              out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   j1=0;            savm=oldm;
              oldm=newm;
   j=cptcoveff;          } /* end mult */
   if (cptcovn<1) {j=1;ncodemax[1]=1;}        
            /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
  for(k1=1; k1<=j;k1++){          /* But now since version 0.9 we anticipate for bias at large stepm.
     for(i1=1; i1<=ncodemax[k1];i1++){           * If stepm is larger than one month (smallest stepm) and if the exact delay 
       j1++;           * (in months) between two waves is not a multiple of stepm, we rounded to 
             * the nearest (and in case of equal distance, to the lowest) interval but now
       for (i=-1; i<=nlstate+ndeath; i++)             * we keep into memory the bias bh[mi][i] and also the previous matrix product
         for (jk=-1; jk<=nlstate+ndeath; jk++)             * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
           for(m=agemin; m <= agemax+3; m++)           * probability in order to take into account the bias as a fraction of the way
             freq[i][jk][m]=0;           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
                 * -stepm/2 to stepm/2 .
       for (i=1; i<=imx; i++) {           * For stepm=1 the results are the same as for previous versions of Imach.
         bool=1;           * For stepm > 1 the results are less biased than in previous versions. 
         if  (cptcovn>0) {           */
           for (z1=1; z1<=cptcoveff; z1++)          s1=s[mw[mi][i]][i];
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])          s2=s[mw[mi+1][i]][i];
               bool=0;          bbh=(double)bh[mi][i]/(double)stepm; 
         }          /* bias bh is positive if real duration
         if (bool==1) {           * is higher than the multiple of stepm and negative otherwise.
           for(m=firstpass; m<=lastpass; m++){           */
             k2=anint[m][i]+(mint[m][i]/12.);          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
             if ((k2>=dateprev1) && (k2<=dateprev2)) {          if( s2 > nlstate){ 
               if(agev[m][i]==0) agev[m][i]=agemax+1;            /* i.e. if s2 is a death state and if the date of death is known 
               if(agev[m][i]==1) agev[m][i]=agemax+2;               then the contribution to the likelihood is the probability to 
               if (m<lastpass) freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];               die between last step unit time and current  step unit time, 
               /* freq[s[m][i]][s[m+1][i]][(int)(agemax+3+1)] += weight[i];  */               which is also equal to probability to die before dh 
             }               minus probability to die before dh-stepm . 
           }               In version up to 0.92 likelihood was computed
         }          as if date of death was unknown. Death was treated as any other
       }          health state: the date of the interview describes the actual state
         for(i=(int)agemin; i <= (int)agemax+3; i++){          and not the date of a change in health state. The former idea was
           for(jk=1; jk <=nlstate ; jk++){          to consider that at each interview the state was recorded
             for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)          (healthy, disable or death) and IMaCh was corrected; but when we
               pp[jk] += freq[jk][m][i];          introduced the exact date of death then we should have modified
           }          the contribution of an exact death to the likelihood. This new
           for(jk=1; jk <=nlstate ; jk++){          contribution is smaller and very dependent of the step unit
             for(m=-1, pos=0; m <=0 ; m++)          stepm. It is no more the probability to die between last interview
             pos += freq[jk][m][i];          and month of death but the probability to survive from last
         }          interview up to one month before death multiplied by the
                  probability to die within a month. Thanks to Chris
          for(jk=1; jk <=nlstate ; jk++){          Jackson for correcting this bug.  Former versions increased
            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)          mortality artificially. The bad side is that we add another loop
              pp[jk] += freq[jk][m][i];          which slows down the processing. The difference can be up to 10%
          }          lower mortality.
                      */
          for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];            lli=log(out[s1][s2] - savm[s1][s2]);
   
          for(jk=1; jk <=nlstate ; jk++){            
            if( i <= (int) agemax){          } else if  (s2==-2) {
              if(pos>=1.e-5){            for (j=1,survp=0. ; j<=nlstate; j++) 
                probs[i][jk][j1]= pp[jk]/pos;              survp += out[s1][j];
              }            lli= survp;
            }          }
          }          
                    else if  (s2==-4) {
         }            for (j=3,survp=0. ; j<=nlstate; j++) 
     }              survp += out[s1][j];
   }            lli= survp;
            }
            
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);          else if  (s2==-5) {
   free_vector(pp,1,nlstate);            for (j=1,survp=0. ; j<=2; j++) 
                survp += out[s1][j];
 }  /* End of Freq */            lli= survp;
           }
 /************* Waves Concatenation ***************/  
   
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)          else{
 {            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
      Death is a valid wave (if date is known).          } 
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]          /*if(lli ==000.0)*/
      and mw[mi+1][i]. dh depends on stepm.          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
      */          ipmx +=1;
           sw += weight[i];
   int i, mi, m;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;        } /* end of wave */
      double sum=0., jmean=0.;*/      } /* end of individual */
     }  else if(mle==2){
   int j, k=0,jk, ju, jl;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   double sum=0.;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   jmin=1e+5;        for(mi=1; mi<= wav[i]-1; mi++){
   jmax=-1;          for (ii=1;ii<=nlstate+ndeath;ii++)
   jmean=0.;            for (j=1;j<=nlstate+ndeath;j++){
   for(i=1; i<=imx; i++){              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     mi=0;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     m=firstpass;            }
     while(s[m][i] <= nlstate){          for(d=0; d<=dh[mi][i]; d++){
       if(s[m][i]>=1)            newm=savm;
         mw[++mi][i]=m;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       if(m >=lastpass)            for (kk=1; kk<=cptcovage;kk++) {
         break;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       else            }
         m++;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     }/* end while */                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     if (s[m][i] > nlstate){            savm=oldm;
       mi++;     /* Death is another wave */            oldm=newm;
       /* if(mi==0)  never been interviewed correctly before death */          } /* end mult */
          /* Only death is a correct wave */        
       mw[mi][i]=m;          s1=s[mw[mi][i]][i];
     }          s2=s[mw[mi+1][i]][i];
           bbh=(double)bh[mi][i]/(double)stepm; 
     wav[i]=mi;          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
     if(mi==0)          ipmx +=1;
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);          sw += weight[i];
   }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         } /* end of wave */
   for(i=1; i<=imx; i++){      } /* end of individual */
     for(mi=1; mi<wav[i];mi++){    }  else if(mle==3){  /* exponential inter-extrapolation */
       if (stepm <=0)      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         dh[mi][i]=1;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       else{        for(mi=1; mi<= wav[i]-1; mi++){
         if (s[mw[mi+1][i]][i] > nlstate) {          for (ii=1;ii<=nlstate+ndeath;ii++)
           if (agedc[i] < 2*AGESUP) {            for (j=1;j<=nlstate+ndeath;j++){
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           if(j==0) j=1;  /* Survives at least one month after exam */              savm[ii][j]=(ii==j ? 1.0 : 0.0);
           k=k+1;            }
           if (j >= jmax) jmax=j;          for(d=0; d<dh[mi][i]; d++){
           if (j <= jmin) jmin=j;            newm=savm;
           sum=sum+j;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           /*if (j<0) printf("j=%d num=%d \n",j,i); */            for (kk=1; kk<=cptcovage;kk++) {
           }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         }            }
         else{            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           k=k+1;            savm=oldm;
           if (j >= jmax) jmax=j;            oldm=newm;
           else if (j <= jmin)jmin=j;          } /* end mult */
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */        
           sum=sum+j;          s1=s[mw[mi][i]][i];
         }          s2=s[mw[mi+1][i]][i];
         jk= j/stepm;          bbh=(double)bh[mi][i]/(double)stepm; 
         jl= j -jk*stepm;          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
         ju= j -(jk+1)*stepm;          ipmx +=1;
         if(jl <= -ju)          sw += weight[i];
           dh[mi][i]=jk;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         else        } /* end of wave */
           dh[mi][i]=jk+1;      } /* end of individual */
         if(dh[mi][i]==0)    }else if (mle==4){  /* ml=4 no inter-extrapolation */
           dh[mi][i]=1; /* At least one step */      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     }        for(mi=1; mi<= wav[i]-1; mi++){
   }          for (ii=1;ii<=nlstate+ndeath;ii++)
   jmean=sum/k;            for (j=1;j<=nlstate+ndeath;j++){
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
  }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
 /*********** Tricode ****************************/            }
 void tricode(int *Tvar, int **nbcode, int imx)          for(d=0; d<dh[mi][i]; d++){
 {            newm=savm;
   int Ndum[20],ij=1, k, j, i;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   int cptcode=0;            for (kk=1; kk<=cptcovage;kk++) {
   cptcoveff=0;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
              }
   for (k=0; k<19; k++) Ndum[k]=0;          
   for (k=1; k<=7; k++) ncodemax[k]=0;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                          1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {            savm=oldm;
     for (i=1; i<=imx; i++) {            oldm=newm;
       ij=(int)(covar[Tvar[j]][i]);          } /* end mult */
       Ndum[ij]++;        
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/          s1=s[mw[mi][i]][i];
       if (ij > cptcode) cptcode=ij;          s2=s[mw[mi+1][i]][i];
     }          if( s2 > nlstate){ 
             lli=log(out[s1][s2] - savm[s1][s2]);
     for (i=0; i<=cptcode; i++) {          }else{
       if(Ndum[i]!=0) ncodemax[j]++;            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
     }          }
     ij=1;          ipmx +=1;
           sw += weight[i];
           ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     for (i=1; i<=ncodemax[j]; i++) {  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
       for (k=0; k<=19; k++) {        } /* end of wave */
         if (Ndum[k] != 0) {      } /* end of individual */
           nbcode[Tvar[j]][ij]=k;    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
           /*     printf("nbcodeaaaaaaaaaaa=%d Tvar[j]=%d ij=%d j=%d",nbcode[Tvar[j]][ij],Tvar[j],ij,j);*/      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           ij++;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         }        for(mi=1; mi<= wav[i]-1; mi++){
         if (ij > ncodemax[j]) break;          for (ii=1;ii<=nlstate+ndeath;ii++)
       }              for (j=1;j<=nlstate+ndeath;j++){
     }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   }                savm[ii][j]=(ii==j ? 1.0 : 0.0);
             }
  for (k=0; k<19; k++) Ndum[k]=0;          for(d=0; d<dh[mi][i]; d++){
             newm=savm;
  for (i=1; i<=ncovmodel-2; i++) {            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       ij=Tvar[i];            for (kk=1; kk<=cptcovage;kk++) {
       Ndum[ij]++;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     }            }
           
  ij=1;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
  for (i=1; i<=10; i++) {                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
    if((Ndum[i]!=0) && (i<=ncovcol)){            savm=oldm;
      Tvaraff[ij]=i;            oldm=newm;
      ij++;          } /* end mult */
    }        
  }          s1=s[mw[mi][i]][i];
            s2=s[mw[mi+1][i]][i];
     cptcoveff=ij-1;          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
 }          ipmx +=1;
           sw += weight[i];
 /*********** Health Expectancies ****************/          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij)        } /* end of wave */
 {      } /* end of individual */
   /* Health expectancies */    } /* End of if */
   int i, j, nhstepm, hstepm, h, nstepm, k;    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   double age, agelim, hf;    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   double ***p3mat;    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
      return -l;
   fprintf(ficreseij,"# Health expectancies\n");  }
   fprintf(ficreseij,"# Age");  
   for(i=1; i<=nlstate;i++)  /*************** log-likelihood *************/
     for(j=1; j<=nlstate;j++)  double funcone( double *x)
       fprintf(ficreseij," %1d-%1d",i,j);  {
   fprintf(ficreseij,"\n");    /* Same as likeli but slower because of a lot of printf and if */
     int i, ii, j, k, mi, d, kk;
   k=1;             /* For example stepm=6 months */    double l, ll[NLSTATEMAX], cov[NCOVMAX];
   hstepm=k*YEARM; /* (a) Every k years of age (in months), for example every k=2 years 24 m */    double **out;
   hstepm=stepm;   /* or (b) We decided to compute the life expectancy with the smallest unit */    double lli; /* Individual log likelihood */
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.    double llt;
      nhstepm is the number of hstepm from age to agelim    int s1, s2;
      nstepm is the number of stepm from age to agelin.    double bbh, survp;
      Look at hpijx to understand the reason of that which relies in memory size    /*extern weight */
      and note for a fixed period like k years */    /* We are differentiating ll according to initial status */
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
      survival function given by stepm (the optimization length). Unfortunately it    /*for(i=1;i<imx;i++) 
      means that if the survival funtion is printed only each two years of age and if      printf(" %d\n",s[4][i]);
      you sum them up and add 1 year (area under the trapezoids) you won't get the same    */
      results. So we changed our mind and took the option of the best precision.    cov[1]=1.;
   */  
   hstepm=hstepm/stepm; /* Typically in stepm units, if k= 2 years, = 2/6 months = 4 */    for(k=1; k<=nlstate; k++) ll[k]=0.;
   
   agelim=AGESUP;    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     /* nhstepm age range expressed in number of stepm */      for(mi=1; mi<= wav[i]-1; mi++){
     nstepm=(int) rint((agelim-age)*YEARM/stepm);        for (ii=1;ii<=nlstate+ndeath;ii++)
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */          for (j=1;j<=nlstate+ndeath;j++){
     /* if (stepm >= YEARM) hstepm=1;*/            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */            savm[ii][j]=(ii==j ? 1.0 : 0.0);
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          }
     /* Computed by stepm unit matrices, product of hstepm matrices, stored        for(d=0; d<dh[mi][i]; d++){
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */          newm=savm;
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */          for (kk=1; kk<=cptcovage;kk++) {
     for(i=1; i<=nlstate;i++)            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       for(j=1; j<=nlstate;j++)          }
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/          savm=oldm;
         }          oldm=newm;
     fprintf(ficreseij,"%3.0f",age );        } /* end mult */
     for(i=1; i<=nlstate;i++)        
       for(j=1; j<=nlstate;j++){        s1=s[mw[mi][i]][i];
         fprintf(ficreseij," %9.4f", eij[i][j][(int)age]);        s2=s[mw[mi+1][i]][i];
       }        bbh=(double)bh[mi][i]/(double)stepm; 
     fprintf(ficreseij,"\n");        /* bias is positive if real duration
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);         * is higher than the multiple of stepm and negative otherwise.
   }         */
 }        if( s2 > nlstate && (mle <5) ){  /* Jackson */
           lli=log(out[s1][s2] - savm[s1][s2]);
 /************ Variance ******************/        } else if (mle==1){
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
 {        } else if(mle==2){
   /* Variance of health expectancies */          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/        } else if(mle==3){  /* exponential inter-extrapolation */
   double **newm;          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   double **dnewm,**doldm;        } else if (mle==4){  /* mle=4 no inter-extrapolation */
   int i, j, nhstepm, hstepm, h, nstepm, kk;          lli=log(out[s1][s2]); /* Original formula */
   int k, cptcode;        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
   double *xp;          lli=log(out[s1][s2]); /* Original formula */
   double **gp, **gm;        } /* End of if */
   double ***gradg, ***trgradg;        ipmx +=1;
   double ***p3mat;        sw += weight[i];
   double age,agelim, hf;        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   int theta;  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
         if(globpr){
    fprintf(ficresvij,"# Covariances of life expectancies\n");          fprintf(ficresilk,"%9d %6d %1d %1d %1d %1d %3d %10.6f %6.4f\
   fprintf(ficresvij,"# Age");   %10.6f %10.6f %10.6f ", \
   for(i=1; i<=nlstate;i++)                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
     for(j=1; j<=nlstate;j++)                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
   fprintf(ficresvij,"\n");            llt +=ll[k]*gipmx/gsw;
             fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
   xp=vector(1,npar);          }
   dnewm=matrix(1,nlstate,1,npar);          fprintf(ficresilk," %10.6f\n", -llt);
   doldm=matrix(1,nlstate,1,nlstate);        }
        } /* end of wave */
   kk=1;             /* For example stepm=6 months */    } /* end of individual */
   hstepm=kk*YEARM; /* (a) Every k years of age (in months), for example every k=2 years 24 m */    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   hstepm=stepm;   /* or (b) We decided to compute the life expectancy with the smallest unit */    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
      nhstepm is the number of hstepm from age to agelim    if(globpr==0){ /* First time we count the contributions and weights */
      nstepm is the number of stepm from age to agelin.      gipmx=ipmx;
      Look at hpijx to understand the reason of that which relies in memory size      gsw=sw;
      and note for a fixed period like k years */    }
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the    return -l;
      survival function given by stepm (the optimization length). Unfortunately it  }
      means that if the survival funtion is printed only each two years of age and if  
      you sum them up and add 1 year (area under the trapezoids) you won't get the same  
      results. So we changed our mind and took the option of the best precision.  /*************** function likelione ***********/
   */  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
   hstepm=hstepm/stepm; /* Typically in stepm units, if k= 2 years, = 2/6 months = 4 */  {
   agelim = AGESUP;    /* This routine should help understanding what is done with 
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */       the selection of individuals/waves and
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */       to check the exact contribution to the likelihood.
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */       Plotting could be done.
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);     */
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);    int k;
     gp=matrix(0,nhstepm,1,nlstate);  
     gm=matrix(0,nhstepm,1,nlstate);    if(*globpri !=0){ /* Just counts and sums, no printings */
       strcpy(fileresilk,"ilk"); 
     for(theta=1; theta <=npar; theta++){      strcat(fileresilk,fileres);
       for(i=1; i<=npar; i++){ /* Computes gradient */      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
         xp[i] = x[i] + (i==theta ?delti[theta]:0);        printf("Problem with resultfile: %s\n", fileresilk);
       }        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        }
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
       fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
       if (popbased==1) {      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
         for(i=1; i<=nlstate;i++)      for(k=1; k<=nlstate; k++) 
           prlim[i][i]=probs[(int)age][i][ij];        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
       }      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
      }
       for(j=1; j<= nlstate; j++){  
         for(h=0; h<=nhstepm; h++){    *fretone=(*funcone)(p);
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)    if(*globpri !=0){
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];      fclose(ficresilk);
         }      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
       }      fflush(fichtm); 
        } 
       for(i=1; i<=npar; i++) /* Computes gradient */    return;
         xp[i] = x[i] - (i==theta ?delti[theta]:0);  }
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);    
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  
    /*********** Maximum Likelihood Estimation ***************/
       if (popbased==1) {  
         for(i=1; i<=nlstate;i++)  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
           prlim[i][i]=probs[(int)age][i][ij];  {
       }    int i,j, iter;
     double **xi;
       for(j=1; j<= nlstate; j++){    double fret;
         for(h=0; h<=nhstepm; h++){    double fretone; /* Only one call to likelihood */
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)    /*  char filerespow[FILENAMELENGTH];*/
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];    xi=matrix(1,npar,1,npar);
         }    for (i=1;i<=npar;i++)
       }      for (j=1;j<=npar;j++)
         xi[i][j]=(i==j ? 1.0 : 0.0);
       for(j=1; j<= nlstate; j++)    printf("Powell\n");  fprintf(ficlog,"Powell\n");
         for(h=0; h<=nhstepm; h++){    strcpy(filerespow,"pow"); 
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];    strcat(filerespow,fileres);
         }    if((ficrespow=fopen(filerespow,"w"))==NULL) {
     } /* End theta */      printf("Problem with resultfile: %s\n", filerespow);
       fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);    }
     fprintf(ficrespow,"# Powell\n# iter -2*LL");
     for(h=0; h<=nhstepm; h++)    for (i=1;i<=nlstate;i++)
       for(j=1; j<=nlstate;j++)      for(j=1;j<=nlstate+ndeath;j++)
         for(theta=1; theta <=npar; theta++)        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
           trgradg[h][j][theta]=gradg[h][theta][j];    fprintf(ficrespow,"\n");
   
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */    powell(p,xi,npar,ftol,&iter,&fret,func);
     for(i=1;i<=nlstate;i++)  
       for(j=1;j<=nlstate;j++)    free_matrix(xi,1,npar,1,npar);
         vareij[i][j][(int)age] =0.;    fclose(ficrespow);
     printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
     for(h=0;h<=nhstepm;h++){    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
       for(k=0;k<=nhstepm;k++){    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);  
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);  }
         for(i=1;i<=nlstate;i++)  
           for(j=1;j<=nlstate;j++)  /**** Computes Hessian and covariance matrix ***/
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
       }  {
     }    double  **a,**y,*x,pd;
     double **hess;
     fprintf(ficresvij,"%.0f ",age );    int i, j,jk;
     for(i=1; i<=nlstate;i++)    int *indx;
       for(j=1; j<=nlstate;j++){  
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
       }    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
     fprintf(ficresvij,"\n");    void lubksb(double **a, int npar, int *indx, double b[]) ;
     free_matrix(gp,0,nhstepm,1,nlstate);    void ludcmp(double **a, int npar, int *indx, double *d) ;
     free_matrix(gm,0,nhstepm,1,nlstate);    double gompertz(double p[]);
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);    hess=matrix(1,npar,1,npar);
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);  
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    printf("\nCalculation of the hessian matrix. Wait...\n");
   } /* End age */    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
      for (i=1;i<=npar;i++){
   free_vector(xp,1,npar);      printf("%d",i);fflush(stdout);
   free_matrix(doldm,1,nlstate,1,npar);      fprintf(ficlog,"%d",i);fflush(ficlog);
   free_matrix(dnewm,1,nlstate,1,nlstate);     
        hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
 }      
       /*  printf(" %f ",p[i]);
 /************ Variance of prevlim ******************/          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)    }
 {    
   /* Variance of prevalence limit */    for (i=1;i<=npar;i++) {
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/      for (j=1;j<=npar;j++)  {
   double **newm;        if (j>i) { 
   double **dnewm,**doldm;          printf(".%d%d",i,j);fflush(stdout);
   int i, j, nhstepm, hstepm;          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
   int k, cptcode;          hess[i][j]=hessij(p,delti,i,j,func,npar);
   double *xp;          
   double *gp, *gm;          hess[j][i]=hess[i][j];    
   double **gradg, **trgradg;          /*printf(" %lf ",hess[i][j]);*/
   double age,agelim;        }
   int theta;      }
        }
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");    printf("\n");
   fprintf(ficresvpl,"# Age");    fprintf(ficlog,"\n");
   for(i=1; i<=nlstate;i++)  
       fprintf(ficresvpl," %1d-%1d",i,i);    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
   fprintf(ficresvpl,"\n");    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
     
   xp=vector(1,npar);    a=matrix(1,npar,1,npar);
   dnewm=matrix(1,nlstate,1,npar);    y=matrix(1,npar,1,npar);
   doldm=matrix(1,nlstate,1,nlstate);    x=vector(1,npar);
      indx=ivector(1,npar);
   hstepm=1*YEARM; /* Every year of age */    for (i=1;i<=npar;i++)
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
   agelim = AGESUP;    ludcmp(a,npar,indx,&pd);
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */  
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    for (j=1;j<=npar;j++) {
     if (stepm >= YEARM) hstepm=1;      for (i=1;i<=npar;i++) x[i]=0;
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */      x[j]=1;
     gradg=matrix(1,npar,1,nlstate);      lubksb(a,npar,indx,x);
     gp=vector(1,nlstate);      for (i=1;i<=npar;i++){ 
     gm=vector(1,nlstate);        matcov[i][j]=x[i];
       }
     for(theta=1; theta <=npar; theta++){    }
       for(i=1; i<=npar; i++){ /* Computes gradient */  
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    printf("\n#Hessian matrix#\n");
       }    fprintf(ficlog,"\n#Hessian matrix#\n");
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    for (i=1;i<=npar;i++) { 
       for(i=1;i<=nlstate;i++)      for (j=1;j<=npar;j++) { 
         gp[i] = prlim[i][i];        printf("%.3e ",hess[i][j]);
            fprintf(ficlog,"%.3e ",hess[i][j]);
       for(i=1; i<=npar; i++) /* Computes gradient */      }
         xp[i] = x[i] - (i==theta ?delti[theta]:0);      printf("\n");
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      fprintf(ficlog,"\n");
       for(i=1;i<=nlstate;i++)    }
         gm[i] = prlim[i][i];  
     /* Recompute Inverse */
       for(i=1;i<=nlstate;i++)    for (i=1;i<=npar;i++)
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
     } /* End theta */    ludcmp(a,npar,indx,&pd);
   
     trgradg =matrix(1,nlstate,1,npar);    /*  printf("\n#Hessian matrix recomputed#\n");
   
     for(j=1; j<=nlstate;j++)    for (j=1;j<=npar;j++) {
       for(theta=1; theta <=npar; theta++)      for (i=1;i<=npar;i++) x[i]=0;
         trgradg[j][theta]=gradg[theta][j];      x[j]=1;
       lubksb(a,npar,indx,x);
     for(i=1;i<=nlstate;i++)      for (i=1;i<=npar;i++){ 
       varpl[i][(int)age] =0.;        y[i][j]=x[i];
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);        printf("%.3e ",y[i][j]);
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);        fprintf(ficlog,"%.3e ",y[i][j]);
     for(i=1;i<=nlstate;i++)      }
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */      printf("\n");
       fprintf(ficlog,"\n");
     fprintf(ficresvpl,"%.0f ",age );    }
     for(i=1; i<=nlstate;i++)    */
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));  
     fprintf(ficresvpl,"\n");    free_matrix(a,1,npar,1,npar);
     free_vector(gp,1,nlstate);    free_matrix(y,1,npar,1,npar);
     free_vector(gm,1,nlstate);    free_vector(x,1,npar);
     free_matrix(gradg,1,npar,1,nlstate);    free_ivector(indx,1,npar);
     free_matrix(trgradg,1,nlstate,1,npar);    free_matrix(hess,1,npar,1,npar);
   } /* End age */  
   
   free_vector(xp,1,npar);  }
   free_matrix(doldm,1,nlstate,1,npar);  
   free_matrix(dnewm,1,nlstate,1,nlstate);  /*************** hessian matrix ****************/
   double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
 }  {
     int i;
 /************ Variance of one-step probabilities  ******************/    int l=1, lmax=20;
 void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij)    double k1,k2;
 {    double p2[NPARMAX+1];
   int i, j;    double res;
   int k=0, cptcode;    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
   double **dnewm,**doldm;    double fx;
   double *xp;    int k=0,kmax=10;
   double *gp, *gm;    double l1;
   double **gradg, **trgradg;  
   double age,agelim, cov[NCOVMAX];    fx=func(x);
   int theta;    for (i=1;i<=npar;i++) p2[i]=x[i];
   char fileresprob[FILENAMELENGTH];    for(l=0 ; l <=lmax; l++){
       l1=pow(10,l);
   strcpy(fileresprob,"prob");      delts=delt;
   strcat(fileresprob,fileres);      for(k=1 ; k <kmax; k=k+1){
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {        delt = delta*(l1*k);
     printf("Problem with resultfile: %s\n", fileresprob);        p2[theta]=x[theta] +delt;
   }        k1=func(p2)-fx;
   printf("Computing variance of one-step probabilities: result on file '%s' \n",fileresprob);        p2[theta]=x[theta]-delt;
          k2=func(p2)-fx;
         /*res= (k1-2.0*fx+k2)/delt/delt; */
   xp=vector(1,npar);        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
   dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);        
   doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));  #ifdef DEBUG
          printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   cov[1]=1;        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   for (age=bage; age<=fage; age ++){  #endif
     cov[2]=age;        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
     gradg=matrix(1,npar,1,9);        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
     trgradg=matrix(1,9,1,npar);          k=kmax;
     gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));        }
     gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
              k=kmax; l=lmax*10.;
     for(theta=1; theta <=npar; theta++){        }
       for(i=1; i<=npar; i++)        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
         xp[i] = x[i] + (i==theta ?delti[theta]:0);          delts=delt;
              }
       pmij(pmmij,cov,ncovmodel,xp,nlstate);      }
        }
       k=0;    delti[theta]=delts;
       for(i=1; i<= (nlstate+ndeath); i++){    return res; 
         for(j=1; j<=(nlstate+ndeath);j++){    
            k=k+1;  }
           gp[k]=pmmij[i][j];  
         }  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
       }  {
     int i;
       for(i=1; i<=npar; i++)    int l=1, l1, lmax=20;
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    double k1,k2,k3,k4,res,fx;
        double p2[NPARMAX+1];
     int k;
       pmij(pmmij,cov,ncovmodel,xp,nlstate);  
       k=0;    fx=func(x);
       for(i=1; i<=(nlstate+ndeath); i++){    for (k=1; k<=2; k++) {
         for(j=1; j<=(nlstate+ndeath);j++){      for (i=1;i<=npar;i++) p2[i]=x[i];
           k=k+1;      p2[thetai]=x[thetai]+delti[thetai]/k;
           gm[k]=pmmij[i][j];      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
         }      k1=func(p2)-fx;
       }    
            p2[thetai]=x[thetai]+delti[thetai]/k;
        for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
            gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];        k2=func(p2)-fx;
     }    
       p2[thetai]=x[thetai]-delti[thetai]/k;
      for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
       for(theta=1; theta <=npar; theta++)      k3=func(p2)-fx;
       trgradg[j][theta]=gradg[theta][j];    
        p2[thetai]=x[thetai]-delti[thetai]/k;
      matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
      matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);      k4=func(p2)-fx;
       res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
      pmij(pmmij,cov,ncovmodel,x,nlstate);  #ifdef DEBUG
       printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
      k=0;      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
      for(i=1; i<=(nlstate+ndeath); i++){  #endif
        for(j=1; j<=(nlstate+ndeath);j++){    }
          k=k+1;    return res;
          gm[k]=pmmij[i][j];  }
         }  
      }  /************** Inverse of matrix **************/
        void ludcmp(double **a, int n, int *indx, double *d) 
      /*printf("\n%d ",(int)age);  { 
      for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){    int i,imax,j,k; 
            double big,dum,sum,temp; 
     double *vv; 
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));   
      }*/    vv=vector(1,n); 
     *d=1.0; 
   fprintf(ficresprob,"\n%d ",(int)age);    for (i=1;i<=n;i++) { 
       big=0.0; 
   for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){      for (j=1;j<=n;j++) 
     if (i== 2) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);        if ((temp=fabs(a[i][j])) > big) big=temp; 
 if (i== 4) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
   }      vv[i]=1.0/big; 
     } 
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));    for (j=1;j<=n;j++) { 
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));      for (i=1;i<j;i++) { 
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);        sum=a[i][j]; 
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
 }        a[i][j]=sum; 
  free_vector(xp,1,npar);      } 
 fclose(ficresprob);      big=0.0; 
       for (i=j;i<=n;i++) { 
 }        sum=a[i][j]; 
         for (k=1;k<j;k++) 
 /******************* Printing html file ***********/          sum -= a[i][k]*a[k][j]; 
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \        a[i][j]=sum; 
  int lastpass, int stepm, int weightopt, char model[],\        if ( (dum=vv[i]*fabs(sum)) >= big) { 
  int imx,int jmin, int jmax, double jmeanint,char optionfile[], \          big=dum; 
  char optionfilehtm[],char rfileres[], char optionfilegnuplot[],\          imax=i; 
  char version[], int popforecast ){        } 
   int jj1, k1, i1, cpt;      } 
   FILE *fichtm;      if (j != imax) { 
   /*char optionfilehtm[FILENAMELENGTH];*/        for (k=1;k<=n;k++) { 
           dum=a[imax][k]; 
   strcpy(optionfilehtm,optionfile);          a[imax][k]=a[j][k]; 
   strcat(optionfilehtm,".htm");          a[j][k]=dum; 
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {        } 
     printf("Problem with %s \n",optionfilehtm), exit(0);        *d = -(*d); 
   }        vv[imax]=vv[j]; 
       } 
  fprintf(fichtm,"<body> <font size=\"2\">Imach, Version %s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n      indx[j]=imax; 
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n      if (a[j][j] == 0.0) a[j][j]=TINY; 
 \n      if (j != n) { 
 Total number of observations=%d <br>\n        dum=1.0/(a[j][j]); 
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
 <hr  size=\"2\" color=\"#EC5E5E\">      } 
  <ul><li>Outputs files<br>\n    } 
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n    free_vector(vv,1,n);  /* Doesn't work */
  - Gnuplot file name: <a href=\"%s\">%s</a><br>\n  ;
  - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n  } 
  - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>\n  
  - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>\n  void lubksb(double **a, int n, int *indx, double b[]) 
  - Life expectancies by age and initial health status: <a href=\"e%s\">e%s</a> <br>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres);  { 
     int i,ii=0,ip,j; 
  fprintf(fichtm,"\n    double sum; 
  - Parameter file with estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>\n   
  - Variances of life expectancies by age and initial health status: <a href=\"v%s\">v%s</a><br>\n    for (i=1;i<=n;i++) { 
  - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>\n      ip=indx[i]; 
  - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres);      sum=b[ip]; 
       b[ip]=b[i]; 
  if(popforecast==1) fprintf(fichtm,"\n      if (ii) 
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n      else if (sum) ii=i; 
         <br>",fileres,fileres,fileres,fileres);      b[i]=sum; 
  else    } 
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);    for (i=n;i>=1;i--) { 
 fprintf(fichtm," <li>Graphs</li><p>");      sum=b[i]; 
       for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
  m=cptcoveff;      b[i]=sum/a[i][i]; 
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}    } 
   } 
  jj1=0;  
  for(k1=1; k1<=m;k1++){  void pstamp(FILE *fichier)
    for(i1=1; i1<=ncodemax[k1];i1++){  {
        jj1++;    fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
        if (cptcovn > 0) {  }
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");  
          for (cpt=1; cpt<=cptcoveff;cpt++)  /************ Frequencies ********************/
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");  {  /* Some frequencies */
        }    
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);        int first;
        for(cpt=1; cpt<nlstate;cpt++){    double ***freq; /* Frequencies */
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>    double *pp, **prop;
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);    double pos,posprop, k2, dateintsum=0,k2cpt=0;
        }    char fileresp[FILENAMELENGTH];
     for(cpt=1; cpt<=nlstate;cpt++) {    
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident    pp=vector(1,nlstate);
 interval) in state (%d): v%s%d%d.gif <br>    prop=matrix(1,nlstate,iagemin,iagemax+3);
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);      strcpy(fileresp,"p");
      }    strcat(fileresp,fileres);
      for(cpt=1; cpt<=nlstate;cpt++) {    if((ficresp=fopen(fileresp,"w"))==NULL) {
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>      printf("Problem with prevalence resultfile: %s\n", fileresp);
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
      }      exit(0);
      fprintf(fichtm,"\n<br>- Total life expectancy by age and    }
 health expectancies in states (1) and (2): e%s%d.gif<br>    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);    j1=0;
 fprintf(fichtm,"\n</body>");    
    }    j=cptcoveff;
    }    if (cptcovn<1) {j=1;ncodemax[1]=1;}
 fclose(fichtm);  
 }    first=1;
   
 /******************* Gnuplot file **************/    for(k1=1; k1<=j;k1++){
 void printinggnuplot(char fileres[],char optionfilefiname[],char optionfile[],char optionfilegnuplot[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){      for(i1=1; i1<=ncodemax[k1];i1++){
         j1++;
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
           scanf("%d", i);*/
   strcpy(optionfilegnuplot,optionfilefiname);        for (i=-5; i<=nlstate+ndeath; i++)  
   strcat(optionfilegnuplot,".gp.txt");          for (jk=-5; jk<=nlstate+ndeath; jk++)  
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {            for(m=iagemin; m <= iagemax+3; m++)
     printf("Problem with file %s",optionfilegnuplot);              freq[i][jk][m]=0;
   }  
       for (i=1; i<=nlstate; i++)  
 #ifdef windows        for(m=iagemin; m <= iagemax+3; m++)
     fprintf(ficgp,"cd \"%s\" \n",pathc);          prop[i][m]=0;
 #endif        
 m=pow(2,cptcoveff);        dateintsum=0;
          k2cpt=0;
  /* 1eme*/        for (i=1; i<=imx; i++) {
   for (cpt=1; cpt<= nlstate ; cpt ++) {          bool=1;
    for (k1=1; k1<= m ; k1 ++) {          if  (cptcovn>0) {
             for (z1=1; z1<=cptcoveff; z1++) 
 #ifdef windows              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
     fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);                bool=0;
 #endif          }
 #ifdef unix          if (bool==1){
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);            for(m=firstpass; m<=lastpass; m++){
 #endif              k2=anint[m][i]+(mint[m][i]/12.);
               /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
 for (i=1; i<= nlstate ; i ++) {                if(agev[m][i]==0) agev[m][i]=iagemax+1;
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");                if(agev[m][i]==1) agev[m][i]=iagemax+2;
   else fprintf(ficgp," \%%*lf (\%%*lf)");                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
 }                if (m<lastpass) {
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
     for (i=1; i<= nlstate ; i ++) {                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");                }
   else fprintf(ficgp," \%%*lf (\%%*lf)");                
 }                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);                  dateintsum=dateintsum+k2;
      for (i=1; i<= nlstate ; i ++) {                  k2cpt++;
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");                }
   else fprintf(ficgp," \%%*lf (\%%*lf)");                /*}*/
 }              }
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));          }
 #ifdef unix        }
 fprintf(ficgp,"\nset ter gif small size 400,300");         
 #endif        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);        pstamp(ficresp);
    }        if  (cptcovn>0) {
   }          fprintf(ficresp, "\n#********** Variable "); 
   /*2 eme*/          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresp, "**********\n#");
   for (k1=1; k1<= m ; k1 ++) {        }
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",ageminpar,fage);        for(i=1; i<=nlstate;i++) 
              fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
     for (i=1; i<= nlstate+1 ; i ++) {        fprintf(ficresp, "\n");
       k=2*i;        
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);        for(i=iagemin; i <= iagemax+3; i++){
       for (j=1; j<= nlstate+1 ; j ++) {          if(i==iagemax+3){
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");            fprintf(ficlog,"Total");
   else fprintf(ficgp," \%%*lf (\%%*lf)");          }else{
 }              if(first==1){
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");              first=0;
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);              printf("See log file for details...\n");
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);            }
       for (j=1; j<= nlstate+1 ; j ++) {            fprintf(ficlog,"Age %d", i);
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");          }
         else fprintf(ficgp," \%%*lf (\%%*lf)");          for(jk=1; jk <=nlstate ; jk++){
 }              for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
       fprintf(ficgp,"\" t\"\" w l 0,");              pp[jk] += freq[jk][m][i]; 
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);          }
       for (j=1; j<= nlstate+1 ; j ++) {          for(jk=1; jk <=nlstate ; jk++){
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");            for(m=-1, pos=0; m <=0 ; m++)
   else fprintf(ficgp," \%%*lf (\%%*lf)");              pos += freq[jk][m][i];
 }              if(pp[jk]>=1.e-10){
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");              if(first==1){
       else fprintf(ficgp,"\" t\"\" w l 0,");              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
     }              }
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
   }            }else{
                if(first==1)
   /*3eme*/                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
               fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
   for (k1=1; k1<= m ; k1 ++) {            }
     for (cpt=1; cpt<= nlstate ; cpt ++) {          }
       k=2+nlstate*(cpt-1);  
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);          for(jk=1; jk <=nlstate ; jk++){
       for (i=1; i< nlstate ; i ++) {            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+i,cpt,i+1);              pp[jk] += freq[jk][m][i];
       }          }       
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
     }            pos += pp[jk];
     }            posprop += prop[jk][i];
            }
   /* CV preval stat */          for(jk=1; jk <=nlstate ; jk++){
     for (k1=1; k1<= m ; k1 ++) {            if(pos>=1.e-5){
     for (cpt=1; cpt<nlstate ; cpt ++) {              if(first==1)
       k=3;                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
             }else{
       for (i=1; i< nlstate ; i ++)              if(first==1)
         fprintf(ficgp,"+$%d",k+i+1);                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
                  }
       l=3+(nlstate+ndeath)*cpt;            if( i <= iagemax){
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);              if(pos>=1.e-5){
       for (i=1; i< nlstate ; i ++) {                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
         l=3+(nlstate+ndeath)*cpt;                /*probs[i][jk][j1]= pp[jk]/pos;*/
         fprintf(ficgp,"+$%d",l+i+1);                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
       }              }
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);                else
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
     }            }
   }            }
            
   /* proba elementaires */          for(jk=-1; jk <=nlstate+ndeath; jk++)
    for(i=1,jk=1; i <=nlstate; i++){            for(m=-1; m <=nlstate+ndeath; m++)
     for(k=1; k <=(nlstate+ndeath); k++){              if(freq[jk][m][i] !=0 ) {
       if (k != i) {              if(first==1)
         for(j=1; j <=ncovmodel; j++){                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
                        fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);              }
           jk++;          if(i <= iagemax)
           fprintf(ficgp,"\n");            fprintf(ficresp,"\n");
         }          if(first==1)
       }            printf("Others in log...\n");
     }          fprintf(ficlog,"\n");
     }        }
       }
     for(jk=1; jk <=m; jk++) {    }
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);    dateintmean=dateintsum/k2cpt; 
    i=1;   
    for(k2=1; k2<=nlstate; k2++) {    fclose(ficresp);
      k3=i;    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
      for(k=1; k<=(nlstate+ndeath); k++) {    free_vector(pp,1,nlstate);
        if (k != k2){    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);    /* End of Freq */
 ij=1;  }
         for(j=3; j <=ncovmodel; j++) {  
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {  /************ Prevalence ********************/
             fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
             ij++;  {  
           }    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
           else       in each health status at the date of interview (if between dateprev1 and dateprev2).
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);       We still use firstpass and lastpass as another selection.
         }    */
           fprintf(ficgp,")/(1");   
            int i, m, jk, k1, i1, j1, bool, z1,z2,j;
         for(k1=1; k1 <=nlstate; k1++){      double ***freq; /* Frequencies */
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);    double *pp, **prop;
 ij=1;    double pos,posprop; 
           for(j=3; j <=ncovmodel; j++){    double  y2; /* in fractional years */
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {    int iagemin, iagemax;
             fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);  
             ij++;    iagemin= (int) agemin;
           }    iagemax= (int) agemax;
           else    /*pp=vector(1,nlstate);*/
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    prop=matrix(1,nlstate,iagemin,iagemax+3); 
           }    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
           fprintf(ficgp,")");    j1=0;
         }    
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);    j=cptcoveff;
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");    if (cptcovn<1) {j=1;ncodemax[1]=1;}
         i=i+ncovmodel;    
        }    for(k1=1; k1<=j;k1++){
      }      for(i1=1; i1<=ncodemax[k1];i1++){
    }        j1++;
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);        
    }        for (i=1; i<=nlstate; i++)  
              for(m=iagemin; m <= iagemax+3; m++)
   fclose(ficgp);            prop[i][m]=0.0;
 }  /* end gnuplot */       
         for (i=1; i<=imx; i++) { /* Each individual */
           bool=1;
 /*************** Moving average **************/          if  (cptcovn>0) {
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){            for (z1=1; z1<=cptcoveff; z1++) 
               if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
   int i, cpt, cptcod;                bool=0;
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)          } 
       for (i=1; i<=nlstate;i++)          if (bool==1) { 
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
           mobaverage[(int)agedeb][i][cptcod]=0.;              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
                  if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){                if(agev[m][i]==0) agev[m][i]=iagemax+1;
       for (i=1; i<=nlstate;i++){                if(agev[m][i]==1) agev[m][i]=iagemax+2;
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
           for (cpt=0;cpt<=4;cpt++){                if (s[m][i]>0 && s[m][i]<=nlstate) { 
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
           }                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;                  prop[s[m][i]][iagemax+3] += weight[i]; 
         }                } 
       }              }
     }            } /* end selection of waves */
              }
 }        }
         for(i=iagemin; i <= iagemax+3; i++){  
           
 /************** Forecasting ******************/          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){            posprop += prop[jk][i]; 
            } 
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;  
   int *popage;          for(jk=1; jk <=nlstate ; jk++){     
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;            if( i <=  iagemax){ 
   double *popeffectif,*popcount;              if(posprop>=1.e-5){ 
   double ***p3mat;                probs[i][jk][j1]= prop[jk][i]/posprop;
   char fileresf[FILENAMELENGTH];              } 
             } 
  agelim=AGESUP;          }/* end jk */ 
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;        }/* end i */ 
       } /* end i1 */
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    } /* end k1 */
      
      /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
   strcpy(fileresf,"f");    /*free_vector(pp,1,nlstate);*/
   strcat(fileresf,fileres);    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
   if((ficresf=fopen(fileresf,"w"))==NULL) {  }  /* End of prevalence */
     printf("Problem with forecast resultfile: %s\n", fileresf);  
   }  /************* Waves Concatenation ***************/
   printf("Computing forecasting: result on file '%s' \n", fileresf);  
   void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
   if (cptcoveff==0) ncodemax[cptcoveff]=1;  {
     /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
   if (mobilav==1) {       Death is a valid wave (if date is known).
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
     movingaverage(agedeb, fage, ageminpar, mobaverage);       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
   }       and mw[mi+1][i]. dh depends on stepm.
        */
   stepsize=(int) (stepm+YEARM-1)/YEARM;  
   if (stepm<=12) stepsize=1;    int i, mi, m;
      /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
   agelim=AGESUP;       double sum=0., jmean=0.;*/
      int first;
   hstepm=1;    int j, k=0,jk, ju, jl;
   hstepm=hstepm/stepm;    double sum=0.;
   yp1=modf(dateintmean,&yp);    first=0;
   anprojmean=yp;    jmin=1e+5;
   yp2=modf((yp1*12),&yp);    jmax=-1;
   mprojmean=yp;    jmean=0.;
   yp1=modf((yp2*30.5),&yp);    for(i=1; i<=imx; i++){
   jprojmean=yp;      mi=0;
   if(jprojmean==0) jprojmean=1;      m=firstpass;
   if(mprojmean==0) jprojmean=1;      while(s[m][i] <= nlstate){
          if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);          mw[++mi][i]=m;
          if(m >=lastpass)
   for(cptcov=1;cptcov<=i2;cptcov++){          break;
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){        else
       k=k+1;          m++;
       fprintf(ficresf,"\n#******");      }/* end while */
       for(j=1;j<=cptcoveff;j++) {      if (s[m][i] > nlstate){
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        mi++;     /* Death is another wave */
       }        /* if(mi==0)  never been interviewed correctly before death */
       fprintf(ficresf,"******\n");           /* Only death is a correct wave */
       fprintf(ficresf,"# StartingAge FinalAge");        mw[mi][i]=m;
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);      }
        
            wav[i]=mi;
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {      if(mi==0){
         fprintf(ficresf,"\n");        nbwarn++;
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);          if(first==0){
           printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){          first=1;
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);        }
           nhstepm = nhstepm/hstepm;        if(first==1){
                    fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        }
           oldm=oldms;savm=savms;      } /* end mi==0 */
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      } /* End individuals */
          
           for (h=0; h<=nhstepm; h++){    for(i=1; i<=imx; i++){
             if (h==(int) (calagedate+YEARM*cpt)) {      for(mi=1; mi<wav[i];mi++){
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);        if (stepm <=0)
             }          dh[mi][i]=1;
             for(j=1; j<=nlstate+ndeath;j++) {        else{
               kk1=0.;kk2=0;          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
               for(i=1; i<=nlstate;i++) {                          if (agedc[i] < 2*AGESUP) {
                 if (mobilav==1)              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];              if(j==0) j=1;  /* Survives at least one month after exam */
                 else {              else if(j<0){
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];                nberr++;
                 }                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                                j=1; /* Temporary Dangerous patch */
               }                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
               if (h==(int)(calagedate+12*cpt)){                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                 fprintf(ficresf," %.3f", kk1);                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
                                      }
               }              k=k+1;
             }              if (j >= jmax){
           }                jmax=j;
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                ijmax=i;
         }              }
       }              if (j <= jmin){
     }                jmin=j;
   }                ijmin=i;
                      }
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);              sum=sum+j;
               /*if (j<0) printf("j=%d num=%d \n",j,i);*/
   fclose(ficresf);              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
 }            }
 /************** Forecasting ******************/          }
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){          else{
              j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
   int *popage;  
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;            k=k+1;
   double *popeffectif,*popcount;            if (j >= jmax) {
   double ***p3mat,***tabpop,***tabpopprev;              jmax=j;
   char filerespop[FILENAMELENGTH];              ijmax=i;
             }
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);            else if (j <= jmin){
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);              jmin=j;
   agelim=AGESUP;              ijmin=i;
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;            }
              /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
              if(j<0){
                nberr++;
   strcpy(filerespop,"pop");              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   strcat(filerespop,fileres);              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   if((ficrespop=fopen(filerespop,"w"))==NULL) {            }
     printf("Problem with forecast resultfile: %s\n", filerespop);            sum=sum+j;
   }          }
   printf("Computing forecasting: result on file '%s' \n", filerespop);          jk= j/stepm;
           jl= j -jk*stepm;
   if (cptcoveff==0) ncodemax[cptcoveff]=1;          ju= j -(jk+1)*stepm;
           if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
   if (mobilav==1) {            if(jl==0){
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);              dh[mi][i]=jk;
     movingaverage(agedeb, fage, ageminpar, mobaverage);              bh[mi][i]=0;
   }            }else{ /* We want a negative bias in order to only have interpolation ie
                     * at the price of an extra matrix product in likelihood */
   stepsize=(int) (stepm+YEARM-1)/YEARM;              dh[mi][i]=jk+1;
   if (stepm<=12) stepsize=1;              bh[mi][i]=ju;
              }
   agelim=AGESUP;          }else{
              if(jl <= -ju){
   hstepm=1;              dh[mi][i]=jk;
   hstepm=hstepm/stepm;              bh[mi][i]=jl;       /* bias is positive if real duration
                                     * is higher than the multiple of stepm and negative otherwise.
   if (popforecast==1) {                                   */
     if((ficpop=fopen(popfile,"r"))==NULL) {            }
       printf("Problem with population file : %s\n",popfile);exit(0);            else{
     }              dh[mi][i]=jk+1;
     popage=ivector(0,AGESUP);              bh[mi][i]=ju;
     popeffectif=vector(0,AGESUP);            }
     popcount=vector(0,AGESUP);            if(dh[mi][i]==0){
                  dh[mi][i]=1; /* At least one step */
     i=1;                bh[mi][i]=ju; /* At least one step */
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
                }
     imx=i;          } /* end if mle */
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];        }
   }      } /* end wave */
     }
   for(cptcov=1;cptcov<=i2;cptcov++){    jmean=sum/k;
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
       k=k+1;    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
       fprintf(ficrespop,"\n#******");   }
       for(j=1;j<=cptcoveff;j++) {  
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  /*********** Tricode ****************************/
       }  void tricode(int *Tvar, int **nbcode, int imx)
       fprintf(ficrespop,"******\n");  {
       fprintf(ficrespop,"# Age");    
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);    int Ndum[20],ij=1, k, j, i, maxncov=19;
       if (popforecast==1)  fprintf(ficrespop," [Population]");    int cptcode=0;
          cptcoveff=0; 
       for (cpt=0; cpt<=0;cpt++) {   
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);      for (k=0; k<maxncov; k++) Ndum[k]=0;
            for (k=1; k<=7; k++) ncodemax[k]=0;
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){  
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
           nhstepm = nhstepm/hstepm;      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
                                           modality*/ 
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
           oldm=oldms;savm=savms;        Ndum[ij]++; /*store the modality */
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);          /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
                if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
           for (h=0; h<=nhstepm; h++){                                         Tvar[j]. If V=sex and male is 0 and 
             if (h==(int) (calagedate+YEARM*cpt)) {                                         female is 1, then  cptcode=1.*/
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);      }
             }  
             for(j=1; j<=nlstate+ndeath;j++) {      for (i=0; i<=cptcode; i++) {
               kk1=0.;kk2=0;        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
               for(i=1; i<=nlstate;i++) {                    }
                 if (mobilav==1)  
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];      ij=1; 
                 else {      for (i=1; i<=ncodemax[j]; i++) {
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];        for (k=0; k<= maxncov; k++) {
                 }          if (Ndum[k] != 0) {
               }            nbcode[Tvar[j]][ij]=k; 
               if (h==(int)(calagedate+12*cpt)){            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;            
                   /*fprintf(ficrespop," %.3f", kk1);            ij++;
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/          }
               }          if (ij > ncodemax[j]) break; 
             }        }  
             for(i=1; i<=nlstate;i++){      } 
               kk1=0.;    }  
                 for(j=1; j<=nlstate;j++){  
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];   for (k=0; k< maxncov; k++) Ndum[k]=0;
                 }  
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];   for (i=1; i<=ncovmodel-2; i++) { 
             }     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
      ij=Tvar[i];
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)     Ndum[ij]++;
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);   }
           }  
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);   ij=1;
         }   for (i=1; i<= maxncov; i++) {
       }     if((Ndum[i]!=0) && (i<=ncovcol)){
         Tvaraff[ij]=i; /*For printing */
   /******/       ij++;
      }
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {   }
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);     
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){   cptcoveff=ij-1; /*Number of simple covariates*/
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);  }
           nhstepm = nhstepm/hstepm;  
            /*********** Health Expectancies ****************/
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
           oldm=oldms;savm=savms;  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);    
           for (h=0; h<=nhstepm; h++){  {
             if (h==(int) (calagedate+YEARM*cpt)) {    /* Health expectancies, no variances */
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;
             }    double age, agelim, hf;
             for(j=1; j<=nlstate+ndeath;j++) {    double ***p3mat;
               kk1=0.;kk2=0;    double eip;
               for(i=1; i<=nlstate;i++) {                
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];        pstamp(ficreseij);
               }    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);    fprintf(ficreseij,"# Age");
             }    for(i=1; i<=nlstate;i++){
           }      for(j=1; j<=nlstate;j++){
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        fprintf(ficreseij," e%1d%1d ",i,j);
         }      }
       }      fprintf(ficreseij," e%1d. ",i);
    }    }
   }    fprintf(ficreseij,"\n");
    
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    
     if(estepm < stepm){
   if (popforecast==1) {      printf ("Problem %d lower than %d\n",estepm, stepm);
     free_ivector(popage,0,AGESUP);    }
     free_vector(popeffectif,0,AGESUP);    else  hstepm=estepm;   
     free_vector(popcount,0,AGESUP);    /* We compute the life expectancy from trapezoids spaced every estepm months
   }     * This is mainly to measure the difference between two models: for example
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);     * if stepm=24 months pijx are given only every 2 years and by summing them
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);     * we are calculating an estimate of the Life Expectancy assuming a linear 
   fclose(ficrespop);     * progression in between and thus overestimating or underestimating according
 }     * to the curvature of the survival function. If, for the same date, we 
      * estimate the model with stepm=1 month, we can keep estepm to 24 months
 /***********************************************/     * to compare the new estimate of Life expectancy with the same linear 
 /**************** Main Program *****************/     * hypothesis. A more precise result, taking into account a more precise
 /***********************************************/     * curvature will be obtained if estepm is as small as stepm. */
   
 int main(int argc, char *argv[])    /* For example we decided to compute the life expectancy with the smallest unit */
 {    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
        nhstepm is the number of hstepm from age to agelim 
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;       nstepm is the number of stepm from age to agelin. 
   double agedeb, agefin,hf;       Look at hpijx to understand the reason of that which relies in memory size
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;       and note for a fixed period like estepm months */
     /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   double fret;       survival function given by stepm (the optimization length). Unfortunately it
   double **xi,tmp,delta;       means that if the survival funtion is printed only each two years of age and if
        you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   double dum; /* Dummy variable */       results. So we changed our mind and took the option of the best precision.
   double ***p3mat;    */
   int *indx;    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   char line[MAXLINE], linepar[MAXLINE];  
   char title[MAXLINE];    agelim=AGESUP;
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];    /* nhstepm age range expressed in number of stepm */
   char optionfilext[10], optionfilefiname[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilegnuplot[FILENAMELENGTH], plotcmd[FILENAMELENGTH];    nstepm=(int) rint((agelim-age)*YEARM/stepm); 
      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];    /* if (stepm >= YEARM) hstepm=1;*/
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   char filerest[FILENAMELENGTH];    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   char fileregp[FILENAMELENGTH];  
   char popfile[FILENAMELENGTH];    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];      /* Computed by stepm unit matrices, product of hstepm matrices, stored
   int firstobs=1, lastobs=10;         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
   int sdeb, sfin; /* Status at beginning and end */  
   int c,  h , cpt,l;      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
   int ju,jl, mi;   
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;  
   int mobilav=0,popforecast=0;      /* Computing  Variances of health expectancies */
   int hstepm, nhstepm;      /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1;         decrease memory allocation */
        printf("%d|",(int)age);fflush(stdout);
   double bage, fage, age, agelim, agebase;       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
   double ftolpl=FTOL;      /* Computing expectancies */
   double **prlim;      for(i=1; i<=nlstate;i++)
   double *severity;        for(j=1; j<=nlstate;j++)
   double ***param; /* Matrix of parameters */          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
   double  *p;            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
   double **matcov; /* Matrix of covariance */            
   double ***delti3; /* Scale */  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   double *delti; /* Scale */  
   double ***eij, ***vareij;          }
   double **varpl; /* Variances of prevalence limits by age */  
   double *epj, vepp;      fprintf(ficreseij,"%3.0f",age );
   double kk1, kk2;      for(i=1; i<=nlstate;i++){
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;        eip=0;
          for(j=1; j<=nlstate;j++){
           eip +=eij[i][j][(int)age];
   char version[80]="Imach version 0.8a, March 2002, INED-EUROREVES ";          fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
   char *alph[]={"a","a","b","c","d","e"}, str[4];        }
         fprintf(ficreseij,"%9.4f", eip );
       }
   char z[1]="c", occ;      fprintf(ficreseij,"\n");
 #include <sys/time.h>  
 #include <time.h>    }
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];    free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
      printf("\n");
   /* long total_usecs;    fprintf(ficlog,"\n");
   struct timeval start_time, end_time;  
    }
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */  
   getcwd(pathcd, size);  void cvevsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
   
   printf("\n%s",version);  {
   if(argc <=1){    /* Covariances of health expectancies eij and of total life expectancies according
     printf("\nEnter the parameter file name: ");     to initial status i, ei. .
     scanf("%s",pathtot);    */
   }    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
   else{    double age, agelim, hf;
     strcpy(pathtot,argv[1]);    double ***p3matp, ***p3matm, ***varhe;
   }    double **dnewm,**doldm;
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/    double *xp, *xm;
   /*cygwin_split_path(pathtot,path,optionfile);    double **gp, **gm;
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/    double ***gradg, ***trgradg;
   /* cutv(path,optionfile,pathtot,'\\');*/    int theta;
   
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);    double eip, vip;
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);  
   chdir(path);    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
   replace(pathc,path);    xp=vector(1,npar);
     xm=vector(1,npar);
 /*-------- arguments in the command line --------*/    dnewm=matrix(1,nlstate*nlstate,1,npar);
     doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
   strcpy(fileres,"r");    
   strcat(fileres, optionfilefiname);    pstamp(ficresstdeij);
   strcat(fileres,".txt");    /* Other files have txt extension */    fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
     fprintf(ficresstdeij,"# Age");
   /*---------arguments file --------*/    for(i=1; i<=nlstate;i++){
       for(j=1; j<=nlstate;j++)
   if((ficpar=fopen(optionfile,"r"))==NULL)    {        fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
     printf("Problem with optionfile %s\n",optionfile);      fprintf(ficresstdeij," e%1d. ",i);
     goto end;    }
   }    fprintf(ficresstdeij,"\n");
   
   strcpy(filereso,"o");    pstamp(ficrescveij);
   strcat(filereso,fileres);    fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
   if((ficparo=fopen(filereso,"w"))==NULL) {    fprintf(ficrescveij,"# Age");
     printf("Problem with Output resultfile: %s\n", filereso);goto end;    for(i=1; i<=nlstate;i++)
   }      for(j=1; j<=nlstate;j++){
         cptj= (j-1)*nlstate+i;
   /* Reads comments: lines beginning with '#' */        for(i2=1; i2<=nlstate;i2++)
   while((c=getc(ficpar))=='#' && c!= EOF){          for(j2=1; j2<=nlstate;j2++){
     ungetc(c,ficpar);            cptj2= (j2-1)*nlstate+i2;
     fgets(line, MAXLINE, ficpar);            if(cptj2 <= cptj)
     puts(line);              fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
     fputs(line,ficparo);          }
   }      }
   ungetc(c,ficpar);    fprintf(ficrescveij,"\n");
     
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);    if(estepm < stepm){
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);      printf ("Problem %d lower than %d\n",estepm, stepm);
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);    }
 while((c=getc(ficpar))=='#' && c!= EOF){    else  hstepm=estepm;   
     ungetc(c,ficpar);    /* We compute the life expectancy from trapezoids spaced every estepm months
     fgets(line, MAXLINE, ficpar);     * This is mainly to measure the difference between two models: for example
     puts(line);     * if stepm=24 months pijx are given only every 2 years and by summing them
     fputs(line,ficparo);     * we are calculating an estimate of the Life Expectancy assuming a linear 
   }     * progression in between and thus overestimating or underestimating according
   ungetc(c,ficpar);     * to the curvature of the survival function. If, for the same date, we 
       * estimate the model with stepm=1 month, we can keep estepm to 24 months
         * to compare the new estimate of Life expectancy with the same linear 
   covar=matrix(0,NCOVMAX,1,n);     * hypothesis. A more precise result, taking into account a more precise
   cptcovn=0;     * curvature will be obtained if estepm is as small as stepm. */
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;  
     /* For example we decided to compute the life expectancy with the smallest unit */
   ncovmodel=2+cptcovn;    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */       nhstepm is the number of hstepm from age to agelim 
         nstepm is the number of stepm from age to agelin. 
   /* Read guess parameters */       Look at hpijx to understand the reason of that which relies in memory size
   /* Reads comments: lines beginning with '#' */       and note for a fixed period like estepm months */
   while((c=getc(ficpar))=='#' && c!= EOF){    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
     ungetc(c,ficpar);       survival function given by stepm (the optimization length). Unfortunately it
     fgets(line, MAXLINE, ficpar);       means that if the survival funtion is printed only each two years of age and if
     puts(line);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
     fputs(line,ficparo);       results. So we changed our mind and took the option of the best precision.
   }    */
   ungetc(c,ficpar);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
    
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    /* If stepm=6 months */
     for(i=1; i <=nlstate; i++)    /* nhstepm age range expressed in number of stepm */
     for(j=1; j <=nlstate+ndeath-1; j++){    agelim=AGESUP;
       fscanf(ficpar,"%1d%1d",&i1,&j1);    nstepm=(int) rint((agelim-age)*YEARM/stepm); 
       fprintf(ficparo,"%1d%1d",i1,j1);    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
       printf("%1d%1d",i,j);    /* if (stepm >= YEARM) hstepm=1;*/
       for(k=1; k<=ncovmodel;k++){    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
         fscanf(ficpar," %lf",&param[i][j][k]);    
         printf(" %lf",param[i][j][k]);    p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         fprintf(ficparo," %lf",param[i][j][k]);    p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       }    gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
       fscanf(ficpar,"\n");    trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
       printf("\n");    gp=matrix(0,nhstepm,1,nlstate*nlstate);
       fprintf(ficparo,"\n");    gm=matrix(0,nhstepm,1,nlstate*nlstate);
     }  
      for (age=bage; age<=fage; age ++){ 
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;  
       /* Computed by stepm unit matrices, product of hstepm matrices, stored
   p=param[1][1];         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
     
   /* Reads comments: lines beginning with '#' */      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);      /* Computing  Variances of health expectancies */
     fgets(line, MAXLINE, ficpar);      /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
     puts(line);         decrease memory allocation */
     fputs(line,ficparo);      for(theta=1; theta <=npar; theta++){
   }        for(i=1; i<=npar; i++){ 
   ungetc(c,ficpar);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
           xm[i] = x[i] - (i==theta ?delti[theta]:0);
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);        }
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */        hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
   for(i=1; i <=nlstate; i++){        hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
     for(j=1; j <=nlstate+ndeath-1; j++){    
       fscanf(ficpar,"%1d%1d",&i1,&j1);        for(j=1; j<= nlstate; j++){
       printf("%1d%1d",i,j);          for(i=1; i<=nlstate; i++){
       fprintf(ficparo,"%1d%1d",i1,j1);            for(h=0; h<=nhstepm-1; h++){
       for(k=1; k<=ncovmodel;k++){              gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
         fscanf(ficpar,"%le",&delti3[i][j][k]);              gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
         printf(" %le",delti3[i][j][k]);            }
         fprintf(ficparo," %le",delti3[i][j][k]);          }
       }        }
       fscanf(ficpar,"\n");       
       printf("\n");        for(ij=1; ij<= nlstate*nlstate; ij++)
       fprintf(ficparo,"\n");          for(h=0; h<=nhstepm-1; h++){
     }            gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
   }          }
   delti=delti3[1][1];      }/* End theta */
        
   /* Reads comments: lines beginning with '#' */      
   while((c=getc(ficpar))=='#' && c!= EOF){      for(h=0; h<=nhstepm-1; h++)
     ungetc(c,ficpar);        for(j=1; j<=nlstate*nlstate;j++)
     fgets(line, MAXLINE, ficpar);          for(theta=1; theta <=npar; theta++)
     puts(line);            trgradg[h][j][theta]=gradg[h][theta][j];
     fputs(line,ficparo);      
   }  
   ungetc(c,ficpar);       for(ij=1;ij<=nlstate*nlstate;ij++)
          for(ji=1;ji<=nlstate*nlstate;ji++)
   matcov=matrix(1,npar,1,npar);          varhe[ij][ji][(int)age] =0.;
   for(i=1; i <=npar; i++){  
     fscanf(ficpar,"%s",&str);       printf("%d|",(int)age);fflush(stdout);
     printf("%s",str);       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
     fprintf(ficparo,"%s",str);       for(h=0;h<=nhstepm-1;h++){
     for(j=1; j <=i; j++){        for(k=0;k<=nhstepm-1;k++){
       fscanf(ficpar," %le",&matcov[i][j]);          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
       printf(" %.5le",matcov[i][j]);          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
       fprintf(ficparo," %.5le",matcov[i][j]);          for(ij=1;ij<=nlstate*nlstate;ij++)
     }            for(ji=1;ji<=nlstate*nlstate;ji++)
     fscanf(ficpar,"\n");              varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
     printf("\n");        }
     fprintf(ficparo,"\n");      }
   }      /* Computing expectancies */
   for(i=1; i <=npar; i++)      hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
     for(j=i+1;j<=npar;j++)      for(i=1; i<=nlstate;i++)
       matcov[i][j]=matcov[j][i];        for(j=1; j<=nlstate;j++)
              for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
   printf("\n");            eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
             
             /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
     /*-------- Rewriting paramater file ----------*/  
      strcpy(rfileres,"r");    /* "Rparameterfile */          }
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/  
      strcat(rfileres,".");    /* */      fprintf(ficresstdeij,"%3.0f",age );
      strcat(rfileres,optionfilext);    /* Other files have txt extension */      for(i=1; i<=nlstate;i++){
     if((ficres =fopen(rfileres,"w"))==NULL) {        eip=0.;
       printf("Problem writing new parameter file: %s\n", fileres);goto end;        vip=0.;
     }        for(j=1; j<=nlstate;j++){
     fprintf(ficres,"#%s\n",version);          eip += eij[i][j][(int)age];
              for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
     /*-------- data file ----------*/            vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
     if((fic=fopen(datafile,"r"))==NULL)    {          fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
       printf("Problem with datafile: %s\n", datafile);goto end;        }
     }        fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
       }
     n= lastobs;      fprintf(ficresstdeij,"\n");
     severity = vector(1,maxwav);  
     outcome=imatrix(1,maxwav+1,1,n);      fprintf(ficrescveij,"%3.0f",age );
     num=ivector(1,n);      for(i=1; i<=nlstate;i++)
     moisnais=vector(1,n);        for(j=1; j<=nlstate;j++){
     annais=vector(1,n);          cptj= (j-1)*nlstate+i;
     moisdc=vector(1,n);          for(i2=1; i2<=nlstate;i2++)
     andc=vector(1,n);            for(j2=1; j2<=nlstate;j2++){
     agedc=vector(1,n);              cptj2= (j2-1)*nlstate+i2;
     cod=ivector(1,n);              if(cptj2 <= cptj)
     weight=vector(1,n);                fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */            }
     mint=matrix(1,maxwav,1,n);        }
     anint=matrix(1,maxwav,1,n);      fprintf(ficrescveij,"\n");
     s=imatrix(1,maxwav+1,1,n);     
     adl=imatrix(1,maxwav+1,1,n);        }
     tab=ivector(1,NCOVMAX);    free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
     ncodemax=ivector(1,8);    free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
     i=1;    free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
     while (fgets(line, MAXLINE, fic) != NULL)    {    free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       if ((i >= firstobs) && (i <=lastobs)) {    free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
            printf("\n");
         for (j=maxwav;j>=1;j--){    fprintf(ficlog,"\n");
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);  
           strcpy(line,stra);    free_vector(xm,1,npar);
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);    free_vector(xp,1,npar);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
         }    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
            free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);  }
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);  
   /************ Variance ******************/
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);  {
     /* Variance of health expectancies */
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
         for (j=ncovcol;j>=1;j--){    /* double **newm;*/
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);    double **dnewm,**doldm;
         }    double **dnewmp,**doldmp;
         num[i]=atol(stra);    int i, j, nhstepm, hstepm, h, nstepm ;
            int k, cptcode;
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){    double *xp;
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/    double **gp, **gm;  /* for var eij */
     double ***gradg, ***trgradg; /*for var eij */
         i=i+1;    double **gradgp, **trgradgp; /* for var p point j */
       }    double *gpp, *gmp; /* for var p point j */
     }    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
     /* printf("ii=%d", ij);    double ***p3mat;
        scanf("%d",i);*/    double age,agelim, hf;
   imx=i-1; /* Number of individuals */    double ***mobaverage;
     int theta;
   /* for (i=1; i<=imx; i++){    char digit[4];
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;    char digitp[25];
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;  
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;    char fileresprobmorprev[FILENAMELENGTH];
     }*/  
      if(popbased==1){
   /* for (i=1; i<=imx; i++){      if(mobilav!=0)
      if (s[4][i]==9)  s[4][i]=-1;        strcpy(digitp,"-populbased-mobilav-");
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}      else strcpy(digitp,"-populbased-nomobil-");
   */    }
      else 
   /* Calculation of the number of parameter from char model*/      strcpy(digitp,"-stablbased-");
   Tvar=ivector(1,15);  
   Tprod=ivector(1,15);    if (mobilav!=0) {
   Tvaraff=ivector(1,15);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   Tvard=imatrix(1,15,1,2);      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
   Tage=ivector(1,15);              fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
            printf(" Error in movingaverage mobilav=%d\n",mobilav);
   if (strlen(model) >1){      }
     j=0, j1=0, k1=1, k2=1;    }
     j=nbocc(model,'+');  
     j1=nbocc(model,'*');    strcpy(fileresprobmorprev,"prmorprev"); 
     cptcovn=j+1;    sprintf(digit,"%-d",ij);
     cptcovprod=j1;    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
        strcat(fileresprobmorprev,digit); /* Tvar to be done */
     strcpy(modelsav,model);    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){    strcat(fileresprobmorprev,fileres);
       printf("Error. Non available option model=%s ",model);    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
       goto end;      printf("Problem with resultfile: %s\n", fileresprobmorprev);
     }      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
        }
     for(i=(j+1); i>=1;i--){    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
       cutv(stra,strb,modelsav,'+');   
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/    pstamp(ficresprobmorprev);
       /*scanf("%d",i);*/    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
       if (strchr(strb,'*')) {    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
         cutv(strd,strc,strb,'*');    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
         if (strcmp(strc,"age")==0) {      fprintf(ficresprobmorprev," p.%-d SE",j);
           cptcovprod--;      for(i=1; i<=nlstate;i++)
           cutv(strb,stre,strd,'V');        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
           Tvar[i]=atoi(stre);    }  
           cptcovage++;    fprintf(ficresprobmorprev,"\n");
             Tage[cptcovage]=i;    fprintf(ficgp,"\n# Routine varevsij");
             /*printf("stre=%s ", stre);*/    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
         }    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
         else if (strcmp(strd,"age")==0) {    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
           cptcovprod--;  /*   } */
           cutv(strb,stre,strc,'V');    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
           Tvar[i]=atoi(stre);    pstamp(ficresvij);
           cptcovage++;    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
           Tage[cptcovage]=i;    if(popbased==1)
         }      fprintf(ficresvij,"the age specific prevalence observed in the population i.e cross-sectionally\n in each health state (popbased=1)");
         else {    else
           cutv(strb,stre,strc,'V');      fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
           Tvar[i]=ncovcol+k1;    fprintf(ficresvij,"# Age");
           cutv(strb,strc,strd,'V');    for(i=1; i<=nlstate;i++)
           Tprod[k1]=i;      for(j=1; j<=nlstate;j++)
           Tvard[k1][1]=atoi(strc);        fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
           Tvard[k1][2]=atoi(stre);    fprintf(ficresvij,"\n");
           Tvar[cptcovn+k2]=Tvard[k1][1];  
           Tvar[cptcovn+k2+1]=Tvard[k1][2];    xp=vector(1,npar);
           for (k=1; k<=lastobs;k++)    dnewm=matrix(1,nlstate,1,npar);
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];    doldm=matrix(1,nlstate,1,nlstate);
           k1++;    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
           k2=k2+2;    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
         }  
       }    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
       else {    gpp=vector(nlstate+1,nlstate+ndeath);
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/    gmp=vector(nlstate+1,nlstate+ndeath);
        /*  scanf("%d",i);*/    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
       cutv(strd,strc,strb,'V');    
       Tvar[i]=atoi(strc);    if(estepm < stepm){
       }      printf ("Problem %d lower than %d\n",estepm, stepm);
       strcpy(modelsav,stra);      }
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);    else  hstepm=estepm;   
         scanf("%d",i);*/    /* For example we decided to compute the life expectancy with the smallest unit */
     }    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
 }       nhstepm is the number of hstepm from age to agelim 
         nstepm is the number of stepm from age to agelin. 
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);       Look at hpijx to understand the reason of that which relies in memory size
   printf("cptcovprod=%d ", cptcovprod);       and note for a fixed period like k years */
   scanf("%d ",i);*/    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
     fclose(fic);       survival function given by stepm (the optimization length). Unfortunately it
        means that if the survival funtion is printed every two years of age and if
     /*  if(mle==1){*/       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
     if (weightopt != 1) { /* Maximisation without weights*/       results. So we changed our mind and took the option of the best precision.
       for(i=1;i<=n;i++) weight[i]=1.0;    */
     }    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     /*-calculation of age at interview from date of interview and age at death -*/    agelim = AGESUP;
     agev=matrix(1,maxwav,1,imx);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
     for (i=1; i<=imx; i++) {      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       for(m=2; (m<= maxwav); m++) {      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
          anint[m][i]=9999;      gp=matrix(0,nhstepm,1,nlstate);
          s[m][i]=-1;      gm=matrix(0,nhstepm,1,nlstate);
        }  
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;  
       }      for(theta=1; theta <=npar; theta++){
     }        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
     for (i=1; i<=imx; i++)  {        }
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
       for(m=1; (m<= maxwav); m++){        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         if(s[m][i] >0){  
           if (s[m][i] >= nlstate+1) {        if (popbased==1) {
             if(agedc[i]>0)          if(mobilav ==0){
               if(moisdc[i]!=99 && andc[i]!=9999)            for(i=1; i<=nlstate;i++)
                 agev[m][i]=agedc[i];              prlim[i][i]=probs[(int)age][i][ij];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/          }else{ /* mobilav */ 
            else {            for(i=1; i<=nlstate;i++)
               if (andc[i]!=9999){              prlim[i][i]=mobaverage[(int)age][i][ij];
               printf("Warning negative age at death: %d line:%d\n",num[i],i);          }
               agev[m][i]=-1;        }
               }    
             }        for(j=1; j<= nlstate; j++){
           }          for(h=0; h<=nhstepm; h++){
           else if(s[m][i] !=9){ /* Should no more exist */            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
             if(mint[m][i]==99 || anint[m][i]==9999)          }
               agev[m][i]=1;        }
             else if(agev[m][i] <agemin){        /* This for computing probability of death (h=1 means
               agemin=agev[m][i];           computed over hstepm matrices product = hstepm*stepm months) 
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/           as a weighted average of prlim.
             }        */
             else if(agev[m][i] >agemax){        for(j=nlstate+1;j<=nlstate+ndeath;j++){
               agemax=agev[m][i];          for(i=1,gpp[j]=0.; i<= nlstate; i++)
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/            gpp[j] += prlim[i][i]*p3mat[i][j][1];
             }        }    
             /*agev[m][i]=anint[m][i]-annais[i];*/        /* end probability of death */
             /*   agev[m][i] = age[i]+2*m;*/  
           }        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
           else { /* =9 */          xp[i] = x[i] - (i==theta ?delti[theta]:0);
             agev[m][i]=1;        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
             s[m][i]=-1;        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
           }   
         }        if (popbased==1) {
         else /*= 0 Unknown */          if(mobilav ==0){
           agev[m][i]=1;            for(i=1; i<=nlstate;i++)
       }              prlim[i][i]=probs[(int)age][i][ij];
              }else{ /* mobilav */ 
     }            for(i=1; i<=nlstate;i++)
     for (i=1; i<=imx; i++)  {              prlim[i][i]=mobaverage[(int)age][i][ij];
       for(m=1; (m<= maxwav); m++){          }
         if (s[m][i] > (nlstate+ndeath)) {        }
           printf("Error: Wrong value in nlstate or ndeath\n");    
           goto end;        for(j=1; j<= nlstate; j++){
         }          for(h=0; h<=nhstepm; h++){
       }            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
     }              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
           }
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);        }
         /* This for computing probability of death (h=1 means
     free_vector(severity,1,maxwav);           computed over hstepm matrices product = hstepm*stepm months) 
     free_imatrix(outcome,1,maxwav+1,1,n);           as a weighted average of prlim.
     free_vector(moisnais,1,n);        */
     free_vector(annais,1,n);        for(j=nlstate+1;j<=nlstate+ndeath;j++){
     /* free_matrix(mint,1,maxwav,1,n);          for(i=1,gmp[j]=0.; i<= nlstate; i++)
        free_matrix(anint,1,maxwav,1,n);*/           gmp[j] += prlim[i][i]*p3mat[i][j][1];
     free_vector(moisdc,1,n);        }    
     free_vector(andc,1,n);        /* end probability of death */
   
            for(j=1; j<= nlstate; j++) /* vareij */
     wav=ivector(1,imx);          for(h=0; h<=nhstepm; h++){
     dh=imatrix(1,lastpass-firstpass+1,1,imx);            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
     mw=imatrix(1,lastpass-firstpass+1,1,imx);          }
      
     /* Concatenates waves */        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
         }
   
       Tcode=ivector(1,100);      } /* End theta */
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);  
       ncodemax[1]=1;      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);  
            for(h=0; h<=nhstepm; h++) /* veij */
    codtab=imatrix(1,100,1,10);        for(j=1; j<=nlstate;j++)
    h=0;          for(theta=1; theta <=npar; theta++)
    m=pow(2,cptcoveff);            trgradg[h][j][theta]=gradg[h][theta][j];
    
    for(k=1;k<=cptcoveff; k++){      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
      for(i=1; i <=(m/pow(2,k));i++){        for(theta=1; theta <=npar; theta++)
        for(j=1; j <= ncodemax[k]; j++){          trgradgp[j][theta]=gradgp[theta][j];
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){    
            h++;  
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/      for(i=1;i<=nlstate;i++)
          }        for(j=1;j<=nlstate;j++)
        }          vareij[i][j][(int)age] =0.;
      }  
    }      for(h=0;h<=nhstepm;h++){
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);        for(k=0;k<=nhstepm;k++){
       codtab[1][2]=1;codtab[2][2]=2; */          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
    /* for(i=1; i <=m ;i++){          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
       for(k=1; k <=cptcovn; k++){          for(i=1;i<=nlstate;i++)
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);            for(j=1;j<=nlstate;j++)
       }              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
       printf("\n");        }
       }      }
       scanf("%d",i);*/    
          /* pptj */
    /* Calculates basic frequencies. Computes observed prevalence at single age      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
        and prints on file fileres'p'. */      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
       for(j=nlstate+1;j<=nlstate+ndeath;j++)
            for(i=nlstate+1;i<=nlstate+ndeath;i++)
              varppt[j][i]=doldmp[j][i];
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      /* end ppptj */
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      /*  x centered again */
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */   
            if (popbased==1) {
     /* For Powell, parameters are in a vector p[] starting at p[1]        if(mobilav ==0){
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */          for(i=1; i<=nlstate;i++)
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */            prlim[i][i]=probs[(int)age][i][ij];
         }else{ /* mobilav */ 
     if(mle==1){          for(i=1; i<=nlstate;i++)
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);            prlim[i][i]=mobaverage[(int)age][i][ij];
     }        }
          }
     /*--------- results files --------------*/               
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);      /* This for computing probability of death (h=1 means
           computed over hstepm (estepm) matrices product = hstepm*stepm months) 
          as a weighted average of prlim.
    jk=1;      */
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");      for(j=nlstate+1;j<=nlstate+ndeath;j++){
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
    for(i=1,jk=1; i <=nlstate; i++){          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
      for(k=1; k <=(nlstate+ndeath); k++){      }    
        if (k != i)      /* end probability of death */
          {  
            printf("%d%d ",i,k);      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
            fprintf(ficres,"%1d%1d ",i,k);      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
            for(j=1; j <=ncovmodel; j++){        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
              printf("%f ",p[jk]);        for(i=1; i<=nlstate;i++){
              fprintf(ficres,"%f ",p[jk]);          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
              jk++;        }
            }      } 
            printf("\n");      fprintf(ficresprobmorprev,"\n");
            fprintf(ficres,"\n");  
          }      fprintf(ficresvij,"%.0f ",age );
      }      for(i=1; i<=nlstate;i++)
    }        for(j=1; j<=nlstate;j++){
  if(mle==1){          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
     /* Computing hessian and covariance matrix */        }
     ftolhess=ftol; /* Usually correct */      fprintf(ficresvij,"\n");
     hesscov(matcov, p, npar, delti, ftolhess, func);      free_matrix(gp,0,nhstepm,1,nlstate);
  }      free_matrix(gm,0,nhstepm,1,nlstate);
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
     printf("# Scales (for hessian or gradient estimation)\n");      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
      for(i=1,jk=1; i <=nlstate; i++){      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       for(j=1; j <=nlstate+ndeath; j++){    } /* End age */
         if (j!=i) {    free_vector(gpp,nlstate+1,nlstate+ndeath);
           fprintf(ficres,"%1d%1d",i,j);    free_vector(gmp,nlstate+1,nlstate+ndeath);
           printf("%1d%1d",i,j);    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
           for(k=1; k<=ncovmodel;k++){    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
             printf(" %.5e",delti[jk]);    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
             fprintf(ficres," %.5e",delti[jk]);    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
             jk++;    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
           }  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
           printf("\n");  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
           fprintf(ficres,"\n");  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
         }    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
       }    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
      }    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
        fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
     k=1;    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");  */
     for(i=1;i<=npar;i++){  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
       /*  if (k>nlstate) k=1;    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
       i1=(i-1)/(ncovmodel*nlstate)+1;  
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);    free_vector(xp,1,npar);
       printf("%s%d%d",alph[k],i1,tab[i]);*/    free_matrix(doldm,1,nlstate,1,nlstate);
       fprintf(ficres,"%3d",i);    free_matrix(dnewm,1,nlstate,1,npar);
       printf("%3d",i);    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
       for(j=1; j<=i;j++){    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
         fprintf(ficres," %.5e",matcov[i][j]);    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
         printf(" %.5e",matcov[i][j]);    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       }    fclose(ficresprobmorprev);
       fprintf(ficres,"\n");    fflush(ficgp);
       printf("\n");    fflush(fichtm); 
       k++;  }  /* end varevsij */
     }  
      /************ Variance of prevlim ******************/
     while((c=getc(ficpar))=='#' && c!= EOF){  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
       ungetc(c,ficpar);  {
       fgets(line, MAXLINE, ficpar);    /* Variance of prevalence limit */
       puts(line);    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
       fputs(line,ficparo);    double **newm;
     }    double **dnewm,**doldm;
     ungetc(c,ficpar);    int i, j, nhstepm, hstepm;
      int k, cptcode;
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&ageminpar,&agemaxpar, &bage, &fage);    double *xp;
        double *gp, *gm;
     if (fage <= 2) {    double **gradg, **trgradg;
       bage = ageminpar;    double age,agelim;
       fage = agemaxpar;    int theta;
     }    
        pstamp(ficresvpl);
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");    fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",ageminpar,agemaxpar,bage,fage);    fprintf(ficresvpl,"# Age");
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",ageminpar,agemaxpar,bage,fage);    for(i=1; i<=nlstate;i++)
          fprintf(ficresvpl," %1d-%1d",i,i);
     while((c=getc(ficpar))=='#' && c!= EOF){    fprintf(ficresvpl,"\n");
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);    xp=vector(1,npar);
     puts(line);    dnewm=matrix(1,nlstate,1,npar);
     fputs(line,ficparo);    doldm=matrix(1,nlstate,1,nlstate);
   }    
   ungetc(c,ficpar);    hstepm=1*YEARM; /* Every year of age */
      hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);    agelim = AGESUP;
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
            if (stepm >= YEARM) hstepm=1;
   while((c=getc(ficpar))=='#' && c!= EOF){      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
     ungetc(c,ficpar);      gradg=matrix(1,npar,1,nlstate);
     fgets(line, MAXLINE, ficpar);      gp=vector(1,nlstate);
     puts(line);      gm=vector(1,nlstate);
     fputs(line,ficparo);  
   }      for(theta=1; theta <=npar; theta++){
   ungetc(c,ficpar);        for(i=1; i<=npar; i++){ /* Computes gradient */
            xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
    dateprev1=anprev1+mprev1/12.+jprev1/365.;        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
    dateprev2=anprev2+mprev2/12.+jprev2/365.;        for(i=1;i<=nlstate;i++)
           gp[i] = prlim[i][i];
   fscanf(ficpar,"pop_based=%d\n",&popbased);      
   fprintf(ficparo,"pop_based=%d\n",popbased);          for(i=1; i<=npar; i++) /* Computes gradient */
   fprintf(ficres,"pop_based=%d\n",popbased);            xp[i] = x[i] - (i==theta ?delti[theta]:0);
          prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   while((c=getc(ficpar))=='#' && c!= EOF){        for(i=1;i<=nlstate;i++)
     ungetc(c,ficpar);          gm[i] = prlim[i][i];
     fgets(line, MAXLINE, ficpar);  
     puts(line);        for(i=1;i<=nlstate;i++)
     fputs(line,ficparo);          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
   }      } /* End theta */
   ungetc(c,ficpar);  
       trgradg =matrix(1,nlstate,1,npar);
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);  
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);      for(j=1; j<=nlstate;j++)
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);        for(theta=1; theta <=npar; theta++)
           trgradg[j][theta]=gradg[theta][j];
   
 while((c=getc(ficpar))=='#' && c!= EOF){      for(i=1;i<=nlstate;i++)
     ungetc(c,ficpar);        varpl[i][(int)age] =0.;
     fgets(line, MAXLINE, ficpar);      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
     puts(line);      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
     fputs(line,ficparo);      for(i=1;i<=nlstate;i++)
   }        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   ungetc(c,ficpar);  
       fprintf(ficresvpl,"%.0f ",age );
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);      for(i=1; i<=nlstate;i++)
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);      fprintf(ficresvpl,"\n");
       free_vector(gp,1,nlstate);
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);      free_vector(gm,1,nlstate);
       free_matrix(gradg,1,npar,1,nlstate);
 /*------------ gnuplot -------------*/      free_matrix(trgradg,1,nlstate,1,npar);
  printinggnuplot(fileres,optionfilefiname,optionfile,optionfilegnuplot, ageminpar,agemaxpar,fage, pathc,p);    } /* End age */
    
 /*------------ free_vector  -------------*/    free_vector(xp,1,npar);
  chdir(path);    free_matrix(doldm,1,nlstate,1,npar);
      free_matrix(dnewm,1,nlstate,1,nlstate);
  free_ivector(wav,1,imx);  
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);  }
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);    
  free_ivector(num,1,n);  /************ Variance of one-step probabilities  ******************/
  free_vector(agedc,1,n);  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
  /*free_matrix(covar,1,NCOVMAX,1,n);*/  {
  fclose(ficparo);    int i, j=0,  i1, k1, l1, t, tj;
  fclose(ficres);    int k2, l2, j1,  z1;
     int k=0,l, cptcode;
 /*--------- index.htm --------*/    int first=1, first1;
     double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
   printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,optionfile,optionfilehtm,rfileres,optionfilegnuplot,version,popforecast);    double **dnewm,**doldm;
     double *xp;
      double *gp, *gm;
   /*--------------- Prevalence limit --------------*/    double **gradg, **trgradg;
      double **mu;
   strcpy(filerespl,"pl");    double age,agelim, cov[NCOVMAX];
   strcat(filerespl,fileres);    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
   if((ficrespl=fopen(filerespl,"w"))==NULL) {    int theta;
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;    char fileresprob[FILENAMELENGTH];
   }    char fileresprobcov[FILENAMELENGTH];
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);    char fileresprobcor[FILENAMELENGTH];
   fprintf(ficrespl,"#Prevalence limit\n");  
   fprintf(ficrespl,"#Age ");    double ***varpij;
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);  
   fprintf(ficrespl,"\n");    strcpy(fileresprob,"prob"); 
      strcat(fileresprob,fileres);
   prlim=matrix(1,nlstate,1,nlstate);    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      printf("Problem with resultfile: %s\n", fileresprob);
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    }
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    strcpy(fileresprobcov,"probcov"); 
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    strcat(fileresprobcov,fileres);
   k=0;    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
   agebase=ageminpar;      printf("Problem with resultfile: %s\n", fileresprobcov);
   agelim=agemaxpar;      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
   ftolpl=1.e-10;    }
   i1=cptcoveff;    strcpy(fileresprobcor,"probcor"); 
   if (cptcovn < 1){i1=1;}    strcat(fileresprobcor,fileres);
     if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
   for(cptcov=1;cptcov<=i1;cptcov++){      printf("Problem with resultfile: %s\n", fileresprobcor);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
         k=k+1;    }
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
         fprintf(ficrespl,"\n#******");    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
         for(j=1;j<=cptcoveff;j++)    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
         fprintf(ficrespl,"******\n");    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
            fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
         for (age=agebase; age<=agelim; age++){    pstamp(ficresprob);
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
           fprintf(ficrespl,"%.0f",age );    fprintf(ficresprob,"# Age");
           for(i=1; i<=nlstate;i++)    pstamp(ficresprobcov);
           fprintf(ficrespl," %.5f", prlim[i][i]);    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
           fprintf(ficrespl,"\n");    fprintf(ficresprobcov,"# Age");
         }    pstamp(ficresprobcor);
       }    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
     }    fprintf(ficresprobcor,"# Age");
   fclose(ficrespl);  
   
   /*------------- h Pij x at various ages ------------*/    for(i=1; i<=nlstate;i++)
        for(j=1; j<=(nlstate+ndeath);j++){
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
   if((ficrespij=fopen(filerespij,"w"))==NULL) {        fprintf(ficresprobcov," p%1d-%1d ",i,j);
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;        fprintf(ficresprobcor," p%1d-%1d ",i,j);
   }      }  
   printf("Computing pij: result on file '%s' \n", filerespij);   /* fprintf(ficresprob,"\n");
      fprintf(ficresprobcov,"\n");
   stepsize=(int) (stepm+YEARM-1)/YEARM;    fprintf(ficresprobcor,"\n");
   /*if (stepm<=24) stepsize=2;*/   */
    xp=vector(1,npar);
   agelim=AGESUP;    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
   hstepm=stepsize*YEARM; /* Every year of age */    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
      varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
   k=0;    first=1;
   for(cptcov=1;cptcov<=i1;cptcov++){    fprintf(ficgp,"\n# Routine varprob");
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
       k=k+1;    fprintf(fichtm,"\n");
         fprintf(ficrespij,"\n#****** ");  
         for(j=1;j<=cptcoveff;j++)    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
         fprintf(ficrespij,"******\n");    file %s<br>\n",optionfilehtmcov);
            fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */  and drawn. It helps understanding how is the covariance between two incidences.\
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
           oldm=oldms;savm=savms;  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);    standard deviations wide on each axis. <br>\
           fprintf(ficrespij,"# Age");   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
           for(i=1; i<=nlstate;i++)   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
             for(j=1; j<=nlstate+ndeath;j++)  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
               fprintf(ficrespij," %1d-%1d",i,j);  
           fprintf(ficrespij,"\n");    cov[1]=1;
           for (h=0; h<=nhstepm; h++){    tj=cptcoveff;
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
             for(i=1; i<=nlstate;i++)    j1=0;
               for(j=1; j<=nlstate+ndeath;j++)    for(t=1; t<=tj;t++){
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);      for(i1=1; i1<=ncodemax[t];i1++){ 
             fprintf(ficrespij,"\n");        j1++;
           }        if  (cptcovn>0) {
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          fprintf(ficresprob, "\n#********** Variable "); 
           fprintf(ficrespij,"\n");          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
         }          fprintf(ficresprob, "**********\n#\n");
     }          fprintf(ficresprobcov, "\n#********** Variable "); 
   }          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcov, "**********\n#\n");
   /* varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k);*/          
           fprintf(ficgp, "\n#********** Variable "); 
   fclose(ficrespij);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficgp, "**********\n#\n");
           
   /*---------- Forecasting ------------------*/          
   if((stepm == 1) && (strcmp(model,".")==0)){          fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);          fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
     free_matrix(mint,1,maxwav,1,n);          
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);          fprintf(ficresprobcor, "\n#********** Variable ");    
     free_vector(weight,1,n);}          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   else{          fprintf(ficresprobcor, "**********\n#");    
     erreur=108;        }
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);        
   }        for (age=bage; age<=fage; age ++){ 
            cov[2]=age;
           for (k=1; k<=cptcovn;k++) {
   /*---------- Health expectancies and variances ------------*/            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
           }
   strcpy(filerest,"t");          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   strcat(filerest,fileres);          for (k=1; k<=cptcovprod;k++)
   if((ficrest=fopen(filerest,"w"))==NULL) {            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;          
   }          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
   printf("Computing Total LEs with variances: file '%s' \n", filerest);          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
           gp=vector(1,(nlstate)*(nlstate+ndeath));
           gm=vector(1,(nlstate)*(nlstate+ndeath));
   strcpy(filerese,"e");      
   strcat(filerese,fileres);          for(theta=1; theta <=npar; theta++){
   if((ficreseij=fopen(filerese,"w"))==NULL) {            for(i=1; i<=npar; i++)
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
   }            
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);            pmij(pmmij,cov,ncovmodel,xp,nlstate);
             
  strcpy(fileresv,"v");            k=0;
   strcat(fileresv,fileres);            for(i=1; i<= (nlstate); i++){
   if((ficresvij=fopen(fileresv,"w"))==NULL) {              for(j=1; j<=(nlstate+ndeath);j++){
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);                k=k+1;
   }                gp[k]=pmmij[i][j];
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);              }
             }
   k=0;            
   for(cptcov=1;cptcov<=i1;cptcov++){            for(i=1; i<=npar; i++)
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
       k=k+1;      
       fprintf(ficrest,"\n#****** ");            pmij(pmmij,cov,ncovmodel,xp,nlstate);
       for(j=1;j<=cptcoveff;j++)            k=0;
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            for(i=1; i<=(nlstate); i++){
       fprintf(ficrest,"******\n");              for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
       fprintf(ficreseij,"\n#****** ");                gm[k]=pmmij[i][j];
       for(j=1;j<=cptcoveff;j++)              }
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            }
       fprintf(ficreseij,"******\n");       
             for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
       fprintf(ficresvij,"\n#****** ");              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
       for(j=1;j<=cptcoveff;j++)          }
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
       fprintf(ficresvij,"******\n");          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
             for(theta=1; theta <=npar; theta++)
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);              trgradg[j][theta]=gradg[theta][j];
       oldm=oldms;savm=savms;          
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k);            matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
       oldm=oldms;savm=savms;          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
              free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
           free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
    
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");          pmij(pmmij,cov,ncovmodel,x,nlstate);
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);          
       fprintf(ficrest,"\n");          k=0;
           for(i=1; i<=(nlstate); i++){
       epj=vector(1,nlstate+1);            for(j=1; j<=(nlstate+ndeath);j++){
       for(age=bage; age <=fage ;age++){              k=k+1;
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);              mu[k][(int) age]=pmmij[i][j];
         if (popbased==1) {            }
           for(i=1; i<=nlstate;i++)          }
             prlim[i][i]=probs[(int)age][i][k];          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
         }            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
                      varpij[i][j][(int)age] = doldm[i][j];
         fprintf(ficrest," %4.0f",age);  
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){          /*printf("\n%d ",(int)age);
           for(i=1, epj[j]=0.;i <=nlstate;i++) {            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             epj[j] += prlim[i][i]*eij[i][j][(int)age];            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
           }            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
           epj[nlstate+1] +=epj[j];            }*/
         }  
         for(i=1, vepp=0.;i <=nlstate;i++)          fprintf(ficresprob,"\n%d ",(int)age);
           for(j=1;j <=nlstate;j++)          fprintf(ficresprobcov,"\n%d ",(int)age);
             vepp += vareij[i][j][(int)age];          fprintf(ficresprobcor,"\n%d ",(int)age);
         fprintf(ficrest," %7.2f (%7.2f)", epj[nlstate+1],sqrt(vepp));  
         for(j=1;j <=nlstate;j++){          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
           fprintf(ficrest," %7.2f (%7.2f)", epj[j],sqrt(vareij[j][j][(int)age]));            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
         }          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
         fprintf(ficrest,"\n");            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
       }            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
     }          }
   }          i=0;
           for (k=1; k<=(nlstate);k++){
   fclose(ficreseij);            for (l=1; l<=(nlstate+ndeath);l++){ 
   fclose(ficresvij);              i=i++;
   fclose(ficrest);              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
   fclose(ficpar);              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
   free_vector(epj,1,nlstate+1);              for (j=1; j<=i;j++){
                  fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
   /*------- Variance limit prevalence------*/                  fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
               }
   strcpy(fileresvpl,"vpl");            }
   strcat(fileresvpl,fileres);          }/* end of loop for state */
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {        } /* end of loop for age */
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);  
     exit(0);        /* Confidence intervalle of pij  */
   }        /*
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);          fprintf(ficgp,"\nset noparametric;unset label");
           fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
   k=0;          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
   for(cptcov=1;cptcov<=i1;cptcov++){          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
       k=k+1;          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
       fprintf(ficresvpl,"\n#****** ");          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
       for(j=1;j<=cptcoveff;j++)        */
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
       fprintf(ficresvpl,"******\n");        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
              first1=1;
       varpl=matrix(1,nlstate,(int) bage, (int) fage);        for (k2=1; k2<=(nlstate);k2++){
       oldm=oldms;savm=savms;          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);            if(l2==k2) continue;
     }            j=(k2-1)*(nlstate+ndeath)+l2;
  }            for (k1=1; k1<=(nlstate);k1++){
               for (l1=1; l1<=(nlstate+ndeath);l1++){ 
   fclose(ficresvpl);                if(l1==k1) continue;
                 i=(k1-1)*(nlstate+ndeath)+l1;
   /*---------- End : free ----------------*/                if(i<=j) continue;
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);                for (age=bage; age<=fage; age ++){ 
                    if ((int)age %5==0){
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                      cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                      mu1=mu[i][(int) age]/stepm*YEARM ;
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);                    mu2=mu[j][(int) age]/stepm*YEARM;
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);                    c12=cv12/sqrt(v1*v2);
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);                    /* Computing eigen value of matrix of covariance */
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                      lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
   free_matrix(matcov,1,npar,1,npar);                    /* Eigen vectors */
   free_vector(delti,1,npar);                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
   free_matrix(agev,1,maxwav,1,imx);                    /*v21=sqrt(1.-v11*v11); *//* error */
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);                    v21=(lc1-v1)/cv12*v11;
                     v12=-v21;
   if(erreur >0)                    v22=v11;
     printf("End of Imach with error or warning %d\n",erreur);                    tnalp=v21/v11;
   else   printf("End of Imach\n");                    if(first1==1){
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */                      first1=0;
                        printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/                    }
   /*printf("Total time was %d uSec.\n", total_usecs);*/                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
   /*------ End -----------*/                    /*printf(fignu*/
                     /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                     /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
  end:                    if(first==1){
 #ifdef windows                      first=0;
   /* chdir(pathcd);*/                      fprintf(ficgp,"\nset parametric;unset label");
 #endif                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
  /*system("wgnuplot graph.plt");*/                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
  /*system("../gp37mgw/wgnuplot graph.plt");*/                      fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
  /*system("cd ../gp37mgw");*/   :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/  %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
  strcpy(plotcmd,GNUPLOTPROGRAM);                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
  strcat(plotcmd," ");                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
  strcat(plotcmd,optionfilegnuplot);                      fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
  system(plotcmd);                      fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
 #ifdef windows                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
   while (z[0] != 'q') {                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
     /* chdir(path); */                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
     scanf("%s",z);                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
     if (z[0] == 'c') system("./imach");                    }else{
     else if (z[0] == 'e') system(optionfilehtm);                      first=0;
     else if (z[0] == 'g') system(plotcmd);                      fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
     else if (z[0] == 'q') exit(0);                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
   }                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
 #endif                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
 }                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }/* if first */
                   } /* age mod 5 */
                 } /* end loop age */
                 fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                 first=1;
               } /*l12 */
             } /* k12 */
           } /*l1 */
         }/* k1 */
       } /* loop covariates */
     }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
     free_vector(xp,1,npar);
     fclose(ficresprob);
     fclose(ficresprobcov);
     fclose(ficresprobcor);
     fflush(ficgp);
     fflush(fichtmcov);
   }
   
   
   /******************* Printing html file ***********/
   void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int estepm ,\
                     double jprev1, double mprev1,double anprev1, \
                     double jprev2, double mprev2,double anprev2){
     int jj1, k1, i1, cpt;
   
      fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
      <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   </ul>");
      fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
      fprintf(fichtm,"\
    - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
              stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
      fprintf(fichtm,"\
    - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
      fprintf(fichtm,"\
    - (a) Life expectancies by health status at initial age, (b) health expectancies by health status at initial age:  ei., eij (estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
   
   
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        /* Pij */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d1.png\">%s%d1.png</a><br> \
   <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
        /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d2.png\">%s%d2.png</a><br> \
   <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
          /* Period (stable) prevalence in each health state */
          for(cpt=1; cpt<nlstate;cpt++){
            fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d%d.png\">%s%d%d.png</a><br> \
   <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
          }
        for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
        }
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   
   
    fprintf(fichtm,"\
   \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
   
    fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
    fprintf(fichtm,"\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   
    fprintf(fichtm,"\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
    fprintf(fichtm,"\
    - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), eij are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences (i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
            estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
    fprintf(fichtm,"\
    - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"t"),subdirf2(fileres,"t"));
    fprintf(fichtm,"\
    - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
            subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    fflush(fichtm);
    fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2): %s%d.png<br>\
   <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
    fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
     m=pow(2,cptcoveff);
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
    /* 1eme*/
     for (cpt=1; cpt<= nlstate ; cpt ++) {
      for (k1=1; k1<= m ; k1 ++) {
        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }
        fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l 0,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
         else fprintf(ficgp,"\" t\"\" w l 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         /*       k=2+nlstate*(2*cpt-2); */
         k=2+(nlstate+1)*(cpt-1);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
           /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
           
         } 
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<=nlstate ; cpt ++) {
         k=3;
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small\nset size 0.65,0.65\n\
   unset log y\n\
   plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
         
         for (i=1; i< nlstate ; i ++)
           fprintf(ficgp,"+$%d",k+i+1);
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         
         l=3+(nlstate+ndeath)*cpt;
         fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
         for (i=1; i< nlstate ; i ++) {
           l=3+(nlstate+ndeath)*cpt;
           fprintf(ficgp,"+$%d",l+i+1);
         }
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       } 
     }  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
   
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;
                for(j=3; j <=ncovmodel; j++) {
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                    ij++;
                  }
                  else
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                      ij++;
                    }
                    else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small\n set log y\n"); 
     fprintf(ficgp, "set size 0.65,0.65\n");
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   
   
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int linei, month, year,iout;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
   
     char ca[32], cb[32], cc[32];
     char dummy[]="                         ";
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char **bp, *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char  *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Un peu sale */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem with datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %d %s for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
           exit(1);
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }
         else  if(iout=sscanf(strb,"%s.") != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           exit(1);
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.",dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         exit(1);
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.") != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line,j);
         exit(1);
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       lval=strtol(strb,&endptr,10); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%d' at line number %ld %s for individual %d\nShould be a weight.  Exiting.\n",lval, i,line,linei);
         exit(1);
       }
       weight[i]=(double)(lval); 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a covar (meaning 0 for the reference or 1).  Exiting.\n",lval, linei,i, line);
           exit(1);
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a value of the %d covar (meaning 0 for the reference or 1. IMaCh does not build design variables, do it your self).  Exiting.\n",lval,linei, i,line,j);
           exit(1);
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       } 
       lstra=strlen(stra);
       
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
     fclose(fic);
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
     /* for (i=1; i<=imx; i++) */
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameters from char model */
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     agegomp=(int)agemin;
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<body>\n<title>IMaCh Cov %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       p[1]=0.0268; p[NDIM]=0.083;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
       
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
     
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       pstamp(ficrespl);
       fprintf(ficrespl,"# Period (stable) prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       pstamp(ficrespij);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /*---------- Health expectancies and variances ------------*/
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
   
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficreseij,"\n#****** ");
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
           cvevsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav, strstart);
           if(popbased==1){
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav, strstart);
           }
   
           pstamp(ficrest);
           fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state ( e.. (std) ");
           for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
           fprintf(ficrest,"\n");
   
           epj=vector(1,nlstate+1);
           for(age=bage; age <=fage ;age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             if (popbased==1) {
               if(mobilav ==0){
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=probs[(int)age][i][k];
               }else{ /* mobilav */ 
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=mobaverage[(int)age][i][k];
               }
             }
           
             fprintf(ficrest," %4.0f",age);
             for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
               for(i=1, epj[j]=0.;i <=nlstate;i++) {
                 epj[j] += prlim[i][i]*eij[i][j][(int)age];
                 /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
               }
               epj[nlstate+1] +=epj[j];
             }
   
             for(i=1, vepp=0.;i <=nlstate;i++)
               for(j=1;j <=nlstate;j++)
                 vepp += vareij[i][j][(int)age];
             fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
             for(j=1;j <=nlstate;j++){
               fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
             }
             fprintf(ficrest,"\n");
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficreseij);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
     free_matrix(prlim,1,nlstate,1,nlstate);
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
       free_ivector(Tcode,1,100);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);
     fclose(fichtm);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
     chdir(path);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.35  
changed lines
  Added in v.1.117


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>