Diff for /imach/src/imach.c between versions 1.110 and 1.125

version 1.110, 2006/01/25 00:51:50 version 1.125, 2006/04/04 15:20:31
Line 1 Line 1
 /* $Id$  /* $Id$
   $State$    $State$
   $Log$    $Log$
   Revision 1.110  2006/01/25 00:51:50  brouard    Revision 1.125  2006/04/04 15:20:31  lievre
   (Module): Lots of cleaning and bugs added (Gompertz)    Errors in calculation of health expectancies. Age was not initialized.
     Forecasting file added.
   Revision 1.109  2006/01/24 19:37:15  brouard  
   (Module): Comments (lines starting with a #) are allowed in data.    Revision 1.124  2006/03/22 17:13:53  lievre
     Parameters are printed with %lf instead of %f (more numbers after the comma).
   Revision 1.108  2006/01/19 18:05:42  lievre    The log-likelihood is printed in the log file
   Gnuplot problem appeared...  
   To be fixed    Revision 1.123  2006/03/20 10:52:43  brouard
     * imach.c (Module): <title> changed, corresponds to .htm file
   Revision 1.107  2006/01/19 16:20:37  brouard    name. <head> headers where missing.
   Test existence of gnuplot in imach path  
     * imach.c (Module): Weights can have a decimal point as for
   Revision 1.106  2006/01/19 13:24:36  brouard    English (a comma might work with a correct LC_NUMERIC environment,
   Some cleaning and links added in html output    otherwise the weight is truncated).
     Modification of warning when the covariates values are not 0 or
   Revision 1.105  2006/01/05 20:23:19  lievre    1.
   *** empty log message ***    Version 0.98g
   
   Revision 1.104  2005/09/30 16:11:43  lievre    Revision 1.122  2006/03/20 09:45:41  brouard
   (Module): sump fixed, loop imx fixed, and simplifications.    (Module): Weights can have a decimal point as for
   (Module): If the status is missing at the last wave but we know    English (a comma might work with a correct LC_NUMERIC environment,
   that the person is alive, then we can code his/her status as -2    otherwise the weight is truncated).
   (instead of missing=-1 in earlier versions) and his/her    Modification of warning when the covariates values are not 0 or
   contributions to the likelihood is 1 - Prob of dying from last    1.
   health status (= 1-p13= p11+p12 in the easiest case of somebody in    Version 0.98g
   the healthy state at last known wave). Version is 0.98  
     Revision 1.121  2006/03/16 17:45:01  lievre
   Revision 1.103  2005/09/30 15:54:49  lievre    * imach.c (Module): Comments concerning covariates added
   (Module): sump fixed, loop imx fixed, and simplifications.  
     * imach.c (Module): refinements in the computation of lli if
   Revision 1.102  2004/09/15 17:31:30  brouard    status=-2 in order to have more reliable computation if stepm is
   Add the possibility to read data file including tab characters.    not 1 month. Version 0.98f
   
   Revision 1.101  2004/09/15 10:38:38  brouard    Revision 1.120  2006/03/16 15:10:38  lievre
   Fix on curr_time    (Module): refinements in the computation of lli if
     status=-2 in order to have more reliable computation if stepm is
   Revision 1.100  2004/07/12 18:29:06  brouard    not 1 month. Version 0.98f
   Add version for Mac OS X. Just define UNIX in Makefile  
     Revision 1.119  2006/03/15 17:42:26  brouard
   Revision 1.99  2004/06/05 08:57:40  brouard    (Module): Bug if status = -2, the loglikelihood was
   *** empty log message ***    computed as likelihood omitting the logarithm. Version O.98e
   
   Revision 1.98  2004/05/16 15:05:56  brouard    Revision 1.118  2006/03/14 18:20:07  brouard
   New version 0.97 . First attempt to estimate force of mortality    (Module): varevsij Comments added explaining the second
   directly from the data i.e. without the need of knowing the health    table of variances if popbased=1 .
   state at each age, but using a Gompertz model: log u =a + b*age .    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   This is the basic analysis of mortality and should be done before any    (Module): Function pstamp added
   other analysis, in order to test if the mortality estimated from the    (Module): Version 0.98d
   cross-longitudinal survey is different from the mortality estimated  
   from other sources like vital statistic data.    Revision 1.117  2006/03/14 17:16:22  brouard
     (Module): varevsij Comments added explaining the second
   The same imach parameter file can be used but the option for mle should be -3.    table of variances if popbased=1 .
     (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   Agnès, who wrote this part of the code, tried to keep most of the    (Module): Function pstamp added
   former routines in order to include the new code within the former code.    (Module): Version 0.98d
   
   The output is very simple: only an estimate of the intercept and of    Revision 1.116  2006/03/06 10:29:27  brouard
   the slope with 95% confident intervals.    (Module): Variance-covariance wrong links and
     varian-covariance of ej. is needed (Saito).
   Current limitations:  
   A) Even if you enter covariates, i.e. with the    Revision 1.115  2006/02/27 12:17:45  brouard
   model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.    (Module): One freematrix added in mlikeli! 0.98c
   B) There is no computation of Life Expectancy nor Life Table.  
     Revision 1.114  2006/02/26 12:57:58  brouard
   Revision 1.97  2004/02/20 13:25:42  lievre    (Module): Some improvements in processing parameter
   Version 0.96d. Population forecasting command line is (temporarily)    filename with strsep.
   suppressed.  
     Revision 1.113  2006/02/24 14:20:24  brouard
   Revision 1.96  2003/07/15 15:38:55  brouard    (Module): Memory leaks checks with valgrind and:
   * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is    datafile was not closed, some imatrix were not freed and on matrix
   rewritten within the same printf. Workaround: many printfs.    allocation too.
   
   Revision 1.95  2003/07/08 07:54:34  brouard    Revision 1.112  2006/01/30 09:55:26  brouard
   * imach.c (Repository):    (Module): Back to gnuplot.exe instead of wgnuplot.exe
   (Repository): Using imachwizard code to output a more meaningful covariance  
   matrix (cov(a12,c31) instead of numbers.    Revision 1.111  2006/01/25 20:38:18  brouard
     (Module): Lots of cleaning and bugs added (Gompertz)
   Revision 1.94  2003/06/27 13:00:02  brouard    (Module): Comments can be added in data file. Missing date values
   Just cleaning    can be a simple dot '.'.
   
   Revision 1.93  2003/06/25 16:33:55  brouard    Revision 1.110  2006/01/25 00:51:50  brouard
   (Module): On windows (cygwin) function asctime_r doesn't    (Module): Lots of cleaning and bugs added (Gompertz)
   exist so I changed back to asctime which exists.  
   (Module): Version 0.96b    Revision 1.109  2006/01/24 19:37:15  brouard
     (Module): Comments (lines starting with a #) are allowed in data.
   Revision 1.92  2003/06/25 16:30:45  brouard  
   (Module): On windows (cygwin) function asctime_r doesn't    Revision 1.108  2006/01/19 18:05:42  lievre
   exist so I changed back to asctime which exists.    Gnuplot problem appeared...
     To be fixed
   Revision 1.91  2003/06/25 15:30:29  brouard  
   * imach.c (Repository): Duplicated warning errors corrected.    Revision 1.107  2006/01/19 16:20:37  brouard
   (Repository): Elapsed time after each iteration is now output. It    Test existence of gnuplot in imach path
   helps to forecast when convergence will be reached. Elapsed time  
   is stamped in powell.  We created a new html file for the graphs    Revision 1.106  2006/01/19 13:24:36  brouard
   concerning matrix of covariance. It has extension -cov.htm.    Some cleaning and links added in html output
   
   Revision 1.90  2003/06/24 12:34:15  brouard    Revision 1.105  2006/01/05 20:23:19  lievre
   (Module): Some bugs corrected for windows. Also, when    *** empty log message ***
   mle=-1 a template is output in file "or"mypar.txt with the design  
   of the covariance matrix to be input.    Revision 1.104  2005/09/30 16:11:43  lievre
     (Module): sump fixed, loop imx fixed, and simplifications.
   Revision 1.89  2003/06/24 12:30:52  brouard    (Module): If the status is missing at the last wave but we know
   (Module): Some bugs corrected for windows. Also, when    that the person is alive, then we can code his/her status as -2
   mle=-1 a template is output in file "or"mypar.txt with the design    (instead of missing=-1 in earlier versions) and his/her
   of the covariance matrix to be input.    contributions to the likelihood is 1 - Prob of dying from last
     health status (= 1-p13= p11+p12 in the easiest case of somebody in
   Revision 1.88  2003/06/23 17:54:56  brouard    the healthy state at last known wave). Version is 0.98
   * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.  
     Revision 1.103  2005/09/30 15:54:49  lievre
   Revision 1.87  2003/06/18 12:26:01  brouard    (Module): sump fixed, loop imx fixed, and simplifications.
   Version 0.96  
     Revision 1.102  2004/09/15 17:31:30  brouard
   Revision 1.86  2003/06/17 20:04:08  brouard    Add the possibility to read data file including tab characters.
   (Module): Change position of html and gnuplot routines and added  
   routine fileappend.    Revision 1.101  2004/09/15 10:38:38  brouard
     Fix on curr_time
   Revision 1.85  2003/06/17 13:12:43  brouard  
   * imach.c (Repository): Check when date of death was earlier that    Revision 1.100  2004/07/12 18:29:06  brouard
   current date of interview. It may happen when the death was just    Add version for Mac OS X. Just define UNIX in Makefile
   prior to the death. In this case, dh was negative and likelihood  
   was wrong (infinity). We still send an "Error" but patch by    Revision 1.99  2004/06/05 08:57:40  brouard
   assuming that the date of death was just one stepm after the    *** empty log message ***
   interview.  
   (Repository): Because some people have very long ID (first column)    Revision 1.98  2004/05/16 15:05:56  brouard
   we changed int to long in num[] and we added a new lvector for    New version 0.97 . First attempt to estimate force of mortality
   memory allocation. But we also truncated to 8 characters (left    directly from the data i.e. without the need of knowing the health
   truncation)    state at each age, but using a Gompertz model: log u =a + b*age .
   (Repository): No more line truncation errors.    This is the basic analysis of mortality and should be done before any
     other analysis, in order to test if the mortality estimated from the
   Revision 1.84  2003/06/13 21:44:43  brouard    cross-longitudinal survey is different from the mortality estimated
   * imach.c (Repository): Replace "freqsummary" at a correct    from other sources like vital statistic data.
   place. It differs from routine "prevalence" which may be called  
   many times. Probs is memory consuming and must be used with    The same imach parameter file can be used but the option for mle should be -3.
   parcimony.  
   Version 0.95a3 (should output exactly the same maximization than 0.8a2)    Agnès, who wrote this part of the code, tried to keep most of the
     former routines in order to include the new code within the former code.
   Revision 1.83  2003/06/10 13:39:11  lievre  
   *** empty log message ***    The output is very simple: only an estimate of the intercept and of
     the slope with 95% confident intervals.
   Revision 1.82  2003/06/05 15:57:20  brouard  
   Add log in  imach.c and  fullversion number is now printed.    Current limitations:
     A) Even if you enter covariates, i.e. with the
 */    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
 /*    B) There is no computation of Life Expectancy nor Life Table.
    Interpolated Markov Chain  
     Revision 1.97  2004/02/20 13:25:42  lievre
   Short summary of the programme:    Version 0.96d. Population forecasting command line is (temporarily)
       suppressed.
   This program computes Healthy Life Expectancies from  
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    Revision 1.96  2003/07/15 15:38:55  brouard
   first survey ("cross") where individuals from different ages are    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
   interviewed on their health status or degree of disability (in the    rewritten within the same printf. Workaround: many printfs.
   case of a health survey which is our main interest) -2- at least a  
   second wave of interviews ("longitudinal") which measure each change    Revision 1.95  2003/07/08 07:54:34  brouard
   (if any) in individual health status.  Health expectancies are    * imach.c (Repository):
   computed from the time spent in each health state according to a    (Repository): Using imachwizard code to output a more meaningful covariance
   model. More health states you consider, more time is necessary to reach the    matrix (cov(a12,c31) instead of numbers.
   Maximum Likelihood of the parameters involved in the model.  The  
   simplest model is the multinomial logistic model where pij is the    Revision 1.94  2003/06/27 13:00:02  brouard
   probability to be observed in state j at the second wave    Just cleaning
   conditional to be observed in state i at the first wave. Therefore  
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    Revision 1.93  2003/06/25 16:33:55  brouard
   'age' is age and 'sex' is a covariate. If you want to have a more    (Module): On windows (cygwin) function asctime_r doesn't
   complex model than "constant and age", you should modify the program    exist so I changed back to asctime which exists.
   where the markup *Covariates have to be included here again* invites    (Module): Version 0.96b
   you to do it.  More covariates you add, slower the  
   convergence.    Revision 1.92  2003/06/25 16:30:45  brouard
     (Module): On windows (cygwin) function asctime_r doesn't
   The advantage of this computer programme, compared to a simple    exist so I changed back to asctime which exists.
   multinomial logistic model, is clear when the delay between waves is not  
   identical for each individual. Also, if a individual missed an    Revision 1.91  2003/06/25 15:30:29  brouard
   intermediate interview, the information is lost, but taken into    * imach.c (Repository): Duplicated warning errors corrected.
   account using an interpolation or extrapolation.      (Repository): Elapsed time after each iteration is now output. It
     helps to forecast when convergence will be reached. Elapsed time
   hPijx is the probability to be observed in state i at age x+h    is stamped in powell.  We created a new html file for the graphs
   conditional to the observed state i at age x. The delay 'h' can be    concerning matrix of covariance. It has extension -cov.htm.
   split into an exact number (nh*stepm) of unobserved intermediate  
   states. This elementary transition (by month, quarter,    Revision 1.90  2003/06/24 12:34:15  brouard
   semester or year) is modelled as a multinomial logistic.  The hPx    (Module): Some bugs corrected for windows. Also, when
   matrix is simply the matrix product of nh*stepm elementary matrices    mle=-1 a template is output in file "or"mypar.txt with the design
   and the contribution of each individual to the likelihood is simply    of the covariance matrix to be input.
   hPijx.  
     Revision 1.89  2003/06/24 12:30:52  brouard
   Also this programme outputs the covariance matrix of the parameters but also    (Module): Some bugs corrected for windows. Also, when
   of the life expectancies. It also computes the stable prevalence.     mle=-1 a template is output in file "or"mypar.txt with the design
       of the covariance matrix to be input.
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).  
            Institut national d'études démographiques, Paris.    Revision 1.88  2003/06/23 17:54:56  brouard
   This software have been partly granted by Euro-REVES, a concerted action    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
   from the European Union.  
   It is copyrighted identically to a GNU software product, ie programme and    Revision 1.87  2003/06/18 12:26:01  brouard
   software can be distributed freely for non commercial use. Latest version    Version 0.96
   can be accessed at http://euroreves.ined.fr/imach .  
     Revision 1.86  2003/06/17 20:04:08  brouard
   Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach    (Module): Change position of html and gnuplot routines and added
   or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so    routine fileappend.
     
   **********************************************************************/    Revision 1.85  2003/06/17 13:12:43  brouard
 /*    * imach.c (Repository): Check when date of death was earlier that
   main    current date of interview. It may happen when the death was just
   read parameterfile    prior to the death. In this case, dh was negative and likelihood
   read datafile    was wrong (infinity). We still send an "Error" but patch by
   concatwav    assuming that the date of death was just one stepm after the
   freqsummary    interview.
   if (mle >= 1)    (Repository): Because some people have very long ID (first column)
     mlikeli    we changed int to long in num[] and we added a new lvector for
   print results files    memory allocation. But we also truncated to 8 characters (left
   if mle==1     truncation)
      computes hessian    (Repository): No more line truncation errors.
   read end of parameter file: agemin, agemax, bage, fage, estepm  
       begin-prev-date,...    Revision 1.84  2003/06/13 21:44:43  brouard
   open gnuplot file    * imach.c (Repository): Replace "freqsummary" at a correct
   open html file    place. It differs from routine "prevalence" which may be called
   stable prevalence    many times. Probs is memory consuming and must be used with
    for age prevalim()    parcimony.
   h Pij x    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
   variance of p varprob  
   forecasting if prevfcast==1 prevforecast call prevalence()    Revision 1.83  2003/06/10 13:39:11  lievre
   health expectancies    *** empty log message ***
   Variance-covariance of DFLE  
   prevalence()    Revision 1.82  2003/06/05 15:57:20  brouard
    movingaverage()    Add log in  imach.c and  fullversion number is now printed.
   varevsij()   
   if popbased==1 varevsij(,popbased)  */
   total life expectancies  /*
   Variance of stable prevalence     Interpolated Markov Chain
  end  
 */    Short summary of the programme:
    
     This program computes Healthy Life Expectancies from
     cross-longitudinal data. Cross-longitudinal data consist in: -1- a
      first survey ("cross") where individuals from different ages are
 #include <math.h>    interviewed on their health status or degree of disability (in the
 #include <stdio.h>    case of a health survey which is our main interest) -2- at least a
 #include <stdlib.h>    second wave of interviews ("longitudinal") which measure each change
 #include <string.h>    (if any) in individual health status.  Health expectancies are
 #include <unistd.h>    computed from the time spent in each health state according to a
     model. More health states you consider, more time is necessary to reach the
 #include <limits.h>    Maximum Likelihood of the parameters involved in the model.  The
 #include <sys/types.h>    simplest model is the multinomial logistic model where pij is the
 #include <sys/stat.h>    probability to be observed in state j at the second wave
 #include <errno.h>    conditional to be observed in state i at the first wave. Therefore
 extern int errno;    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
     'age' is age and 'sex' is a covariate. If you want to have a more
 /* #include <sys/time.h> */    complex model than "constant and age", you should modify the program
 #include <time.h>    where the markup *Covariates have to be included here again* invites
 #include "timeval.h"    you to do it.  More covariates you add, slower the
     convergence.
 /* #include <libintl.h> */  
 /* #define _(String) gettext (String) */    The advantage of this computer programme, compared to a simple
     multinomial logistic model, is clear when the delay between waves is not
 #define MAXLINE 256    identical for each individual. Also, if a individual missed an
     intermediate interview, the information is lost, but taken into
 #define GNUPLOTPROGRAM "gnuplot"    account using an interpolation or extrapolation.  
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/  
 #define FILENAMELENGTH 132    hPijx is the probability to be observed in state i at age x+h
     conditional to the observed state i at age x. The delay 'h' can be
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    split into an exact number (nh*stepm) of unobserved intermediate
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    states. This elementary transition (by month, quarter,
     semester or year) is modelled as a multinomial logistic.  The hPx
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    matrix is simply the matrix product of nh*stepm elementary matrices
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    and the contribution of each individual to the likelihood is simply
     hPijx.
 #define NINTERVMAX 8  
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    Also this programme outputs the covariance matrix of the parameters but also
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    of the life expectancies. It also computes the period (stable) prevalence.
 #define NCOVMAX 8 /* Maximum number of covariates */   
 #define MAXN 20000    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
 #define YEARM 12. /* Number of months per year */             Institut national d'études démographiques, Paris.
 #define AGESUP 130    This software have been partly granted by Euro-REVES, a concerted action
 #define AGEBASE 40    from the European Union.
 #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */    It is copyrighted identically to a GNU software product, ie programme and
 #ifdef UNIX    software can be distributed freely for non commercial use. Latest version
 #define DIRSEPARATOR '/'    can be accessed at http://euroreves.ined.fr/imach .
 #define CHARSEPARATOR "/"  
 #define ODIRSEPARATOR '\\'    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
 #else    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
 #define DIRSEPARATOR '\\'   
 #define CHARSEPARATOR "\\"    **********************************************************************/
 #define ODIRSEPARATOR '/'  /*
 #endif    main
     read parameterfile
 /* $Id$ */    read datafile
 /* $State$ */    concatwav
     freqsummary
 char version[]="Imach version 0.98a, January 2006, INED-EUROREVES ";    if (mle >= 1)
 char fullversion[]="$Revision$ $Date$";       mlikeli
 int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */    print results files
 int nvar;    if mle==1
 int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;       computes hessian
 int npar=NPARMAX;    read end of parameter file: agemin, agemax, bage, fage, estepm
 int nlstate=2; /* Number of live states */        begin-prev-date,...
 int ndeath=1; /* Number of dead states */    open gnuplot file
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    open html file
 int popbased=0;    period (stable) prevalence
      for age prevalim()
 int *wav; /* Number of waves for this individuual 0 is possible */    h Pij x
 int maxwav; /* Maxim number of waves */    variance of p varprob
 int jmin, jmax; /* min, max spacing between 2 waves */    forecasting if prevfcast==1 prevforecast call prevalence()
 int ijmin, ijmax; /* Individuals having jmin and jmax */     health expectancies
 int gipmx, gsw; /* Global variables on the number of contributions     Variance-covariance of DFLE
                    to the likelihood and the sum of weights (done by funcone)*/    prevalence()
 int mle, weightopt;     movingaverage()
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    varevsij()
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    if popbased==1 varevsij(,popbased)
 int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between    total life expectancies
            * wave mi and wave mi+1 is not an exact multiple of stepm. */    Variance of period (stable) prevalence
 double jmean; /* Mean space between 2 waves */   end
 double **oldm, **newm, **savm; /* Working pointers to matrices */  */
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */  
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;  
 FILE *ficlog, *ficrespow;  
 int globpr; /* Global variable for printing or not */   
 double fretone; /* Only one call to likelihood */  #include <math.h>
 long ipmx; /* Number of contributions */  #include <stdio.h>
 double sw; /* Sum of weights */  #include <stdlib.h>
 char filerespow[FILENAMELENGTH];  #include <string.h>
 char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */  #include <unistd.h>
 FILE *ficresilk;  
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;  #include <limits.h>
 FILE *ficresprobmorprev;  #include <sys/types.h>
 FILE *fichtm, *fichtmcov; /* Html File */  #include <sys/stat.h>
 FILE *ficreseij;  #include <errno.h>
 char filerese[FILENAMELENGTH];  extern int errno;
 FILE  *ficresvij;  
 char fileresv[FILENAMELENGTH];  /* #include <sys/time.h> */
 FILE  *ficresvpl;  #include <time.h>
 char fileresvpl[FILENAMELENGTH];  #include "timeval.h"
 char title[MAXLINE];  
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];  /* #include <libintl.h> */
 char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];  /* #define _(String) gettext (String) */
 char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH];   
 char command[FILENAMELENGTH];  #define MAXLINE 256
 int  outcmd=0;  
   #define GNUPLOTPROGRAM "gnuplot"
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
   #define FILENAMELENGTH 132
 char filelog[FILENAMELENGTH]; /* Log file */  
 char filerest[FILENAMELENGTH];  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
 char fileregp[FILENAMELENGTH];  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
 char popfile[FILENAMELENGTH];  
   #define MAXPARM 30 /* Maximum number of parameters for the optimization */
 char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
   
 struct timeval start_time, end_time, curr_time, last_time, forecast_time;  #define NINTERVMAX 8
 struct timezone tzp;  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
 extern int gettimeofday();  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
 struct tm tmg, tm, tmf, *gmtime(), *localtime();  #define NCOVMAX 8 /* Maximum number of covariates */
 long time_value;  #define MAXN 20000
 extern long time();  #define YEARM 12. /* Number of months per year */
 char strcurr[80], strfor[80];  #define AGESUP 130
   #define AGEBASE 40
 char *endptr;  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
 long lval;  #ifdef UNIX
   #define DIRSEPARATOR '/'
 #define NR_END 1  #define CHARSEPARATOR "/"
 #define FREE_ARG char*  #define ODIRSEPARATOR '\\'
 #define FTOL 1.0e-10  #else
   #define DIRSEPARATOR '\\'
 #define NRANSI   #define CHARSEPARATOR "\\"
 #define ITMAX 200   #define ODIRSEPARATOR '/'
   #endif
 #define TOL 2.0e-4   
   /* $Id$ */
 #define CGOLD 0.3819660   /* $State$ */
 #define ZEPS 1.0e-10   
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);   char version[]="Imach version 0.98g, March 2006, INED-EUROREVES-Institut de longevite ";
   char fullversion[]="$Revision$ $Date$";
 #define GOLD 1.618034   char strstart[80];
 #define GLIMIT 100.0   char optionfilext[10], optionfilefiname[FILENAMELENGTH];
 #define TINY 1.0e-20   int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
   int nvar;
 static double maxarg1,maxarg2;  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))  int npar=NPARMAX;
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))  int nlstate=2; /* Number of live states */
     int ndeath=1; /* Number of dead states */
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
 #define rint(a) floor(a+0.5)  int popbased=0;
   
 static double sqrarg;  int *wav; /* Number of waves for this individuual 0 is possible */
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)  int maxwav; /* Maxim number of waves */
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}   int jmin, jmax; /* min, max spacing between 2 waves */
 int agegomp= AGEGOMP;  int ijmin, ijmax; /* Individuals having jmin and jmax */
   int gipmx, gsw; /* Global variables on the number of contributions
 int imx;                      to the likelihood and the sum of weights (done by funcone)*/
 int stepm=1;  int mle, weightopt;
 /* Stepm, step in month: minimum step interpolation*/  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
   int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
 int estepm;  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/             * wave mi and wave mi+1 is not an exact multiple of stepm. */
   double jmean; /* Mean space between 2 waves */
 int m,nb;  double **oldm, **newm, **savm; /* Working pointers to matrices */
 long *num;  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
 int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;  FILE *fic,*ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;  FILE *ficlog, *ficrespow;
 double **pmmij, ***probs;  int globpr; /* Global variable for printing or not */
 double *ageexmed,*agecens;  double fretone; /* Only one call to likelihood */
 double dateintmean=0;  long ipmx; /* Number of contributions */
   double sw; /* Sum of weights */
 double *weight;  char filerespow[FILENAMELENGTH];
 int **s; /* Status */  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
 double *agedc, **covar, idx;  FILE *ficresilk;
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
 double *lsurv, *lpop, *tpop;  FILE *ficresprobmorprev;
   FILE *fichtm, *fichtmcov; /* Html File */
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */  FILE *ficreseij;
 double ftolhess; /* Tolerance for computing hessian */  char filerese[FILENAMELENGTH];
   FILE *ficresstdeij;
 /**************** split *************************/  char fileresstde[FILENAMELENGTH];
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )  FILE *ficrescveij;
 {  char filerescve[FILENAMELENGTH];
   /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)  FILE  *ficresvij;
      the name of the file (name), its extension only (ext) and its first part of the name (finame)  char fileresv[FILENAMELENGTH];
   */   FILE  *ficresvpl;
   char  *ss;                            /* pointer */  char fileresvpl[FILENAMELENGTH];
   int   l1, l2;                         /* length counters */  char title[MAXLINE];
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
   l1 = strlen(path );                   /* length of path */  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
   if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH];
   ss= strrchr( path, DIRSEPARATOR );            /* find last / */  char command[FILENAMELENGTH];
   if ( ss == NULL ) {                   /* no directory, so determine current directory */  int  outcmd=0;
     strcpy( name, path );               /* we got the fullname name because no directory */  
     /*if(strrchr(path, ODIRSEPARATOR )==NULL)  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
       printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/  
     /* get current working directory */  char filelog[FILENAMELENGTH]; /* Log file */
     /*    extern  char* getcwd ( char *buf , int len);*/  char filerest[FILENAMELENGTH];
     if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {  char fileregp[FILENAMELENGTH];
       return( GLOCK_ERROR_GETCWD );  char popfile[FILENAMELENGTH];
     }  
     /* got dirc from getcwd*/  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
     printf(" DIRC = %s \n",dirc);  
   } else {                              /* strip direcotry from path */  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
     ss++;                               /* after this, the filename */  struct timezone tzp;
     l2 = strlen( ss );                  /* length of filename */  extern int gettimeofday();
     if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );  struct tm tmg, tm, tmf, *gmtime(), *localtime();
     strcpy( name, ss );         /* save file name */  long time_value;
     strncpy( dirc, path, l1 - l2 );     /* now the directory */  extern long time();
     dirc[l1-l2] = 0;                    /* add zero */  char strcurr[80], strfor[80];
     printf(" DIRC2 = %s \n",dirc);  
   }  char *endptr;
   /* We add a separator at the end of dirc if not exists */  long lval;
   l1 = strlen( dirc );                  /* length of directory */  double dval;
   if( dirc[l1-1] != DIRSEPARATOR ){  
     dirc[l1] =  DIRSEPARATOR;  #define NR_END 1
     dirc[l1+1] = 0;   #define FREE_ARG char*
     printf(" DIRC3 = %s \n",dirc);  #define FTOL 1.0e-10
   }  
   ss = strrchr( name, '.' );            /* find last / */  #define NRANSI
   if (ss >0){  #define ITMAX 200
     ss++;  
     strcpy(ext,ss);                     /* save extension */  #define TOL 2.0e-4
     l1= strlen( name);  
     l2= strlen(ss)+1;  #define CGOLD 0.3819660
     strncpy( finame, name, l1-l2);  #define ZEPS 1.0e-10
     finame[l1-l2]= 0;  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);
   }  
   #define GOLD 1.618034
   return( 0 );                          /* we're done */  #define GLIMIT 100.0
 }  #define TINY 1.0e-20
   
   static double maxarg1,maxarg2;
 /******************************************/  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
   #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
 void replace_back_to_slash(char *s, char*t)   
 {  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
   int i;  #define rint(a) floor(a+0.5)
   int lg=0;  
   i=0;  static double sqrarg;
   lg=strlen(t);  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   for(i=0; i<= lg; i++) {  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}
     (s[i] = t[i]);  int agegomp= AGEGOMP;
     if (t[i]== '\\') s[i]='/';  
   }  int imx;
 }  int stepm=1;
   /* Stepm, step in month: minimum step interpolation*/
 int nbocc(char *s, char occ)  
 {  int estepm;
   int i,j=0;  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
   int lg=20;  
   i=0;  int m,nb;
   lg=strlen(s);  long *num;
   for(i=0; i<= lg; i++) {  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
   if  (s[i] == occ ) j++;  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
   }  double **pmmij, ***probs;
   return j;  double *ageexmed,*agecens;
 }  double dateintmean=0;
   
 void cutv(char *u,char *v, char*t, char occ)  double *weight;
 {  int **s; /* Status */
   /* cuts string t into u and v where u ends before first occurence of char 'occ'   double *agedc, **covar, idx;
      and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
      gives u="abcedf" and v="ghi2j" */  double *lsurv, *lpop, *tpop;
   int i,lg,j,p=0;  
   i=0;  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
   for(j=0; j<=strlen(t)-1; j++) {  double ftolhess; /* Tolerance for computing hessian */
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  
   }  /**************** split *************************/
   static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   lg=strlen(t);  {
   for(j=0; j<p; j++) {    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
     (u[j] = t[j]);       the name of the file (name), its extension only (ext) and its first part of the name (finame)
   }    */
      u[p]='\0';    char  *ss;                            /* pointer */
     int   l1, l2;                         /* length counters */
    for(j=0; j<= lg; j++) {  
     if (j>=(p+1))(v[j-p-1] = t[j]);    l1 = strlen(path );                   /* length of path */
   }    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
 }    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
     if ( ss == NULL ) {                   /* no directory, so determine current directory */
 /********************** nrerror ********************/      strcpy( name, path );               /* we got the fullname name because no directory */
       /*if(strrchr(path, ODIRSEPARATOR )==NULL)
 void nrerror(char error_text[])        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
 {      /* get current working directory */
   fprintf(stderr,"ERREUR ...\n");      /*    extern  char* getcwd ( char *buf , int len);*/
   fprintf(stderr,"%s\n",error_text);      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
   exit(EXIT_FAILURE);        return( GLOCK_ERROR_GETCWD );
 }      }
 /*********************** vector *******************/      /* got dirc from getcwd*/
 double *vector(int nl, int nh)      printf(" DIRC = %s \n",dirc);
 {    } else {                              /* strip direcotry from path */
   double *v;      ss++;                               /* after this, the filename */
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));      l2 = strlen( ss );                  /* length of filename */
   if (!v) nrerror("allocation failure in vector");      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
   return v-nl+NR_END;      strcpy( name, ss );         /* save file name */
 }      strncpy( dirc, path, l1 - l2 );     /* now the directory */
       dirc[l1-l2] = 0;                    /* add zero */
 /************************ free vector ******************/      printf(" DIRC2 = %s \n",dirc);
 void free_vector(double*v, int nl, int nh)    }
 {    /* We add a separator at the end of dirc if not exists */
   free((FREE_ARG)(v+nl-NR_END));    l1 = strlen( dirc );                  /* length of directory */
 }    if( dirc[l1-1] != DIRSEPARATOR ){
       dirc[l1] =  DIRSEPARATOR;
 /************************ivector *******************************/      dirc[l1+1] = 0;
 int *ivector(long nl,long nh)      printf(" DIRC3 = %s \n",dirc);
 {    }
   int *v;    ss = strrchr( name, '.' );            /* find last / */
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));    if (ss >0){
   if (!v) nrerror("allocation failure in ivector");      ss++;
   return v-nl+NR_END;      strcpy(ext,ss);                     /* save extension */
 }      l1= strlen( name);
       l2= strlen(ss)+1;
 /******************free ivector **************************/      strncpy( finame, name, l1-l2);
 void free_ivector(int *v, long nl, long nh)      finame[l1-l2]= 0;
 {    }
   free((FREE_ARG)(v+nl-NR_END));  
 }    return( 0 );                          /* we're done */
   }
 /************************lvector *******************************/  
 long *lvector(long nl,long nh)  
 {  /******************************************/
   long *v;  
   v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));  void replace_back_to_slash(char *s, char*t)
   if (!v) nrerror("allocation failure in ivector");  {
   return v-nl+NR_END;    int i;
 }    int lg=0;
     i=0;
 /******************free lvector **************************/    lg=strlen(t);
 void free_lvector(long *v, long nl, long nh)    for(i=0; i<= lg; i++) {
 {      (s[i] = t[i]);
   free((FREE_ARG)(v+nl-NR_END));      if (t[i]== '\\') s[i]='/';
 }    }
   }
 /******************* imatrix *******************************/  
 int **imatrix(long nrl, long nrh, long ncl, long nch)   int nbocc(char *s, char occ)
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */   {
 {     int i,j=0;
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;     int lg=20;
   int **m;     i=0;
       lg=strlen(s);
   /* allocate pointers to rows */     for(i=0; i<= lg; i++) {
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));     if  (s[i] == occ ) j++;
   if (!m) nrerror("allocation failure 1 in matrix()");     }
   m += NR_END;     return j;
   m -= nrl;   }
     
     void cutv(char *u,char *v, char*t, char occ)
   /* allocate rows and set pointers to them */   {
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));     /* cuts string t into u and v where u ends before first occurence of char 'occ'
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");        and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
   m[nrl] += NR_END;        gives u="abcedf" and v="ghi2j" */
   m[nrl] -= ncl;     int i,lg,j,p=0;
       i=0;
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;     for(j=0; j<=strlen(t)-1; j++) {
         if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
   /* return pointer to array of pointers to rows */     }
   return m;   
 }     lg=strlen(t);
     for(j=0; j<p; j++) {
 /****************** free_imatrix *************************/      (u[j] = t[j]);
 void free_imatrix(m,nrl,nrh,ncl,nch)    }
       int **m;       u[p]='\0';
       long nch,ncl,nrh,nrl;   
      /* free an int matrix allocated by imatrix() */      for(j=0; j<= lg; j++) {
 {       if (j>=(p+1))(v[j-p-1] = t[j]);
   free((FREE_ARG) (m[nrl]+ncl-NR_END));     }
   free((FREE_ARG) (m+nrl-NR_END));   }
 }   
   /********************** nrerror ********************/
 /******************* matrix *******************************/  
 double **matrix(long nrl, long nrh, long ncl, long nch)  void nrerror(char error_text[])
 {  {
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;    fprintf(stderr,"ERREUR ...\n");
   double **m;    fprintf(stderr,"%s\n",error_text);
     exit(EXIT_FAILURE);
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  }
   if (!m) nrerror("allocation failure 1 in matrix()");  /*********************** vector *******************/
   m += NR_END;  double *vector(int nl, int nh)
   m -= nrl;  {
     double *v;
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    if (!v) nrerror("allocation failure in vector");
   m[nrl] += NR_END;    return v-nl+NR_END;
   m[nrl] -= ncl;  }
   
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  /************************ free vector ******************/
   return m;  void free_vector(double*v, int nl, int nh)
   /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1])   {
    */    free((FREE_ARG)(v+nl-NR_END));
 }  }
   
 /*************************free matrix ************************/  /************************ivector *******************************/
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  int *ivector(long nl,long nh)
 {  {
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    int *v;
   free((FREE_ARG)(m+nrl-NR_END));    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
 }    if (!v) nrerror("allocation failure in ivector");
     return v-nl+NR_END;
 /******************* ma3x *******************************/  }
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  
 {  /******************free ivector **************************/
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  void free_ivector(int *v, long nl, long nh)
   double ***m;  {
     free((FREE_ARG)(v+nl-NR_END));
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  }
   if (!m) nrerror("allocation failure 1 in matrix()");  
   m += NR_END;  /************************lvector *******************************/
   m -= nrl;  long *lvector(long nl,long nh)
   {
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    long *v;
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
   m[nrl] += NR_END;    if (!v) nrerror("allocation failure in ivector");
   m[nrl] -= ncl;    return v-nl+NR_END;
   }
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  
   /******************free lvector **************************/
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  void free_lvector(long *v, long nl, long nh)
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  {
   m[nrl][ncl] += NR_END;    free((FREE_ARG)(v+nl-NR_END));
   m[nrl][ncl] -= nll;  }
   for (j=ncl+1; j<=nch; j++)   
     m[nrl][j]=m[nrl][j-1]+nlay;  /******************* imatrix *******************************/
     int **imatrix(long nrl, long nrh, long ncl, long nch)
   for (i=nrl+1; i<=nrh; i++) {       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  {
     for (j=ncl+1; j<=nch; j++)     long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;
       m[i][j]=m[i][j-1]+nlay;    int **m;
   }   
   return m;     /* allocate pointers to rows */
   /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));
            &(m[i][j][k]) <=> *((*(m+i) + j)+k)    if (!m) nrerror("allocation failure 1 in matrix()");
   */    m += NR_END;
 }    m -= nrl;
    
 /*************************free ma3x ************************/   
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)    /* allocate rows and set pointers to them */
 {    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    m[nrl] += NR_END;
   free((FREE_ARG)(m+nrl-NR_END));    m[nrl] -= ncl;
 }   
     for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;
 /*************** function subdirf ***********/   
 char *subdirf(char fileres[])    /* return pointer to array of pointers to rows */
 {    return m;
   /* Caution optionfilefiname is hidden */  }
   strcpy(tmpout,optionfilefiname);  
   strcat(tmpout,"/"); /* Add to the right */  /****************** free_imatrix *************************/
   strcat(tmpout,fileres);  void free_imatrix(m,nrl,nrh,ncl,nch)
   return tmpout;        int **m;
 }        long nch,ncl,nrh,nrl;
        /* free an int matrix allocated by imatrix() */
 /*************** function subdirf2 ***********/  {
 char *subdirf2(char fileres[], char *preop)    free((FREE_ARG) (m[nrl]+ncl-NR_END));
 {    free((FREE_ARG) (m+nrl-NR_END));
     }
   /* Caution optionfilefiname is hidden */  
   strcpy(tmpout,optionfilefiname);  /******************* matrix *******************************/
   strcat(tmpout,"/");  double **matrix(long nrl, long nrh, long ncl, long nch)
   strcat(tmpout,preop);  {
   strcat(tmpout,fileres);    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
   return tmpout;    double **m;
 }  
     m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
 /*************** function subdirf3 ***********/    if (!m) nrerror("allocation failure 1 in matrix()");
 char *subdirf3(char fileres[], char *preop, char *preop2)    m += NR_END;
 {    m -= nrl;
     
   /* Caution optionfilefiname is hidden */    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   strcpy(tmpout,optionfilefiname);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   strcat(tmpout,"/");    m[nrl] += NR_END;
   strcat(tmpout,preop);    m[nrl] -= ncl;
   strcat(tmpout,preop2);  
   strcat(tmpout,fileres);    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   return tmpout;    return m;
 }    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1])
      */
 /***************** f1dim *************************/  }
 extern int ncom;   
 extern double *pcom,*xicom;  /*************************free matrix ************************/
 extern double (*nrfunc)(double []);   void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
    {
 double f1dim(double x)     free((FREE_ARG)(m[nrl]+ncl-NR_END));
 {     free((FREE_ARG)(m+nrl-NR_END));
   int j;   }
   double f;  
   double *xt;   /******************* ma3x *******************************/
    double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
   xt=vector(1,ncom);   {
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];     long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
   f=(*nrfunc)(xt);     double ***m;
   free_vector(xt,1,ncom);   
   return f;     m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
 }     if (!m) nrerror("allocation failure 1 in matrix()");
     m += NR_END;
 /*****************brent *************************/    m -= nrl;
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)   
 {     m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   int iter;     if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   double a,b,d,etemp;    m[nrl] += NR_END;
   double fu,fv,fw,fx;    m[nrl] -= ncl;
   double ftemp;  
   double p,q,r,tol1,tol2,u,v,w,x,xm;     for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   double e=0.0;   
      m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
   a=(ax < cx ? ax : cx);     if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
   b=(ax > cx ? ax : cx);     m[nrl][ncl] += NR_END;
   x=w=v=bx;     m[nrl][ncl] -= nll;
   fw=fv=fx=(*f)(x);     for (j=ncl+1; j<=nch; j++)
   for (iter=1;iter<=ITMAX;iter++) {       m[nrl][j]=m[nrl][j-1]+nlay;
     xm=0.5*(a+b);    
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);     for (i=nrl+1; i<=nrh; i++) {
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
     printf(".");fflush(stdout);      for (j=ncl+1; j<=nch; j++)
     fprintf(ficlog,".");fflush(ficlog);        m[i][j]=m[i][j-1]+nlay;
 #ifdef DEBUG    }
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    return m;
     fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
 #endif    */
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){   }
       *xmin=x;   
       return fx;   /*************************free ma3x ************************/
     }   void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
     ftemp=fu;  {
     if (fabs(e) > tol1) {     free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
       r=(x-w)*(fx-fv);     free((FREE_ARG)(m[nrl]+ncl-NR_END));
       q=(x-v)*(fx-fw);     free((FREE_ARG)(m+nrl-NR_END));
       p=(x-v)*q-(x-w)*r;   }
       q=2.0*(q-r);   
       if (q > 0.0) p = -p;   /*************** function subdirf ***********/
       q=fabs(q);   char *subdirf(char fileres[])
       etemp=e;   {
       e=d;     /* Caution optionfilefiname is hidden */
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))     strcpy(tmpout,optionfilefiname);
         d=CGOLD*(e=(x >= xm ? a-x : b-x));     strcat(tmpout,"/"); /* Add to the right */
       else {     strcat(tmpout,fileres);
         d=p/q;     return tmpout;
         u=x+d;   }
         if (u-a < tol2 || b-u < tol2)   
           d=SIGN(tol1,xm-x);   /*************** function subdirf2 ***********/
       }   char *subdirf2(char fileres[], char *preop)
     } else {   {
       d=CGOLD*(e=(x >= xm ? a-x : b-x));    
     }     /* Caution optionfilefiname is hidden */
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));     strcpy(tmpout,optionfilefiname);
     fu=(*f)(u);     strcat(tmpout,"/");
     if (fu <= fx) {     strcat(tmpout,preop);
       if (u >= x) a=x; else b=x;     strcat(tmpout,fileres);
       SHFT(v,w,x,u)     return tmpout;
         SHFT(fv,fw,fx,fu)   }
         } else {   
           if (u < x) a=u; else b=u;   /*************** function subdirf3 ***********/
           if (fu <= fw || w == x) {   char *subdirf3(char fileres[], char *preop, char *preop2)
             v=w;   {
             w=u;    
             fv=fw;     /* Caution optionfilefiname is hidden */
             fw=fu;     strcpy(tmpout,optionfilefiname);
           } else if (fu <= fv || v == x || v == w) {     strcat(tmpout,"/");
             v=u;     strcat(tmpout,preop);
             fv=fu;     strcat(tmpout,preop2);
           }     strcat(tmpout,fileres);
         }     return tmpout;
   }   }
   nrerror("Too many iterations in brent");   
   *xmin=x;   /***************** f1dim *************************/
   return fx;   extern int ncom;
 }   extern double *pcom,*xicom;
   extern double (*nrfunc)(double []);
 /****************** mnbrak ***********************/   
   double f1dim(double x)
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,   {
             double (*func)(double))     int j;
 {     double f;
   double ulim,u,r,q, dum;    double *xt;
   double fu;    
      xt=vector(1,ncom);
   *fa=(*func)(*ax);     for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];
   *fb=(*func)(*bx);     f=(*nrfunc)(xt);
   if (*fb > *fa) {     free_vector(xt,1,ncom);
     SHFT(dum,*ax,*bx,dum)     return f;
       SHFT(dum,*fb,*fa,dum)   }
       }   
   *cx=(*bx)+GOLD*(*bx-*ax);   /*****************brent *************************/
   *fc=(*func)(*cx);   double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)
   while (*fb > *fc) {   {
     r=(*bx-*ax)*(*fb-*fc);     int iter;
     q=(*bx-*cx)*(*fb-*fa);     double a,b,d,etemp;
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/     double fu,fv,fw,fx;
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));     double ftemp;
     ulim=(*bx)+GLIMIT*(*cx-*bx);     double p,q,r,tol1,tol2,u,v,w,x,xm;
     if ((*bx-u)*(u-*cx) > 0.0) {     double e=0.0;
       fu=(*func)(u);    
     } else if ((*cx-u)*(u-ulim) > 0.0) {     a=(ax < cx ? ax : cx);
       fu=(*func)(u);     b=(ax > cx ? ax : cx);
       if (fu < *fc) {     x=w=v=bx;
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))     fw=fv=fx=(*f)(x);
           SHFT(*fb,*fc,fu,(*func)(u))     for (iter=1;iter<=ITMAX;iter++) {
           }       xm=0.5*(a+b);
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {       tol2=2.0*(tol1=tol*fabs(x)+ZEPS);
       u=ulim;       /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
       fu=(*func)(u);       printf(".");fflush(stdout);
     } else {       fprintf(ficlog,".");fflush(ficlog);
       u=(*cx)+GOLD*(*cx-*bx);   #ifdef DEBUG
       fu=(*func)(u);       printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
     }       fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
     SHFT(*ax,*bx,*cx,u)       /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
       SHFT(*fa,*fb,*fc,fu)   #endif
       }       if (fabs(x-xm) <= (tol2-0.5*(b-a))){
 }         *xmin=x;
         return fx;
 /*************** linmin ************************/      }
       ftemp=fu;
 int ncom;       if (fabs(e) > tol1) {
 double *pcom,*xicom;        r=(x-w)*(fx-fv);
 double (*nrfunc)(double []);         q=(x-v)*(fx-fw);
          p=(x-v)*q-(x-w)*r;
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))         q=2.0*(q-r);
 {         if (q > 0.0) p = -p;
   double brent(double ax, double bx, double cx,         q=fabs(q);
                double (*f)(double), double tol, double *xmin);         etemp=e;
   double f1dim(double x);         e=d;
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,         if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))
               double *fc, double (*func)(double));           d=CGOLD*(e=(x >= xm ? a-x : b-x));
   int j;         else {
   double xx,xmin,bx,ax;           d=p/q;
   double fx,fb,fa;          u=x+d;
            if (u-a < tol2 || b-u < tol2)
   ncom=n;             d=SIGN(tol1,xm-x);
   pcom=vector(1,n);         }
   xicom=vector(1,n);       } else {
   nrfunc=func;         d=CGOLD*(e=(x >= xm ? a-x : b-x));
   for (j=1;j<=n;j++) {       }
     pcom[j]=p[j];       u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));
     xicom[j]=xi[j];       fu=(*f)(u);
   }       if (fu <= fx) {
   ax=0.0;         if (u >= x) a=x; else b=x;
   xx=1.0;         SHFT(v,w,x,u)
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);           SHFT(fv,fw,fx,fu)
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);           } else {
 #ifdef DEBUG            if (u < x) a=u; else b=u;
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);            if (fu <= fw || w == x) {
   fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);              v=w;
 #endif              w=u;
   for (j=1;j<=n;j++) {               fv=fw;
     xi[j] *= xmin;               fw=fu;
     p[j] += xi[j];             } else if (fu <= fv || v == x || v == w) {
   }               v=u;
   free_vector(xicom,1,n);               fv=fu;
   free_vector(pcom,1,n);             }
 }           }
     }
 char *asc_diff_time(long time_sec, char ascdiff[])    nrerror("Too many iterations in brent");
 {    *xmin=x;
   long sec_left, days, hours, minutes;    return fx;
   days = (time_sec) / (60*60*24);  }
   sec_left = (time_sec) % (60*60*24);  
   hours = (sec_left) / (60*60) ;  /****************** mnbrak ***********************/
   sec_left = (sec_left) %(60*60);  
   minutes = (sec_left) /60;  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,
   sec_left = (sec_left) % (60);              double (*func)(double))
   sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);    {
   return ascdiff;    double ulim,u,r,q, dum;
 }    double fu;
    
 /*************** powell ************************/    *fa=(*func)(*ax);
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,     *fb=(*func)(*bx);
             double (*func)(double []))     if (*fb > *fa) {
 {       SHFT(dum,*ax,*bx,dum)
   void linmin(double p[], double xi[], int n, double *fret,         SHFT(dum,*fb,*fa,dum)
               double (*func)(double []));         }
   int i,ibig,j;     *cx=(*bx)+GOLD*(*bx-*ax);
   double del,t,*pt,*ptt,*xit;    *fc=(*func)(*cx);
   double fp,fptt;    while (*fb > *fc) {
   double *xits;      r=(*bx-*ax)*(*fb-*fc);
   int niterf, itmp;      q=(*bx-*cx)*(*fb-*fa);
       u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/
   pt=vector(1,n);         (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));
   ptt=vector(1,n);       ulim=(*bx)+GLIMIT*(*cx-*bx);
   xit=vector(1,n);       if ((*bx-u)*(u-*cx) > 0.0) {
   xits=vector(1,n);         fu=(*func)(u);
   *fret=(*func)(p);       } else if ((*cx-u)*(u-ulim) > 0.0) {
   for (j=1;j<=n;j++) pt[j]=p[j];         fu=(*func)(u);
   for (*iter=1;;++(*iter)) {         if (fu < *fc) {
     fp=(*fret);           SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))
     ibig=0;             SHFT(*fb,*fc,fu,(*func)(u))
     del=0.0;             }
     last_time=curr_time;      } else if ((u-ulim)*(ulim-*cx) >= 0.0) {
     (void) gettimeofday(&curr_time,&tzp);        u=ulim;
     printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);        fu=(*func)(u);
     /*    fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);      } else {
     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);        u=(*cx)+GOLD*(*cx-*bx);
     */        fu=(*func)(u);
    for (i=1;i<=n;i++) {      }
       printf(" %d %.12f",i, p[i]);      SHFT(*ax,*bx,*cx,u)
       fprintf(ficlog," %d %.12lf",i, p[i]);        SHFT(*fa,*fb,*fc,fu)
       fprintf(ficrespow," %.12lf", p[i]);        }
     }  }
     printf("\n");  
     fprintf(ficlog,"\n");  /*************** linmin ************************/
     fprintf(ficrespow,"\n");fflush(ficrespow);  
     if(*iter <=3){  int ncom;
       tm = *localtime(&curr_time.tv_sec);  double *pcom,*xicom;
       strcpy(strcurr,asctime(&tm));  double (*nrfunc)(double []);
 /*       asctime_r(&tm,strcurr); */   
       forecast_time=curr_time;   void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))
       itmp = strlen(strcurr);  {
       if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */    double brent(double ax, double bx, double cx,
         strcurr[itmp-1]='\0';                 double (*f)(double), double tol, double *xmin);
       printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);    double f1dim(double x);
       fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,
       for(niterf=10;niterf<=30;niterf+=10){                double *fc, double (*func)(double));
         forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);    int j;
         tmf = *localtime(&forecast_time.tv_sec);    double xx,xmin,bx,ax;
 /*      asctime_r(&tmf,strfor); */    double fx,fb,fa;
         strcpy(strfor,asctime(&tmf));   
         itmp = strlen(strfor);    ncom=n;
         if(strfor[itmp-1]=='\n')    pcom=vector(1,n);
         strfor[itmp-1]='\0';    xicom=vector(1,n);
         printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);    nrfunc=func;
         fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);    for (j=1;j<=n;j++) {
       }      pcom[j]=p[j];
     }      xicom[j]=xi[j];
     for (i=1;i<=n;i++) {     }
       for (j=1;j<=n;j++) xit[j]=xi[j][i];     ax=0.0;
       fptt=(*fret);     xx=1.0;
 #ifdef DEBUG    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);
       printf("fret=%lf \n",*fret);    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);
       fprintf(ficlog,"fret=%lf \n",*fret);  #ifdef DEBUG
 #endif    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
       printf("%d",i);fflush(stdout);    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
       fprintf(ficlog,"%d",i);fflush(ficlog);  #endif
       linmin(p,xit,n,fret,func);     for (j=1;j<=n;j++) {
       if (fabs(fptt-(*fret)) > del) {       xi[j] *= xmin;
         del=fabs(fptt-(*fret));       p[j] += xi[j];
         ibig=i;     }
       }     free_vector(xicom,1,n);
 #ifdef DEBUG    free_vector(pcom,1,n);
       printf("%d %.12e",i,(*fret));  }
       fprintf(ficlog,"%d %.12e",i,(*fret));  
       for (j=1;j<=n;j++) {  char *asc_diff_time(long time_sec, char ascdiff[])
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);  {
         printf(" x(%d)=%.12e",j,xit[j]);    long sec_left, days, hours, minutes;
         fprintf(ficlog," x(%d)=%.12e",j,xit[j]);    days = (time_sec) / (60*60*24);
       }    sec_left = (time_sec) % (60*60*24);
       for(j=1;j<=n;j++) {    hours = (sec_left) / (60*60) ;
         printf(" p=%.12e",p[j]);    sec_left = (sec_left) %(60*60);
         fprintf(ficlog," p=%.12e",p[j]);    minutes = (sec_left) /60;
       }    sec_left = (sec_left) % (60);
       printf("\n");    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
       fprintf(ficlog,"\n");    return ascdiff;
 #endif  }
     }   
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {  /*************** powell ************************/
 #ifdef DEBUG  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,
       int k[2],l;              double (*func)(double []))
       k[0]=1;  {
       k[1]=-1;    void linmin(double p[], double xi[], int n, double *fret,
       printf("Max: %.12e",(*func)(p));                double (*func)(double []));
       fprintf(ficlog,"Max: %.12e",(*func)(p));    int i,ibig,j;
       for (j=1;j<=n;j++) {    double del,t,*pt,*ptt,*xit;
         printf(" %.12e",p[j]);    double fp,fptt;
         fprintf(ficlog," %.12e",p[j]);    double *xits;
       }    int niterf, itmp;
       printf("\n");  
       fprintf(ficlog,"\n");    pt=vector(1,n);
       for(l=0;l<=1;l++) {    ptt=vector(1,n);
         for (j=1;j<=n;j++) {    xit=vector(1,n);
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];    xits=vector(1,n);
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);    *fret=(*func)(p);
           fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);    for (j=1;j<=n;j++) pt[j]=p[j];
         }    for (*iter=1;;++(*iter)) {
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));      fp=(*fret);
         fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));      ibig=0;
       }      del=0.0;
 #endif      last_time=curr_time;
       (void) gettimeofday(&curr_time,&tzp);
       printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
       free_vector(xit,1,n);       fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec); fflush(ficlog);
       free_vector(xits,1,n);   /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec); */
       free_vector(ptt,1,n);      for (i=1;i<=n;i++) {
       free_vector(pt,1,n);         printf(" %d %.12f",i, p[i]);
       return;         fprintf(ficlog," %d %.12lf",i, p[i]);
     }         fprintf(ficrespow," %.12lf", p[i]);
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");       }
     for (j=1;j<=n;j++) {       printf("\n");
       ptt[j]=2.0*p[j]-pt[j];       fprintf(ficlog,"\n");
       xit[j]=p[j]-pt[j];       fprintf(ficrespow,"\n");fflush(ficrespow);
       pt[j]=p[j];       if(*iter <=3){
     }         tm = *localtime(&curr_time.tv_sec);
     fptt=(*func)(ptt);         strcpy(strcurr,asctime(&tm));
     if (fptt < fp) {   /*       asctime_r(&tm,strcurr); */
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);         forecast_time=curr_time;
       if (t < 0.0) {         itmp = strlen(strcurr);
         linmin(p,xit,n,fret,func);         if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
         for (j=1;j<=n;j++) {           strcurr[itmp-1]='\0';
           xi[j][ibig]=xi[j][n];         printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
           xi[j][n]=xit[j];         fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
         }        for(niterf=10;niterf<=30;niterf+=10){
 #ifdef DEBUG          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);          tmf = *localtime(&forecast_time.tv_sec);
         fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  /*      asctime_r(&tmf,strfor); */
         for(j=1;j<=n;j++){          strcpy(strfor,asctime(&tmf));
           printf(" %.12e",xit[j]);          itmp = strlen(strfor);
           fprintf(ficlog," %.12e",xit[j]);          if(strfor[itmp-1]=='\n')
         }          strfor[itmp-1]='\0';
         printf("\n");          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
         fprintf(ficlog,"\n");          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
 #endif        }
       }      }
     }       for (i=1;i<=n;i++) {
   }         for (j=1;j<=n;j++) xit[j]=xi[j][i];
 }         fptt=(*fret);
   #ifdef DEBUG
 /**** Prevalence limit (stable prevalence)  ****************/        printf("fret=%lf \n",*fret);
         fprintf(ficlog,"fret=%lf \n",*fret);
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)  #endif
 {        printf("%d",i);fflush(stdout);
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit        fprintf(ficlog,"%d",i);fflush(ficlog);
      matrix by transitions matrix until convergence is reached */        linmin(p,xit,n,fret,func);
         if (fabs(fptt-(*fret)) > del) {
   int i, ii,j,k;          del=fabs(fptt-(*fret));
   double min, max, maxmin, maxmax,sumnew=0.;          ibig=i;
   double **matprod2();        }
   double **out, cov[NCOVMAX], **pmij();  #ifdef DEBUG
   double **newm;        printf("%d %.12e",i,(*fret));
   double agefin, delaymax=50 ; /* Max number of years to converge */        fprintf(ficlog,"%d %.12e",i,(*fret));
         for (j=1;j<=n;j++) {
   for (ii=1;ii<=nlstate+ndeath;ii++)          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
     for (j=1;j<=nlstate+ndeath;j++){          printf(" x(%d)=%.12e",j,xit[j]);
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
     }        }
         for(j=1;j<=n;j++) {
    cov[1]=1.;          printf(" p=%.12e",p[j]);
            fprintf(ficlog," p=%.12e",p[j]);
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */        }
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){        printf("\n");
     newm=savm;        fprintf(ficlog,"\n");
     /* Covariates have to be included here again */  #endif
      cov[2]=agefin;      }
         if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
       for (k=1; k<=cptcovn;k++) {  #ifdef DEBUG
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];        int k[2],l;
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/        k[0]=1;
       }        k[1]=-1;
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];        printf("Max: %.12e",(*func)(p));
       for (k=1; k<=cptcovprod;k++)        fprintf(ficlog,"Max: %.12e",(*func)(p));
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];        for (j=1;j<=n;j++) {
           printf(" %.12e",p[j]);
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/          fprintf(ficlog," %.12e",p[j]);
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/        }
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/        printf("\n");
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);        fprintf(ficlog,"\n");
         for(l=0;l<=1;l++) {
     savm=oldm;          for (j=1;j<=n;j++) {
     oldm=newm;            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
     maxmax=0.;            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
     for(j=1;j<=nlstate;j++){            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
       min=1.;          }
       max=0.;          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
       for(i=1; i<=nlstate; i++) {          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
         sumnew=0;        }
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];  #endif
         prlim[i][j]= newm[i][j]/(1-sumnew);  
         max=FMAX(max,prlim[i][j]);  
         min=FMIN(min,prlim[i][j]);        free_vector(xit,1,n);
       }        free_vector(xits,1,n);
       maxmin=max-min;        free_vector(ptt,1,n);
       maxmax=FMAX(maxmax,maxmin);        free_vector(pt,1,n);
     }        return;
     if(maxmax < ftolpl){      }
       return prlim;      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");
     }      for (j=1;j<=n;j++) {
   }        ptt[j]=2.0*p[j]-pt[j];
 }        xit[j]=p[j]-pt[j];
         pt[j]=p[j];
 /*************** transition probabilities ***************/       }
       fptt=(*func)(ptt);
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )      if (fptt < fp) {
 {        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);
   double s1, s2;        if (t < 0.0) {
   /*double t34;*/          linmin(p,xit,n,fret,func);
   int i,j,j1, nc, ii, jj;          for (j=1;j<=n;j++) {
             xi[j][ibig]=xi[j][n];
     for(i=1; i<= nlstate; i++){            xi[j][n]=xit[j];
       for(j=1; j<i;j++){          }
         for (nc=1, s2=0.;nc <=ncovmodel; nc++){  #ifdef DEBUG
           /*s2 += param[i][j][nc]*cov[nc];*/          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
           s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
 /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */          for(j=1;j<=n;j++){
         }            printf(" %.12e",xit[j]);
         ps[i][j]=s2;            fprintf(ficlog," %.12e",xit[j]);
 /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */          }
       }          printf("\n");
       for(j=i+1; j<=nlstate+ndeath;j++){          fprintf(ficlog,"\n");
         for (nc=1, s2=0.;nc <=ncovmodel; nc++){  #endif
           s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];        }
 /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */      }
         }    }
         ps[i][j]=s2;  }
       }  
     }  /**** Prevalence limit (stable or period prevalence)  ****************/
     /*ps[3][2]=1;*/  
       double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
     for(i=1; i<= nlstate; i++){  {
       s1=0;    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
       for(j=1; j<i; j++)       matrix by transitions matrix until convergence is reached */
         s1+=exp(ps[i][j]);  
       for(j=i+1; j<=nlstate+ndeath; j++)    int i, ii,j,k;
         s1+=exp(ps[i][j]);    double min, max, maxmin, maxmax,sumnew=0.;
       ps[i][i]=1./(s1+1.);    double **matprod2();
       for(j=1; j<i; j++)    double **out, cov[NCOVMAX], **pmij();
         ps[i][j]= exp(ps[i][j])*ps[i][i];    double **newm;
       for(j=i+1; j<=nlstate+ndeath; j++)    double agefin, delaymax=50 ; /* Max number of years to converge */
         ps[i][j]= exp(ps[i][j])*ps[i][i];  
       /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */    for (ii=1;ii<=nlstate+ndeath;ii++)
     } /* end i */      for (j=1;j<=nlstate+ndeath;j++){
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){      }
       for(jj=1; jj<= nlstate+ndeath; jj++){  
         ps[ii][jj]=0;     cov[1]=1.;
         ps[ii][ii]=1;   
       }   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     }    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
           newm=savm;
       /* Covariates have to be included here again */
 /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */       cov[2]=agefin;
 /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */   
 /*         printf("ddd %lf ",ps[ii][jj]); */        for (k=1; k<=cptcovn;k++) {
 /*       } */          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
 /*       printf("\n "); */          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
 /*        } */        }
 /*        printf("\n ");printf("%lf ",cov[2]); */        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
        /*        for (k=1; k<=cptcovprod;k++)
       for(i=1; i<= npar; i++) printf("%f ",x[i]);          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
       goto end;*/  
     return ps;        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
 }        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
         /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
 /**************** Product of 2 matrices ******************/      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
   
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)      savm=oldm;
 {      oldm=newm;
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times      maxmax=0.;
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */      for(j=1;j<=nlstate;j++){
   /* in, b, out are matrice of pointers which should have been initialized         min=1.;
      before: only the contents of out is modified. The function returns        max=0.;
      a pointer to pointers identical to out */        for(i=1; i<=nlstate; i++) {
   long i, j, k;          sumnew=0;
   for(i=nrl; i<= nrh; i++)          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
     for(k=ncolol; k<=ncoloh; k++)          prlim[i][j]= newm[i][j]/(1-sumnew);
       for(j=ncl,out[i][k]=0.; j<=nch; j++)          max=FMAX(max,prlim[i][j]);
         out[i][k] +=in[i][j]*b[j][k];          min=FMIN(min,prlim[i][j]);
         }
   return out;        maxmin=max-min;
 }        maxmax=FMAX(maxmax,maxmin);
       }
       if(maxmax < ftolpl){
 /************* Higher Matrix Product ***************/        return prlim;
       }
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )    }
 {  }
   /* Computes the transition matrix starting at age 'age' over   
      'nhstepm*hstepm*stepm' months (i.e. until  /*************** transition probabilities ***************/
      age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying   
      nhstepm*hstepm matrices.   double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step   {
      (typically every 2 years instead of every month which is too big     double s1, s2;
      for the memory).    /*double t34;*/
      Model is determined by parameters x and covariates have to be     int i,j,j1, nc, ii, jj;
      included manually here.   
       for(i=1; i<= nlstate; i++){
      */        for(j=1; j<i;j++){
           for (nc=1, s2=0.;nc <=ncovmodel; nc++){
   int i, j, d, h, k;            /*s2 += param[i][j][nc]*cov[nc];*/
   double **out, cov[NCOVMAX];            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
   double **newm;  /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
           }
   /* Hstepm could be zero and should return the unit matrix */          ps[i][j]=s2;
   for (i=1;i<=nlstate+ndeath;i++)  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
     for (j=1;j<=nlstate+ndeath;j++){        }
       oldm[i][j]=(i==j ? 1.0 : 0.0);        for(j=i+1; j<=nlstate+ndeath;j++){
       po[i][j][0]=(i==j ? 1.0 : 0.0);          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
     }            s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */  /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
   for(h=1; h <=nhstepm; h++){          }
     for(d=1; d <=hstepm; d++){          ps[i][j]=s2;
       newm=savm;        }
       /* Covariates have to be included here again */      }
       cov[1]=1.;      /*ps[3][2]=1;*/
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;     
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];      for(i=1; i<= nlstate; i++){
       for (k=1; k<=cptcovage;k++)        s1=0;
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];        for(j=1; j<i; j++)
       for (k=1; k<=cptcovprod;k++)          s1+=exp(ps[i][j]);
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];        for(j=i+1; j<=nlstate+ndeath; j++)
           s1+=exp(ps[i][j]);
         ps[i][i]=1./(s1+1.);
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/        for(j=1; j<i; j++)
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/          ps[i][j]= exp(ps[i][j])*ps[i][i];
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,         for(j=i+1; j<=nlstate+ndeath; j++)
                    pmij(pmmij,cov,ncovmodel,x,nlstate));          ps[i][j]= exp(ps[i][j])*ps[i][i];
       savm=oldm;        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
       oldm=newm;      } /* end i */
     }     
     for(i=1; i<=nlstate+ndeath; i++)      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
       for(j=1;j<=nlstate+ndeath;j++) {        for(jj=1; jj<= nlstate+ndeath; jj++){
         po[i][j][h]=newm[i][j];          ps[ii][jj]=0;
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);          ps[ii][ii]=1;
          */        }
       }      }
   } /* end h */     
   return po;  
 }  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
   /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
   /*         printf("ddd %lf ",ps[ii][jj]); */
 /*************** log-likelihood *************/  /*       } */
 double func( double *x)  /*       printf("\n "); */
 {  /*        } */
   int i, ii, j, k, mi, d, kk;  /*        printf("\n ");printf("%lf ",cov[2]); */
   double l, ll[NLSTATEMAX], cov[NCOVMAX];         /*
   double **out;        for(i=1; i<= npar; i++) printf("%f ",x[i]);
   double sw; /* Sum of weights */        goto end;*/
   double lli; /* Individual log likelihood */      return ps;
   int s1, s2;  }
   double bbh, survp;  
   long ipmx;  /**************** Product of 2 matrices ******************/
   /*extern weight */  
   /* We are differentiating ll according to initial status */  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/  {
   /*for(i=1;i<imx;i++)     /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
     printf(" %d\n",s[4][i]);       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
   */    /* in, b, out are matrice of pointers which should have been initialized
   cov[1]=1.;       before: only the contents of out is modified. The function returns
        a pointer to pointers identical to out */
   for(k=1; k<=nlstate; k++) ll[k]=0.;    long i, j, k;
     for(i=nrl; i<= nrh; i++)
   if(mle==1){      for(k=ncolol; k<=ncoloh; k++)
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){        for(j=ncl,out[i][k]=0.; j<=nch; j++)
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];          out[i][k] +=in[i][j]*b[j][k];
       for(mi=1; mi<= wav[i]-1; mi++){  
         for (ii=1;ii<=nlstate+ndeath;ii++)    return out;
           for (j=1;j<=nlstate+ndeath;j++){  }
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);  
             savm[ii][j]=(ii==j ? 1.0 : 0.0);  
           }  /************* Higher Matrix Product ***************/
         for(d=0; d<dh[mi][i]; d++){  
           newm=savm;  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;  {
           for (kk=1; kk<=cptcovage;kk++) {    /* Computes the transition matrix starting at age 'age' over
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];       'nhstepm*hstepm*stepm' months (i.e. until
           }       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,       nhstepm*hstepm matrices.
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));       Output is stored in matrix po[i][j][h] for h every 'hstepm' step
           savm=oldm;       (typically every 2 years instead of every month which is too big
           oldm=newm;       for the memory).
         } /* end mult */       Model is determined by parameters x and covariates have to be
              included manually here.
         /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */  
         /* But now since version 0.9 we anticipate for bias at large stepm.       */
          * If stepm is larger than one month (smallest stepm) and if the exact delay   
          * (in months) between two waves is not a multiple of stepm, we rounded to     int i, j, d, h, k;
          * the nearest (and in case of equal distance, to the lowest) interval but now    double **out, cov[NCOVMAX];
          * we keep into memory the bias bh[mi][i] and also the previous matrix product    double **newm;
          * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the  
          * probability in order to take into account the bias as a fraction of the way    /* Hstepm could be zero and should return the unit matrix */
          * from savm to out if bh is negative or even beyond if bh is positive. bh varies    for (i=1;i<=nlstate+ndeath;i++)
          * -stepm/2 to stepm/2 .      for (j=1;j<=nlstate+ndeath;j++){
          * For stepm=1 the results are the same as for previous versions of Imach.        oldm[i][j]=(i==j ? 1.0 : 0.0);
          * For stepm > 1 the results are less biased than in previous versions.         po[i][j][0]=(i==j ? 1.0 : 0.0);
          */      }
         s1=s[mw[mi][i]][i];    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
         s2=s[mw[mi+1][i]][i];    for(h=1; h <=nhstepm; h++){
         bbh=(double)bh[mi][i]/(double)stepm;       for(d=1; d <=hstepm; d++){
         /* bias bh is positive if real duration        newm=savm;
          * is higher than the multiple of stepm and negative otherwise.        /* Covariates have to be included here again */
          */        cov[1]=1.;
         /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
         if( s2 > nlstate){         for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
           /* i.e. if s2 is a death state and if the date of death is known         for (k=1; k<=cptcovage;k++)
              then the contribution to the likelihood is the probability to           cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
              die between last step unit time and current  step unit time,         for (k=1; k<=cptcovprod;k++)
              which is also equal to probability to die before dh           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
              minus probability to die before dh-stepm .   
              In version up to 0.92 likelihood was computed  
         as if date of death was unknown. Death was treated as any other        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
         health state: the date of the interview describes the actual state        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
         and not the date of a change in health state. The former idea was        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,
         to consider that at each interview the state was recorded                     pmij(pmmij,cov,ncovmodel,x,nlstate));
         (healthy, disable or death) and IMaCh was corrected; but when we        savm=oldm;
         introduced the exact date of death then we should have modified        oldm=newm;
         the contribution of an exact death to the likelihood. This new      }
         contribution is smaller and very dependent of the step unit      for(i=1; i<=nlstate+ndeath; i++)
         stepm. It is no more the probability to die between last interview        for(j=1;j<=nlstate+ndeath;j++) {
         and month of death but the probability to survive from last          po[i][j][h]=newm[i][j];
         interview up to one month before death multiplied by the          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
         probability to die within a month. Thanks to Chris           */
         Jackson for correcting this bug.  Former versions increased        }
         mortality artificially. The bad side is that we add another loop    } /* end h */
         which slows down the processing. The difference can be up to 10%    return po;
         lower mortality.  }
           */  
           lli=log(out[s1][s2] - savm[s1][s2]);  
   /*************** log-likelihood *************/
   double func( double *x)
         } else if  (s2==-2) {  {
           for (j=1,survp=0. ; j<=nlstate; j++)     int i, ii, j, k, mi, d, kk;
             survp += out[s1][j];    double l, ll[NLSTATEMAX], cov[NCOVMAX];
           lli= survp;    double **out;
         }    double sw; /* Sum of weights */
             double lli; /* Individual log likelihood */
         else if  (s2==-4) {    int s1, s2;
           for (j=3,survp=0. ; j<=nlstate; j++)     double bbh, survp;
             survp += out[s1][j];    long ipmx;
           lli= survp;    /*extern weight */
         }    /* We are differentiating ll according to initial status */
             /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
         else if  (s2==-5) {    /*for(i=1;i<imx;i++)
           for (j=1,survp=0. ; j<=2; j++)       printf(" %d\n",s[4][i]);
             survp += out[s1][j];    */
           lli= survp;    cov[1]=1.;
         }  
     for(k=1; k<=nlstate; k++) ll[k]=0.;
   
         else{    if(mle==1){
           lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         }         for(mi=1; mi<= wav[i]-1; mi++){
         /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/          for (ii=1;ii<=nlstate+ndeath;ii++)
         /*if(lli ==000.0)*/            for (j=1;j<=nlstate+ndeath;j++){
         /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         ipmx +=1;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         sw += weight[i];            }
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;          for(d=0; d<dh[mi][i]; d++){
       } /* end of wave */            newm=savm;
     } /* end of individual */            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   }  else if(mle==2){            for (kk=1; kk<=cptcovage;kk++) {
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];            }
       for(mi=1; mi<= wav[i]-1; mi++){            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         for (ii=1;ii<=nlstate+ndeath;ii++)                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           for (j=1;j<=nlstate+ndeath;j++){            savm=oldm;
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);            oldm=newm;
             savm[ii][j]=(ii==j ? 1.0 : 0.0);          } /* end mult */
           }       
         for(d=0; d<=dh[mi][i]; d++){          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
           newm=savm;          /* But now since version 0.9 we anticipate for bias at large stepm.
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;           * If stepm is larger than one month (smallest stepm) and if the exact delay
           for (kk=1; kk<=cptcovage;kk++) {           * (in months) between two waves is not a multiple of stepm, we rounded to
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];           * the nearest (and in case of equal distance, to the lowest) interval but now
           }           * we keep into memory the bias bh[mi][i] and also the previous matrix product
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));           * probability in order to take into account the bias as a fraction of the way
           savm=oldm;           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
           oldm=newm;           * -stepm/2 to stepm/2 .
         } /* end mult */           * For stepm=1 the results are the same as for previous versions of Imach.
                  * For stepm > 1 the results are less biased than in previous versions.
         s1=s[mw[mi][i]][i];           */
         s2=s[mw[mi+1][i]][i];          s1=s[mw[mi][i]][i];
         bbh=(double)bh[mi][i]/(double)stepm;           s2=s[mw[mi+1][i]][i];
         lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */          bbh=(double)bh[mi][i]/(double)stepm;
         ipmx +=1;          /* bias bh is positive if real duration
         sw += weight[i];           * is higher than the multiple of stepm and negative otherwise.
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;           */
       } /* end of wave */          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
     } /* end of individual */          if( s2 > nlstate){
   }  else if(mle==3){  /* exponential inter-extrapolation */            /* i.e. if s2 is a death state and if the date of death is known
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){               then the contribution to the likelihood is the probability to
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];               die between last step unit time and current  step unit time,
       for(mi=1; mi<= wav[i]-1; mi++){               which is also equal to probability to die before dh
         for (ii=1;ii<=nlstate+ndeath;ii++)               minus probability to die before dh-stepm .
           for (j=1;j<=nlstate+ndeath;j++){               In version up to 0.92 likelihood was computed
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);          as if date of death was unknown. Death was treated as any other
             savm[ii][j]=(ii==j ? 1.0 : 0.0);          health state: the date of the interview describes the actual state
           }          and not the date of a change in health state. The former idea was
         for(d=0; d<dh[mi][i]; d++){          to consider that at each interview the state was recorded
           newm=savm;          (healthy, disable or death) and IMaCh was corrected; but when we
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;          introduced the exact date of death then we should have modified
           for (kk=1; kk<=cptcovage;kk++) {          the contribution of an exact death to the likelihood. This new
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];          contribution is smaller and very dependent of the step unit
           }          stepm. It is no more the probability to die between last interview
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,          and month of death but the probability to survive from last
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));          interview up to one month before death multiplied by the
           savm=oldm;          probability to die within a month. Thanks to Chris
           oldm=newm;          Jackson for correcting this bug.  Former versions increased
         } /* end mult */          mortality artificially. The bad side is that we add another loop
                 which slows down the processing. The difference can be up to 10%
         s1=s[mw[mi][i]][i];          lower mortality.
         s2=s[mw[mi+1][i]][i];            */
         bbh=(double)bh[mi][i]/(double)stepm;             lli=log(out[s1][s2] - savm[s1][s2]);
         lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */  
         ipmx +=1;  
         sw += weight[i];          } else if  (s2==-2) {
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;            for (j=1,survp=0. ; j<=nlstate; j++)
       } /* end of wave */              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
     } /* end of individual */            /*survp += out[s1][j]; */
   }else if (mle==4){  /* ml=4 no inter-extrapolation */            lli= log(survp);
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){          }
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];         
       for(mi=1; mi<= wav[i]-1; mi++){          else if  (s2==-4) {
         for (ii=1;ii<=nlstate+ndeath;ii++)            for (j=3,survp=0. ; j<=nlstate; j++)  
           for (j=1;j<=nlstate+ndeath;j++){              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);            lli= log(survp);
             savm[ii][j]=(ii==j ? 1.0 : 0.0);          }
           }  
         for(d=0; d<dh[mi][i]; d++){          else if  (s2==-5) {
           newm=savm;            for (j=1,survp=0. ; j<=2; j++)  
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
           for (kk=1; kk<=cptcovage;kk++) {            lli= log(survp);
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];          }
           }         
                   else{
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
           savm=oldm;          }
           oldm=newm;          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
         } /* end mult */          /*if(lli ==000.0)*/
                 /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
         s1=s[mw[mi][i]][i];          ipmx +=1;
         s2=s[mw[mi+1][i]][i];          sw += weight[i];
         if( s2 > nlstate){           ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           lli=log(out[s1][s2] - savm[s1][s2]);        } /* end of wave */
         }else{      } /* end of individual */
           lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */    }  else if(mle==2){
         }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         ipmx +=1;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         sw += weight[i];        for(mi=1; mi<= wav[i]-1; mi++){
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;          for (ii=1;ii<=nlstate+ndeath;ii++)
 /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */            for (j=1;j<=nlstate+ndeath;j++){
       } /* end of wave */              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     } /* end of individual */              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */            }
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){          for(d=0; d<=dh[mi][i]; d++){
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];            newm=savm;
       for(mi=1; mi<= wav[i]-1; mi++){            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         for (ii=1;ii<=nlstate+ndeath;ii++)            for (kk=1; kk<=cptcovage;kk++) {
           for (j=1;j<=nlstate+ndeath;j++){              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);            }
             savm[ii][j]=(ii==j ? 1.0 : 0.0);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
           }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         for(d=0; d<dh[mi][i]; d++){            savm=oldm;
           newm=savm;            oldm=newm;
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;          } /* end mult */
           for (kk=1; kk<=cptcovage;kk++) {       
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];          s1=s[mw[mi][i]][i];
           }          s2=s[mw[mi+1][i]][i];
                   bbh=(double)bh[mi][i]/(double)stepm;
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));          ipmx +=1;
           savm=oldm;          sw += weight[i];
           oldm=newm;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         } /* end mult */        } /* end of wave */
             } /* end of individual */
         s1=s[mw[mi][i]][i];    }  else if(mle==3){  /* exponential inter-extrapolation */
         s2=s[mw[mi+1][i]][i];      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         ipmx +=1;        for(mi=1; mi<= wav[i]-1; mi++){
         sw += weight[i];          for (ii=1;ii<=nlstate+ndeath;ii++)
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;            for (j=1;j<=nlstate+ndeath;j++){
         /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       } /* end of wave */              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     } /* end of individual */            }
   } /* End of if */          for(d=0; d<dh[mi][i]; d++){
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];            newm=savm;
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */            for (kk=1; kk<=cptcovage;kk++) {
   return -l;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 }            }
             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 /*************** log-likelihood *************/                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 double funcone( double *x)            savm=oldm;
 {            oldm=newm;
   /* Same as likeli but slower because of a lot of printf and if */          } /* end mult */
   int i, ii, j, k, mi, d, kk;       
   double l, ll[NLSTATEMAX], cov[NCOVMAX];          s1=s[mw[mi][i]][i];
   double **out;          s2=s[mw[mi+1][i]][i];
   double lli; /* Individual log likelihood */          bbh=(double)bh[mi][i]/(double)stepm;
   double llt;          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   int s1, s2;          ipmx +=1;
   double bbh, survp;          sw += weight[i];
   /*extern weight */          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   /* We are differentiating ll according to initial status */        } /* end of wave */
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/      } /* end of individual */
   /*for(i=1;i<imx;i++)     }else if (mle==4){  /* ml=4 no inter-extrapolation */
     printf(" %d\n",s[4][i]);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   */        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   cov[1]=1.;        for(mi=1; mi<= wav[i]-1; mi++){
           for (ii=1;ii<=nlstate+ndeath;ii++)
   for(k=1; k<=nlstate; k++) ll[k]=0.;            for (j=1;j<=nlstate+ndeath;j++){
               oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];            }
     for(mi=1; mi<= wav[i]-1; mi++){          for(d=0; d<dh[mi][i]; d++){
       for (ii=1;ii<=nlstate+ndeath;ii++)            newm=savm;
         for (j=1;j<=nlstate+ndeath;j++){            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           oldm[ii][j]=(ii==j ? 1.0 : 0.0);            for (kk=1; kk<=cptcovage;kk++) {
           savm[ii][j]=(ii==j ? 1.0 : 0.0);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         }            }
       for(d=0; d<dh[mi][i]; d++){         
         newm=savm;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         for (kk=1; kk<=cptcovage;kk++) {            savm=oldm;
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];            oldm=newm;
         }          } /* end mult */
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,       
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));          s1=s[mw[mi][i]][i];
         savm=oldm;          s2=s[mw[mi+1][i]][i];
         oldm=newm;          if( s2 > nlstate){
       } /* end mult */            lli=log(out[s1][s2] - savm[s1][s2]);
                 }else{
       s1=s[mw[mi][i]][i];            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
       s2=s[mw[mi+1][i]][i];          }
       bbh=(double)bh[mi][i]/(double)stepm;           ipmx +=1;
       /* bias is positive if real duration          sw += weight[i];
        * is higher than the multiple of stepm and negative otherwise.          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
        */  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
       if( s2 > nlstate && (mle <5) ){  /* Jackson */        } /* end of wave */
         lli=log(out[s1][s2] - savm[s1][s2]);      } /* end of individual */
       } else if (mle==1){    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
         lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       } else if(mle==2){        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */        for(mi=1; mi<= wav[i]-1; mi++){
       } else if(mle==3){  /* exponential inter-extrapolation */          for (ii=1;ii<=nlstate+ndeath;ii++)
         lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */            for (j=1;j<=nlstate+ndeath;j++){
       } else if (mle==4){  /* mle=4 no inter-extrapolation */              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         lli=log(out[s1][s2]); /* Original formula */              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */            }
         lli=log(out[s1][s2]); /* Original formula */          for(d=0; d<dh[mi][i]; d++){
       } /* End of if */            newm=savm;
       ipmx +=1;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       sw += weight[i];            for (kk=1; kk<=cptcovage;kk++) {
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */            }
       if(globpr){         
         fprintf(ficresilk,"%9d %6d %1d %1d %1d %1d %3d %10.6f %6.4f\            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
  %10.6f %10.6f %10.6f ", \                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
                 num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],            savm=oldm;
                 2*weight[i]*lli,out[s1][s2],savm[s1][s2]);            oldm=newm;
         for(k=1,llt=0.,l=0.; k<=nlstate; k++){          } /* end mult */
           llt +=ll[k]*gipmx/gsw;       
           fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);          s1=s[mw[mi][i]][i];
         }          s2=s[mw[mi+1][i]][i];
         fprintf(ficresilk," %10.6f\n", -llt);          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
       }          ipmx +=1;
     } /* end of wave */          sw += weight[i];
   } /* end of individual */          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */        } /* end of wave */
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */      } /* end of individual */
   if(globpr==0){ /* First time we count the contributions and weights */    } /* End of if */
     gipmx=ipmx;    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
     gsw=sw;    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   }    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   return -l;    return -l;
 }  }
   
   /*************** log-likelihood *************/
 /*************** function likelione ***********/  double funcone( double *x)
 void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))  {
 {    /* Same as likeli but slower because of a lot of printf and if */
   /* This routine should help understanding what is done with     int i, ii, j, k, mi, d, kk;
      the selection of individuals/waves and    double l, ll[NLSTATEMAX], cov[NCOVMAX];
      to check the exact contribution to the likelihood.    double **out;
      Plotting could be done.    double lli; /* Individual log likelihood */
    */    double llt;
   int k;    int s1, s2;
     double bbh, survp;
   if(*globpri !=0){ /* Just counts and sums, no printings */    /*extern weight */
     strcpy(fileresilk,"ilk");     /* We are differentiating ll according to initial status */
     strcat(fileresilk,fileres);    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     if((ficresilk=fopen(fileresilk,"w"))==NULL) {    /*for(i=1;i<imx;i++)
       printf("Problem with resultfile: %s\n", fileresilk);      printf(" %d\n",s[4][i]);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);    */
     }    cov[1]=1.;
     fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");  
     fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");    for(k=1; k<=nlstate; k++) ll[k]=0.;
     /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */  
     for(k=1; k<=nlstate; k++)     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");      for(mi=1; mi<= wav[i]-1; mi++){
   }        for (ii=1;ii<=nlstate+ndeath;ii++)
           for (j=1;j<=nlstate+ndeath;j++){
   *fretone=(*funcone)(p);            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   if(*globpri !=0){            savm[ii][j]=(ii==j ? 1.0 : 0.0);
     fclose(ficresilk);          }
     fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));        for(d=0; d<dh[mi][i]; d++){
     fflush(fichtm);           newm=savm;
   }           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   return;          for (kk=1; kk<=cptcovage;kk++) {
 }            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           }
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 /*********** Maximum Likelihood Estimation ***************/                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           savm=oldm;
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))          oldm=newm;
 {        } /* end mult */
   int i,j, iter;       
   double **xi;        s1=s[mw[mi][i]][i];
   double fret;        s2=s[mw[mi+1][i]][i];
   double fretone; /* Only one call to likelihood */        bbh=(double)bh[mi][i]/(double)stepm;
   /*  char filerespow[FILENAMELENGTH];*/        /* bias is positive if real duration
   xi=matrix(1,npar,1,npar);         * is higher than the multiple of stepm and negative otherwise.
   for (i=1;i<=npar;i++)         */
     for (j=1;j<=npar;j++)        if( s2 > nlstate && (mle <5) ){  /* Jackson */
       xi[i][j]=(i==j ? 1.0 : 0.0);          lli=log(out[s1][s2] - savm[s1][s2]);
   printf("Powell\n");  fprintf(ficlog,"Powell\n");        } else if  (s2==-2) {
   strcpy(filerespow,"pow");           for (j=1,survp=0. ; j<=nlstate; j++)
   strcat(filerespow,fileres);            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   if((ficrespow=fopen(filerespow,"w"))==NULL) {          lli= log(survp);
     printf("Problem with resultfile: %s\n", filerespow);        }else if (mle==1){
     fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   }        } else if(mle==2){
   fprintf(ficrespow,"# Powell\n# iter -2*LL");          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
   for (i=1;i<=nlstate;i++)        } else if(mle==3){  /* exponential inter-extrapolation */
     for(j=1;j<=nlstate+ndeath;j++)          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
       if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);        } else if (mle==4){  /* mle=4 no inter-extrapolation */
   fprintf(ficrespow,"\n");          lli=log(out[s1][s2]); /* Original formula */
         } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
   powell(p,xi,npar,ftol,&iter,&fret,func);          lli=log(out[s1][s2]); /* Original formula */
         } /* End of if */
   fclose(ficrespow);        ipmx +=1;
   printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));        sw += weight[i];
   fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
         if(globpr){
 }          fprintf(ficresilk,"%9d %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
    %11.6f %11.6f %11.6f ", \
 /**** Computes Hessian and covariance matrix ***/                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
 {          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
   double  **a,**y,*x,pd;            llt +=ll[k]*gipmx/gsw;
   double **hess;            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
   int i, j,jk;          }
   int *indx;          fprintf(ficresilk," %10.6f\n", -llt);
         }
   double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);      } /* end of wave */
   double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);    } /* end of individual */
   void lubksb(double **a, int npar, int *indx, double b[]) ;    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   void ludcmp(double **a, int npar, int *indx, double *d) ;    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   double gompertz(double p[]);    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   hess=matrix(1,npar,1,npar);    if(globpr==0){ /* First time we count the contributions and weights */
       gipmx=ipmx;
   printf("\nCalculation of the hessian matrix. Wait...\n");      gsw=sw;
   fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");    }
   for (i=1;i<=npar;i++){    return -l;
     printf("%d",i);fflush(stdout);  }
     fprintf(ficlog,"%d",i);fflush(ficlog);  
      
      hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);  /*************** function likelione ***********/
       void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
     /*  printf(" %f ",p[i]);  {
         printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/    /* This routine should help understanding what is done with
   }       the selection of individuals/waves and
          to check the exact contribution to the likelihood.
   for (i=1;i<=npar;i++) {       Plotting could be done.
     for (j=1;j<=npar;j++)  {     */
       if (j>i) {     int k;
         printf(".%d%d",i,j);fflush(stdout);  
         fprintf(ficlog,".%d%d",i,j);fflush(ficlog);    if(*globpri !=0){ /* Just counts and sums, no printings */
         hess[i][j]=hessij(p,delti,i,j,func,npar);      strcpy(fileresilk,"ilk");
               strcat(fileresilk,fileres);
         hess[j][i]=hess[i][j];          if((ficresilk=fopen(fileresilk,"w"))==NULL) {
         /*printf(" %lf ",hess[i][j]);*/        printf("Problem with resultfile: %s\n", fileresilk);
       }        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
     }      }
   }      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
   printf("\n");      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
   fprintf(ficlog,"\n");      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
       for(k=1; k<=nlstate; k++)
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
   fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
       }
   a=matrix(1,npar,1,npar);  
   y=matrix(1,npar,1,npar);    *fretone=(*funcone)(p);
   x=vector(1,npar);    if(*globpri !=0){
   indx=ivector(1,npar);      fclose(ficresilk);
   for (i=1;i<=npar;i++)      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];      fflush(fichtm);
   ludcmp(a,npar,indx,&pd);    }
     return;
   for (j=1;j<=npar;j++) {  }
     for (i=1;i<=npar;i++) x[i]=0;  
     x[j]=1;  
     lubksb(a,npar,indx,x);  /*********** Maximum Likelihood Estimation ***************/
     for (i=1;i<=npar;i++){   
       matcov[i][j]=x[i];  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
     }  {
   }    int i,j, iter;
     double **xi;
   printf("\n#Hessian matrix#\n");    double fret;
   fprintf(ficlog,"\n#Hessian matrix#\n");    double fretone; /* Only one call to likelihood */
   for (i=1;i<=npar;i++) {     /*  char filerespow[FILENAMELENGTH];*/
     for (j=1;j<=npar;j++) {     xi=matrix(1,npar,1,npar);
       printf("%.3e ",hess[i][j]);    for (i=1;i<=npar;i++)
       fprintf(ficlog,"%.3e ",hess[i][j]);      for (j=1;j<=npar;j++)
     }        xi[i][j]=(i==j ? 1.0 : 0.0);
     printf("\n");    printf("Powell\n");  fprintf(ficlog,"Powell\n");
     fprintf(ficlog,"\n");    strcpy(filerespow,"pow");
   }    strcat(filerespow,fileres);
     if((ficrespow=fopen(filerespow,"w"))==NULL) {
   /* Recompute Inverse */      printf("Problem with resultfile: %s\n", filerespow);
   for (i=1;i<=npar;i++)      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];    }
   ludcmp(a,npar,indx,&pd);    fprintf(ficrespow,"# Powell\n# iter -2*LL");
     for (i=1;i<=nlstate;i++)
   /*  printf("\n#Hessian matrix recomputed#\n");      for(j=1;j<=nlstate+ndeath;j++)
         if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
   for (j=1;j<=npar;j++) {    fprintf(ficrespow,"\n");
     for (i=1;i<=npar;i++) x[i]=0;  
     x[j]=1;    powell(p,xi,npar,ftol,&iter,&fret,func);
     lubksb(a,npar,indx,x);  
     for (i=1;i<=npar;i++){     free_matrix(xi,1,npar,1,npar);
       y[i][j]=x[i];    fclose(ficrespow);
       printf("%.3e ",y[i][j]);    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
       fprintf(ficlog,"%.3e ",y[i][j]);    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
     }    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
     printf("\n");  
     fprintf(ficlog,"\n");  }
   }  
   */  /**** Computes Hessian and covariance matrix ***/
   void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
   free_matrix(a,1,npar,1,npar);  {
   free_matrix(y,1,npar,1,npar);    double  **a,**y,*x,pd;
   free_vector(x,1,npar);    double **hess;
   free_ivector(indx,1,npar);    int i, j,jk;
   free_matrix(hess,1,npar,1,npar);    int *indx;
   
     double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
 }    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
     void lubksb(double **a, int npar, int *indx, double b[]) ;
 /*************** hessian matrix ****************/    void ludcmp(double **a, int npar, int *indx, double *d) ;
 double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)    double gompertz(double p[]);
 {    hess=matrix(1,npar,1,npar);
   int i;  
   int l=1, lmax=20;    printf("\nCalculation of the hessian matrix. Wait...\n");
   double k1,k2;    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
   double p2[NPARMAX+1];    for (i=1;i<=npar;i++){
   double res;      printf("%d",i);fflush(stdout);
   double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;      fprintf(ficlog,"%d",i);fflush(ficlog);
   double fx;     
   int k=0,kmax=10;       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
   double l1;     
       /*  printf(" %f ",p[i]);
   fx=func(x);          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
   for (i=1;i<=npar;i++) p2[i]=x[i];    }
   for(l=0 ; l <=lmax; l++){   
     l1=pow(10,l);    for (i=1;i<=npar;i++) {
     delts=delt;      for (j=1;j<=npar;j++)  {
     for(k=1 ; k <kmax; k=k+1){        if (j>i) {
       delt = delta*(l1*k);          printf(".%d%d",i,j);fflush(stdout);
       p2[theta]=x[theta] +delt;          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
       k1=func(p2)-fx;          hess[i][j]=hessij(p,delti,i,j,func,npar);
       p2[theta]=x[theta]-delt;         
       k2=func(p2)-fx;          hess[j][i]=hess[i][j];    
       /*res= (k1-2.0*fx+k2)/delt/delt; */          /*printf(" %lf ",hess[i][j]);*/
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */        }
             }
 #ifdef DEBUG    }
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);    printf("\n");
       fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);    fprintf(ficlog,"\n");
 #endif  
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
         k=kmax;   
       }    a=matrix(1,npar,1,npar);
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */    y=matrix(1,npar,1,npar);
         k=kmax; l=lmax*10.;    x=vector(1,npar);
       }    indx=ivector(1,npar);
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){     for (i=1;i<=npar;i++)
         delts=delt;      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
       }    ludcmp(a,npar,indx,&pd);
     }  
   }    for (j=1;j<=npar;j++) {
   delti[theta]=delts;      for (i=1;i<=npar;i++) x[i]=0;
   return res;       x[j]=1;
         lubksb(a,npar,indx,x);
 }      for (i=1;i<=npar;i++){
         matcov[i][j]=x[i];
 double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)      }
 {    }
   int i;  
   int l=1, l1, lmax=20;    printf("\n#Hessian matrix#\n");
   double k1,k2,k3,k4,res,fx;    fprintf(ficlog,"\n#Hessian matrix#\n");
   double p2[NPARMAX+1];    for (i=1;i<=npar;i++) {
   int k;      for (j=1;j<=npar;j++) {
         printf("%.3e ",hess[i][j]);
   fx=func(x);        fprintf(ficlog,"%.3e ",hess[i][j]);
   for (k=1; k<=2; k++) {      }
     for (i=1;i<=npar;i++) p2[i]=x[i];      printf("\n");
     p2[thetai]=x[thetai]+delti[thetai]/k;      fprintf(ficlog,"\n");
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;    }
     k1=func(p2)-fx;  
       /* Recompute Inverse */
     p2[thetai]=x[thetai]+delti[thetai]/k;    for (i=1;i<=npar;i++)
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
     k2=func(p2)-fx;    ludcmp(a,npar,indx,&pd);
     
     p2[thetai]=x[thetai]-delti[thetai]/k;    /*  printf("\n#Hessian matrix recomputed#\n");
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;  
     k3=func(p2)-fx;    for (j=1;j<=npar;j++) {
         for (i=1;i<=npar;i++) x[i]=0;
     p2[thetai]=x[thetai]-delti[thetai]/k;      x[j]=1;
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;      lubksb(a,npar,indx,x);
     k4=func(p2)-fx;      for (i=1;i<=npar;i++){
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */        y[i][j]=x[i];
 #ifdef DEBUG        printf("%.3e ",y[i][j]);
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);        fprintf(ficlog,"%.3e ",y[i][j]);
     fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);      }
 #endif      printf("\n");
   }      fprintf(ficlog,"\n");
   return res;    }
 }    */
   
 /************** Inverse of matrix **************/    free_matrix(a,1,npar,1,npar);
 void ludcmp(double **a, int n, int *indx, double *d)     free_matrix(y,1,npar,1,npar);
 {     free_vector(x,1,npar);
   int i,imax,j,k;     free_ivector(indx,1,npar);
   double big,dum,sum,temp;     free_matrix(hess,1,npar,1,npar);
   double *vv;   
    
   vv=vector(1,n);   }
   *d=1.0;   
   for (i=1;i<=n;i++) {   /*************** hessian matrix ****************/
     big=0.0;   double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
     for (j=1;j<=n;j++)   {
       if ((temp=fabs(a[i][j])) > big) big=temp;     int i;
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");     int l=1, lmax=20;
     vv[i]=1.0/big;     double k1,k2;
   }     double p2[NPARMAX+1];
   for (j=1;j<=n;j++) {     double res;
     for (i=1;i<j;i++) {     double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
       sum=a[i][j];     double fx;
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];     int k=0,kmax=10;
       a[i][j]=sum;     double l1;
     }   
     big=0.0;     fx=func(x);
     for (i=j;i<=n;i++) {     for (i=1;i<=npar;i++) p2[i]=x[i];
       sum=a[i][j];     for(l=0 ; l <=lmax; l++){
       for (k=1;k<j;k++)       l1=pow(10,l);
         sum -= a[i][k]*a[k][j];       delts=delt;
       a[i][j]=sum;       for(k=1 ; k <kmax; k=k+1){
       if ( (dum=vv[i]*fabs(sum)) >= big) {         delt = delta*(l1*k);
         big=dum;         p2[theta]=x[theta] +delt;
         imax=i;         k1=func(p2)-fx;
       }         p2[theta]=x[theta]-delt;
     }         k2=func(p2)-fx;
     if (j != imax) {         /*res= (k1-2.0*fx+k2)/delt/delt; */
       for (k=1;k<=n;k++) {         res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
         dum=a[imax][k];        
         a[imax][k]=a[j][k];   #ifdef DEBUG
         a[j][k]=dum;         printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
       }         fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
       *d = -(*d);   #endif
       vv[imax]=vv[j];         /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
     }         if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
     indx[j]=imax;           k=kmax;
     if (a[j][j] == 0.0) a[j][j]=TINY;         }
     if (j != n) {         else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
       dum=1.0/(a[j][j]);           k=kmax; l=lmax*10.;
       for (i=j+1;i<=n;i++) a[i][j] *= dum;         }
     }         else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){
   }           delts=delt;
   free_vector(vv,1,n);  /* Doesn't work */        }
 ;      }
 }     }
     delti[theta]=delts;
 void lubksb(double **a, int n, int *indx, double b[])     return res;
 {    
   int i,ii=0,ip,j;   }
   double sum;   
    double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
   for (i=1;i<=n;i++) {   {
     ip=indx[i];     int i;
     sum=b[ip];     int l=1, l1, lmax=20;
     b[ip]=b[i];     double k1,k2,k3,k4,res,fx;
     if (ii)     double p2[NPARMAX+1];
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];     int k;
     else if (sum) ii=i;   
     b[i]=sum;     fx=func(x);
   }     for (k=1; k<=2; k++) {
   for (i=n;i>=1;i--) {       for (i=1;i<=npar;i++) p2[i]=x[i];
     sum=b[i];       p2[thetai]=x[thetai]+delti[thetai]/k;
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];       p2[thetaj]=x[thetaj]+delti[thetaj]/k;
     b[i]=sum/a[i][i];       k1=func(p2)-fx;
   }    
 }       p2[thetai]=x[thetai]+delti[thetai]/k;
       p2[thetaj]=x[thetaj]-delti[thetaj]/k;
 /************ Frequencies ********************/      k2=func(p2)-fx;
 void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])   
 {  /* Some frequencies */      p2[thetai]=x[thetai]-delti[thetai]/k;
         p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;      k3=func(p2)-fx;
   int first;   
   double ***freq; /* Frequencies */      p2[thetai]=x[thetai]-delti[thetai]/k;
   double *pp, **prop;      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   double pos,posprop, k2, dateintsum=0,k2cpt=0;      k4=func(p2)-fx;
   FILE *ficresp;      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
   char fileresp[FILENAMELENGTH];  #ifdef DEBUG
         printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   pp=vector(1,nlstate);      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   prop=matrix(1,nlstate,iagemin,iagemax+3);  #endif
   strcpy(fileresp,"p");    }
   strcat(fileresp,fileres);    return res;
   if((ficresp=fopen(fileresp,"w"))==NULL) {  }
     printf("Problem with prevalence resultfile: %s\n", fileresp);  
     fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);  /************** Inverse of matrix **************/
     exit(0);  void ludcmp(double **a, int n, int *indx, double *d)
   }  {
   freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);    int i,imax,j,k;
   j1=0;    double big,dum,sum,temp;
       double *vv;
   j=cptcoveff;   
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    vv=vector(1,n);
     *d=1.0;
   first=1;    for (i=1;i<=n;i++) {
       big=0.0;
   for(k1=1; k1<=j;k1++){      for (j=1;j<=n;j++)
     for(i1=1; i1<=ncodemax[k1];i1++){        if ((temp=fabs(a[i][j])) > big) big=temp;
       j1++;      if (big == 0.0) nrerror("Singular matrix in routine ludcmp");
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);      vv[i]=1.0/big;
         scanf("%d", i);*/    }
       for (i=-5; i<=nlstate+ndeath; i++)      for (j=1;j<=n;j++) {
         for (jk=-5; jk<=nlstate+ndeath; jk++)        for (i=1;i<j;i++) {
           for(m=iagemin; m <= iagemax+3; m++)        sum=a[i][j];
             freq[i][jk][m]=0;        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];
         a[i][j]=sum;
     for (i=1; i<=nlstate; i++)        }
       for(m=iagemin; m <= iagemax+3; m++)      big=0.0;
         prop[i][m]=0;      for (i=j;i<=n;i++) {
               sum=a[i][j];
       dateintsum=0;        for (k=1;k<j;k++)
       k2cpt=0;          sum -= a[i][k]*a[k][j];
       for (i=1; i<=imx; i++) {        a[i][j]=sum;
         bool=1;        if ( (dum=vv[i]*fabs(sum)) >= big) {
         if  (cptcovn>0) {          big=dum;
           for (z1=1; z1<=cptcoveff; z1++)           imax=i;
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])         }
               bool=0;      }
         }      if (j != imax) {
         if (bool==1){        for (k=1;k<=n;k++) {
           for(m=firstpass; m<=lastpass; m++){          dum=a[imax][k];
             k2=anint[m][i]+(mint[m][i]/12.);          a[imax][k]=a[j][k];
             /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/          a[j][k]=dum;
               if(agev[m][i]==0) agev[m][i]=iagemax+1;        }
               if(agev[m][i]==1) agev[m][i]=iagemax+2;        *d = -(*d);
               if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];        vv[imax]=vv[j];
               if (m<lastpass) {      }
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];      indx[j]=imax;
                 freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];      if (a[j][j] == 0.0) a[j][j]=TINY;
               }      if (j != n) {
                       dum=1.0/(a[j][j]);
               if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {        for (i=j+1;i<=n;i++) a[i][j] *= dum;
                 dateintsum=dateintsum+k2;      }
                 k2cpt++;    }
               }    free_vector(vv,1,n);  /* Doesn't work */
               /*}*/  ;
           }  }
         }  
       }  void lubksb(double **a, int n, int *indx, double b[])
          {
       /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/    int i,ii=0,ip,j;
 fprintf(ficresp, "#Local time at start: %s", strstart);    double sum;
       if  (cptcovn>0) {   
         fprintf(ficresp, "\n#********** Variable ");     for (i=1;i<=n;i++) {
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);      ip=indx[i];
         fprintf(ficresp, "**********\n#");      sum=b[ip];
       }      b[ip]=b[i];
       for(i=1; i<=nlstate;i++)       if (ii)
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];
       fprintf(ficresp, "\n");      else if (sum) ii=i;
             b[i]=sum;
       for(i=iagemin; i <= iagemax+3; i++){    }
         if(i==iagemax+3){    for (i=n;i>=1;i--) {
           fprintf(ficlog,"Total");      sum=b[i];
         }else{      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];
           if(first==1){      b[i]=sum/a[i][i];
             first=0;    }
             printf("See log file for details...\n");  }
           }  
           fprintf(ficlog,"Age %d", i);  void pstamp(FILE *fichier)
         }  {
         for(jk=1; jk <=nlstate ; jk++){    fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)  }
             pp[jk] += freq[jk][m][i];   
         }  /************ Frequencies ********************/
         for(jk=1; jk <=nlstate ; jk++){  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
           for(m=-1, pos=0; m <=0 ; m++)  {  /* Some frequencies */
             pos += freq[jk][m][i];   
           if(pp[jk]>=1.e-10){    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
             if(first==1){    int first;
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);    double ***freq; /* Frequencies */
             }    double *pp, **prop;
             fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);    double pos,posprop, k2, dateintsum=0,k2cpt=0;
           }else{    char fileresp[FILENAMELENGTH];
             if(first==1)   
               printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);    pp=vector(1,nlstate);
             fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);    prop=matrix(1,nlstate,iagemin,iagemax+3);
           }    strcpy(fileresp,"p");
         }    strcat(fileresp,fileres);
     if((ficresp=fopen(fileresp,"w"))==NULL) {
         for(jk=1; jk <=nlstate ; jk++){      printf("Problem with prevalence resultfile: %s\n", fileresp);
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
             pp[jk] += freq[jk][m][i];      exit(0);
         }           }
         for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
           pos += pp[jk];    j1=0;
           posprop += prop[jk][i];   
         }    j=cptcoveff;
         for(jk=1; jk <=nlstate ; jk++){    if (cptcovn<1) {j=1;ncodemax[1]=1;}
           if(pos>=1.e-5){  
             if(first==1)    first=1;
               printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);  
             fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);    for(k1=1; k1<=j;k1++){
           }else{      for(i1=1; i1<=ncodemax[k1];i1++){
             if(first==1)        j1++;
               printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
             fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);          scanf("%d", i);*/
           }        for (i=-5; i<=nlstate+ndeath; i++)  
           if( i <= iagemax){          for (jk=-5; jk<=nlstate+ndeath; jk++)  
             if(pos>=1.e-5){            for(m=iagemin; m <= iagemax+3; m++)
               fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);              freq[i][jk][m]=0;
               /*probs[i][jk][j1]= pp[jk]/pos;*/  
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/      for (i=1; i<=nlstate; i++)  
             }        for(m=iagemin; m <= iagemax+3; m++)
             else          prop[i][m]=0;
               fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);       
           }        dateintsum=0;
         }        k2cpt=0;
                 for (i=1; i<=imx; i++) {
         for(jk=-1; jk <=nlstate+ndeath; jk++)          bool=1;
           for(m=-1; m <=nlstate+ndeath; m++)          if  (cptcovn>0) {
             if(freq[jk][m][i] !=0 ) {            for (z1=1; z1<=cptcoveff; z1++)
             if(first==1)              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])
               printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);                bool=0;
               fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);          }
             }          if (bool==1){
         if(i <= iagemax)            for(m=firstpass; m<=lastpass; m++){
           fprintf(ficresp,"\n");              k2=anint[m][i]+(mint[m][i]/12.);
         if(first==1)              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
           printf("Others in log...\n");                if(agev[m][i]==0) agev[m][i]=iagemax+1;
         fprintf(ficlog,"\n");                if(agev[m][i]==1) agev[m][i]=iagemax+2;
       }                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
     }                if (m<lastpass) {
   }                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
   dateintmean=dateintsum/k2cpt;                   freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
                  }
   fclose(ficresp);               
   free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
   free_vector(pp,1,nlstate);                  dateintsum=dateintsum+k2;
   free_matrix(prop,1,nlstate,iagemin, iagemax+3);                  k2cpt++;
   /* End of Freq */                }
 }                /*}*/
             }
 /************ Prevalence ********************/          }
 void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)        }
 {           
   /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
      in each health status at the date of interview (if between dateprev1 and dateprev2).        pstamp(ficresp);
      We still use firstpass and lastpass as another selection.        if  (cptcovn>0) {
   */          fprintf(ficresp, "\n#********** Variable ");
            for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;          fprintf(ficresp, "**********\n#");
   double ***freq; /* Frequencies */        }
   double *pp, **prop;        for(i=1; i<=nlstate;i++)
   double pos,posprop;           fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
   double  y2; /* in fractional years */        fprintf(ficresp, "\n");
   int iagemin, iagemax;       
         for(i=iagemin; i <= iagemax+3; i++){
   iagemin= (int) agemin;          if(i==iagemax+3){
   iagemax= (int) agemax;            fprintf(ficlog,"Total");
   /*pp=vector(1,nlstate);*/          }else{
   prop=matrix(1,nlstate,iagemin,iagemax+3);             if(first==1){
   /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/              first=0;
   j1=0;              printf("See log file for details...\n");
               }
   j=cptcoveff;            fprintf(ficlog,"Age %d", i);
   if (cptcovn<1) {j=1;ncodemax[1]=1;}          }
             for(jk=1; jk <=nlstate ; jk++){
   for(k1=1; k1<=j;k1++){            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
     for(i1=1; i1<=ncodemax[k1];i1++){              pp[jk] += freq[jk][m][i];
       j1++;          }
                 for(jk=1; jk <=nlstate ; jk++){
       for (i=1; i<=nlstate; i++)              for(m=-1, pos=0; m <=0 ; m++)
         for(m=iagemin; m <= iagemax+3; m++)              pos += freq[jk][m][i];
           prop[i][m]=0.0;            if(pp[jk]>=1.e-10){
                    if(first==1){
       for (i=1; i<=imx; i++) { /* Each individual */              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
         bool=1;              }
         if  (cptcovn>0) {              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
           for (z1=1; z1<=cptcoveff; z1++)             }else{
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])               if(first==1)
               bool=0;                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
         }               fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
         if (bool==1) {             }
           for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/          }
             y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */  
             if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */          for(jk=1; jk <=nlstate ; jk++){
               if(agev[m][i]==0) agev[m][i]=iagemax+1;            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
               if(agev[m][i]==1) agev[m][i]=iagemax+2;              pp[jk] += freq[jk][m][i];
               if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m);           }      
               if (s[m][i]>0 && s[m][i]<=nlstate) {           for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
                 /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/            pos += pp[jk];
                 prop[s[m][i]][(int)agev[m][i]] += weight[i];            posprop += prop[jk][i];
                 prop[s[m][i]][iagemax+3] += weight[i];           }
               }           for(jk=1; jk <=nlstate ; jk++){
             }            if(pos>=1.e-5){
           } /* end selection of waves */              if(first==1)
         }                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
       }              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
       for(i=iagemin; i <= iagemax+3; i++){              }else{
                       if(first==1)
         for(jk=1,posprop=0; jk <=nlstate ; jk++) {                 printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
           posprop += prop[jk][i];               fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
         }             }
             if( i <= iagemax){
         for(jk=1; jk <=nlstate ; jk++){                   if(pos>=1.e-5){
           if( i <=  iagemax){                 fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
             if(posprop>=1.e-5){                 /*probs[i][jk][j1]= pp[jk]/pos;*/
               probs[i][jk][j1]= prop[jk][i]/posprop;                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
             }               }
           }               else
         }/* end jk */                 fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
       }/* end i */             }
     } /* end i1 */          }
   } /* end k1 */         
             for(jk=-1; jk <=nlstate+ndeath; jk++)
   /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/            for(m=-1; m <=nlstate+ndeath; m++)
   /*free_vector(pp,1,nlstate);*/              if(freq[jk][m][i] !=0 ) {
   free_matrix(prop,1,nlstate, iagemin,iagemax+3);              if(first==1)
 }  /* End of prevalence */                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
                 fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
 /************* Waves Concatenation ***************/              }
           if(i <= iagemax)
 void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)            fprintf(ficresp,"\n");
 {          if(first==1)
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.            printf("Others in log...\n");
      Death is a valid wave (if date is known).          fprintf(ficlog,"\n");
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i        }
      dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]      }
      and mw[mi+1][i]. dh depends on stepm.    }
      */    dateintmean=dateintsum/k2cpt;
    
   int i, mi, m;    fclose(ficresp);
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
      double sum=0., jmean=0.;*/    free_vector(pp,1,nlstate);
   int first;    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
   int j, k=0,jk, ju, jl;    /* End of Freq */
   double sum=0.;  }
   first=0;  
   jmin=1e+5;  /************ Prevalence ********************/
   jmax=-1;  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
   jmean=0.;  {  
   for(i=1; i<=imx; i++){    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
     mi=0;       in each health status at the date of interview (if between dateprev1 and dateprev2).
     m=firstpass;       We still use firstpass and lastpass as another selection.
     while(s[m][i] <= nlstate){    */
       if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)   
         mw[++mi][i]=m;    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
       if(m >=lastpass)    double ***freq; /* Frequencies */
         break;    double *pp, **prop;
       else    double pos,posprop;
         m++;    double  y2; /* in fractional years */
     }/* end while */    int iagemin, iagemax;
     if (s[m][i] > nlstate){  
       mi++;     /* Death is another wave */    iagemin= (int) agemin;
       /* if(mi==0)  never been interviewed correctly before death */    iagemax= (int) agemax;
          /* Only death is a correct wave */    /*pp=vector(1,nlstate);*/
       mw[mi][i]=m;    prop=matrix(1,nlstate,iagemin,iagemax+3);
     }    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
     j1=0;
     wav[i]=mi;   
     if(mi==0){    j=cptcoveff;
       nbwarn++;    if (cptcovn<1) {j=1;ncodemax[1]=1;}
       if(first==0){   
         printf("Warning! None valid information for:%ld line=%d (skipped) and may be others, see log file\n",num[i],i);    for(k1=1; k1<=j;k1++){
         first=1;      for(i1=1; i1<=ncodemax[k1];i1++){
       }        j1++;
       if(first==1){       
         fprintf(ficlog,"Warning! None valid information for:%ld line=%d (skipped)\n",num[i],i);        for (i=1; i<=nlstate; i++)  
       }          for(m=iagemin; m <= iagemax+3; m++)
     } /* end mi==0 */            prop[i][m]=0.0;
   } /* End individuals */       
         for (i=1; i<=imx; i++) { /* Each individual */
   for(i=1; i<=imx; i++){          bool=1;
     for(mi=1; mi<wav[i];mi++){          if  (cptcovn>0) {
       if (stepm <=0)            for (z1=1; z1<=cptcoveff; z1++)
         dh[mi][i]=1;              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])
       else{                bool=0;
         if (s[mw[mi+1][i]][i] > nlstate) { /* A death */          }
           if (agedc[i] < 2*AGESUP) {          if (bool==1) {
             j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);             for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
             if(j==0) j=1;  /* Survives at least one month after exam */              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
             else if(j<0){              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
               nberr++;                if(agev[m][i]==0) agev[m][i]=iagemax+1;
               printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
               j=1; /* Temporary Dangerous patch */                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m);
               printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);                if (s[m][i]>0 && s[m][i]<=nlstate) {
               fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
               fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
             }                  prop[s[m][i]][iagemax+3] += weight[i];
             k=k+1;                }
             if (j >= jmax){              }
               jmax=j;            } /* end selection of waves */
               ijmax=i;          }
             }        }
             if (j <= jmin){        for(i=iagemin; i <= iagemax+3; i++){  
               jmin=j;         
               ijmin=i;          for(jk=1,posprop=0; jk <=nlstate ; jk++) {
             }            posprop += prop[jk][i];
             sum=sum+j;          }
             /*if (j<0) printf("j=%d num=%d \n",j,i);*/  
             /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/          for(jk=1; jk <=nlstate ; jk++){    
           }            if( i <=  iagemax){
         }              if(posprop>=1.e-5){
         else{                probs[i][jk][j1]= prop[jk][i]/posprop;
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));              }
 /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */            }
           }/* end jk */
           k=k+1;        }/* end i */
           if (j >= jmax) {      } /* end i1 */
             jmax=j;    } /* end k1 */
             ijmax=i;   
           }    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
           else if (j <= jmin){    /*free_vector(pp,1,nlstate);*/
             jmin=j;    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
             ijmin=i;  }  /* End of prevalence */
           }  
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */  /************* Waves Concatenation ***************/
           /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/  
           if(j<0){  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
             nberr++;  {
             printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
             fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);       Death is a valid wave (if date is known).
           }       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
           sum=sum+j;       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
         }       and mw[mi+1][i]. dh depends on stepm.
         jk= j/stepm;       */
         jl= j -jk*stepm;  
         ju= j -(jk+1)*stepm;    int i, mi, m;
         if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
           if(jl==0){       double sum=0., jmean=0.;*/
             dh[mi][i]=jk;    int first;
             bh[mi][i]=0;    int j, k=0,jk, ju, jl;
           }else{ /* We want a negative bias in order to only have interpolation ie    double sum=0.;
                   * at the price of an extra matrix product in likelihood */    first=0;
             dh[mi][i]=jk+1;    jmin=1e+5;
             bh[mi][i]=ju;    jmax=-1;
           }    jmean=0.;
         }else{    for(i=1; i<=imx; i++){
           if(jl <= -ju){      mi=0;
             dh[mi][i]=jk;      m=firstpass;
             bh[mi][i]=jl;       /* bias is positive if real duration      while(s[m][i] <= nlstate){
                                  * is higher than the multiple of stepm and negative otherwise.        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
                                  */          mw[++mi][i]=m;
           }        if(m >=lastpass)
           else{          break;
             dh[mi][i]=jk+1;        else
             bh[mi][i]=ju;          m++;
           }      }/* end while */
           if(dh[mi][i]==0){      if (s[m][i] > nlstate){
             dh[mi][i]=1; /* At least one step */        mi++;     /* Death is another wave */
             bh[mi][i]=ju; /* At least one step */        /* if(mi==0)  never been interviewed correctly before death */
             /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/           /* Only death is a correct wave */
           }        mw[mi][i]=m;
         } /* end if mle */      }
       }  
     } /* end wave */      wav[i]=mi;
   }      if(mi==0){
   jmean=sum/k;        nbwarn++;
   printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);        if(first==0){
   fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
  }          first=1;
         }
 /*********** Tricode ****************************/        if(first==1){
 void tricode(int *Tvar, int **nbcode, int imx)          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
 {        }
         } /* end mi==0 */
   int Ndum[20],ij=1, k, j, i, maxncov=19;    } /* End individuals */
   int cptcode=0;  
   cptcoveff=0;     for(i=1; i<=imx; i++){
        for(mi=1; mi<wav[i];mi++){
   for (k=0; k<maxncov; k++) Ndum[k]=0;        if (stepm <=0)
   for (k=1; k<=7; k++) ncodemax[k]=0;          dh[mi][i]=1;
         else{
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
     for (i=1; i<=imx; i++) { /*reads the data file to get the maximum             if (agedc[i] < 2*AGESUP) {
                                modality*/               j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);
       ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/              if(j==0) j=1;  /* Survives at least one month after exam */
       Ndum[ij]++; /*store the modality */              else if(j<0){
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/                nberr++;
       if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable                 printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                                        Tvar[j]. If V=sex and male is 0 and                 j=1; /* Temporary Dangerous patch */
                                        female is 1, then  cptcode=1.*/                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
     }                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                 fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
     for (i=0; i<=cptcode; i++) {              }
       if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */              k=k+1;
     }              if (j >= jmax){
                 jmax=j;
     ij=1;                 ijmax=i;
     for (i=1; i<=ncodemax[j]; i++) {              }
       for (k=0; k<= maxncov; k++) {              if (j <= jmin){
         if (Ndum[k] != 0) {                jmin=j;
           nbcode[Tvar[j]][ij]=k;                 ijmin=i;
           /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */              }
                         sum=sum+j;
           ij++;              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
         }              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
         if (ij > ncodemax[j]) break;             }
       }            }
     }           else{
   }              j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
   /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
  for (k=0; k< maxncov; k++) Ndum[k]=0;  
             k=k+1;
  for (i=1; i<=ncovmodel-2; i++) {             if (j >= jmax) {
    /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/              jmax=j;
    ij=Tvar[i];              ijmax=i;
    Ndum[ij]++;            }
  }            else if (j <= jmin){
               jmin=j;
  ij=1;              ijmin=i;
  for (i=1; i<= maxncov; i++) {            }
    if((Ndum[i]!=0) && (i<=ncovcol)){            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
      Tvaraff[ij]=i; /*For printing */            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
      ij++;            if(j<0){
    }              nberr++;
  }              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
  cptcoveff=ij-1; /*Number of simple covariates*/            }
 }            sum=sum+j;
           }
 /*********** Health Expectancies ****************/          jk= j/stepm;
           jl= j -jk*stepm;
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov,char strstart[] )          ju= j -(jk+1)*stepm;
           if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
 {            if(jl==0){
   /* Health expectancies */              dh[mi][i]=jk;
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;              bh[mi][i]=0;
   double age, agelim, hf;            }else{ /* We want a negative bias in order to only have interpolation ie
   double ***p3mat,***varhe;                    * at the price of an extra matrix product in likelihood */
   double **dnewm,**doldm;              dh[mi][i]=jk+1;
   double *xp;              bh[mi][i]=ju;
   double **gp, **gm;            }
   double ***gradg, ***trgradg;          }else{
   int theta;            if(jl <= -ju){
               dh[mi][i]=jk;
   varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);              bh[mi][i]=jl;       /* bias is positive if real duration
   xp=vector(1,npar);                                   * is higher than the multiple of stepm and negative otherwise.
   dnewm=matrix(1,nlstate*nlstate,1,npar);                                   */
   doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);            }
               else{
   fprintf(ficreseij,"# Local time at start: %s", strstart);              dh[mi][i]=jk+1;
   fprintf(ficreseij,"# Health expectancies\n");              bh[mi][i]=ju;
   fprintf(ficreseij,"# Age");            }
   for(i=1; i<=nlstate;i++)            if(dh[mi][i]==0){
     for(j=1; j<=nlstate;j++)              dh[mi][i]=1; /* At least one step */
       fprintf(ficreseij," %1d-%1d (SE)",i,j);              bh[mi][i]=ju; /* At least one step */
   fprintf(ficreseij,"\n");              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
             }
   if(estepm < stepm){          } /* end if mle */
     printf ("Problem %d lower than %d\n",estepm, stepm);        }
   }      } /* end wave */
   else  hstepm=estepm;       }
   /* We compute the life expectancy from trapezoids spaced every estepm months    jmean=sum/k;
    * This is mainly to measure the difference between two models: for example    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
    * if stepm=24 months pijx are given only every 2 years and by summing them    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
    * we are calculating an estimate of the Life Expectancy assuming a linear    }
    * progression in between and thus overestimating or underestimating according  
    * to the curvature of the survival function. If, for the same date, we   /*********** Tricode ****************************/
    * estimate the model with stepm=1 month, we can keep estepm to 24 months  void tricode(int *Tvar, int **nbcode, int imx)
    * to compare the new estimate of Life expectancy with the same linear   {
    * hypothesis. A more precise result, taking into account a more precise   
    * curvature will be obtained if estepm is as small as stepm. */    int Ndum[20],ij=1, k, j, i, maxncov=19;
     int cptcode=0;
   /* For example we decided to compute the life expectancy with the smallest unit */    cptcoveff=0;
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.    
      nhstepm is the number of hstepm from age to agelim     for (k=0; k<maxncov; k++) Ndum[k]=0;
      nstepm is the number of stepm from age to agelin.     for (k=1; k<=7; k++) ncodemax[k]=0;
      Look at hpijx to understand the reason of that which relies in memory size  
      and note for a fixed period like estepm months */    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum
      survival function given by stepm (the optimization length). Unfortunately it                                 modality*/
      means that if the survival funtion is printed only each two years of age and if        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
      you sum them up and add 1 year (area under the trapezoids) you won't get the same         Ndum[ij]++; /*store the modality */
      results. So we changed our mind and took the option of the best precision.        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
   */        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */                                          Tvar[j]. If V=sex and male is 0 and
                                          female is 1, then  cptcode=1.*/
   agelim=AGESUP;      }
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */  
     /* nhstepm age range expressed in number of stepm */      for (i=0; i<=cptcode; i++) {
     nstepm=(int) rint((agelim-age)*YEARM/stepm);         if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */       }
     /* if (stepm >= YEARM) hstepm=1;*/  
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */      ij=1;
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      for (i=1; i<=ncodemax[j]; i++) {
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);        for (k=0; k<= maxncov; k++) {
     gp=matrix(0,nhstepm,1,nlstate*nlstate);          if (Ndum[k] != 0) {
     gm=matrix(0,nhstepm,1,nlstate*nlstate);            nbcode[Tvar[j]][ij]=k;
             /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
     /* Computed by stepm unit matrices, product of hstepm matrices, stored           
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */            ij++;
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);            }
            if (ij > ncodemax[j]) break;
         }  
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */      }
     }  
     /* Computing  Variances of health expectancies */  
    for (k=0; k< maxncov; k++) Ndum[k]=0;
      for(theta=1; theta <=npar; theta++){  
       for(i=1; i<=npar; i++){    for (i=1; i<=ncovmodel-2; i++) {
         xp[i] = x[i] + (i==theta ?delti[theta]:0);     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
       }     ij=Tvar[i];
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);       Ndum[ij]++;
      }
       cptj=0;  
       for(j=1; j<= nlstate; j++){   ij=1;
         for(i=1; i<=nlstate; i++){   for (i=1; i<= maxncov; i++) {
           cptj=cptj+1;     if((Ndum[i]!=0) && (i<=ncovcol)){
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){       Tvaraff[ij]=i; /*For printing */
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;       ij++;
           }     }
         }   }
       }   
         cptcoveff=ij-1; /*Number of simple covariates*/
        }
       for(i=1; i<=npar; i++)   
         xp[i] = x[i] - (i==theta ?delti[theta]:0);  /*********** Health Expectancies ****************/
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);    
         void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
       cptj=0;  
       for(j=1; j<= nlstate; j++){  {
         for(i=1;i<=nlstate;i++){    /* Health expectancies, no variances */
           cptj=cptj+1;    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){    double age, agelim, hf;
     double ***p3mat;
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;    double eip;
           }  
         }    pstamp(ficreseij);
       }    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
       for(j=1; j<= nlstate*nlstate; j++)    fprintf(ficreseij,"# Age");
         for(h=0; h<=nhstepm-1; h++){    for(i=1; i<=nlstate;i++){
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];      for(j=1; j<=nlstate;j++){
         }        fprintf(ficreseij," e%1d%1d ",i,j);
      }       }
          fprintf(ficreseij," e%1d. ",i);
 /* End theta */    }
     fprintf(ficreseij,"\n");
      trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);  
    
      for(h=0; h<=nhstepm-1; h++)    if(estepm < stepm){
       for(j=1; j<=nlstate*nlstate;j++)      printf ("Problem %d lower than %d\n",estepm, stepm);
         for(theta=1; theta <=npar; theta++)    }
           trgradg[h][j][theta]=gradg[h][theta][j];    else  hstepm=estepm;  
          /* We compute the life expectancy from trapezoids spaced every estepm months
      * This is mainly to measure the difference between two models: for example
      for(i=1;i<=nlstate*nlstate;i++)     * if stepm=24 months pijx are given only every 2 years and by summing them
       for(j=1;j<=nlstate*nlstate;j++)     * we are calculating an estimate of the Life Expectancy assuming a linear
         varhe[i][j][(int)age] =0.;     * progression in between and thus overestimating or underestimating according
      * to the curvature of the survival function. If, for the same date, we
      printf("%d|",(int)age);fflush(stdout);     * estimate the model with stepm=1 month, we can keep estepm to 24 months
      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);     * to compare the new estimate of Life expectancy with the same linear
      for(h=0;h<=nhstepm-1;h++){     * hypothesis. A more precise result, taking into account a more precise
       for(k=0;k<=nhstepm-1;k++){     * curvature will be obtained if estepm is as small as stepm. */
         matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);  
         matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);    /* For example we decided to compute the life expectancy with the smallest unit */
         for(i=1;i<=nlstate*nlstate;i++)    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.
           for(j=1;j<=nlstate*nlstate;j++)       nhstepm is the number of hstepm from age to agelim
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;       nstepm is the number of stepm from age to agelin.
       }       Look at hpijx to understand the reason of that which relies in memory size
     }       and note for a fixed period like estepm months */
     /* Computing expectancies */    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
     for(i=1; i<=nlstate;i++)       survival function given by stepm (the optimization length). Unfortunately it
       for(j=1; j<=nlstate;j++)       means that if the survival funtion is printed only each two years of age and if
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){       you sum them up and add 1 year (area under the trapezoids) you won't get the same
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;       results. So we changed our mind and took the option of the best precision.
               */
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */
   
         }    agelim=AGESUP;
     /* If stepm=6 months */
     fprintf(ficreseij,"%3.0f",age );      /* Computed by stepm unit matrices, product of hstepm matrices, stored
     cptj=0;         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
     for(i=1; i<=nlstate;i++)     
       for(j=1; j<=nlstate;j++){  /* nhstepm age range expressed in number of stepm */
         cptj++;    nstepm=(int) rint((agelim-bage)*YEARM/stepm);
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );    /* Typically if 20 years nstepm = 20*12/6=40 stepm */
       }    /* if (stepm >= YEARM) hstepm=1;*/
     fprintf(ficreseij,"\n");    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
        p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     free_matrix(gm,0,nhstepm,1,nlstate*nlstate);  
     free_matrix(gp,0,nhstepm,1,nlstate*nlstate);    for (age=bage; age<=fage; age ++){
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);  
     free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);  
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
   }     
   printf("\n");      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   fprintf(ficlog,"\n");     
       printf("%d|",(int)age);fflush(stdout);
   free_vector(xp,1,npar);      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
   free_matrix(dnewm,1,nlstate*nlstate,1,npar);     
   free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);  
   free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);      /* Computing expectancies */
 }      for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++)
 /************ Variance ******************/          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
 void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
 {           
   /* Variance of health expectancies */            /*if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/  
   /* double **newm;*/          }
   double **dnewm,**doldm;     
   double **dnewmp,**doldmp;      fprintf(ficreseij,"%3.0f",age );
   int i, j, nhstepm, hstepm, h, nstepm ;      for(i=1; i<=nlstate;i++){
   int k, cptcode;        eip=0;
   double *xp;        for(j=1; j<=nlstate;j++){
   double **gp, **gm;  /* for var eij */          eip +=eij[i][j][(int)age];
   double ***gradg, ***trgradg; /*for var eij */          fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
   double **gradgp, **trgradgp; /* for var p point j */        }
   double *gpp, *gmp; /* for var p point j */        fprintf(ficreseij,"%9.4f", eip );
   double **varppt; /* for var p point j nlstate to nlstate+ndeath */      }
   double ***p3mat;      fprintf(ficreseij,"\n");
   double age,agelim, hf;     
   double ***mobaverage;    }
   int theta;    free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   char digit[4];    printf("\n");
   char digitp[25];    fprintf(ficlog,"\n");
    
   char fileresprobmorprev[FILENAMELENGTH];  }
   
   if(popbased==1){  void cvevsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
     if(mobilav!=0)  
       strcpy(digitp,"-populbased-mobilav-");  {
     else strcpy(digitp,"-populbased-nomobil-");    /* Covariances of health expectancies eij and of total life expectancies according
   }     to initial status i, ei. .
   else     */
     strcpy(digitp,"-stablbased-");    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
     double age, agelim, hf;
   if (mobilav!=0) {    double ***p3matp, ***p3matm, ***varhe;
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    double **dnewm,**doldm;
     if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){    double *xp, *xm;
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);    double **gp, **gm;
       printf(" Error in movingaverage mobilav=%d\n",mobilav);    double ***gradg, ***trgradg;
     }    int theta;
   }  
     double eip, vip;
   strcpy(fileresprobmorprev,"prmorprev");   
   sprintf(digit,"%-d",ij);    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
   /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/    xp=vector(1,npar);
   strcat(fileresprobmorprev,digit); /* Tvar to be done */    xm=vector(1,npar);
   strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */    dnewm=matrix(1,nlstate*nlstate,1,npar);
   strcat(fileresprobmorprev,fileres);    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
   if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {   
     printf("Problem with resultfile: %s\n", fileresprobmorprev);    pstamp(ficresstdeij);
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);    fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
   }    fprintf(ficresstdeij,"# Age");
   printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);    for(i=1; i<=nlstate;i++){
        for(j=1; j<=nlstate;j++)
   fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);        fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
   fprintf(ficresprobmorprev, "#Local time at start: %s", strstart);      fprintf(ficresstdeij," e%1d. ",i);
   fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);    }
   fprintf(ficresprobmorprev,"# Age cov=%-d",ij);    fprintf(ficresstdeij,"\n");
   for(j=nlstate+1; j<=(nlstate+ndeath);j++){  
     fprintf(ficresprobmorprev," p.%-d SE",j);    pstamp(ficrescveij);
     for(i=1; i<=nlstate;i++)    fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
       fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);    fprintf(ficrescveij,"# Age");
   }      for(i=1; i<=nlstate;i++)
   fprintf(ficresprobmorprev,"\n");      for(j=1; j<=nlstate;j++){
   fprintf(ficgp,"\n# Routine varevsij");        cptj= (j-1)*nlstate+i;
   /* fprintf(fichtm, "#Local time at start: %s", strstart);*/        for(i2=1; i2<=nlstate;i2++)
   fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");          for(j2=1; j2<=nlstate;j2++){
   fprintf(fichtm,"\n<br>%s  <br>\n",digitp);            cptj2= (j2-1)*nlstate+i2;
 /*   } */            if(cptj2 <= cptj)
   varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);              fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
  fprintf(ficresvij, "#Local time at start: %s", strstart);          }
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");      }
   fprintf(ficresvij,"# Age");    fprintf(ficrescveij,"\n");
   for(i=1; i<=nlstate;i++)   
     for(j=1; j<=nlstate;j++)    if(estepm < stepm){
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);      printf ("Problem %d lower than %d\n",estepm, stepm);
   fprintf(ficresvij,"\n");    }
     else  hstepm=estepm;  
   xp=vector(1,npar);    /* We compute the life expectancy from trapezoids spaced every estepm months
   dnewm=matrix(1,nlstate,1,npar);     * This is mainly to measure the difference between two models: for example
   doldm=matrix(1,nlstate,1,nlstate);     * if stepm=24 months pijx are given only every 2 years and by summing them
   dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);     * we are calculating an estimate of the Life Expectancy assuming a linear
   doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);     * progression in between and thus overestimating or underestimating according
      * to the curvature of the survival function. If, for the same date, we
   gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);     * estimate the model with stepm=1 month, we can keep estepm to 24 months
   gpp=vector(nlstate+1,nlstate+ndeath);     * to compare the new estimate of Life expectancy with the same linear
   gmp=vector(nlstate+1,nlstate+ndeath);     * hypothesis. A more precise result, taking into account a more precise
   trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/     * curvature will be obtained if estepm is as small as stepm. */
     
   if(estepm < stepm){    /* For example we decided to compute the life expectancy with the smallest unit */
     printf ("Problem %d lower than %d\n",estepm, stepm);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.
   }       nhstepm is the number of hstepm from age to agelim
   else  hstepm=estepm;          nstepm is the number of stepm from age to agelin.
   /* For example we decided to compute the life expectancy with the smallest unit */       Look at hpijx to understand the reason of that which relies in memory size
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.        and note for a fixed period like estepm months */
      nhstepm is the number of hstepm from age to agelim     /* We decided (b) to get a life expectancy respecting the most precise curvature of the
      nstepm is the number of stepm from age to agelin.        survival function given by stepm (the optimization length). Unfortunately it
      Look at hpijx to understand the reason of that which relies in memory size       means that if the survival funtion is printed only each two years of age and if
      and note for a fixed period like k years */       you sum them up and add 1 year (area under the trapezoids) you won't get the same
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the       results. So we changed our mind and took the option of the best precision.
      survival function given by stepm (the optimization length). Unfortunately it    */
      means that if the survival funtion is printed every two years of age and if    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */
      you sum them up and add 1 year (area under the trapezoids) you won't get the same   
      results. So we changed our mind and took the option of the best precision.    /* If stepm=6 months */
   */    /* nhstepm age range expressed in number of stepm */
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */     agelim=AGESUP;
   agelim = AGESUP;    nstepm=(int) rint((agelim-bage)*YEARM/stepm);
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    /* Typically if 20 years nstepm = 20*12/6=40 stepm */
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */     /* if (stepm >= YEARM) hstepm=1;*/
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);   
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);    p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     gp=matrix(0,nhstepm,1,nlstate);    p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     gm=matrix(0,nhstepm,1,nlstate);    gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
     trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
     gp=matrix(0,nhstepm,1,nlstate*nlstate);
     for(theta=1; theta <=npar; theta++){    gm=matrix(0,nhstepm,1,nlstate*nlstate);
       for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/  
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    for (age=bage; age<=fage; age ++){
       }  
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        /* Computed by stepm unit matrices, product of hstepm matrices, stored
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
    
       if (popbased==1) {      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
         if(mobilav ==0){  
           for(i=1; i<=nlstate;i++)      /* Computing  Variances of health expectancies */
             prlim[i][i]=probs[(int)age][i][ij];      /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
         }else{ /* mobilav */          decrease memory allocation */
           for(i=1; i<=nlstate;i++)      for(theta=1; theta <=npar; theta++){
             prlim[i][i]=mobaverage[(int)age][i][ij];        for(i=1; i<=npar; i++){
         }          xp[i] = x[i] + (i==theta ?delti[theta]:0);
       }          xm[i] = x[i] - (i==theta ?delti[theta]:0);
           }
       for(j=1; j<= nlstate; j++){        hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
         for(h=0; h<=nhstepm; h++){        hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)   
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];        for(j=1; j<= nlstate; j++){
         }          for(i=1; i<=nlstate; i++){
       }            for(h=0; h<=nhstepm-1; h++){
       /* This for computing probability of death (h=1 means              gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
          computed over hstepm matrices product = hstepm*stepm months)               gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
          as a weighted average of prlim.            }
       */          }
       for(j=nlstate+1;j<=nlstate+ndeath;j++){        }
         for(i=1,gpp[j]=0.; i<= nlstate; i++)       
           gpp[j] += prlim[i][i]*p3mat[i][j][1];        for(ij=1; ij<= nlstate*nlstate; ij++)
       }              for(h=0; h<=nhstepm-1; h++){
       /* end probability of death */            gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
           }
       for(i=1; i<=npar; i++) /* Computes gradient x - delta */      }/* End theta */
         xp[i] = x[i] - (i==theta ?delti[theta]:0);     
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);       
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      for(h=0; h<=nhstepm-1; h++)
          for(j=1; j<=nlstate*nlstate;j++)
       if (popbased==1) {          for(theta=1; theta <=npar; theta++)
         if(mobilav ==0){            trgradg[h][j][theta]=gradg[h][theta][j];
           for(i=1; i<=nlstate;i++)     
             prlim[i][i]=probs[(int)age][i][ij];  
         }else{ /* mobilav */        for(ij=1;ij<=nlstate*nlstate;ij++)
           for(i=1; i<=nlstate;i++)        for(ji=1;ji<=nlstate*nlstate;ji++)
             prlim[i][i]=mobaverage[(int)age][i][ij];          varhe[ij][ji][(int)age] =0.;
         }  
       }       printf("%d|",(int)age);fflush(stdout);
        fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
       for(j=1; j<= nlstate; j++){       for(h=0;h<=nhstepm-1;h++){
         for(h=0; h<=nhstepm; h++){        for(k=0;k<=nhstepm-1;k++){
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
         }          for(ij=1;ij<=nlstate*nlstate;ij++)
       }            for(ji=1;ji<=nlstate*nlstate;ji++)
       /* This for computing probability of death (h=1 means              varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
          computed over hstepm matrices product = hstepm*stepm months)         }
          as a weighted average of prlim.      }
       */  
       for(j=nlstate+1;j<=nlstate+ndeath;j++){      /* Computing expectancies */
         for(i=1,gmp[j]=0.; i<= nlstate; i++)      hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
          gmp[j] += prlim[i][i]*p3mat[i][j][1];      for(i=1; i<=nlstate;i++)
       }            for(j=1; j<=nlstate;j++)
       /* end probability of death */          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
             eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
       for(j=1; j<= nlstate; j++) /* vareij */           
         for(h=0; h<=nhstepm; h++){            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];  
         }          }
   
       for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */      fprintf(ficresstdeij,"%3.0f",age );
         gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];      for(i=1; i<=nlstate;i++){
       }        eip=0.;
         vip=0.;
     } /* End theta */        for(j=1; j<=nlstate;j++){
           eip += eij[i][j][(int)age];
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */          for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
             vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
     for(h=0; h<=nhstepm; h++) /* veij */          fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
       for(j=1; j<=nlstate;j++)        }
         for(theta=1; theta <=npar; theta++)        fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
           trgradg[h][j][theta]=gradg[h][theta][j];      }
       fprintf(ficresstdeij,"\n");
     for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */  
       for(theta=1; theta <=npar; theta++)      fprintf(ficrescveij,"%3.0f",age );
         trgradgp[j][theta]=gradgp[theta][j];      for(i=1; i<=nlstate;i++)
           for(j=1; j<=nlstate;j++){
           cptj= (j-1)*nlstate+i;
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */          for(i2=1; i2<=nlstate;i2++)
     for(i=1;i<=nlstate;i++)            for(j2=1; j2<=nlstate;j2++){
       for(j=1;j<=nlstate;j++)              cptj2= (j2-1)*nlstate+i2;
         vareij[i][j][(int)age] =0.;              if(cptj2 <= cptj)
                 fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
     for(h=0;h<=nhstepm;h++){            }
       for(k=0;k<=nhstepm;k++){        }
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);      fprintf(ficrescveij,"\n");
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);     
         for(i=1;i<=nlstate;i++)    }
           for(j=1;j<=nlstate;j++)    free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;    free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
       }    free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
     }    free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
       free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     /* pptj */    free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);    printf("\n");
     matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);    fprintf(ficlog,"\n");
     for(j=nlstate+1;j<=nlstate+ndeath;j++)  
       for(i=nlstate+1;i<=nlstate+ndeath;i++)    free_vector(xm,1,npar);
         varppt[j][i]=doldmp[j][i];    free_vector(xp,1,npar);
     /* end ppptj */    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
     /*  x centered again */    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);      free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
     prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);  }
    
     if (popbased==1) {  /************ Variance ******************/
       if(mobilav ==0){  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
         for(i=1; i<=nlstate;i++)  {
           prlim[i][i]=probs[(int)age][i][ij];    /* Variance of health expectancies */
       }else{ /* mobilav */     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
         for(i=1; i<=nlstate;i++)    /* double **newm;*/
           prlim[i][i]=mobaverage[(int)age][i][ij];    double **dnewm,**doldm;
       }    double **dnewmp,**doldmp;
     }    int i, j, nhstepm, hstepm, h, nstepm ;
                  int k, cptcode;
     /* This for computing probability of death (h=1 means    double *xp;
        computed over hstepm (estepm) matrices product = hstepm*stepm months)     double **gp, **gm;  /* for var eij */
        as a weighted average of prlim.    double ***gradg, ***trgradg; /*for var eij */
     */    double **gradgp, **trgradgp; /* for var p point j */
     for(j=nlstate+1;j<=nlstate+ndeath;j++){    double *gpp, *gmp; /* for var p point j */
       for(i=1,gmp[j]=0.;i<= nlstate; i++)     double **varppt; /* for var p point j nlstate to nlstate+ndeath */
         gmp[j] += prlim[i][i]*p3mat[i][j][1];     double ***p3mat;
     }        double age,agelim, hf;
     /* end probability of death */    double ***mobaverage;
     int theta;
     fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);    char digit[4];
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){    char digitp[25];
       fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));  
       for(i=1; i<=nlstate;i++){    char fileresprobmorprev[FILENAMELENGTH];
         fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);  
       }    if(popbased==1){
     }       if(mobilav!=0)
     fprintf(ficresprobmorprev,"\n");        strcpy(digitp,"-populbased-mobilav-");
       else strcpy(digitp,"-populbased-nomobil-");
     fprintf(ficresvij,"%.0f ",age );    }
     for(i=1; i<=nlstate;i++)    else
       for(j=1; j<=nlstate;j++){      strcpy(digitp,"-stablbased-");
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);  
       }    if (mobilav!=0) {
     fprintf(ficresvij,"\n");      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_matrix(gp,0,nhstepm,1,nlstate);      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
     free_matrix(gm,0,nhstepm,1,nlstate);        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);        printf(" Error in movingaverage mobilav=%d\n",mobilav);
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);      }
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    }
   } /* End age */  
   free_vector(gpp,nlstate+1,nlstate+ndeath);    strcpy(fileresprobmorprev,"prmorprev");
   free_vector(gmp,nlstate+1,nlstate+ndeath);    sprintf(digit,"%-d",ij);
   free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
   free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/    strcat(fileresprobmorprev,digit); /* Tvar to be done */
   fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
   /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */    strcat(fileresprobmorprev,fileres);
   fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
 /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */      printf("Problem with resultfile: %s\n", fileresprobmorprev);
 /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
 /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */    }
   fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));   
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));    pstamp(ficresprobmorprev);
   fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
   /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
 */    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
 /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */      fprintf(ficresprobmorprev," p.%-d SE",j);
   fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);      for(i=1; i<=nlstate;i++)
         fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
   free_vector(xp,1,npar);    }  
   free_matrix(doldm,1,nlstate,1,nlstate);    fprintf(ficresprobmorprev,"\n");
   free_matrix(dnewm,1,nlstate,1,npar);    fprintf(ficgp,"\n# Routine varevsij");
   free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
   free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
   free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  /*   } */
   fclose(ficresprobmorprev);    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   fflush(ficgp);    pstamp(ficresvij);
   fflush(fichtm);     fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
 }  /* end varevsij */    if(popbased==1)
       fprintf(ficresvij,"the age specific prevalence observed in the population i.e cross-sectionally\n in each health state (popbased=1)");
 /************ Variance of prevlim ******************/    else
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])      fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
 {    fprintf(ficresvij,"# Age");
   /* Variance of prevalence limit */    for(i=1; i<=nlstate;i++)
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/      for(j=1; j<=nlstate;j++)
   double **newm;        fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
   double **dnewm,**doldm;    fprintf(ficresvij,"\n");
   int i, j, nhstepm, hstepm;  
   int k, cptcode;    xp=vector(1,npar);
   double *xp;    dnewm=matrix(1,nlstate,1,npar);
   double *gp, *gm;    doldm=matrix(1,nlstate,1,nlstate);
   double **gradg, **trgradg;    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
   double age,agelim;    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   int theta;  
   fprintf(ficresvpl, "#Local time at start: %s", strstart);     gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
   fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");    gpp=vector(nlstate+1,nlstate+ndeath);
   fprintf(ficresvpl,"# Age");    gmp=vector(nlstate+1,nlstate+ndeath);
   for(i=1; i<=nlstate;i++)    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
       fprintf(ficresvpl," %1d-%1d",i,i);   
   fprintf(ficresvpl,"\n");    if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
   xp=vector(1,npar);    }
   dnewm=matrix(1,nlstate,1,npar);    else  hstepm=estepm;  
   doldm=matrix(1,nlstate,1,nlstate);    /* For example we decided to compute the life expectancy with the smallest unit */
       /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.
   hstepm=1*YEARM; /* Every year of age */       nhstepm is the number of hstepm from age to agelim
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */        nstepm is the number of stepm from age to agelin.
   agelim = AGESUP;       Look at hpijx to understand the reason of that which relies in memory size
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */       and note for a fixed period like k years */
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */     /* We decided (b) to get a life expectancy respecting the most precise curvature of the
     if (stepm >= YEARM) hstepm=1;       survival function given by stepm (the optimization length). Unfortunately it
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */       means that if the survival funtion is printed every two years of age and if
     gradg=matrix(1,npar,1,nlstate);       you sum them up and add 1 year (area under the trapezoids) you won't get the same
     gp=vector(1,nlstate);       results. So we changed our mind and took the option of the best precision.
     gm=vector(1,nlstate);    */
     hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */
     for(theta=1; theta <=npar; theta++){    agelim = AGESUP;
       for(i=1; i<=npar; i++){ /* Computes gradient */    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
         xp[i] = x[i] + (i==theta ?delti[theta]:0);      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */
       }      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       for(i=1;i<=nlstate;i++)      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
         gp[i] = prlim[i][i];      gp=matrix(0,nhstepm,1,nlstate);
           gm=matrix(0,nhstepm,1,nlstate);
       for(i=1; i<=npar; i++) /* Computes gradient */  
         xp[i] = x[i] - (i==theta ?delti[theta]:0);  
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      for(theta=1; theta <=npar; theta++){
       for(i=1;i<=nlstate;i++)        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
         gm[i] = prlim[i][i];          xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
       for(i=1;i<=nlstate;i++)        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     } /* End theta */  
         if (popbased==1) {
     trgradg =matrix(1,nlstate,1,npar);          if(mobilav ==0){
             for(i=1; i<=nlstate;i++)
     for(j=1; j<=nlstate;j++)              prlim[i][i]=probs[(int)age][i][ij];
       for(theta=1; theta <=npar; theta++)          }else{ /* mobilav */
         trgradg[j][theta]=gradg[theta][j];            for(i=1; i<=nlstate;i++)
               prlim[i][i]=mobaverage[(int)age][i][ij];
     for(i=1;i<=nlstate;i++)          }
       varpl[i][(int)age] =0.;        }
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);   
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);        for(j=1; j<= nlstate; j++){
     for(i=1;i<=nlstate;i++)          for(h=0; h<=nhstepm; h++){
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
               gp[h][j] += prlim[i][i]*p3mat[i][j][h];
     fprintf(ficresvpl,"%.0f ",age );          }
     for(i=1; i<=nlstate;i++)        }
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));        /* This for computing probability of death (h=1 means
     fprintf(ficresvpl,"\n");           computed over hstepm matrices product = hstepm*stepm months)
     free_vector(gp,1,nlstate);           as a weighted average of prlim.
     free_vector(gm,1,nlstate);        */
     free_matrix(gradg,1,npar,1,nlstate);        for(j=nlstate+1;j<=nlstate+ndeath;j++){
     free_matrix(trgradg,1,nlstate,1,npar);          for(i=1,gpp[j]=0.; i<= nlstate; i++)
   } /* End age */            gpp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
   free_vector(xp,1,npar);        /* end probability of death */
   free_matrix(doldm,1,nlstate,1,npar);  
   free_matrix(dnewm,1,nlstate,1,nlstate);        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
 }        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
 /************ Variance of one-step probabilities  ******************/   
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])        if (popbased==1) {
 {          if(mobilav ==0){
   int i, j=0,  i1, k1, l1, t, tj;            for(i=1; i<=nlstate;i++)
   int k2, l2, j1,  z1;              prlim[i][i]=probs[(int)age][i][ij];
   int k=0,l, cptcode;          }else{ /* mobilav */
   int first=1, first1;            for(i=1; i<=nlstate;i++)
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;              prlim[i][i]=mobaverage[(int)age][i][ij];
   double **dnewm,**doldm;          }
   double *xp;        }
   double *gp, *gm;  
   double **gradg, **trgradg;        for(j=1; j<= nlstate; j++){
   double **mu;          for(h=0; h<=nhstepm; h++){
   double age,agelim, cov[NCOVMAX];            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
   int theta;          }
   char fileresprob[FILENAMELENGTH];        }
   char fileresprobcov[FILENAMELENGTH];        /* This for computing probability of death (h=1 means
   char fileresprobcor[FILENAMELENGTH];           computed over hstepm matrices product = hstepm*stepm months)
            as a weighted average of prlim.
   double ***varpij;        */
         for(j=nlstate+1;j<=nlstate+ndeath;j++){
   strcpy(fileresprob,"prob");           for(i=1,gmp[j]=0.; i<= nlstate; i++)
   strcat(fileresprob,fileres);           gmp[j] += prlim[i][i]*p3mat[i][j][1];
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {        }    
     printf("Problem with resultfile: %s\n", fileresprob);        /* end probability of death */
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);  
   }        for(j=1; j<= nlstate; j++) /* vareij */
   strcpy(fileresprobcov,"probcov");           for(h=0; h<=nhstepm; h++){
   strcat(fileresprobcov,fileres);            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {          }
     printf("Problem with resultfile: %s\n", fileresprobcov);  
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
   }          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
   strcpy(fileresprobcor,"probcor");         }
   strcat(fileresprobcor,fileres);  
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {      } /* End theta */
     printf("Problem with resultfile: %s\n", fileresprobcor);  
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
   }  
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);      for(h=0; h<=nhstepm; h++) /* veij */
   fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);        for(j=1; j<=nlstate;j++)
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);          for(theta=1; theta <=npar; theta++)
   fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);            trgradg[h][j][theta]=gradg[h][theta][j];
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);  
   fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
   fprintf(ficresprob, "#Local time at start: %s", strstart);        for(theta=1; theta <=npar; theta++)
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");          trgradgp[j][theta]=gradgp[theta][j];
   fprintf(ficresprob,"# Age");   
   fprintf(ficresprobcov, "#Local time at start: %s", strstart);  
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   fprintf(ficresprobcov,"# Age");      for(i=1;i<=nlstate;i++)
   fprintf(ficresprobcor, "#Local time at start: %s", strstart);        for(j=1;j<=nlstate;j++)
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");          vareij[i][j][(int)age] =0.;
   fprintf(ficresprobcov,"# Age");  
       for(h=0;h<=nhstepm;h++){
         for(k=0;k<=nhstepm;k++){
   for(i=1; i<=nlstate;i++)          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
     for(j=1; j<=(nlstate+ndeath);j++){          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);          for(i=1;i<=nlstate;i++)
       fprintf(ficresprobcov," p%1d-%1d ",i,j);            for(j=1;j<=nlstate;j++)
       fprintf(ficresprobcor," p%1d-%1d ",i,j);              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
     }          }
  /* fprintf(ficresprob,"\n");      }
   fprintf(ficresprobcov,"\n");   
   fprintf(ficresprobcor,"\n");      /* pptj */
  */      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
  xp=vector(1,npar);      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);      for(j=nlstate+1;j<=nlstate+ndeath;j++)
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));        for(i=nlstate+1;i<=nlstate+ndeath;i++)
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);          varppt[j][i]=doldmp[j][i];
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);      /* end ppptj */
   first=1;      /*  x centered again */
   fprintf(ficgp,"\n# Routine varprob");      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
   fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
   fprintf(fichtm,"\n");   
       if (popbased==1) {
   fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);        if(mobilav ==0){
   fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\          for(i=1; i<=nlstate;i++)
   file %s<br>\n",optionfilehtmcov);            prlim[i][i]=probs[(int)age][i][ij];
   fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\        }else{ /* mobilav */
 and drawn. It helps understanding how is the covariance between two incidences.\          for(i=1; i<=nlstate;i++)
  They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");            prlim[i][i]=mobaverage[(int)age][i][ij];
   fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \        }
 It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \      }
 would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \               
 standard deviations wide on each axis. <br>\      /* This for computing probability of death (h=1 means
  Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\         computed over hstepm (estepm) matrices product = hstepm*stepm months)
  and made the appropriate rotation to look at the uncorrelated principal directions.<br>\         as a weighted average of prlim.
 To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");      */
       for(j=nlstate+1;j<=nlstate+ndeath;j++){
   cov[1]=1;        for(i=1,gmp[j]=0.;i<= nlstate; i++)
   tj=cptcoveff;          gmp[j] += prlim[i][i]*p3mat[i][j][1];
   if (cptcovn<1) {tj=1;ncodemax[1]=1;}      }    
   j1=0;      /* end probability of death */
   for(t=1; t<=tj;t++){  
     for(i1=1; i1<=ncodemax[t];i1++){       fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
       j1++;      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
       if  (cptcovn>0) {        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
         fprintf(ficresprob, "\n#********** Variable ");         for(i=1; i<=nlstate;i++){
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
         fprintf(ficresprob, "**********\n#\n");        }
         fprintf(ficresprobcov, "\n#********** Variable ");       }
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);      fprintf(ficresprobmorprev,"\n");
         fprintf(ficresprobcov, "**********\n#\n");  
               fprintf(ficresvij,"%.0f ",age );
         fprintf(ficgp, "\n#********** Variable ");       for(i=1; i<=nlstate;i++)
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        for(j=1; j<=nlstate;j++){
         fprintf(ficgp, "**********\n#\n");          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
                 }
               fprintf(ficresvij,"\n");
         fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable ");       free_matrix(gp,0,nhstepm,1,nlstate);
         for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);      free_matrix(gm,0,nhstepm,1,nlstate);
         fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
               free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
         fprintf(ficresprobcor, "\n#********** Variable ");          free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    } /* End age */
         fprintf(ficresprobcor, "**********\n#");        free_vector(gpp,nlstate+1,nlstate+ndeath);
       }    free_vector(gmp,nlstate+1,nlstate+ndeath);
           free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
       for (age=bage; age<=fage; age ++){     free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
         cov[2]=age;    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
         for (k=1; k<=cptcovn;k++) {    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
         }  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
         for (k=1; k<=cptcovprod;k++)  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
             fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
         gp=vector(1,(nlstate)*(nlstate+ndeath));    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
         gm=vector(1,(nlstate)*(nlstate+ndeath));    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
       */
         for(theta=1; theta <=npar; theta++){  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
           for(i=1; i<=npar; i++)    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
             xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);  
               free_vector(xp,1,npar);
           pmij(pmmij,cov,ncovmodel,xp,nlstate);    free_matrix(doldm,1,nlstate,1,nlstate);
               free_matrix(dnewm,1,nlstate,1,npar);
           k=0;    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
           for(i=1; i<= (nlstate); i++){    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
             for(j=1; j<=(nlstate+ndeath);j++){    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
               k=k+1;    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
               gp[k]=pmmij[i][j];    fclose(ficresprobmorprev);
             }    fflush(ficgp);
           }    fflush(fichtm);
             }  /* end varevsij */
           for(i=1; i<=npar; i++)  
             xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);  /************ Variance of prevlim ******************/
       void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
           pmij(pmmij,cov,ncovmodel,xp,nlstate);  {
           k=0;    /* Variance of prevalence limit */
           for(i=1; i<=(nlstate); i++){    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
             for(j=1; j<=(nlstate+ndeath);j++){    double **newm;
               k=k+1;    double **dnewm,**doldm;
               gm[k]=pmmij[i][j];    int i, j, nhstepm, hstepm;
             }    int k, cptcode;
           }    double *xp;
          double *gp, *gm;
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)     double **gradg, **trgradg;
             gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];      double age,agelim;
         }    int theta;
    
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)    pstamp(ficresvpl);
           for(theta=1; theta <=npar; theta++)    fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
             trgradg[j][theta]=gradg[theta][j];    fprintf(ficresvpl,"# Age");
             for(i=1; i<=nlstate;i++)
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);         fprintf(ficresvpl," %1d-%1d",i,i);
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);    fprintf(ficresvpl,"\n");
         free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));  
         free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));    xp=vector(1,npar);
         free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    dnewm=matrix(1,nlstate,1,npar);
         free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    doldm=matrix(1,nlstate,1,nlstate);
    
         pmij(pmmij,cov,ncovmodel,x,nlstate);    hstepm=1*YEARM; /* Every year of age */
             hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */
         k=0;    agelim = AGESUP;
         for(i=1; i<=(nlstate); i++){    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
           for(j=1; j<=(nlstate+ndeath);j++){      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */
             k=k+1;      if (stepm >= YEARM) hstepm=1;
             mu[k][(int) age]=pmmij[i][j];      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
           }      gradg=matrix(1,npar,1,nlstate);
         }      gp=vector(1,nlstate);
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)      gm=vector(1,nlstate);
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)  
             varpij[i][j][(int)age] = doldm[i][j];      for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient */
         /*printf("\n%d ",(int)age);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){        }
           printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
           fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));        for(i=1;i<=nlstate;i++)
           }*/          gp[i] = prlim[i][i];
      
         fprintf(ficresprob,"\n%d ",(int)age);        for(i=1; i<=npar; i++) /* Computes gradient */
         fprintf(ficresprobcov,"\n%d ",(int)age);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
         fprintf(ficresprobcor,"\n%d ",(int)age);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)          gm[i] = prlim[i][i];
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));  
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){        for(i=1;i<=nlstate;i++)
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);      } /* End theta */
         }  
         i=0;      trgradg =matrix(1,nlstate,1,npar);
         for (k=1; k<=(nlstate);k++){  
           for (l=1; l<=(nlstate+ndeath);l++){       for(j=1; j<=nlstate;j++)
             i=i++;        for(theta=1; theta <=npar; theta++)
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);          trgradg[j][theta]=gradg[theta][j];
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);  
             for (j=1; j<=i;j++){      for(i=1;i<=nlstate;i++)
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);        varpl[i][(int)age] =0.;
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
             }      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
           }      for(i=1;i<=nlstate;i++)
         }/* end of loop for state */        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
       } /* end of loop for age */  
       fprintf(ficresvpl,"%.0f ",age );
       /* Confidence intervalle of pij  */      for(i=1; i<=nlstate;i++)
       /*        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
         fprintf(ficgp,"\nset noparametric;unset label");      fprintf(ficresvpl,"\n");
         fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");      free_vector(gp,1,nlstate);
         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");      free_vector(gm,1,nlstate);
         fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);      free_matrix(gradg,1,npar,1,nlstate);
         fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);      free_matrix(trgradg,1,nlstate,1,npar);
         fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);    } /* End age */
         fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);  
       */    free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,npar);
       /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/    free_matrix(dnewm,1,nlstate,1,nlstate);
       first1=1;  
       for (k2=1; k2<=(nlstate);k2++){  }
         for (l2=1; l2<=(nlstate+ndeath);l2++){   
           if(l2==k2) continue;  /************ Variance of one-step probabilities  ******************/
           j=(k2-1)*(nlstate+ndeath)+l2;  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
           for (k1=1; k1<=(nlstate);k1++){  {
             for (l1=1; l1<=(nlstate+ndeath);l1++){     int i, j=0,  i1, k1, l1, t, tj;
               if(l1==k1) continue;    int k2, l2, j1,  z1;
               i=(k1-1)*(nlstate+ndeath)+l1;    int k=0,l, cptcode;
               if(i<=j) continue;    int first=1, first1;
               for (age=bage; age<=fage; age ++){     double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
                 if ((int)age %5==0){    double **dnewm,**doldm;
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;    double *xp;
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;    double *gp, *gm;
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;    double **gradg, **trgradg;
                   mu1=mu[i][(int) age]/stepm*YEARM ;    double **mu;
                   mu2=mu[j][(int) age]/stepm*YEARM;    double age,agelim, cov[NCOVMAX];
                   c12=cv12/sqrt(v1*v2);    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
                   /* Computing eigen value of matrix of covariance */    int theta;
                   lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;    char fileresprob[FILENAMELENGTH];
                   lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;    char fileresprobcov[FILENAMELENGTH];
                   /* Eigen vectors */    char fileresprobcor[FILENAMELENGTH];
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));  
                   /*v21=sqrt(1.-v11*v11); *//* error */    double ***varpij;
                   v21=(lc1-v1)/cv12*v11;  
                   v12=-v21;    strcpy(fileresprob,"prob");
                   v22=v11;    strcat(fileresprob,fileres);
                   tnalp=v21/v11;    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
                   if(first1==1){      printf("Problem with resultfile: %s\n", fileresprob);
                     first1=0;      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
                     printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);    }
                   }    strcpy(fileresprobcov,"probcov");
                   fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);    strcat(fileresprobcov,fileres);
                   /*printf(fignu*/    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */      printf("Problem with resultfile: %s\n", fileresprobcov);
                   /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
                   if(first==1){    }
                     first=0;    strcpy(fileresprobcor,"probcor");
                     fprintf(ficgp,"\nset parametric;unset label");    strcat(fileresprobcor,fileres);
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
                     fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");      printf("Problem with resultfile: %s\n", fileresprobcor);
                     fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
  :<a href=\"%s%d%1d%1d-%1d%1d.png\">\    }
 %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
                             subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
                             subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
                     fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
                     fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
                     fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);    pstamp(ficresprob);
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\    fprintf(ficresprob,"# Age");
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\    pstamp(ficresprobcov);
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
                   }else{    fprintf(ficresprobcov,"# Age");
                     first=0;    pstamp(ficresprobcor);
                     fprintf(fichtmcov," %d (%.3f),",(int) age, c12);    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);    fprintf(ficresprobcor,"# Age");
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);  
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\  
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\    for(i=1; i<=nlstate;i++)
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));      for(j=1; j<=(nlstate+ndeath);j++){
                   }/* if first */        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
                 } /* age mod 5 */        fprintf(ficresprobcov," p%1d-%1d ",i,j);
               } /* end loop age */        fprintf(ficresprobcor," p%1d-%1d ",i,j);
               fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);      }  
               first=1;   /* fprintf(ficresprob,"\n");
             } /*l12 */    fprintf(ficresprobcov,"\n");
           } /* k12 */    fprintf(ficresprobcor,"\n");
         } /*l1 */   */
       }/* k1 */   xp=vector(1,npar);
     } /* loop covariates */    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
   }    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
   free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
   free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
   free_vector(xp,1,npar);    first=1;
   fclose(ficresprob);    fprintf(ficgp,"\n# Routine varprob");
   fclose(ficresprobcov);    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
   fclose(ficresprobcor);    fprintf(fichtm,"\n");
   fflush(ficgp);  
   fflush(fichtmcov);    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
 }    fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
     file %s<br>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
 /******************* Printing html file ***********/  and drawn. It helps understanding how is the covariance between two incidences.\
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
                   int lastpass, int stepm, int weightopt, char model[],\    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
                   int popforecast, int estepm ,\  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
                   double jprev1, double mprev1,double anprev1, \  standard deviations wide on each axis. <br>\
                   double jprev2, double mprev2,double anprev2){   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
   int jj1, k1, i1, cpt;   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
   To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
    fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \  
    <li><a href='#secondorder'>Result files (second order (variance)</a>\n \    cov[1]=1;
 </ul>");    tj=cptcoveff;
    fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",    j1=0;
            jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));    for(t=1; t<=tj;t++){
    fprintf(fichtm,"\      for(i1=1; i1<=ncodemax[t];i1++){
  - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",        j1++;
            stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));        if  (cptcovn>0) {
    fprintf(fichtm,"\          fprintf(ficresprob, "\n#********** Variable ");
  - Stable prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
            subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));          fprintf(ficresprob, "**********\n#\n");
    fprintf(fichtm,"\          fprintf(ficresprobcov, "\n#********** Variable ");
  - Life expectancies by age and initial health status (estepm=%2d months): \          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
    <a href=\"%s\">%s</a> <br>\n</li>",          fprintf(ficresprobcov, "**********\n#\n");
            estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));         
           fprintf(ficgp, "\n#********** Variable ");
 fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficgp, "**********\n#\n");
  m=cptcoveff;         
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}         
           fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable ");
  jj1=0;          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
  for(k1=1; k1<=m;k1++){          fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
    for(i1=1; i1<=ncodemax[k1];i1++){         
      jj1++;          fprintf(ficresprobcor, "\n#********** Variable ");    
      if (cptcovn > 0) {          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");          fprintf(ficresprobcor, "**********\n#");    
        for (cpt=1; cpt<=cptcoveff;cpt++)         }
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);       
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");        for (age=bage; age<=fage; age ++){
      }          cov[2]=age;
      /* Pij */          for (k=1; k<=cptcovn;k++) {
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: %s%d1.png<br> \            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
 <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);               }
      /* Quasi-incidences */          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\          for (k=1; k<=cptcovprod;k++)
  before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: %s%d2.png<br> \            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
 <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);          
        /* Stable prevalence in each health state */          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
        for(cpt=1; cpt<nlstate;cpt++){          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
          fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \          gp=vector(1,(nlstate)*(nlstate+ndeath));
 <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);          gm=vector(1,(nlstate)*(nlstate+ndeath));
        }     
      for(cpt=1; cpt<=nlstate;cpt++) {          for(theta=1; theta <=npar; theta++){
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): %s%d%d.png <br> \            for(i=1; i<=npar; i++)
 <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
      }           
    } /* end i1 */            pmij(pmmij,cov,ncovmodel,xp,nlstate);
  }/* End k1 */           
  fprintf(fichtm,"</ul>");            k=0;
             for(i=1; i<= (nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
  fprintf(fichtm,"\                k=k+1;
 \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\                gp[k]=pmmij[i][j];
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);              }
             }
  fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",           
          subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));            for(i=1; i<=npar; i++)
  fprintf(fichtm,"\              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
  - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",     
          subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));            pmij(pmmij,cov,ncovmodel,xp,nlstate);
             k=0;
  fprintf(fichtm,"\            for(i=1; i<=(nlstate); i++){
  - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",              for(j=1; j<=(nlstate+ndeath);j++){
          subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));                k=k+1;
  fprintf(fichtm,"\                gm[k]=pmmij[i][j];
  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"%s\">%s</a><br>\n",              }
          estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));            }
  fprintf(fichtm,"\       
  - Health expectancies with their variances (no covariance): <a href=\"%s\">%s</a> <br>\n",            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)
          subdirf2(fileres,"t"),subdirf2(fileres,"t"));              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
  fprintf(fichtm,"\          }
  - Standard deviation of stable prevalences: <a href=\"%s\">%s</a> <br>\n",\  
          subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
             for(theta=1; theta <=npar; theta++)
 /*  if(popforecast==1) fprintf(fichtm,"\n */              trgradg[j][theta]=gradg[theta][j];
 /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */         
 /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);
 /*      <br>",fileres,fileres,fileres,fileres); */          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
 /*  else  */          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
 /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
  fflush(fichtm);          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
  fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   
  m=cptcoveff;          pmij(pmmij,cov,ncovmodel,x,nlstate);
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}         
           k=0;
  jj1=0;          for(i=1; i<=(nlstate); i++){
  for(k1=1; k1<=m;k1++){            for(j=1; j<=(nlstate+ndeath);j++){
    for(i1=1; i1<=ncodemax[k1];i1++){              k=k+1;
      jj1++;              mu[k][(int) age]=pmmij[i][j];
      if (cptcovn > 0) {            }
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");          }
        for (cpt=1; cpt<=cptcoveff;cpt++)           for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");              varpij[i][j][(int)age] = doldm[i][j];
      }  
      for(cpt=1; cpt<=nlstate;cpt++) {          /*printf("\n%d ",(int)age);
        fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
 prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
 <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);              fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
      }            }*/
      fprintf(fichtm,"\n<br>- Total life expectancy by age and \  
 health expectancies in states (1) and (2): %s%d.png<br>\          fprintf(ficresprob,"\n%d ",(int)age);
 <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);          fprintf(ficresprobcov,"\n%d ",(int)age);
    } /* end i1 */          fprintf(ficresprobcor,"\n%d ",(int)age);
  }/* End k1 */  
  fprintf(fichtm,"</ul>");          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
  fflush(fichtm);            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
 }          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
 /******************* Gnuplot file **************/            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
 void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){          }
           i=0;
   char dirfileres[132],optfileres[132];          for (k=1; k<=(nlstate);k++){
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;            for (l=1; l<=(nlstate+ndeath);l++){
   int ng;              i=i++;
 /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
 /*     printf("Problem with file %s",optionfilegnuplot); */              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
 /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */              for (j=1; j<=i;j++){
 /*   } */                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                 fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
   /*#ifdef windows */              }
   fprintf(ficgp,"cd \"%s\" \n",pathc);            }
     /*#endif */          }/* end of loop for state */
   m=pow(2,cptcoveff);        } /* end of loop for age */
   
   strcpy(dirfileres,optionfilefiname);        /* Confidence intervalle of pij  */
   strcpy(optfileres,"vpl");        /*
  /* 1eme*/          fprintf(ficgp,"\nset noparametric;unset label");
   for (cpt=1; cpt<= nlstate ; cpt ++) {          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
    for (k1=1; k1<= m ; k1 ++) {          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
      fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
      fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
      fprintf(ficgp,"set xlabel \"Age\" \n\          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
 set ylabel \"Probability\" \n\          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
 set ter png small\n\        */
 set size 0.65,0.65\n\  
 plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
         first1=1;
      for (i=1; i<= nlstate ; i ++) {        for (k2=1; k2<=(nlstate);k2++){
        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");          for (l2=1; l2<=(nlstate+ndeath);l2++){
        else fprintf(ficgp," \%%*lf (\%%*lf)");            if(l2==k2) continue;
      }            j=(k2-1)*(nlstate+ndeath)+l2;
      fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);            for (k1=1; k1<=(nlstate);k1++){
      for (i=1; i<= nlstate ; i ++) {              for (l1=1; l1<=(nlstate+ndeath);l1++){
        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");                if(l1==k1) continue;
        else fprintf(ficgp," \%%*lf (\%%*lf)");                i=(k1-1)*(nlstate+ndeath)+l1;
      }                 if(i<=j) continue;
      fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);                 for (age=bage; age<=fage; age ++){
      for (i=1; i<= nlstate ; i ++) {                  if ((int)age %5==0){
        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
        else fprintf(ficgp," \%%*lf (\%%*lf)");                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
      }                      cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
      fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));                    mu1=mu[i][(int) age]/stepm*YEARM ;
    }                    mu2=mu[j][(int) age]/stepm*YEARM;
   }                    c12=cv12/sqrt(v1*v2);
   /*2 eme*/                    /* Computing eigen value of matrix of covariance */
                       lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
   for (k1=1; k1<= m ; k1 ++) {                     lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
     fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);                    /* Eigen vectors */
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                         /*v21=sqrt(1.-v11*v11); *//* error */
     for (i=1; i<= nlstate+1 ; i ++) {                    v21=(lc1-v1)/cv12*v11;
       k=2*i;                    v12=-v21;
       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);                    v22=v11;
       for (j=1; j<= nlstate+1 ; j ++) {                    tnalp=v21/v11;
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");                    if(first1==1){
         else fprintf(ficgp," \%%*lf (\%%*lf)");                      first1=0;
       }                         printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");                    }
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);                    /*printf(fignu*/
       for (j=1; j<= nlstate+1 ; j ++) {                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
         else fprintf(ficgp," \%%*lf (\%%*lf)");                    if(first==1){
       }                         first=0;
       fprintf(ficgp,"\" t\"\" w l 0,");                      fprintf(ficgp,"\nset parametric;unset label");
       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
       for (j=1; j<= nlstate+1 ; j ++) {                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");                      fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
         else fprintf(ficgp," \%%*lf (\%%*lf)");   :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
       }     %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
       else fprintf(ficgp,"\" t\"\" w l 0,");                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
     }                      fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
   }                      fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                         fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
   /*3eme*/                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                         fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
   for (k1=1; k1<= m ; k1 ++) {                       fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
     for (cpt=1; cpt<= nlstate ; cpt ++) {                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
       k=2+nlstate*(2*cpt-2);                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);                    }else{
       fprintf(ficgp,"set ter png small\n\                      first=0;
 set size 0.65,0.65\n\                      fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
 plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
         for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
         fprintf(ficgp,"\" t \"e%d1\" w l",cpt);                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
         for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");                    }/* if first */
         fprintf(ficgp,"\" t \"e%d1\" w l",cpt);                  } /* age mod 5 */
                         } /* end loop age */
       */                fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
       for (i=1; i< nlstate ; i ++) {                first=1;
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);              } /*l12 */
                     } /* k12 */
       }           } /*l1 */
     }        }/* k1 */
   }      } /* loop covariates */
       }
   /* CV preval stable (period) */    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
   for (k1=1; k1<= m ; k1 ++) {     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     for (cpt=1; cpt<=nlstate ; cpt ++) {    free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
       k=3;    free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);    free_vector(xp,1,npar);
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\    fclose(ficresprob);
 set ter png small\nset size 0.65,0.65\n\    fclose(ficresprobcov);
 unset log y\n\    fclose(ficresprobcor);
 plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);    fflush(ficgp);
           fflush(fichtmcov);
       for (i=1; i< nlstate ; i ++)  }
         fprintf(ficgp,"+$%d",k+i+1);  
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);  
         /******************* Printing html file ***********/
       l=3+(nlstate+ndeath)*cpt;  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
       fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);                    int lastpass, int stepm, int weightopt, char model[],\
       for (i=1; i< nlstate ; i ++) {                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
         l=3+(nlstate+ndeath)*cpt;                    int popforecast, int estepm ,\
         fprintf(ficgp,"+$%d",l+i+1);                    double jprev1, double mprev1,double anprev1, \
       }                    double jprev2, double mprev2,double anprev2){
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);       int jj1, k1, i1, cpt;
     }   
   }       fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
        <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   /* proba elementaires */  </ul>");
   for(i=1,jk=1; i <=nlstate; i++){     fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
     for(k=1; k <=(nlstate+ndeath); k++){   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
       if (k != i) {             jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
         for(j=1; j <=ncovmodel; j++){     fprintf(fichtm,"\
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);   - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
           jk++;              stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
           fprintf(ficgp,"\n");     fprintf(fichtm,"\
         }   - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
       }             subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
     }     fprintf(fichtm,"\
    }   - (a) Life expectancies by health status at initial age, (b) health expectancies by health status at initial age:  ei., eij . If one or more covariate are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n",
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/             estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
      for(jk=1; jk <=m; jk++) {     fprintf(fichtm,"\
        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng);    - Population projections by age and states: \
        if (ng==2)     <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");  
        else  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
          fprintf(ficgp,"\nset title \"Probability\"\n");  
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);   m=cptcoveff;
        i=1;   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
        for(k2=1; k2<=nlstate; k2++) {  
          k3=i;   jj1=0;
          for(k=1; k<=(nlstate+ndeath); k++) {   for(k1=1; k1<=m;k1++){
            if (k != k2){     for(i1=1; i1<=ncodemax[k1];i1++){
              if(ng==2)       jj1++;
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);       if (cptcovn > 0) {
              else         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);         for (cpt=1; cpt<=cptcoveff;cpt++)
              ij=1;           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
              for(j=3; j <=ncovmodel; j++) {         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {       }
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);       /* Pij */
                  ij++;       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d1.png\">%s%d1.png</a><br> \
                }  <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);    
                else       /* Quasi-incidences */
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
              }   before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d2.png\">%s%d2.png</a><br> \
              fprintf(ficgp,")/(1");  <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);
                       /* Period (stable) prevalence in each health state */
              for(k1=1; k1 <=nlstate; k1++){            for(cpt=1; cpt<nlstate;cpt++){
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);           fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d%d.png\">%s%d%d.png</a><br> \
                ij=1;  <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
                for(j=3; j <=ncovmodel; j++){         }
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {       for(cpt=1; cpt<=nlstate;cpt++) {
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);          fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
                    ij++;  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
                  }       }
                  else     } /* end i1 */
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);   }/* End k1 */
                }   fprintf(fichtm,"</ul>");
                fprintf(ficgp,")");  
              }  
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);   fprintf(fichtm,"\
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");  \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
              i=i+ncovmodel;   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
            }  
          } /* end k */   fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
        } /* end k2 */           subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
      } /* end jk */   fprintf(fichtm,"\
    } /* end ng */   - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
    fflush(ficgp);            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
 }  /* end gnuplot */  
    fprintf(fichtm,"\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
 /*************** Moving average **************/           subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
 int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){   fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
   int i, cpt, cptcod;     <a href=\"%s\">%s</a> <br>\n</li>",
   int modcovmax =1;             estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
   int mobilavrange, mob;   fprintf(fichtm,"\
   double age;   - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
   modcovmax=2*cptcoveff;/* Max number of modalities. We suppose              estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
                            a covariate has 2 modalities */   fprintf(fichtm,"\
   if (cptcovn<1) modcovmax=1; /* At least 1 pass */   - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), eij are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences (i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
            estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
   if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){   fprintf(fichtm,"\
     if(mobilav==1) mobilavrange=5; /* default */   - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors: <a href=\"%s\">%s</a> <br>\n",
     else mobilavrange=mobilav;           subdirf2(fileres,"t"),subdirf2(fileres,"t"));
     for (age=bage; age<=fage; age++)   fprintf(fichtm,"\
       for (i=1; i<=nlstate;i++)   - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
         for (cptcod=1;cptcod<=modcovmax;cptcod++)           subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
           mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];  
     /* We keep the original values on the extreme ages bage, fage and for   /*  if(popforecast==1) fprintf(fichtm,"\n */
        fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
        we use a 5 terms etc. until the borders are no more concerned.   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
     */   /*      <br>",fileres,fileres,fileres,fileres); */
     for (mob=3;mob <=mobilavrange;mob=mob+2){  /*  else  */
       for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
         for (i=1; i<=nlstate;i++){   fflush(fichtm);
           for (cptcod=1;cptcod<=modcovmax;cptcod++){   fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
             mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];  
               for (cpt=1;cpt<=(mob-1)/2;cpt++){   m=cptcoveff;
                 mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
                 mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];  
               }   jj1=0;
             mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;   for(k1=1; k1<=m;k1++){
           }     for(i1=1; i1<=ncodemax[k1];i1++){
         }       jj1++;
       }/* end age */       if (cptcovn > 0) {
     }/* end mob */         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
   }else return -1;         for (cpt=1; cpt<=cptcoveff;cpt++)
   return 0;           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
 }/* End movingaverage */         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
 /************** Forecasting ******************/         fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
 prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){  prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
   /* proj1, year, month, day of starting projection   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
      agemin, agemax range of age       }
      dateprev1 dateprev2 range of dates during which prevalence is computed       fprintf(fichtm,"\n<br>- Total life expectancy by age and \
      anproj2 year of en of projection (same day and month as proj1).  health expectancies in states (1) and (2): %s%d.png<br>\
   */  <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
   int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;     } /* end i1 */
   int *popage;   }/* End k1 */
   double agec; /* generic age */   fprintf(fichtm,"</ul>");
   double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;   fflush(fichtm);
   double *popeffectif,*popcount;  }
   double ***p3mat;  
   double ***mobaverage;  /******************* Gnuplot file **************/
   char fileresf[FILENAMELENGTH];  void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
   agelim=AGESUP;    char dirfileres[132],optfileres[132];
   prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
      int ng;
   strcpy(fileresf,"f");   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   strcat(fileresf,fileres);  /*     printf("Problem with file %s",optionfilegnuplot); */
   if((ficresf=fopen(fileresf,"w"))==NULL) {  /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
     printf("Problem with forecast resultfile: %s\n", fileresf);  /*   } */
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);  
   }    /*#ifdef windows */
   printf("Computing forecasting: result on file '%s' \n", fileresf);    fprintf(ficgp,"cd \"%s\" \n",pathc);
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);      /*#endif */
     m=pow(2,cptcoveff);
   if (cptcoveff==0) ncodemax[cptcoveff]=1;  
     strcpy(dirfileres,optionfilefiname);
   if (mobilav!=0) {    strcpy(optfileres,"vpl");
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);   /* 1eme*/
     if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){    for (cpt=1; cpt<= nlstate ; cpt ++) {
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);     for (k1=1; k1<= m ; k1 ++) {
       printf(" Error in movingaverage mobilav=%d\n",mobilav);       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
     }       fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
   }       fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   stepsize=(int) (stepm+YEARM-1)/YEARM;  set ter png small\n\
   if (stepm<=12) stepsize=1;  set size 0.65,0.65\n\
   if(estepm < stepm){  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
     printf ("Problem %d lower than %d\n",estepm, stepm);  
   }       for (i=1; i<= nlstate ; i ++) {
   else  hstepm=estepm;            if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
   hstepm=hstepm/stepm;        }
   yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and       fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
                                fractional in yp1 */       for (i=1; i<= nlstate ; i ++) {
   anprojmean=yp;         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
   yp2=modf((yp1*12),&yp);         else fprintf(ficgp," \%%*lf (\%%*lf)");
   mprojmean=yp;       }
   yp1=modf((yp2*30.5),&yp);       fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
   jprojmean=yp;       for (i=1; i<= nlstate ; i ++) {
   if(jprojmean==0) jprojmean=1;         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
   if(mprojmean==0) jprojmean=1;         else fprintf(ficgp," \%%*lf (\%%*lf)");
        }  
   i1=cptcoveff;       fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
   if (cptcovn < 1){i1=1;}     }
       }
   fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2);     /*2 eme*/
      
   fprintf(ficresf,"#****** Routine prevforecast **\n");    for (k1=1; k1<= m ; k1 ++) {
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
 /*            if (h==(int)(YEARM*yearp)){ */      fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
   for(cptcov=1, k=0;cptcov<=i1;cptcov++){     
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){      for (i=1; i<= nlstate+1 ; i ++) {
       k=k+1;        k=2*i;
       fprintf(ficresf,"\n#******");        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
       for(j=1;j<=cptcoveff;j++) {        for (j=1; j<= nlstate+1 ; j ++) {
         fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
       }          else fprintf(ficgp," \%%*lf (\%%*lf)");
       fprintf(ficresf,"******\n");        }  
       fprintf(ficresf,"# Covariate valuofcovar yearproj age");        if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
       for(j=1; j<=nlstate+ndeath;j++){         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         for(i=1; i<=nlstate;i++)                      fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
           fprintf(ficresf," p%d%d",i,j);        for (j=1; j<= nlstate+1 ; j ++) {
         fprintf(ficresf," p.%d",j);          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
       }          else fprintf(ficgp," \%%*lf (\%%*lf)");
       for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) {         }  
         fprintf(ficresf,"\n");        fprintf(ficgp,"\" t\"\" w l 0,");
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);           fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
         for (agec=fage; agec>=(ageminpar-1); agec--){           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           nhstepm=(int) rint((agelim-agec)*YEARM/stepm);           else fprintf(ficgp," \%%*lf (\%%*lf)");
           nhstepm = nhstepm/hstepm;         }  
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
           oldm=oldms;savm=savms;        else fprintf(ficgp,"\" t\"\" w l 0,");
           hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);        }
             }
           for (h=0; h<=nhstepm; h++){   
             if (h*hstepm/YEARM*stepm ==yearp) {    /*3eme*/
               fprintf(ficresf,"\n");   
               for(j=1;j<=cptcoveff;j++)     for (k1=1; k1<= m ; k1 ++) {
                 fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      for (cpt=1; cpt<= nlstate ; cpt ++) {
               fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);        /*       k=2+nlstate*(2*cpt-2); */
             }         k=2+(nlstate+1)*(cpt-1);
             for(j=1; j<=nlstate+ndeath;j++) {        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
               ppij=0.;        fprintf(ficgp,"set ter png small\n\
               for(i=1; i<=nlstate;i++) {  set size 0.65,0.65\n\
                 if (mobilav==1)   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
                   ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];        /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
                 else {          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
                   ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
                 }          fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
                 if (h*hstepm/YEARM*stepm== yearp) {          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
                   fprintf(ficresf," %.3f", p3mat[i][j][h]);          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
                 }         
               } /* end i */        */
               if (h*hstepm/YEARM*stepm==yearp) {        for (i=1; i< nlstate ; i ++) {
                 fprintf(ficresf," %.3f", ppij);          fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
               }          /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
             }/* end j */         
           } /* end h */        }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
         } /* end agec */      }
       } /* end yearp */    }
     } /* end cptcod */   
   } /* end  cptcov */    /* CV preval stable (period) */
            for (k1=1; k1<= m ; k1 ++) {
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      for (cpt=1; cpt<=nlstate ; cpt ++) {
         k=3;
   fclose(ficresf);        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
 }        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small\nset size 0.65,0.65\n\
 /************** Forecasting *****not tested NB*************/  unset log y\n\
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){  plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
          
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;        for (i=1; i< nlstate ; i ++)
   int *popage;          fprintf(ficgp,"+$%d",k+i+1);
   double calagedatem, agelim, kk1, kk2;        fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
   double *popeffectif,*popcount;       
   double ***p3mat,***tabpop,***tabpopprev;        l=3+(nlstate+ndeath)*cpt;
   double ***mobaverage;        fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
   char filerespop[FILENAMELENGTH];        for (i=1; i< nlstate ; i ++) {
           l=3+(nlstate+ndeath)*cpt;
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          fprintf(ficgp,"+$%d",l+i+1);
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        }
   agelim=AGESUP;        fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);  
   calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;      }
       }  
   prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);   
       /* proba elementaires */
       for(i=1,jk=1; i <=nlstate; i++){
   strcpy(filerespop,"pop");       for(k=1; k <=(nlstate+ndeath); k++){
   strcat(filerespop,fileres);        if (k != i) {
   if((ficrespop=fopen(filerespop,"w"))==NULL) {          for(j=1; j <=ncovmodel; j++){
     printf("Problem with forecast resultfile: %s\n", filerespop);            fprintf(ficgp,"p%d=%f ",jk,p[jk]);
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);            jk++;
   }            fprintf(ficgp,"\n");
   printf("Computing forecasting: result on file '%s' \n", filerespop);          }
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);        }
       }
   if (cptcoveff==0) ncodemax[cptcoveff]=1;     }
   
   if (mobilav!=0) {     for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);       for(jk=1; jk <=m; jk++) {
     if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng);
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);         if (ng==2)
       printf(" Error in movingaverage mobilav=%d\n",mobilav);           fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
     }         else
   }           fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
   stepsize=(int) (stepm+YEARM-1)/YEARM;         i=1;
   if (stepm<=12) stepsize=1;         for(k2=1; k2<=nlstate; k2++) {
              k3=i;
   agelim=AGESUP;           for(k=1; k<=(nlstate+ndeath); k++) {
                if (k != k2){
   hstepm=1;               if(ng==2)
   hstepm=hstepm/stepm;                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                  else
   if (popforecast==1) {                 fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
     if((ficpop=fopen(popfile,"r"))==NULL) {               ij=1;
       printf("Problem with population file : %s\n",popfile);exit(0);               for(j=3; j <=ncovmodel; j++) {
       fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);                 if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
     }                    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
     popage=ivector(0,AGESUP);                   ij++;
     popeffectif=vector(0,AGESUP);                 }
     popcount=vector(0,AGESUP);                 else
                        fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
     i=1;                  }
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;               fprintf(ficgp,")/(1");
                   
     imx=i;               for(k1=1; k1 <=nlstate; k1++){  
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];                 fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
   }                 ij=1;
                  for(j=3; j <=ncovmodel; j++){
   for(cptcov=1,k=0;cptcov<=i2;cptcov++){                   if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){                     fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
       k=k+1;                     ij++;
       fprintf(ficrespop,"\n#******");                   }
       for(j=1;j<=cptcoveff;j++) {                   else
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                     fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
       }                 }
       fprintf(ficrespop,"******\n");                 fprintf(ficgp,")");
       fprintf(ficrespop,"# Age");               }
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);               fprintf(ficgp,") t \"p%d%d\" ", k2,k);
       if (popforecast==1)  fprintf(ficrespop," [Population]");               if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                      i=i+ncovmodel;
       for (cpt=0; cpt<=0;cpt++) {              }
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);              } /* end k */
                  } /* end k2 */
         for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){        } /* end jk */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);      } /* end ng */
           nhstepm = nhstepm/hstepm;      fflush(ficgp);
             }  /* end gnuplot */
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
           oldm=oldms;savm=savms;  
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);    /*************** Moving average **************/
           int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
           for (h=0; h<=nhstepm; h++){  
             if (h==(int) (calagedatem+YEARM*cpt)) {    int i, cpt, cptcod;
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);    int modcovmax =1;
             }     int mobilavrange, mob;
             for(j=1; j<=nlstate+ndeath;j++) {    double age;
               kk1=0.;kk2=0;  
               for(i=1; i<=nlstate;i++) {                  modcovmax=2*cptcoveff;/* Max number of modalities. We suppose
                 if (mobilav==1)                              a covariate has 2 modalities */
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];    if (cptcovn<1) modcovmax=1; /* At least 1 pass */
                 else {  
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];    if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
                 }      if(mobilav==1) mobilavrange=5; /* default */
               }      else mobilavrange=mobilav;
               if (h==(int)(calagedatem+12*cpt)){      for (age=bage; age<=fage; age++)
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;        for (i=1; i<=nlstate;i++)
                   /*fprintf(ficrespop," %.3f", kk1);          for (cptcod=1;cptcod<=modcovmax;cptcod++)
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/            mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
               }      /* We keep the original values on the extreme ages bage, fage and for
             }         fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
             for(i=1; i<=nlstate;i++){         we use a 5 terms etc. until the borders are no more concerned.
               kk1=0.;      */
                 for(j=1; j<=nlstate;j++){      for (mob=3;mob <=mobilavrange;mob=mob+2){
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
                 }          for (i=1; i<=nlstate;i++){
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];            for (cptcod=1;cptcod<=modcovmax;cptcod++){
             }              mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
             if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++)                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);                  mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
           }                }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);              mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
         }            }
       }          }
          }/* end age */
   /******/      }/* end mob */
     }else return -1;
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {     return 0;
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);     }/* End movingaverage */
         for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){   
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);   
           nhstepm = nhstepm/hstepm;   /************** Forecasting ******************/
             prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    /* proj1, year, month, day of starting projection
           oldm=oldms;savm=savms;       agemin, agemax range of age
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);         dateprev1 dateprev2 range of dates during which prevalence is computed
           for (h=0; h<=nhstepm; h++){       anproj2 year of en of projection (same day and month as proj1).
             if (h==(int) (calagedatem+YEARM*cpt)) {    */
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);    int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
             }     int *popage;
             for(j=1; j<=nlstate+ndeath;j++) {    double agec; /* generic age */
               kk1=0.;kk2=0;    double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
               for(i=1; i<=nlstate;i++) {                  double *popeffectif,*popcount;
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];        double ***p3mat;
               }    double ***mobaverage;
               if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);            char fileresf[FILENAMELENGTH];
             }  
           }    agelim=AGESUP;
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
         }   
       }    strcpy(fileresf,"f");
    }     strcat(fileresf,fileres);
   }    if((ficresf=fopen(fileresf,"w"))==NULL) {
        printf("Problem with forecast resultfile: %s\n", fileresf);
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
   if (popforecast==1) {    printf("Computing forecasting: result on file '%s' \n", fileresf);
     free_ivector(popage,0,AGESUP);    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
     free_vector(popeffectif,0,AGESUP);  
     free_vector(popcount,0,AGESUP);    if (cptcoveff==0) ncodemax[cptcoveff]=1;
   }  
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    if (mobilav!=0) {
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   fclose(ficrespop);      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
 } /* End of popforecast */        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
 int fileappend(FILE *fichier, char *optionfich)      }
 {    }
   if((fichier=fopen(optionfich,"a"))==NULL) {  
     printf("Problem with file: %s\n", optionfich);    stepsize=(int) (stepm+YEARM-1)/YEARM;
     fprintf(ficlog,"Problem with file: %s\n", optionfich);    if (stepm<=12) stepsize=1;
     return (0);    if(estepm < stepm){
   }      printf ("Problem %d lower than %d\n",estepm, stepm);
   fflush(fichier);    }
   return (1);    else  hstepm=estepm;  
 }  
     hstepm=hstepm/stepm;
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
 /**************** function prwizard **********************/                                 fractional in yp1 */
 void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)    anprojmean=yp;
 {    yp2=modf((yp1*12),&yp);
     mprojmean=yp;
   /* Wizard to print covariance matrix template */    yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
   char ca[32], cb[32], cc[32];    if(jprojmean==0) jprojmean=1;
   int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;    if(mprojmean==0) jprojmean=1;
   int numlinepar;  
     i1=cptcoveff;
   printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    if (cptcovn < 1){i1=1;}
   fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");   
   for(i=1; i <=nlstate; i++){    fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2);
     jj=0;   
     for(j=1; j <=nlstate+ndeath; j++){    fprintf(ficresf,"#****** Routine prevforecast **\n");
       if(j==i) continue;  
       jj++;  /*            if (h==(int)(YEARM*yearp)){ */
       /*ca[0]= k+'a'-1;ca[1]='\0';*/    for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       printf("%1d%1d",i,j);      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
       fprintf(ficparo,"%1d%1d",i,j);        k=k+1;
       for(k=1; k<=ncovmodel;k++){        fprintf(ficresf,"\n#******");
         /*        printf(" %lf",param[i][j][k]); */        for(j=1;j<=cptcoveff;j++) {
         /*        fprintf(ficparo," %lf",param[i][j][k]); */          fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         printf(" 0.");        }
         fprintf(ficparo," 0.");        fprintf(ficresf,"******\n");
       }        fprintf(ficresf,"# Covariate valuofcovar yearproj age");
       printf("\n");        for(j=1; j<=nlstate+ndeath;j++){
       fprintf(ficparo,"\n");          for(i=1; i<=nlstate;i++)              
     }            fprintf(ficresf," p%d%d",i,j);
   }          fprintf(ficresf," p.%d",j);
   printf("# Scales (for hessian or gradient estimation)\n");        }
   fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");        for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) {
   npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/           fprintf(ficresf,"\n");
   for(i=1; i <=nlstate; i++){          fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);  
     jj=0;  
     for(j=1; j <=nlstate+ndeath; j++){          for (agec=fage; agec>=(ageminpar-1); agec--){
       if(j==i) continue;            nhstepm=(int) rint((agelim-agec)*YEARM/stepm);
       jj++;            nhstepm = nhstepm/hstepm;
       fprintf(ficparo,"%1d%1d",i,j);            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       printf("%1d%1d",i,j);            oldm=oldms;savm=savms;
       fflush(stdout);            hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
       for(k=1; k<=ncovmodel;k++){         
         /*      printf(" %le",delti3[i][j][k]); */            for (h=0; h<=nhstepm; h++){
         /*      fprintf(ficparo," %le",delti3[i][j][k]); */              if (h*hstepm/YEARM*stepm ==yearp) {
         printf(" 0.");                fprintf(ficresf,"\n");
         fprintf(ficparo," 0.");                for(j=1;j<=cptcoveff;j++)
       }                  fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
       numlinepar++;                fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
       printf("\n");              }
       fprintf(ficparo,"\n");              for(j=1; j<=nlstate+ndeath;j++) {
     }                ppij=0.;
   }                for(i=1; i<=nlstate;i++) {
   printf("# Covariance matrix\n");                  if (mobilav==1)
 /* # 121 Var(a12)\n\ */                    ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
 /* # 122 Cov(b12,a12) Var(b12)\n\ */                  else {
 /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */                    ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
 /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */                  }
 /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */                  if (h*hstepm/YEARM*stepm== yearp) {
 /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */                    fprintf(ficresf," %.3f", p3mat[i][j][h]);
 /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */                  }
 /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */                } /* end i */
   fflush(stdout);                if (h*hstepm/YEARM*stepm==yearp) {
   fprintf(ficparo,"# Covariance matrix\n");                  fprintf(ficresf," %.3f", ppij);
   /* # 121 Var(a12)\n\ */                }
   /* # 122 Cov(b12,a12) Var(b12)\n\ */              }/* end j */
   /* #   ...\n\ */            } /* end h */
   /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             } /* end agec */
   for(itimes=1;itimes<=2;itimes++){        } /* end yearp */
     jj=0;      } /* end cptcod */
     for(i=1; i <=nlstate; i++){    } /* end  cptcov */
       for(j=1; j <=nlstate+ndeath; j++){         
         if(j==i) continue;    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         for(k=1; k<=ncovmodel;k++){  
           jj++;    fclose(ficresf);
           ca[0]= k+'a'-1;ca[1]='\0';  }
           if(itimes==1){  
             printf("#%1d%1d%d",i,j,k);  /************** Forecasting *****not tested NB*************/
             fprintf(ficparo,"#%1d%1d%d",i,j,k);  populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
           }else{   
             printf("%1d%1d%d",i,j,k);    int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
             fprintf(ficparo,"%1d%1d%d",i,j,k);    int *popage;
             /*  printf(" %.5le",matcov[i][j]); */    double calagedatem, agelim, kk1, kk2;
           }    double *popeffectif,*popcount;
           ll=0;    double ***p3mat,***tabpop,***tabpopprev;
           for(li=1;li <=nlstate; li++){    double ***mobaverage;
             for(lj=1;lj <=nlstate+ndeath; lj++){    char filerespop[FILENAMELENGTH];
               if(lj==li) continue;  
               for(lk=1;lk<=ncovmodel;lk++){    tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
                 ll++;    tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
                 if(ll<=jj){    agelim=AGESUP;
                   cb[0]= lk +'a'-1;cb[1]='\0';    calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
                   if(ll<jj){   
                     if(itimes==1){    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
                       printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);   
                       fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);   
                     }else{    strcpy(filerespop,"pop");
                       printf(" 0.");    strcat(filerespop,fileres);
                       fprintf(ficparo," 0.");    if((ficrespop=fopen(filerespop,"w"))==NULL) {
                     }      printf("Problem with forecast resultfile: %s\n", filerespop);
                   }else{      fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
                     if(itimes==1){    }
                       printf(" Var(%s%1d%1d)",ca,i,j);    printf("Computing forecasting: result on file '%s' \n", filerespop);
                       fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
                     }else{  
                       printf(" 0.");    if (cptcoveff==0) ncodemax[cptcoveff]=1;
                       fprintf(ficparo," 0.");  
                     }    if (mobilav!=0) {
                   }      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
                 }      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
               } /* end lk */        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
             } /* end lj */        printf(" Error in movingaverage mobilav=%d\n",mobilav);
           } /* end li */      }
           printf("\n");    }
           fprintf(ficparo,"\n");  
           numlinepar++;    stepsize=(int) (stepm+YEARM-1)/YEARM;
         } /* end k*/    if (stepm<=12) stepsize=1;
       } /*end j */   
     } /* end i */    agelim=AGESUP;
   } /* end itimes */   
     hstepm=1;
 } /* end of prwizard */    hstepm=hstepm/stepm;
 /******************* Gompertz Likelihood ******************************/   
 double gompertz(double x[])    if (popforecast==1) {
 {       if((ficpop=fopen(popfile,"r"))==NULL) {
   double A,B,L=0.0,sump=0.,num=0.;        printf("Problem with population file : %s\n",popfile);exit(0);
   int i,n=0; /* n is the size of the sample */        fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       }
   for (i=0;i<=imx-1 ; i++) {      popage=ivector(0,AGESUP);
     sump=sump+weight[i];      popeffectif=vector(0,AGESUP);
     /*    sump=sump+1;*/      popcount=vector(0,AGESUP);
     num=num+1;     
   }      i=1;  
        while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
       
   /* for (i=0; i<=imx; i++)       imx=i;
      if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/      for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   for (i=1;i<=imx ; i++)  
     {    for(cptcov=1,k=0;cptcov<=i2;cptcov++){
       if (cens[i] == 1 && wav[i]>1)     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));        k=k+1;
               fprintf(ficrespop,"\n#******");
       if (cens[i] == 0 && wav[i]>1)        for(j=1;j<=cptcoveff;j++) {
         A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))          fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
              +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);          }
               fprintf(ficrespop,"******\n");
       /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */        fprintf(ficrespop,"# Age");
       if (wav[i] > 1 ) { /* ??? */        for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         L=L+A*weight[i];        if (popforecast==1)  fprintf(ficrespop," [Population]");
         /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/       
       }        for (cpt=0; cpt<=0;cpt++) {
     }          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);  
          
  /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){
              nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);
   return -2*L*num/sump;            nhstepm = nhstepm/hstepm;
 }           
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 /******************* Printing html file ***********/            oldm=oldms;savm=savms;
 void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
                   int lastpass, int stepm, int weightopt, char model[],\         
                   int imx,  double p[],double **matcov,double agemortsup){            for (h=0; h<=nhstepm; h++){
   int i,k;              if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
   fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");              }
   fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);              for(j=1; j<=nlstate+ndeath;j++) {
   for (i=1;i<=2;i++)                 kk1=0.;kk2=0;
     fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));                for(i=1; i<=nlstate;i++) {              
   fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");                  if (mobilav==1)
   fprintf(fichtm,"</ul>");                    kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
 fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");                    kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
  fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");                }
                 if (h==(int)(calagedatem+12*cpt)){
  for (k=agegomp;k<(agemortsup-2);k++)                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
    fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);                    /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                  }
   fflush(fichtm);              }
 }              for(i=1; i<=nlstate;i++){
                 kk1=0.;
 /******************* Gnuplot file **************/                  for(j=1; j<=nlstate;j++){
 void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){                    kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];
                   }
   char dirfileres[132],optfileres[132];                    tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;              }
   int ng;  
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++)
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
   /*#ifdef windows */            }
   fprintf(ficgp,"cd \"%s\" \n",pathc);            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     /*#endif */          }
         }
    
   strcpy(dirfileres,optionfilefiname);    /******/
   strcpy(optfileres,"vpl");  
   fprintf(ficgp,"set out \"graphmort.png\"\n ");         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {
   fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n ");           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);  
   fprintf(ficgp, "set ter png small\n set log y\n");           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){
   fprintf(ficgp, "set size 0.65,0.65\n");            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);
   fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);            nhstepm = nhstepm/hstepm;
            
 }             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
 /***********************************************/                fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
 /**************** Main Program *****************/              }
 /***********************************************/              for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
 int main(int argc, char *argv[])                for(i=1; i<=nlstate;i++) {              
 {                  kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);                }
   int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;                if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
   int linei, month, year,iout;              }
   int jj, ll, li, lj, lk, imk;            }
   int numlinepar=0; /* Current linenumber of parameter file */            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   int itimes;          }
   int NDIM=2;        }
      }
   char ca[32], cb[32], cc[32];    }
   /*  FILE *fichtm; *//* Html File */   
   /* FILE *ficgp;*/ /*Gnuplot File */    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   struct stat info;  
   double agedeb, agefin,hf;    if (popforecast==1) {
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;      free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
   double fret;      free_vector(popcount,0,AGESUP);
   double **xi,tmp,delta;    }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   double dum; /* Dummy variable */    free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   double ***p3mat;    fclose(ficrespop);
   double ***mobaverage;  } /* End of popforecast */
   int *indx;  
   char line[MAXLINE], linepar[MAXLINE];  int fileappend(FILE *fichier, char *optionfich)
   char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];  {
   char pathr[MAXLINE], pathimach[MAXLINE];     if((fichier=fopen(optionfich,"a"))==NULL) {
   int firstobs=1, lastobs=10;      printf("Problem with file: %s\n", optionfich);
   int sdeb, sfin; /* Status at beginning and end */      fprintf(ficlog,"Problem with file: %s\n", optionfich);
   int c,  h , cpt,l;      return (0);
   int ju,jl, mi;    }
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;    fflush(fichier);
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab;     return (1);
   int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */  }
   int mobilav=0,popforecast=0;  
   int hstepm, nhstepm;  
   int agemortsup;  /**************** function prwizard **********************/
   float  sumlpop=0.;  void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;  {
   double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;  
     /* Wizard to print covariance matrix template */
   double bage, fage, age, agelim, agebase;  
   double ftolpl=FTOL;    char ca[32], cb[32], cc[32];
   double **prlim;    int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
   double *severity;    int numlinepar;
   double ***param; /* Matrix of parameters */  
   double  *p;    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
   double **matcov; /* Matrix of covariance */    fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
   double ***delti3; /* Scale */    for(i=1; i <=nlstate; i++){
   double *delti; /* Scale */      jj=0;
   double ***eij, ***vareij;      for(j=1; j <=nlstate+ndeath; j++){
   double **varpl; /* Variances of prevalence limits by age */        if(j==i) continue;
   double *epj, vepp;        jj++;
   double kk1, kk2;        /*ca[0]= k+'a'-1;ca[1]='\0';*/
   double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;        printf("%1d%1d",i,j);
   double **ximort;        fprintf(ficparo,"%1d%1d",i,j);
   char *alph[]={"a","a","b","c","d","e"}, str[4];        for(k=1; k<=ncovmodel;k++){
   int *dcwave;          /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
   char z[1]="c", occ;          printf(" 0.");
           fprintf(ficparo," 0.");
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];        }
   char strstart[80], *strt, strtend[80];        printf("\n");
   char *stratrunc;        fprintf(ficparo,"\n");
   int lstra;      }
     }
   long total_usecs;    printf("# Scales (for hessian or gradient estimation)\n");
      fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
 /*   setlocale (LC_ALL, ""); */    npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
 /*   bindtextdomain (PACKAGE, LOCALEDIR); */    for(i=1; i <=nlstate; i++){
 /*   textdomain (PACKAGE); */      jj=0;
 /*   setlocale (LC_CTYPE, ""); */      for(j=1; j <=nlstate+ndeath; j++){
 /*   setlocale (LC_MESSAGES, ""); */        if(j==i) continue;
         jj++;
   /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */        fprintf(ficparo,"%1d%1d",i,j);
   (void) gettimeofday(&start_time,&tzp);        printf("%1d%1d",i,j);
   curr_time=start_time;        fflush(stdout);
   tm = *localtime(&start_time.tv_sec);        for(k=1; k<=ncovmodel;k++){
   tmg = *gmtime(&start_time.tv_sec);          /*      printf(" %le",delti3[i][j][k]); */
   strcpy(strstart,asctime(&tm));          /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
 /*  printf("Localtime (at start)=%s",strstart); */          fprintf(ficparo," 0.");
 /*  tp.tv_sec = tp.tv_sec +86400; */        }
 /*  tm = *localtime(&start_time.tv_sec); */        numlinepar++;
 /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */        printf("\n");
 /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */        fprintf(ficparo,"\n");
 /*   tmg.tm_hour=tmg.tm_hour + 1; */      }
 /*   tp.tv_sec = mktime(&tmg); */    }
 /*   strt=asctime(&tmg); */    printf("# Covariance matrix\n");
 /*   printf("Time(after) =%s",strstart);  */  /* # 121 Var(a12)\n\ */
 /*  (void) time (&time_value);  /* # 122 Cov(b12,a12) Var(b12)\n\ */
 *  printf("time=%d,t-=%d\n",time_value,time_value-86400);  /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
 *  tm = *localtime(&time_value);  /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
 *  strstart=asctime(&tm);  /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
 *  printf("tim_value=%d,asctime=%s\n",time_value,strstart);   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
 */  /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
   nberr=0; /* Number of errors and warnings */    fflush(stdout);
   nbwarn=0;    fprintf(ficparo,"# Covariance matrix\n");
   getcwd(pathcd, size);    /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
   printf("\n%s\n%s",version,fullversion);    /* #   ...\n\ */
   if(argc <=1){    /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     printf("\nEnter the parameter file name: ");   
     scanf("%s",pathtot);    for(itimes=1;itimes<=2;itimes++){
   }      jj=0;
   else{      for(i=1; i <=nlstate; i++){
     strcpy(pathtot,argv[1]);        for(j=1; j <=nlstate+ndeath; j++){
   }          if(j==i) continue;
   /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/          for(k=1; k<=ncovmodel;k++){
   /*cygwin_split_path(pathtot,path,optionfile);            jj++;
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/            ca[0]= k+'a'-1;ca[1]='\0';
   /* cutv(path,optionfile,pathtot,'\\');*/            if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
   /* Split argv[0], imach program to get pathimach */              fprintf(ficparo,"#%1d%1d%d",i,j,k);
   printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);            }else{
   split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);              printf("%1d%1d%d",i,j,k);
   printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);              fprintf(ficparo,"%1d%1d%d",i,j,k);
  /*   strcpy(pathimach,argv[0]); */              /*  printf(" %.5le",matcov[i][j]); */
   /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */            }
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);            ll=0;
   printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);            for(li=1;li <=nlstate; li++){
   chdir(path);              for(lj=1;lj <=nlstate+ndeath; lj++){
   strcpy(command,"mkdir ");                if(lj==li) continue;
   strcat(command,optionfilefiname);                for(lk=1;lk<=ncovmodel;lk++){
   if((outcmd=system(command)) != 0){                  ll++;
     printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);                  if(ll<=jj){
     /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */                    cb[0]= lk +'a'-1;cb[1]='\0';
     /* fclose(ficlog); */                    if(ll<jj){
 /*     exit(1); */                      if(itimes==1){
   }                        printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
 /*   if((imk=mkdir(optionfilefiname))<0){ */                        fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
 /*     perror("mkdir"); */                      }else{
 /*   } */                        printf(" 0.");
                         fprintf(ficparo," 0.");
   /*-------- arguments in the command line --------*/                      }
                     }else{
   /* Log file */                      if(itimes==1){
   strcat(filelog, optionfilefiname);                        printf(" Var(%s%1d%1d)",ca,i,j);
   strcat(filelog,".log");    /* */                        fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
   if((ficlog=fopen(filelog,"w"))==NULL)    {                      }else{
     printf("Problem with logfile %s\n",filelog);                        printf(" 0.");
     goto end;                        fprintf(ficparo," 0.");
   }                      }
   fprintf(ficlog,"Log filename:%s\n",filelog);                    }
   fprintf(ficlog,"\n%s\n%s",version,fullversion);                  }
   fprintf(ficlog,"\nEnter the parameter file name: \n");                } /* end lk */
   fprintf(ficlog,"pathimach=%s\npathtot=%s\n\              } /* end lj */
  path=%s \n\            } /* end li */
  optionfile=%s\n\            printf("\n");
  optionfilext=%s\n\            fprintf(ficparo,"\n");
  optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);            numlinepar++;
           } /* end k*/
   printf("Local time (at start):%s",strstart);        } /*end j */
   fprintf(ficlog,"Local time (at start): %s",strstart);      } /* end i */
   fflush(ficlog);    } /* end itimes */
 /*   (void) gettimeofday(&curr_time,&tzp); */  
 /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */  } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   /* */  double gompertz(double x[])
   strcpy(fileres,"r");  {
   strcat(fileres, optionfilefiname);    double A,B,L=0.0,sump=0.,num=0.;
   strcat(fileres,".txt");    /* Other files have txt extension */    int i,n=0; /* n is the size of the sample */
   
   /*---------arguments file --------*/    for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
   if((ficpar=fopen(optionfile,"r"))==NULL)    {      /*    sump=sump+1;*/
     printf("Problem with optionfile %s\n",optionfile);      num=num+1;
     fprintf(ficlog,"Problem with optionfile %s\n",optionfile);    }
     fflush(ficlog);   
     goto end;   
   }    /* for (i=0; i<=imx; i++)
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
   strcpy(filereso,"o");      {
   strcat(filereso,fileres);        if (cens[i] == 1 && wav[i]>1)
   if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */          A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
     printf("Problem with Output resultfile: %s\n", filereso);       
     fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);        if (cens[i] == 0 && wav[i]>1)
     fflush(ficlog);          A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
     goto end;               +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
   }       
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
   /* Reads comments: lines beginning with '#' */        if (wav[i] > 1 ) { /* ??? */
   numlinepar=0;          L=L+A*weight[i];
   while((c=getc(ficpar))=='#' && c!= EOF){          /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
     ungetc(c,ficpar);        }
     fgets(line, MAXLINE, ficpar);      }
     numlinepar++;  
     puts(line);   /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
     fputs(line,ficparo);   
     fputs(line,ficlog);    return -2*L*num/sump;
   }  }
   ungetc(c,ficpar);  
   /******************* Printing html file ***********/
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);  void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
   numlinepar++;                    int lastpass, int stepm, int weightopt, char model[],\
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);                    int imx,  double p[],double **matcov,double agemortsup){
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);    int i,k;
   fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);  
   fflush(ficlog);    fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
   while((c=getc(ficpar))=='#' && c!= EOF){    fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     ungetc(c,ficpar);    for (i=1;i<=2;i++)
     fgets(line, MAXLINE, ficpar);      fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     numlinepar++;    fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     puts(line);    fprintf(fichtm,"</ul>");
     fputs(line,ficparo);  
     fputs(line,ficlog);  fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   }  
   ungetc(c,ficpar);   fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
       for (k=agegomp;k<(agemortsup-2);k++)
   covar=matrix(0,NCOVMAX,1,n);      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/  
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;   
     fflush(fichtm);
   ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */  }
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */  
   npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/  /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);  
   delti=delti3[1][1];    char dirfileres[132],optfileres[132];
   /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
   if(mle==-1){ /* Print a wizard for help writing covariance matrix */    int ng;
     prwizard(ncovmodel, nlstate, ndeath, model, ficparo);  
     printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);  
     fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);    /*#ifdef windows */
     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);     fprintf(ficgp,"cd \"%s\" \n",pathc);
     fclose (ficparo);      /*#endif */
     fclose (ficlog);  
     exit(0);  
   }    strcpy(dirfileres,optionfilefiname);
   else if(mle==-3) {    strcpy(optfileres,"vpl");
     prwizard(ncovmodel, nlstate, ndeath, model, ficparo);    fprintf(ficgp,"set out \"graphmort.png\"\n ");
     printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);    fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n ");
     fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);    fprintf(ficgp, "set ter png small\n set log y\n");
     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    fprintf(ficgp, "set size 0.65,0.65\n");
     matcov=matrix(1,npar,1,npar);    fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   }  
   else{  }
     /* Read guess parameters */  
     /* Reads comments: lines beginning with '#' */  
     while((c=getc(ficpar))=='#' && c!= EOF){  
       ungetc(c,ficpar);  
       fgets(line, MAXLINE, ficpar);  
       numlinepar++;  /***********************************************/
       puts(line);  /**************** Main Program *****************/
       fputs(line,ficparo);  /***********************************************/
       fputs(line,ficlog);  
     }  int main(int argc, char *argv[])
     ungetc(c,ficpar);  {
         int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     for(i=1; i <=nlstate; i++){    int linei, month, year,iout;
       j=0;    int jj, ll, li, lj, lk, imk;
       for(jj=1; jj <=nlstate+ndeath; jj++){    int numlinepar=0; /* Current linenumber of parameter file */
         if(jj==i) continue;    int itimes;
         j++;    int NDIM=2;
         fscanf(ficpar,"%1d%1d",&i1,&j1);  
         if ((i1 != i) && (j1 != j)){    char ca[32], cb[32], cc[32];
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);    char dummy[]="                         ";
           exit(1);    /*  FILE *fichtm; *//* Html File */
         }    /* FILE *ficgp;*/ /*Gnuplot File */
         fprintf(ficparo,"%1d%1d",i1,j1);    struct stat info;
         if(mle==1)    double agedeb, agefin,hf;
           printf("%1d%1d",i,j);    double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
         fprintf(ficlog,"%1d%1d",i,j);  
         for(k=1; k<=ncovmodel;k++){    double fret;
           fscanf(ficpar," %lf",&param[i][j][k]);    double **xi,tmp,delta;
           if(mle==1){  
             printf(" %lf",param[i][j][k]);    double dum; /* Dummy variable */
             fprintf(ficlog," %lf",param[i][j][k]);    double ***p3mat;
           }    double ***mobaverage;
           else    int *indx;
             fprintf(ficlog," %lf",param[i][j][k]);    char line[MAXLINE], linepar[MAXLINE];
           fprintf(ficparo," %lf",param[i][j][k]);    char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
         }    char pathr[MAXLINE], pathimach[MAXLINE];
         fscanf(ficpar,"\n");    char **bp, *tok, *val; /* pathtot */
         numlinepar++;    int firstobs=1, lastobs=10;
         if(mle==1)    int sdeb, sfin; /* Status at beginning and end */
           printf("\n");    int c,  h , cpt,l;
         fprintf(ficlog,"\n");    int ju,jl, mi;
         fprintf(ficparo,"\n");    int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
       }    int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab;
     }      int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     fflush(ficlog);    int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     p=param[1][1];    int agemortsup;
         float  sumlpop=0.;
     /* Reads comments: lines beginning with '#' */    double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     while((c=getc(ficpar))=='#' && c!= EOF){    double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
       ungetc(c,ficpar);  
       fgets(line, MAXLINE, ficpar);    double bage, fage, age, agelim, agebase;
       numlinepar++;    double ftolpl=FTOL;
       puts(line);    double **prlim;
       fputs(line,ficparo);    double *severity;
       fputs(line,ficlog);    double ***param; /* Matrix of parameters */
     }    double  *p;
     ungetc(c,ficpar);    double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     for(i=1; i <=nlstate; i++){    double *delti; /* Scale */
       for(j=1; j <=nlstate+ndeath-1; j++){    double ***eij, ***vareij;
         fscanf(ficpar,"%1d%1d",&i1,&j1);    double **varpl; /* Variances of prevalence limits by age */
         if ((i1-i)*(j1-j)!=0){    double *epj, vepp;
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);    double kk1, kk2;
           exit(1);    double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
         }    double **ximort;
         printf("%1d%1d",i,j);    char *alph[]={"a","a","b","c","d","e"}, str[4];
         fprintf(ficparo,"%1d%1d",i1,j1);    int *dcwave;
         fprintf(ficlog,"%1d%1d",i1,j1);  
         for(k=1; k<=ncovmodel;k++){    char z[1]="c", occ;
           fscanf(ficpar,"%le",&delti3[i][j][k]);  
           printf(" %le",delti3[i][j][k]);    char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
           fprintf(ficparo," %le",delti3[i][j][k]);    char  *strt, strtend[80];
           fprintf(ficlog," %le",delti3[i][j][k]);    char *stratrunc;
         }    int lstra;
         fscanf(ficpar,"\n");  
         numlinepar++;    long total_usecs;
         printf("\n");   
         fprintf(ficparo,"\n");  /*   setlocale (LC_ALL, ""); */
         fprintf(ficlog,"\n");  /*   bindtextdomain (PACKAGE, LOCALEDIR); */
       }  /*   textdomain (PACKAGE); */
     }  /*   setlocale (LC_CTYPE, ""); */
     fflush(ficlog);  /*   setlocale (LC_MESSAGES, ""); */
   
     delti=delti3[1][1];    /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */    tm = *localtime(&start_time.tv_sec);
       tmg = *gmtime(&start_time.tv_sec);
     /* Reads comments: lines beginning with '#' */    strcpy(strstart,asctime(&tm));
     while((c=getc(ficpar))=='#' && c!= EOF){  
       ungetc(c,ficpar);  /*  printf("Localtime (at start)=%s",strstart); */
       fgets(line, MAXLINE, ficpar);  /*  tp.tv_sec = tp.tv_sec +86400; */
       numlinepar++;  /*  tm = *localtime(&start_time.tv_sec); */
       puts(line);  /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
       fputs(line,ficparo);  /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
       fputs(line,ficlog);  /*   tmg.tm_hour=tmg.tm_hour + 1; */
     }  /*   tp.tv_sec = mktime(&tmg); */
     ungetc(c,ficpar);  /*   strt=asctime(&tmg); */
     /*   printf("Time(after) =%s",strstart);  */
     matcov=matrix(1,npar,1,npar);  /*  (void) time (&time_value);
     for(i=1; i <=npar; i++){  *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
       fscanf(ficpar,"%s",&str);  *  tm = *localtime(&time_value);
       if(mle==1)  *  strstart=asctime(&tm);
         printf("%s",str);  *  printf("tim_value=%d,asctime=%s\n",time_value,strstart);
       fprintf(ficlog,"%s",str);  */
       fprintf(ficparo,"%s",str);  
       for(j=1; j <=i; j++){    nberr=0; /* Number of errors and warnings */
         fscanf(ficpar," %le",&matcov[i][j]);    nbwarn=0;
         if(mle==1){    getcwd(pathcd, size);
           printf(" %.5le",matcov[i][j]);  
         }    printf("\n%s\n%s",version,fullversion);
         fprintf(ficlog," %.5le",matcov[i][j]);    if(argc <=1){
         fprintf(ficparo," %.5le",matcov[i][j]);      printf("\nEnter the parameter file name: ");
       }      fgets(pathr,FILENAMELENGTH,stdin);
       fscanf(ficpar,"\n");      i=strlen(pathr);
       numlinepar++;      if(pathr[i-1]=='\n')
       if(mle==1)        pathr[i-1]='\0';
         printf("\n");     for (tok = pathr; tok != NULL; ){
       fprintf(ficlog,"\n");        printf("Pathr |%s|\n",pathr);
       fprintf(ficparo,"\n");        while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
     }        printf("val= |%s| pathr=%s\n",val,pathr);
     for(i=1; i <=npar; i++)        strcpy (pathtot, val);
       for(j=i+1;j<=npar;j++)        if(pathr[0] == '\0') break; /* Dirty */
         matcov[i][j]=matcov[j][i];      }
         }
     if(mle==1)    else{
       printf("\n");      strcpy(pathtot,argv[1]);
     fprintf(ficlog,"\n");    }
         /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     fflush(ficlog);    /*cygwin_split_path(pathtot,path,optionfile);
           printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /*-------- Rewriting parameter file ----------*/    /* cutv(path,optionfile,pathtot,'\\');*/
     strcpy(rfileres,"r");    /* "Rparameterfile */  
     strcat(rfileres,optionfilefiname);    /* Parameter file first name*/    /* Split argv[0], imach program to get pathimach */
     strcat(rfileres,".");    /* */    printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     strcat(rfileres,optionfilext);    /* Other files have txt extension */    split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     if((ficres =fopen(rfileres,"w"))==NULL) {    printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
       printf("Problem writing new parameter file: %s\n", fileres);goto end;   /*   strcpy(pathimach,argv[0]); */
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;    /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     }    split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     fprintf(ficres,"#%s\n",version);    printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
   }    /* End of mle != -3 */    chdir(path); /* Can be a relative path */
     if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
   /*-------- data file ----------*/      printf("Current directory %s!\n",pathcd);
   if((fic=fopen(datafile,"r"))==NULL)    {    strcpy(command,"mkdir ");
     printf("Problem with datafile: %s\n", datafile);goto end;    strcat(command,optionfilefiname);
     fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;    if((outcmd=system(command)) != 0){
   }      printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
   n= lastobs;      /* fclose(ficlog); */
   severity = vector(1,maxwav);  /*     exit(1); */
   outcome=imatrix(1,maxwav+1,1,n);    }
   num=lvector(1,n);  /*   if((imk=mkdir(optionfilefiname))<0){ */
   moisnais=vector(1,n);  /*     perror("mkdir"); */
   annais=vector(1,n);  /*   } */
   moisdc=vector(1,n);  
   andc=vector(1,n);    /*-------- arguments in the command line --------*/
   agedc=vector(1,n);  
   cod=ivector(1,n);    /* Log file */
   weight=vector(1,n);    strcat(filelog, optionfilefiname);
   for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */    strcat(filelog,".log");    /* */
   mint=matrix(1,maxwav,1,n);    if((ficlog=fopen(filelog,"w"))==NULL)    {
   anint=matrix(1,maxwav,1,n);      printf("Problem with logfile %s\n",filelog);
   s=imatrix(1,maxwav+1,1,n);      goto end;
   tab=ivector(1,NCOVMAX);    }
   ncodemax=ivector(1,8);    fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
   i=1;    fprintf(ficlog,"\nEnter the parameter file name: \n");
   linei=0;    fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
   while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs)))    {   path=%s \n\
     linei=linei+1;   optionfile=%s\n\
     for(j=strlen(line); j>=0;j--){  /* Untabifies line */   optionfilext=%s\n\
         if(line[j] == '\t')   optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
           line[j] = ' ';  
       }    printf("Local time (at start):%s",strstart);
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){    fprintf(ficlog,"Local time (at start): %s",strstart);
         ;    fflush(ficlog);
       };  /*   (void) gettimeofday(&curr_time,&tzp); */
       line[j+1]=0;  /* Trims blanks at end of line */  /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
       if(line[0]=='#'){  
         fprintf(ficlog,"Comment line\n%s\n",line);    /* */
         printf("Comment line\n%s\n",line);    strcpy(fileres,"r");
         continue;    strcat(fileres, optionfilefiname);
       }    strcat(fileres,".txt");    /* Other files have txt extension */
       for (j=maxwav;j>=1;j--){  
         cutv(stra, strb,line,' ');     /*---------arguments file --------*/
         errno=0;  
         lval=strtol(strb,&endptr,10);     if((ficpar=fopen(optionfile,"r"))==NULL)    {
         /*      if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/      printf("Problem with optionfile %s\n",optionfile);
         if( strb[0]=='\0' || (*endptr != '\0')){      fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
           printf("Error reading data around '%d' at line number %d %s for individual %d\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n",lval, i,line,linei,j,maxwav);      fflush(ficlog);
           exit(1);      goto end;
         }    }
         s[j][i]=lval;  
   
         strcpy(line,stra);  
         cutv(stra, strb,line,' ');    strcpy(filereso,"o");
         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){    strcat(filereso,fileres);
         }    if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
         else  if(iout=sscanf(strb,".") != 0){      printf("Problem with Output resultfile: %s\n", filereso);
           month=99;      fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
           year=9999;      fflush(ficlog);
         }else{      goto end;
           printf("Error reading data around '%s'.at line number %ld %s for individual %d\nShould be a year of exam at wave %d.  Exiting.\n",strb, i,line,linei,j);    }
           exit(1);  
         }    /* Reads comments: lines beginning with '#' */
         anint[j][i]= (double) year;     numlinepar=0;
         mint[j][i]= (double)month;     while((c=getc(ficpar))=='#' && c!= EOF){
         strcpy(line,stra);      ungetc(c,ficpar);
       } /* ENd Waves */      fgets(line, MAXLINE, ficpar);
               numlinepar++;
       cutv(stra, strb,line,' ');       puts(line);
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){      fputs(line,ficparo);
       }      fputs(line,ficlog);
       else  if(iout=sscanf(strb,".") != 0){    }
         month=99;    ungetc(c,ficpar);
         year=9999;  
       }else{    fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
         printf("Error reading data around '%s'.at line number %ld %s for individual %d\nShould be a year of exam at wave %d.  Exiting.\n",strb, i,line,linei,j);    numlinepar++;
         exit(1);    printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
       }    fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
       andc[i]=(double) year;     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
       moisdc[i]=(double) month;     fflush(ficlog);
       strcpy(line,stra);    while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       cutv(stra, strb,line,' ');       fgets(line, MAXLINE, ficpar);
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){      numlinepar++;
       }      puts(line);
       else  if(iout=sscanf(strb,".") != 0){      fputs(line,ficparo);
         month=99;      fputs(line,ficlog);
         year=9999;    }
       }else{    ungetc(c,ficpar);
         printf("Error reading data around '%s'.at line number %ld %s for individual %d\nShould be a year of exam at wave %d.  Exiting.\n",strb, i,line,linei,j);  
         exit(1);     
       }    covar=matrix(0,NCOVMAX,1,n);
       annais[i]=(double)(year);    cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
       moisnais[i]=(double)(month);     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
       strcpy(line,stra);  
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
       cutv(stra, strb,line,' ');     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
       errno=0;    npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
       lval=strtol(strb,&endptr,10);   
       if( strb[0]=='\0' || (*endptr != '\0')){    delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
         printf("Error reading data around '%d' at line number %ld %s for individual %d\nShould be a weight.  Exiting.\n",lval, i,line,linei);    delti=delti3[1][1];
         exit(1);    /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
       }    if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       weight[i]=(double)(lval);       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       strcpy(line,stra);      printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       for (j=ncovcol;j>=1;j--){      free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
         cutv(stra, strb,line,' ');       fclose (ficparo);
         errno=0;      fclose (ficlog);
         lval=strtol(strb,&endptr,10);       goto end;
         if( strb[0]=='\0' || (*endptr != '\0')){      exit(0);
           printf("Error reading data around '%d' at line number %ld %s for individual %d\nShould be a covar (meaning 0 for the reference or 1).  Exiting.\n",lval, i,line,linei);    }
           exit(1);    else if(mle==-3) {
         }      prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
         if(lval <-1 || lval >1){      printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
           printf("Error reading data around '%d' at line number %ld %s for individual %d\nShould be a value of the %d covar (meaning 0 for the reference or 1. IMaCh does not build design variables, do it your self).  Exiting.\n",lval,i,line,linei,j);      fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
           exit(1);      param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
         }      matcov=matrix(1,npar,1,npar);
         covar[j][i]=(double)(lval);    }
         strcpy(line,stra);    else{
       }       /* Read guess parameters */
       lstra=strlen(stra);      /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */        ungetc(c,ficpar);
         stratrunc = &(stra[lstra-9]);        fgets(line, MAXLINE, ficpar);
         num[i]=atol(stratrunc);        numlinepar++;
       }        puts(line);
       else        fputs(line,ficparo);
         num[i]=atol(stra);        fputs(line,ficlog);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){      }
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/      ungetc(c,ficpar);
      
       i=i+1;      param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
   } /* End loop reading  data */      for(i=1; i <=nlstate; i++){
   /* printf("ii=%d", ij);        j=0;
      scanf("%d",i);*/        for(jj=1; jj <=nlstate+ndeath; jj++){
   imx=i-1; /* Number of individuals */          if(jj==i) continue;
           j++;
   /* for (i=1; i<=imx; i++){          fscanf(ficpar,"%1d%1d",&i1,&j1);
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;          if ((i1 != i) && (j1 != j)){
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;            printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;  It might be a problem of design; if ncovcol and the model are correct\n \
     }*/  run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
    /*  for (i=1; i<=imx; i++){            exit(1);
      if (s[4][i]==9)  s[4][i]=-1;           }
      printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/          fprintf(ficparo,"%1d%1d",i1,j1);
             if(mle==1)
   /* for (i=1; i<=imx; i++) */            printf("%1d%1d",i,j);
            fprintf(ficlog,"%1d%1d",i,j);
    /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;          for(k=1; k<=ncovmodel;k++){
      else weight[i]=1;*/            fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
   /* Calculation of the number of parameters from char model */              printf(" %lf",param[i][j][k]);
   Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */              fprintf(ficlog," %lf",param[i][j][k]);
   Tprod=ivector(1,15);             }
   Tvaraff=ivector(1,15);             else
   Tvard=imatrix(1,15,1,2);              fprintf(ficlog," %lf",param[i][j][k]);
   Tage=ivector(1,15);                  fprintf(ficparo," %lf",param[i][j][k]);
              }
   if (strlen(model) >1){ /* If there is at least 1 covariate */          fscanf(ficpar,"\n");
     j=0, j1=0, k1=1, k2=1;          numlinepar++;
     j=nbocc(model,'+'); /* j=Number of '+' */          if(mle==1)
     j1=nbocc(model,'*'); /* j1=Number of '*' */            printf("\n");
     cptcovn=j+1;           fprintf(ficlog,"\n");
     cptcovprod=j1; /*Number of products */          fprintf(ficparo,"\n");
             }
     strcpy(modelsav,model);       }  
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){      fflush(ficlog);
       printf("Error. Non available option model=%s ",model);  
       fprintf(ficlog,"Error. Non available option model=%s ",model);      p=param[1][1];
       goto end;     
     }      /* Reads comments: lines beginning with '#' */
           while((c=getc(ficpar))=='#' && c!= EOF){
     /* This loop fills the array Tvar from the string 'model'.*/        ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
     for(i=(j+1); i>=1;i--){        numlinepar++;
       cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */         puts(line);
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */        fputs(line,ficparo);
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/        fputs(line,ficlog);
       /*scanf("%d",i);*/      }
       if (strchr(strb,'*')) {  /* Model includes a product */      ungetc(c,ficpar);
         cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/  
         if (strcmp(strc,"age")==0) { /* Vn*age */      for(i=1; i <=nlstate; i++){
           cptcovprod--;        for(j=1; j <=nlstate+ndeath-1; j++){
           cutv(strb,stre,strd,'V');          fscanf(ficpar,"%1d%1d",&i1,&j1);
           Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/          if ((i1-i)*(j1-j)!=0){
           cptcovage++;            printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             Tage[cptcovage]=i;            exit(1);
             /*printf("stre=%s ", stre);*/          }
         }          printf("%1d%1d",i,j);
         else if (strcmp(strd,"age")==0) { /* or age*Vn */          fprintf(ficparo,"%1d%1d",i1,j1);
           cptcovprod--;          fprintf(ficlog,"%1d%1d",i1,j1);
           cutv(strb,stre,strc,'V');          for(k=1; k<=ncovmodel;k++){
           Tvar[i]=atoi(stre);            fscanf(ficpar,"%le",&delti3[i][j][k]);
           cptcovage++;            printf(" %le",delti3[i][j][k]);
           Tage[cptcovage]=i;            fprintf(ficparo," %le",delti3[i][j][k]);
         }            fprintf(ficlog," %le",delti3[i][j][k]);
         else {  /* Age is not in the model */          }
           cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/          fscanf(ficpar,"\n");
           Tvar[i]=ncovcol+k1;          numlinepar++;
           cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */          printf("\n");
           Tprod[k1]=i;          fprintf(ficparo,"\n");
           Tvard[k1][1]=atoi(strc); /* m*/          fprintf(ficlog,"\n");
           Tvard[k1][2]=atoi(stre); /* n */        }
           Tvar[cptcovn+k2]=Tvard[k1][1];      }
           Tvar[cptcovn+k2+1]=Tvard[k1][2];       fflush(ficlog);
           for (k=1; k<=lastobs;k++)   
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];      delti=delti3[1][1];
           k1++;  
           k2=k2+2;  
         }      /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
       }   
       else { /* no more sum */      /* Reads comments: lines beginning with '#' */
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/      while((c=getc(ficpar))=='#' && c!= EOF){
        /*  scanf("%d",i);*/        ungetc(c,ficpar);
       cutv(strd,strc,strb,'V');        fgets(line, MAXLINE, ficpar);
       Tvar[i]=atoi(strc);        numlinepar++;
       }        puts(line);
       strcpy(modelsav,stra);          fputs(line,ficparo);
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);        fputs(line,ficlog);
         scanf("%d",i);*/      }
     } /* end of loop + */      ungetc(c,ficpar);
   } /* end model */   
         matcov=matrix(1,npar,1,npar);
   /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.      for(i=1; i <=npar; i++){
     If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/        fscanf(ficpar,"%s",&str);
         if(mle==1)
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);          printf("%s",str);
   printf("cptcovprod=%d ", cptcovprod);        fprintf(ficlog,"%s",str);
   fprintf(ficlog,"cptcovprod=%d ", cptcovprod);        fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
   scanf("%d ",i);          fscanf(ficpar," %le",&matcov[i][j]);
   fclose(fic);*/          if(mle==1){
             printf(" %.5le",matcov[i][j]);
     /*  if(mle==1){*/          }
   if (weightopt != 1) { /* Maximisation without weights*/          fprintf(ficlog," %.5le",matcov[i][j]);
     for(i=1;i<=n;i++) weight[i]=1.0;          fprintf(ficparo," %.5le",matcov[i][j]);
   }        }
     /*-calculation of age at interview from date of interview and age at death -*/        fscanf(ficpar,"\n");
   agev=matrix(1,maxwav,1,imx);        numlinepar++;
         if(mle==1)
   for (i=1; i<=imx; i++) {          printf("\n");
     for(m=2; (m<= maxwav); m++) {        fprintf(ficlog,"\n");
       if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){        fprintf(ficparo,"\n");
         anint[m][i]=9999;      }
         s[m][i]=-1;      for(i=1; i <=npar; i++)
       }        for(j=i+1;j<=npar;j++)
       if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){          matcov[i][j]=matcov[j][i];
         nberr++;     
         printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);      if(mle==1)
         fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);        printf("\n");
         s[m][i]=-1;      fprintf(ficlog,"\n");
       }     
       if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){      fflush(ficlog);
         nberr++;     
         printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]);       /*-------- Rewriting parameter file ----------*/
         fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]);       strcpy(rfileres,"r");    /* "Rparameterfile */
         s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       }      strcat(rfileres,".");    /* */
     }      strcat(rfileres,optionfilext);    /* Other files have txt extension */
   }      if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
   for (i=1; i<=imx; i++)  {        fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
     agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);      }
     for(m=firstpass; (m<= lastpass); m++){      fprintf(ficres,"#%s\n",version);
       if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){    }    /* End of mle != -3 */
         if (s[m][i] >= nlstate+1) {  
           if(agedc[i]>0)    /*-------- data file ----------*/
             if((int)moisdc[i]!=99 && (int)andc[i]!=9999)    if((fic=fopen(datafile,"r"))==NULL)    {
               agev[m][i]=agedc[i];      printf("Problem while opening datafile: %s\n", datafile);goto end;
           /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/      fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);goto end;
             else {    }
               if ((int)andc[i]!=9999){  
                 nbwarn++;    n= lastobs;
                 printf("Warning negative age at death: %ld line:%d\n",num[i],i);    severity = vector(1,maxwav);
                 fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);    outcome=imatrix(1,maxwav+1,1,n);
                 agev[m][i]=-1;    num=lvector(1,n);
               }    moisnais=vector(1,n);
             }    annais=vector(1,n);
         }    moisdc=vector(1,n);
         else if(s[m][i] !=9){ /* Standard case, age in fractional    andc=vector(1,n);
                                  years but with the precision of a month */    agedc=vector(1,n);
           agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);    cod=ivector(1,n);
           if((int)mint[m][i]==99 || (int)anint[m][i]==9999)    weight=vector(1,n);
             agev[m][i]=1;    for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
           else if(agev[m][i] <agemin){     mint=matrix(1,maxwav,1,n);
             agemin=agev[m][i];    anint=matrix(1,maxwav,1,n);
             /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/    s=imatrix(1,maxwav+1,1,n);
           }    tab=ivector(1,NCOVMAX);
           else if(agev[m][i] >agemax){    ncodemax=ivector(1,8);
             agemax=agev[m][i];  
             /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/    i=1;
           }    linei=0;
           /*agev[m][i]=anint[m][i]-annais[i];*/    while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
           /*     agev[m][i] = age[i]+2*m;*/      linei=linei+1;
         }      for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         else { /* =9 */        if(line[j] == '\t')
           agev[m][i]=1;          line[j] = ' ';
           s[m][i]=-1;      }
         }      for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
       }        ;
       else /*= 0 Unknown */      };
         agev[m][i]=1;      line[j+1]=0;  /* Trims blanks at end of line */
     }      if(line[0]=='#'){
             fprintf(ficlog,"Comment line\n%s\n",line);
   }        printf("Comment line\n%s\n",line);
   for (i=1; i<=imx; i++)  {        continue;
     for(m=firstpass; (m<=lastpass); m++){      }
       if (s[m][i] > (nlstate+ndeath)) {  
         nberr++;      for (j=maxwav;j>=1;j--){
         printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);             cutv(stra, strb,line,' ');
         fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);             errno=0;
         goto end;        lval=strtol(strb,&endptr,10);
       }        /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
     }        if( strb[0]=='\0' || (*endptr != '\0')){
   }          printf("Error reading data around '%d' at line number %d %s for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
           exit(1);
   /*for (i=1; i<=imx; i++){        }
   for (m=firstpass; (m<lastpass); m++){        s[j][i]=lval;
      printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);       
 }        strcpy(line,stra);
         cutv(stra, strb,line,' ');
 }*/        if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }
         else  if(iout=sscanf(strb,"%s.") != 0){
   printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);          month=99;
   fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);           year=9999;
         }else{
   agegomp=(int)agemin;          printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
   free_vector(severity,1,maxwav);          exit(1);
   free_imatrix(outcome,1,maxwav+1,1,n);        }
   free_vector(moisnais,1,n);        anint[j][i]= (double) year;
   free_vector(annais,1,n);        mint[j][i]= (double)month;
   /* free_matrix(mint,1,maxwav,1,n);        strcpy(line,stra);
      free_matrix(anint,1,maxwav,1,n);*/      } /* ENd Waves */
   free_vector(moisdc,1,n);     
   free_vector(andc,1,n);      cutv(stra, strb,line,' ');
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
          }
   wav=ivector(1,imx);      else  if(iout=sscanf(strb,"%s.",dummy) != 0){
   dh=imatrix(1,lastpass-firstpass+1,1,imx);        month=99;
   bh=imatrix(1,lastpass-firstpass+1,1,imx);        year=9999;
   mw=imatrix(1,lastpass-firstpass+1,1,imx);      }else{
            printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
   /* Concatenates waves */        exit(1);
   concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);      }
       andc[i]=(double) year;
   /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */      moisdc[i]=(double) month;
       strcpy(line,stra);
   Tcode=ivector(1,100);     
   nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);       cutv(stra, strb,line,' ');
   ncodemax[1]=1;      if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
   if (cptcovn > 0) tricode(Tvar,nbcode,imx);      }
             else  if(iout=sscanf(strb,"%s.") != 0){
   codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of         month=99;
                                  the estimations*/        year=9999;
   h=0;      }else{
   m=pow(2,cptcoveff);        printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line,j);
          exit(1);
   for(k=1;k<=cptcoveff; k++){      }
     for(i=1; i <=(m/pow(2,k));i++){      annais[i]=(double)(year);
       for(j=1; j <= ncodemax[k]; j++){      moisnais[i]=(double)(month);
         for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){      strcpy(line,stra);
           h++;     
           if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;      cutv(stra, strb,line,' ');
           /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/      errno=0;
         }       dval=strtod(strb,&endptr);
       }      if( strb[0]=='\0' || (*endptr != '\0')){
     }        printf("Error reading data around '%f' at line number %ld, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
   }         exit(1);
   /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);       }
      codtab[1][2]=1;codtab[2][2]=2; */      weight[i]=dval;
   /* for(i=1; i <=m ;i++){       strcpy(line,stra);
      for(k=1; k <=cptcovn; k++){     
      printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);      for (j=ncovcol;j>=1;j--){
      }        cutv(stra, strb,line,' ');
      printf("\n");        errno=0;
      }        lval=strtol(strb,&endptr,10);
      scanf("%d",i);*/        if( strb[0]=='\0' || (*endptr != '\0')){
               printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a covar (meaning 0 for the reference or 1).  Exiting.\n",lval, linei,i, line);
   /*------------ gnuplot -------------*/          exit(1);
   strcpy(optionfilegnuplot,optionfilefiname);        }
   if(mle==-3)        if(lval <-1 || lval >1){
     strcat(optionfilegnuplot,"-mort");          printf("Error reading data around '%d' at line number %ld for individual %d, '%s'\n \
   strcat(optionfilegnuplot,".gp");   Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {   For example, for multinomial values like 1, 2 and 3,\n \
     printf("Problem with file %s",optionfilegnuplot);   build V1=0 V2=0 for the reference value (1),\n \
   }          V1=1 V2=0 for (2) \n \
   else{   and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
     fprintf(ficgp,"\n# %s\n", version);    output of IMaCh is often meaningless.\n \
     fprintf(ficgp,"# %s\n", optionfilegnuplot);    Exiting.\n",lval,linei, i,line,j);
     fprintf(ficgp,"set missing 'NaNq'\n");          exit(1);
   }        }
   /*  fclose(ficgp);*/        covar[j][i]=(double)(lval);
   /*--------- index.htm --------*/        strcpy(line,stra);
       }
   strcpy(optionfilehtm,optionfilefiname); /* Main html file */      lstra=strlen(stra);
   if(mle==-3)     
     strcat(optionfilehtm,"-mort");      if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
   strcat(optionfilehtm,".htm");        stratrunc = &(stra[lstra-9]);
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {        num[i]=atol(stratrunc);
     printf("Problem with %s \n",optionfilehtm), exit(0);      }
   }      else
         num[i]=atol(stra);
   strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */      /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
   strcat(optionfilehtmcov,"-cov.htm");        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
   if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {     
     printf("Problem with %s \n",optionfilehtmcov), exit(0);      i=i+1;
   }    } /* End loop reading  data */
   else{    fclose(fic);
   fprintf(fichtmcov,"<body>\n<title>IMaCh Cov %s</title>\n <font size=\"2\">%s <br> %s</font> \    /* printf("ii=%d", ij);
 <hr size=\"2\" color=\"#EC5E5E\"> \n\       scanf("%d",i);*/
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\    imx=i-1; /* Number of individuals */
           fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);  
   }    /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
   fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \      if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
 <hr size=\"2\" color=\"#EC5E5E\"> \n\      if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\      }*/
 \n\     /*  for (i=1; i<=imx; i++){
 <hr  size=\"2\" color=\"#EC5E5E\">\       if (s[4][i]==9)  s[4][i]=-1;
  <ul><li><h4>Parameter files</h4>\n\       printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\   
  - Log file of the run: <a href=\"%s\">%s</a><br>\n\    /* for (i=1; i<=imx; i++) */
  - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\   
  - Date and time at start: %s</ul>\n",\     /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
           fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\       else weight[i]=1;*/
           fileres,fileres,\  
           filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);    /* Calculation of the number of parameters from char model */
   fflush(fichtm);    Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15);
   strcpy(pathr,path);    Tvaraff=ivector(1,15);
   strcat(pathr,optionfilefiname);    Tvard=imatrix(1,15,1,2);
   chdir(optionfilefiname); /* Move to directory named optionfile */    Tage=ivector(1,15);      
        
   /* Calculates basic frequencies. Computes observed prevalence at single age    if (strlen(model) >1){ /* If there is at least 1 covariate */
      and prints on file fileres'p'. */      j=0, j1=0, k1=1, k2=1;
   freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);      j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
   fprintf(fichtm,"\n");      cptcovn=j+1;
   fprintf(fichtm,"<br>Total number of observations=%d <br>\n\      cptcovprod=j1; /*Number of products */
 Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\     
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\      strcpy(modelsav,model);
           imx,agemin,agemax,jmin,jmax,jmean);      if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        printf("Error. Non available option model=%s ",model);
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        fprintf(ficlog,"Error. Non available option model=%s ",model);
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        goto end;
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      }
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */     
           /* This loop fills the array Tvar from the string 'model'.*/
      
   /* For Powell, parameters are in a vector p[] starting at p[1]      for(i=(j+1); i>=1;i--){
      so we point p on param[1][1] so that p[1] maps on param[1][1][1] */        cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */
   p=param[1][1]; /* *(*(*(param +1)+1)+0) */        if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
   globpr=0; /* To get the number ipmx of contributions and the sum of weights*/        /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
   if (mle==-3){          cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
     ximort=matrix(1,NDIM,1,NDIM);          if (strcmp(strc,"age")==0) { /* Vn*age */
     cens=ivector(1,n);            cptcovprod--;
     ageexmed=vector(1,n);            cutv(strb,stre,strd,'V');
     agecens=vector(1,n);            Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
     dcwave=ivector(1,n);            cptcovage++;
                Tage[cptcovage]=i;
     for (i=1; i<=imx; i++){              /*printf("stre=%s ", stre);*/
       dcwave[i]=-1;          }
       for (m=firstpass; m<=lastpass; m++)          else if (strcmp(strd,"age")==0) { /* or age*Vn */
         if (s[m][i]>nlstate) {            cptcovprod--;
           dcwave[i]=m;            cutv(strb,stre,strc,'V');
           /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/            Tvar[i]=atoi(stre);
           break;            cptcovage++;
         }            Tage[cptcovage]=i;
     }          }
           else {  /* Age is not in the model */
     for (i=1; i<=imx; i++) {            cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
       if (wav[i]>0){            Tvar[i]=ncovcol+k1;
         ageexmed[i]=agev[mw[1][i]][i];            cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
         j=wav[i];            Tprod[k1]=i;
         agecens[i]=1.;             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
         if (ageexmed[i]> 1 && wav[i] > 0){            Tvar[cptcovn+k2]=Tvard[k1][1];
           agecens[i]=agev[mw[j][i]][i];            Tvar[cptcovn+k2+1]=Tvard[k1][2];
           cens[i]= 1;            for (k=1; k<=lastobs;k++)
         }else if (ageexmed[i]< 1)               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
           cens[i]= -1;            k1++;
         if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)            k2=k2+2;
           cens[i]=0 ;          }
       }        }
       else cens[i]=-1;        else { /* no more sum */
     }          /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
              /*  scanf("%d",i);*/
     for (i=1;i<=NDIM;i++) {        cutv(strd,strc,strb,'V');
       for (j=1;j<=NDIM;j++)        Tvar[i]=atoi(strc);
         ximort[i][j]=(i == j ? 1.0 : 0.0);        }
     }        strcpy(modelsav,stra);  
             /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
     p[1]=0.1; p[NDIM]=0.1;          scanf("%d",i);*/
     /*printf("%lf %lf", p[1], p[2]);*/      } /* end of loop + */
         } /* end model */
        
     printf("Powell\n");  fprintf(ficlog,"Powell\n");    /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
     strcpy(filerespow,"pow-mort");       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
     strcat(filerespow,fileres);  
     if((ficrespow=fopen(filerespow,"w"))==NULL) {    /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
       printf("Problem with resultfile: %s\n", filerespow);    printf("cptcovprod=%d ", cptcovprod);
       fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);    fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
     }  
     fprintf(ficrespow,"# Powell\n# iter -2*LL");    scanf("%d ",i);*/
     /*  for (i=1;i<=nlstate;i++)  
         for(j=1;j<=nlstate+ndeath;j++)      /*  if(mle==1){*/
         if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);    if (weightopt != 1) { /* Maximisation without weights*/
     */      for(i=1;i<=n;i++) weight[i]=1.0;
     fprintf(ficrespow,"\n");    }
           /*-calculation of age at interview from date of interview and age at death -*/
     powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);    agev=matrix(1,maxwav,1,imx);
     fclose(ficrespow);  
         for (i=1; i<=imx; i++) {
     hesscov(matcov, p, NDIM, delti, 1e-4, gompertz);       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
     for(i=1; i <=NDIM; i++)          anint[m][i]=9999;
       for(j=i+1;j<=NDIM;j++)          s[m][i]=-1;
         matcov[i][j]=matcov[j][i];        }
             if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
     printf("\nCovariance matrix\n ");          nberr++;
     for(i=1; i <=NDIM; i++) {          printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
       for(j=1;j<=NDIM;j++){           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
         printf("%f ",matcov[i][j]);          s[m][i]=-1;
       }        }
       printf("\n ");        if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
     }          nberr++;
               printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]);
     printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);          fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]);
     for (i=1;i<=NDIM;i++)           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
       printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));        }
       }
     lsurv=vector(1,AGESUP);    }
     lpop=vector(1,AGESUP);  
     tpop=vector(1,AGESUP);    for (i=1; i<=imx; i++)  {
     lsurv[agegomp]=100000;      agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
           for(m=firstpass; (m<= lastpass); m++){
     for (k=agegomp;k<=AGESUP;k++) {        if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
       agemortsup=k;          if (s[m][i] >= nlstate+1) {
       if (p[1]*exp(p[2]*(k-agegomp))>1) break;            if(agedc[i]>0)
     }              if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                     agev[m][i]=agedc[i];
     for (k=agegomp;k<agemortsup;k++)            /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
       lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));              else {
                     if ((int)andc[i]!=9999){
     for (k=agegomp;k<agemortsup;k++){                  nbwarn++;
       lpop[k]=(lsurv[k]+lsurv[k+1])/2.;                  printf("Warning negative age at death: %ld line:%d\n",num[i],i);
       sumlpop=sumlpop+lpop[k];                  fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
     }                  agev[m][i]=-1;
                     }
     tpop[agegomp]=sumlpop;              }
     for (k=agegomp;k<(agemortsup-3);k++){          }
       /*  tpop[k+1]=2;*/          else if(s[m][i] !=9){ /* Standard case, age in fractional
       tpop[k+1]=tpop[k]-lpop[k];                                   years but with the precision of a month */
     }            agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
                 if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
                   agev[m][i]=1;
     printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");            else if(agev[m][i] <agemin){
     for (k=agegomp;k<(agemortsup-2);k++)               agemin=agev[m][i];
       printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);              /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
                 }
                 else if(agev[m][i] >agemax){
     replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */              agemax=agev[m][i];
     printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
                 }
     printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \            /*agev[m][i]=anint[m][i]-annais[i];*/
                      stepm, weightopt,\            /*     agev[m][i] = age[i]+2*m;*/
                      model,imx,p,matcov,agemortsup);          }
               else { /* =9 */
     free_vector(lsurv,1,AGESUP);            agev[m][i]=1;
     free_vector(lpop,1,AGESUP);            s[m][i]=-1;
     free_vector(tpop,1,AGESUP);          }
   } /* Endof if mle==-3 */        }
           else /*= 0 Unknown */
   else{ /* For mle >=1 */          agev[m][i]=1;
         }
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */     
     printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);    }
     for (k=1; k<=npar;k++)    for (i=1; i<=imx; i++)  {
       printf(" %d %8.5f",k,p[k]);      for(m=firstpass; (m<=lastpass); m++){
     printf("\n");        if (s[m][i] > (nlstate+ndeath)) {
     globpr=1; /* to print the contributions */          nberr++;
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */          printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);    
     printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);          fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);    
     for (k=1; k<=npar;k++)          goto end;
       printf(" %d %8.5f",k,p[k]);        }
     printf("\n");      }
     if(mle>=1){ /* Could be 1 or 2 */    }
       mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);  
     }    /*for (i=1; i<=imx; i++){
         for (m=firstpass; (m<lastpass); m++){
     /*--------- results files --------------*/       printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);  }
       
       }*/
     fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");  
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");  
     fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     for(i=1,jk=1; i <=nlstate; i++){    fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
       for(k=1; k <=(nlstate+ndeath); k++){  
         if (k != i) {    agegomp=(int)agemin;
           printf("%d%d ",i,k);    free_vector(severity,1,maxwav);
           fprintf(ficlog,"%d%d ",i,k);    free_imatrix(outcome,1,maxwav+1,1,n);
           fprintf(ficres,"%1d%1d ",i,k);    free_vector(moisnais,1,n);
           for(j=1; j <=ncovmodel; j++){    free_vector(annais,1,n);
             printf("%f ",p[jk]);    /* free_matrix(mint,1,maxwav,1,n);
             fprintf(ficlog,"%f ",p[jk]);       free_matrix(anint,1,maxwav,1,n);*/
             fprintf(ficres,"%f ",p[jk]);    free_vector(moisdc,1,n);
             jk++;     free_vector(andc,1,n);
           }  
           printf("\n");     
           fprintf(ficlog,"\n");    wav=ivector(1,imx);
           fprintf(ficres,"\n");    dh=imatrix(1,lastpass-firstpass+1,1,imx);
         }    bh=imatrix(1,lastpass-firstpass+1,1,imx);
       }    mw=imatrix(1,lastpass-firstpass+1,1,imx);
     }     
     if(mle!=0){    /* Concatenates waves */
       /* Computing hessian and covariance matrix */    concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
       ftolhess=ftol; /* Usually correct */  
       hesscov(matcov, p, npar, delti, ftolhess, func);    /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
     }  
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");    Tcode=ivector(1,100);
     printf("# Scales (for hessian or gradient estimation)\n");    nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);
     fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");    ncodemax[1]=1;
     for(i=1,jk=1; i <=nlstate; i++){    if (cptcovn > 0) tricode(Tvar,nbcode,imx);
       for(j=1; j <=nlstate+ndeath; j++){       
         if (j!=i) {    codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of
           fprintf(ficres,"%1d%1d",i,j);                                   the estimations*/
           printf("%1d%1d",i,j);    h=0;
           fprintf(ficlog,"%1d%1d",i,j);    m=pow(2,cptcoveff);
           for(k=1; k<=ncovmodel;k++){   
             printf(" %.5e",delti[jk]);    for(k=1;k<=cptcoveff; k++){
             fprintf(ficlog," %.5e",delti[jk]);      for(i=1; i <=(m/pow(2,k));i++){
             fprintf(ficres," %.5e",delti[jk]);        for(j=1; j <= ncodemax[k]; j++){
             jk++;          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
           }            h++;
           printf("\n");            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
           fprintf(ficlog,"\n");            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           fprintf(ficres,"\n");          }
         }        }
       }      }
     }    }
         /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");       codtab[1][2]=1;codtab[2][2]=2; */
     if(mle>=1)    /* for(i=1; i <=m ;i++){
       printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");       for(k=1; k <=cptcovn; k++){
     fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
     /* # 121 Var(a12)\n\ */       }
     /* # 122 Cov(b12,a12) Var(b12)\n\ */       printf("\n");
     /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */       }
     /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */       scanf("%d",i);*/
     /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */     
     /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */    /*------------ gnuplot -------------*/
     /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */    strcpy(optionfilegnuplot,optionfilefiname);
     /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */    if(mle==-3)
           strcat(optionfilegnuplot,"-mort");
         strcat(optionfilegnuplot,".gp");
     /* Just to have a covariance matrix which will be more understandable  
        even is we still don't want to manage dictionary of variables    if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
     */      printf("Problem with file %s",optionfilegnuplot);
     for(itimes=1;itimes<=2;itimes++){    }
       jj=0;    else{
       for(i=1; i <=nlstate; i++){      fprintf(ficgp,"\n# %s\n", version);
         for(j=1; j <=nlstate+ndeath; j++){      fprintf(ficgp,"# %s\n", optionfilegnuplot);
           if(j==i) continue;      fprintf(ficgp,"set missing 'NaNq'\n");
           for(k=1; k<=ncovmodel;k++){    }
             jj++;    /*  fclose(ficgp);*/
             ca[0]= k+'a'-1;ca[1]='\0';    /*--------- index.htm --------*/
             if(itimes==1){  
               if(mle>=1)    strcpy(optionfilehtm,optionfilefiname); /* Main html file */
                 printf("#%1d%1d%d",i,j,k);    if(mle==-3)
               fprintf(ficlog,"#%1d%1d%d",i,j,k);      strcat(optionfilehtm,"-mort");
               fprintf(ficres,"#%1d%1d%d",i,j,k);    strcat(optionfilehtm,".htm");
             }else{    if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
               if(mle>=1)      printf("Problem with %s \n",optionfilehtm), exit(0);
                 printf("%1d%1d%d",i,j,k);    }
               fprintf(ficlog,"%1d%1d%d",i,j,k);  
               fprintf(ficres,"%1d%1d%d",i,j,k);    strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
             }    strcat(optionfilehtmcov,"-cov.htm");
             ll=0;    if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
             for(li=1;li <=nlstate; li++){      printf("Problem with %s \n",optionfilehtmcov), exit(0);
               for(lj=1;lj <=nlstate+ndeath; lj++){    }
                 if(lj==li) continue;    else{
                 for(lk=1;lk<=ncovmodel;lk++){    fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
                   ll++;  <hr size=\"2\" color=\"#EC5E5E\"> \n\
                   if(ll<=jj){  Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
                     cb[0]= lk +'a'-1;cb[1]='\0';            optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
                     if(ll<jj){    }
                       if(itimes==1){  
                         if(mle>=1)    fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
                           printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);  <hr size=\"2\" color=\"#EC5E5E\"> \n\
                         fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);  Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
                         fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);  \n\
                       }else{  <hr  size=\"2\" color=\"#EC5E5E\">\
                         if(mle>=1)   <ul><li><h4>Parameter files</h4>\n\
                           printf(" %.5e",matcov[jj][ll]);    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
                         fprintf(ficlog," %.5e",matcov[jj][ll]);    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
                         fprintf(ficres," %.5e",matcov[jj][ll]);    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
                       }   - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
                     }else{   - Date and time at start: %s</ul>\n",\
                       if(itimes==1){            optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
                         if(mle>=1)            optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
                           printf(" Var(%s%1d%1d)",ca,i,j);            fileres,fileres,\
                         fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);            filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
                         fprintf(ficres," Var(%s%1d%1d)",ca,i,j);    fflush(fichtm);
                       }else{  
                         if(mle>=1)    strcpy(pathr,path);
                           printf(" %.5e",matcov[jj][ll]);     strcat(pathr,optionfilefiname);
                         fprintf(ficlog," %.5e",matcov[jj][ll]);     chdir(optionfilefiname); /* Move to directory named optionfile */
                         fprintf(ficres," %.5e",matcov[jj][ll]);    
                       }    /* Calculates basic frequencies. Computes observed prevalence at single age
                     }       and prints on file fileres'p'. */
                   }    freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
                 } /* end lk */  
               } /* end lj */    fprintf(fichtm,"\n");
             } /* end li */    fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
             if(mle>=1)  Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
               printf("\n");  Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             fprintf(ficlog,"\n");            imx,agemin,agemax,jmin,jmax,jmean);
             fprintf(ficres,"\n");    pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
             numlinepar++;      oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
           } /* end k*/      newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
         } /*end j */      savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       } /* end i */      oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
     } /* end itimes */     
          
     fflush(ficlog);    /* For Powell, parameters are in a vector p[] starting at p[1]
     fflush(ficres);       so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
         p=param[1][1]; /* *(*(*(param +1)+1)+0) */
     while((c=getc(ficpar))=='#' && c!= EOF){  
       ungetc(c,ficpar);    globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
       fgets(line, MAXLINE, ficpar);  
       puts(line);    if (mle==-3){
       fputs(line,ficparo);      ximort=matrix(1,NDIM,1,NDIM);
     }      cens=ivector(1,n);
     ungetc(c,ficpar);      ageexmed=vector(1,n);
           agecens=vector(1,n);
     estepm=0;      dcwave=ivector(1,n);
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);   
     if (estepm==0 || estepm < stepm) estepm=stepm;      for (i=1; i<=imx; i++){
     if (fage <= 2) {        dcwave[i]=-1;
       bage = ageminpar;        for (m=firstpass; m<=lastpass; m++)
       fage = agemaxpar;          if (s[m][i]>nlstate) {
     }            dcwave[i]=m;
                 /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");            break;
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);          }
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);      }
       
     while((c=getc(ficpar))=='#' && c!= EOF){      for (i=1; i<=imx; i++) {
       ungetc(c,ficpar);        if (wav[i]>0){
       fgets(line, MAXLINE, ficpar);          ageexmed[i]=agev[mw[1][i]][i];
       puts(line);          j=wav[i];
       fputs(line,ficparo);          agecens[i]=1.;
     }  
     ungetc(c,ficpar);          if (ageexmed[i]> 1 && wav[i] > 0){
                 agecens[i]=agev[mw[j][i]][i];
     fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);            cens[i]= 1;
     fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);          }else if (ageexmed[i]< 1)
     fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);            cens[i]= -1;
     printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);          if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
     fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);            cens[i]=0 ;
             }
     while((c=getc(ficpar))=='#' && c!= EOF){        else cens[i]=-1;
       ungetc(c,ficpar);      }
       fgets(line, MAXLINE, ficpar);     
       puts(line);      for (i=1;i<=NDIM;i++) {
       fputs(line,ficparo);        for (j=1;j<=NDIM;j++)
     }          ximort[i][j]=(i == j ? 1.0 : 0.0);
     ungetc(c,ficpar);      }
          
           p[1]=0.0268; p[NDIM]=0.083;
     dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;      /*printf("%lf %lf", p[1], p[2]);*/
     dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;     
          
     fscanf(ficpar,"pop_based=%d\n",&popbased);      printf("Powell\n");  fprintf(ficlog,"Powell\n");
     fprintf(ficparo,"pop_based=%d\n",popbased);         strcpy(filerespow,"pow-mort");
     fprintf(ficres,"pop_based=%d\n",popbased);         strcat(filerespow,fileres);
           if((ficrespow=fopen(filerespow,"w"))==NULL) {
     while((c=getc(ficpar))=='#' && c!= EOF){        printf("Problem with resultfile: %s\n", filerespow);
       ungetc(c,ficpar);        fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       fgets(line, MAXLINE, ficpar);      }
       puts(line);      fprintf(ficrespow,"# Powell\n# iter -2*LL");
       fputs(line,ficparo);      /*  for (i=1;i<=nlstate;i++)
     }          for(j=1;j<=nlstate+ndeath;j++)
     ungetc(c,ficpar);          if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
           */
     fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);      fprintf(ficrespow,"\n");
     fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);     
     printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);      powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
     fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);      fclose(ficrespow);
     fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);     
     /* day and month of proj2 are not used but only year anproj2.*/      hesscov(matcov, p, NDIM, delti, 1e-4, gompertz);
       
           for(i=1; i <=NDIM; i++)
             for(j=i+1;j<=NDIM;j++)
     /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/          matcov[i][j]=matcov[j][i];
     /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/     
           printf("\nCovariance matrix\n ");
     replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */      for(i=1; i <=NDIM; i++) {
     printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);        for(j=1;j<=NDIM;j++){
               printf("%f ",matcov[i][j]);
     printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\        }
                  model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\        printf("\n ");
                  jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);      }
            
    /*------------ free_vector  -------------*/      printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
    /*  chdir(path); */      for (i=1;i<=NDIM;i++)
          printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     free_ivector(wav,1,imx);  
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);      lsurv=vector(1,AGESUP);
     free_imatrix(bh,1,lastpass-firstpass+1,1,imx);      lpop=vector(1,AGESUP);
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);         tpop=vector(1,AGESUP);
     free_lvector(num,1,n);      lsurv[agegomp]=100000;
     free_vector(agedc,1,n);     
     /*free_matrix(covar,0,NCOVMAX,1,n);*/      for (k=agegomp;k<=AGESUP;k++) {
     /*free_matrix(covar,1,NCOVMAX,1,n);*/        agemortsup=k;
     fclose(ficparo);        if (p[1]*exp(p[2]*(k-agegomp))>1) break;
     fclose(ficres);      }
      
       for (k=agegomp;k<agemortsup;k++)
     /*--------------- Prevalence limit  (stable prevalence) --------------*/        lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
        
     strcpy(filerespl,"pl");      for (k=agegomp;k<agemortsup;k++){
     strcat(filerespl,fileres);        lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
     if((ficrespl=fopen(filerespl,"w"))==NULL) {        sumlpop=sumlpop+lpop[k];
       printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;      }
       fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;     
     }      tpop[agegomp]=sumlpop;
     printf("Computing stable prevalence: result on file '%s' \n", filerespl);      for (k=agegomp;k<(agemortsup-3);k++){
     fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);        /*  tpop[k+1]=2;*/
     fprintf(ficrespl, "#Local time at start: %s", strstart);        tpop[k+1]=tpop[k]-lpop[k];
     fprintf(ficrespl,"#Stable prevalence \n");      }
     fprintf(ficrespl,"#Age ");     
     for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);     
     fprintf(ficrespl,"\n");      printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
         for (k=agegomp;k<(agemortsup-2);k++)
     prlim=matrix(1,nlstate,1,nlstate);        printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
      
     agebase=ageminpar;     
     agelim=agemaxpar;      replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
     ftolpl=1.e-10;      printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
     i1=cptcoveff;     
     if (cptcovn < 1){i1=1;}      printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){                       model,imx,p,matcov,agemortsup);
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){     
         k=k+1;      free_vector(lsurv,1,AGESUP);
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/      free_vector(lpop,1,AGESUP);
         fprintf(ficrespl,"\n#******");      free_vector(tpop,1,AGESUP);
         printf("\n#******");    } /* Endof if mle==-3 */
         fprintf(ficlog,"\n#******");   
         for(j=1;j<=cptcoveff;j++) {    else{ /* For mle >=1 */
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);   
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
         }      for (k=1; k<=npar;k++)
         fprintf(ficrespl,"******\n");        printf(" %d %8.5f",k,p[k]);
         printf("******\n");      printf("\n");
         fprintf(ficlog,"******\n");      globpr=1; /* to print the contributions */
               likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
         for (age=agebase; age<=agelim; age++){      printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);      for (k=1; k<=npar;k++)
           fprintf(ficrespl,"%.0f ",age );        printf(" %d %8.5f",k,p[k]);
           for(j=1;j<=cptcoveff;j++)      printf("\n");
             fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      if(mle>=1){ /* Could be 1 or 2 */
           for(i=1; i<=nlstate;i++)        mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
             fprintf(ficrespl," %.5f", prlim[i][i]);      }
           fprintf(ficrespl,"\n");     
         }      /*--------- results files --------------*/
       }      fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
     }     
     fclose(ficrespl);     
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     /*------------- h Pij x at various ages ------------*/      printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
         fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     strcpy(filerespij,"pij");  strcat(filerespij,fileres);      for(i=1,jk=1; i <=nlstate; i++){
     if((ficrespij=fopen(filerespij,"w"))==NULL) {        for(k=1; k <=(nlstate+ndeath); k++){
       printf("Problem with Pij resultfile: %s\n", filerespij);goto end;          if (k != i) {
       fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;            printf("%d%d ",i,k);
     }            fprintf(ficlog,"%d%d ",i,k);
     printf("Computing pij: result on file '%s' \n", filerespij);            fprintf(ficres,"%1d%1d ",i,k);
     fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);            for(j=1; j <=ncovmodel; j++){
                 printf("%lf ",p[jk]);
     stepsize=(int) (stepm+YEARM-1)/YEARM;              fprintf(ficlog,"%lf ",p[jk]);
     /*if (stepm<=24) stepsize=2;*/              fprintf(ficres,"%lf ",p[jk]);
               jk++;
     agelim=AGESUP;            }
     hstepm=stepsize*YEARM; /* Every year of age */            printf("\n");
     hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
     /* hstepm=1;   aff par mois*/          }
     fprintf(ficrespij, "#Local time at start: %s", strstart);        }
     fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");      }
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){      if(mle!=0){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        /* Computing hessian and covariance matrix */
         k=k+1;        ftolhess=ftol; /* Usually correct */
         fprintf(ficrespij,"\n#****** ");        hesscov(matcov, p, npar, delti, ftolhess, func);
         for(j=1;j<=cptcoveff;j++)       }
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
         fprintf(ficrespij,"******\n");      printf("# Scales (for hessian or gradient estimation)\n");
               fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */      for(i=1,jk=1; i <=nlstate; i++){
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */         for(j=1; j <=nlstate+ndeath; j++){
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */          if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
           /*      nhstepm=nhstepm*YEARM; aff par mois*/            printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            for(k=1; k<=ncovmodel;k++){
           oldm=oldms;savm=savms;              printf(" %.5e",delti[jk]);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);                fprintf(ficlog," %.5e",delti[jk]);
           fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");              fprintf(ficres," %.5e",delti[jk]);
           for(i=1; i<=nlstate;i++)              jk++;
             for(j=1; j<=nlstate+ndeath;j++)            }
               fprintf(ficrespij," %1d-%1d",i,j);            printf("\n");
           fprintf(ficrespij,"\n");            fprintf(ficlog,"\n");
           for (h=0; h<=nhstepm; h++){            fprintf(ficres,"\n");
             fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );          }
             for(i=1; i<=nlstate;i++)        }
               for(j=1; j<=nlstate+ndeath;j++)      }
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);     
             fprintf(ficrespij,"\n");      fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
           }      if(mle>=1)
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
           fprintf(ficrespij,"\n");      fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
         }      /* # 121 Var(a12)\n\ */
       }      /* # 122 Cov(b12,a12) Var(b12)\n\ */
     }      /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
     varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);      /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
     fclose(ficrespij);      /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);     
     for(i=1;i<=AGESUP;i++)     
       for(j=1;j<=NCOVMAX;j++)      /* Just to have a covariance matrix which will be more understandable
         for(k=1;k<=NCOVMAX;k++)         even is we still don't want to manage dictionary of variables
           probs[i][j][k]=0.;      */
       for(itimes=1;itimes<=2;itimes++){
     /*---------- Forecasting ------------------*/        jj=0;
     /*if((stepm == 1) && (strcmp(model,".")==0)){*/        for(i=1; i <=nlstate; i++){
     if(prevfcast==1){          for(j=1; j <=nlstate+ndeath; j++){
       /*    if(stepm ==1){*/            if(j==i) continue;
       prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);            for(k=1; k<=ncovmodel;k++){
       /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/              jj++;
       /*      }  */              ca[0]= k+'a'-1;ca[1]='\0';
       /*      else{ */              if(itimes==1){
       /*        erreur=108; */                if(mle>=1)
       /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */                  printf("#%1d%1d%d",i,j,k);
       /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */                fprintf(ficlog,"#%1d%1d%d",i,j,k);
       /*      } */                fprintf(ficres,"#%1d%1d%d",i,j,k);
     }              }else{
                   if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
     /*---------- Health expectancies and variances ------------*/                fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
     strcpy(filerest,"t");              }
     strcat(filerest,fileres);              ll=0;
     if((ficrest=fopen(filerest,"w"))==NULL) {              for(li=1;li <=nlstate; li++){
       printf("Problem with total LE resultfile: %s\n", filerest);goto end;                for(lj=1;lj <=nlstate+ndeath; lj++){
       fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;                  if(lj==li) continue;
     }                  for(lk=1;lk<=ncovmodel;lk++){
     printf("Computing Total LEs with variances: file '%s' \n", filerest);                     ll++;
     fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest);                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
     strcpy(filerese,"e");                        if(itimes==1){
     strcat(filerese,fileres);                          if(mle>=1)
     if((ficreseij=fopen(filerese,"w"))==NULL) {                            printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
       printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);                          fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
       fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);                          fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
     }                        }else{
     printf("Computing Health Expectancies: result on file '%s' \n", filerese);                          if(mle>=1)
     fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);                            printf(" %.5e",matcov[jj][ll]);
                           fprintf(ficlog," %.5e",matcov[jj][ll]);
     strcpy(fileresv,"v");                          fprintf(ficres," %.5e",matcov[jj][ll]);
     strcat(fileresv,fileres);                        }
     if((ficresvij=fopen(fileresv,"w"))==NULL) {                      }else{
       printf("Problem with variance resultfile: %s\n", fileresv);exit(0);                        if(itimes==1){
       fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);                          if(mle>=1)
     }                            printf(" Var(%s%1d%1d)",ca,i,j);
     printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);                          fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
     fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);                          fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
     /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */                          if(mle>=1)
     prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);                            printf(" %.5e",matcov[jj][ll]);
     /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\                          fprintf(ficlog," %.5e",matcov[jj][ll]);
         ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);                          fprintf(ficres," %.5e",matcov[jj][ll]);
     */                        }
                       }
     if (mobilav!=0) {                    }
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);                  } /* end lk */
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){                } /* end lj */
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);              } /* end li */
         printf(" Error in movingaverage mobilav=%d\n",mobilav);              if(mle>=1)
       }                printf("\n");
     }              fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){              numlinepar++;
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){            } /* end k*/
         k=k+1;           } /*end j */
         fprintf(ficrest,"\n#****** ");        } /* end i */
         for(j=1;j<=cptcoveff;j++)       } /* end itimes */
           fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);     
         fprintf(ficrest,"******\n");      fflush(ficlog);
       fflush(ficres);
         fprintf(ficreseij,"\n#****** ");     
         for(j=1;j<=cptcoveff;j++)       while((c=getc(ficpar))=='#' && c!= EOF){
           fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        ungetc(c,ficpar);
         fprintf(ficreseij,"******\n");        fgets(line, MAXLINE, ficpar);
         puts(line);
         fprintf(ficresvij,"\n#****** ");        fputs(line,ficparo);
         for(j=1;j<=cptcoveff;j++)       }
           fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      ungetc(c,ficpar);
         fprintf(ficresvij,"******\n");     
       estepm=0;
         eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);      fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
         oldm=oldms;savm=savms;      if (estepm==0 || estepm < stepm) estepm=stepm;
         evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);        if (fage <= 2) {
          bage = ageminpar;
         vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);        fage = agemaxpar;
         oldm=oldms;savm=savms;      }
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav, strstart);     
         if(popbased==1){      fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav, strstart);      fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
         }      fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
      
         fprintf(ficrest, "#Local time at start: %s", strstart);      while((c=getc(ficpar))=='#' && c!= EOF){
         fprintf(ficrest,"#Total LEs with variances: e.. (std) ");        ungetc(c,ficpar);
         for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);        fgets(line, MAXLINE, ficpar);
         fprintf(ficrest,"\n");        puts(line);
         fputs(line,ficparo);
         epj=vector(1,nlstate+1);      }
         for(age=bage; age <=fage ;age++){      ungetc(c,ficpar);
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);     
           if (popbased==1) {      fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
             if(mobilav ==0){      fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
               for(i=1; i<=nlstate;i++)      fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
                 prlim[i][i]=probs[(int)age][i][k];      printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
             }else{ /* mobilav */       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
               for(i=1; i<=nlstate;i++)     
                 prlim[i][i]=mobaverage[(int)age][i][k];      while((c=getc(ficpar))=='#' && c!= EOF){
             }        ungetc(c,ficpar);
           }        fgets(line, MAXLINE, ficpar);
                 puts(line);
           fprintf(ficrest," %4.0f",age);        fputs(line,ficparo);
           for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){      }
             for(i=1, epj[j]=0.;i <=nlstate;i++) {      ungetc(c,ficpar);
               epj[j] += prlim[i][i]*eij[i][j][(int)age];     
               /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/     
             }      dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
             epj[nlstate+1] +=epj[j];      dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
           }     
       fscanf(ficpar,"pop_based=%d\n",&popbased);
           for(i=1, vepp=0.;i <=nlstate;i++)      fprintf(ficparo,"pop_based=%d\n",popbased);  
             for(j=1;j <=nlstate;j++)      fprintf(ficres,"pop_based=%d\n",popbased);  
               vepp += vareij[i][j][(int)age];     
           fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));      while((c=getc(ficpar))=='#' && c!= EOF){
           for(j=1;j <=nlstate;j++){        ungetc(c,ficpar);
             fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));        fgets(line, MAXLINE, ficpar);
           }        puts(line);
           fprintf(ficrest,"\n");        fputs(line,ficparo);
         }      }
         free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);      ungetc(c,ficpar);
         free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);     
         free_vector(epj,1,nlstate+1);      fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       }      fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     }      printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     free_vector(weight,1,n);      fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     free_imatrix(Tvard,1,15,1,2);      fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     free_imatrix(s,1,maxwav+1,1,n);      /* day and month of proj2 are not used but only year anproj2.*/
     free_matrix(anint,1,maxwav,1,n);      
     free_matrix(mint,1,maxwav,1,n);     
     free_ivector(cod,1,n);     
     free_ivector(tab,1,NCOVMAX);      /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
     fclose(ficreseij);      /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
     fclose(ficresvij);     
     fclose(ficrest);      replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
     fclose(ficpar);      printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
        
     /*------- Variance of stable prevalence------*/         printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
     strcpy(fileresvpl,"vpl");                   jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
     strcat(fileresvpl,fileres);       
     if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {     /*------------ free_vector  -------------*/
       printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);     /*  chdir(path); */
       exit(0);   
     }      free_ivector(wav,1,imx);
     printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);      free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){      free_imatrix(mw,1,lastpass-firstpass+1,1,imx);  
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      free_lvector(num,1,n);
         k=k+1;      free_vector(agedc,1,n);
         fprintf(ficresvpl,"\n#****** ");      /*free_matrix(covar,0,NCOVMAX,1,n);*/
         for(j=1;j<=cptcoveff;j++)       /*free_matrix(covar,1,NCOVMAX,1,n);*/
           fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      fclose(ficparo);
         fprintf(ficresvpl,"******\n");      fclose(ficres);
         
         varpl=matrix(1,nlstate,(int) bage, (int) fage);  
         oldm=oldms;savm=savms;      /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
         varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);   
         free_matrix(varpl,1,nlstate,(int) bage, (int)fage);      strcpy(filerespl,"pl");
       }      strcat(filerespl,fileres);
     }      if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
     fclose(ficresvpl);        fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
       }
     /*---------- End : free ----------------*/      printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
     free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);      pstamp(ficrespl);
       fprintf(ficrespl,"# Period (stable) prevalence \n");
   }  /* mle==-3 arrives here for freeing */      fprintf(ficrespl,"#Age ");
     free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);      for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
     free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);      fprintf(ficrespl,"\n");
     free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);   
     free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);      prlim=matrix(1,nlstate,1,nlstate);
     
     free_matrix(covar,0,NCOVMAX,1,n);      agebase=ageminpar;
     free_matrix(matcov,1,npar,1,npar);      agelim=agemaxpar;
     /*free_vector(delti,1,npar);*/      ftolpl=1.e-10;
     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);       i1=cptcoveff;
     free_matrix(agev,1,maxwav,1,imx);      if (cptcovn < 1){i1=1;}
     free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);  
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
     free_ivector(ncodemax,1,8);        for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
     free_ivector(Tvar,1,15);          k=k+1;
     free_ivector(Tprod,1,15);          /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
     free_ivector(Tvaraff,1,15);          fprintf(ficrespl,"\n#******");
     free_ivector(Tage,1,15);          printf("\n#******");
     free_ivector(Tcode,1,100);          fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
   fflush(fichtm);            printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
   fflush(ficgp);            fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             }
           fprintf(ficrespl,"******\n");
   if((nberr >0) || (nbwarn>0)){          printf("******\n");
     printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);          fprintf(ficlog,"******\n");
     fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);         
   }else{          for (age=agebase; age<=agelim; age++){
     printf("End of Imach\n");            prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
     fprintf(ficlog,"End of Imach\n");            fprintf(ficrespl,"%.0f ",age );
   }            for(j=1;j<=cptcoveff;j++)
   printf("See log file on %s\n",filelog);              fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */            for(i=1; i<=nlstate;i++)
   (void) gettimeofday(&end_time,&tzp);              fprintf(ficrespl," %.5f", prlim[i][i]);
   tm = *localtime(&end_time.tv_sec);            fprintf(ficrespl,"\n");
   tmg = *gmtime(&end_time.tv_sec);          }
   strcpy(strtend,asctime(&tm));        }
   printf("Local time at start %s\nLocal time at end   %s",strstart, strtend);       }
   fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend);       fclose(ficrespl);
   printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));  
       /*------------- h Pij x at various ages ------------*/
   printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);   
   fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));      strcpy(filerespij,"pij");  strcat(filerespij,fileres);
   fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);      if((ficrespij=fopen(filerespij,"w"))==NULL) {
   /*  printf("Total time was %d uSec.\n", total_usecs);*/        printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
 /*   if(fileappend(fichtm,optionfilehtm)){ */        fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
   fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);      }
   fclose(fichtm);      printf("Computing pij: result on file '%s' \n", filerespij);
   fclose(fichtmcov);      fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
   fclose(ficgp);   
   fclose(ficlog);      stepsize=(int) (stepm+YEARM-1)/YEARM;
   /*------ End -----------*/      /*if (stepm<=24) stepsize=2;*/
   
   chdir(path);      agelim=AGESUP;
 #ifndef UNIX      hstepm=stepsize*YEARM; /* Every year of age */
   /*  strcpy(plotcmd,"\""); */      hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */
 #endif  
   strcpy(plotcmd,pathimach);      /* hstepm=1;   aff par mois*/
   /*strcat(plotcmd,CHARSEPARATOR);*/      pstamp(ficrespij);
   strcat(plotcmd,GNUPLOTPROGRAM);      fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
 #ifndef UNIX      for(cptcov=1,k=0;cptcov<=i1;cptcov++){
   strcat(plotcmd,".exe");        for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
   /*  strcat(plotcmd,"\"");*/          k=k+1;
 #endif          fprintf(ficrespij,"\n#****** ");
   if(stat(plotcmd,&info)){          for(j=1;j<=cptcoveff;j++)
     printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);            fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
   }          fprintf(ficrespij,"******\n");
          
 #ifndef UNIX          for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
   strcpy(plotcmd,"\"");            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */
 #endif            nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   strcat(plotcmd,pathimach);  
   strcat(plotcmd,GNUPLOTPROGRAM);            /*      nhstepm=nhstepm*YEARM; aff par mois*/
 #ifndef UNIX  
   strcat(plotcmd,".exe");            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   strcat(plotcmd,"\"");            oldm=oldms;savm=savms;
 #endif            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
   strcat(plotcmd," ");            fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
   strcat(plotcmd,optionfilegnuplot);            for(i=1; i<=nlstate;i++)
   printf("Starting graphs with: %s",plotcmd);fflush(stdout);              for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
   if((outcmd=system(plotcmd)) != 0){            fprintf(ficrespij,"\n");
     printf("\n Problem with gnuplot\n");            for (h=0; h<=nhstepm; h++){
   }              fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
   printf(" Wait...");              for(i=1; i<=nlstate;i++)
   while (z[0] != 'q') {                for(j=1; j<=nlstate+ndeath;j++)
     /* chdir(path); */                  fprintf(ficrespij," %.5f", p3mat[i][j][h]);
     printf("\nType e to edit output files, g to graph again and q for exiting: ");              fprintf(ficrespij,"\n");
     scanf("%s",z);            }
 /*     if (z[0] == 'c') system("./imach"); */            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     if (z[0] == 'e') {            fprintf(ficrespij,"\n");
       printf("Starting browser with: %s",optionfilehtm);fflush(stdout);          }
       system(optionfilehtm);        }
     }      }
     else if (z[0] == 'g') system(plotcmd);  
     else if (z[0] == 'q') exit(0);      varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   }  
   end:      fclose(ficrespij);
   while (z[0] != 'q') {  
     printf("\nType  q for exiting: ");      probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
     scanf("%s",z);      for(i=1;i<=AGESUP;i++)
   }        for(j=1;j<=NCOVMAX;j++)
 }          for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
    
   
       /*---------- Health expectancies and variances ------------*/
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest);
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest);
   
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficreseij,"\n#****** ");
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
           cvevsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav, strstart);
           if(popbased==1){
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav, strstart);
           }
   
           pstamp(ficrest);
           fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n# Age ( e.. (std) ");
           for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
           fprintf(ficrest,"\n");
   
           epj=vector(1,nlstate+1);
           for(age=bage; age <=fage ;age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             if (popbased==1) {
               if(mobilav ==0){
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=probs[(int)age][i][k];
               }else{ /* mobilav */
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=mobaverage[(int)age][i][k];
               }
             }
          
             fprintf(ficrest," %4.0f",age);
             for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
               for(i=1, epj[j]=0.;i <=nlstate;i++) {
                 epj[j] += prlim[i][i]*eij[i][j][(int)age];
                 /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
               }
               epj[nlstate+1] +=epj[j];
             }
   
             for(i=1, vepp=0.;i <=nlstate;i++)
               for(j=1;j <=nlstate;j++)
                 vepp += vareij[i][j][(int)age];
             fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
             for(j=1;j <=nlstate;j++){
               fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
             }
             fprintf(ficrest,"\n");
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n);
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficreseij);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
    
       /*------- Variance of period (stable) prevalence------*/  
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
        
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
     free_matrix(prlim,1,nlstate,1,nlstate);
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
       free_ivector(Tcode,1,100);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
    
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend);
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend);
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
    
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.110  
changed lines
  Added in v.1.125


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>