Diff for /imach/src/imach.c between versions 1.125 and 1.146

version 1.125, 2006/04/04 15:20:31 version 1.146, 2014/06/16 10:20:28
Line 1 Line 1
 /* $Id$  /* $Id$
   $State$    $State$
   $Log$    $Log$
     Revision 1.146  2014/06/16 10:20:28  brouard
     Summary: Merge
     Author: Brouard
   
     Merge, before building revised version.
   
     Revision 1.145  2014/06/10 21:23:15  brouard
     Summary: Debugging with valgrind
     Author: Nicolas Brouard
   
     Lot of changes in order to output the results with some covariates
     After the Edimburgh REVES conference 2014, it seems mandatory to
     improve the code.
     No more memory valgrind error but a lot has to be done in order to
     continue the work of splitting the code into subroutines.
     Also, decodemodel has been improved. Tricode is still not
     optimal. nbcode should be improved. Documentation has been added in
     the source code.
   
     Revision 1.143  2014/01/26 09:45:38  brouard
     Summary: Version 0.98nR (to be improved, but gives same optimization results as 0.98k. Nice, promising
   
     * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
     (Module): Version 0.98nR Running ok, but output format still only works for three covariates.
   
     Revision 1.142  2014/01/26 03:57:36  brouard
     Summary: gnuplot changed plot w l 1 has to be changed to plot w l lt 2
   
     * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
   
     Revision 1.141  2014/01/26 02:42:01  brouard
     * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
   
     Revision 1.140  2011/09/02 10:37:54  brouard
     Summary: times.h is ok with mingw32 now.
   
     Revision 1.139  2010/06/14 07:50:17  brouard
     After the theft of my laptop, I probably lost some lines of codes which were not uploaded to the CVS tree.
     I remember having already fixed agemin agemax which are pointers now but not cvs saved.
   
     Revision 1.138  2010/04/30 18:19:40  brouard
     *** empty log message ***
   
     Revision 1.137  2010/04/29 18:11:38  brouard
     (Module): Checking covariates for more complex models
     than V1+V2. A lot of change to be done. Unstable.
   
     Revision 1.136  2010/04/26 20:30:53  brouard
     (Module): merging some libgsl code. Fixing computation
     of likelione (using inter/intrapolation if mle = 0) in order to
     get same likelihood as if mle=1.
     Some cleaning of code and comments added.
   
     Revision 1.135  2009/10/29 15:33:14  brouard
     (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
   
     Revision 1.134  2009/10/29 13:18:53  brouard
     (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
   
     Revision 1.133  2009/07/06 10:21:25  brouard
     just nforces
   
     Revision 1.132  2009/07/06 08:22:05  brouard
     Many tings
   
     Revision 1.131  2009/06/20 16:22:47  brouard
     Some dimensions resccaled
   
     Revision 1.130  2009/05/26 06:44:34  brouard
     (Module): Max Covariate is now set to 20 instead of 8. A
     lot of cleaning with variables initialized to 0. Trying to make
     V2+V3*age+V1+V4 strb=V3*age+V1+V4 working better.
   
     Revision 1.129  2007/08/31 13:49:27  lievre
     Modification of the way of exiting when the covariate is not binary in order to see on the window the error message before exiting
   
     Revision 1.128  2006/06/30 13:02:05  brouard
     (Module): Clarifications on computing e.j
   
     Revision 1.127  2006/04/28 18:11:50  brouard
     (Module): Yes the sum of survivors was wrong since
     imach-114 because nhstepm was no more computed in the age
     loop. Now we define nhstepma in the age loop.
     (Module): In order to speed up (in case of numerous covariates) we
     compute health expectancies (without variances) in a first step
     and then all the health expectancies with variances or standard
     deviation (needs data from the Hessian matrices) which slows the
     computation.
     In the future we should be able to stop the program is only health
     expectancies and graph are needed without standard deviations.
   
     Revision 1.126  2006/04/28 17:23:28  brouard
     (Module): Yes the sum of survivors was wrong since
     imach-114 because nhstepm was no more computed in the age
     loop. Now we define nhstepma in the age loop.
     Version 0.98h
   
   Revision 1.125  2006/04/04 15:20:31  lievre    Revision 1.125  2006/04/04 15:20:31  lievre
   Errors in calculation of health expectancies. Age was not initialized.    Errors in calculation of health expectancies. Age was not initialized.
   Forecasting file added.    Forecasting file added.
   
   Revision 1.124  2006/03/22 17:13:53  lievre    Revision 1.124  2006/03/22 17:13:53  lievre
   Parameters are printed with %lf instead of %f (more numbers after the comma).    Parameters are printed with %lf instead of %f (more numbers after the comma).
   The log-likelihood is printed in the log file    The log-likelihood is printed in the log file
   
   Revision 1.123  2006/03/20 10:52:43  brouard    Revision 1.123  2006/03/20 10:52:43  brouard
   * imach.c (Module): <title> changed, corresponds to .htm file    * imach.c (Module): <title> changed, corresponds to .htm file
   name. <head> headers where missing.    name. <head> headers where missing.
   
   * imach.c (Module): Weights can have a decimal point as for    * imach.c (Module): Weights can have a decimal point as for
   English (a comma might work with a correct LC_NUMERIC environment,    English (a comma might work with a correct LC_NUMERIC environment,
   otherwise the weight is truncated).    otherwise the weight is truncated).
   Modification of warning when the covariates values are not 0 or    Modification of warning when the covariates values are not 0 or
   1.    1.
   Version 0.98g    Version 0.98g
   
   Revision 1.122  2006/03/20 09:45:41  brouard    Revision 1.122  2006/03/20 09:45:41  brouard
   (Module): Weights can have a decimal point as for    (Module): Weights can have a decimal point as for
   English (a comma might work with a correct LC_NUMERIC environment,    English (a comma might work with a correct LC_NUMERIC environment,
   otherwise the weight is truncated).    otherwise the weight is truncated).
   Modification of warning when the covariates values are not 0 or    Modification of warning when the covariates values are not 0 or
   1.    1.
   Version 0.98g    Version 0.98g
   
   Revision 1.121  2006/03/16 17:45:01  lievre    Revision 1.121  2006/03/16 17:45:01  lievre
   * imach.c (Module): Comments concerning covariates added    * imach.c (Module): Comments concerning covariates added
   
   * imach.c (Module): refinements in the computation of lli if    * imach.c (Module): refinements in the computation of lli if
   status=-2 in order to have more reliable computation if stepm is    status=-2 in order to have more reliable computation if stepm is
   not 1 month. Version 0.98f    not 1 month. Version 0.98f
   
   Revision 1.120  2006/03/16 15:10:38  lievre    Revision 1.120  2006/03/16 15:10:38  lievre
   (Module): refinements in the computation of lli if    (Module): refinements in the computation of lli if
   status=-2 in order to have more reliable computation if stepm is    status=-2 in order to have more reliable computation if stepm is
   not 1 month. Version 0.98f    not 1 month. Version 0.98f
   
   Revision 1.119  2006/03/15 17:42:26  brouard    Revision 1.119  2006/03/15 17:42:26  brouard
   (Module): Bug if status = -2, the loglikelihood was    (Module): Bug if status = -2, the loglikelihood was
   computed as likelihood omitting the logarithm. Version O.98e    computed as likelihood omitting the logarithm. Version O.98e
   
   Revision 1.118  2006/03/14 18:20:07  brouard    Revision 1.118  2006/03/14 18:20:07  brouard
   (Module): varevsij Comments added explaining the second    (Module): varevsij Comments added explaining the second
   table of variances if popbased=1 .    table of variances if popbased=1 .
   (Module): Covariances of eij, ekl added, graphs fixed, new html link.    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   (Module): Function pstamp added    (Module): Function pstamp added
   (Module): Version 0.98d    (Module): Version 0.98d
   
   Revision 1.117  2006/03/14 17:16:22  brouard    Revision 1.117  2006/03/14 17:16:22  brouard
   (Module): varevsij Comments added explaining the second    (Module): varevsij Comments added explaining the second
   table of variances if popbased=1 .    table of variances if popbased=1 .
   (Module): Covariances of eij, ekl added, graphs fixed, new html link.    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   (Module): Function pstamp added    (Module): Function pstamp added
   (Module): Version 0.98d    (Module): Version 0.98d
   
   Revision 1.116  2006/03/06 10:29:27  brouard    Revision 1.116  2006/03/06 10:29:27  brouard
   (Module): Variance-covariance wrong links and    (Module): Variance-covariance wrong links and
   varian-covariance of ej. is needed (Saito).    varian-covariance of ej. is needed (Saito).
   
   Revision 1.115  2006/02/27 12:17:45  brouard    Revision 1.115  2006/02/27 12:17:45  brouard
   (Module): One freematrix added in mlikeli! 0.98c    (Module): One freematrix added in mlikeli! 0.98c
   
   Revision 1.114  2006/02/26 12:57:58  brouard    Revision 1.114  2006/02/26 12:57:58  brouard
   (Module): Some improvements in processing parameter    (Module): Some improvements in processing parameter
   filename with strsep.    filename with strsep.
   
   Revision 1.113  2006/02/24 14:20:24  brouard    Revision 1.113  2006/02/24 14:20:24  brouard
   (Module): Memory leaks checks with valgrind and:    (Module): Memory leaks checks with valgrind and:
   datafile was not closed, some imatrix were not freed and on matrix    datafile was not closed, some imatrix were not freed and on matrix
   allocation too.    allocation too.
   
   Revision 1.112  2006/01/30 09:55:26  brouard    Revision 1.112  2006/01/30 09:55:26  brouard
   (Module): Back to gnuplot.exe instead of wgnuplot.exe    (Module): Back to gnuplot.exe instead of wgnuplot.exe
   
   Revision 1.111  2006/01/25 20:38:18  brouard    Revision 1.111  2006/01/25 20:38:18  brouard
   (Module): Lots of cleaning and bugs added (Gompertz)    (Module): Lots of cleaning and bugs added (Gompertz)
   (Module): Comments can be added in data file. Missing date values    (Module): Comments can be added in data file. Missing date values
   can be a simple dot '.'.    can be a simple dot '.'.
   
   Revision 1.110  2006/01/25 00:51:50  brouard    Revision 1.110  2006/01/25 00:51:50  brouard
   (Module): Lots of cleaning and bugs added (Gompertz)    (Module): Lots of cleaning and bugs added (Gompertz)
   
   Revision 1.109  2006/01/24 19:37:15  brouard    Revision 1.109  2006/01/24 19:37:15  brouard
   (Module): Comments (lines starting with a #) are allowed in data.    (Module): Comments (lines starting with a #) are allowed in data.
   
   Revision 1.108  2006/01/19 18:05:42  lievre    Revision 1.108  2006/01/19 18:05:42  lievre
   Gnuplot problem appeared...    Gnuplot problem appeared...
   To be fixed    To be fixed
   
   Revision 1.107  2006/01/19 16:20:37  brouard    Revision 1.107  2006/01/19 16:20:37  brouard
   Test existence of gnuplot in imach path    Test existence of gnuplot in imach path
   
   Revision 1.106  2006/01/19 13:24:36  brouard    Revision 1.106  2006/01/19 13:24:36  brouard
   Some cleaning and links added in html output    Some cleaning and links added in html output
   
   Revision 1.105  2006/01/05 20:23:19  lievre    Revision 1.105  2006/01/05 20:23:19  lievre
   *** empty log message ***    *** empty log message ***
   
   Revision 1.104  2005/09/30 16:11:43  lievre    Revision 1.104  2005/09/30 16:11:43  lievre
   (Module): sump fixed, loop imx fixed, and simplifications.    (Module): sump fixed, loop imx fixed, and simplifications.
   (Module): If the status is missing at the last wave but we know    (Module): If the status is missing at the last wave but we know
   that the person is alive, then we can code his/her status as -2    that the person is alive, then we can code his/her status as -2
   (instead of missing=-1 in earlier versions) and his/her    (instead of missing=-1 in earlier versions) and his/her
   contributions to the likelihood is 1 - Prob of dying from last    contributions to the likelihood is 1 - Prob of dying from last
   health status (= 1-p13= p11+p12 in the easiest case of somebody in    health status (= 1-p13= p11+p12 in the easiest case of somebody in
   the healthy state at last known wave). Version is 0.98    the healthy state at last known wave). Version is 0.98
   
   Revision 1.103  2005/09/30 15:54:49  lievre    Revision 1.103  2005/09/30 15:54:49  lievre
   (Module): sump fixed, loop imx fixed, and simplifications.    (Module): sump fixed, loop imx fixed, and simplifications.
   
   Revision 1.102  2004/09/15 17:31:30  brouard    Revision 1.102  2004/09/15 17:31:30  brouard
   Add the possibility to read data file including tab characters.    Add the possibility to read data file including tab characters.
   
   Revision 1.101  2004/09/15 10:38:38  brouard    Revision 1.101  2004/09/15 10:38:38  brouard
   Fix on curr_time    Fix on curr_time
   
   Revision 1.100  2004/07/12 18:29:06  brouard    Revision 1.100  2004/07/12 18:29:06  brouard
   Add version for Mac OS X. Just define UNIX in Makefile    Add version for Mac OS X. Just define UNIX in Makefile
   
   Revision 1.99  2004/06/05 08:57:40  brouard    Revision 1.99  2004/06/05 08:57:40  brouard
   *** empty log message ***    *** empty log message ***
   
   Revision 1.98  2004/05/16 15:05:56  brouard    Revision 1.98  2004/05/16 15:05:56  brouard
   New version 0.97 . First attempt to estimate force of mortality    New version 0.97 . First attempt to estimate force of mortality
   directly from the data i.e. without the need of knowing the health    directly from the data i.e. without the need of knowing the health
   state at each age, but using a Gompertz model: log u =a + b*age .    state at each age, but using a Gompertz model: log u =a + b*age .
   This is the basic analysis of mortality and should be done before any    This is the basic analysis of mortality and should be done before any
   other analysis, in order to test if the mortality estimated from the    other analysis, in order to test if the mortality estimated from the
   cross-longitudinal survey is different from the mortality estimated    cross-longitudinal survey is different from the mortality estimated
   from other sources like vital statistic data.    from other sources like vital statistic data.
   
   The same imach parameter file can be used but the option for mle should be -3.    The same imach parameter file can be used but the option for mle should be -3.
   
   Agnès, who wrote this part of the code, tried to keep most of the    Agnès, who wrote this part of the code, tried to keep most of the
   former routines in order to include the new code within the former code.    former routines in order to include the new code within the former code.
   
   The output is very simple: only an estimate of the intercept and of    The output is very simple: only an estimate of the intercept and of
   the slope with 95% confident intervals.    the slope with 95% confident intervals.
   
   Current limitations:    Current limitations:
   A) Even if you enter covariates, i.e. with the    A) Even if you enter covariates, i.e. with the
   model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
   B) There is no computation of Life Expectancy nor Life Table.    B) There is no computation of Life Expectancy nor Life Table.
   
   Revision 1.97  2004/02/20 13:25:42  lievre    Revision 1.97  2004/02/20 13:25:42  lievre
   Version 0.96d. Population forecasting command line is (temporarily)    Version 0.96d. Population forecasting command line is (temporarily)
   suppressed.    suppressed.
   
   Revision 1.96  2003/07/15 15:38:55  brouard    Revision 1.96  2003/07/15 15:38:55  brouard
   * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
   rewritten within the same printf. Workaround: many printfs.    rewritten within the same printf. Workaround: many printfs.
   
   Revision 1.95  2003/07/08 07:54:34  brouard    Revision 1.95  2003/07/08 07:54:34  brouard
   * imach.c (Repository):    * imach.c (Repository):
   (Repository): Using imachwizard code to output a more meaningful covariance    (Repository): Using imachwizard code to output a more meaningful covariance
   matrix (cov(a12,c31) instead of numbers.    matrix (cov(a12,c31) instead of numbers.
   
   Revision 1.94  2003/06/27 13:00:02  brouard    Revision 1.94  2003/06/27 13:00:02  brouard
   Just cleaning    Just cleaning
   
   Revision 1.93  2003/06/25 16:33:55  brouard    Revision 1.93  2003/06/25 16:33:55  brouard
   (Module): On windows (cygwin) function asctime_r doesn't    (Module): On windows (cygwin) function asctime_r doesn't
   exist so I changed back to asctime which exists.    exist so I changed back to asctime which exists.
   (Module): Version 0.96b    (Module): Version 0.96b
   
   Revision 1.92  2003/06/25 16:30:45  brouard    Revision 1.92  2003/06/25 16:30:45  brouard
   (Module): On windows (cygwin) function asctime_r doesn't    (Module): On windows (cygwin) function asctime_r doesn't
   exist so I changed back to asctime which exists.    exist so I changed back to asctime which exists.
   
   Revision 1.91  2003/06/25 15:30:29  brouard    Revision 1.91  2003/06/25 15:30:29  brouard
   * imach.c (Repository): Duplicated warning errors corrected.    * imach.c (Repository): Duplicated warning errors corrected.
   (Repository): Elapsed time after each iteration is now output. It    (Repository): Elapsed time after each iteration is now output. It
   helps to forecast when convergence will be reached. Elapsed time    helps to forecast when convergence will be reached. Elapsed time
   is stamped in powell.  We created a new html file for the graphs    is stamped in powell.  We created a new html file for the graphs
   concerning matrix of covariance. It has extension -cov.htm.    concerning matrix of covariance. It has extension -cov.htm.
   
   Revision 1.90  2003/06/24 12:34:15  brouard    Revision 1.90  2003/06/24 12:34:15  brouard
   (Module): Some bugs corrected for windows. Also, when    (Module): Some bugs corrected for windows. Also, when
   mle=-1 a template is output in file "or"mypar.txt with the design    mle=-1 a template is output in file "or"mypar.txt with the design
   of the covariance matrix to be input.    of the covariance matrix to be input.
   
   Revision 1.89  2003/06/24 12:30:52  brouard    Revision 1.89  2003/06/24 12:30:52  brouard
   (Module): Some bugs corrected for windows. Also, when    (Module): Some bugs corrected for windows. Also, when
   mle=-1 a template is output in file "or"mypar.txt with the design    mle=-1 a template is output in file "or"mypar.txt with the design
   of the covariance matrix to be input.    of the covariance matrix to be input.
   
   Revision 1.88  2003/06/23 17:54:56  brouard    Revision 1.88  2003/06/23 17:54:56  brouard
   * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
   
   Revision 1.87  2003/06/18 12:26:01  brouard    Revision 1.87  2003/06/18 12:26:01  brouard
   Version 0.96    Version 0.96
   
   Revision 1.86  2003/06/17 20:04:08  brouard    Revision 1.86  2003/06/17 20:04:08  brouard
   (Module): Change position of html and gnuplot routines and added    (Module): Change position of html and gnuplot routines and added
   routine fileappend.    routine fileappend.
   
   Revision 1.85  2003/06/17 13:12:43  brouard    Revision 1.85  2003/06/17 13:12:43  brouard
   * imach.c (Repository): Check when date of death was earlier that    * imach.c (Repository): Check when date of death was earlier that
   current date of interview. It may happen when the death was just    current date of interview. It may happen when the death was just
   prior to the death. In this case, dh was negative and likelihood    prior to the death. In this case, dh was negative and likelihood
   was wrong (infinity). We still send an "Error" but patch by    was wrong (infinity). We still send an "Error" but patch by
   assuming that the date of death was just one stepm after the    assuming that the date of death was just one stepm after the
   interview.    interview.
   (Repository): Because some people have very long ID (first column)    (Repository): Because some people have very long ID (first column)
   we changed int to long in num[] and we added a new lvector for    we changed int to long in num[] and we added a new lvector for
   memory allocation. But we also truncated to 8 characters (left    memory allocation. But we also truncated to 8 characters (left
   truncation)    truncation)
   (Repository): No more line truncation errors.    (Repository): No more line truncation errors.
   
   Revision 1.84  2003/06/13 21:44:43  brouard    Revision 1.84  2003/06/13 21:44:43  brouard
   * imach.c (Repository): Replace "freqsummary" at a correct    * imach.c (Repository): Replace "freqsummary" at a correct
   place. It differs from routine "prevalence" which may be called    place. It differs from routine "prevalence" which may be called
   many times. Probs is memory consuming and must be used with    many times. Probs is memory consuming and must be used with
   parcimony.    parcimony.
   Version 0.95a3 (should output exactly the same maximization than 0.8a2)    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
   
   Revision 1.83  2003/06/10 13:39:11  lievre    Revision 1.83  2003/06/10 13:39:11  lievre
   *** empty log message ***    *** empty log message ***
   
   Revision 1.82  2003/06/05 15:57:20  brouard    Revision 1.82  2003/06/05 15:57:20  brouard
   Add log in  imach.c and  fullversion number is now printed.    Add log in  imach.c and  fullversion number is now printed.
   
 */  */
 /*  /*
    Interpolated Markov Chain     Interpolated Markov Chain
   
   Short summary of the programme:    Short summary of the programme:
      
   This program computes Healthy Life Expectancies from    This program computes Healthy Life Expectancies from
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
   first survey ("cross") where individuals from different ages are    first survey ("cross") where individuals from different ages are
   interviewed on their health status or degree of disability (in the    interviewed on their health status or degree of disability (in the
   case of a health survey which is our main interest) -2- at least a    case of a health survey which is our main interest) -2- at least a
   second wave of interviews ("longitudinal") which measure each change    second wave of interviews ("longitudinal") which measure each change
   (if any) in individual health status.  Health expectancies are    (if any) in individual health status.  Health expectancies are
   computed from the time spent in each health state according to a    computed from the time spent in each health state according to a
   model. More health states you consider, more time is necessary to reach the    model. More health states you consider, more time is necessary to reach the
   Maximum Likelihood of the parameters involved in the model.  The    Maximum Likelihood of the parameters involved in the model.  The
   simplest model is the multinomial logistic model where pij is the    simplest model is the multinomial logistic model where pij is the
   probability to be observed in state j at the second wave    probability to be observed in state j at the second wave
   conditional to be observed in state i at the first wave. Therefore    conditional to be observed in state i at the first wave. Therefore
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
   'age' is age and 'sex' is a covariate. If you want to have a more    'age' is age and 'sex' is a covariate. If you want to have a more
   complex model than "constant and age", you should modify the program    complex model than "constant and age", you should modify the program
   where the markup *Covariates have to be included here again* invites    where the markup *Covariates have to be included here again* invites
   you to do it.  More covariates you add, slower the    you to do it.  More covariates you add, slower the
   convergence.    convergence.
   
   The advantage of this computer programme, compared to a simple    The advantage of this computer programme, compared to a simple
   multinomial logistic model, is clear when the delay between waves is not    multinomial logistic model, is clear when the delay between waves is not
   identical for each individual. Also, if a individual missed an    identical for each individual. Also, if a individual missed an
   intermediate interview, the information is lost, but taken into    intermediate interview, the information is lost, but taken into
   account using an interpolation or extrapolation.      account using an interpolation or extrapolation.  
   
   hPijx is the probability to be observed in state i at age x+h    hPijx is the probability to be observed in state i at age x+h
   conditional to the observed state i at age x. The delay 'h' can be    conditional to the observed state i at age x. The delay 'h' can be
   split into an exact number (nh*stepm) of unobserved intermediate    split into an exact number (nh*stepm) of unobserved intermediate
   states. This elementary transition (by month, quarter,    states. This elementary transition (by month, quarter,
   semester or year) is modelled as a multinomial logistic.  The hPx    semester or year) is modelled as a multinomial logistic.  The hPx
   matrix is simply the matrix product of nh*stepm elementary matrices    matrix is simply the matrix product of nh*stepm elementary matrices
   and the contribution of each individual to the likelihood is simply    and the contribution of each individual to the likelihood is simply
   hPijx.    hPijx.
   
   Also this programme outputs the covariance matrix of the parameters but also    Also this programme outputs the covariance matrix of the parameters but also
   of the life expectancies. It also computes the period (stable) prevalence.    of the life expectancies. It also computes the period (stable) prevalence. 
      
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
            Institut national d'études démographiques, Paris.             Institut national d'études démographiques, Paris.
   This software have been partly granted by Euro-REVES, a concerted action    This software have been partly granted by Euro-REVES, a concerted action
   from the European Union.    from the European Union.
   It is copyrighted identically to a GNU software product, ie programme and    It is copyrighted identically to a GNU software product, ie programme and
   software can be distributed freely for non commercial use. Latest version    software can be distributed freely for non commercial use. Latest version
   can be accessed at http://euroreves.ined.fr/imach .    can be accessed at http://euroreves.ined.fr/imach .
   
   Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
   or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
      
   **********************************************************************/    **********************************************************************/
 /*  /*
   main    main
   read parameterfile    read parameterfile
   read datafile    read datafile
   concatwav    concatwav
   freqsummary    freqsummary
   if (mle >= 1)    if (mle >= 1)
     mlikeli      mlikeli
   print results files    print results files
   if mle==1    if mle==1 
      computes hessian       computes hessian
   read end of parameter file: agemin, agemax, bage, fage, estepm    read end of parameter file: agemin, agemax, bage, fage, estepm
       begin-prev-date,...        begin-prev-date,...
   open gnuplot file    open gnuplot file
   open html file    open html file
   period (stable) prevalence    period (stable) prevalence      | pl_nom    1-1 2-2 etc by covariate
    for age prevalim()     for age prevalim()             | #****** V1=0  V2=1  V3=1  V4=0 ******
   h Pij x                                    | 65 1 0 2 1 3 1 4 0  0.96326 0.03674
   variance of p varprob      freexexit2 possible for memory heap.
   forecasting if prevfcast==1 prevforecast call prevalence()  
   health expectancies    h Pij x                         | pij_nom  ficrestpij
   Variance-covariance of DFLE     # Cov Agex agex+h hpijx with i,j= 1-1 1-2     1-3     2-1     2-2     2-3
   prevalence()         1  85   85    1.00000             0.00000 0.00000 0.00000 1.00000 0.00000
    movingaverage()         1  85   86    0.68299             0.22291 0.09410 0.71093 0.00000 0.28907
   varevsij()  
   if popbased==1 varevsij(,popbased)         1  65   99    0.00364             0.00322 0.99314 0.00350 0.00310 0.99340
   total life expectancies         1  65  100    0.00214             0.00204 0.99581 0.00206 0.00196 0.99597
   Variance of period (stable) prevalence    variance of p one-step probabilities varprob  | prob_nom   ficresprob #One-step probabilities and stand. devi in ()
  end     Standard deviation of one-step probabilities | probcor_nom   ficresprobcor #One-step probabilities and correlation matrix
 */     Matrix of variance covariance of one-step probabilities |  probcov_nom ficresprobcov #One-step probabilities and covariance matrix
   
     forecasting if prevfcast==1 prevforecast call prevalence()
     health expectancies
      Variance-covariance of DFLE
 #include <math.h>    prevalence()
 #include <stdio.h>     movingaverage()
 #include <stdlib.h>    varevsij() 
 #include <string.h>    if popbased==1 varevsij(,popbased)
 #include <unistd.h>    total life expectancies
     Variance of period (stable) prevalence
 #include <limits.h>   end
 #include <sys/types.h>  */
 #include <sys/stat.h>  
 #include <errno.h>  
 extern int errno;  
    
 /* #include <sys/time.h> */  #include <math.h>
 #include <time.h>  #include <stdio.h>
 #include "timeval.h"  #include <stdlib.h>
   #include <string.h>
 /* #include <libintl.h> */  #include <unistd.h>
 /* #define _(String) gettext (String) */  
   #include <limits.h>
 #define MAXLINE 256  #include <sys/types.h>
   #include <sys/stat.h>
 #define GNUPLOTPROGRAM "gnuplot"  #include <errno.h>
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/  extern int errno;
 #define FILENAMELENGTH 132  
   #ifdef LINUX
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */  #include <time.h>
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */  #include "timeval.h"
   #else
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */  #include <sys/time.h>
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */  #endif
   
 #define NINTERVMAX 8  #ifdef GSL
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */  #include <gsl/gsl_errno.h>
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */  #include <gsl/gsl_multimin.h>
 #define NCOVMAX 8 /* Maximum number of covariates */  #endif
 #define MAXN 20000  
 #define YEARM 12. /* Number of months per year */  /* #include <libintl.h> */
 #define AGESUP 130  /* #define _(String) gettext (String) */
 #define AGEBASE 40  
 #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */  #define MAXLINE 1024 /* Was 256. Overflow with 312 with 2 states and 4 covariates. Should be ok */
 #ifdef UNIX  
 #define DIRSEPARATOR '/'  #define GNUPLOTPROGRAM "gnuplot"
 #define CHARSEPARATOR "/"  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
 #define ODIRSEPARATOR '\\'  #define FILENAMELENGTH 132
 #else  
 #define DIRSEPARATOR '\\'  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
 #define CHARSEPARATOR "\\"  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
 #define ODIRSEPARATOR '/'  
 #endif  #define MAXPARM 128 /**< Maximum number of parameters for the optimization */
   #define NPARMAX 64 /**< (nlstate+ndeath-1)*nlstate*ncovmodel */
 /* $Id$ */  
 /* $State$ */  #define NINTERVMAX 8
   #define NLSTATEMAX 8 /**< Maximum number of live states (for func) */
 char version[]="Imach version 0.98g, March 2006, INED-EUROREVES-Institut de longevite ";  #define NDEATHMAX 8 /**< Maximum number of dead states (for func) */
 char fullversion[]="$Revision$ $Date$";  #define NCOVMAX 20 /**< Maximum number of covariates, including generated covariates V1*V2 */
 char strstart[80];  #define codtabm(h,k)  1 & (h-1) >> (k-1) ;
 char optionfilext[10], optionfilefiname[FILENAMELENGTH];  #define MAXN 20000
 int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */  #define YEARM 12. /**< Number of months per year */
 int nvar;  #define AGESUP 130
 int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;  #define AGEBASE 40
 int npar=NPARMAX;  #define AGEGOMP 10. /**< Minimal age for Gompertz adjustment */
 int nlstate=2; /* Number of live states */  #ifdef UNIX
 int ndeath=1; /* Number of dead states */  #define DIRSEPARATOR '/'
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */  #define CHARSEPARATOR "/"
 int popbased=0;  #define ODIRSEPARATOR '\\'
   #else
 int *wav; /* Number of waves for this individuual 0 is possible */  #define DIRSEPARATOR '\\'
 int maxwav; /* Maxim number of waves */  #define CHARSEPARATOR "\\"
 int jmin, jmax; /* min, max spacing between 2 waves */  #define ODIRSEPARATOR '/'
 int ijmin, ijmax; /* Individuals having jmin and jmax */  #endif
 int gipmx, gsw; /* Global variables on the number of contributions  
                    to the likelihood and the sum of weights (done by funcone)*/  <<<<<<< imach.c
 int mle, weightopt;  /* $Id$ */
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */  =======
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */  /* $Id$ */
 int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between  >>>>>>> 1.145
            * wave mi and wave mi+1 is not an exact multiple of stepm. */  /* $State$ */
 double jmean; /* Mean space between 2 waves */  
 double **oldm, **newm, **savm; /* Working pointers to matrices */  <<<<<<< imach.c
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */  char version[]="Imach version 0.98nR2, January 2014,INED-EUROREVES-Institut de longevite-Japan Society for the Promotion of Science (Grant-in-Aid for Scientific Research 25293121)";
 FILE *fic,*ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;  char fullversion[]="$Revision$ $Date$"; 
 FILE *ficlog, *ficrespow;  =======
 int globpr; /* Global variable for printing or not */  char version[]="Imach version 0.98nR2, January 2014,INED-EUROREVES-Institut de longevite-Japan Society for the Promotion of Science (Grant-in-Aid for Scientific Research 25293121)";
 double fretone; /* Only one call to likelihood */  char fullversion[]="$Revision$ $Date$"; 
 long ipmx; /* Number of contributions */  >>>>>>> 1.145
 double sw; /* Sum of weights */  char strstart[80];
 char filerespow[FILENAMELENGTH];  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
 char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */  int erreur=0, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
 FILE *ficresilk;  int nvar=0, nforce=0; /* Number of variables, number of forces */
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;  /* Number of covariates model=V2+V1+ V3*age+V2*V4 */
 FILE *ficresprobmorprev;  int cptcovn=0; /**< cptcovn number of covariates added in the model (excepting constant and age and age*product) */
 FILE *fichtm, *fichtmcov; /* Html File */  int cptcovt=0; /**< cptcovt number of covariates added in the model (excepting constant and age) */
 FILE *ficreseij;  int cptcovs=0; /**< cptcovs number of simple covariates V2+V1 =2 */
 char filerese[FILENAMELENGTH];  int cptcovage=0; /**< Number of covariates with age: V3*age only =1 */
 FILE *ficresstdeij;  int cptcovprodnoage=0; /**< Number of covariate products without age */   
 char fileresstde[FILENAMELENGTH];  int cptcoveff=0; /* Total number of covariates to vary for printing results */
 FILE *ficrescveij;  int cptcov=0; /* Working variable */
 char filerescve[FILENAMELENGTH];  int npar=NPARMAX;
 FILE  *ficresvij;  int nlstate=2; /* Number of live states */
 char fileresv[FILENAMELENGTH];  int ndeath=1; /* Number of dead states */
 FILE  *ficresvpl;  int ncovmodel=0, ncovcol=0;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
 char fileresvpl[FILENAMELENGTH];  int popbased=0;
 char title[MAXLINE];  
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];  int *wav; /* Number of waves for this individuual 0 is possible */
 char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];  int maxwav=0; /* Maxim number of waves */
 char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH];  int jmin=0, jmax=0; /* min, max spacing between 2 waves */
 char command[FILENAMELENGTH];  int ijmin=0, ijmax=0; /* Individuals having jmin and jmax */ 
 int  outcmd=0;  int gipmx=0, gsw=0; /* Global variables on the number of contributions 
                      to the likelihood and the sum of weights (done by funcone)*/
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];  int mle=1, weightopt=0;
   int **mw; /* mw[mi][i] is number of the mi wave for this individual */
 char filelog[FILENAMELENGTH]; /* Log file */  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
 char filerest[FILENAMELENGTH];  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
 char fileregp[FILENAMELENGTH];             * wave mi and wave mi+1 is not an exact multiple of stepm. */
 char popfile[FILENAMELENGTH];  double jmean=1; /* Mean space between 2 waves */
   double **matprod2(); /* test */
 char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;  double **oldm, **newm, **savm; /* Working pointers to matrices */
   double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
 struct timeval start_time, end_time, curr_time, last_time, forecast_time;  /*FILE *fic ; */ /* Used in readdata only */
 struct timezone tzp;  FILE *ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
 extern int gettimeofday();  FILE *ficlog, *ficrespow;
 struct tm tmg, tm, tmf, *gmtime(), *localtime();  int globpr=0; /* Global variable for printing or not */
 long time_value;  double fretone; /* Only one call to likelihood */
 extern long time();  long ipmx=0; /* Number of contributions */
 char strcurr[80], strfor[80];  double sw; /* Sum of weights */
   char filerespow[FILENAMELENGTH];
 char *endptr;  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
 long lval;  FILE *ficresilk;
 double dval;  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
   FILE *ficresprobmorprev;
 #define NR_END 1  FILE *fichtm, *fichtmcov; /* Html File */
 #define FREE_ARG char*  FILE *ficreseij;
 #define FTOL 1.0e-10  char filerese[FILENAMELENGTH];
   FILE *ficresstdeij;
 #define NRANSI  char fileresstde[FILENAMELENGTH];
 #define ITMAX 200  FILE *ficrescveij;
   char filerescve[FILENAMELENGTH];
 #define TOL 2.0e-4  FILE  *ficresvij;
   char fileresv[FILENAMELENGTH];
 #define CGOLD 0.3819660  FILE  *ficresvpl;
 #define ZEPS 1.0e-10  char fileresvpl[FILENAMELENGTH];
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);  char title[MAXLINE];
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
 #define GOLD 1.618034  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
 #define GLIMIT 100.0  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
 #define TINY 1.0e-20  char command[FILENAMELENGTH];
   int  outcmd=0;
 static double maxarg1,maxarg2;  
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))  
    char filelog[FILENAMELENGTH]; /* Log file */
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))  char filerest[FILENAMELENGTH];
 #define rint(a) floor(a+0.5)  char fileregp[FILENAMELENGTH];
   char popfile[FILENAMELENGTH];
 static double sqrarg;  
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}  
 int agegomp= AGEGOMP;  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
   struct timezone tzp;
 int imx;  extern int gettimeofday();
 int stepm=1;  struct tm tmg, tm, tmf, *gmtime(), *localtime();
 /* Stepm, step in month: minimum step interpolation*/  long time_value;
   extern long time();
 int estepm;  char strcurr[80], strfor[80];
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/  
   char *endptr;
 int m,nb;  long lval;
 long *num;  double dval;
 int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;  
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;  #define NR_END 1
 double **pmmij, ***probs;  #define FREE_ARG char*
 double *ageexmed,*agecens;  #define FTOL 1.0e-10
 double dateintmean=0;  
   #define NRANSI 
 double *weight;  #define ITMAX 200 
 int **s; /* Status */  
 double *agedc, **covar, idx;  #define TOL 2.0e-4 
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;  
 double *lsurv, *lpop, *tpop;  #define CGOLD 0.3819660 
   #define ZEPS 1.0e-10 
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
 double ftolhess; /* Tolerance for computing hessian */  
   #define GOLD 1.618034 
 /**************** split *************************/  #define GLIMIT 100.0 
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )  #define TINY 1.0e-20 
 {  
   /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)  static double maxarg1,maxarg2;
      the name of the file (name), its extension only (ext) and its first part of the name (finame)  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
   */  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
   char  *ss;                            /* pointer */    
   int   l1, l2;                         /* length counters */  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
   #define rint(a) floor(a+0.5)
   l1 = strlen(path );                   /* length of path */  
   if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );  static double sqrarg;
   ss= strrchr( path, DIRSEPARATOR );            /* find last / */  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   if ( ss == NULL ) {                   /* no directory, so determine current directory */  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
     strcpy( name, path );               /* we got the fullname name because no directory */  int agegomp= AGEGOMP;
     /*if(strrchr(path, ODIRSEPARATOR )==NULL)  
       printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/  int imx; 
     /* get current working directory */  int stepm=1;
     /*    extern  char* getcwd ( char *buf , int len);*/  /* Stepm, step in month: minimum step interpolation*/
     if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {  
       return( GLOCK_ERROR_GETCWD );  int estepm;
     }  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
     /* got dirc from getcwd*/  
     printf(" DIRC = %s \n",dirc);  int m,nb;
   } else {                              /* strip direcotry from path */  long *num;
     ss++;                               /* after this, the filename */  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
     l2 = strlen( ss );                  /* length of filename */  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
     if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );  double **pmmij, ***probs;
     strcpy( name, ss );         /* save file name */  double *ageexmed,*agecens;
     strncpy( dirc, path, l1 - l2 );     /* now the directory */  double dateintmean=0;
     dirc[l1-l2] = 0;                    /* add zero */  
     printf(" DIRC2 = %s \n",dirc);  double *weight;
   }  int **s; /* Status */
   /* We add a separator at the end of dirc if not exists */  double *agedc;
   l1 = strlen( dirc );                  /* length of directory */  double  **covar; /**< covar[j,i], value of jth covariate for individual i,
   if( dirc[l1-1] != DIRSEPARATOR ){                    * covar=matrix(0,NCOVMAX,1,n); 
     dirc[l1] =  DIRSEPARATOR;                    * cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; */
     dirc[l1+1] = 0;  double  idx; 
     printf(" DIRC3 = %s \n",dirc);  int **nbcode, *Tvar; /**< model=V2 => Tvar[1]= 2 */
   }  int *Ndum; /** Freq of modality (tricode */
   ss = strrchr( name, '.' );            /* find last / */  int **codtab; /**< codtab=imatrix(1,100,1,10); */
   if (ss >0){  int **Tvard, *Tprod, cptcovprod, *Tvaraff;
     ss++;  double *lsurv, *lpop, *tpop;
     strcpy(ext,ss);                     /* save extension */  
     l1= strlen( name);  double ftol=FTOL; /**< Tolerance for computing Max Likelihood */
     l2= strlen(ss)+1;  double ftolhess; /**< Tolerance for computing hessian */
     strncpy( finame, name, l1-l2);  
     finame[l1-l2]= 0;  /**************** split *************************/
   }  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   {
   return( 0 );                          /* we're done */    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
 }       the name of the file (name), its extension only (ext) and its first part of the name (finame)
     */ 
     char  *ss;                            /* pointer */
 /******************************************/    int   l1, l2;                         /* length counters */
   
 void replace_back_to_slash(char *s, char*t)    l1 = strlen(path );                   /* length of path */
 {    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
   int i;    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
   int lg=0;    if ( ss == NULL ) {                   /* no directory, so determine current directory */
   i=0;      strcpy( name, path );               /* we got the fullname name because no directory */
   lg=strlen(t);      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
   for(i=0; i<= lg; i++) {        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
     (s[i] = t[i]);      /* get current working directory */
     if (t[i]== '\\') s[i]='/';      /*    extern  char* getcwd ( char *buf , int len);*/
   }      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
 }        return( GLOCK_ERROR_GETCWD );
       }
 int nbocc(char *s, char occ)      /* got dirc from getcwd*/
 {      printf(" DIRC = %s \n",dirc);
   int i,j=0;    } else {                              /* strip direcotry from path */
   int lg=20;      ss++;                               /* after this, the filename */
   i=0;      l2 = strlen( ss );                  /* length of filename */
   lg=strlen(s);      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
   for(i=0; i<= lg; i++) {      strcpy( name, ss );         /* save file name */
   if  (s[i] == occ ) j++;      strncpy( dirc, path, l1 - l2 );     /* now the directory */
   }      dirc[l1-l2] = 0;                    /* add zero */
   return j;      printf(" DIRC2 = %s \n",dirc);
 }    }
     /* We add a separator at the end of dirc if not exists */
 void cutv(char *u,char *v, char*t, char occ)    l1 = strlen( dirc );                  /* length of directory */
 {    if( dirc[l1-1] != DIRSEPARATOR ){
   /* cuts string t into u and v where u ends before first occurence of char 'occ'      dirc[l1] =  DIRSEPARATOR;
      and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')      dirc[l1+1] = 0; 
      gives u="abcedf" and v="ghi2j" */      printf(" DIRC3 = %s \n",dirc);
   int i,lg,j,p=0;    }
   i=0;    ss = strrchr( name, '.' );            /* find last / */
   for(j=0; j<=strlen(t)-1; j++) {    if (ss >0){
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;      ss++;
   }      strcpy(ext,ss);                     /* save extension */
       l1= strlen( name);
   lg=strlen(t);      l2= strlen(ss)+1;
   for(j=0; j<p; j++) {      strncpy( finame, name, l1-l2);
     (u[j] = t[j]);      finame[l1-l2]= 0;
   }    }
      u[p]='\0';  
     return( 0 );                          /* we're done */
    for(j=0; j<= lg; j++) {  }
     if (j>=(p+1))(v[j-p-1] = t[j]);  
   }  
 }  /******************************************/
   
 /********************** nrerror ********************/  void replace_back_to_slash(char *s, char*t)
   {
 void nrerror(char error_text[])    int i;
 {    int lg=0;
   fprintf(stderr,"ERREUR ...\n");    i=0;
   fprintf(stderr,"%s\n",error_text);    lg=strlen(t);
   exit(EXIT_FAILURE);    for(i=0; i<= lg; i++) {
 }      (s[i] = t[i]);
 /*********************** vector *******************/      if (t[i]== '\\') s[i]='/';
 double *vector(int nl, int nh)    }
 {  }
   double *v;  
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  char *trimbb(char *out, char *in)
   if (!v) nrerror("allocation failure in vector");  { /* Trim multiple blanks in line but keeps first blanks if line starts with blanks */
   return v-nl+NR_END;    char *s;
 }    s=out;
     while (*in != '\0'){
 /************************ free vector ******************/      while( *in == ' ' && *(in+1) == ' '){ /* && *(in+1) != '\0'){*/
 void free_vector(double*v, int nl, int nh)        in++;
 {      }
   free((FREE_ARG)(v+nl-NR_END));      *out++ = *in++;
 }    }
     *out='\0';
 /************************ivector *******************************/    return s;
 int *ivector(long nl,long nh)  }
 {  
   int *v;  char *cutl(char *blocc, char *alocc, char *in, char occ)
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  {
   if (!v) nrerror("allocation failure in ivector");    /* cuts string in into blocc and alocc where blocc ends before first occurence of char 'occ' 
   return v-nl+NR_END;       and alocc starts after first occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
 }       gives blocc="abcdef2ghi" and alocc="j".
        If occ is not found blocc is null and alocc is equal to in. Returns blocc
 /******************free ivector **************************/    */
 void free_ivector(int *v, long nl, long nh)    char *s, *t, *bl;
 {    t=in;s=in;
   free((FREE_ARG)(v+nl-NR_END));    while ((*in != occ) && (*in != '\0')){
 }      *alocc++ = *in++;
     }
 /************************lvector *******************************/    if( *in == occ){
 long *lvector(long nl,long nh)      *(alocc)='\0';
 {      s=++in;
   long *v;    }
   v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));   
   if (!v) nrerror("allocation failure in ivector");    if (s == t) {/* occ not found */
   return v-nl+NR_END;      *(alocc-(in-s))='\0';
 }      in=s;
     }
 /******************free lvector **************************/    while ( *in != '\0'){
 void free_lvector(long *v, long nl, long nh)      *blocc++ = *in++;
 {    }
   free((FREE_ARG)(v+nl-NR_END));  
 }    *blocc='\0';
     return t;
 /******************* imatrix *******************************/  }
 int **imatrix(long nrl, long nrh, long ncl, long nch)  char *cutv(char *blocc, char *alocc, char *in, char occ)
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  {
 {    /* cuts string in into blocc and alocc where blocc ends before last occurence of char 'occ' 
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;       and alocc starts after last occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
   int **m;       gives blocc="abcdef2ghi" and alocc="j".
         If occ is not found blocc is null and alocc is equal to in. Returns alocc
   /* allocate pointers to rows */    */
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));    char *s, *t;
   if (!m) nrerror("allocation failure 1 in matrix()");    t=in;s=in;
   m += NR_END;    while (*in != '\0'){
   m -= nrl;      while( *in == occ){
          *blocc++ = *in++;
          s=in;
   /* allocate rows and set pointers to them */      }
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));      *blocc++ = *in++;
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    }
   m[nrl] += NR_END;    if (s == t) /* occ not found */
   m[nrl] -= ncl;      *(blocc-(in-s))='\0';
      else
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;      *(blocc-(in-s)-1)='\0';
      in=s;
   /* return pointer to array of pointers to rows */    while ( *in != '\0'){
   return m;      *alocc++ = *in++;
 }    }
   
 /****************** free_imatrix *************************/    *alocc='\0';
 void free_imatrix(m,nrl,nrh,ncl,nch)    return s;
       int **m;  }
       long nch,ncl,nrh,nrl;  
      /* free an int matrix allocated by imatrix() */  int nbocc(char *s, char occ)
 {  {
   free((FREE_ARG) (m[nrl]+ncl-NR_END));    int i,j=0;
   free((FREE_ARG) (m+nrl-NR_END));    int lg=20;
 }    i=0;
     lg=strlen(s);
 /******************* matrix *******************************/    for(i=0; i<= lg; i++) {
 double **matrix(long nrl, long nrh, long ncl, long nch)    if  (s[i] == occ ) j++;
 {    }
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;    return j;
   double **m;  }
   
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  /* void cutv(char *u,char *v, char*t, char occ) */
   if (!m) nrerror("allocation failure 1 in matrix()");  /* { */
   m += NR_END;  /*   /\* cuts string t into u and v where u ends before last occurence of char 'occ'  */
   m -= nrl;  /*      and v starts after last occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2') */
   /*      gives u="abcdef2ghi" and v="j" *\/ */
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  /*   int i,lg,j,p=0; */
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  /*   i=0; */
   m[nrl] += NR_END;  /*   lg=strlen(t); */
   m[nrl] -= ncl;  /*   for(j=0; j<=lg-1; j++) { */
   /*     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1; */
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  /*   } */
   return m;  
   /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1])  /*   for(j=0; j<p; j++) { */
    */  /*     (u[j] = t[j]); */
 }  /*   } */
   /*      u[p]='\0'; */
 /*************************free matrix ************************/  
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  /*    for(j=0; j<= lg; j++) { */
 {  /*     if (j>=(p+1))(v[j-p-1] = t[j]); */
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  /*   } */
   free((FREE_ARG)(m+nrl-NR_END));  /* } */
 }  
   /********************** nrerror ********************/
 /******************* ma3x *******************************/  
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  void nrerror(char error_text[])
 {  {
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;    fprintf(stderr,"ERREUR ...\n");
   double ***m;    fprintf(stderr,"%s\n",error_text);
     exit(EXIT_FAILURE);
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  }
   if (!m) nrerror("allocation failure 1 in matrix()");  /*********************** vector *******************/
   m += NR_END;  double *vector(int nl, int nh)
   m -= nrl;  {
     double *v;
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    if (!v) nrerror("allocation failure in vector");
   m[nrl] += NR_END;    return v-nl+NR_END;
   m[nrl] -= ncl;  }
   
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  /************************ free vector ******************/
   void free_vector(double*v, int nl, int nh)
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  {
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");    free((FREE_ARG)(v+nl-NR_END));
   m[nrl][ncl] += NR_END;  }
   m[nrl][ncl] -= nll;  
   for (j=ncl+1; j<=nch; j++)  /************************ivector *******************************/
     m[nrl][j]=m[nrl][j-1]+nlay;  int *ivector(long nl,long nh)
    {
   for (i=nrl+1; i<=nrh; i++) {    int *v;
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
     for (j=ncl+1; j<=nch; j++)    if (!v) nrerror("allocation failure in ivector");
       m[i][j]=m[i][j-1]+nlay;    return v-nl+NR_END;
   }  }
   return m;  
   /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])  /******************free ivector **************************/
            &(m[i][j][k]) <=> *((*(m+i) + j)+k)  void free_ivector(int *v, long nl, long nh)
   */  {
 }    free((FREE_ARG)(v+nl-NR_END));
   }
 /*************************free ma3x ************************/  
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  /************************lvector *******************************/
 {  long *lvector(long nl,long nh)
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  {
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    long *v;
   free((FREE_ARG)(m+nrl-NR_END));    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
 }    if (!v) nrerror("allocation failure in ivector");
     return v-nl+NR_END;
 /*************** function subdirf ***********/  }
 char *subdirf(char fileres[])  
 {  /******************free lvector **************************/
   /* Caution optionfilefiname is hidden */  void free_lvector(long *v, long nl, long nh)
   strcpy(tmpout,optionfilefiname);  {
   strcat(tmpout,"/"); /* Add to the right */    free((FREE_ARG)(v+nl-NR_END));
   strcat(tmpout,fileres);  }
   return tmpout;  
 }  /******************* imatrix *******************************/
   int **imatrix(long nrl, long nrh, long ncl, long nch) 
 /*************** function subdirf2 ***********/       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
 char *subdirf2(char fileres[], char *preop)  { 
 {    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
      int **m; 
   /* Caution optionfilefiname is hidden */    
   strcpy(tmpout,optionfilefiname);    /* allocate pointers to rows */ 
   strcat(tmpout,"/");    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
   strcat(tmpout,preop);    if (!m) nrerror("allocation failure 1 in matrix()"); 
   strcat(tmpout,fileres);    m += NR_END; 
   return tmpout;    m -= nrl; 
 }    
     
 /*************** function subdirf3 ***********/    /* allocate rows and set pointers to them */ 
 char *subdirf3(char fileres[], char *preop, char *preop2)    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
 {    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
      m[nrl] += NR_END; 
   /* Caution optionfilefiname is hidden */    m[nrl] -= ncl; 
   strcpy(tmpout,optionfilefiname);    
   strcat(tmpout,"/");    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
   strcat(tmpout,preop);    
   strcat(tmpout,preop2);    /* return pointer to array of pointers to rows */ 
   strcat(tmpout,fileres);    return m; 
   return tmpout;  } 
 }  
   /****************** free_imatrix *************************/
 /***************** f1dim *************************/  void free_imatrix(m,nrl,nrh,ncl,nch)
 extern int ncom;        int **m;
 extern double *pcom,*xicom;        long nch,ncl,nrh,nrl; 
 extern double (*nrfunc)(double []);       /* free an int matrix allocated by imatrix() */ 
    { 
 double f1dim(double x)    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
 {    free((FREE_ARG) (m+nrl-NR_END)); 
   int j;  } 
   double f;  
   double *xt;  /******************* matrix *******************************/
    double **matrix(long nrl, long nrh, long ncl, long nch)
   xt=vector(1,ncom);  {
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
   f=(*nrfunc)(xt);    double **m;
   free_vector(xt,1,ncom);  
   return f;    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
 }    if (!m) nrerror("allocation failure 1 in matrix()");
     m += NR_END;
 /*****************brent *************************/    m -= nrl;
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  
 {    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   int iter;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   double a,b,d,etemp;    m[nrl] += NR_END;
   double fu,fv,fw,fx;    m[nrl] -= ncl;
   double ftemp;  
   double p,q,r,tol1,tol2,u,v,w,x,xm;    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   double e=0.0;    return m;
      /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) or &(m[1][0])
   a=(ax < cx ? ax : cx);  m[i] = address of ith row of the table. &(m[i]) is its value which is another adress
   b=(ax > cx ? ax : cx);  that of m[i][0]. In order to get the value p m[i][0] but it is unitialized.
   x=w=v=bx;     */
   fw=fv=fx=(*f)(x);  }
   for (iter=1;iter<=ITMAX;iter++) {  
     xm=0.5*(a+b);  /*************************free matrix ************************/
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  {
     printf(".");fflush(stdout);    free((FREE_ARG)(m[nrl]+ncl-NR_END));
     fprintf(ficlog,".");fflush(ficlog);    free((FREE_ARG)(m+nrl-NR_END));
 #ifdef DEBUG  }
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  
     fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  /******************* ma3x *******************************/
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
 #endif  {
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
       *xmin=x;    double ***m;
       return fx;  
     }    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     ftemp=fu;    if (!m) nrerror("allocation failure 1 in matrix()");
     if (fabs(e) > tol1) {    m += NR_END;
       r=(x-w)*(fx-fv);    m -= nrl;
       q=(x-v)*(fx-fw);  
       p=(x-v)*q-(x-w)*r;    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
       q=2.0*(q-r);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       if (q > 0.0) p = -p;    m[nrl] += NR_END;
       q=fabs(q);    m[nrl] -= ncl;
       etemp=e;  
       e=d;    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  
         d=CGOLD*(e=(x >= xm ? a-x : b-x));    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
       else {    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
         d=p/q;    m[nrl][ncl] += NR_END;
         u=x+d;    m[nrl][ncl] -= nll;
         if (u-a < tol2 || b-u < tol2)    for (j=ncl+1; j<=nch; j++) 
           d=SIGN(tol1,xm-x);      m[nrl][j]=m[nrl][j-1]+nlay;
       }    
     } else {    for (i=nrl+1; i<=nrh; i++) {
       d=CGOLD*(e=(x >= xm ? a-x : b-x));      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
     }      for (j=ncl+1; j<=nch; j++) 
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));        m[i][j]=m[i][j-1]+nlay;
     fu=(*f)(u);    }
     if (fu <= fx) {    return m; 
       if (u >= x) a=x; else b=x;    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
       SHFT(v,w,x,u)             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
         SHFT(fv,fw,fx,fu)    */
         } else {  }
           if (u < x) a=u; else b=u;  
           if (fu <= fw || w == x) {  /*************************free ma3x ************************/
             v=w;  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
             w=u;  {
             fv=fw;    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
             fw=fu;    free((FREE_ARG)(m[nrl]+ncl-NR_END));
           } else if (fu <= fv || v == x || v == w) {    free((FREE_ARG)(m+nrl-NR_END));
             v=u;  }
             fv=fu;  
           }  /*************** function subdirf ***********/
         }  char *subdirf(char fileres[])
   }  {
   nrerror("Too many iterations in brent");    /* Caution optionfilefiname is hidden */
   *xmin=x;    strcpy(tmpout,optionfilefiname);
   return fx;    strcat(tmpout,"/"); /* Add to the right */
 }    strcat(tmpout,fileres);
     return tmpout;
 /****************** mnbrak ***********************/  }
   
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  /*************** function subdirf2 ***********/
             double (*func)(double))  char *subdirf2(char fileres[], char *preop)
 {  {
   double ulim,u,r,q, dum;    
   double fu;    /* Caution optionfilefiname is hidden */
      strcpy(tmpout,optionfilefiname);
   *fa=(*func)(*ax);    strcat(tmpout,"/");
   *fb=(*func)(*bx);    strcat(tmpout,preop);
   if (*fb > *fa) {    strcat(tmpout,fileres);
     SHFT(dum,*ax,*bx,dum)    return tmpout;
       SHFT(dum,*fb,*fa,dum)  }
       }  
   *cx=(*bx)+GOLD*(*bx-*ax);  /*************** function subdirf3 ***********/
   *fc=(*func)(*cx);  char *subdirf3(char fileres[], char *preop, char *preop2)
   while (*fb > *fc) {  {
     r=(*bx-*ax)*(*fb-*fc);    
     q=(*bx-*cx)*(*fb-*fa);    /* Caution optionfilefiname is hidden */
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/    strcpy(tmpout,optionfilefiname);
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));    strcat(tmpout,"/");
     ulim=(*bx)+GLIMIT*(*cx-*bx);    strcat(tmpout,preop);
     if ((*bx-u)*(u-*cx) > 0.0) {    strcat(tmpout,preop2);
       fu=(*func)(u);    strcat(tmpout,fileres);
     } else if ((*cx-u)*(u-ulim) > 0.0) {    return tmpout;
       fu=(*func)(u);  }
       if (fu < *fc) {  
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))  /***************** f1dim *************************/
           SHFT(*fb,*fc,fu,(*func)(u))  extern int ncom; 
           }  extern double *pcom,*xicom;
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  extern double (*nrfunc)(double []); 
       u=ulim;   
       fu=(*func)(u);  double f1dim(double x) 
     } else {  { 
       u=(*cx)+GOLD*(*cx-*bx);    int j; 
       fu=(*func)(u);    double f;
     }    double *xt; 
     SHFT(*ax,*bx,*cx,u)   
       SHFT(*fa,*fb,*fc,fu)    xt=vector(1,ncom); 
       }    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
 }    f=(*nrfunc)(xt); 
     free_vector(xt,1,ncom); 
 /*************** linmin ************************/    return f; 
   } 
 int ncom;  
 double *pcom,*xicom;  /*****************brent *************************/
 double (*nrfunc)(double []);  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
    { 
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))    int iter; 
 {    double a,b,d,etemp;
   double brent(double ax, double bx, double cx,    double fu,fv,fw,fx;
                double (*f)(double), double tol, double *xmin);    double ftemp;
   double f1dim(double x);    double p,q,r,tol1,tol2,u,v,w,x,xm; 
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,    double e=0.0; 
               double *fc, double (*func)(double));   
   int j;    a=(ax < cx ? ax : cx); 
   double xx,xmin,bx,ax;    b=(ax > cx ? ax : cx); 
   double fx,fb,fa;    x=w=v=bx; 
      fw=fv=fx=(*f)(x); 
   ncom=n;    for (iter=1;iter<=ITMAX;iter++) { 
   pcom=vector(1,n);      xm=0.5*(a+b); 
   xicom=vector(1,n);      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
   nrfunc=func;      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
   for (j=1;j<=n;j++) {      printf(".");fflush(stdout);
     pcom[j]=p[j];      fprintf(ficlog,".");fflush(ficlog);
     xicom[j]=xi[j];  #ifdef DEBUG
   }      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   ax=0.0;      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   xx=1.0;      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  #endif
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
 #ifdef DEBUG        *xmin=x; 
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);        return fx; 
   fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);      } 
 #endif      ftemp=fu;
   for (j=1;j<=n;j++) {      if (fabs(e) > tol1) { 
     xi[j] *= xmin;        r=(x-w)*(fx-fv); 
     p[j] += xi[j];        q=(x-v)*(fx-fw); 
   }        p=(x-v)*q-(x-w)*r; 
   free_vector(xicom,1,n);        q=2.0*(q-r); 
   free_vector(pcom,1,n);        if (q > 0.0) p = -p; 
 }        q=fabs(q); 
         etemp=e; 
 char *asc_diff_time(long time_sec, char ascdiff[])        e=d; 
 {        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
   long sec_left, days, hours, minutes;          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
   days = (time_sec) / (60*60*24);        else { 
   sec_left = (time_sec) % (60*60*24);          d=p/q; 
   hours = (sec_left) / (60*60) ;          u=x+d; 
   sec_left = (sec_left) %(60*60);          if (u-a < tol2 || b-u < tol2) 
   minutes = (sec_left) /60;            d=SIGN(tol1,xm-x); 
   sec_left = (sec_left) % (60);        } 
   sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);        } else { 
   return ascdiff;        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
 }      } 
       u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
 /*************** powell ************************/      fu=(*f)(u); 
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,      if (fu <= fx) { 
             double (*func)(double []))        if (u >= x) a=x; else b=x; 
 {        SHFT(v,w,x,u) 
   void linmin(double p[], double xi[], int n, double *fret,          SHFT(fv,fw,fx,fu) 
               double (*func)(double []));          } else { 
   int i,ibig,j;            if (u < x) a=u; else b=u; 
   double del,t,*pt,*ptt,*xit;            if (fu <= fw || w == x) { 
   double fp,fptt;              v=w; 
   double *xits;              w=u; 
   int niterf, itmp;              fv=fw; 
               fw=fu; 
   pt=vector(1,n);            } else if (fu <= fv || v == x || v == w) { 
   ptt=vector(1,n);              v=u; 
   xit=vector(1,n);              fv=fu; 
   xits=vector(1,n);            } 
   *fret=(*func)(p);          } 
   for (j=1;j<=n;j++) pt[j]=p[j];    } 
   for (*iter=1;;++(*iter)) {    nrerror("Too many iterations in brent"); 
     fp=(*fret);    *xmin=x; 
     ibig=0;    return fx; 
     del=0.0;  } 
     last_time=curr_time;  
     (void) gettimeofday(&curr_time,&tzp);  /****************** mnbrak ***********************/
     printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);  
     fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec); fflush(ficlog);  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
 /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec); */              double (*func)(double)) 
    for (i=1;i<=n;i++) {  { 
       printf(" %d %.12f",i, p[i]);    double ulim,u,r,q, dum;
       fprintf(ficlog," %d %.12lf",i, p[i]);    double fu; 
       fprintf(ficrespow," %.12lf", p[i]);   
     }    *fa=(*func)(*ax); 
     printf("\n");    *fb=(*func)(*bx); 
     fprintf(ficlog,"\n");    if (*fb > *fa) { 
     fprintf(ficrespow,"\n");fflush(ficrespow);      SHFT(dum,*ax,*bx,dum) 
     if(*iter <=3){        SHFT(dum,*fb,*fa,dum) 
       tm = *localtime(&curr_time.tv_sec);        } 
       strcpy(strcurr,asctime(&tm));    *cx=(*bx)+GOLD*(*bx-*ax); 
 /*       asctime_r(&tm,strcurr); */    *fc=(*func)(*cx); 
       forecast_time=curr_time;    while (*fb > *fc) { 
       itmp = strlen(strcurr);      r=(*bx-*ax)*(*fb-*fc); 
       if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */      q=(*bx-*cx)*(*fb-*fa); 
         strcurr[itmp-1]='\0';      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
       printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
       fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);      ulim=(*bx)+GLIMIT*(*cx-*bx); 
       for(niterf=10;niterf<=30;niterf+=10){      if ((*bx-u)*(u-*cx) > 0.0) { 
         forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);        fu=(*func)(u); 
         tmf = *localtime(&forecast_time.tv_sec);      } else if ((*cx-u)*(u-ulim) > 0.0) { 
 /*      asctime_r(&tmf,strfor); */        fu=(*func)(u); 
         strcpy(strfor,asctime(&tmf));        if (fu < *fc) { 
         itmp = strlen(strfor);          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
         if(strfor[itmp-1]=='\n')            SHFT(*fb,*fc,fu,(*func)(u)) 
         strfor[itmp-1]='\0';            } 
         printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
         fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);        u=ulim; 
       }        fu=(*func)(u); 
     }      } else { 
     for (i=1;i<=n;i++) {        u=(*cx)+GOLD*(*cx-*bx); 
       for (j=1;j<=n;j++) xit[j]=xi[j][i];        fu=(*func)(u); 
       fptt=(*fret);      } 
 #ifdef DEBUG      SHFT(*ax,*bx,*cx,u) 
       printf("fret=%lf \n",*fret);        SHFT(*fa,*fb,*fc,fu) 
       fprintf(ficlog,"fret=%lf \n",*fret);        } 
 #endif  } 
       printf("%d",i);fflush(stdout);  
       fprintf(ficlog,"%d",i);fflush(ficlog);  /*************** linmin ************************/
       linmin(p,xit,n,fret,func);  
       if (fabs(fptt-(*fret)) > del) {  int ncom; 
         del=fabs(fptt-(*fret));  double *pcom,*xicom;
         ibig=i;  double (*nrfunc)(double []); 
       }   
 #ifdef DEBUG  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
       printf("%d %.12e",i,(*fret));  { 
       fprintf(ficlog,"%d %.12e",i,(*fret));    double brent(double ax, double bx, double cx, 
       for (j=1;j<=n;j++) {                 double (*f)(double), double tol, double *xmin); 
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);    double f1dim(double x); 
         printf(" x(%d)=%.12e",j,xit[j]);    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
         fprintf(ficlog," x(%d)=%.12e",j,xit[j]);                double *fc, double (*func)(double)); 
       }    int j; 
       for(j=1;j<=n;j++) {    double xx,xmin,bx,ax; 
         printf(" p=%.12e",p[j]);    double fx,fb,fa;
         fprintf(ficlog," p=%.12e",p[j]);   
       }    ncom=n; 
       printf("\n");    pcom=vector(1,n); 
       fprintf(ficlog,"\n");    xicom=vector(1,n); 
 #endif    nrfunc=func; 
     }    for (j=1;j<=n;j++) { 
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {      pcom[j]=p[j]; 
 #ifdef DEBUG      xicom[j]=xi[j]; 
       int k[2],l;    } 
       k[0]=1;    ax=0.0; 
       k[1]=-1;    xx=1.0; 
       printf("Max: %.12e",(*func)(p));    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
       fprintf(ficlog,"Max: %.12e",(*func)(p));    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
       for (j=1;j<=n;j++) {  #ifdef DEBUG
         printf(" %.12e",p[j]);    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
         fprintf(ficlog," %.12e",p[j]);    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
       }  #endif
       printf("\n");    for (j=1;j<=n;j++) { 
       fprintf(ficlog,"\n");      xi[j] *= xmin; 
       for(l=0;l<=1;l++) {      p[j] += xi[j]; 
         for (j=1;j<=n;j++) {    } 
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];    free_vector(xicom,1,n); 
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);    free_vector(pcom,1,n); 
           fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  } 
         }  
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  char *asc_diff_time(long time_sec, char ascdiff[])
         fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  {
       }    long sec_left, days, hours, minutes;
 #endif    days = (time_sec) / (60*60*24);
     sec_left = (time_sec) % (60*60*24);
     hours = (sec_left) / (60*60) ;
       free_vector(xit,1,n);    sec_left = (sec_left) %(60*60);
       free_vector(xits,1,n);    minutes = (sec_left) /60;
       free_vector(ptt,1,n);    sec_left = (sec_left) % (60);
       free_vector(pt,1,n);    sprintf(ascdiff,"%ld day(s) %ld hour(s) %ld minute(s) %ld second(s)",days, hours, minutes, sec_left);  
       return;    return ascdiff;
     }  }
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");  
     for (j=1;j<=n;j++) {  /*************** powell ************************/
       ptt[j]=2.0*p[j]-pt[j];  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
       xit[j]=p[j]-pt[j];              double (*func)(double [])) 
       pt[j]=p[j];  { 
     }    void linmin(double p[], double xi[], int n, double *fret, 
     fptt=(*func)(ptt);                double (*func)(double [])); 
     if (fptt < fp) {    int i,ibig,j; 
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);    double del,t,*pt,*ptt,*xit;
       if (t < 0.0) {    double fp,fptt;
         linmin(p,xit,n,fret,func);    double *xits;
         for (j=1;j<=n;j++) {    int niterf, itmp;
           xi[j][ibig]=xi[j][n];  
           xi[j][n]=xit[j];    pt=vector(1,n); 
         }    ptt=vector(1,n); 
 #ifdef DEBUG    xit=vector(1,n); 
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);    xits=vector(1,n); 
         fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);    *fret=(*func)(p); 
         for(j=1;j<=n;j++){    for (j=1;j<=n;j++) pt[j]=p[j]; 
           printf(" %.12e",xit[j]);    for (*iter=1;;++(*iter)) { 
           fprintf(ficlog," %.12e",xit[j]);      fp=(*fret); 
         }      ibig=0; 
         printf("\n");      del=0.0; 
         fprintf(ficlog,"\n");      last_time=curr_time;
 #endif      (void) gettimeofday(&curr_time,&tzp);
       }      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
     }      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec); fflush(ficlog);
   }  /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec); */
 }     for (i=1;i<=n;i++) {
         printf(" %d %.12f",i, p[i]);
 /**** Prevalence limit (stable or period prevalence)  ****************/        fprintf(ficlog," %d %.12lf",i, p[i]);
         fprintf(ficrespow," %.12lf", p[i]);
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)      }
 {      printf("\n");
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit      fprintf(ficlog,"\n");
      matrix by transitions matrix until convergence is reached */      fprintf(ficrespow,"\n");fflush(ficrespow);
       if(*iter <=3){
   int i, ii,j,k;        tm = *localtime(&curr_time.tv_sec);
   double min, max, maxmin, maxmax,sumnew=0.;        strcpy(strcurr,asctime(&tm));
   double **matprod2();  /*       asctime_r(&tm,strcurr); */
   double **out, cov[NCOVMAX], **pmij();        forecast_time=curr_time; 
   double **newm;        itmp = strlen(strcurr);
   double agefin, delaymax=50 ; /* Max number of years to converge */        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
           strcurr[itmp-1]='\0';
   for (ii=1;ii<=nlstate+ndeath;ii++)        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
     for (j=1;j<=nlstate+ndeath;j++){        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);        for(niterf=10;niterf<=30;niterf+=10){
     }          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
           tmf = *localtime(&forecast_time.tv_sec);
    cov[1]=1.;  /*      asctime_r(&tmf,strfor); */
            strcpy(strfor,asctime(&tmf));
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */          itmp = strlen(strfor);
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){          if(strfor[itmp-1]=='\n')
     newm=savm;          strfor[itmp-1]='\0';
     /* Covariates have to be included here again */          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
      cov[2]=agefin;          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
          }
       for (k=1; k<=cptcovn;k++) {      }
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];      for (i=1;i<=n;i++) { 
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
       }        fptt=(*fret); 
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  #ifdef DEBUG
       for (k=1; k<=cptcovprod;k++)        printf("fret=%lf \n",*fret);
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];        fprintf(ficlog,"fret=%lf \n",*fret);
   #endif
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/        printf("%d",i);fflush(stdout);
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/        fprintf(ficlog,"%d",i);fflush(ficlog);
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/        linmin(p,xit,n,fret,func); 
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);        if (fabs(fptt-(*fret)) > del) { 
           del=fabs(fptt-(*fret)); 
     savm=oldm;          ibig=i; 
     oldm=newm;        } 
     maxmax=0.;  #ifdef DEBUG
     for(j=1;j<=nlstate;j++){        printf("%d %.12e",i,(*fret));
       min=1.;        fprintf(ficlog,"%d %.12e",i,(*fret));
       max=0.;        for (j=1;j<=n;j++) {
       for(i=1; i<=nlstate; i++) {          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
         sumnew=0;          printf(" x(%d)=%.12e",j,xit[j]);
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
         prlim[i][j]= newm[i][j]/(1-sumnew);        }
         max=FMAX(max,prlim[i][j]);        for(j=1;j<=n;j++) {
         min=FMIN(min,prlim[i][j]);          printf(" p=%.12e",p[j]);
       }          fprintf(ficlog," p=%.12e",p[j]);
       maxmin=max-min;        }
       maxmax=FMAX(maxmax,maxmin);        printf("\n");
     }        fprintf(ficlog,"\n");
     if(maxmax < ftolpl){  #endif
       return prlim;      } 
     }      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
   }  #ifdef DEBUG
 }        int k[2],l;
         k[0]=1;
 /*************** transition probabilities ***************/        k[1]=-1;
         printf("Max: %.12e",(*func)(p));
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )        fprintf(ficlog,"Max: %.12e",(*func)(p));
 {        for (j=1;j<=n;j++) {
   double s1, s2;          printf(" %.12e",p[j]);
   /*double t34;*/          fprintf(ficlog," %.12e",p[j]);
   int i,j,j1, nc, ii, jj;        }
         printf("\n");
     for(i=1; i<= nlstate; i++){        fprintf(ficlog,"\n");
       for(j=1; j<i;j++){        for(l=0;l<=1;l++) {
         for (nc=1, s2=0.;nc <=ncovmodel; nc++){          for (j=1;j<=n;j++) {
           /*s2 += param[i][j][nc]*cov[nc];*/            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
           s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
 /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
         }          }
         ps[i][j]=s2;          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
 /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
       }        }
       for(j=i+1; j<=nlstate+ndeath;j++){  #endif
         for (nc=1, s2=0.;nc <=ncovmodel; nc++){  
           s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  
 /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */        free_vector(xit,1,n); 
         }        free_vector(xits,1,n); 
         ps[i][j]=s2;        free_vector(ptt,1,n); 
       }        free_vector(pt,1,n); 
     }        return; 
     /*ps[3][2]=1;*/      } 
          if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
     for(i=1; i<= nlstate; i++){      for (j=1;j<=n;j++) { 
       s1=0;        ptt[j]=2.0*p[j]-pt[j]; 
       for(j=1; j<i; j++)        xit[j]=p[j]-pt[j]; 
         s1+=exp(ps[i][j]);        pt[j]=p[j]; 
       for(j=i+1; j<=nlstate+ndeath; j++)      } 
         s1+=exp(ps[i][j]);      fptt=(*func)(ptt); 
       ps[i][i]=1./(s1+1.);      if (fptt < fp) { 
       for(j=1; j<i; j++)        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
         ps[i][j]= exp(ps[i][j])*ps[i][i];        if (t < 0.0) { 
       for(j=i+1; j<=nlstate+ndeath; j++)          linmin(p,xit,n,fret,func); 
         ps[i][j]= exp(ps[i][j])*ps[i][i];          for (j=1;j<=n;j++) { 
       /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */            xi[j][ibig]=xi[j][n]; 
     } /* end i */            xi[j][n]=xit[j]; 
              }
     for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){  #ifdef DEBUG
       for(jj=1; jj<= nlstate+ndeath; jj++){          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
         ps[ii][jj]=0;          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
         ps[ii][ii]=1;          for(j=1;j<=n;j++){
       }            printf(" %.12e",xit[j]);
     }            fprintf(ficlog," %.12e",xit[j]);
              }
           printf("\n");
 /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */          fprintf(ficlog,"\n");
 /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */  #endif
 /*         printf("ddd %lf ",ps[ii][jj]); */        }
 /*       } */      } 
 /*       printf("\n "); */    } 
 /*        } */  } 
 /*        printf("\n ");printf("%lf ",cov[2]); */  
        /*  /**** Prevalence limit (stable or period prevalence)  ****************/
       for(i=1; i<= npar; i++) printf("%f ",x[i]);  
       goto end;*/  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
     return ps;  {
 }    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
        matrix by transitions matrix until convergence is reached */
 /**************** Product of 2 matrices ******************/  
     int i, ii,j,k;
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)    double min, max, maxmin, maxmax,sumnew=0.;
 {    /* double **matprod2(); */ /* test */
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times    double **out, cov[NCOVMAX+1], **pmij();
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */    double **newm;
   /* in, b, out are matrice of pointers which should have been initialized    double agefin, delaymax=50 ; /* Max number of years to converge */
      before: only the contents of out is modified. The function returns  
      a pointer to pointers identical to out */    for (ii=1;ii<=nlstate+ndeath;ii++)
   long i, j, k;      for (j=1;j<=nlstate+ndeath;j++){
   for(i=nrl; i<= nrh; i++)        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     for(k=ncolol; k<=ncoloh; k++)      }
       for(j=ncl,out[i][k]=0.; j<=nch; j++)  
         out[i][k] +=in[i][j]*b[j][k];     cov[1]=1.;
    
   return out;   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
 }    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
       newm=savm;
       /* Covariates have to be included here again */
 /************* Higher Matrix Product ***************/      cov[2]=agefin;
       
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )      for (k=1; k<=cptcovn;k++) {
 {        cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   /* Computes the transition matrix starting at age 'age' over        /*printf("prevalim ij=%d k=%d Tvar[%d]=%d nbcode=%d cov=%lf codtab[%d][Tvar[%d]]=%d \n",ij,k, k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], ij, k, codtab[ij][Tvar[k]]);*/
      'nhstepm*hstepm*stepm' months (i.e. until      }
      age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying      /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
      nhstepm*hstepm matrices.      /* for (k=1; k<=cptcovprod;k++) /\* Useless *\/ */
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step      /*   cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]] * nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]]; */
      (typically every 2 years instead of every month which is too big      
      for the memory).      /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
      Model is determined by parameters x and covariates have to be      /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
      included manually here.      /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
       /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
      */      /* out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /\* Bug Valgrind *\/ */
       out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /* Bug Valgrind */
   int i, j, d, h, k;      
   double **out, cov[NCOVMAX];      savm=oldm;
   double **newm;      oldm=newm;
       maxmax=0.;
   /* Hstepm could be zero and should return the unit matrix */      for(j=1;j<=nlstate;j++){
   for (i=1;i<=nlstate+ndeath;i++)        min=1.;
     for (j=1;j<=nlstate+ndeath;j++){        max=0.;
       oldm[i][j]=(i==j ? 1.0 : 0.0);        for(i=1; i<=nlstate; i++) {
       po[i][j][0]=(i==j ? 1.0 : 0.0);          sumnew=0;
     }          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */          prlim[i][j]= newm[i][j]/(1-sumnew);
   for(h=1; h <=nhstepm; h++){          /*printf(" prevalim i=%d, j=%d, prmlim[%d][%d]=%f, agefin=%d \n", i, j, i, j, prlim[i][j],(int)agefin);*/
     for(d=1; d <=hstepm; d++){          max=FMAX(max,prlim[i][j]);
       newm=savm;          min=FMIN(min,prlim[i][j]);
       /* Covariates have to be included here again */        }
       cov[1]=1.;        maxmin=max-min;
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;        maxmax=FMAX(maxmax,maxmin);
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];      }
       for (k=1; k<=cptcovage;k++)      if(maxmax < ftolpl){
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];        return prlim;
       for (k=1; k<=cptcovprod;k++)      }
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    }
   }
   
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/  /*************** transition probabilities ***************/ 
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/  
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
                    pmij(pmmij,cov,ncovmodel,x,nlstate));  {
       savm=oldm;    /* According to parameters values stored in x and the covariate's values stored in cov,
       oldm=newm;       computes the probability to be observed in state j being in state i by appying the
     }       model to the ncovmodel covariates (including constant and age).
     for(i=1; i<=nlstate+ndeath; i++)       lnpijopii=ln(pij/pii)= aij+bij*age+cij*v1+dij*v2+... = sum_nc=1^ncovmodel xij(nc)*cov[nc]
       for(j=1;j<=nlstate+ndeath;j++) {       and, according on how parameters are entered, the position of the coefficient xij(nc) of the
         po[i][j][h]=newm[i][j];       ncth covariate in the global vector x is given by the formula:
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);       j<i nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel
          */       j>=i nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel
       }       Computes ln(pij/pii) (lnpijopii), deduces pij/pii by exponentiation,
   } /* end h */       sums on j different of i to get 1-pii/pii, deduces pii, and then all pij.
   return po;       Outputs ps[i][j] the probability to be observed in j being in j according to
 }       the values of the covariates cov[nc] and corresponding parameter values x[nc+shiftij]
     */
     double s1, lnpijopii;
 /*************** log-likelihood *************/    /*double t34;*/
 double func( double *x)    int i,j,j1, nc, ii, jj;
 {  
   int i, ii, j, k, mi, d, kk;      for(i=1; i<= nlstate; i++){
   double l, ll[NLSTATEMAX], cov[NCOVMAX];        for(j=1; j<i;j++){
   double **out;          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
   double sw; /* Sum of weights */            /*lnpijopii += param[i][j][nc]*cov[nc];*/
   double lli; /* Individual log likelihood */            lnpijopii += x[nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel]*cov[nc];
   int s1, s2;  /*       printf("Int j<i s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
   double bbh, survp;          }
   long ipmx;          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
   /*extern weight */  /*      printf("s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
   /* We are differentiating ll according to initial status */        }
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/        for(j=i+1; j<=nlstate+ndeath;j++){
   /*for(i=1;i<imx;i++)          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
     printf(" %d\n",s[4][i]);            /*lnpijopii += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];*/
   */            lnpijopii += x[nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel]*cov[nc];
   cov[1]=1.;  /*        printf("Int j>i s1=%.17e, lnpijopii=%.17e %lx %lx\n",s1,lnpijopii,s1,lnpijopii); */
           }
   for(k=1; k<=nlstate; k++) ll[k]=0.;          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
         }
   if(mle==1){      }
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){      
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];      for(i=1; i<= nlstate; i++){
       for(mi=1; mi<= wav[i]-1; mi++){        s1=0;
         for (ii=1;ii<=nlstate+ndeath;ii++)        for(j=1; j<i; j++){
           for (j=1;j<=nlstate+ndeath;j++){          s1+=exp(ps[i][j]); /* In fact sums pij/pii */
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);          /*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
             savm[ii][j]=(ii==j ? 1.0 : 0.0);        }
           }        for(j=i+1; j<=nlstate+ndeath; j++){
         for(d=0; d<dh[mi][i]; d++){          s1+=exp(ps[i][j]); /* In fact sums pij/pii */
           newm=savm;          /*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;        }
           for (kk=1; kk<=cptcovage;kk++) {        /* s1= sum_{j<>i} pij/pii=(1-pii)/pii and thus pii is known from s1 */
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];        ps[i][i]=1./(s1+1.);
           }        /* Computing other pijs */
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,        for(j=1; j<i; j++)
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));          ps[i][j]= exp(ps[i][j])*ps[i][i];
           savm=oldm;        for(j=i+1; j<=nlstate+ndeath; j++)
           oldm=newm;          ps[i][j]= exp(ps[i][j])*ps[i][i];
         } /* end mult */        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
            } /* end i */
         /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */      
         /* But now since version 0.9 we anticipate for bias at large stepm.      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
          * If stepm is larger than one month (smallest stepm) and if the exact delay        for(jj=1; jj<= nlstate+ndeath; jj++){
          * (in months) between two waves is not a multiple of stepm, we rounded to          ps[ii][jj]=0;
          * the nearest (and in case of equal distance, to the lowest) interval but now          ps[ii][ii]=1;
          * we keep into memory the bias bh[mi][i] and also the previous matrix product        }
          * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the      }
          * probability in order to take into account the bias as a fraction of the way      
          * from savm to out if bh is negative or even beyond if bh is positive. bh varies      
          * -stepm/2 to stepm/2 .      /* for(ii=1; ii<= nlstate+ndeath; ii++){ */
          * For stepm=1 the results are the same as for previous versions of Imach.      /*   for(jj=1; jj<= nlstate+ndeath; jj++){ */
          * For stepm > 1 the results are less biased than in previous versions.      /*  printf(" pmij  ps[%d][%d]=%lf ",ii,jj,ps[ii][jj]); */
          */      /*   } */
         s1=s[mw[mi][i]][i];      /*   printf("\n "); */
         s2=s[mw[mi+1][i]][i];      /* } */
         bbh=(double)bh[mi][i]/(double)stepm;      /* printf("\n ");printf("%lf ",cov[2]);*/
         /* bias bh is positive if real duration      /*
          * is higher than the multiple of stepm and negative otherwise.        for(i=1; i<= npar; i++) printf("%f ",x[i]);
          */        goto end;*/
         /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/      return ps;
         if( s2 > nlstate){  }
           /* i.e. if s2 is a death state and if the date of death is known  
              then the contribution to the likelihood is the probability to  /**************** Product of 2 matrices ******************/
              die between last step unit time and current  step unit time,  
              which is also equal to probability to die before dh  double **matprod2(double **out, double **in,int nrl, int nrh, int ncl, int nch, int ncolol, int ncoloh, double **b)
              minus probability to die before dh-stepm .  {
              In version up to 0.92 likelihood was computed    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
         as if date of death was unknown. Death was treated as any other       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
         health state: the date of the interview describes the actual state    /* in, b, out are matrice of pointers which should have been initialized 
         and not the date of a change in health state. The former idea was       before: only the contents of out is modified. The function returns
         to consider that at each interview the state was recorded       a pointer to pointers identical to out */
         (healthy, disable or death) and IMaCh was corrected; but when we    int i, j, k;
         introduced the exact date of death then we should have modified    for(i=nrl; i<= nrh; i++)
         the contribution of an exact death to the likelihood. This new      for(k=ncolol; k<=ncoloh; k++){
         contribution is smaller and very dependent of the step unit        out[i][k]=0.;
         stepm. It is no more the probability to die between last interview        for(j=ncl; j<=nch; j++)
         and month of death but the probability to survive from last          out[i][k] +=in[i][j]*b[j][k];
         interview up to one month before death multiplied by the      }
         probability to die within a month. Thanks to Chris    return out;
         Jackson for correcting this bug.  Former versions increased  }
         mortality artificially. The bad side is that we add another loop  
         which slows down the processing. The difference can be up to 10%  
         lower mortality.  /************* Higher Matrix Product ***************/
           */  
           lli=log(out[s1][s2] - savm[s1][s2]);  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
   {
     /* Computes the transition matrix starting at age 'age' over 
         } else if  (s2==-2) {       'nhstepm*hstepm*stepm' months (i.e. until
           for (j=1,survp=0. ; j<=nlstate; j++)       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
             survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];       nhstepm*hstepm matrices. 
           /*survp += out[s1][j]; */       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
           lli= log(survp);       (typically every 2 years instead of every month which is too big 
         }       for the memory).
               Model is determined by parameters x and covariates have to be 
         else if  (s2==-4) {       included manually here. 
           for (j=3,survp=0. ; j<=nlstate; j++)    
             survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];       */
           lli= log(survp);  
         }    int i, j, d, h, k;
     double **out, cov[NCOVMAX+1];
         else if  (s2==-5) {    double **newm;
           for (j=1,survp=0. ; j<=2; j++)    
             survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];    /* Hstepm could be zero and should return the unit matrix */
           lli= log(survp);    for (i=1;i<=nlstate+ndeath;i++)
         }      for (j=1;j<=nlstate+ndeath;j++){
                oldm[i][j]=(i==j ? 1.0 : 0.0);
         else{        po[i][j][0]=(i==j ? 1.0 : 0.0);
           lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */      }
           /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
         }    for(h=1; h <=nhstepm; h++){
         /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/      for(d=1; d <=hstepm; d++){
         /*if(lli ==000.0)*/        newm=savm;
         /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */        /* Covariates have to be included here again */
         ipmx +=1;        cov[1]=1.;
         sw += weight[i];        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;        for (k=1; k<=cptcovn;k++) 
       } /* end of wave */          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
     } /* end of individual */        for (k=1; k<=cptcovage;k++)
   }  else if(mle==2){          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){        for (k=1; k<=cptcovprod;k++) /* Useless because included in cptcovn */
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
       for(mi=1; mi<= wav[i]-1; mi++){  
         for (ii=1;ii<=nlstate+ndeath;ii++)  
           for (j=1;j<=nlstate+ndeath;j++){        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
             savm[ii][j]=(ii==j ? 1.0 : 0.0);        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
           }                     pmij(pmmij,cov,ncovmodel,x,nlstate));
         for(d=0; d<=dh[mi][i]; d++){        savm=oldm;
           newm=savm;        oldm=newm;
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;      }
           for (kk=1; kk<=cptcovage;kk++) {      for(i=1; i<=nlstate+ndeath; i++)
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];        for(j=1;j<=nlstate+ndeath;j++) {
           }          po[i][j][h]=newm[i][j];
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,          /*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));        }
           savm=oldm;      /*printf("h=%d ",h);*/
           oldm=newm;    } /* end h */
         } /* end mult */  /*     printf("\n H=%d \n",h); */
          return po;
         s1=s[mw[mi][i]][i];  }
         s2=s[mw[mi+1][i]][i];  
         bbh=(double)bh[mi][i]/(double)stepm;  
         lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */  /*************** log-likelihood *************/
         ipmx +=1;  double func( double *x)
         sw += weight[i];  {
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;    int i, ii, j, k, mi, d, kk;
       } /* end of wave */    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
     } /* end of individual */    double **out;
   }  else if(mle==3){  /* exponential inter-extrapolation */    double sw; /* Sum of weights */
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){    double lli; /* Individual log likelihood */
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];    int s1, s2;
       for(mi=1; mi<= wav[i]-1; mi++){    double bbh, survp;
         for (ii=1;ii<=nlstate+ndeath;ii++)    long ipmx;
           for (j=1;j<=nlstate+ndeath;j++){    /*extern weight */
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);    /* We are differentiating ll according to initial status */
             savm[ii][j]=(ii==j ? 1.0 : 0.0);    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
           }    /*for(i=1;i<imx;i++) 
         for(d=0; d<dh[mi][i]; d++){      printf(" %d\n",s[4][i]);
           newm=savm;    */
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;    cov[1]=1.;
           for (kk=1; kk<=cptcovage;kk++) {  
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];    for(k=1; k<=nlstate; k++) ll[k]=0.;
           }  
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,    if(mle==1){
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           savm=oldm;        /* Computes the values of the ncovmodel covariates of the model
           oldm=newm;           depending if the covariates are fixed or variying (age dependent) and stores them in cov[]
         } /* end mult */           Then computes with function pmij which return a matrix p[i][j] giving the elementary probability
                 to be observed in j being in i according to the model.
         s1=s[mw[mi][i]][i];         */
         s2=s[mw[mi+1][i]][i];        for (k=1; k<=cptcovn;k++){ /* Simple and product covariates without age* products */
         bbh=(double)bh[mi][i]/(double)stepm;          cov[2+k]=covar[Tvar[k]][i];
         lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */        }
         ipmx +=1;        /* In model V2+V1*V4+age*V3+V3*V2 Tvar[1] is V2, Tvar[2=V1*V4] 
         sw += weight[i];           is 6, Tvar[3=age*V3] should not be computed because of age Tvar[4=V3*V2] 
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;           has been calculated etc */
       } /* end of wave */        for(mi=1; mi<= wav[i]-1; mi++){
     } /* end of individual */          for (ii=1;ii<=nlstate+ndeath;ii++)
   }else if (mle==4){  /* ml=4 no inter-extrapolation */            for (j=1;j<=nlstate+ndeath;j++){
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       for(mi=1; mi<= wav[i]-1; mi++){            }
         for (ii=1;ii<=nlstate+ndeath;ii++)          for(d=0; d<dh[mi][i]; d++){
           for (j=1;j<=nlstate+ndeath;j++){            newm=savm;
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             savm[ii][j]=(ii==j ? 1.0 : 0.0);            for (kk=1; kk<=cptcovage;kk++) {
           }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; /* Tage[kk] gives the data-covariate associated with age */
         for(d=0; d<dh[mi][i]; d++){            }
           newm=savm;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           for (kk=1; kk<=cptcovage;kk++) {            savm=oldm;
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];            oldm=newm;
           }          } /* end mult */
                
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));          /* But now since version 0.9 we anticipate for bias at large stepm.
           savm=oldm;           * If stepm is larger than one month (smallest stepm) and if the exact delay 
           oldm=newm;           * (in months) between two waves is not a multiple of stepm, we rounded to 
         } /* end mult */           * the nearest (and in case of equal distance, to the lowest) interval but now
                 * we keep into memory the bias bh[mi][i] and also the previous matrix product
         s1=s[mw[mi][i]][i];           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
         s2=s[mw[mi+1][i]][i];           * probability in order to take into account the bias as a fraction of the way
         if( s2 > nlstate){           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
           lli=log(out[s1][s2] - savm[s1][s2]);           * -stepm/2 to stepm/2 .
         }else{           * For stepm=1 the results are the same as for previous versions of Imach.
           lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */           * For stepm > 1 the results are less biased than in previous versions. 
         }           */
         ipmx +=1;          s1=s[mw[mi][i]][i];
         sw += weight[i];          s2=s[mw[mi+1][i]][i];
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;          bbh=(double)bh[mi][i]/(double)stepm; 
 /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */          /* bias bh is positive if real duration
       } /* end of wave */           * is higher than the multiple of stepm and negative otherwise.
     } /* end of individual */           */
   }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){          if( s2 > nlstate){ 
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];            /* i.e. if s2 is a death state and if the date of death is known 
       for(mi=1; mi<= wav[i]-1; mi++){               then the contribution to the likelihood is the probability to 
         for (ii=1;ii<=nlstate+ndeath;ii++)               die between last step unit time and current  step unit time, 
           for (j=1;j<=nlstate+ndeath;j++){               which is also equal to probability to die before dh 
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);               minus probability to die before dh-stepm . 
             savm[ii][j]=(ii==j ? 1.0 : 0.0);               In version up to 0.92 likelihood was computed
           }          as if date of death was unknown. Death was treated as any other
         for(d=0; d<dh[mi][i]; d++){          health state: the date of the interview describes the actual state
           newm=savm;          and not the date of a change in health state. The former idea was
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;          to consider that at each interview the state was recorded
           for (kk=1; kk<=cptcovage;kk++) {          (healthy, disable or death) and IMaCh was corrected; but when we
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];          introduced the exact date of death then we should have modified
           }          the contribution of an exact death to the likelihood. This new
                  contribution is smaller and very dependent of the step unit
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,          stepm. It is no more the probability to die between last interview
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));          and month of death but the probability to survive from last
           savm=oldm;          interview up to one month before death multiplied by the
           oldm=newm;          probability to die within a month. Thanks to Chris
         } /* end mult */          Jackson for correcting this bug.  Former versions increased
                mortality artificially. The bad side is that we add another loop
         s1=s[mw[mi][i]][i];          which slows down the processing. The difference can be up to 10%
         s2=s[mw[mi+1][i]][i];          lower mortality.
         lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */            */
         ipmx +=1;            lli=log(out[s1][s2] - savm[s1][s2]);
         sw += weight[i];  
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;  
         /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/          } else if  (s2==-2) {
       } /* end of wave */            for (j=1,survp=0. ; j<=nlstate; j++) 
     } /* end of individual */              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   } /* End of if */            /*survp += out[s1][j]; */
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];            lli= log(survp);
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */          }
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */          
   return -l;          else if  (s2==-4) { 
 }            for (j=3,survp=0. ; j<=nlstate; j++)  
               survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
 /*************** log-likelihood *************/            lli= log(survp); 
 double funcone( double *x)          } 
 {  
   /* Same as likeli but slower because of a lot of printf and if */          else if  (s2==-5) { 
   int i, ii, j, k, mi, d, kk;            for (j=1,survp=0. ; j<=2; j++)  
   double l, ll[NLSTATEMAX], cov[NCOVMAX];              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   double **out;            lli= log(survp); 
   double lli; /* Individual log likelihood */          } 
   double llt;          
   int s1, s2;          else{
   double bbh, survp;            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   /*extern weight */            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
   /* We are differentiating ll according to initial status */          } 
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
   /*for(i=1;i<imx;i++)          /*if(lli ==000.0)*/
     printf(" %d\n",s[4][i]);          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
   */          ipmx +=1;
   cov[1]=1.;          sw += weight[i];
           ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   for(k=1; k<=nlstate; k++) ll[k]=0.;        } /* end of wave */
       } /* end of individual */
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){    }  else if(mle==2){
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     for(mi=1; mi<= wav[i]-1; mi++){        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       for (ii=1;ii<=nlstate+ndeath;ii++)        for(mi=1; mi<= wav[i]-1; mi++){
         for (j=1;j<=nlstate+ndeath;j++){          for (ii=1;ii<=nlstate+ndeath;ii++)
           oldm[ii][j]=(ii==j ? 1.0 : 0.0);            for (j=1;j<=nlstate+ndeath;j++){
           savm[ii][j]=(ii==j ? 1.0 : 0.0);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       for(d=0; d<dh[mi][i]; d++){            }
         newm=savm;          for(d=0; d<=dh[mi][i]; d++){
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;            newm=savm;
         for (kk=1; kk<=cptcovage;kk++) {            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];            for (kk=1; kk<=cptcovage;kk++) {
         }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,            }
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         savm=oldm;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         oldm=newm;            savm=oldm;
       } /* end mult */            oldm=newm;
                } /* end mult */
       s1=s[mw[mi][i]][i];        
       s2=s[mw[mi+1][i]][i];          s1=s[mw[mi][i]][i];
       bbh=(double)bh[mi][i]/(double)stepm;          s2=s[mw[mi+1][i]][i];
       /* bias is positive if real duration          bbh=(double)bh[mi][i]/(double)stepm; 
        * is higher than the multiple of stepm and negative otherwise.          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
        */          ipmx +=1;
       if( s2 > nlstate && (mle <5) ){  /* Jackson */          sw += weight[i];
         lli=log(out[s1][s2] - savm[s1][s2]);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       } else if  (s2==-2) {        } /* end of wave */
         for (j=1,survp=0. ; j<=nlstate; j++)      } /* end of individual */
           survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];    }  else if(mle==3){  /* exponential inter-extrapolation */
         lli= log(survp);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       }else if (mle==1){        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */        for(mi=1; mi<= wav[i]-1; mi++){
       } else if(mle==2){          for (ii=1;ii<=nlstate+ndeath;ii++)
         lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */            for (j=1;j<=nlstate+ndeath;j++){
       } else if(mle==3){  /* exponential inter-extrapolation */              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       } else if (mle==4){  /* mle=4 no inter-extrapolation */            }
         lli=log(out[s1][s2]); /* Original formula */          for(d=0; d<dh[mi][i]; d++){
       } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */            newm=savm;
         lli=log(out[s1][s2]); /* Original formula */            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       } /* End of if */            for (kk=1; kk<=cptcovage;kk++) {
       ipmx +=1;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       sw += weight[i];            }
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       if(globpr){            savm=oldm;
         fprintf(ficresilk,"%9d %6d %2d %2d %1d %1d %3d %11.6f %8.4f\            oldm=newm;
  %11.6f %11.6f %11.6f ", \          } /* end mult */
                 num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],        
                 2*weight[i]*lli,out[s1][s2],savm[s1][s2]);          s1=s[mw[mi][i]][i];
         for(k=1,llt=0.,l=0.; k<=nlstate; k++){          s2=s[mw[mi+1][i]][i];
           llt +=ll[k]*gipmx/gsw;          bbh=(double)bh[mi][i]/(double)stepm; 
           fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
         }          ipmx +=1;
         fprintf(ficresilk," %10.6f\n", -llt);          sw += weight[i];
       }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     } /* end of wave */        } /* end of wave */
   } /* end of individual */      } /* end of individual */
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];    }else if (mle==4){  /* ml=4 no inter-extrapolation */
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   if(globpr==0){ /* First time we count the contributions and weights */        for(mi=1; mi<= wav[i]-1; mi++){
     gipmx=ipmx;          for (ii=1;ii<=nlstate+ndeath;ii++)
     gsw=sw;            for (j=1;j<=nlstate+ndeath;j++){
   }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   return -l;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
 }            }
           for(d=0; d<dh[mi][i]; d++){
             newm=savm;
 /*************** function likelione ***********/            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))            for (kk=1; kk<=cptcovage;kk++) {
 {              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   /* This routine should help understanding what is done with            }
      the selection of individuals/waves and          
      to check the exact contribution to the likelihood.            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
      Plotting could be done.                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
    */            savm=oldm;
   int k;            oldm=newm;
           } /* end mult */
   if(*globpri !=0){ /* Just counts and sums, no printings */        
     strcpy(fileresilk,"ilk");          s1=s[mw[mi][i]][i];
     strcat(fileresilk,fileres);          s2=s[mw[mi+1][i]][i];
     if((ficresilk=fopen(fileresilk,"w"))==NULL) {          if( s2 > nlstate){ 
       printf("Problem with resultfile: %s\n", fileresilk);            lli=log(out[s1][s2] - savm[s1][s2]);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);          }else{
     }            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
     fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");          }
     fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");          ipmx +=1;
     /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */          sw += weight[i];
     for(k=1; k<=nlstate; k++)          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
     fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");        } /* end of wave */
   }      } /* end of individual */
     }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
   *fretone=(*funcone)(p);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   if(*globpri !=0){        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     fclose(ficresilk);        for(mi=1; mi<= wav[i]-1; mi++){
     fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));          for (ii=1;ii<=nlstate+ndeath;ii++)
     fflush(fichtm);            for (j=1;j<=nlstate+ndeath;j++){
   }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   return;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
 }            }
           for(d=0; d<dh[mi][i]; d++){
             newm=savm;
 /*********** Maximum Likelihood Estimation ***************/            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             for (kk=1; kk<=cptcovage;kk++) {
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 {            }
   int i,j, iter;          
   double **xi;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   double fret;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   double fretone; /* Only one call to likelihood */            savm=oldm;
   /*  char filerespow[FILENAMELENGTH];*/            oldm=newm;
   xi=matrix(1,npar,1,npar);          } /* end mult */
   for (i=1;i<=npar;i++)        
     for (j=1;j<=npar;j++)          s1=s[mw[mi][i]][i];
       xi[i][j]=(i==j ? 1.0 : 0.0);          s2=s[mw[mi+1][i]][i];
   printf("Powell\n");  fprintf(ficlog,"Powell\n");          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
   strcpy(filerespow,"pow");          ipmx +=1;
   strcat(filerespow,fileres);          sw += weight[i];
   if((ficrespow=fopen(filerespow,"w"))==NULL) {          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     printf("Problem with resultfile: %s\n", filerespow);          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
     fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);        } /* end of wave */
   }      } /* end of individual */
   fprintf(ficrespow,"# Powell\n# iter -2*LL");    } /* End of if */
   for (i=1;i<=nlstate;i++)    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
     for(j=1;j<=nlstate+ndeath;j++)    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
       if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   fprintf(ficrespow,"\n");    return -l;
   }
   powell(p,xi,npar,ftol,&iter,&fret,func);  
   /*************** log-likelihood *************/
   free_matrix(xi,1,npar,1,npar);  double funcone( double *x)
   fclose(ficrespow);  {
   printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));    /* Same as likeli but slower because of a lot of printf and if */
   fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));    int i, ii, j, k, mi, d, kk;
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
     double **out;
 }    double lli; /* Individual log likelihood */
     double llt;
 /**** Computes Hessian and covariance matrix ***/    int s1, s2;
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))    double bbh, survp;
 {    /*extern weight */
   double  **a,**y,*x,pd;    /* We are differentiating ll according to initial status */
   double **hess;    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   int i, j,jk;    /*for(i=1;i<imx;i++) 
   int *indx;      printf(" %d\n",s[4][i]);
     */
   double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);    cov[1]=1.;
   double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);  
   void lubksb(double **a, int npar, int *indx, double b[]) ;    for(k=1; k<=nlstate; k++) ll[k]=0.;
   void ludcmp(double **a, int npar, int *indx, double *d) ;  
   double gompertz(double p[]);    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   hess=matrix(1,npar,1,npar);      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       for(mi=1; mi<= wav[i]-1; mi++){
   printf("\nCalculation of the hessian matrix. Wait...\n");        for (ii=1;ii<=nlstate+ndeath;ii++)
   fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");          for (j=1;j<=nlstate+ndeath;j++){
   for (i=1;i<=npar;i++){            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     printf("%d",i);fflush(stdout);            savm[ii][j]=(ii==j ? 1.0 : 0.0);
     fprintf(ficlog,"%d",i);fflush(ficlog);          }
            for(d=0; d<dh[mi][i]; d++){
      hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);          newm=savm;
              cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     /*  printf(" %f ",p[i]);          for (kk=1; kk<=cptcovage;kk++) {
         printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   }          }
            /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
   for (i=1;i<=npar;i++) {          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     for (j=1;j<=npar;j++)  {                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       if (j>i) {          /* out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, */
         printf(".%d%d",i,j);fflush(stdout);          /*           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); */
         fprintf(ficlog,".%d%d",i,j);fflush(ficlog);          savm=oldm;
         hess[i][j]=hessij(p,delti,i,j,func,npar);          oldm=newm;
                } /* end mult */
         hess[j][i]=hess[i][j];            
         /*printf(" %lf ",hess[i][j]);*/        s1=s[mw[mi][i]][i];
       }        s2=s[mw[mi+1][i]][i];
     }        bbh=(double)bh[mi][i]/(double)stepm; 
   }        /* bias is positive if real duration
   printf("\n");         * is higher than the multiple of stepm and negative otherwise.
   fprintf(ficlog,"\n");         */
         if( s2 > nlstate && (mle <5) ){  /* Jackson */
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");          lli=log(out[s1][s2] - savm[s1][s2]);
   fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");        } else if  (s2==-2) {
            for (j=1,survp=0. ; j<=nlstate; j++) 
   a=matrix(1,npar,1,npar);            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   y=matrix(1,npar,1,npar);          lli= log(survp);
   x=vector(1,npar);        }else if (mle==1){
   indx=ivector(1,npar);          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   for (i=1;i<=npar;i++)        } else if(mle==2){
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
   ludcmp(a,npar,indx,&pd);        } else if(mle==3){  /* exponential inter-extrapolation */
           lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   for (j=1;j<=npar;j++) {        } else if (mle==4){  /* mle=4 no inter-extrapolation */
     for (i=1;i<=npar;i++) x[i]=0;          lli=log(out[s1][s2]); /* Original formula */
     x[j]=1;        } else{  /* mle=0 back to 1 */
     lubksb(a,npar,indx,x);          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
     for (i=1;i<=npar;i++){          /*lli=log(out[s1][s2]); */ /* Original formula */
       matcov[i][j]=x[i];        } /* End of if */
     }        ipmx +=1;
   }        sw += weight[i];
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   printf("\n#Hessian matrix#\n");        /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
   fprintf(ficlog,"\n#Hessian matrix#\n");        if(globpr){
   for (i=1;i<=npar;i++) {          fprintf(ficresilk,"%9ld %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
     for (j=1;j<=npar;j++) {   %11.6f %11.6f %11.6f ", \
       printf("%.3e ",hess[i][j]);                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
       fprintf(ficlog,"%.3e ",hess[i][j]);                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
     }          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
     printf("\n");            llt +=ll[k]*gipmx/gsw;
     fprintf(ficlog,"\n");            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
   }          }
           fprintf(ficresilk," %10.6f\n", -llt);
   /* Recompute Inverse */        }
   for (i=1;i<=npar;i++)      } /* end of wave */
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];    } /* end of individual */
   ludcmp(a,npar,indx,&pd);    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
     /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   /*  printf("\n#Hessian matrix recomputed#\n");    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
     if(globpr==0){ /* First time we count the contributions and weights */
   for (j=1;j<=npar;j++) {      gipmx=ipmx;
     for (i=1;i<=npar;i++) x[i]=0;      gsw=sw;
     x[j]=1;    }
     lubksb(a,npar,indx,x);    return -l;
     for (i=1;i<=npar;i++){  }
       y[i][j]=x[i];  
       printf("%.3e ",y[i][j]);  
       fprintf(ficlog,"%.3e ",y[i][j]);  /*************** function likelione ***********/
     }  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
     printf("\n");  {
     fprintf(ficlog,"\n");    /* This routine should help understanding what is done with 
   }       the selection of individuals/waves and
   */       to check the exact contribution to the likelihood.
        Plotting could be done.
   free_matrix(a,1,npar,1,npar);     */
   free_matrix(y,1,npar,1,npar);    int k;
   free_vector(x,1,npar);  
   free_ivector(indx,1,npar);    if(*globpri !=0){ /* Just counts and sums, no printings */
   free_matrix(hess,1,npar,1,npar);      strcpy(fileresilk,"ilk"); 
       strcat(fileresilk,fileres);
       if((ficresilk=fopen(fileresilk,"w"))==NULL) {
 }        printf("Problem with resultfile: %s\n", fileresilk);
         fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
 /*************** hessian matrix ****************/      }
 double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
 {      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
   int i;      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
   int l=1, lmax=20;      for(k=1; k<=nlstate; k++) 
   double k1,k2;        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
   double p2[NPARMAX+1];      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
   double res;    }
   double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;  
   double fx;    *fretone=(*funcone)(p);
   int k=0,kmax=10;    if(*globpri !=0){
   double l1;      fclose(ficresilk);
       fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
   fx=func(x);      fflush(fichtm); 
   for (i=1;i<=npar;i++) p2[i]=x[i];    } 
   for(l=0 ; l <=lmax; l++){    return;
     l1=pow(10,l);  }
     delts=delt;  
     for(k=1 ; k <kmax; k=k+1){  
       delt = delta*(l1*k);  /*********** Maximum Likelihood Estimation ***************/
       p2[theta]=x[theta] +delt;  
       k1=func(p2)-fx;  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
       p2[theta]=x[theta]-delt;  {
       k2=func(p2)-fx;    int i,j, iter;
       /*res= (k1-2.0*fx+k2)/delt/delt; */    double **xi;
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */    double fret;
          double fretone; /* Only one call to likelihood */
 #ifdef DEBUG    /*  char filerespow[FILENAMELENGTH];*/
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);    xi=matrix(1,npar,1,npar);
       fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);    for (i=1;i<=npar;i++)
 #endif      for (j=1;j<=npar;j++)
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */        xi[i][j]=(i==j ? 1.0 : 0.0);
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){    printf("Powell\n");  fprintf(ficlog,"Powell\n");
         k=kmax;    strcpy(filerespow,"pow"); 
       }    strcat(filerespow,fileres);
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */    if((ficrespow=fopen(filerespow,"w"))==NULL) {
         k=kmax; l=lmax*10.;      printf("Problem with resultfile: %s\n", filerespow);
       }      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){    }
         delts=delt;    fprintf(ficrespow,"# Powell\n# iter -2*LL");
       }    for (i=1;i<=nlstate;i++)
     }      for(j=1;j<=nlstate+ndeath;j++)
   }        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
   delti[theta]=delts;    fprintf(ficrespow,"\n");
   return res;  
      powell(p,xi,npar,ftol,&iter,&fret,func);
 }  
     free_matrix(xi,1,npar,1,npar);
 double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)    fclose(ficrespow);
 {    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
   int i;    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   int l=1, l1, lmax=20;    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   double k1,k2,k3,k4,res,fx;  
   double p2[NPARMAX+1];  }
   int k;  
   /**** Computes Hessian and covariance matrix ***/
   fx=func(x);  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
   for (k=1; k<=2; k++) {  {
     for (i=1;i<=npar;i++) p2[i]=x[i];    double  **a,**y,*x,pd;
     p2[thetai]=x[thetai]+delti[thetai]/k;    double **hess;
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;    int i, j,jk;
     k1=func(p2)-fx;    int *indx;
    
     p2[thetai]=x[thetai]+delti[thetai]/k;    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
     k2=func(p2)-fx;    void lubksb(double **a, int npar, int *indx, double b[]) ;
      void ludcmp(double **a, int npar, int *indx, double *d) ;
     p2[thetai]=x[thetai]-delti[thetai]/k;    double gompertz(double p[]);
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;    hess=matrix(1,npar,1,npar);
     k3=func(p2)-fx;  
      printf("\nCalculation of the hessian matrix. Wait...\n");
     p2[thetai]=x[thetai]-delti[thetai]/k;    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;    for (i=1;i<=npar;i++){
     k4=func(p2)-fx;      printf("%d",i);fflush(stdout);
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */      fprintf(ficlog,"%d",i);fflush(ficlog);
 #ifdef DEBUG     
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
     fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);      
 #endif      /*  printf(" %f ",p[i]);
   }          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
   return res;    }
 }    
     for (i=1;i<=npar;i++) {
 /************** Inverse of matrix **************/      for (j=1;j<=npar;j++)  {
 void ludcmp(double **a, int n, int *indx, double *d)        if (j>i) { 
 {          printf(".%d%d",i,j);fflush(stdout);
   int i,imax,j,k;          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
   double big,dum,sum,temp;          hess[i][j]=hessij(p,delti,i,j,func,npar);
   double *vv;          
            hess[j][i]=hess[i][j];    
   vv=vector(1,n);          /*printf(" %lf ",hess[i][j]);*/
   *d=1.0;        }
   for (i=1;i<=n;i++) {      }
     big=0.0;    }
     for (j=1;j<=n;j++)    printf("\n");
       if ((temp=fabs(a[i][j])) > big) big=temp;    fprintf(ficlog,"\n");
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");  
     vv[i]=1.0/big;    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
   }    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
   for (j=1;j<=n;j++) {    
     for (i=1;i<j;i++) {    a=matrix(1,npar,1,npar);
       sum=a[i][j];    y=matrix(1,npar,1,npar);
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];    x=vector(1,npar);
       a[i][j]=sum;    indx=ivector(1,npar);
     }    for (i=1;i<=npar;i++)
     big=0.0;      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
     for (i=j;i<=n;i++) {    ludcmp(a,npar,indx,&pd);
       sum=a[i][j];  
       for (k=1;k<j;k++)    for (j=1;j<=npar;j++) {
         sum -= a[i][k]*a[k][j];      for (i=1;i<=npar;i++) x[i]=0;
       a[i][j]=sum;      x[j]=1;
       if ( (dum=vv[i]*fabs(sum)) >= big) {      lubksb(a,npar,indx,x);
         big=dum;      for (i=1;i<=npar;i++){ 
         imax=i;        matcov[i][j]=x[i];
       }      }
     }    }
     if (j != imax) {  
       for (k=1;k<=n;k++) {    printf("\n#Hessian matrix#\n");
         dum=a[imax][k];    fprintf(ficlog,"\n#Hessian matrix#\n");
         a[imax][k]=a[j][k];    for (i=1;i<=npar;i++) { 
         a[j][k]=dum;      for (j=1;j<=npar;j++) { 
       }        printf("%.3e ",hess[i][j]);
       *d = -(*d);        fprintf(ficlog,"%.3e ",hess[i][j]);
       vv[imax]=vv[j];      }
     }      printf("\n");
     indx[j]=imax;      fprintf(ficlog,"\n");
     if (a[j][j] == 0.0) a[j][j]=TINY;    }
     if (j != n) {  
       dum=1.0/(a[j][j]);    /* Recompute Inverse */
       for (i=j+1;i<=n;i++) a[i][j] *= dum;    for (i=1;i<=npar;i++)
     }      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
   }    ludcmp(a,npar,indx,&pd);
   free_vector(vv,1,n);  /* Doesn't work */  
 ;    /*  printf("\n#Hessian matrix recomputed#\n");
 }  
     for (j=1;j<=npar;j++) {
 void lubksb(double **a, int n, int *indx, double b[])      for (i=1;i<=npar;i++) x[i]=0;
 {      x[j]=1;
   int i,ii=0,ip,j;      lubksb(a,npar,indx,x);
   double sum;      for (i=1;i<=npar;i++){ 
          y[i][j]=x[i];
   for (i=1;i<=n;i++) {        printf("%.3e ",y[i][j]);
     ip=indx[i];        fprintf(ficlog,"%.3e ",y[i][j]);
     sum=b[ip];      }
     b[ip]=b[i];      printf("\n");
     if (ii)      fprintf(ficlog,"\n");
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];    }
     else if (sum) ii=i;    */
     b[i]=sum;  
   }    free_matrix(a,1,npar,1,npar);
   for (i=n;i>=1;i--) {    free_matrix(y,1,npar,1,npar);
     sum=b[i];    free_vector(x,1,npar);
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];    free_ivector(indx,1,npar);
     b[i]=sum/a[i][i];    free_matrix(hess,1,npar,1,npar);
   }  
 }  
   }
 void pstamp(FILE *fichier)  
 {  /*************** hessian matrix ****************/
   fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
 }  {
     int i;
 /************ Frequencies ********************/    int l=1, lmax=20;
 void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])    double k1,k2;
 {  /* Some frequencies */    double p2[MAXPARM+1]; /* identical to x */
      double res;
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
   int first;    double fx;
   double ***freq; /* Frequencies */    int k=0,kmax=10;
   double *pp, **prop;    double l1;
   double pos,posprop, k2, dateintsum=0,k2cpt=0;  
   char fileresp[FILENAMELENGTH];    fx=func(x);
      for (i=1;i<=npar;i++) p2[i]=x[i];
   pp=vector(1,nlstate);    for(l=0 ; l <=lmax; l++){  /* Enlarging the zone around the Maximum */
   prop=matrix(1,nlstate,iagemin,iagemax+3);      l1=pow(10,l);
   strcpy(fileresp,"p");      delts=delt;
   strcat(fileresp,fileres);      for(k=1 ; k <kmax; k=k+1){
   if((ficresp=fopen(fileresp,"w"))==NULL) {        delt = delta*(l1*k);
     printf("Problem with prevalence resultfile: %s\n", fileresp);        p2[theta]=x[theta] +delt;
     fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);        k1=func(p2)-fx;   /* Might be negative if too close to the theoretical maximum */
     exit(0);        p2[theta]=x[theta]-delt;
   }        k2=func(p2)-fx;
   freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);        /*res= (k1-2.0*fx+k2)/delt/delt; */
   j1=0;        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
          
   j=cptcoveff;  #ifdef DEBUGHESS
   if (cptcovn<1) {j=1;ncodemax[1]=1;}        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
         fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   first=1;  #endif
         /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
   for(k1=1; k1<=j;k1++){        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
     for(i1=1; i1<=ncodemax[k1];i1++){          k=kmax;
       j1++;        }
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
         scanf("%d", i);*/          k=kmax; l=lmax*10.;
       for (i=-5; i<=nlstate+ndeath; i++)          }
         for (jk=-5; jk<=nlstate+ndeath; jk++)          else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
           for(m=iagemin; m <= iagemax+3; m++)          delts=delt;
             freq[i][jk][m]=0;        }
       }
     for (i=1; i<=nlstate; i++)      }
       for(m=iagemin; m <= iagemax+3; m++)    delti[theta]=delts;
         prop[i][m]=0;    return res; 
          
       dateintsum=0;  }
       k2cpt=0;  
       for (i=1; i<=imx; i++) {  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
         bool=1;  {
         if  (cptcovn>0) {    int i;
           for (z1=1; z1<=cptcoveff; z1++)    int l=1, l1, lmax=20;
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])    double k1,k2,k3,k4,res,fx;
               bool=0;    double p2[MAXPARM+1];
         }    int k;
         if (bool==1){  
           for(m=firstpass; m<=lastpass; m++){    fx=func(x);
             k2=anint[m][i]+(mint[m][i]/12.);    for (k=1; k<=2; k++) {
             /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/      for (i=1;i<=npar;i++) p2[i]=x[i];
               if(agev[m][i]==0) agev[m][i]=iagemax+1;      p2[thetai]=x[thetai]+delti[thetai]/k;
               if(agev[m][i]==1) agev[m][i]=iagemax+2;      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
               if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];      k1=func(p2)-fx;
               if (m<lastpass) {    
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];      p2[thetai]=x[thetai]+delti[thetai]/k;
                 freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
               }      k2=func(p2)-fx;
                  
               if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {      p2[thetai]=x[thetai]-delti[thetai]/k;
                 dateintsum=dateintsum+k2;      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
                 k2cpt++;      k3=func(p2)-fx;
               }    
               /*}*/      p2[thetai]=x[thetai]-delti[thetai]/k;
           }      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
         }      k4=func(p2)-fx;
       }      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
          #ifdef DEBUG
       /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
       pstamp(ficresp);      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
       if  (cptcovn>0) {  #endif
         fprintf(ficresp, "\n#********** Variable ");    }
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    return res;
         fprintf(ficresp, "**********\n#");  }
       }  
       for(i=1; i<=nlstate;i++)  /************** Inverse of matrix **************/
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);  void ludcmp(double **a, int n, int *indx, double *d) 
       fprintf(ficresp, "\n");  { 
          int i,imax,j,k; 
       for(i=iagemin; i <= iagemax+3; i++){    double big,dum,sum,temp; 
         if(i==iagemax+3){    double *vv; 
           fprintf(ficlog,"Total");   
         }else{    vv=vector(1,n); 
           if(first==1){    *d=1.0; 
             first=0;    for (i=1;i<=n;i++) { 
             printf("See log file for details...\n");      big=0.0; 
           }      for (j=1;j<=n;j++) 
           fprintf(ficlog,"Age %d", i);        if ((temp=fabs(a[i][j])) > big) big=temp; 
         }      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
         for(jk=1; jk <=nlstate ; jk++){      vv[i]=1.0/big; 
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)    } 
             pp[jk] += freq[jk][m][i];    for (j=1;j<=n;j++) { 
         }      for (i=1;i<j;i++) { 
         for(jk=1; jk <=nlstate ; jk++){        sum=a[i][j]; 
           for(m=-1, pos=0; m <=0 ; m++)        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
             pos += freq[jk][m][i];        a[i][j]=sum; 
           if(pp[jk]>=1.e-10){      } 
             if(first==1){      big=0.0; 
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);      for (i=j;i<=n;i++) { 
             }        sum=a[i][j]; 
             fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);        for (k=1;k<j;k++) 
           }else{          sum -= a[i][k]*a[k][j]; 
             if(first==1)        a[i][j]=sum; 
               printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);        if ( (dum=vv[i]*fabs(sum)) >= big) { 
             fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);          big=dum; 
           }          imax=i; 
         }        } 
       } 
         for(jk=1; jk <=nlstate ; jk++){      if (j != imax) { 
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)        for (k=1;k<=n;k++) { 
             pp[jk] += freq[jk][m][i];          dum=a[imax][k]; 
         }                a[imax][k]=a[j][k]; 
         for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){          a[j][k]=dum; 
           pos += pp[jk];        } 
           posprop += prop[jk][i];        *d = -(*d); 
         }        vv[imax]=vv[j]; 
         for(jk=1; jk <=nlstate ; jk++){      } 
           if(pos>=1.e-5){      indx[j]=imax; 
             if(first==1)      if (a[j][j] == 0.0) a[j][j]=TINY; 
               printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);      if (j != n) { 
             fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);        dum=1.0/(a[j][j]); 
           }else{        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
             if(first==1)      } 
               printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);    } 
             fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);    free_vector(vv,1,n);  /* Doesn't work */
           }  ;
           if( i <= iagemax){  } 
             if(pos>=1.e-5){  
               fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);  void lubksb(double **a, int n, int *indx, double b[]) 
               /*probs[i][jk][j1]= pp[jk]/pos;*/  { 
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/    int i,ii=0,ip,j; 
             }    double sum; 
             else   
               fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);    for (i=1;i<=n;i++) { 
           }      ip=indx[i]; 
         }      sum=b[ip]; 
              b[ip]=b[i]; 
         for(jk=-1; jk <=nlstate+ndeath; jk++)      if (ii) 
           for(m=-1; m <=nlstate+ndeath; m++)        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
             if(freq[jk][m][i] !=0 ) {      else if (sum) ii=i; 
             if(first==1)      b[i]=sum; 
               printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);    } 
               fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);    for (i=n;i>=1;i--) { 
             }      sum=b[i]; 
         if(i <= iagemax)      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
           fprintf(ficresp,"\n");      b[i]=sum/a[i][i]; 
         if(first==1)    } 
           printf("Others in log...\n");  } 
         fprintf(ficlog,"\n");  
       }  void pstamp(FILE *fichier)
     }  {
   }    fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
   dateintmean=dateintsum/k2cpt;  }
    
   fclose(ficresp);  /************ Frequencies ********************/
   free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
   free_vector(pp,1,nlstate);  {  /* Some frequencies */
   free_matrix(prop,1,nlstate,iagemin, iagemax+3);    
   /* End of Freq */    int i, m, jk, k1,i1, j1, bool, z1,j;
 }    int first;
     double ***freq; /* Frequencies */
 /************ Prevalence ********************/    double *pp, **prop;
 void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)    double pos,posprop, k2, dateintsum=0,k2cpt=0;
 {      char fileresp[FILENAMELENGTH];
   /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people    
      in each health status at the date of interview (if between dateprev1 and dateprev2).    pp=vector(1,nlstate);
      We still use firstpass and lastpass as another selection.    prop=matrix(1,nlstate,iagemin,iagemax+3);
   */    strcpy(fileresp,"p");
      strcat(fileresp,fileres);
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;    if((ficresp=fopen(fileresp,"w"))==NULL) {
   double ***freq; /* Frequencies */      printf("Problem with prevalence resultfile: %s\n", fileresp);
   double *pp, **prop;      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
   double pos,posprop;      exit(0);
   double  y2; /* in fractional years */    }
   int iagemin, iagemax;    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
     j1=0;
   iagemin= (int) agemin;    
   iagemax= (int) agemax;    j=cptcoveff;
   /*pp=vector(1,nlstate);*/    if (cptcovn<1) {j=1;ncodemax[1]=1;}
   prop=matrix(1,nlstate,iagemin,iagemax+3);  
   /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/    first=1;
   j1=0;  
      /* for(k1=1; k1<=j ; k1++){   /* Loop on covariates */
   j=cptcoveff;    /*  for(i1=1; i1<=ncodemax[k1];i1++){ /* Now it is 2 */
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    /*    j1++;
    */
   for(k1=1; k1<=j;k1++){    for (j1 = 1; j1 <= (int) pow(2,cptcoveff); j1++){
     for(i1=1; i1<=ncodemax[k1];i1++){        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
       j1++;          scanf("%d", i);*/
              for (i=-5; i<=nlstate+ndeath; i++)  
       for (i=1; i<=nlstate; i++)            for (jk=-5; jk<=nlstate+ndeath; jk++)  
         for(m=iagemin; m <= iagemax+3; m++)            for(m=iagemin; m <= iagemax+3; m++)
           prop[i][m]=0.0;              freq[i][jk][m]=0;
              
       for (i=1; i<=imx; i++) { /* Each individual */        for (i=1; i<=nlstate; i++)  
         bool=1;          for(m=iagemin; m <= iagemax+3; m++)
         if  (cptcovn>0) {            prop[i][m]=0;
           for (z1=1; z1<=cptcoveff; z1++)        
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])        dateintsum=0;
               bool=0;        k2cpt=0;
         }        for (i=1; i<=imx; i++) {
         if (bool==1) {          bool=1;
           for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/          if  (cptcovn>0) { /* Filter is here: Must be looked at for model=V1+V2+V3+V4 */
             y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */            for (z1=1; z1<=cptcoveff; z1++)       
             if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]){
               if(agev[m][i]==0) agev[m][i]=iagemax+1;                  /* Tests if the value of each of the covariates of i is equal to filter j1 */
               if(agev[m][i]==1) agev[m][i]=iagemax+2;                bool=0;
               if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m);                /* printf("bool=%d i=%d, z1=%d, Tvaraff[%d]=%d, covar[Tvarff][%d]=%2f, codtab[%d][%d]=%d, nbcode[Tvaraff][codtab[%d][%d]=%d, j1=%d\n", 
               if (s[m][i]>0 && s[m][i]<=nlstate) {                  bool,i,z1, z1, Tvaraff[z1],i,covar[Tvaraff[z1]][i],j1,z1,codtab[j1][z1],
                 /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/                  j1,z1,nbcode[Tvaraff[z1]][codtab[j1][z1]],j1);*/
                 prop[s[m][i]][(int)agev[m][i]] += weight[i];                /* For j1=7 in V1+V2+V3+V4 = 0 1 1 0 and codtab[7][3]=1 and nbcde[3][?]=1*/
                 prop[s[m][i]][iagemax+3] += weight[i];              } 
               }          }
             }   
           } /* end selection of waves */          if (bool==1){
         }            for(m=firstpass; m<=lastpass; m++){
       }              k2=anint[m][i]+(mint[m][i]/12.);
       for(i=iagemin; i <= iagemax+3; i++){                /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
                        if(agev[m][i]==0) agev[m][i]=iagemax+1;
         for(jk=1,posprop=0; jk <=nlstate ; jk++) {                if(agev[m][i]==1) agev[m][i]=iagemax+2;
           posprop += prop[jk][i];                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
         }                if (m<lastpass) {
                   freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
         for(jk=1; jk <=nlstate ; jk++){                      freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
           if( i <=  iagemax){                }
             if(posprop>=1.e-5){                
               probs[i][jk][j1]= prop[jk][i]/posprop;                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
             }                  dateintsum=dateintsum+k2;
           }                  k2cpt++;
         }/* end jk */                }
       }/* end i */                /*}*/
     } /* end i1 */            }
   } /* end k1 */          }
          } /* end i */
   /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/         
   /*free_vector(pp,1,nlstate);*/        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
   free_matrix(prop,1,nlstate, iagemin,iagemax+3);        pstamp(ficresp);
 }  /* End of prevalence */        if  (cptcovn>0) {
           fprintf(ficresp, "\n#********** Variable "); 
 /************* Waves Concatenation ***************/          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresp, "**********\n#");
 void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)          fprintf(ficlog, "\n#********** Variable "); 
 {          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficlog, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.          fprintf(ficlog, "**********\n#");
      Death is a valid wave (if date is known).        }
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i        for(i=1; i<=nlstate;i++) 
      dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
      and mw[mi+1][i]. dh depends on stepm.        fprintf(ficresp, "\n");
      */        
         for(i=iagemin; i <= iagemax+3; i++){
   int i, mi, m;          if(i==iagemax+3){
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;            fprintf(ficlog,"Total");
      double sum=0., jmean=0.;*/          }else{
   int first;            if(first==1){
   int j, k=0,jk, ju, jl;              first=0;
   double sum=0.;              printf("See log file for details...\n");
   first=0;            }
   jmin=1e+5;            fprintf(ficlog,"Age %d", i);
   jmax=-1;          }
   jmean=0.;          for(jk=1; jk <=nlstate ; jk++){
   for(i=1; i<=imx; i++){            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
     mi=0;              pp[jk] += freq[jk][m][i]; 
     m=firstpass;          }
     while(s[m][i] <= nlstate){          for(jk=1; jk <=nlstate ; jk++){
       if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)            for(m=-1, pos=0; m <=0 ; m++)
         mw[++mi][i]=m;              pos += freq[jk][m][i];
       if(m >=lastpass)            if(pp[jk]>=1.e-10){
         break;              if(first==1){
       else                printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
         m++;              }
     }/* end while */              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
     if (s[m][i] > nlstate){            }else{
       mi++;     /* Death is another wave */              if(first==1)
       /* if(mi==0)  never been interviewed correctly before death */                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
          /* Only death is a correct wave */              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
       mw[mi][i]=m;            }
     }          }
   
     wav[i]=mi;          for(jk=1; jk <=nlstate ; jk++){
     if(mi==0){            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
       nbwarn++;              pp[jk] += freq[jk][m][i];
       if(first==0){          }       
         printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
         first=1;            pos += pp[jk];
       }            posprop += prop[jk][i];
       if(first==1){          }
         fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);          for(jk=1; jk <=nlstate ; jk++){
       }            if(pos>=1.e-5){
     } /* end mi==0 */              if(first==1)
   } /* End individuals */                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
               fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   for(i=1; i<=imx; i++){            }else{
     for(mi=1; mi<wav[i];mi++){              if(first==1)
       if (stepm <=0)                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
         dh[mi][i]=1;              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
       else{            }
         if (s[mw[mi+1][i]][i] > nlstate) { /* A death */            if( i <= iagemax){
           if (agedc[i] < 2*AGESUP) {              if(pos>=1.e-5){
             j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
             if(j==0) j=1;  /* Survives at least one month after exam */                /*probs[i][jk][j1]= pp[jk]/pos;*/
             else if(j<0){                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
               nberr++;              }
               printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);              else
               j=1; /* Temporary Dangerous patch */                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
               printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);            }
               fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);          }
               fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);          
             }          for(jk=-1; jk <=nlstate+ndeath; jk++)
             k=k+1;            for(m=-1; m <=nlstate+ndeath; m++)
             if (j >= jmax){              if(freq[jk][m][i] !=0 ) {
               jmax=j;              if(first==1)
               ijmax=i;                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
             }                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
             if (j <= jmin){              }
               jmin=j;          if(i <= iagemax)
               ijmin=i;            fprintf(ficresp,"\n");
             }          if(first==1)
             sum=sum+j;            printf("Others in log...\n");
             /*if (j<0) printf("j=%d num=%d \n",j,i);*/          fprintf(ficlog,"\n");
             /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/        }
           }        /*}*/
         }    }
         else{    dateintmean=dateintsum/k2cpt; 
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));   
 /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */    fclose(ficresp);
     free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
           k=k+1;    free_vector(pp,1,nlstate);
           if (j >= jmax) {    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
             jmax=j;    /* End of Freq */
             ijmax=i;  }
           }  
           else if (j <= jmin){  /************ Prevalence ********************/
             jmin=j;  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
             ijmin=i;  {  
           }    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */       in each health status at the date of interview (if between dateprev1 and dateprev2).
           /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/       We still use firstpass and lastpass as another selection.
           if(j<0){    */
             nberr++;   
             printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);    int i, m, jk, k1, i1, j1, bool, z1,j;
             fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);    double ***freq; /* Frequencies */
           }    double *pp, **prop;
           sum=sum+j;    double pos,posprop; 
         }    double  y2; /* in fractional years */
         jk= j/stepm;    int iagemin, iagemax;
         jl= j -jk*stepm;    int first; /** to stop verbosity which is redirected to log file */
         ju= j -(jk+1)*stepm;  
         if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */    iagemin= (int) agemin;
           if(jl==0){    iagemax= (int) agemax;
             dh[mi][i]=jk;    /*pp=vector(1,nlstate);*/
             bh[mi][i]=0;    prop=matrix(1,nlstate,iagemin,iagemax+3); 
           }else{ /* We want a negative bias in order to only have interpolation ie    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
                   * at the price of an extra matrix product in likelihood */    j1=0;
             dh[mi][i]=jk+1;    
             bh[mi][i]=ju;    /*j=cptcoveff;*/
           }    if (cptcovn<1) {j=1;ncodemax[1]=1;}
         }else{    
           if(jl <= -ju){    first=1;
             dh[mi][i]=jk;    for(j1=1; j1<= (int) pow(2,cptcoveff);j1++){
             bh[mi][i]=jl;       /* bias is positive if real duration      /*for(i1=1; i1<=ncodemax[k1];i1++){
                                  * is higher than the multiple of stepm and negative otherwise.        j1++;*/
                                  */        
           }        for (i=1; i<=nlstate; i++)  
           else{          for(m=iagemin; m <= iagemax+3; m++)
             dh[mi][i]=jk+1;            prop[i][m]=0.0;
             bh[mi][i]=ju;       
           }        for (i=1; i<=imx; i++) { /* Each individual */
           if(dh[mi][i]==0){          bool=1;
             dh[mi][i]=1; /* At least one step */          if  (cptcovn>0) {
             bh[mi][i]=ju; /* At least one step */            for (z1=1; z1<=cptcoveff; z1++) 
             /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
           }                bool=0;
         } /* end if mle */          } 
       }          if (bool==1) { 
     } /* end wave */            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
   }              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
   jmean=sum/k;              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
   printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);                if(agev[m][i]==0) agev[m][i]=iagemax+1;
   fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
  }                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
                 if (s[m][i]>0 && s[m][i]<=nlstate) { 
 /*********** Tricode ****************************/                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
 void tricode(int *Tvar, int **nbcode, int imx)                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
 {                  prop[s[m][i]][iagemax+3] += weight[i]; 
                  } 
   int Ndum[20],ij=1, k, j, i, maxncov=19;              }
   int cptcode=0;            } /* end selection of waves */
   cptcoveff=0;          }
          }
   for (k=0; k<maxncov; k++) Ndum[k]=0;        for(i=iagemin; i <= iagemax+3; i++){  
   for (k=1; k<=7; k++) ncodemax[k]=0;          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
             posprop += prop[jk][i]; 
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {          } 
     for (i=1; i<=imx; i++) { /*reads the data file to get the maximum          
                                modality*/          for(jk=1; jk <=nlstate ; jk++){     
       ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/            if( i <=  iagemax){ 
       Ndum[ij]++; /*store the modality */              if(posprop>=1.e-5){ 
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/                probs[i][jk][j1]= prop[jk][i]/posprop;
       if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable              } else{
                                        Tvar[j]. If V=sex and male is 0 and                if(first==1){
                                        female is 1, then  cptcode=1.*/                  first=0;
     }                  printf("Warning Observed prevalence probs[%d][%d][%d]=%lf because of lack of cases\nSee others on log file...\n",jk,i,j1,probs[i][jk][j1]);
                 }
     for (i=0; i<=cptcode; i++) {              }
       if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */            } 
     }          }/* end jk */ 
         }/* end i */ 
     ij=1;      /*} *//* end i1 */
     for (i=1; i<=ncodemax[j]; i++) {    } /* end j1 */
       for (k=0; k<= maxncov; k++) {    
         if (Ndum[k] != 0) {    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
           nbcode[Tvar[j]][ij]=k;    /*free_vector(pp,1,nlstate);*/
           /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
            }  /* End of prevalence */
           ij++;  
         }  /************* Waves Concatenation ***************/
         if (ij > ncodemax[j]) break;  
       }    void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
     }  {
   }      /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
        Death is a valid wave (if date is known).
  for (k=0; k< maxncov; k++) Ndum[k]=0;       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
        dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
  for (i=1; i<=ncovmodel-2; i++) {       and mw[mi+1][i]. dh depends on stepm.
    /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/       */
    ij=Tvar[i];  
    Ndum[ij]++;    int i, mi, m;
  }    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
        double sum=0., jmean=0.;*/
  ij=1;    int first;
  for (i=1; i<= maxncov; i++) {    int j, k=0,jk, ju, jl;
    if((Ndum[i]!=0) && (i<=ncovcol)){    double sum=0.;
      Tvaraff[ij]=i; /*For printing */    first=0;
      ij++;    jmin=1e+5;
    }    jmax=-1;
  }    jmean=0.;
      for(i=1; i<=imx; i++){
  cptcoveff=ij-1; /*Number of simple covariates*/      mi=0;
 }      m=firstpass;
       while(s[m][i] <= nlstate){
 /*********** Health Expectancies ****************/        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
           mw[++mi][i]=m;
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )        if(m >=lastpass)
           break;
 {        else
   /* Health expectancies, no variances */          m++;
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;      }/* end while */
   double age, agelim, hf;      if (s[m][i] > nlstate){
   double ***p3mat;        mi++;     /* Death is another wave */
   double eip;        /* if(mi==0)  never been interviewed correctly before death */
            /* Only death is a correct wave */
   pstamp(ficreseij);        mw[mi][i]=m;
   fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");      }
   fprintf(ficreseij,"# Age");  
   for(i=1; i<=nlstate;i++){      wav[i]=mi;
     for(j=1; j<=nlstate;j++){      if(mi==0){
       fprintf(ficreseij," e%1d%1d ",i,j);        nbwarn++;
     }        if(first==0){
     fprintf(ficreseij," e%1d. ",i);          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
   }          first=1;
   fprintf(ficreseij,"\n");        }
         if(first==1){
            fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
   if(estepm < stepm){        }
     printf ("Problem %d lower than %d\n",estepm, stepm);      } /* end mi==0 */
   }    } /* End individuals */
   else  hstepm=estepm;    
   /* We compute the life expectancy from trapezoids spaced every estepm months    for(i=1; i<=imx; i++){
    * This is mainly to measure the difference between two models: for example      for(mi=1; mi<wav[i];mi++){
    * if stepm=24 months pijx are given only every 2 years and by summing them        if (stepm <=0)
    * we are calculating an estimate of the Life Expectancy assuming a linear          dh[mi][i]=1;
    * progression in between and thus overestimating or underestimating according        else{
    * to the curvature of the survival function. If, for the same date, we          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
    * estimate the model with stepm=1 month, we can keep estepm to 24 months            if (agedc[i] < 2*AGESUP) {
    * to compare the new estimate of Life expectancy with the same linear              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
    * hypothesis. A more precise result, taking into account a more precise              if(j==0) j=1;  /* Survives at least one month after exam */
    * curvature will be obtained if estepm is as small as stepm. */              else if(j<0){
                 nberr++;
   /* For example we decided to compute the life expectancy with the smallest unit */                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.                j=1; /* Temporary Dangerous patch */
      nhstepm is the number of hstepm from age to agelim                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
      nstepm is the number of stepm from age to agelin.                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
      Look at hpijx to understand the reason of that which relies in memory size                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
      and note for a fixed period like estepm months */              }
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the              k=k+1;
      survival function given by stepm (the optimization length). Unfortunately it              if (j >= jmax){
      means that if the survival funtion is printed only each two years of age and if                jmax=j;
      you sum them up and add 1 year (area under the trapezoids) you won't get the same                ijmax=i;
      results. So we changed our mind and took the option of the best precision.              }
   */              if (j <= jmin){
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */                jmin=j;
                 ijmin=i;
   agelim=AGESUP;              }
   /* If stepm=6 months */              sum=sum+j;
     /* Computed by stepm unit matrices, product of hstepm matrices, stored              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
                }
 /* nhstepm age range expressed in number of stepm */          }
   nstepm=(int) rint((agelim-bage)*YEARM/stepm);          else{
   /* Typically if 20 years nstepm = 20*12/6=40 stepm */            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
   /* if (stepm >= YEARM) hstepm=1;*/  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
   nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */  
   p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            k=k+1;
             if (j >= jmax) {
   for (age=bage; age<=fage; age ++){              jmax=j;
               ijmax=i;
             }
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);              else if (j <= jmin){
                  jmin=j;
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */              ijmin=i;
                }
     printf("%d|",(int)age);fflush(stdout);            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
     fprintf(ficlog,"%d|",(int)age);fflush(ficlog);            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
                if(j<0){
               nberr++;
     /* Computing expectancies */              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     for(i=1; i<=nlstate;i++)              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
       for(j=1; j<=nlstate;j++)            }
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){            sum=sum+j;
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;          }
                    jk= j/stepm;
           /*if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/          jl= j -jk*stepm;
           ju= j -(jk+1)*stepm;
         }          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
                if(jl==0){
     fprintf(ficreseij,"%3.0f",age );              dh[mi][i]=jk;
     for(i=1; i<=nlstate;i++){              bh[mi][i]=0;
       eip=0;            }else{ /* We want a negative bias in order to only have interpolation ie
       for(j=1; j<=nlstate;j++){                    * to avoid the price of an extra matrix product in likelihood */
         eip +=eij[i][j][(int)age];              dh[mi][i]=jk+1;
         fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );              bh[mi][i]=ju;
       }            }
       fprintf(ficreseij,"%9.4f", eip );          }else{
     }            if(jl <= -ju){
     fprintf(ficreseij,"\n");              dh[mi][i]=jk;
                  bh[mi][i]=jl;       /* bias is positive if real duration
   }                                   * is higher than the multiple of stepm and negative otherwise.
   free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                                   */
   printf("\n");            }
   fprintf(ficlog,"\n");            else{
                dh[mi][i]=jk+1;
 }              bh[mi][i]=ju;
             }
 void cvevsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )            if(dh[mi][i]==0){
               dh[mi][i]=1; /* At least one step */
 {              bh[mi][i]=ju; /* At least one step */
   /* Covariances of health expectancies eij and of total life expectancies according              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
    to initial status i, ei. .            }
   */          } /* end if mle */
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;        }
   double age, agelim, hf;      } /* end wave */
   double ***p3matp, ***p3matm, ***varhe;    }
   double **dnewm,**doldm;    jmean=sum/k;
   double *xp, *xm;    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
   double **gp, **gm;    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %d) Max=%d (%d) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
   double ***gradg, ***trgradg;   }
   int theta;  
   /*********** Tricode ****************************/
   double eip, vip;  void tricode(int *Tvar, int **nbcode, int imx, int *Ndum)
   {
   varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);    /**< Uses cptcovn+2*cptcovprod as the number of covariates */
   xp=vector(1,npar);    /*      Tvar[i]=atoi(stre);  find 'n' in Vn and stores in Tvar. If model=V2+V1 Tvar[1]=2 and Tvar[2]=1 
   xm=vector(1,npar);    /* Boring subroutine which should only output nbcode[Tvar[j]][k]
   dnewm=matrix(1,nlstate*nlstate,1,npar);     * Tvar[5] in V2+V1+V3*age+V2*V4 is 2 (V2)
   doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);    /* nbcode[Tvar[j]][1]= 
      */
   pstamp(ficresstdeij);  
   fprintf(ficresstdeij,"# Health expectancies with standard errors\n");    int ij=1, k=0, j=0, i=0, maxncov=NCOVMAX;
   fprintf(ficresstdeij,"# Age");    int modmaxcovj=0; /* Modality max of covariates j */
   for(i=1; i<=nlstate;i++){    int cptcode=0; /* Modality max of covariates j */
     for(j=1; j<=nlstate;j++)    int modmincovj=0; /* Modality min of covariates j */
       fprintf(ficresstdeij," e%1d%1d (SE)",i,j);  
     fprintf(ficresstdeij," e%1d. ",i);  
   }    cptcoveff=0; 
   fprintf(ficresstdeij,"\n");   
     for (k=-1; k < maxncov; k++) Ndum[k]=0;
   pstamp(ficrescveij);    for (k=1; k <= maxncov; k++) ncodemax[k]=0; /* Horrible constant again replaced by NCOVMAX */
   fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");  
   fprintf(ficrescveij,"# Age");    /* Loop on covariates without age and products */
   for(i=1; i<=nlstate;i++)    for (j=1; j<=(cptcovs); j++) { /* model V1 + V2*age+ V3 + V3*V4 : V1 + V3 = 2 only */
     for(j=1; j<=nlstate;j++){      for (i=1; i<=imx; i++) { /* Lopp on individuals: reads the data file to get the maximum value of the 
       cptj= (j-1)*nlstate+i;                                 modality of this covariate Vj*/ 
       for(i2=1; i2<=nlstate;i2++)        ij=(int)(covar[Tvar[j]][i]); /* ij=0 or 1 or -1. Value of the covariate Tvar[j] for individual i
         for(j2=1; j2<=nlstate;j2++){                                      * If product of Vn*Vm, still boolean *:
           cptj2= (j2-1)*nlstate+i2;                                      * If it was coded 1, 2, 3, 4 should be splitted into 3 boolean variables
           if(cptj2 <= cptj)                                      * 1 => 0 0 0, 2 => 0 0 1, 3 => 0 1 1, 4=1 0 0   */
             fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);        /* Finds for covariate j, n=Tvar[j] of Vn . ij is the
         }                                        modality of the nth covariate of individual i. */
     }        if (ij > modmaxcovj)
   fprintf(ficrescveij,"\n");          modmaxcovj=ij; 
          else if (ij < modmincovj) 
   if(estepm < stepm){          modmincovj=ij; 
     printf ("Problem %d lower than %d\n",estepm, stepm);        if ((ij < -1) && (ij > NCOVMAX)){
   }          printf( "Error: minimal is less than -1 or maximal is bigger than %d. Exiting. \n", NCOVMAX );
   else  hstepm=estepm;            exit(1);
   /* We compute the life expectancy from trapezoids spaced every estepm months        }else
    * This is mainly to measure the difference between two models: for example        Ndum[ij]++; /*counts and stores the occurence of this modality 0, 1, -1*/
    * if stepm=24 months pijx are given only every 2 years and by summing them        /*  If coded 1, 2, 3 , counts the number of 1 Ndum[1], number of 2, Ndum[2], etc */
    * we are calculating an estimate of the Life Expectancy assuming a linear        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
    * progression in between and thus overestimating or underestimating according        /* getting the maximum value of the modality of the covariate
    * to the curvature of the survival function. If, for the same date, we           (should be 0 or 1 now) Tvar[j]. If V=sex and male is coded 0 and
    * estimate the model with stepm=1 month, we can keep estepm to 24 months           female is 1, then modmaxcovj=1.*/
    * to compare the new estimate of Life expectancy with the same linear      }
    * hypothesis. A more precise result, taking into account a more precise      printf(" Minimal and maximal values of %d th covariate V%d: min=%d max=%d \n", j, Tvar[j], modmincovj, modmaxcovj);
    * curvature will be obtained if estepm is as small as stepm. */      cptcode=modmaxcovj;
       /* Ndum[0] = frequency of 0 for model-covariate j, Ndum[1] frequency of 1 etc. */
   /* For example we decided to compute the life expectancy with the smallest unit */     /*for (i=0; i<=cptcode; i++) {*/
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.      for (i=modmincovj;  i<=modmaxcovj; i++) { /* i=-1 ? 0 and 1*//* For each value of the modality of model-cov j */
      nhstepm is the number of hstepm from age to agelim        printf("Frequencies of covariates %d V%d %d\n", j, Tvar[j], Ndum[i]);
      nstepm is the number of stepm from age to agelin.        if( Ndum[i] != 0 ){ /* Counts if nobody answered, empty modality */
      Look at hpijx to understand the reason of that which relies in memory size          ncodemax[j]++;  /* ncodemax[j]= Number of non-null modalities of the j th covariate. */
      and note for a fixed period like estepm months */        }
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the        /* In fact  ncodemax[j]=2 (dichotom. variables only) but it could be more for
      survival function given by stepm (the optimization length). Unfortunately it           historical reasons: 3 if coded 1, 2, 3 and 4 and Ndum[2]=0 */
      means that if the survival funtion is printed only each two years of age and if      } /* Ndum[-1] number of undefined modalities */
      you sum them up and add 1 year (area under the trapezoids) you won't get the same  
      results. So we changed our mind and took the option of the best precision.      /* j is a covariate, n=Tvar[j] of Vn; Fills nbcode */
   */      /* For covariate j, modalities could be 1, 2, 3, 4. If Ndum[2]=0 ncodemax[j] is not 4 but 3 */
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */      /* If Ndum[3}= 635; Ndum[4]=0; Ndum[5]=0; Ndum[6]=27; Ndum[7]=125;
          modmincovj=3; modmaxcovj = 7;
   /* If stepm=6 months */         There are only 3 modalities non empty (or 2 if 27 is too few) : ncodemax[j]=3;
   /* nhstepm age range expressed in number of stepm */         which will be coded 0, 1, 2 which in binary on 3-1 digits are 0=00 1=01, 2=10; defining two dummy 
   agelim=AGESUP;         variables V1_1 and V1_2.
   nstepm=(int) rint((agelim-bage)*YEARM/stepm);         nbcode[Tvar[j]][ij]=k;
   /* Typically if 20 years nstepm = 20*12/6=40 stepm */         nbcode[Tvar[j]][1]=0;
   /* if (stepm >= YEARM) hstepm=1;*/         nbcode[Tvar[j]][2]=1;
   nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */         nbcode[Tvar[j]][3]=2;
        */
   p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      ij=1; /* ij is similar to i but can jumps over null modalities */
   p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      for (i=modmincovj; i<=modmaxcovj; i++) { /* i= 1 to 2 for dichotomous, or from 1 to 3 */
   gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);        for (k=0; k<= cptcode; k++) { /* k=-1 ? k=0 to 1 *//* Could be 1 to 4 */
   trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);          /*recode from 0 */
   gp=matrix(0,nhstepm,1,nlstate*nlstate);          if (Ndum[k] != 0) { /* If at least one individual responded to this modality k */
   gm=matrix(0,nhstepm,1,nlstate*nlstate);            nbcode[Tvar[j]][ij]=k;  /* stores the modality in an array nbcode. 
                                        k is a modality. If we have model=V1+V1*sex 
   for (age=bage; age<=fage; age ++){                                       then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
             ij++;
     /* Computed by stepm unit matrices, product of hstepm matrices, stored          }
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */          if (ij > ncodemax[j]) break; 
          }  /* end of loop on */
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */      } /* end of loop on modality */ 
     } /* end of loop on model-covariate j. nbcode[Tvarj][1]=0 and nbcode[Tvarj][2]=1 sets the value of covariate j*/  
     /* Computing  Variances of health expectancies */    
     /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to   for (k=-1; k< maxncov; k++) Ndum[k]=0; 
        decrease memory allocation */    
     for(theta=1; theta <=npar; theta++){    for (i=1; i<=ncovmodel-2; i++) { /* -2, cste and age */ 
       for(i=1; i<=npar; i++){     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/ 
         xp[i] = x[i] + (i==theta ?delti[theta]:0);     ij=Tvar[i]; /* Tvar might be -1 if status was unknown */ 
         xm[i] = x[i] - (i==theta ?delti[theta]:0);     Ndum[ij]++; 
       }   } 
       hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);    
       hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);     ij=1;
     for (i=0; i<=  maxncov-1; i++) { /* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) */
       for(j=1; j<= nlstate; j++){     /*printf("Ndum[%d]=%d\n",i, Ndum[i]);*/
         for(i=1; i<=nlstate; i++){     if((Ndum[i]!=0) && (i<=ncovcol)){
           for(h=0; h<=nhstepm-1; h++){       /*printf("diff Ndum[%d]=%d\n",i, Ndum[i]);*/
             gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;       Tvaraff[ij]=i; /*For printing (unclear) */
             gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;       ij++;
           }     }else
         }         Tvaraff[ij]=0;
       }   }
         ij--;
       for(ij=1; ij<= nlstate*nlstate; ij++)   cptcoveff=ij; /*Number of total covariates*/
         for(h=0; h<=nhstepm-1; h++){  
           gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];  }
         }  
     }/* End theta */  
      /*********** Health Expectancies ****************/
      
     for(h=0; h<=nhstepm-1; h++)  void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
       for(j=1; j<=nlstate*nlstate;j++)  
         for(theta=1; theta <=npar; theta++)  {
           trgradg[h][j][theta]=gradg[h][theta][j];    /* Health expectancies, no variances */
        int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;
     int nhstepma, nstepma; /* Decreasing with age */
      for(ij=1;ij<=nlstate*nlstate;ij++)    double age, agelim, hf;
       for(ji=1;ji<=nlstate*nlstate;ji++)    double ***p3mat;
         varhe[ij][ji][(int)age] =0.;    double eip;
   
      printf("%d|",(int)age);fflush(stdout);    pstamp(ficreseij);
      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
      for(h=0;h<=nhstepm-1;h++){    fprintf(ficreseij,"# Age");
       for(k=0;k<=nhstepm-1;k++){    for(i=1; i<=nlstate;i++){
         matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);      for(j=1; j<=nlstate;j++){
         matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);        fprintf(ficreseij," e%1d%1d ",i,j);
         for(ij=1;ij<=nlstate*nlstate;ij++)      }
           for(ji=1;ji<=nlstate*nlstate;ji++)      fprintf(ficreseij," e%1d. ",i);
             varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;    }
       }    fprintf(ficreseij,"\n");
     }  
     
     /* Computing expectancies */    if(estepm < stepm){
     hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);        printf ("Problem %d lower than %d\n",estepm, stepm);
     for(i=1; i<=nlstate;i++)    }
       for(j=1; j<=nlstate;j++)    else  hstepm=estepm;   
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){    /* We compute the life expectancy from trapezoids spaced every estepm months
           eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;     * This is mainly to measure the difference between two models: for example
               * if stepm=24 months pijx are given only every 2 years and by summing them
           /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/     * we are calculating an estimate of the Life Expectancy assuming a linear 
      * progression in between and thus overestimating or underestimating according
         }     * to the curvature of the survival function. If, for the same date, we 
      * estimate the model with stepm=1 month, we can keep estepm to 24 months
     fprintf(ficresstdeij,"%3.0f",age );     * to compare the new estimate of Life expectancy with the same linear 
     for(i=1; i<=nlstate;i++){     * hypothesis. A more precise result, taking into account a more precise
       eip=0.;     * curvature will be obtained if estepm is as small as stepm. */
       vip=0.;  
       for(j=1; j<=nlstate;j++){    /* For example we decided to compute the life expectancy with the smallest unit */
         eip += eij[i][j][(int)age];    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
         for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */       nhstepm is the number of hstepm from age to agelim 
           vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];       nstepm is the number of stepm from age to agelin. 
         fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );       Look at hpijx to understand the reason of that which relies in memory size
       }       and note for a fixed period like estepm months */
       fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
     }       survival function given by stepm (the optimization length). Unfortunately it
     fprintf(ficresstdeij,"\n");       means that if the survival funtion is printed only each two years of age and if
        you sum them up and add 1 year (area under the trapezoids) you won't get the same 
     fprintf(ficrescveij,"%3.0f",age );       results. So we changed our mind and took the option of the best precision.
     for(i=1; i<=nlstate;i++)    */
       for(j=1; j<=nlstate;j++){    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
         cptj= (j-1)*nlstate+i;  
         for(i2=1; i2<=nlstate;i2++)    agelim=AGESUP;
           for(j2=1; j2<=nlstate;j2++){    /* If stepm=6 months */
             cptj2= (j2-1)*nlstate+i2;      /* Computed by stepm unit matrices, product of hstepm matrices, stored
             if(cptj2 <= cptj)         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
               fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);      
           }  /* nhstepm age range expressed in number of stepm */
       }    nstepm=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
     fprintf(ficrescveij,"\n");    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
        /* if (stepm >= YEARM) hstepm=1;*/
   }    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   free_matrix(gm,0,nhstepm,1,nlstate*nlstate);    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   free_matrix(gp,0,nhstepm,1,nlstate*nlstate);  
   free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);    for (age=bage; age<=fage; age ++){ 
   free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
   free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
   free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      /* if (stepm >= YEARM) hstepm=1;*/
   printf("\n");      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
   fprintf(ficlog,"\n");  
       /* If stepm=6 months */
   free_vector(xm,1,npar);      /* Computed by stepm unit matrices, product of hstepma matrices, stored
   free_vector(xp,1,npar);         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
   free_matrix(dnewm,1,nlstate*nlstate,1,npar);      
   free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);      hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
   free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);      
 }      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       
 /************ Variance ******************/      printf("%d|",(int)age);fflush(stdout);
 void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
 {      
   /* Variance of health expectancies */      /* Computing expectancies */
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/      for(i=1; i<=nlstate;i++)
   /* double **newm;*/        for(j=1; j<=nlstate;j++)
   double **dnewm,**doldm;          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
   double **dnewmp,**doldmp;            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
   int i, j, nhstepm, hstepm, h, nstepm ;            
   int k, cptcode;            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   double *xp;  
   double **gp, **gm;  /* for var eij */          }
   double ***gradg, ***trgradg; /*for var eij */  
   double **gradgp, **trgradgp; /* for var p point j */      fprintf(ficreseij,"%3.0f",age );
   double *gpp, *gmp; /* for var p point j */      for(i=1; i<=nlstate;i++){
   double **varppt; /* for var p point j nlstate to nlstate+ndeath */        eip=0;
   double ***p3mat;        for(j=1; j<=nlstate;j++){
   double age,agelim, hf;          eip +=eij[i][j][(int)age];
   double ***mobaverage;          fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
   int theta;        }
   char digit[4];        fprintf(ficreseij,"%9.4f", eip );
   char digitp[25];      }
       fprintf(ficreseij,"\n");
   char fileresprobmorprev[FILENAMELENGTH];      
     }
   if(popbased==1){    free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     if(mobilav!=0)    printf("\n");
       strcpy(digitp,"-populbased-mobilav-");    fprintf(ficlog,"\n");
     else strcpy(digitp,"-populbased-nomobil-");    
   }  }
   else  
     strcpy(digitp,"-stablbased-");  void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
   
   if (mobilav!=0) {  {
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    /* Covariances of health expectancies eij and of total life expectancies according
     if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){     to initial status i, ei. .
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);    */
       printf(" Error in movingaverage mobilav=%d\n",mobilav);    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
     }    int nhstepma, nstepma; /* Decreasing with age */
   }    double age, agelim, hf;
     double ***p3matp, ***p3matm, ***varhe;
   strcpy(fileresprobmorprev,"prmorprev");    double **dnewm,**doldm;
   sprintf(digit,"%-d",ij);    double *xp, *xm;
   /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/    double **gp, **gm;
   strcat(fileresprobmorprev,digit); /* Tvar to be done */    double ***gradg, ***trgradg;
   strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */    int theta;
   strcat(fileresprobmorprev,fileres);  
   if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {    double eip, vip;
     printf("Problem with resultfile: %s\n", fileresprobmorprev);  
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
   }    xp=vector(1,npar);
   printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);    xm=vector(1,npar);
      dnewm=matrix(1,nlstate*nlstate,1,npar);
   fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
   pstamp(ficresprobmorprev);    
   fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);    pstamp(ficresstdeij);
   fprintf(ficresprobmorprev,"# Age cov=%-d",ij);    fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
   for(j=nlstate+1; j<=(nlstate+ndeath);j++){    fprintf(ficresstdeij,"# Age");
     fprintf(ficresprobmorprev," p.%-d SE",j);    for(i=1; i<=nlstate;i++){
     for(i=1; i<=nlstate;i++)      for(j=1; j<=nlstate;j++)
       fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);        fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
   }        fprintf(ficresstdeij," e%1d. ",i);
   fprintf(ficresprobmorprev,"\n");    }
   fprintf(ficgp,"\n# Routine varevsij");    fprintf(ficresstdeij,"\n");
   /* fprintf(fichtm, "#Local time at start: %s", strstart);*/  
   fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");    pstamp(ficrescveij);
   fprintf(fichtm,"\n<br>%s  <br>\n",digitp);    fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
 /*   } */    fprintf(ficrescveij,"# Age");
   varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);    for(i=1; i<=nlstate;i++)
   pstamp(ficresvij);      for(j=1; j<=nlstate;j++){
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");        cptj= (j-1)*nlstate+i;
   if(popbased==1)        for(i2=1; i2<=nlstate;i2++)
     fprintf(ficresvij,"the age specific prevalence observed in the population i.e cross-sectionally\n in each health state (popbased=1)");          for(j2=1; j2<=nlstate;j2++){
   else            cptj2= (j2-1)*nlstate+i2;
     fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");            if(cptj2 <= cptj)
   fprintf(ficresvij,"# Age");              fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
   for(i=1; i<=nlstate;i++)          }
     for(j=1; j<=nlstate;j++)      }
       fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);    fprintf(ficrescveij,"\n");
   fprintf(ficresvij,"\n");    
     if(estepm < stepm){
   xp=vector(1,npar);      printf ("Problem %d lower than %d\n",estepm, stepm);
   dnewm=matrix(1,nlstate,1,npar);    }
   doldm=matrix(1,nlstate,1,nlstate);    else  hstepm=estepm;   
   dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);    /* We compute the life expectancy from trapezoids spaced every estepm months
   doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);     * This is mainly to measure the difference between two models: for example
      * if stepm=24 months pijx are given only every 2 years and by summing them
   gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);     * we are calculating an estimate of the Life Expectancy assuming a linear 
   gpp=vector(nlstate+1,nlstate+ndeath);     * progression in between and thus overestimating or underestimating according
   gmp=vector(nlstate+1,nlstate+ndeath);     * to the curvature of the survival function. If, for the same date, we 
   trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/     * estimate the model with stepm=1 month, we can keep estepm to 24 months
       * to compare the new estimate of Life expectancy with the same linear 
   if(estepm < stepm){     * hypothesis. A more precise result, taking into account a more precise
     printf ("Problem %d lower than %d\n",estepm, stepm);     * curvature will be obtained if estepm is as small as stepm. */
   }  
   else  hstepm=estepm;      /* For example we decided to compute the life expectancy with the smallest unit */
   /* For example we decided to compute the life expectancy with the smallest unit */    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.       nhstepm is the number of hstepm from age to agelim 
      nhstepm is the number of hstepm from age to agelim       nstepm is the number of stepm from age to agelin. 
      nstepm is the number of stepm from age to agelin.       Look at hpijx to understand the reason of that which relies in memory size
      Look at hpijx to understand the reason of that which relies in memory size       and note for a fixed period like estepm months */
      and note for a fixed period like k years */    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the       survival function given by stepm (the optimization length). Unfortunately it
      survival function given by stepm (the optimization length). Unfortunately it       means that if the survival funtion is printed only each two years of age and if
      means that if the survival funtion is printed every two years of age and if       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
      you sum them up and add 1 year (area under the trapezoids) you won't get the same       results. So we changed our mind and took the option of the best precision.
      results. So we changed our mind and took the option of the best precision.    */
   */    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */  
   agelim = AGESUP;    /* If stepm=6 months */
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    /* nhstepm age range expressed in number of stepm */
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    agelim=AGESUP;
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */    nstepm=(int) rint((agelim-bage)*YEARM/stepm); 
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);    /* if (stepm >= YEARM) hstepm=1;*/
     gp=matrix(0,nhstepm,1,nlstate);    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     gm=matrix(0,nhstepm,1,nlstate);    
     p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     for(theta=1; theta <=npar; theta++){    gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
       for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/    trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    gp=matrix(0,nhstepm,1,nlstate*nlstate);
       }    gm=matrix(0,nhstepm,1,nlstate*nlstate);
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);    
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    for (age=bage; age<=fage; age ++){ 
       nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
       if (popbased==1) {      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
         if(mobilav ==0){      /* if (stepm >= YEARM) hstepm=1;*/
           for(i=1; i<=nlstate;i++)      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
             prlim[i][i]=probs[(int)age][i][ij];  
         }else{ /* mobilav */      /* If stepm=6 months */
           for(i=1; i<=nlstate;i++)      /* Computed by stepm unit matrices, product of hstepma matrices, stored
             prlim[i][i]=mobaverage[(int)age][i][ij];         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
         }      
       }      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
    
       for(j=1; j<= nlstate; j++){      /* Computing  Variances of health expectancies */
         for(h=0; h<=nhstepm; h++){      /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)         decrease memory allocation */
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];      for(theta=1; theta <=npar; theta++){
         }        for(i=1; i<=npar; i++){ 
       }          xp[i] = x[i] + (i==theta ?delti[theta]:0);
       /* This for computing probability of death (h=1 means          xm[i] = x[i] - (i==theta ?delti[theta]:0);
          computed over hstepm matrices product = hstepm*stepm months)        }
          as a weighted average of prlim.        hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
       */        hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
       for(j=nlstate+1;j<=nlstate+ndeath;j++){    
         for(i=1,gpp[j]=0.; i<= nlstate; i++)        for(j=1; j<= nlstate; j++){
           gpp[j] += prlim[i][i]*p3mat[i][j][1];          for(i=1; i<=nlstate; i++){
       }                for(h=0; h<=nhstepm-1; h++){
       /* end probability of death */              gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
               gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
       for(i=1; i<=npar; i++) /* Computes gradient x - delta */            }
         xp[i] = x[i] - (i==theta ?delti[theta]:0);          }
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);          }
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);       
          for(ij=1; ij<= nlstate*nlstate; ij++)
       if (popbased==1) {          for(h=0; h<=nhstepm-1; h++){
         if(mobilav ==0){            gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
           for(i=1; i<=nlstate;i++)          }
             prlim[i][i]=probs[(int)age][i][ij];      }/* End theta */
         }else{ /* mobilav */      
           for(i=1; i<=nlstate;i++)      
             prlim[i][i]=mobaverage[(int)age][i][ij];      for(h=0; h<=nhstepm-1; h++)
         }        for(j=1; j<=nlstate*nlstate;j++)
       }          for(theta=1; theta <=npar; theta++)
             trgradg[h][j][theta]=gradg[h][theta][j];
       for(j=1; j<= nlstate; j++){      
         for(h=0; h<=nhstepm; h++){  
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)       for(ij=1;ij<=nlstate*nlstate;ij++)
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];        for(ji=1;ji<=nlstate*nlstate;ji++)
         }          varhe[ij][ji][(int)age] =0.;
       }  
       /* This for computing probability of death (h=1 means       printf("%d|",(int)age);fflush(stdout);
          computed over hstepm matrices product = hstepm*stepm months)       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
          as a weighted average of prlim.       for(h=0;h<=nhstepm-1;h++){
       */        for(k=0;k<=nhstepm-1;k++){
       for(j=nlstate+1;j<=nlstate+ndeath;j++){          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
         for(i=1,gmp[j]=0.; i<= nlstate; i++)          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
          gmp[j] += prlim[i][i]*p3mat[i][j][1];          for(ij=1;ij<=nlstate*nlstate;ij++)
       }                for(ji=1;ji<=nlstate*nlstate;ji++)
       /* end probability of death */              varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
         }
       for(j=1; j<= nlstate; j++) /* vareij */      }
         for(h=0; h<=nhstepm; h++){  
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];      /* Computing expectancies */
         }      hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
       for(i=1; i<=nlstate;i++)
       for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */        for(j=1; j<=nlstate;j++)
         gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
       }            eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
             
     } /* End theta */            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */          }
   
     for(h=0; h<=nhstepm; h++) /* veij */      fprintf(ficresstdeij,"%3.0f",age );
       for(j=1; j<=nlstate;j++)      for(i=1; i<=nlstate;i++){
         for(theta=1; theta <=npar; theta++)        eip=0.;
           trgradg[h][j][theta]=gradg[h][theta][j];        vip=0.;
         for(j=1; j<=nlstate;j++){
     for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */          eip += eij[i][j][(int)age];
       for(theta=1; theta <=npar; theta++)          for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
         trgradgp[j][theta]=gradgp[theta][j];            vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
            fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
         }
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */        fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
     for(i=1;i<=nlstate;i++)      }
       for(j=1;j<=nlstate;j++)      fprintf(ficresstdeij,"\n");
         vareij[i][j][(int)age] =0.;  
       fprintf(ficrescveij,"%3.0f",age );
     for(h=0;h<=nhstepm;h++){      for(i=1; i<=nlstate;i++)
       for(k=0;k<=nhstepm;k++){        for(j=1; j<=nlstate;j++){
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);          cptj= (j-1)*nlstate+i;
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);          for(i2=1; i2<=nlstate;i2++)
         for(i=1;i<=nlstate;i++)            for(j2=1; j2<=nlstate;j2++){
           for(j=1;j<=nlstate;j++)              cptj2= (j2-1)*nlstate+i2;
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;              if(cptj2 <= cptj)
       }                fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
     }            }
          }
     /* pptj */      fprintf(ficrescveij,"\n");
     matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);     
     matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);    }
     for(j=nlstate+1;j<=nlstate+ndeath;j++)    free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
       for(i=nlstate+1;i<=nlstate+ndeath;i++)    free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
         varppt[j][i]=doldmp[j][i];    free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
     /* end ppptj */    free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
     /*  x centered again */    free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);      free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);    printf("\n");
      fprintf(ficlog,"\n");
     if (popbased==1) {  
       if(mobilav ==0){    free_vector(xm,1,npar);
         for(i=1; i<=nlstate;i++)    free_vector(xp,1,npar);
           prlim[i][i]=probs[(int)age][i][ij];    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
       }else{ /* mobilav */    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
         for(i=1; i<=nlstate;i++)    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
           prlim[i][i]=mobaverage[(int)age][i][ij];  }
       }  
     }  /************ Variance ******************/
                void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
     /* This for computing probability of death (h=1 means  {
        computed over hstepm (estepm) matrices product = hstepm*stepm months)    /* Variance of health expectancies */
        as a weighted average of prlim.    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
     */    /* double **newm;*/
     for(j=nlstate+1;j<=nlstate+ndeath;j++){    double **dnewm,**doldm;
       for(i=1,gmp[j]=0.;i<= nlstate; i++)    double **dnewmp,**doldmp;
         gmp[j] += prlim[i][i]*p3mat[i][j][1];    int i, j, nhstepm, hstepm, h, nstepm ;
     }        int k, cptcode;
     /* end probability of death */    double *xp;
     double **gp, **gm;  /* for var eij */
     fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);    double ***gradg, ***trgradg; /*for var eij */
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){    double **gradgp, **trgradgp; /* for var p point j */
       fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));    double *gpp, *gmp; /* for var p point j */
       for(i=1; i<=nlstate;i++){    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
         fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);    double ***p3mat;
       }    double age,agelim, hf;
     }    double ***mobaverage;
     fprintf(ficresprobmorprev,"\n");    int theta;
     char digit[4];
     fprintf(ficresvij,"%.0f ",age );    char digitp[25];
     for(i=1; i<=nlstate;i++)  
       for(j=1; j<=nlstate;j++){    char fileresprobmorprev[FILENAMELENGTH];
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);  
       }    if(popbased==1){
     fprintf(ficresvij,"\n");      if(mobilav!=0)
     free_matrix(gp,0,nhstepm,1,nlstate);        strcpy(digitp,"-populbased-mobilav-");
     free_matrix(gm,0,nhstepm,1,nlstate);      else strcpy(digitp,"-populbased-nomobil-");
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);    }
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);    else 
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      strcpy(digitp,"-stablbased-");
   } /* End age */  
   free_vector(gpp,nlstate+1,nlstate+ndeath);    if (mobilav!=0) {
   free_vector(gmp,nlstate+1,nlstate+ndeath);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
   free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
   fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");        printf(" Error in movingaverage mobilav=%d\n",mobilav);
   /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */      }
   fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");    }
 /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */  
 /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */    strcpy(fileresprobmorprev,"prmorprev"); 
 /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */    sprintf(digit,"%-d",ij);
   fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));    strcat(fileresprobmorprev,digit); /* Tvar to be done */
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
   fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));    strcat(fileresprobmorprev,fileres);
   fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
   /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);      printf("Problem with resultfile: %s\n", fileresprobmorprev);
 */      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
 /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */    }
   fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
    
   free_vector(xp,1,npar);    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   free_matrix(doldm,1,nlstate,1,nlstate);    pstamp(ficresprobmorprev);
   free_matrix(dnewm,1,nlstate,1,npar);    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
   free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
   free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
   free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);      fprintf(ficresprobmorprev," p.%-d SE",j);
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      for(i=1; i<=nlstate;i++)
   fclose(ficresprobmorprev);        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
   fflush(ficgp);    }  
   fflush(fichtm);    fprintf(ficresprobmorprev,"\n");
 }  /* end varevsij */    fprintf(ficgp,"\n# Routine varevsij");
     /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
 /************ Variance of prevlim ******************/    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
 {  /*   } */
   /* Variance of prevalence limit */    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/    pstamp(ficresvij);
   double **newm;    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
   double **dnewm,**doldm;    if(popbased==1)
   int i, j, nhstepm, hstepm;      fprintf(ficresvij,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d\n",mobilav);
   int k, cptcode;    else
   double *xp;      fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
   double *gp, *gm;    fprintf(ficresvij,"# Age");
   double **gradg, **trgradg;    for(i=1; i<=nlstate;i++)
   double age,agelim;      for(j=1; j<=nlstate;j++)
   int theta;        fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
      fprintf(ficresvij,"\n");
   pstamp(ficresvpl);  
   fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");    xp=vector(1,npar);
   fprintf(ficresvpl,"# Age");    dnewm=matrix(1,nlstate,1,npar);
   for(i=1; i<=nlstate;i++)    doldm=matrix(1,nlstate,1,nlstate);
       fprintf(ficresvpl," %1d-%1d",i,i);    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
   fprintf(ficresvpl,"\n");    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   
   xp=vector(1,npar);    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
   dnewm=matrix(1,nlstate,1,npar);    gpp=vector(nlstate+1,nlstate+ndeath);
   doldm=matrix(1,nlstate,1,nlstate);    gmp=vector(nlstate+1,nlstate+ndeath);
      trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
   hstepm=1*YEARM; /* Every year of age */    
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */    if(estepm < stepm){
   agelim = AGESUP;      printf ("Problem %d lower than %d\n",estepm, stepm);
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    }
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    else  hstepm=estepm;   
     if (stepm >= YEARM) hstepm=1;    /* For example we decided to compute the life expectancy with the smallest unit */
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
     gradg=matrix(1,npar,1,nlstate);       nhstepm is the number of hstepm from age to agelim 
     gp=vector(1,nlstate);       nstepm is the number of stepm from age to agelin. 
     gm=vector(1,nlstate);       Look at function hpijx to understand why (it is linked to memory size questions) */
     /* We decided (b) to get a life expectancy respecting the most precise curvature of the
     for(theta=1; theta <=npar; theta++){       survival function given by stepm (the optimization length). Unfortunately it
       for(i=1; i<=npar; i++){ /* Computes gradient */       means that if the survival funtion is printed every two years of age and if
         xp[i] = x[i] + (i==theta ?delti[theta]:0);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
       }       results. So we changed our mind and took the option of the best precision.
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    */
       for(i=1;i<=nlstate;i++)    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
         gp[i] = prlim[i][i];    agelim = AGESUP;
        for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       for(i=1; i<=npar; i++) /* Computes gradient */      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
         xp[i] = x[i] - (i==theta ?delti[theta]:0);      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       for(i=1;i<=nlstate;i++)      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
         gm[i] = prlim[i][i];      gp=matrix(0,nhstepm,1,nlstate);
       gm=matrix(0,nhstepm,1,nlstate);
       for(i=1;i<=nlstate;i++)  
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];  
     } /* End theta */      for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
     trgradg =matrix(1,nlstate,1,npar);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
     for(j=1; j<=nlstate;j++)        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
       for(theta=1; theta <=npar; theta++)        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         trgradg[j][theta]=gradg[theta][j];  
         if (popbased==1) {
     for(i=1;i<=nlstate;i++)          if(mobilav ==0){
       varpl[i][(int)age] =0.;            for(i=1; i<=nlstate;i++)
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);              prlim[i][i]=probs[(int)age][i][ij];
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);          }else{ /* mobilav */ 
     for(i=1;i<=nlstate;i++)            for(i=1; i<=nlstate;i++)
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */              prlim[i][i]=mobaverage[(int)age][i][ij];
           }
     fprintf(ficresvpl,"%.0f ",age );        }
     for(i=1; i<=nlstate;i++)    
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));        for(j=1; j<= nlstate; j++){
     fprintf(ficresvpl,"\n");          for(h=0; h<=nhstepm; h++){
     free_vector(gp,1,nlstate);            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
     free_vector(gm,1,nlstate);              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
     free_matrix(gradg,1,npar,1,nlstate);          }
     free_matrix(trgradg,1,nlstate,1,npar);        }
   } /* End age */        /* This for computing probability of death (h=1 means
            computed over hstepm matrices product = hstepm*stepm months) 
   free_vector(xp,1,npar);           as a weighted average of prlim.
   free_matrix(doldm,1,nlstate,1,npar);        */
   free_matrix(dnewm,1,nlstate,1,nlstate);        for(j=nlstate+1;j<=nlstate+ndeath;j++){
           for(i=1,gpp[j]=0.; i<= nlstate; i++)
 }            gpp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
 /************ Variance of one-step probabilities  ******************/        /* end probability of death */
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])  
 {        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
   int i, j=0,  i1, k1, l1, t, tj;          xp[i] = x[i] - (i==theta ?delti[theta]:0);
   int k2, l2, j1,  z1;        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   int k=0,l, cptcode;        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   int first=1, first1;   
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;        if (popbased==1) {
   double **dnewm,**doldm;          if(mobilav ==0){
   double *xp;            for(i=1; i<=nlstate;i++)
   double *gp, *gm;              prlim[i][i]=probs[(int)age][i][ij];
   double **gradg, **trgradg;          }else{ /* mobilav */ 
   double **mu;            for(i=1; i<=nlstate;i++)
   double age,agelim, cov[NCOVMAX];              prlim[i][i]=mobaverage[(int)age][i][ij];
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */          }
   int theta;        }
   char fileresprob[FILENAMELENGTH];  
   char fileresprobcov[FILENAMELENGTH];        for(j=1; j<= nlstate; j++){  /* Sum of wi * eij = e.j */
   char fileresprobcor[FILENAMELENGTH];          for(h=0; h<=nhstepm; h++){
             for(i=1, gm[h][j]=0.;i<=nlstate;i++)
   double ***varpij;              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
           }
   strcpy(fileresprob,"prob");        }
   strcat(fileresprob,fileres);        /* This for computing probability of death (h=1 means
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {           computed over hstepm matrices product = hstepm*stepm months) 
     printf("Problem with resultfile: %s\n", fileresprob);           as a weighted average of prlim.
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);        */
   }        for(j=nlstate+1;j<=nlstate+ndeath;j++){
   strcpy(fileresprobcov,"probcov");          for(i=1,gmp[j]=0.; i<= nlstate; i++)
   strcat(fileresprobcov,fileres);           gmp[j] += prlim[i][i]*p3mat[i][j][1];
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {        }    
     printf("Problem with resultfile: %s\n", fileresprobcov);        /* end probability of death */
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);  
   }        for(j=1; j<= nlstate; j++) /* vareij */
   strcpy(fileresprobcor,"probcor");          for(h=0; h<=nhstepm; h++){
   strcat(fileresprobcor,fileres);            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {          }
     printf("Problem with resultfile: %s\n", fileresprobcor);  
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
   }          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);        }
   fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);  
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);      } /* End theta */
   fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);  
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
   fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);  
   pstamp(ficresprob);      for(h=0; h<=nhstepm; h++) /* veij */
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");        for(j=1; j<=nlstate;j++)
   fprintf(ficresprob,"# Age");          for(theta=1; theta <=npar; theta++)
   pstamp(ficresprobcov);            trgradg[h][j][theta]=gradg[h][theta][j];
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");  
   fprintf(ficresprobcov,"# Age");      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
   pstamp(ficresprobcor);        for(theta=1; theta <=npar; theta++)
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");          trgradgp[j][theta]=gradgp[theta][j];
   fprintf(ficresprobcor,"# Age");    
   
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   for(i=1; i<=nlstate;i++)      for(i=1;i<=nlstate;i++)
     for(j=1; j<=(nlstate+ndeath);j++){        for(j=1;j<=nlstate;j++)
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);          vareij[i][j][(int)age] =0.;
       fprintf(ficresprobcov," p%1d-%1d ",i,j);  
       fprintf(ficresprobcor," p%1d-%1d ",i,j);      for(h=0;h<=nhstepm;h++){
     }          for(k=0;k<=nhstepm;k++){
  /* fprintf(ficresprob,"\n");          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
   fprintf(ficresprobcov,"\n");          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
   fprintf(ficresprobcor,"\n");          for(i=1;i<=nlstate;i++)
  */            for(j=1;j<=nlstate;j++)
  xp=vector(1,npar);              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);        }
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));      }
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);    
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);      /* pptj */
   first=1;      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
   fprintf(ficgp,"\n# Routine varprob");      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
   fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");      for(j=nlstate+1;j<=nlstate+ndeath;j++)
   fprintf(fichtm,"\n");        for(i=nlstate+1;i<=nlstate+ndeath;i++)
           varppt[j][i]=doldmp[j][i];
   fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);      /* end ppptj */
   fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\      /*  x centered again */
   file %s<br>\n",optionfilehtmcov);      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
   fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
 and drawn. It helps understanding how is the covariance between two incidences.\   
  They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");      if (popbased==1) {
   fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \        if(mobilav ==0){
 It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \          for(i=1; i<=nlstate;i++)
 would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \            prlim[i][i]=probs[(int)age][i][ij];
 standard deviations wide on each axis. <br>\        }else{ /* mobilav */ 
  Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\          for(i=1; i<=nlstate;i++)
  and made the appropriate rotation to look at the uncorrelated principal directions.<br>\            prlim[i][i]=mobaverage[(int)age][i][ij];
 To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");        }
       }
   cov[1]=1;               
   tj=cptcoveff;      /* This for computing probability of death (h=1 means
   if (cptcovn<1) {tj=1;ncodemax[1]=1;}         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
   j1=0;         as a weighted average of prlim.
   for(t=1; t<=tj;t++){      */
     for(i1=1; i1<=ncodemax[t];i1++){      for(j=nlstate+1;j<=nlstate+ndeath;j++){
       j1++;        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
       if  (cptcovn>0) {          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
         fprintf(ficresprob, "\n#********** Variable ");      }    
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);      /* end probability of death */
         fprintf(ficresprob, "**********\n#\n");  
         fprintf(ficresprobcov, "\n#********** Variable ");      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprobcov, "**********\n#\n");        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
                for(i=1; i<=nlstate;i++){
         fprintf(ficgp, "\n#********** Variable ");          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        }
         fprintf(ficgp, "**********\n#\n");      } 
              fprintf(ficresprobmorprev,"\n");
          
         fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable ");      fprintf(ficresvij,"%.0f ",age );
         for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);      for(i=1; i<=nlstate;i++)
         fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");        for(j=1; j<=nlstate;j++){
                  fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
         fprintf(ficresprobcor, "\n#********** Variable ");            }
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);      fprintf(ficresvij,"\n");
         fprintf(ficresprobcor, "**********\n#");          free_matrix(gp,0,nhstepm,1,nlstate);
       }      free_matrix(gm,0,nhstepm,1,nlstate);
            free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
       for (age=bage; age<=fage; age ++){      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
         cov[2]=age;      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         for (k=1; k<=cptcovn;k++) {    } /* End age */
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];    free_vector(gpp,nlstate+1,nlstate+ndeath);
         }    free_vector(gmp,nlstate+1,nlstate+ndeath);
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
         for (k=1; k<=cptcovprod;k++)    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    fprintf(ficgp,"\nunset parametric;unset label; set ter png small size 320, 240");
            /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));    fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
         gp=vector(1,(nlstate)*(nlstate+ndeath));  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
         gm=vector(1,(nlstate)*(nlstate+ndeath));  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
        fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l lt 1 ",subdirf(fileresprobmorprev));
         for(theta=1; theta <=npar; theta++){    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l lt 2 ",subdirf(fileresprobmorprev));
           for(i=1; i<=npar; i++)    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l lt 2 ",subdirf(fileresprobmorprev));
             xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
              fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
           pmij(pmmij,cov,ncovmodel,xp,nlstate);    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
            */
           k=0;  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
           for(i=1; i<= (nlstate); i++){    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
             for(j=1; j<=(nlstate+ndeath);j++){  
               k=k+1;    free_vector(xp,1,npar);
               gp[k]=pmmij[i][j];    free_matrix(doldm,1,nlstate,1,nlstate);
             }    free_matrix(dnewm,1,nlstate,1,npar);
           }    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
              free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
           for(i=1; i<=npar; i++)    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
             xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
        fclose(ficresprobmorprev);
           pmij(pmmij,cov,ncovmodel,xp,nlstate);    fflush(ficgp);
           k=0;    fflush(fichtm); 
           for(i=1; i<=(nlstate); i++){  }  /* end varevsij */
             for(j=1; j<=(nlstate+ndeath);j++){  
               k=k+1;  /************ Variance of prevlim ******************/
               gm[k]=pmmij[i][j];  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
             }  {
           }    /* Variance of prevalence limit */
          /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)    double **newm;
             gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];      double **dnewm,**doldm;
         }    int i, j, nhstepm, hstepm;
     int k, cptcode;
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)    double *xp;
           for(theta=1; theta <=npar; theta++)    double *gp, *gm;
             trgradg[j][theta]=gradg[theta][j];    double **gradg, **trgradg;
            double age,agelim;
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);    int theta;
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);    
         free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));    pstamp(ficresvpl);
         free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));    fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
         free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    fprintf(ficresvpl,"# Age");
         free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %1d-%1d",i,i);
         pmij(pmmij,cov,ncovmodel,x,nlstate);    fprintf(ficresvpl,"\n");
          
         k=0;    xp=vector(1,npar);
         for(i=1; i<=(nlstate); i++){    dnewm=matrix(1,nlstate,1,npar);
           for(j=1; j<=(nlstate+ndeath);j++){    doldm=matrix(1,nlstate,1,nlstate);
             k=k+1;    
             mu[k][(int) age]=pmmij[i][j];    hstepm=1*YEARM; /* Every year of age */
           }    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
         }    agelim = AGESUP;
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             varpij[i][j][(int)age] = doldm[i][j];      if (stepm >= YEARM) hstepm=1;
       nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
         /*printf("\n%d ",(int)age);      gradg=matrix(1,npar,1,nlstate);
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){      gp=vector(1,nlstate);
           printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));      gm=vector(1,nlstate);
           fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));  
           }*/      for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient */
         fprintf(ficresprob,"\n%d ",(int)age);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
         fprintf(ficresprobcov,"\n%d ",(int)age);        }
         fprintf(ficresprobcor,"\n%d ",(int)age);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)          gp[i] = prlim[i][i];
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));      
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){        for(i=1; i<=npar; i++) /* Computes gradient */
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         }        for(i=1;i<=nlstate;i++)
         i=0;          gm[i] = prlim[i][i];
         for (k=1; k<=(nlstate);k++){  
           for (l=1; l<=(nlstate+ndeath);l++){        for(i=1;i<=nlstate;i++)
             i=i++;          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);      } /* End theta */
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);  
             for (j=1; j<=i;j++){      trgradg =matrix(1,nlstate,1,npar);
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);  
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));      for(j=1; j<=nlstate;j++)
             }        for(theta=1; theta <=npar; theta++)
           }          trgradg[j][theta]=gradg[theta][j];
         }/* end of loop for state */  
       } /* end of loop for age */      for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] =0.;
       /* Confidence intervalle of pij  */      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
       /*      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
         fprintf(ficgp,"\nset noparametric;unset label");      for(i=1;i<=nlstate;i++)
         fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");  
         fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);      fprintf(ficresvpl,"%.0f ",age );
         fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);      for(i=1; i<=nlstate;i++)
         fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
         fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);      fprintf(ficresvpl,"\n");
       */      free_vector(gp,1,nlstate);
       free_vector(gm,1,nlstate);
       /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/      free_matrix(gradg,1,npar,1,nlstate);
       first1=1;      free_matrix(trgradg,1,nlstate,1,npar);
       for (k2=1; k2<=(nlstate);k2++){    } /* End age */
         for (l2=1; l2<=(nlstate+ndeath);l2++){  
           if(l2==k2) continue;    free_vector(xp,1,npar);
           j=(k2-1)*(nlstate+ndeath)+l2;    free_matrix(doldm,1,nlstate,1,npar);
           for (k1=1; k1<=(nlstate);k1++){    free_matrix(dnewm,1,nlstate,1,nlstate);
             for (l1=1; l1<=(nlstate+ndeath);l1++){  
               if(l1==k1) continue;  }
               i=(k1-1)*(nlstate+ndeath)+l1;  
               if(i<=j) continue;  /************ Variance of one-step probabilities  ******************/
               for (age=bage; age<=fage; age ++){  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
                 if ((int)age %5==0){  {
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;    int i, j=0,  i1, k1, l1, t, tj;
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;    int k2, l2, j1,  z1;
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;    int k=0,l, cptcode;
                   mu1=mu[i][(int) age]/stepm*YEARM ;    int first=1, first1, first2;
                   mu2=mu[j][(int) age]/stepm*YEARM;    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
                   c12=cv12/sqrt(v1*v2);    double **dnewm,**doldm;
                   /* Computing eigen value of matrix of covariance */    double *xp;
                   lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;    double *gp, *gm;
                   lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;    double **gradg, **trgradg;
                   /* Eigen vectors */    double **mu;
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));    double age,agelim, cov[NCOVMAX+1];
                   /*v21=sqrt(1.-v11*v11); *//* error */    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
                   v21=(lc1-v1)/cv12*v11;    int theta;
                   v12=-v21;    char fileresprob[FILENAMELENGTH];
                   v22=v11;    char fileresprobcov[FILENAMELENGTH];
                   tnalp=v21/v11;    char fileresprobcor[FILENAMELENGTH];
                   if(first1==1){    double ***varpij;
                     first1=0;  
                     printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);    strcpy(fileresprob,"prob"); 
                   }    strcat(fileresprob,fileres);
                   fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
                   /*printf(fignu*/      printf("Problem with resultfile: %s\n", fileresprob);
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
                   /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */    }
                   if(first==1){    strcpy(fileresprobcov,"probcov"); 
                     first=0;    strcat(fileresprobcov,fileres);
                     fprintf(ficgp,"\nset parametric;unset label");    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);      printf("Problem with resultfile: %s\n", fileresprobcov);
                     fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
                     fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\    }
  :<a href=\"%s%d%1d%1d-%1d%1d.png\">\    strcpy(fileresprobcor,"probcor"); 
 %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\    strcat(fileresprobcor,fileres);
                             subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
                             subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);      printf("Problem with resultfile: %s\n", fileresprobcor);
                     fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
                     fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);    }
                     fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
                   }else{    pstamp(ficresprob);
                     first=0;    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
                     fprintf(fichtmcov," %d (%.3f),",(int) age, c12);    fprintf(ficresprob,"# Age");
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);    pstamp(ficresprobcov);
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\    fprintf(ficresprobcov,"# Age");
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\    pstamp(ficresprobcor);
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
                   }/* if first */    fprintf(ficresprobcor,"# Age");
                 } /* age mod 5 */  
               } /* end loop age */  
               fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);    for(i=1; i<=nlstate;i++)
               first=1;      for(j=1; j<=(nlstate+ndeath);j++){
             } /*l12 */        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
           } /* k12 */        fprintf(ficresprobcov," p%1d-%1d ",i,j);
         } /*l1 */        fprintf(ficresprobcor," p%1d-%1d ",i,j);
       }/* k1 */      }  
     } /* loop covariates */   /* fprintf(ficresprob,"\n");
   }    fprintf(ficresprobcov,"\n");
   free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);    fprintf(ficresprobcor,"\n");
   free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);   */
   free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));    xp=vector(1,npar);
   free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
   free_vector(xp,1,npar);    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
   fclose(ficresprob);    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
   fclose(ficresprobcov);    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
   fclose(ficresprobcor);    first=1;
   fflush(ficgp);    fprintf(ficgp,"\n# Routine varprob");
   fflush(fichtmcov);    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
 }    fprintf(fichtm,"\n");
   
     fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
 /******************* Printing html file ***********/    fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \    file %s<br>\n",optionfilehtmcov);
                   int lastpass, int stepm, int weightopt, char model[],\    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\  and drawn. It helps understanding how is the covariance between two incidences.\
                   int popforecast, int estepm ,\   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
                   double jprev1, double mprev1,double anprev1, \    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
                   double jprev2, double mprev2,double anprev2){  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
   int jj1, k1, i1, cpt;  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
   standard deviations wide on each axis. <br>\
    fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
    <li><a href='#secondorder'>Result files (second order (variance)</a>\n \   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
 </ul>");  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
    fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \  
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",    cov[1]=1;
            jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));    /* tj=cptcoveff; */
    fprintf(fichtm,"\    tj = (int) pow(2,cptcoveff);
  - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
            stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));    j1=0;
    fprintf(fichtm,"\    for(j1=1; j1<=tj;j1++){
  - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",      /*for(i1=1; i1<=ncodemax[t];i1++){ */
            subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));      /*j1++;*/
    fprintf(fichtm,"\        if  (cptcovn>0) {
  - (a) Life expectancies by health status at initial age, (b) health expectancies by health status at initial age:  ei., eij . If one or more covariate are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \          fprintf(ficresprob, "\n#********** Variable "); 
    <a href=\"%s\">%s</a> <br>\n",          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
            estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));          fprintf(ficresprob, "**********\n#\n");
    fprintf(fichtm,"\          fprintf(ficresprobcov, "\n#********** Variable "); 
  - Population projections by age and states: \          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
    <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));          fprintf(ficresprobcov, "**********\n#\n");
           
 fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");          fprintf(ficgp, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
  m=cptcoveff;          fprintf(ficgp, "**********\n#\n");
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}          
           
  jj1=0;          fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
  for(k1=1; k1<=m;k1++){          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
    for(i1=1; i1<=ncodemax[k1];i1++){          fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
      jj1++;          
      if (cptcovn > 0) {          fprintf(ficresprobcor, "\n#********** Variable ");    
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
        for (cpt=1; cpt<=cptcoveff;cpt++)          fprintf(ficresprobcor, "**********\n#");    
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);        }
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");        
      }        gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
      /* Pij */        trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d1.png\">%s%d1.png</a><br> \        gp=vector(1,(nlstate)*(nlstate+ndeath));
 <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);            gm=vector(1,(nlstate)*(nlstate+ndeath));
      /* Quasi-incidences */        for (age=bage; age<=fage; age ++){ 
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\          cov[2]=age;
  before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d2.png\">%s%d2.png</a><br> \          for (k=1; k<=cptcovn;k++) {
 <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];/* j1 1 2 3 4
        /* Period (stable) prevalence in each health state */                                                           * 1  1 1 1 1
        for(cpt=1; cpt<nlstate;cpt++){                                                           * 2  2 1 1 1
          fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d%d.png\">%s%d%d.png</a><br> \                                                           * 3  1 2 1 1
 <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);                                                           */
        }            /* nbcode[1][1]=0 nbcode[1][2]=1;*/
      for(cpt=1; cpt<=nlstate;cpt++) {          }
         fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
 <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);          for (k=1; k<=cptcovprod;k++)
      }            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
    } /* end i1 */          
  }/* End k1 */      
  fprintf(fichtm,"</ul>");          for(theta=1; theta <=npar; theta++){
             for(i=1; i<=npar; i++)
               xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
  fprintf(fichtm,"\            
 \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\            pmij(pmmij,cov,ncovmodel,xp,nlstate);
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);            
             k=0;
  fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",            for(i=1; i<= (nlstate); i++){
          subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));              for(j=1; j<=(nlstate+ndeath);j++){
  fprintf(fichtm,"\                k=k+1;
  - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",                gp[k]=pmmij[i][j];
          subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));              }
             }
  fprintf(fichtm,"\            
  - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",            for(i=1; i<=npar; i++)
          subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
  fprintf(fichtm,"\      
  - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \            pmij(pmmij,cov,ncovmodel,xp,nlstate);
    <a href=\"%s\">%s</a> <br>\n</li>",            k=0;
            estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));            for(i=1; i<=(nlstate); i++){
  fprintf(fichtm,"\              for(j=1; j<=(nlstate+ndeath);j++){
  - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \                k=k+1;
    <a href=\"%s\">%s</a> <br>\n</li>",                gm[k]=pmmij[i][j];
            estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));              }
  fprintf(fichtm,"\            }
  - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), eij are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences (i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",       
          estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
  fprintf(fichtm,"\              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
  - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors: <a href=\"%s\">%s</a> <br>\n",          }
          subdirf2(fileres,"t"),subdirf2(fileres,"t"));  
  fprintf(fichtm,"\          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
  - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\            for(theta=1; theta <=npar; theta++)
          subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));              trgradg[j][theta]=gradg[theta][j];
           
 /*  if(popforecast==1) fprintf(fichtm,"\n */          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
 /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
 /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */  
 /*      <br>",fileres,fileres,fileres,fileres); */          pmij(pmmij,cov,ncovmodel,x,nlstate);
 /*  else  */          
 /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */          k=0;
  fflush(fichtm);          for(i=1; i<=(nlstate); i++){
  fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");            for(j=1; j<=(nlstate+ndeath);j++){
               k=k+1;
  m=cptcoveff;              mu[k][(int) age]=pmmij[i][j];
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}            }
           }
  jj1=0;          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
  for(k1=1; k1<=m;k1++){            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
    for(i1=1; i1<=ncodemax[k1];i1++){              varpij[i][j][(int)age] = doldm[i][j];
      jj1++;  
      if (cptcovn > 0) {          /*printf("\n%d ",(int)age);
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
        for (cpt=1; cpt<=cptcoveff;cpt++)            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");            }*/
      }  
      for(cpt=1; cpt<=nlstate;cpt++) {          fprintf(ficresprob,"\n%d ",(int)age);
        fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \          fprintf(ficresprobcov,"\n%d ",(int)age);
 prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\          fprintf(ficresprobcor,"\n%d ",(int)age);
 <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);    
      }          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
      fprintf(fichtm,"\n<br>- Total life expectancy by age and \            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
 health expectancies in states (1) and (2): %s%d.png<br>\          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
 <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
    } /* end i1 */            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
  }/* End k1 */          }
  fprintf(fichtm,"</ul>");          i=0;
  fflush(fichtm);          for (k=1; k<=(nlstate);k++){
 }            for (l=1; l<=(nlstate+ndeath);l++){ 
               i++;
 /******************* Gnuplot file **************/              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
 void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
               for (j=1; j<=i;j++){
   char dirfileres[132],optfileres[132];                /* printf(" k=%d l=%d i=%d j=%d\n",k,l,i,j);fflush(stdout); */
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
   int ng;                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
 /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */              }
 /*     printf("Problem with file %s",optionfilegnuplot); */            }
 /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */          }/* end of loop for state */
 /*   } */        } /* end of loop for age */
         free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
   /*#ifdef windows */        free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
   fprintf(ficgp,"cd \"%s\" \n",pathc);        free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
     /*#endif */        free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   m=pow(2,cptcoveff);        
         /* Confidence intervalle of pij  */
   strcpy(dirfileres,optionfilefiname);        /*
   strcpy(optfileres,"vpl");          fprintf(ficgp,"\nunset parametric;unset label");
  /* 1eme*/          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
   for (cpt=1; cpt<= nlstate ; cpt ++) {          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
    for (k1=1; k1<= m ; k1 ++) {          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
      fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
      fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
      fprintf(ficgp,"set xlabel \"Age\" \n\          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
 set ylabel \"Probability\" \n\        */
 set ter png small\n\  
 set size 0.65,0.65\n\        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
 plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);        first1=1;first2=2;
         for (k2=1; k2<=(nlstate);k2++){
      for (i=1; i<= nlstate ; i ++) {          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");            if(l2==k2) continue;
        else fprintf(ficgp," \%%*lf (\%%*lf)");            j=(k2-1)*(nlstate+ndeath)+l2;
      }            for (k1=1; k1<=(nlstate);k1++){
      fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
      for (i=1; i<= nlstate ; i ++) {                if(l1==k1) continue;
        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");                i=(k1-1)*(nlstate+ndeath)+l1;
        else fprintf(ficgp," \%%*lf (\%%*lf)");                if(i<=j) continue;
      }                for (age=bage; age<=fage; age ++){ 
      fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);                  if ((int)age %5==0){
      for (i=1; i<= nlstate ; i ++) {                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
        else fprintf(ficgp," \%%*lf (\%%*lf)");                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
      }                      mu1=mu[i][(int) age]/stepm*YEARM ;
      fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));                    mu2=mu[j][(int) age]/stepm*YEARM;
    }                    c12=cv12/sqrt(v1*v2);
   }                    /* Computing eigen value of matrix of covariance */
   /*2 eme*/                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                      lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
   for (k1=1; k1<= m ; k1 ++) {                    if ((lc2 <0) || (lc1 <0) ){
     fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);                      if(first2==1){
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);                        first1=0;
                          printf("Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS. See log file for details...\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);
     for (i=1; i<= nlstate+1 ; i ++) {                      }
       k=2*i;                      fprintf(ficlog,"Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS.\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);fflush(ficlog);
       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);                      /* lc1=fabs(lc1); */ /* If we want to have them positive */
       for (j=1; j<= nlstate+1 ; j ++) {                      /* lc2=fabs(lc2); */
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");                    }
         else fprintf(ficgp," \%%*lf (\%%*lf)");  
       }                      /* Eigen vectors */
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);                    /*v21=sqrt(1.-v11*v11); *//* error */
       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);                    v21=(lc1-v1)/cv12*v11;
       for (j=1; j<= nlstate+1 ; j ++) {                    v12=-v21;
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");                    v22=v11;
         else fprintf(ficgp," \%%*lf (\%%*lf)");                    tnalp=v21/v11;
       }                      if(first1==1){
       fprintf(ficgp,"\" t\"\" w l 0,");                      first1=0;
       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
       for (j=1; j<= nlstate+1 ; j ++) {                    }
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
         else fprintf(ficgp," \%%*lf (\%%*lf)");                    /*printf(fignu*/
       }                      /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
       else fprintf(ficgp,"\" t\"\" w l 0,");                    if(first==1){
     }                      first=0;
   }                      fprintf(ficgp,"\nset parametric;unset label");
                        fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
   /*3eme*/                      fprintf(ficgp,"\nset ter png small size 320, 240");
                        fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
   for (k1=1; k1<= m ; k1 ++) {   :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
     for (cpt=1; cpt<= nlstate ; cpt ++) {  %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
       /*       k=2+nlstate*(2*cpt-2); */                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
       k=2+(nlstate+1)*(cpt-1);                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);                      fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
       fprintf(ficgp,"set ter png small\n\                      fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
 set size 0.65,0.65\n\                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
 plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
         for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
         fprintf(ficgp,"\" t \"e%d1\" w l",cpt);                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
         for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");                    }else{
         fprintf(ficgp,"\" t \"e%d1\" w l",cpt);                      first=0;
                              fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
       */                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
       for (i=1; i< nlstate ; i ++) {                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
         /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                                      mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
       }                    }/* if first */
       fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);                  } /* age mod 5 */
     }                } /* end loop age */
   }                fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                  first=1;
   /* CV preval stable (period) */              } /*l12 */
   for (k1=1; k1<= m ; k1 ++) {            } /* k12 */
     for (cpt=1; cpt<=nlstate ; cpt ++) {          } /*l1 */
       k=3;        }/* k1 */
       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);        /* } /* loop covariates */
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\    }
 set ter png small\nset size 0.65,0.65\n\    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
 unset log y\n\    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
 plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);    free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
          free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
       for (i=1; i< nlstate ; i ++)    free_vector(xp,1,npar);
         fprintf(ficgp,"+$%d",k+i+1);    fclose(ficresprob);
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);    fclose(ficresprobcov);
          fclose(ficresprobcor);
       l=3+(nlstate+ndeath)*cpt;    fflush(ficgp);
       fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);    fflush(fichtmcov);
       for (i=1; i< nlstate ; i ++) {  }
         l=3+(nlstate+ndeath)*cpt;  
         fprintf(ficgp,"+$%d",l+i+1);  
       }  /******************* Printing html file ***********/
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);    void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
     }                    int lastpass, int stepm, int weightopt, char model[],\
   }                      int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                      int popforecast, int estepm ,\
   /* proba elementaires */                    double jprev1, double mprev1,double anprev1, \
   for(i=1,jk=1; i <=nlstate; i++){                    double jprev2, double mprev2,double anprev2){
     for(k=1; k <=(nlstate+ndeath); k++){    int jj1, k1, i1, cpt;
       if (k != i) {  
         for(j=1; j <=ncovmodel; j++){     fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);     <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
           jk++;  </ul>");
           fprintf(ficgp,"\n");     fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
         }   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
       }             jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
     }     fprintf(fichtm,"\
    }   - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
              stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/     fprintf(fichtm,"\
      for(jk=1; jk <=m; jk++) {   - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng);             subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
        if (ng==2)     fprintf(fichtm,"\
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");   - (a) Life expectancies by health status at initial age, ei. (b) health expectancies by health status at initial age, eij . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
        else     <a href=\"%s\">%s</a> <br>\n",
          fprintf(ficgp,"\nset title \"Probability\"\n");             estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);     fprintf(fichtm,"\
        i=1;   - Population projections by age and states: \
        for(k2=1; k2<=nlstate; k2++) {     <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
          k3=i;  
          for(k=1; k<=(nlstate+ndeath); k++) {  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
            if (k != k2){  
              if(ng==2)   m=pow(2,cptcoveff);
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
              else  
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);   jj1=0;
              ij=1;   for(k1=1; k1<=m;k1++){
              for(j=3; j <=ncovmodel; j++) {     for(i1=1; i1<=ncodemax[k1];i1++){
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {       jj1++;
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);       if (cptcovn > 0) {
                  ij++;         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
                }         for (cpt=1; cpt<=cptcoveff;cpt++) 
                else           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
              }       }
              fprintf(ficgp,")/(1");       /* Pij */
                     fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d_1.png\">%s%d_1.png</a><br> \
              for(k1=1; k1 <=nlstate; k1++){    <img src=\"%s%d_1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);       /* Quasi-incidences */
                ij=1;       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
                for(j=3; j <=ncovmodel; j++){   before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d_2.png\">%s%d_2.png</a><br> \
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {  <img src=\"%s%d_2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);         /* Period (stable) prevalence in each health state */
                    ij++;         for(cpt=1; cpt<nlstate;cpt++){
                  }           fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d_%d.png\">%s%d_%d.png</a><br> \
                  else  <img src=\"%s%d_%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);         }
                }       for(cpt=1; cpt<=nlstate;cpt++) {
                fprintf(ficgp,")");          fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
              }  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);       }
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");     } /* end i1 */
              i=i+ncovmodel;   }/* End k1 */
            }   fprintf(fichtm,"</ul>");
          } /* end k */  
        } /* end k2 */  
      } /* end jk */   fprintf(fichtm,"\
    } /* end ng */  \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
    fflush(ficgp);   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
 }  /* end gnuplot */  
    fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
 /*************** Moving average **************/   fprintf(fichtm,"\
 int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){   - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   int i, cpt, cptcod;  
   int modcovmax =1;   fprintf(fichtm,"\
   int mobilavrange, mob;   - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
   double age;           subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
    fprintf(fichtm,"\
   modcovmax=2*cptcoveff;/* Max number of modalities. We suppose   - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
                            a covariate has 2 modalities */     <a href=\"%s\">%s</a> <br>\n</li>",
   if (cptcovn<1) modcovmax=1; /* At least 1 pass */             estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
    fprintf(fichtm,"\
   if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){   - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
     if(mobilav==1) mobilavrange=5; /* default */     <a href=\"%s\">%s</a> <br>\n</li>",
     else mobilavrange=mobilav;             estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
     for (age=bage; age<=fage; age++)   fprintf(fichtm,"\
       for (i=1; i<=nlstate;i++)   - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
         for (cptcod=1;cptcod<=modcovmax;cptcod++)           estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
           mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];   fprintf(fichtm,"\
     /* We keep the original values on the extreme ages bage, fage and for   - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n",
        fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2           estepm, subdirf2(fileres,"t"),subdirf2(fileres,"t"));
        we use a 5 terms etc. until the borders are no more concerned.   fprintf(fichtm,"\
     */   - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
     for (mob=3;mob <=mobilavrange;mob=mob+2){           subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
       for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){  
         for (i=1; i<=nlstate;i++){  /*  if(popforecast==1) fprintf(fichtm,"\n */
           for (cptcod=1;cptcod<=modcovmax;cptcod++){  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
             mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
               for (cpt=1;cpt<=(mob-1)/2;cpt++){  /*      <br>",fileres,fileres,fileres,fileres); */
                 mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];  /*  else  */
                 mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
               }   fflush(fichtm);
             mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;   fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
           }  
         }   m=pow(2,cptcoveff);
       }/* end age */   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
     }/* end mob */  
   }else return -1;   jj1=0;
   return 0;   for(k1=1; k1<=m;k1++){
 }/* End movingaverage */     for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
 /************** Forecasting ******************/         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
 prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){         for (cpt=1; cpt<=cptcoveff;cpt++) 
   /* proj1, year, month, day of starting projection           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
      agemin, agemax range of age         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
      dateprev1 dateprev2 range of dates during which prevalence is computed       }
      anproj2 year of en of projection (same day and month as proj1).       for(cpt=1; cpt<=nlstate;cpt++) {
   */         fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;  prevalence (with 95%% confidence interval) in state (%d): %s%d_%d.png <br>\
   int *popage;  <img src=\"%s%d_%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
   double agec; /* generic age */       }
   double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;       fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   double *popeffectif,*popcount;  health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \
   double ***p3mat;  true period expectancies (those weighted with period prevalences are also\
   double ***mobaverage;   drawn in addition to the population based expectancies computed using\
   char fileresf[FILENAMELENGTH];   observed and cahotic prevalences: %s%d.png<br>\
   <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
   agelim=AGESUP;     } /* end i1 */
   prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);   }/* End k1 */
     fprintf(fichtm,"</ul>");
   strcpy(fileresf,"f");   fflush(fichtm);
   strcat(fileresf,fileres);  }
   if((ficresf=fopen(fileresf,"w"))==NULL) {  
     printf("Problem with forecast resultfile: %s\n", fileresf);  /******************* Gnuplot file **************/
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);  void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   }  
   printf("Computing forecasting: result on file '%s' \n", fileresf);    char dirfileres[132],optfileres[132];
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);    int m0,cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,ij=0,l=0;
     int ng=0;
   if (cptcoveff==0) ncodemax[cptcoveff]=1;  /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   if (mobilav!=0) {  /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  /*   } */
     if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){  
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);    /*#ifdef windows */
       printf(" Error in movingaverage mobilav=%d\n",mobilav);    fprintf(ficgp,"cd \"%s\" \n",pathc);
     }      /*#endif */
   }    m=pow(2,cptcoveff);
   
   stepsize=(int) (stepm+YEARM-1)/YEARM;    strcpy(dirfileres,optionfilefiname);
   if (stepm<=12) stepsize=1;    strcpy(optfileres,"vpl");
   if(estepm < stepm){   /* 1eme*/
     printf ("Problem %d lower than %d\n",estepm, stepm);    for (cpt=1; cpt<= nlstate ; cpt ++) {
   }      for (k1=1; k1<= m ; k1 ++) { /* plot [100000000000000000000:-100000000000000000000] "mysbiaspar/vplrmysbiaspar.txt to check */
   else  hstepm=estepm;         fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        fprintf(ficgp,"\n#set out \"v%s%d_%d.png\" \n",optionfilefiname,cpt,k1);
   hstepm=hstepm/stepm;       fprintf(ficgp,"set xlabel \"Age\" \n\
   yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and  set ylabel \"Probability\" \n\
                                fractional in yp1 */  set ter png small size 320, 240\n\
   anprojmean=yp;  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   yp2=modf((yp1*12),&yp);  
   mprojmean=yp;       for (i=1; i<= nlstate ; i ++) {
   yp1=modf((yp2*30.5),&yp);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
   jprojmean=yp;         else        fprintf(ficgp," \%%*lf (\%%*lf)");
   if(jprojmean==0) jprojmean=1;       }
   if(mprojmean==0) jprojmean=1;       fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l lt 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
   i1=cptcoveff;         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
   if (cptcovn < 1){i1=1;}         else fprintf(ficgp," \%%*lf (\%%*lf)");
         } 
   fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2);       fprintf(ficgp,"\" t\"95\%% CI\" w l lt 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
         for (i=1; i<= nlstate ; i ++) {
   fprintf(ficresf,"#****** Routine prevforecast **\n");         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
 /*            if (h==(int)(YEARM*yearp)){ */       }  
   for(cptcov=1, k=0;cptcov<=i1;cptcov++){       fprintf(ficgp,"\" t\"\" w l lt 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l lt 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){     }
       k=k+1;    }
       fprintf(ficresf,"\n#******");    /*2 eme*/
       for(j=1;j<=cptcoveff;j++) {    
         fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    for (k1=1; k1<= m ; k1 ++) { 
       }      fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficresf,"******\n");      fprintf(ficgp,"set ylabel \"Years\" \nset ter png small size 320, 240\nplot [%.f:%.f] ",ageminpar,fage);
       fprintf(ficresf,"# Covariate valuofcovar yearproj age");      
       for(j=1; j<=nlstate+ndeath;j++){      for (i=1; i<= nlstate+1 ; i ++) {
         for(i=1; i<=nlstate;i++)                      k=2*i;
           fprintf(ficresf," p%d%d",i,j);        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         fprintf(ficresf," p.%d",j);        for (j=1; j<= nlstate+1 ; j ++) {
       }          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
       for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) {          else fprintf(ficgp," \%%*lf (\%%*lf)");
         fprintf(ficresf,"\n");        }   
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);          if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         for (agec=fage; agec>=(ageminpar-1); agec--){        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
           nhstepm=(int) rint((agelim-agec)*YEARM/stepm);        for (j=1; j<= nlstate+1 ; j ++) {
           nhstepm = nhstepm/hstepm;          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          else fprintf(ficgp," \%%*lf (\%%*lf)");
           oldm=oldms;savm=savms;        }   
           hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);          fprintf(ficgp,"\" t\"\" w l lt 0,");
                fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
           for (h=0; h<=nhstepm; h++){        for (j=1; j<= nlstate+1 ; j ++) {
             if (h*hstepm/YEARM*stepm ==yearp) {          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
               fprintf(ficresf,"\n");          else fprintf(ficgp," \%%*lf (\%%*lf)");
               for(j=1;j<=cptcoveff;j++)        }   
                 fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l lt 0");
               fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);        else fprintf(ficgp,"\" t\"\" w l lt 0,");
             }      }
             for(j=1; j<=nlstate+ndeath;j++) {    }
               ppij=0.;    
               for(i=1; i<=nlstate;i++) {    /*3eme*/
                 if (mobilav==1)    
                   ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];    for (k1=1; k1<= m ; k1 ++) { 
                 else {      for (cpt=1; cpt<= nlstate ; cpt ++) {
                   ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];        /*       k=2+nlstate*(2*cpt-2); */
                 }        k=2+(nlstate+1)*(cpt-1);
                 if (h*hstepm/YEARM*stepm== yearp) {        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
                   fprintf(ficresf," %.3f", p3mat[i][j][h]);        fprintf(ficgp,"set ter png small size 320, 240\n\
                 }  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
               } /* end i */        /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
               if (h*hstepm/YEARM*stepm==yearp) {          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
                 fprintf(ficresf," %.3f", ppij);          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
               }          fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
             }/* end j */          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           } /* end h */          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          
         } /* end agec */        */
       } /* end yearp */        for (i=1; i< nlstate ; i ++) {
     } /* end cptcod */          fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
   } /* end  cptcov */          /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
                  
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        } 
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
   fclose(ficresf);      }
 }    }
     
 /************** Forecasting *****not tested NB*************/    /* CV preval stable (period) */
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){    for (k1=1; k1<= m ; k1 ++) { 
        for (cpt=1; cpt<=nlstate ; cpt ++) {
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;        k=3;
   int *popage;        fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
   double calagedatem, agelim, kk1, kk2;        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   double *popeffectif,*popcount;  set ter png small size 320, 240\n\
   double ***p3mat,***tabpop,***tabpopprev;  unset log y\n\
   double ***mobaverage;  plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
   char filerespop[FILENAMELENGTH];        
         for (i=1; i< nlstate ; i ++)
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          fprintf(ficgp,"+$%d",k+i+1);
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
   agelim=AGESUP;        
   calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;        l=3+(nlstate+ndeath)*cpt;
          fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
   prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);        for (i=1; i< nlstate ; i ++) {
            l=3+(nlstate+ndeath)*cpt;
            fprintf(ficgp,"+$%d",l+i+1);
   strcpy(filerespop,"pop");        }
   strcat(filerespop,fileres);        fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
   if((ficrespop=fopen(filerespop,"w"))==NULL) {      } 
     printf("Problem with forecast resultfile: %s\n", filerespop);    }  
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);    
   }    /* proba elementaires */
   printf("Computing forecasting: result on file '%s' \n", filerespop);    for(i=1,jk=1; i <=nlstate; i++){
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);      for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
   if (cptcoveff==0) ncodemax[cptcoveff]=1;          for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
   if (mobilav!=0) {            jk++; 
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);            fprintf(ficgp,"\n");
     if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){          }
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);        }
       printf(" Error in movingaverage mobilav=%d\n",mobilav);      }
     }     }
   }    /*goto avoid;*/
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
   stepsize=(int) (stepm+YEARM-1)/YEARM;       for(jk=1; jk <=m; jk++) {
   if (stepm<=12) stepsize=1;         fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
           if (ng==2)
   agelim=AGESUP;           fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
           else
   hstepm=1;           fprintf(ficgp,"\nset title \"Probability\"\n");
   hstepm=hstepm/stepm;         fprintf(ficgp,"\nset ter png small size 320, 240\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
           i=1;
   if (popforecast==1) {         for(k2=1; k2<=nlstate; k2++) {
     if((ficpop=fopen(popfile,"r"))==NULL) {           k3=i;
       printf("Problem with population file : %s\n",popfile);exit(0);           for(k=1; k<=(nlstate+ndeath); k++) {
       fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);             if (k != k2){
     }               if(ng==2)
     popage=ivector(0,AGESUP);                 fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
     popeffectif=vector(0,AGESUP);               else
     popcount=vector(0,AGESUP);                 fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                   ij=1;/* To be checked else nbcode[0][0] wrong */
     i=1;                 for(j=3; j <=ncovmodel; j++) {
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;                 /* if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) { /\* Bug valgrind *\/ */
                     /*        /\*fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);*\/ */
     imx=i;                 /*        ij++; */
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];                 /* } */
   }                 /* else */
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
   for(cptcov=1,k=0;cptcov<=i2;cptcov++){               }
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){               fprintf(ficgp,")/(1");
       k=k+1;               
       fprintf(ficrespop,"\n#******");               for(k1=1; k1 <=nlstate; k1++){   
       for(j=1;j<=cptcoveff;j++) {                 fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                 ij=1;
       }                 for(j=3; j <=ncovmodel; j++){
       fprintf(ficrespop,"******\n");                   /* if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) { */
       fprintf(ficrespop,"# Age");                   /*   fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]); */
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);                   /*   ij++; */
       if (popforecast==1)  fprintf(ficrespop," [Population]");                   /* } */
                         /* else */
       for (cpt=0; cpt<=0;cpt++) {                     fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);                   }
                         fprintf(ficgp,")");
         for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){               }
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);               fprintf(ficgp,") t \"p%d%d\" ", k2,k);
           nhstepm = nhstepm/hstepm;               if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                         i=i+ncovmodel;
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);             }
           oldm=oldms;savm=savms;           } /* end k */
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);           } /* end k2 */
               } /* end jk */
           for (h=0; h<=nhstepm; h++){     } /* end ng */
             if (h==(int) (calagedatem+YEARM*cpt)) {   avoid:
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);     fflush(ficgp); 
             }  }  /* end gnuplot */
             for(j=1; j<=nlstate+ndeath;j++) {  
               kk1=0.;kk2=0;  
               for(i=1; i<=nlstate;i++) {                /*************** Moving average **************/
                 if (mobilav==1)  int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];  
                 else {    int i, cpt, cptcod;
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];    int modcovmax =1;
                 }    int mobilavrange, mob;
               }    double age;
               if (h==(int)(calagedatem+12*cpt)){  
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;    modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                   /*fprintf(ficrespop," %.3f", kk1);                             a covariate has 2 modalities */
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/    if (cptcovn<1) modcovmax=1; /* At least 1 pass */
               }  
             }    if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
             for(i=1; i<=nlstate;i++){      if(mobilav==1) mobilavrange=5; /* default */
               kk1=0.;      else mobilavrange=mobilav;
                 for(j=1; j<=nlstate;j++){      for (age=bage; age<=fage; age++)
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];        for (i=1; i<=nlstate;i++)
                 }          for (cptcod=1;cptcod<=modcovmax;cptcod++)
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];            mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
             }      /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
             if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++)         we use a 5 terms etc. until the borders are no more concerned. 
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);      */ 
           }      for (mob=3;mob <=mobilavrange;mob=mob+2){
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
         }          for (i=1; i<=nlstate;i++){
       }            for (cptcod=1;cptcod<=modcovmax;cptcod++){
                mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
   /******/                for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {                  mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);                  }
         for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){              mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);            }
           nhstepm = nhstepm/hstepm;          }
                  }/* end age */
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      }/* end mob */
           oldm=oldms;savm=savms;    }else return -1;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      return 0;
           for (h=0; h<=nhstepm; h++){  }/* End movingaverage */
             if (h==(int) (calagedatem+YEARM*cpt)) {  
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);  
             }  /************** Forecasting ******************/
             for(j=1; j<=nlstate+ndeath;j++) {  prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
               kk1=0.;kk2=0;    /* proj1, year, month, day of starting projection 
               for(i=1; i<=nlstate;i++) {                     agemin, agemax range of age
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];           dateprev1 dateprev2 range of dates during which prevalence is computed
               }       anproj2 year of en of projection (same day and month as proj1).
               if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);            */
             }    int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
           }    int *popage;
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    double agec; /* generic age */
         }    double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
       }    double *popeffectif,*popcount;
    }    double ***p3mat;
   }    double ***mobaverage;
      char fileresf[FILENAMELENGTH];
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
     agelim=AGESUP;
   if (popforecast==1) {    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     free_ivector(popage,0,AGESUP);   
     free_vector(popeffectif,0,AGESUP);    strcpy(fileresf,"f"); 
     free_vector(popcount,0,AGESUP);    strcat(fileresf,fileres);
   }    if((ficresf=fopen(fileresf,"w"))==NULL) {
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      printf("Problem with forecast resultfile: %s\n", fileresf);
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
   fclose(ficrespop);    }
 } /* End of popforecast */    printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
 int fileappend(FILE *fichier, char *optionfich)  
 {    if (cptcoveff==0) ncodemax[cptcoveff]=1;
   if((fichier=fopen(optionfich,"a"))==NULL) {  
     printf("Problem with file: %s\n", optionfich);    if (mobilav!=0) {
     fprintf(ficlog,"Problem with file: %s\n", optionfich);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     return (0);      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
   }        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
   fflush(fichier);        printf(" Error in movingaverage mobilav=%d\n",mobilav);
   return (1);      }
 }    }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
 /**************** function prwizard **********************/    if (stepm<=12) stepsize=1;
 void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)    if(estepm < stepm){
 {      printf ("Problem %d lower than %d\n",estepm, stepm);
     }
   /* Wizard to print covariance matrix template */    else  hstepm=estepm;   
   
   char ca[32], cb[32], cc[32];    hstepm=hstepm/stepm; 
   int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;    yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
   int numlinepar;                                 fractional in yp1 */
     anprojmean=yp;
   printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    yp2=modf((yp1*12),&yp);
   fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    mprojmean=yp;
   for(i=1; i <=nlstate; i++){    yp1=modf((yp2*30.5),&yp);
     jj=0;    jprojmean=yp;
     for(j=1; j <=nlstate+ndeath; j++){    if(jprojmean==0) jprojmean=1;
       if(j==i) continue;    if(mprojmean==0) jprojmean=1;
       jj++;  
       /*ca[0]= k+'a'-1;ca[1]='\0';*/    i1=cptcoveff;
       printf("%1d%1d",i,j);    if (cptcovn < 1){i1=1;}
       fprintf(ficparo,"%1d%1d",i,j);    
       for(k=1; k<=ncovmodel;k++){    fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
         /*        printf(" %lf",param[i][j][k]); */    
         /*        fprintf(ficparo," %lf",param[i][j][k]); */    fprintf(ficresf,"#****** Routine prevforecast **\n");
         printf(" 0.");  
         fprintf(ficparo," 0.");  /*            if (h==(int)(YEARM*yearp)){ */
       }    for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       printf("\n");      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
       fprintf(ficparo,"\n");        k=k+1;
     }        fprintf(ficresf,"\n#******");
   }        for(j=1;j<=cptcoveff;j++) {
   printf("# Scales (for hessian or gradient estimation)\n");          fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
   fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");        }
   npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/        fprintf(ficresf,"******\n");
   for(i=1; i <=nlstate; i++){        fprintf(ficresf,"# Covariate valuofcovar yearproj age");
     jj=0;        for(j=1; j<=nlstate+ndeath;j++){ 
     for(j=1; j <=nlstate+ndeath; j++){          for(i=1; i<=nlstate;i++)              
       if(j==i) continue;            fprintf(ficresf," p%d%d",i,j);
       jj++;          fprintf(ficresf," p.%d",j);
       fprintf(ficparo,"%1d%1d",i,j);        }
       printf("%1d%1d",i,j);        for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
       fflush(stdout);          fprintf(ficresf,"\n");
       for(k=1; k<=ncovmodel;k++){          fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
         /*      printf(" %le",delti3[i][j][k]); */  
         /*      fprintf(ficparo," %le",delti3[i][j][k]); */          for (agec=fage; agec>=(ageminpar-1); agec--){ 
         printf(" 0.");            nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
         fprintf(ficparo," 0.");            nhstepm = nhstepm/hstepm; 
       }            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       numlinepar++;            oldm=oldms;savm=savms;
       printf("\n");            hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
       fprintf(ficparo,"\n");          
     }            for (h=0; h<=nhstepm; h++){
   }              if (h*hstepm/YEARM*stepm ==yearp) {
   printf("# Covariance matrix\n");                fprintf(ficresf,"\n");
 /* # 121 Var(a12)\n\ */                for(j=1;j<=cptcoveff;j++) 
 /* # 122 Cov(b12,a12) Var(b12)\n\ */                  fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */                fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
 /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */              } 
 /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */              for(j=1; j<=nlstate+ndeath;j++) {
 /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */                ppij=0.;
 /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */                for(i=1; i<=nlstate;i++) {
 /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */                  if (mobilav==1) 
   fflush(stdout);                    ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
   fprintf(ficparo,"# Covariance matrix\n");                  else {
   /* # 121 Var(a12)\n\ */                    ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
   /* # 122 Cov(b12,a12) Var(b12)\n\ */                  }
   /* #   ...\n\ */                  if (h*hstepm/YEARM*stepm== yearp) {
   /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */                    fprintf(ficresf," %.3f", p3mat[i][j][h]);
                    }
   for(itimes=1;itimes<=2;itimes++){                } /* end i */
     jj=0;                if (h*hstepm/YEARM*stepm==yearp) {
     for(i=1; i <=nlstate; i++){                  fprintf(ficresf," %.3f", ppij);
       for(j=1; j <=nlstate+ndeath; j++){                }
         if(j==i) continue;              }/* end j */
         for(k=1; k<=ncovmodel;k++){            } /* end h */
           jj++;            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           ca[0]= k+'a'-1;ca[1]='\0';          } /* end agec */
           if(itimes==1){        } /* end yearp */
             printf("#%1d%1d%d",i,j,k);      } /* end cptcod */
             fprintf(ficparo,"#%1d%1d%d",i,j,k);    } /* end  cptcov */
           }else{         
             printf("%1d%1d%d",i,j,k);    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
             fprintf(ficparo,"%1d%1d%d",i,j,k);  
             /*  printf(" %.5le",matcov[i][j]); */    fclose(ficresf);
           }  }
           ll=0;  
           for(li=1;li <=nlstate; li++){  /************** Forecasting *****not tested NB*************/
             for(lj=1;lj <=nlstate+ndeath; lj++){  populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
               if(lj==li) continue;    
               for(lk=1;lk<=ncovmodel;lk++){    int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
                 ll++;    int *popage;
                 if(ll<=jj){    double calagedatem, agelim, kk1, kk2;
                   cb[0]= lk +'a'-1;cb[1]='\0';    double *popeffectif,*popcount;
                   if(ll<jj){    double ***p3mat,***tabpop,***tabpopprev;
                     if(itimes==1){    double ***mobaverage;
                       printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);    char filerespop[FILENAMELENGTH];
                       fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);  
                     }else{    tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
                       printf(" 0.");    tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
                       fprintf(ficparo," 0.");    agelim=AGESUP;
                     }    calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
                   }else{    
                     if(itimes==1){    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
                       printf(" Var(%s%1d%1d)",ca,i,j);    
                       fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);    
                     }else{    strcpy(filerespop,"pop"); 
                       printf(" 0.");    strcat(filerespop,fileres);
                       fprintf(ficparo," 0.");    if((ficrespop=fopen(filerespop,"w"))==NULL) {
                     }      printf("Problem with forecast resultfile: %s\n", filerespop);
                   }      fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
                 }    }
               } /* end lk */    printf("Computing forecasting: result on file '%s' \n", filerespop);
             } /* end lj */    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
           } /* end li */  
           printf("\n");    if (cptcoveff==0) ncodemax[cptcoveff]=1;
           fprintf(ficparo,"\n");  
           numlinepar++;    if (mobilav!=0) {
         } /* end k*/      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       } /*end j */      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
     } /* end i */        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
   } /* end itimes */        printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
 } /* end of prwizard */    }
 /******************* Gompertz Likelihood ******************************/  
 double gompertz(double x[])    stepsize=(int) (stepm+YEARM-1)/YEARM;
 {    if (stepm<=12) stepsize=1;
   double A,B,L=0.0,sump=0.,num=0.;    
   int i,n=0; /* n is the size of the sample */    agelim=AGESUP;
     
   for (i=0;i<=imx-1 ; i++) {    hstepm=1;
     sump=sump+weight[i];    hstepm=hstepm/stepm; 
     /*    sump=sump+1;*/    
     num=num+1;    if (popforecast==1) {
   }      if((ficpop=fopen(popfile,"r"))==NULL) {
          printf("Problem with population file : %s\n",popfile);exit(0);
          fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
   /* for (i=0; i<=imx; i++)      } 
      if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/      popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
   for (i=1;i<=imx ; i++)      popcount=vector(0,AGESUP);
     {      
       if (cens[i] == 1 && wav[i]>1)      i=1;   
         A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));      while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
           
       if (cens[i] == 0 && wav[i]>1)      imx=i;
         A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))      for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
              +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);      }
        
       /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */    for(cptcov=1,k=0;cptcov<=i2;cptcov++){
       if (wav[i] > 1 ) { /* ??? */     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         L=L+A*weight[i];        k=k+1;
         /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/        fprintf(ficrespop,"\n#******");
       }        for(j=1;j<=cptcoveff;j++) {
     }          fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
  /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/        fprintf(ficrespop,"******\n");
          fprintf(ficrespop,"# Age");
   return -2*L*num/sump;        for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
 }        if (popforecast==1)  fprintf(ficrespop," [Population]");
         
 /******************* Printing html file ***********/        for (cpt=0; cpt<=0;cpt++) { 
 void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
                   int lastpass, int stepm, int weightopt, char model[],\          
                   int imx,  double p[],double **matcov,double agemortsup){          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
   int i,k;            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
   fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");            
   fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   for (i=1;i<=2;i++)            oldm=oldms;savm=savms;
     fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
   fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");          
   fprintf(fichtm,"</ul>");            for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
 fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");                fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
  fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");              for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
  for (k=agegomp;k<(agemortsup-2);k++)                for(i=1; i<=nlstate;i++) {              
    fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);                  if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                    else {
   fflush(fichtm);                    kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
 }                  }
                 }
 /******************* Gnuplot file **************/                if (h==(int)(calagedatem+12*cpt)){
 void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){                  tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
   char dirfileres[132],optfileres[132];                      if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;                }
   int ng;              }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
   /*#ifdef windows */                  for(j=1; j<=nlstate;j++){
   fprintf(ficgp,"cd \"%s\" \n",pathc);                    kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
     /*#endif */                  }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   strcpy(dirfileres,optionfilefiname);  
   strcpy(optfileres,"vpl");              if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
   fprintf(ficgp,"set out \"graphmort.png\"\n ");                fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
   fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n ");            }
   fprintf(ficgp, "set ter png small\n set log y\n");            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   fprintf(ficgp, "set size 0.65,0.65\n");          }
   fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);        }
    
 }    /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
 /***********************************************/            nhstepm = nhstepm/hstepm; 
 /**************** Main Program *****************/            
 /***********************************************/            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
 int main(int argc, char *argv[])            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
 {            for (h=0; h<=nhstepm; h++){
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);              if (h==(int) (calagedatem+YEARM*cpt)) {
   int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;                fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
   int linei, month, year,iout;              } 
   int jj, ll, li, lj, lk, imk;              for(j=1; j<=nlstate+ndeath;j++) {
   int numlinepar=0; /* Current linenumber of parameter file */                kk1=0.;kk2=0;
   int itimes;                for(i=1; i<=nlstate;i++) {              
   int NDIM=2;                  kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
   char ca[32], cb[32], cc[32];                if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
   char dummy[]="                         ";              }
   /*  FILE *fichtm; *//* Html File */            }
   /* FILE *ficgp;*/ /*Gnuplot File */            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   struct stat info;          }
   double agedeb, agefin,hf;        }
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;     } 
     }
   double fret;   
   double **xi,tmp,delta;    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
   double dum; /* Dummy variable */    if (popforecast==1) {
   double ***p3mat;      free_ivector(popage,0,AGESUP);
   double ***mobaverage;      free_vector(popeffectif,0,AGESUP);
   int *indx;      free_vector(popcount,0,AGESUP);
   char line[MAXLINE], linepar[MAXLINE];    }
   char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];    free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   char pathr[MAXLINE], pathimach[MAXLINE];    free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   char **bp, *tok, *val; /* pathtot */    fclose(ficrespop);
   int firstobs=1, lastobs=10;  } /* End of popforecast */
   int sdeb, sfin; /* Status at beginning and end */  
   int c,  h , cpt,l;  int fileappend(FILE *fichier, char *optionfich)
   int ju,jl, mi;  {
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;    if((fichier=fopen(optionfich,"a"))==NULL) {
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab;      printf("Problem with file: %s\n", optionfich);
   int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */      fprintf(ficlog,"Problem with file: %s\n", optionfich);
   int mobilav=0,popforecast=0;      return (0);
   int hstepm, nhstepm;    }
   int agemortsup;    fflush(fichier);
   float  sumlpop=0.;    return (1);
   double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;  }
   double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;  
   
   double bage, fage, age, agelim, agebase;  /**************** function prwizard **********************/
   double ftolpl=FTOL;  void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   double **prlim;  {
   double *severity;  
   double ***param; /* Matrix of parameters */    /* Wizard to print covariance matrix template */
   double  *p;  
   double **matcov; /* Matrix of covariance */    char ca[32], cb[32], cc[32];
   double ***delti3; /* Scale */    int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
   double *delti; /* Scale */    int numlinepar;
   double ***eij, ***vareij;  
   double **varpl; /* Variances of prevalence limits by age */    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
   double *epj, vepp;    fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
   double kk1, kk2;    for(i=1; i <=nlstate; i++){
   double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;      jj=0;
   double **ximort;      for(j=1; j <=nlstate+ndeath; j++){
   char *alph[]={"a","a","b","c","d","e"}, str[4];        if(j==i) continue;
   int *dcwave;        jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
   char z[1]="c", occ;        printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];        for(k=1; k<=ncovmodel;k++){
   char  *strt, strtend[80];          /*        printf(" %lf",param[i][j][k]); */
   char *stratrunc;          /*        fprintf(ficparo," %lf",param[i][j][k]); */
   int lstra;          printf(" 0.");
           fprintf(ficparo," 0.");
   long total_usecs;        }
          printf("\n");
 /*   setlocale (LC_ALL, ""); */        fprintf(ficparo,"\n");
 /*   bindtextdomain (PACKAGE, LOCALEDIR); */      }
 /*   textdomain (PACKAGE); */    }
 /*   setlocale (LC_CTYPE, ""); */    printf("# Scales (for hessian or gradient estimation)\n");
 /*   setlocale (LC_MESSAGES, ""); */    fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
   /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */    for(i=1; i <=nlstate; i++){
   (void) gettimeofday(&start_time,&tzp);      jj=0;
   curr_time=start_time;      for(j=1; j <=nlstate+ndeath; j++){
   tm = *localtime(&start_time.tv_sec);        if(j==i) continue;
   tmg = *gmtime(&start_time.tv_sec);        jj++;
   strcpy(strstart,asctime(&tm));        fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
 /*  printf("Localtime (at start)=%s",strstart); */        fflush(stdout);
 /*  tp.tv_sec = tp.tv_sec +86400; */        for(k=1; k<=ncovmodel;k++){
 /*  tm = *localtime(&start_time.tv_sec); */          /*      printf(" %le",delti3[i][j][k]); */
 /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */          /*      fprintf(ficparo," %le",delti3[i][j][k]); */
 /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */          printf(" 0.");
 /*   tmg.tm_hour=tmg.tm_hour + 1; */          fprintf(ficparo," 0.");
 /*   tp.tv_sec = mktime(&tmg); */        }
 /*   strt=asctime(&tmg); */        numlinepar++;
 /*   printf("Time(after) =%s",strstart);  */        printf("\n");
 /*  (void) time (&time_value);        fprintf(ficparo,"\n");
 *  printf("time=%d,t-=%d\n",time_value,time_value-86400);      }
 *  tm = *localtime(&time_value);    }
 *  strstart=asctime(&tm);    printf("# Covariance matrix\n");
 *  printf("tim_value=%d,asctime=%s\n",time_value,strstart);  /* # 121 Var(a12)\n\ */
 */  /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   nberr=0; /* Number of errors and warnings */  /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   nbwarn=0;  /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   getcwd(pathcd, size);  /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   printf("\n%s\n%s",version,fullversion);  /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
   if(argc <=1){    fflush(stdout);
     printf("\nEnter the parameter file name: ");    fprintf(ficparo,"# Covariance matrix\n");
     fgets(pathr,FILENAMELENGTH,stdin);    /* # 121 Var(a12)\n\ */
     i=strlen(pathr);    /* # 122 Cov(b12,a12) Var(b12)\n\ */
     if(pathr[i-1]=='\n')    /* #   ...\n\ */
       pathr[i-1]='\0';    /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
    for (tok = pathr; tok != NULL; ){    
       printf("Pathr |%s|\n",pathr);    for(itimes=1;itimes<=2;itimes++){
       while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');      jj=0;
       printf("val= |%s| pathr=%s\n",val,pathr);      for(i=1; i <=nlstate; i++){
       strcpy (pathtot, val);        for(j=1; j <=nlstate+ndeath; j++){
       if(pathr[0] == '\0') break; /* Dirty */          if(j==i) continue;
     }          for(k=1; k<=ncovmodel;k++){
   }            jj++;
   else{            ca[0]= k+'a'-1;ca[1]='\0';
     strcpy(pathtot,argv[1]);            if(itimes==1){
   }              printf("#%1d%1d%d",i,j,k);
   /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/              fprintf(ficparo,"#%1d%1d%d",i,j,k);
   /*cygwin_split_path(pathtot,path,optionfile);            }else{
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/              printf("%1d%1d%d",i,j,k);
   /* cutv(path,optionfile,pathtot,'\\');*/              fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
   /* Split argv[0], imach program to get pathimach */            }
   printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);            ll=0;
   split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);            for(li=1;li <=nlstate; li++){
   printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);              for(lj=1;lj <=nlstate+ndeath; lj++){
  /*   strcpy(pathimach,argv[0]); */                if(lj==li) continue;
   /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */                for(lk=1;lk<=ncovmodel;lk++){
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);                  ll++;
   printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);                  if(ll<=jj){
   chdir(path); /* Can be a relative path */                    cb[0]= lk +'a'-1;cb[1]='\0';
   if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */                    if(ll<jj){
     printf("Current directory %s!\n",pathcd);                      if(itimes==1){
   strcpy(command,"mkdir ");                        printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
   strcat(command,optionfilefiname);                        fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
   if((outcmd=system(command)) != 0){                      }else{
     printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);                        printf(" 0.");
     /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */                        fprintf(ficparo," 0.");
     /* fclose(ficlog); */                      }
 /*     exit(1); */                    }else{
   }                      if(itimes==1){
 /*   if((imk=mkdir(optionfilefiname))<0){ */                        printf(" Var(%s%1d%1d)",ca,i,j);
 /*     perror("mkdir"); */                        fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
 /*   } */                      }else{
                         printf(" 0.");
   /*-------- arguments in the command line --------*/                        fprintf(ficparo," 0.");
                       }
   /* Log file */                    }
   strcat(filelog, optionfilefiname);                  }
   strcat(filelog,".log");    /* */                } /* end lk */
   if((ficlog=fopen(filelog,"w"))==NULL)    {              } /* end lj */
     printf("Problem with logfile %s\n",filelog);            } /* end li */
     goto end;            printf("\n");
   }            fprintf(ficparo,"\n");
   fprintf(ficlog,"Log filename:%s\n",filelog);            numlinepar++;
   fprintf(ficlog,"\n%s\n%s",version,fullversion);          } /* end k*/
   fprintf(ficlog,"\nEnter the parameter file name: \n");        } /*end j */
   fprintf(ficlog,"pathimach=%s\npathtot=%s\n\      } /* end i */
  path=%s \n\    } /* end itimes */
  optionfile=%s\n\  
  optionfilext=%s\n\  } /* end of prwizard */
  optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);  /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   printf("Local time (at start):%s",strstart);  { 
   fprintf(ficlog,"Local time (at start): %s",strstart);    double A,B,L=0.0,sump=0.,num=0.;
   fflush(ficlog);    int i,n=0; /* n is the size of the sample */
 /*   (void) gettimeofday(&curr_time,&tzp); */  
 /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */    for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
   /* */      /*    sump=sump+1;*/
   strcpy(fileres,"r");      num=num+1;
   strcat(fileres, optionfilefiname);    }
   strcat(fileres,".txt");    /* Other files have txt extension */   
    
   /*---------arguments file --------*/    /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   if((ficpar=fopen(optionfile,"r"))==NULL)    {  
     printf("Problem with optionfile %s\n",optionfile);    for (i=1;i<=imx ; i++)
     fprintf(ficlog,"Problem with optionfile %s\n",optionfile);      {
     fflush(ficlog);        if (cens[i] == 1 && wav[i]>1)
     goto end;          A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
   }        
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
   strcpy(filereso,"o");        
   strcat(filereso,fileres);        /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
   if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */        if (wav[i] > 1 ) { /* ??? */
     printf("Problem with Output resultfile: %s\n", filereso);          L=L+A*weight[i];
     fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);          /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
     fflush(ficlog);        }
     goto end;      }
   }  
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
   /* Reads comments: lines beginning with '#' */   
   numlinepar=0;    return -2*L*num/sump;
   while((c=getc(ficpar))=='#' && c!= EOF){  }
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);  #ifdef GSL
     numlinepar++;  /******************* Gompertz_f Likelihood ******************************/
     puts(line);  double gompertz_f(const gsl_vector *v, void *params)
     fputs(line,ficparo);  { 
     fputs(line,ficlog);    double A,B,LL=0.0,sump=0.,num=0.;
   }    double *x= (double *) v->data;
   ungetc(c,ficpar);    int i,n=0; /* n is the size of the sample */
   
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);    for (i=0;i<=imx-1 ; i++) {
   numlinepar++;      sump=sump+weight[i];
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);      /*    sump=sump+1;*/
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);      num=num+1;
   fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);    }
   fflush(ficlog);   
   while((c=getc(ficpar))=='#' && c!= EOF){   
     ungetc(c,ficpar);    /* for (i=0; i<=imx; i++) 
     fgets(line, MAXLINE, ficpar);       if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
     numlinepar++;    printf("x[0]=%lf x[1]=%lf\n",x[0],x[1]);
     puts(line);    for (i=1;i<=imx ; i++)
     fputs(line,ficparo);      {
     fputs(line,ficlog);        if (cens[i] == 1 && wav[i]>1)
   }          A=-x[0]/(x[1])*(exp(x[1]*(agecens[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)));
   ungetc(c,ficpar);        
         if (cens[i] == 0 && wav[i]>1)
              A=-x[0]/(x[1])*(exp(x[1]*(agedc[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)))
   covar=matrix(0,NCOVMAX,1,n);               +log(x[0]/YEARM)+x[1]*(agedc[i]-agegomp)+log(YEARM);  
   cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/        
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;        /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
   ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */          LL=LL+A*weight[i];
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */          /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
   npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/        }
       }
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);  
   delti=delti3[1][1];   /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
   /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/    printf("x[0]=%lf x[1]=%lf -2*LL*num/sump=%lf\n",x[0],x[1],-2*LL*num/sump);
   if(mle==-1){ /* Print a wizard for help writing covariance matrix */   
     prwizard(ncovmodel, nlstate, ndeath, model, ficparo);    return -2*LL*num/sump;
     printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);  }
     fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);  #endif
     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);  
     fclose (ficparo);  /******************* Printing html file ***********/
     fclose (ficlog);  void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
     goto end;                    int lastpass, int stepm, int weightopt, char model[],\
     exit(0);                    int imx,  double p[],double **matcov,double agemortsup){
   }    int i,k;
   else if(mle==-3) {  
     prwizard(ncovmodel, nlstate, ndeath, model, ficparo);    fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);    fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);    for (i=1;i<=2;i++) 
     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);      fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     matcov=matrix(1,npar,1,npar);    fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
   }    fprintf(fichtm,"</ul>");
   else{  
     /* Read guess parameters */  fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
     /* Reads comments: lines beginning with '#' */  
     while((c=getc(ficpar))=='#' && c!= EOF){   fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
       ungetc(c,ficpar);  
       fgets(line, MAXLINE, ficpar);   for (k=agegomp;k<(agemortsup-2);k++) 
       numlinepar++;     fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       puts(line);  
       fputs(line,ficparo);   
       fputs(line,ficlog);    fflush(fichtm);
     }  }
     ungetc(c,ficpar);  
      /******************* Gnuplot file **************/
     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);  void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
     for(i=1; i <=nlstate; i++){  
       j=0;    char dirfileres[132],optfileres[132];
       for(jj=1; jj <=nlstate+ndeath; jj++){    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
         if(jj==i) continue;    int ng;
         j++;  
         fscanf(ficpar,"%1d%1d",&i1,&j1);  
         if ((i1 != i) && (j1 != j)){    /*#ifdef windows */
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \    fprintf(ficgp,"cd \"%s\" \n",pathc);
 It might be a problem of design; if ncovcol and the model are correct\n \      /*#endif */
 run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);  
           exit(1);  
         }    strcpy(dirfileres,optionfilefiname);
         fprintf(ficparo,"%1d%1d",i1,j1);    strcpy(optfileres,"vpl");
         if(mle==1)    fprintf(ficgp,"set out \"graphmort.png\"\n "); 
           printf("%1d%1d",i,j);    fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
         fprintf(ficlog,"%1d%1d",i,j);    fprintf(ficgp, "set ter png small size 320, 240\n set log y\n"); 
         for(k=1; k<=ncovmodel;k++){    /* fprintf(ficgp, "set size 0.65,0.65\n"); */
           fscanf(ficpar," %lf",&param[i][j][k]);    fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
           if(mle==1){  
             printf(" %lf",param[i][j][k]);  } 
             fprintf(ficlog," %lf",param[i][j][k]);  
           }  int readdata(char datafile[], int firstobs, int lastobs, int *imax)
           else  {
             fprintf(ficlog," %lf",param[i][j][k]);  
           fprintf(ficparo," %lf",param[i][j][k]);    /*-------- data file ----------*/
         }    FILE *fic;
         fscanf(ficpar,"\n");    char dummy[]="                         ";
         numlinepar++;    int i, j, n;
         if(mle==1)    int linei, month, year,iout;
           printf("\n");    char line[MAXLINE], linetmp[MAXLINE];
         fprintf(ficlog,"\n");    char stra[80], strb[80];
         fprintf(ficparo,"\n");    char *stratrunc;
       }    int lstra;
     }    
     fflush(ficlog);  
     if((fic=fopen(datafile,"r"))==NULL)    {
     p=param[1][1];      printf("Problem while opening datafile: %s\n", datafile);return 1;
          fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);return 1;
     /* Reads comments: lines beginning with '#' */    }
     while((c=getc(ficpar))=='#' && c!= EOF){  
       ungetc(c,ficpar);    i=1;
       fgets(line, MAXLINE, ficpar);    linei=0;
       numlinepar++;    while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       puts(line);      linei=linei+1;
       fputs(line,ficparo);      for(j=strlen(line); j>=0;j--){  /* Untabifies line */
       fputs(line,ficlog);        if(line[j] == '\t')
     }          line[j] = ' ';
     ungetc(c,ficpar);      }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
     for(i=1; i <=nlstate; i++){        ;
       for(j=1; j <=nlstate+ndeath-1; j++){      };
         fscanf(ficpar,"%1d%1d",&i1,&j1);      line[j+1]=0;  /* Trims blanks at end of line */
         if ((i1-i)*(j1-j)!=0){      if(line[0]=='#'){
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);        fprintf(ficlog,"Comment line\n%s\n",line);
           exit(1);        printf("Comment line\n%s\n",line);
         }        continue;
         printf("%1d%1d",i,j);      }
         fprintf(ficparo,"%1d%1d",i1,j1);      trimbb(linetmp,line); /* Trims multiple blanks in line */
         fprintf(ficlog,"%1d%1d",i1,j1);      for (j=0; line[j]!='\0';j++){
         for(k=1; k<=ncovmodel;k++){        line[j]=linetmp[j];
           fscanf(ficpar,"%le",&delti3[i][j][k]);      }
           printf(" %le",delti3[i][j][k]);    
           fprintf(ficparo," %le",delti3[i][j][k]);  
           fprintf(ficlog," %le",delti3[i][j][k]);      for (j=maxwav;j>=1;j--){
         }        cutv(stra, strb, line, ' '); 
         fscanf(ficpar,"\n");        if(strb[0]=='.') { /* Missing status */
         numlinepar++;          lval=-1;
         printf("\n");        }else{
         fprintf(ficparo,"\n");          errno=0;
         fprintf(ficlog,"\n");          lval=strtol(strb,&endptr,10); 
       }        /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
     }          if( strb[0]=='\0' || (*endptr != '\0')){
     fflush(ficlog);            printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
             fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);fflush(ficlog);
     delti=delti3[1][1];            return 1;
           }
         }
     /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */        s[j][i]=lval;
          
     /* Reads comments: lines beginning with '#' */        strcpy(line,stra);
     while((c=getc(ficpar))=='#' && c!= EOF){        cutv(stra, strb,line,' ');
       ungetc(c,ficpar);        if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       fgets(line, MAXLINE, ficpar);        }
       numlinepar++;        else  if(iout=sscanf(strb,"%s.",dummy) != 0){
       puts(line);          month=99;
       fputs(line,ficparo);          year=9999;
       fputs(line,ficlog);        }else{
     }          printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
     ungetc(c,ficpar);          fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);fflush(ficlog);
            return 1;
     matcov=matrix(1,npar,1,npar);        }
     for(i=1; i <=npar; i++){        anint[j][i]= (double) year; 
       fscanf(ficpar,"%s",&str);        mint[j][i]= (double)month; 
       if(mle==1)        strcpy(line,stra);
         printf("%s",str);      } /* ENd Waves */
       fprintf(ficlog,"%s",str);      
       fprintf(ficparo,"%s",str);      cutv(stra, strb,line,' '); 
       for(j=1; j <=i; j++){      if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         fscanf(ficpar," %le",&matcov[i][j]);      }
         if(mle==1){      else  if(iout=sscanf(strb,"%s.",dummy) != 0){
           printf(" %.5le",matcov[i][j]);        month=99;
         }        year=9999;
         fprintf(ficlog," %.5le",matcov[i][j]);      }else{
         fprintf(ficparo," %.5le",matcov[i][j]);        printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
       }          fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
       fscanf(ficpar,"\n");          return 1;
       numlinepar++;      }
       if(mle==1)      andc[i]=(double) year; 
         printf("\n");      moisdc[i]=(double) month; 
       fprintf(ficlog,"\n");      strcpy(line,stra);
       fprintf(ficparo,"\n");      
     }      cutv(stra, strb,line,' '); 
     for(i=1; i <=npar; i++)      if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       for(j=i+1;j<=npar;j++)      }
         matcov[i][j]=matcov[j][i];      else  if(iout=sscanf(strb,"%s.", dummy) != 0){
            month=99;
     if(mle==1)        year=9999;
       printf("\n");      }else{
     fprintf(ficlog,"\n");        printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
            fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
     fflush(ficlog);          return 1;
          }
     /*-------- Rewriting parameter file ----------*/      if (year==9999) {
     strcpy(rfileres,"r");    /* "Rparameterfile */        printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given.  Exiting.\n",strb, linei,i,line);
     strcat(rfileres,optionfilefiname);    /* Parameter file first name*/        fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given. Exiting.\n",strb, linei,i,line);fflush(ficlog);
     strcat(rfileres,".");    /* */          return 1;
     strcat(rfileres,optionfilext);    /* Other files have txt extension */  
     if((ficres =fopen(rfileres,"w"))==NULL) {      }
       printf("Problem writing new parameter file: %s\n", fileres);goto end;      annais[i]=(double)(year);
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;      moisnais[i]=(double)(month); 
     }      strcpy(line,stra);
     fprintf(ficres,"#%s\n",version);      
   }    /* End of mle != -3 */      cutv(stra, strb,line,' '); 
       errno=0;
   /*-------- data file ----------*/      dval=strtod(strb,&endptr); 
   if((fic=fopen(datafile,"r"))==NULL)    {      if( strb[0]=='\0' || (*endptr != '\0')){
     printf("Problem while opening datafile: %s\n", datafile);goto end;        printf("Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
     fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);goto end;        fprintf(ficlog,"Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
   }        fflush(ficlog);
         return 1;
   n= lastobs;      }
   severity = vector(1,maxwav);      weight[i]=dval; 
   outcome=imatrix(1,maxwav+1,1,n);      strcpy(line,stra);
   num=lvector(1,n);      
   moisnais=vector(1,n);      for (j=ncovcol;j>=1;j--){
   annais=vector(1,n);        cutv(stra, strb,line,' '); 
   moisdc=vector(1,n);        if(strb[0]=='.') { /* Missing status */
   andc=vector(1,n);          lval=-1;
   agedc=vector(1,n);        }else{
   cod=ivector(1,n);          errno=0;
   weight=vector(1,n);          lval=strtol(strb,&endptr,10); 
   for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */          if( strb[0]=='\0' || (*endptr != '\0')){
   mint=matrix(1,maxwav,1,n);            printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);
   anint=matrix(1,maxwav,1,n);            fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);fflush(ficlog);
   s=imatrix(1,maxwav+1,1,n);            return 1;
   tab=ivector(1,NCOVMAX);          }
   ncodemax=ivector(1,8);        }
         if(lval <-1 || lval >1){
   i=1;          printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
   linei=0;   Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
   while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {   for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
     linei=linei+1;   For example, for multinomial values like 1, 2 and 3,\n \
     for(j=strlen(line); j>=0;j--){  /* Untabifies line */   build V1=0 V2=0 for the reference value (1),\n \
       if(line[j] == '\t')          V1=1 V2=0 for (2) \n \
         line[j] = ' ';   and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
     }   output of IMaCh is often meaningless.\n \
     for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){   Exiting.\n",lval,linei, i,line,j);
       ;          fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
     };   Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
     line[j+1]=0;  /* Trims blanks at end of line */   for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
     if(line[0]=='#'){   For example, for multinomial values like 1, 2 and 3,\n \
       fprintf(ficlog,"Comment line\n%s\n",line);   build V1=0 V2=0 for the reference value (1),\n \
       printf("Comment line\n%s\n",line);          V1=1 V2=0 for (2) \n \
       continue;   and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
     }   output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);fflush(ficlog);
     for (j=maxwav;j>=1;j--){          return 1;
       cutv(stra, strb,line,' ');        }
       errno=0;        covar[j][i]=(double)(lval);
       lval=strtol(strb,&endptr,10);        strcpy(line,stra);
       /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/      }  
       if( strb[0]=='\0' || (*endptr != '\0')){      lstra=strlen(stra);
         printf("Error reading data around '%d' at line number %d %s for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);       
         exit(1);      if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
       }        stratrunc = &(stra[lstra-9]);
       s[j][i]=lval;        num[i]=atol(stratrunc);
            }
       strcpy(line,stra);      else
       cutv(stra, strb,line,' ');        num[i]=atol(stra);
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){      /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
       }        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       else  if(iout=sscanf(strb,"%s.") != 0){      
         month=99;      i=i+1;
         year=9999;    } /* End loop reading  data */
       }else{  
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);    *imax=i-1; /* Number of individuals */
         exit(1);    fclose(fic);
       }   
       anint[j][i]= (double) year;    return (0);
       mint[j][i]= (double)month;    endread:
       strcpy(line,stra);      printf("Exiting readdata: ");
     } /* ENd Waves */      fclose(fic);
          return (1);
     cutv(stra, strb,line,' ');  
     if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){  
     }  
     else  if(iout=sscanf(strb,"%s.",dummy) != 0){  }
       month=99;  void removespace(char *str) {
       year=9999;    char *p1 = str, *p2 = str;
     }else{    do
       printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);      while (*p2 == ' ')
       exit(1);        p2++;
     }    while (*p1++ = *p2++);
     andc[i]=(double) year;  }
     moisdc[i]=(double) month;  
     strcpy(line,stra);  int decodemodel ( char model[], int lastobs) /**< This routine decode the model and returns:
         * Model  V1+V2+V3+V8+V7*V8+V5*V6+V8*age+V3*age
     cutv(stra, strb,line,' ');     * - cptcovt total number of covariates of the model nbocc(+)+1 = 8
     if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){     * - cptcovn or number of covariates k of the models excluding age*products =6
     }     * - cptcovage number of covariates with age*products =2
     else  if(iout=sscanf(strb,"%s.") != 0){     * - cptcovs number of simple covariates
       month=99;     * - Tvar[k] is the id of the kth covariate Tvar[1]@12 {1, 2, 3, 8, 10, 11, 8, 3, 7, 8, 5, 6}, thus Tvar[5=V7*V8]=10
       year=9999;     *     which is a new column after the 9 (ncovcol) variables. 
     }else{     * - if k is a product Vn*Vm covar[k][i] is filled with correct values for each individual
       printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line,j);     * - Tprod[l] gives the kth covariates of the product Vn*Vm l=1 to cptcovprod-cptcovage
       exit(1);     *    Tprod[1]@2 {5, 6}: position of first product V7*V8 is 5, and second V5*V6 is 6.
     }     * - Tvard[k]  p Tvard[1][1]@4 {7, 8, 5, 6} for V7*V8 and V5*V6 .
     annais[i]=(double)(year);   */
     moisnais[i]=(double)(month);  {
     strcpy(line,stra);    int i, j, k, ks;
        int i1, j1, k1, k2;
     cutv(stra, strb,line,' ');    char modelsav[80];
     errno=0;    char stra[80], strb[80], strc[80], strd[80],stre[80];
     dval=strtod(strb,&endptr);  
     if( strb[0]=='\0' || (*endptr != '\0')){    /*removespace(model);*/
       printf("Error reading data around '%f' at line number %ld, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);    if (strlen(model) >1){ /* If there is at least 1 covariate */
       exit(1);      j=0, j1=0, k1=0, k2=-1, ks=0, cptcovn=0;
     }      j=nbocc(model,'+'); /**< j=Number of '+' */
     weight[i]=dval;      j1=nbocc(model,'*'); /**< j1=Number of '*' */
     strcpy(line,stra);      cptcovs=j+1-j1; /**<  Number of simple covariates V1+V2*age+V3 +V3*V4=> V1 + V3 =2  */
          cptcovt= j+1; /* Number of total covariates in the model V1 + V2*age+ V3 + V3*V4=> 4*/
     for (j=ncovcol;j>=1;j--){                    /* including age products which are counted in cptcovage.
       cutv(stra, strb,line,' ');                    /* but the covariates which are products must be treated separately: ncovn=4- 2=2 (V1+V3). */
       errno=0;      cptcovprod=j1; /**< Number of products  V1*V2 +v3*age = 2 */
       lval=strtol(strb,&endptr,10);      cptcovprodnoage=0; /**< Number of covariate products without age: V3*V4 =1  */
       if( strb[0]=='\0' || (*endptr != '\0')){      strcpy(modelsav,model); 
         printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a covar (meaning 0 for the reference or 1).  Exiting.\n",lval, linei,i, line);      if (strstr(model,"AGE") !=0){
         exit(1);        printf("Error. AGE must be in lower case 'age' model=%s ",model);
       }        fprintf(ficlog,"Error. AGE must be in lower case model=%s ",model);fflush(ficlog);
       if(lval <-1 || lval >1){        return 1;
         printf("Error reading data around '%d' at line number %ld for individual %d, '%s'\n \      }
  Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \      if (strstr(model,"v") !=0){
  for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \        printf("Error. 'v' must be in upper case 'V' model=%s ",model);
  For example, for multinomial values like 1, 2 and 3,\n \        fprintf(ficlog,"Error. 'v' must be in upper case model=%s ",model);fflush(ficlog);
  build V1=0 V2=0 for the reference value (1),\n \        return 1;
         V1=1 V2=0 for (2) \n \      }
  and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \      
  output of IMaCh is often meaningless.\n \      /*   Design
  Exiting.\n",lval,linei, i,line,j);       *  V1   V2   V3   V4  V5  V6  V7  V8  V9 Weight
         exit(1);       *  <          ncovcol=8                >
       }       * Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8
       covar[j][i]=(double)(lval);       *   k=  1    2      3       4     5       6      7        8
       strcpy(line,stra);       *  cptcovn number of covariates (not including constant and age ) = # of + plus 1 = 7+1=8
     }       *  covar[k,i], value of kth covariate if not including age for individual i:
     lstra=strlen(stra);       *       covar[1][i]= (V2), covar[4][i]=(V3), covar[8][i]=(V8)
           *  Tvar[k] # of the kth covariate:  Tvar[1]=2  Tvar[4]=3 Tvar[8]=8
     if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */       *       if multiplied by age: V3*age Tvar[3=V3*age]=3 (V3) Tvar[7]=8 and 
       stratrunc = &(stra[lstra-9]);       *  Tage[++cptcovage]=k
       num[i]=atol(stratrunc);       *       if products, new covar are created after ncovcol with k1
     }       *  Tvar[k]=ncovcol+k1; # of the kth covariate product:  Tvar[5]=ncovcol+1=10  Tvar[6]=ncovcol+1=11
     else       *  Tprod[k1]=k; Tprod[1]=5 Tprod[2]= 6; gives the position of the k1th product
       num[i]=atol(stra);       *  Tvard[k1][1]=m Tvard[k1][2]=m; Tvard[1][1]=5 (V5) Tvard[1][2]=6 Tvard[2][1]=7 (V7) Tvard[2][2]=8
     /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){       *  Tvar[cptcovn+k2]=Tvard[k1][1];Tvar[cptcovn+k2+1]=Tvard[k1][2];
       printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/       *  Tvar[8+1]=5;Tvar[8+2]=6;Tvar[8+3]=7;Tvar[8+4]=8 inverted
           *  V1   V2   V3   V4  V5  V6  V7  V8  V9  V10  V11
     i=i+1;       *  <          ncovcol=8                >
   } /* End loop reading  data */       *       Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8    d1   d1   d2  d2
   fclose(fic);       *          k=  1    2      3       4     5       6      7        8    9   10   11  12
   /* printf("ii=%d", ij);       *     Tvar[k]= 2    1      3       3    10      11      8        8    5    6    7   8
      scanf("%d",i);*/       * p Tvar[1]@12={2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
   imx=i-1; /* Number of individuals */       * p Tprod[1]@2={                         6, 5}
        *p Tvard[1][1]@4= {7, 8, 5, 6}
   /* for (i=1; i<=imx; i++){       * covar[k][i]= V2   V1      ?      V3    V5*V6?   V7*V8?  ?       V8   
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;       *  cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;       *How to reorganize?
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;       * Model V1 + V2 + V3 + V8 + V5*V6 + V7*V8 + V3*age + V8*age
     }*/       * Tvars {2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
    /*  for (i=1; i<=imx; i++){       *       {2,   1,     4,      8,    5,      6,     3,       7}
      if (s[4][i]==9)  s[4][i]=-1;       * Struct []
      printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/       */
    
   /* for (i=1; i<=imx; i++) */      /* This loop fills the array Tvar from the string 'model'.*/
        /* j is the number of + signs in the model V1+V2+V3 j=2 i=3 to 1 */
    /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;      /*   modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4  */
      else weight[i]=1;*/      /*  k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tage[cptcovage=1]=4 */
       /*  k=3 V4 Tvar[k=3]= 4 (from V4) */
   /* Calculation of the number of parameters from char model */      /*  k=2 V1 Tvar[k=2]= 1 (from V1) */
   Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */      /*  k=1 Tvar[1]=2 (from V2) */
   Tprod=ivector(1,15);      /*  k=5 Tvar[5] */
   Tvaraff=ivector(1,15);      /* for (k=1; k<=cptcovn;k++) { */
   Tvard=imatrix(1,15,1,2);      /*  cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]]; */
   Tage=ivector(1,15);            /*  } */
          /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
   if (strlen(model) >1){ /* If there is at least 1 covariate */      /*
     j=0, j1=0, k1=1, k2=1;       * Treating invertedly V2+V1+V3*age+V2*V4 is as if written V2*V4 +V3*age + V1 + V2 */
     j=nbocc(model,'+'); /* j=Number of '+' */      for(k=cptcovt; k>=1;k--) /**< Number of covariates */
     j1=nbocc(model,'*'); /* j1=Number of '*' */          Tvar[k]=0;
     cptcovn=j+1;      cptcovage=0;
     cptcovprod=j1; /*Number of products */      for(k=1; k<=cptcovt;k++){ /* Loop on total covariates of the model */
            cutl(stra,strb,modelsav,'+'); /* keeps in strb after the first '+' 
     strcpy(modelsav,model);                                       modelsav==V2+V1+V4+V3*age strb=V3*age stra=V2+V1+V4 */ 
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){        if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
       printf("Error. Non available option model=%s ",model);        /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
       fprintf(ficlog,"Error. Non available option model=%s ",model);        /*scanf("%d",i);*/
       goto end;        if (strchr(strb,'*')) {  /**< Model includes a product V2+V1+V4+V3*age strb=V3*age */
     }          cutl(strc,strd,strb,'*'); /**< strd*strc  Vm*Vn: strb=V3*age(input) strc=age strd=V3 ; V3*V2 strc=V2, strd=V3 */
              if (strcmp(strc,"age")==0) { /**< Model includes age: Vn*age */
     /* This loop fills the array Tvar from the string 'model'.*/            /* covar is not filled and then is empty */
             cptcovprod--;
     for(i=(j+1); i>=1;i--){            cutl(stre,strb,strd,'V'); /* strd=V3(input): stre="3" */
       cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */            Tvar[k]=atoi(stre);  /* V2+V1+V4+V3*age Tvar[4]=3 ; V1+V2*age Tvar[2]=2 */
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */            cptcovage++; /* Sums the number of covariates which include age as a product */
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/            Tage[cptcovage]=k;  /* Tage[1] = 4 */
       /*scanf("%d",i);*/            /*printf("stre=%s ", stre);*/
       if (strchr(strb,'*')) {  /* Model includes a product */          } else if (strcmp(strd,"age")==0) { /* or age*Vn */
         cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/            cptcovprod--;
         if (strcmp(strc,"age")==0) { /* Vn*age */            cutl(stre,strb,strc,'V');
           cptcovprod--;            Tvar[k]=atoi(stre);
           cutv(strb,stre,strd,'V');            cptcovage++;
           Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/            Tage[cptcovage]=k;
           cptcovage++;          } else {  /* Age is not in the model product V2+V1+V1*V4+V3*age+V3*V2  strb=V3*V2*/
             Tage[cptcovage]=i;            /* loops on k1=1 (V3*V2) and k1=2 V4*V3 */
             /*printf("stre=%s ", stre);*/            cptcovn++;
         }            cptcovprodnoage++;k1++;
         else if (strcmp(strd,"age")==0) { /* or age*Vn */            cutl(stre,strb,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/
           cptcovprod--;            Tvar[k]=ncovcol+k1; /* For model-covariate k tells which data-covariate to use but
           cutv(strb,stre,strc,'V');                                    because this model-covariate is a construction we invent a new column
           Tvar[i]=atoi(stre);                                    ncovcol + k1
           cptcovage++;                                    If already ncovcol=4 and model=V2+V1+V1*V4+age*V3+V3*V2
           Tage[cptcovage]=i;                                    Tvar[3=V1*V4]=4+1 Tvar[5=V3*V2]=4 + 2= 6, etc */
         }            cutl(strc,strb,strd,'V'); /* strd was Vm, strc is m */
         else {  /* Age is not in the model */            Tprod[k1]=k;  /* Tprod[1]=3(=V1*V4) for V2+V1+V1*V4+age*V3+V3*V2  */
           cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/            Tvard[k1][1] =atoi(strc); /* m 1 for V1*/
           Tvar[i]=ncovcol+k1;            Tvard[k1][2] =atoi(stre); /* n 4 for V4*/
           cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */            k2=k2+2;
           Tprod[k1]=i;            Tvar[cptcovt+k2]=Tvard[k1][1]; /* Tvar[(cptcovt=4+k2=1)=5]= 1 (V1) */
           Tvard[k1][1]=atoi(strc); /* m*/            Tvar[cptcovt+k2+1]=Tvard[k1][2];  /* Tvar[(cptcovt=4+(k2=1)+1)=6]= 4 (V4) */
           Tvard[k1][2]=atoi(stre); /* n */            for (i=1; i<=lastobs;i++){
           Tvar[cptcovn+k2]=Tvard[k1][1];              /* Computes the new covariate which is a product of
           Tvar[cptcovn+k2+1]=Tvard[k1][2];                 covar[n][i]* covar[m][i] and stores it at ncovol+k1 May not be defined */
           for (k=1; k<=lastobs;k++)              covar[ncovcol+k1][i]=covar[atoi(stre)][i]*covar[atoi(strc)][i];
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];            }
           k1++;          } /* End age is not in the model */
           k2=k2+2;        } /* End if model includes a product */
         }        else { /* no more sum */
       }          /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
       else { /* no more sum */         /*  scanf("%d",i);*/
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/          cutl(strd,strc,strb,'V');
        /*  scanf("%d",i);*/          ks++; /**< Number of simple covariates */
       cutv(strd,strc,strb,'V');          cptcovn++;
       Tvar[i]=atoi(strc);          Tvar[k]=atoi(strd);
       }        }
       strcpy(modelsav,stra);          strcpy(modelsav,stra);  /* modelsav=V2+V1+V4 stra=V2+V1+V4 */ 
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);        /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
         scanf("%d",i);*/          scanf("%d",i);*/
     } /* end of loop + */      } /* end of loop + */
   } /* end model */    } /* end model */
      
   /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.    /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
     If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/      If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);    /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
   printf("cptcovprod=%d ", cptcovprod);    printf("cptcovprod=%d ", cptcovprod);
   fprintf(ficlog,"cptcovprod=%d ", cptcovprod);    fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
   scanf("%d ",i);*/    scanf("%d ",i);*/
   
     /*  if(mle==1){*/  
   if (weightopt != 1) { /* Maximisation without weights*/    return (0); /* with covar[new additional covariate if product] and Tage if age */ 
     for(i=1;i<=n;i++) weight[i]=1.0;    endread:
   }      printf("Exiting decodemodel: ");
     /*-calculation of age at interview from date of interview and age at death -*/      return (1);
   agev=matrix(1,maxwav,1,imx);  }
   
   for (i=1; i<=imx; i++) {  calandcheckages(int imx, int maxwav, double *agemin, double *agemax, int *nberr, int *nbwarn )
     for(m=2; (m<= maxwav); m++) {  {
       if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){    int i, m;
         anint[m][i]=9999;  
         s[m][i]=-1;    for (i=1; i<=imx; i++) {
       }      for(m=2; (m<= maxwav); m++) {
       if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){        if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
         nberr++;          anint[m][i]=9999;
         printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);          s[m][i]=-1;
         fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);        }
         s[m][i]=-1;        if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
       }          *nberr++;
       if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){          printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
         nberr++;          fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
         printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]);          s[m][i]=-1;
         fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]);        }
         s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */        if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
       }          *nberr++;
     }          printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
   }          fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
   for (i=1; i<=imx; i++)  {        }
     agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);      }
     for(m=firstpass; (m<= lastpass); m++){    }
       if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){  
         if (s[m][i] >= nlstate+1) {    for (i=1; i<=imx; i++)  {
           if(agedc[i]>0)      agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
             if((int)moisdc[i]!=99 && (int)andc[i]!=9999)      for(m=firstpass; (m<= lastpass); m++){
               agev[m][i]=agedc[i];        if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/          if (s[m][i] >= nlstate+1) {
             else {            if(agedc[i]>0)
               if ((int)andc[i]!=9999){              if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 nbwarn++;                agev[m][i]=agedc[i];
                 printf("Warning negative age at death: %ld line:%d\n",num[i],i);            /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
                 fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);              else {
                 agev[m][i]=-1;                if ((int)andc[i]!=9999){
               }                  nbwarn++;
             }                  printf("Warning negative age at death: %ld line:%d\n",num[i],i);
         }                  fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
         else if(s[m][i] !=9){ /* Standard case, age in fractional                  agev[m][i]=-1;
                                  years but with the precision of a month */                }
           agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);              }
           if((int)mint[m][i]==99 || (int)anint[m][i]==9999)          }
             agev[m][i]=1;          else if(s[m][i] !=9){ /* Standard case, age in fractional
           else if(agev[m][i] <agemin){                                   years but with the precision of a month */
             agemin=agev[m][i];            agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/            if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
           }              agev[m][i]=1;
           else if(agev[m][i] >agemax){            else if(agev[m][i] < *agemin){ 
             agemax=agev[m][i];              *agemin=agev[m][i];
             /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/              printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], *agemin);
           }            }
           /*agev[m][i]=anint[m][i]-annais[i];*/            else if(agev[m][i] >*agemax){
           /*     agev[m][i] = age[i]+2*m;*/              *agemax=agev[m][i];
         }              printf(" Max anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.2f\n",m,i,anint[m][i], i,annais[i], *agemax);
         else { /* =9 */            }
           agev[m][i]=1;            /*agev[m][i]=anint[m][i]-annais[i];*/
           s[m][i]=-1;            /*     agev[m][i] = age[i]+2*m;*/
         }          }
       }          else { /* =9 */
       else /*= 0 Unknown */            agev[m][i]=1;
         agev[m][i]=1;            s[m][i]=-1;
     }          }
            }
   }        else /*= 0 Unknown */
   for (i=1; i<=imx; i++)  {          agev[m][i]=1;
     for(m=firstpass; (m<=lastpass); m++){      }
       if (s[m][i] > (nlstate+ndeath)) {      
         nberr++;    }
         printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);        for (i=1; i<=imx; i++)  {
         fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);          for(m=firstpass; (m<=lastpass); m++){
         goto end;        if (s[m][i] > (nlstate+ndeath)) {
       }          *nberr++;
     }          printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
   }          fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           return 1;
   /*for (i=1; i<=imx; i++){        }
   for (m=firstpass; (m<lastpass); m++){      }
      printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);    }
 }  
     /*for (i=1; i<=imx; i++){
 }*/    for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);  
   fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);  }*/
   
   agegomp=(int)agemin;  
   free_vector(severity,1,maxwav);    printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax);
   free_imatrix(outcome,1,maxwav+1,1,n);    fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax); 
   free_vector(moisnais,1,n);  
   free_vector(annais,1,n);    return (0);
   /* free_matrix(mint,1,maxwav,1,n);    endread:
      free_matrix(anint,1,maxwav,1,n);*/      printf("Exiting calandcheckages: ");
   free_vector(moisdc,1,n);      return (1);
   free_vector(andc,1,n);  }
   
      
   wav=ivector(1,imx);  /***********************************************/
   dh=imatrix(1,lastpass-firstpass+1,1,imx);  /**************** Main Program *****************/
   bh=imatrix(1,lastpass-firstpass+1,1,imx);  /***********************************************/
   mw=imatrix(1,lastpass-firstpass+1,1,imx);  
      int main(int argc, char *argv[])
   /* Concatenates waves */  {
   concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);  #ifdef GSL
     const gsl_multimin_fminimizer_type *T;
   /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */    size_t iteri = 0, it;
     int rval = GSL_CONTINUE;
   Tcode=ivector(1,100);    int status = GSL_SUCCESS;
   nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);    double ssval;
   ncodemax[1]=1;  #endif
   if (cptcovn > 0) tricode(Tvar,nbcode,imx);    int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
          int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
   codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of    int linei, month, year,iout;
                                  the estimations*/    int jj, ll, li, lj, lk, imk;
   h=0;    int numlinepar=0; /* Current linenumber of parameter file */
   m=pow(2,cptcoveff);    int itimes;
      int NDIM=2;
   for(k=1;k<=cptcoveff; k++){    int vpopbased=0;
     for(i=1; i <=(m/pow(2,k));i++){  
       for(j=1; j <= ncodemax[k]; j++){    char ca[32], cb[32], cc[32];
         for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){    /*  FILE *fichtm; *//* Html File */
           h++;    /* FILE *ficgp;*/ /*Gnuplot File */
           if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;    struct stat info;
           /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/    double agedeb, agefin,hf;
         }    double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
       }  
     }    double fret;
   }    double **xi,tmp,delta;
   /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);  
      codtab[1][2]=1;codtab[2][2]=2; */    double dum; /* Dummy variable */
   /* for(i=1; i <=m ;i++){    double ***p3mat;
      for(k=1; k <=cptcovn; k++){    double ***mobaverage;
      printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);    int *indx;
      }    char line[MAXLINE], linepar[MAXLINE];
      printf("\n");    char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
      }    char pathr[MAXLINE], pathimach[MAXLINE]; 
      scanf("%d",i);*/    char **bp, *tok, *val; /* pathtot */
        int firstobs=1, lastobs=10;
   /*------------ gnuplot -------------*/    int sdeb, sfin; /* Status at beginning and end */
   strcpy(optionfilegnuplot,optionfilefiname);    int c,  h , cpt,l;
   if(mle==-3)    int ju,jl, mi;
     strcat(optionfilegnuplot,"-mort");    int i1,j1, jk,aa,bb, stepsize, ij;
   strcat(optionfilegnuplot,".gp");    int jnais,jdc,jint4,jint1,jint2,jint3,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {    int mobilav=0,popforecast=0;
     printf("Problem with file %s",optionfilegnuplot);    int hstepm, nhstepm;
   }    int agemortsup;
   else{    float  sumlpop=0.;
     fprintf(ficgp,"\n# %s\n", version);    double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     fprintf(ficgp,"# %s\n", optionfilegnuplot);    double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
     fprintf(ficgp,"set missing 'NaNq'\n");  
   }    double bage, fage, age, agelim, agebase;
   /*  fclose(ficgp);*/    double ftolpl=FTOL;
   /*--------- index.htm --------*/    double **prlim;
     double ***param; /* Matrix of parameters */
   strcpy(optionfilehtm,optionfilefiname); /* Main html file */    double  *p;
   if(mle==-3)    double **matcov; /* Matrix of covariance */
     strcat(optionfilehtm,"-mort");    double ***delti3; /* Scale */
   strcat(optionfilehtm,".htm");    double *delti; /* Scale */
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {    double ***eij, ***vareij;
     printf("Problem with %s \n",optionfilehtm), exit(0);    double **varpl; /* Variances of prevalence limits by age */
   }    double *epj, vepp;
     double kk1, kk2;
   strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */    double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
   strcat(optionfilehtmcov,"-cov.htm");    double **ximort;
   if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {    char *alph[]={"a","a","b","c","d","e"}, str[4]="1234";
     printf("Problem with %s \n",optionfilehtmcov), exit(0);    int *dcwave;
   }  
   else{    char z[1]="c", occ;
   fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \  
 <hr size=\"2\" color=\"#EC5E5E\"> \n\    /*char  *strt;*/
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\    char strtend[80];
           optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);  
   }    long total_usecs;
    
   fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \  /*   setlocale (LC_ALL, ""); */
 <hr size=\"2\" color=\"#EC5E5E\"> \n\  /*   bindtextdomain (PACKAGE, LOCALEDIR); */
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\  /*   textdomain (PACKAGE); */
 \n\  /*   setlocale (LC_CTYPE, ""); */
 <hr  size=\"2\" color=\"#EC5E5E\">\  /*   setlocale (LC_MESSAGES, ""); */
  <ul><li><h4>Parameter files</h4>\n\  
  - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\    /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\    (void) gettimeofday(&start_time,&tzp);
  - Log file of the run: <a href=\"%s\">%s</a><br>\n\    curr_time=start_time;
  - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\    tm = *localtime(&start_time.tv_sec);
  - Date and time at start: %s</ul>\n",\    tmg = *gmtime(&start_time.tv_sec);
           optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\    strcpy(strstart,asctime(&tm));
           optionfilefiname,optionfilext,optionfilefiname,optionfilext,\  
           fileres,fileres,\  /*  printf("Localtime (at start)=%s",strstart); */
           filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);  /*  tp.tv_sec = tp.tv_sec +86400; */
   fflush(fichtm);  /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   strcpy(pathr,path);  /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   strcat(pathr,optionfilefiname);  /*   tmg.tm_hour=tmg.tm_hour + 1; */
   chdir(optionfilefiname); /* Move to directory named optionfile */  /*   tp.tv_sec = mktime(&tmg); */
    /*   strt=asctime(&tmg); */
   /* Calculates basic frequencies. Computes observed prevalence at single age  /*   printf("Time(after) =%s",strstart);  */
      and prints on file fileres'p'. */  /*  (void) time (&time_value);
   freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);  *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   fprintf(fichtm,"\n");  *  strstart=asctime(&tm);
   fprintf(fichtm,"<br>Total number of observations=%d <br>\n\  *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
 Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\  */
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\  
           imx,agemin,agemax,jmin,jmax,jmean);    nberr=0; /* Number of errors and warnings */
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    nbwarn=0;
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    getcwd(pathcd, size);
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    printf("\n%s\n%s",version,fullversion);
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    if(argc <=1){
          printf("\nEnter the parameter file name: ");
          fgets(pathr,FILENAMELENGTH,stdin);
   /* For Powell, parameters are in a vector p[] starting at p[1]      i=strlen(pathr);
      so we point p on param[1][1] so that p[1] maps on param[1][1][1] */      if(pathr[i-1]=='\n')
   p=param[1][1]; /* *(*(*(param +1)+1)+0) */        pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
   globpr=0; /* To get the number ipmx of contributions and the sum of weights*/        printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
   if (mle==-3){        printf("val= |%s| pathr=%s\n",val,pathr);
     ximort=matrix(1,NDIM,1,NDIM);        strcpy (pathtot, val);
     cens=ivector(1,n);        if(pathr[0] == '\0') break; /* Dirty */
     ageexmed=vector(1,n);      }
     agecens=vector(1,n);    }
     dcwave=ivector(1,n);    else{
        strcpy(pathtot,argv[1]);
     for (i=1; i<=imx; i++){    }
       dcwave[i]=-1;    /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
       for (m=firstpass; m<=lastpass; m++)    /*cygwin_split_path(pathtot,path,optionfile);
         if (s[m][i]>nlstate) {      printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
           dcwave[i]=m;    /* cutv(path,optionfile,pathtot,'\\');*/
           /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/  
           break;    /* Split argv[0], imach program to get pathimach */
         }    printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     }    split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     for (i=1; i<=imx; i++) {   /*   strcpy(pathimach,argv[0]); */
       if (wav[i]>0){    /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
         ageexmed[i]=agev[mw[1][i]][i];    split(pathtot,path,optionfile,optionfilext,optionfilefiname);
         j=wav[i];    printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
         agecens[i]=1.;    chdir(path); /* Can be a relative path */
     if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
         if (ageexmed[i]> 1 && wav[i] > 0){      printf("Current directory %s!\n",pathcd);
           agecens[i]=agev[mw[j][i]][i];    strcpy(command,"mkdir ");
           cens[i]= 1;    strcat(command,optionfilefiname);
         }else if (ageexmed[i]< 1)    if((outcmd=system(command)) != 0){
           cens[i]= -1;      printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
         if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)      /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
           cens[i]=0 ;      /* fclose(ficlog); */
       }  /*     exit(1); */
       else cens[i]=-1;    }
     }  /*   if((imk=mkdir(optionfilefiname))<0){ */
      /*     perror("mkdir"); */
     for (i=1;i<=NDIM;i++) {  /*   } */
       for (j=1;j<=NDIM;j++)  
         ximort[i][j]=(i == j ? 1.0 : 0.0);    /*-------- arguments in the command line --------*/
     }  
        /* Log file */
     p[1]=0.0268; p[NDIM]=0.083;    strcat(filelog, optionfilefiname);
     /*printf("%lf %lf", p[1], p[2]);*/    strcat(filelog,".log");    /* */
        if((ficlog=fopen(filelog,"w"))==NULL)    {
          printf("Problem with logfile %s\n",filelog);
     printf("Powell\n");  fprintf(ficlog,"Powell\n");      goto end;
     strcpy(filerespow,"pow-mort");    }
     strcat(filerespow,fileres);    fprintf(ficlog,"Log filename:%s\n",filelog);
     if((ficrespow=fopen(filerespow,"w"))==NULL) {    fprintf(ficlog,"\n%s\n%s",version,fullversion);
       printf("Problem with resultfile: %s\n", filerespow);    fprintf(ficlog,"\nEnter the parameter file name: \n");
       fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);    fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
     }   path=%s \n\
     fprintf(ficrespow,"# Powell\n# iter -2*LL");   optionfile=%s\n\
     /*  for (i=1;i<=nlstate;i++)   optionfilext=%s\n\
         for(j=1;j<=nlstate+ndeath;j++)   optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
         if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);  
     */    printf("Local time (at start):%s",strstart);
     fprintf(ficrespow,"\n");    fprintf(ficlog,"Local time (at start): %s",strstart);
        fflush(ficlog);
     powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);  /*   (void) gettimeofday(&curr_time,&tzp); */
     fclose(ficrespow);  /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
      
     hesscov(matcov, p, NDIM, delti, 1e-4, gompertz);    /* */
     strcpy(fileres,"r");
     for(i=1; i <=NDIM; i++)    strcat(fileres, optionfilefiname);
       for(j=i+1;j<=NDIM;j++)    strcat(fileres,".txt");    /* Other files have txt extension */
         matcov[i][j]=matcov[j][i];  
        /*---------arguments file --------*/
     printf("\nCovariance matrix\n ");  
     for(i=1; i <=NDIM; i++) {    if((ficpar=fopen(optionfile,"r"))==NULL)    {
       for(j=1;j<=NDIM;j++){      printf("Problem with optionfile %s\n",optionfile);
         printf("%f ",matcov[i][j]);      fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       }      fflush(ficlog);
       printf("\n ");      goto end;
     }    }
      
     printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);  
     for (i=1;i<=NDIM;i++)  
       printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));    strcpy(filereso,"o");
     strcat(filereso,fileres);
     lsurv=vector(1,AGESUP);    if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
     lpop=vector(1,AGESUP);      printf("Problem with Output resultfile: %s\n", filereso);
     tpop=vector(1,AGESUP);      fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
     lsurv[agegomp]=100000;      fflush(ficlog);
          goto end;
     for (k=agegomp;k<=AGESUP;k++) {    }
       agemortsup=k;  
       if (p[1]*exp(p[2]*(k-agegomp))>1) break;    /* Reads comments: lines beginning with '#' */
     }    numlinepar=0;
        while((c=getc(ficpar))=='#' && c!= EOF){
     for (k=agegomp;k<agemortsup;k++)      ungetc(c,ficpar);
       lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));      fgets(line, MAXLINE, ficpar);
          numlinepar++;
     for (k=agegomp;k<agemortsup;k++){      fputs(line,stdout);
       lpop[k]=(lsurv[k]+lsurv[k+1])/2.;      fputs(line,ficparo);
       sumlpop=sumlpop+lpop[k];      fputs(line,ficlog);
     }    }
        ungetc(c,ficpar);
     tpop[agegomp]=sumlpop;  
     for (k=agegomp;k<(agemortsup-3);k++){    fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
       /*  tpop[k+1]=2;*/    numlinepar++;
       tpop[k+1]=tpop[k]-lpop[k];    printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     }    fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
        fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
        fflush(ficlog);
     printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");    while((c=getc(ficpar))=='#' && c!= EOF){
     for (k=agegomp;k<(agemortsup-2);k++)      ungetc(c,ficpar);
       printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);      fgets(line, MAXLINE, ficpar);
          numlinepar++;
          fputs(line, stdout);
     replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */      //puts(line);
     printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);      fputs(line,ficparo);
          fputs(line,ficlog);
     printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \    }
                      stepm, weightopt,\    ungetc(c,ficpar);
                      model,imx,p,matcov,agemortsup);  
         
     free_vector(lsurv,1,AGESUP);    covar=matrix(0,NCOVMAX,1,n);  /**< used in readdata */
     free_vector(lpop,1,AGESUP);    cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement plus one, indepently of n in Vn*/
     free_vector(tpop,1,AGESUP);    /* v1+v2+v3+v2*v4+v5*age makes cptcovn = 5
   } /* Endof if mle==-3 */       v1+v2*age+v2*v3 makes cptcovn = 3
      */
   else{ /* For mle >=1 */    if (strlen(model)>1) 
        ncovmodel=2+nbocc(model,'+')+1; /*Number of variables including intercept and age = cptcovn + intercept + age : v1+v2+v3+v2*v4+v5*age makes 5+2=7*/
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */    else
     printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);      ncovmodel=2;
     for (k=1; k<=npar;k++)    nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
       printf(" %d %8.5f",k,p[k]);    nforce= (nlstate+ndeath-1)*nlstate; /* Number of forces ij from state i to j */
     printf("\n");    npar= nforce*ncovmodel; /* Number of parameters like aij*/
     globpr=1; /* to print the contributions */    if(npar >MAXPARM || nlstate >NLSTATEMAX || ndeath >NDEATHMAX || ncovmodel>NCOVMAX){
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */      printf("Too complex model for current IMaCh: npar=(nlstate+ndeath-1)*nlstate*ncovmodel=%d >= %d(MAXPARM) or nlstate=%d >= %d(NLSTATEMAX) or ndeath=%d >= %d(NDEATHMAX) or ncovmodel=(k+age+#of+signs)=%d(NCOVMAX) >= %d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
     printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);      fprintf(ficlog,"Too complex model for current IMaCh: %d >=%d(MAXPARM) or %d >=%d(NLSTATEMAX) or %d >=%d(NDEATHMAX) or %d(NCOVMAX) >=%d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
     for (k=1; k<=npar;k++)      fflush(stdout);
       printf(" %d %8.5f",k,p[k]);      fclose (ficlog);
     printf("\n");      goto end;
     if(mle>=1){ /* Could be 1 or 2 */    }
       mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);    delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     }    delti=delti3[1][1];
        /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     /*--------- results files --------------*/    if(mle==-1){ /* Print a wizard for help writing covariance matrix */
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);      prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
          printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
          fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
     fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");      free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");      fclose (ficparo);
     fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");      fclose (ficlog);
     for(i=1,jk=1; i <=nlstate; i++){      goto end;
       for(k=1; k <=(nlstate+ndeath); k++){      exit(0);
         if (k != i) {    }
           printf("%d%d ",i,k);    else if(mle==-3) {
           fprintf(ficlog,"%d%d ",i,k);      prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
           fprintf(ficres,"%1d%1d ",i,k);      printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
           for(j=1; j <=ncovmodel; j++){      fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
             printf("%lf ",p[jk]);      param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
             fprintf(ficlog,"%lf ",p[jk]);      matcov=matrix(1,npar,1,npar);
             fprintf(ficres,"%lf ",p[jk]);    }
             jk++;    else{
           }      /* Read guessed parameters */
           printf("\n");      /* Reads comments: lines beginning with '#' */
           fprintf(ficlog,"\n");      while((c=getc(ficpar))=='#' && c!= EOF){
           fprintf(ficres,"\n");        ungetc(c,ficpar);
         }        fgets(line, MAXLINE, ficpar);
       }        numlinepar++;
     }        fputs(line,stdout);
     if(mle!=0){        fputs(line,ficparo);
       /* Computing hessian and covariance matrix */        fputs(line,ficlog);
       ftolhess=ftol; /* Usually correct */      }
       hesscov(matcov, p, npar, delti, ftolhess, func);      ungetc(c,ficpar);
     }      
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");      param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     printf("# Scales (for hessian or gradient estimation)\n");      for(i=1; i <=nlstate; i++){
     fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");        j=0;
     for(i=1,jk=1; i <=nlstate; i++){        for(jj=1; jj <=nlstate+ndeath; jj++){
       for(j=1; j <=nlstate+ndeath; j++){          if(jj==i) continue;
         if (j!=i) {          j++;
           fprintf(ficres,"%1d%1d",i,j);          fscanf(ficpar,"%1d%1d",&i1,&j1);
           printf("%1d%1d",i,j);          if ((i1 != i) && (j1 != j)){
           fprintf(ficlog,"%1d%1d",i,j);            printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
           for(k=1; k<=ncovmodel;k++){  It might be a problem of design; if ncovcol and the model are correct\n \
             printf(" %.5e",delti[jk]);  run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
             fprintf(ficlog," %.5e",delti[jk]);            exit(1);
             fprintf(ficres," %.5e",delti[jk]);          }
             jk++;          fprintf(ficparo,"%1d%1d",i1,j1);
           }          if(mle==1)
           printf("\n");            printf("%1d%1d",i,j);
           fprintf(ficlog,"\n");          fprintf(ficlog,"%1d%1d",i,j);
           fprintf(ficres,"\n");          for(k=1; k<=ncovmodel;k++){
         }            fscanf(ficpar," %lf",&param[i][j][k]);
       }            if(mle==1){
     }              printf(" %lf",param[i][j][k]);
                  fprintf(ficlog," %lf",param[i][j][k]);
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");            }
     if(mle>=1)            else
       printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");              fprintf(ficlog," %lf",param[i][j][k]);
     fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");            fprintf(ficparo," %lf",param[i][j][k]);
     /* # 121 Var(a12)\n\ */          }
     /* # 122 Cov(b12,a12) Var(b12)\n\ */          fscanf(ficpar,"\n");
     /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */          numlinepar++;
     /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */          if(mle==1)
     /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */            printf("\n");
     /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */          fprintf(ficlog,"\n");
     /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */          fprintf(ficparo,"\n");
     /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */        }
          }  
          fflush(ficlog);
     /* Just to have a covariance matrix which will be more understandable  
        even is we still don't want to manage dictionary of variables      /* Reads scales values */
     */      p=param[1][1];
     for(itimes=1;itimes<=2;itimes++){      
       jj=0;      /* Reads comments: lines beginning with '#' */
       for(i=1; i <=nlstate; i++){      while((c=getc(ficpar))=='#' && c!= EOF){
         for(j=1; j <=nlstate+ndeath; j++){        ungetc(c,ficpar);
           if(j==i) continue;        fgets(line, MAXLINE, ficpar);
           for(k=1; k<=ncovmodel;k++){        numlinepar++;
             jj++;        fputs(line,stdout);
             ca[0]= k+'a'-1;ca[1]='\0';        fputs(line,ficparo);
             if(itimes==1){        fputs(line,ficlog);
               if(mle>=1)      }
                 printf("#%1d%1d%d",i,j,k);      ungetc(c,ficpar);
               fprintf(ficlog,"#%1d%1d%d",i,j,k);  
               fprintf(ficres,"#%1d%1d%d",i,j,k);      for(i=1; i <=nlstate; i++){
             }else{        for(j=1; j <=nlstate+ndeath-1; j++){
               if(mle>=1)          fscanf(ficpar,"%1d%1d",&i1,&j1);
                 printf("%1d%1d%d",i,j,k);          if ((i1-i)*(j1-j)!=0){
               fprintf(ficlog,"%1d%1d%d",i,j,k);            printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
               fprintf(ficres,"%1d%1d%d",i,j,k);            exit(1);
             }          }
             ll=0;          printf("%1d%1d",i,j);
             for(li=1;li <=nlstate; li++){          fprintf(ficparo,"%1d%1d",i1,j1);
               for(lj=1;lj <=nlstate+ndeath; lj++){          fprintf(ficlog,"%1d%1d",i1,j1);
                 if(lj==li) continue;          for(k=1; k<=ncovmodel;k++){
                 for(lk=1;lk<=ncovmodel;lk++){            fscanf(ficpar,"%le",&delti3[i][j][k]);
                   ll++;            printf(" %le",delti3[i][j][k]);
                   if(ll<=jj){            fprintf(ficparo," %le",delti3[i][j][k]);
                     cb[0]= lk +'a'-1;cb[1]='\0';            fprintf(ficlog," %le",delti3[i][j][k]);
                     if(ll<jj){          }
                       if(itimes==1){          fscanf(ficpar,"\n");
                         if(mle>=1)          numlinepar++;
                           printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);          printf("\n");
                         fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);          fprintf(ficparo,"\n");
                         fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);          fprintf(ficlog,"\n");
                       }else{        }
                         if(mle>=1)      }
                           printf(" %.5e",matcov[jj][ll]);      fflush(ficlog);
                         fprintf(ficlog," %.5e",matcov[jj][ll]);  
                         fprintf(ficres," %.5e",matcov[jj][ll]);      /* Reads covariance matrix */
                       }      delti=delti3[1][1];
                     }else{  
                       if(itimes==1){  
                         if(mle>=1)      /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
                           printf(" Var(%s%1d%1d)",ca,i,j);    
                         fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);      /* Reads comments: lines beginning with '#' */
                         fprintf(ficres," Var(%s%1d%1d)",ca,i,j);      while((c=getc(ficpar))=='#' && c!= EOF){
                       }else{        ungetc(c,ficpar);
                         if(mle>=1)        fgets(line, MAXLINE, ficpar);
                           printf(" %.5e",matcov[jj][ll]);        numlinepar++;
                         fprintf(ficlog," %.5e",matcov[jj][ll]);        fputs(line,stdout);
                         fprintf(ficres," %.5e",matcov[jj][ll]);        fputs(line,ficparo);
                       }        fputs(line,ficlog);
                     }      }
                   }      ungetc(c,ficpar);
                 } /* end lk */    
               } /* end lj */      matcov=matrix(1,npar,1,npar);
             } /* end li */      for(i=1; i <=npar; i++)
             if(mle>=1)        for(j=1; j <=npar; j++) matcov[i][j]=0.;
               printf("\n");        
             fprintf(ficlog,"\n");      for(i=1; i <=npar; i++){
             fprintf(ficres,"\n");        fscanf(ficpar,"%s",str);
             numlinepar++;        if(mle==1)
           } /* end k*/          printf("%s",str);
         } /*end j */        fprintf(ficlog,"%s",str);
       } /* end i */        fprintf(ficparo,"%s",str);
     } /* end itimes */        for(j=1; j <=i; j++){
              fscanf(ficpar," %le",&matcov[i][j]);
     fflush(ficlog);          if(mle==1){
     fflush(ficres);            printf(" %.5le",matcov[i][j]);
              }
     while((c=getc(ficpar))=='#' && c!= EOF){          fprintf(ficlog," %.5le",matcov[i][j]);
       ungetc(c,ficpar);          fprintf(ficparo," %.5le",matcov[i][j]);
       fgets(line, MAXLINE, ficpar);        }
       puts(line);        fscanf(ficpar,"\n");
       fputs(line,ficparo);        numlinepar++;
     }        if(mle==1)
     ungetc(c,ficpar);          printf("\n");
            fprintf(ficlog,"\n");
     estepm=0;        fprintf(ficparo,"\n");
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);      }
     if (estepm==0 || estepm < stepm) estepm=stepm;      for(i=1; i <=npar; i++)
     if (fage <= 2) {        for(j=i+1;j<=npar;j++)
       bage = ageminpar;          matcov[i][j]=matcov[j][i];
       fage = agemaxpar;      
     }      if(mle==1)
            printf("\n");
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");      fprintf(ficlog,"\n");
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);      
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);      fflush(ficlog);
          
     while((c=getc(ficpar))=='#' && c!= EOF){      /*-------- Rewriting parameter file ----------*/
       ungetc(c,ficpar);      strcpy(rfileres,"r");    /* "Rparameterfile */
       fgets(line, MAXLINE, ficpar);      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       puts(line);      strcat(rfileres,".");    /* */
       fputs(line,ficparo);      strcat(rfileres,optionfilext);    /* Other files have txt extension */
     }      if((ficres =fopen(rfileres,"w"))==NULL) {
     ungetc(c,ficpar);        printf("Problem writing new parameter file: %s\n", fileres);goto end;
            fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
     fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);      }
     fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);      fprintf(ficres,"#%s\n",version);
     fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);    }    /* End of mle != -3 */
     printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);  
     fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);  
        n= lastobs;
     while((c=getc(ficpar))=='#' && c!= EOF){    num=lvector(1,n);
       ungetc(c,ficpar);    moisnais=vector(1,n);
       fgets(line, MAXLINE, ficpar);    annais=vector(1,n);
       puts(line);    moisdc=vector(1,n);
       fputs(line,ficparo);    andc=vector(1,n);
     }    agedc=vector(1,n);
     ungetc(c,ficpar);    cod=ivector(1,n);
        weight=vector(1,n);
        for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;    mint=matrix(1,maxwav,1,n);
     dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;    anint=matrix(1,maxwav,1,n);
        s=imatrix(1,maxwav+1,1,n); /* s[i][j] health state for wave i and individual j */ 
     fscanf(ficpar,"pop_based=%d\n",&popbased);    tab=ivector(1,NCOVMAX);
     fprintf(ficparo,"pop_based=%d\n",popbased);      ncodemax=ivector(1,NCOVMAX); /* Number of code per covariate; if O and 1 only, 2**ncov; V1+V2+V3+V4=>16 */
     fprintf(ficres,"pop_based=%d\n",popbased);    
        /* Reads data from file datafile */
     while((c=getc(ficpar))=='#' && c!= EOF){    if (readdata(datafile, firstobs, lastobs, &imx)==1)
       ungetc(c,ficpar);      goto end;
       fgets(line, MAXLINE, ficpar);  
       puts(line);    /* Calculation of the number of parameters from char model */
       fputs(line,ficparo);      /*    modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4 
     }          k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tag[cptcovage=1]=4
     ungetc(c,ficpar);          k=3 V4 Tvar[k=3]= 4 (from V4)
              k=2 V1 Tvar[k=2]= 1 (from V1)
     fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);          k=1 Tvar[1]=2 (from V2)
     fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);      */
     printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);    Tvar=ivector(1,NCOVMAX); /* Was 15 changed to NCOVMAX. */
     fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);    /*  V2+V1+V4+age*V3 is a model with 4 covariates (3 plus signs). 
     fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);        For each model-covariate stores the data-covariate id. Tvar[1]=2, Tvar[2]=1, Tvar[3]=4, 
     /* day and month of proj2 are not used but only year anproj2.*/        Tvar[4=age*V3] is 3 and 'age' is recorded in Tage.
        */
        /* For model-covariate k tells which data-covariate to use but
          because this model-covariate is a construction we invent a new column
     /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/      ncovcol + k1
     /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/      If already ncovcol=4 and model=V2+V1+V1*V4+age*V3
          Tvar[3=V1*V4]=4+1 etc */
     replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */    Tprod=ivector(1,NCOVMAX); /* Gives the position of a product */
     printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);    /* Tprod[k1=1]=3(=V1*V4) for V2+V1+V1*V4+age*V3
           if  V2+V1+V1*V4+age*V3+V3*V2   TProd[k1=2]=5 (V3*V2)
     printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\    */
                  model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\    Tvaraff=ivector(1,NCOVMAX); /* Unclear */
                  jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);    Tvard=imatrix(1,NCOVMAX,1,2); /* n=Tvard[k1][1]  and m=Tvard[k1][2] gives the couple n,m of the k1 th product Vn*Vm
                                    * For V3*V2 (in V2+V1+V1*V4+age*V3+V3*V2), V3*V2 position is 2nd. 
    /*------------ free_vector  -------------*/                              * Tvard[k1=2][1]=3 (V3) Tvard[k1=2][2]=2(V2) */
    /*  chdir(path); */    Tage=ivector(1,NCOVMAX); /* Gives the covariate id of covariates associated with age: V2 + V1 + age*V4 + V3*age
                             4 covariates (3 plus signs)
     free_ivector(wav,1,imx);                           Tage[1=V3*age]= 4; Tage[2=age*V4] = 3
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);                        */  
     free_imatrix(bh,1,lastpass-firstpass+1,1,imx);  
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);      if(decodemodel(model, lastobs) == 1)
     free_lvector(num,1,n);      goto end;
     free_vector(agedc,1,n);  
     /*free_matrix(covar,0,NCOVMAX,1,n);*/    if((double)(lastobs-imx)/(double)imx > 1.10){
     /*free_matrix(covar,1,NCOVMAX,1,n);*/      nbwarn++;
     fclose(ficparo);      printf("Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
     fclose(ficres);      fprintf(ficlog,"Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
     }
       /*  if(mle==1){*/
     /*--------------- Prevalence limit  (period or stable prevalence) --------------*/    if (weightopt != 1) { /* Maximisation without weights. We can have weights different from 1 but want no weight*/
        for(i=1;i<=imx;i++) weight[i]=1.0; /* changed to imx */
     strcpy(filerespl,"pl");    }
     strcat(filerespl,fileres);  
     if((ficrespl=fopen(filerespl,"w"))==NULL) {      /*-calculation of age at interview from date of interview and age at death -*/
       printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;    agev=matrix(1,maxwav,1,imx);
       fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;  
     }    if(calandcheckages(imx, maxwav, &agemin, &agemax, &nberr, &nbwarn) == 1)
     printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);      goto end;
     fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);  
     pstamp(ficrespl);  
     fprintf(ficrespl,"# Period (stable) prevalence \n");    agegomp=(int)agemin;
     fprintf(ficrespl,"#Age ");    free_vector(moisnais,1,n);
     for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);    free_vector(annais,1,n);
     fprintf(ficrespl,"\n");    /* free_matrix(mint,1,maxwav,1,n);
         free_matrix(anint,1,maxwav,1,n);*/
     prlim=matrix(1,nlstate,1,nlstate);    free_vector(moisdc,1,n);
     free_vector(andc,1,n);
     agebase=ageminpar;    /* */
     agelim=agemaxpar;    
     ftolpl=1.e-10;    wav=ivector(1,imx);
     i1=cptcoveff;    dh=imatrix(1,lastpass-firstpass+1,1,imx);
     if (cptcovn < 1){i1=1;}    bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){     
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    /* Concatenates waves */
         k=k+1;    concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/    /* */
         fprintf(ficrespl,"\n#******");   
         printf("\n#******");    /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
         fprintf(ficlog,"\n#******");  
         for(j=1;j<=cptcoveff;j++) {    nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    ncodemax[1]=1;
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    Ndum =ivector(-1,NCOVMAX);  
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    if (ncovmodel > 2)
         }      tricode(Tvar,nbcode,imx, Ndum); /**< Fills nbcode[Tvar[j]][l]; */
         fprintf(ficrespl,"******\n");  
         printf("******\n");    codtab=imatrix(1,100,1,10); /* codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) */
         fprintf(ficlog,"******\n");    /*printf(" codtab[1,1],codtab[100,10]=%d,%d\n", codtab[1][1],codtab[100][10]);*/
            h=0;
         for (age=agebase; age<=agelim; age++){  
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);  
           fprintf(ficrespl,"%.0f ",age );    /*if (cptcovn > 0) */
           for(j=1;j<=cptcoveff;j++)        
             fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);   
           for(i=1; i<=nlstate;i++)    m=pow(2,cptcoveff);
             fprintf(ficrespl," %.5f", prlim[i][i]);   
           fprintf(ficrespl,"\n");    for(k=1;k<=cptcoveff; k++){ /* scans any effective covariate */
         }      for(i=1; i <=pow(2,cptcoveff-k);i++){ /* i=1 to 8/1=8; i=1 to 8/2=4; i=1 to 8/8=1 */ 
       }        for(j=1; j <= ncodemax[k]; j++){ /* For each modality of this covariate ncodemax=2*/
     }          for(cpt=1; cpt <=pow(2,k-1); cpt++){  /* cpt=1 to 8/2**(3+1-1 or 3+1-3) =1 or 4 */ 
     fclose(ficrespl);            h++;
             if (h>m) 
     /*------------- h Pij x at various ages ------------*/              h=1;
              /**< codtab(h,k)  k   = codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) + 1
     strcpy(filerespij,"pij");  strcat(filerespij,fileres);             *     h     1     2     3     4
     if((ficrespij=fopen(filerespij,"w"))==NULL) {             *______________________________  
       printf("Problem with Pij resultfile: %s\n", filerespij);goto end;             *     1 i=1 1 i=1 1 i=1 1 i=1 1
       fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;             *     2     2     1     1     1
     }             *     3 i=2 1     2     1     1
     printf("Computing pij: result on file '%s' \n", filerespij);             *     4     2     2     1     1
     fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);             *     5 i=3 1 i=2 1     2     1
               *     6     2     1     2     1
     stepsize=(int) (stepm+YEARM-1)/YEARM;             *     7 i=4 1     2     2     1
     /*if (stepm<=24) stepsize=2;*/             *     8     2     2     2     1
              *     9 i=5 1 i=3 1 i=2 1     1
     agelim=AGESUP;             *    10     2     1     1     1
     hstepm=stepsize*YEARM; /* Every year of age */             *    11 i=6 1     2     1     1
     hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */             *    12     2     2     1     1
              *    13 i=7 1 i=4 1     2     1    
     /* hstepm=1;   aff par mois*/             *    14     2     1     2     1
     pstamp(ficrespij);             *    15 i=8 1     2     2     1
     fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");             *    16     2     2     2     1
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){             */
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){            codtab[h][k]=j;
         k=k+1;            /*codtab[h][Tvar[k]]=j;*/
         fprintf(ficrespij,"\n#****** ");            printf("h=%d k=%d j=%d codtab[h][k]=%d Tvar[k]=%d codtab[h][Tvar[k]]=%d \n",h, k,j,codtab[h][k],Tvar[k],codtab[h][Tvar[k]]);
         for(j=1;j<=cptcoveff;j++)          } 
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        }
         fprintf(ficrespij,"******\n");      }
            } 
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */       codtab[1][2]=1;codtab[2][2]=2; */
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
           /*      nhstepm=nhstepm*YEARM; aff par mois*/         printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);       printf("\n");
           oldm=oldms;savm=savms;       }
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);         scanf("%d",i);*/
           fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");  
           for(i=1; i<=nlstate;i++)   free_ivector(Ndum,-1,NCOVMAX);
             for(j=1; j<=nlstate+ndeath;j++)  
               fprintf(ficrespij," %1d-%1d",i,j);  
           fprintf(ficrespij,"\n");      
           for (h=0; h<=nhstepm; h++){    /*------------ gnuplot -------------*/
             fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );    strcpy(optionfilegnuplot,optionfilefiname);
             for(i=1; i<=nlstate;i++)    if(mle==-3)
               for(j=1; j<=nlstate+ndeath;j++)      strcat(optionfilegnuplot,"-mort");
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);    strcat(optionfilegnuplot,".gp");
             fprintf(ficrespij,"\n");  
           }    if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      printf("Problem with file %s",optionfilegnuplot);
           fprintf(ficrespij,"\n");    }
         }    else{
       }      fprintf(ficgp,"\n# %s\n", version); 
     }      fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       //fprintf(ficgp,"set missing 'NaNq'\n");
     varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);      fprintf(ficgp,"set datafile missing 'NaNq'\n");
     }
     fclose(ficrespij);    /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
     probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);  
     for(i=1;i<=AGESUP;i++)    strcpy(optionfilehtm,optionfilefiname); /* Main html file */
       for(j=1;j<=NCOVMAX;j++)    if(mle==-3)
         for(k=1;k<=NCOVMAX;k++)      strcat(optionfilehtm,"-mort");
           probs[i][j][k]=0.;    strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
     /*---------- Forecasting ------------------*/      printf("Problem with %s \n",optionfilehtm);
     /*if((stepm == 1) && (strcmp(model,".")==0)){*/      exit(0);
     if(prevfcast==1){    }
       /*    if(stepm ==1){*/  
       prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);    strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
       /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/    strcat(optionfilehtmcov,"-cov.htm");
       /*      }  */    if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       /*      else{ */      printf("Problem with %s \n",optionfilehtmcov), exit(0);
       /*        erreur=108; */    }
       /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */    else{
       /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */    fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
       /*      } */  <hr size=\"2\" color=\"#EC5E5E\"> \n\
     }  Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
              optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
     /*---------- Health expectancies and variances ------------*/  
     fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
     strcpy(filerest,"t");  <hr size=\"2\" color=\"#EC5E5E\"> \n\
     strcat(filerest,fileres);  Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
     if((ficrest=fopen(filerest,"w"))==NULL) {  \n\
       printf("Problem with total LE resultfile: %s\n", filerest);goto end;  <hr  size=\"2\" color=\"#EC5E5E\">\
       fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;   <ul><li><h4>Parameter files</h4>\n\
     }   - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
     printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest);   - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
     fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest);   - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
     strcpy(filerese,"e");            optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
     strcat(filerese,fileres);            optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
     if((ficreseij=fopen(filerese,"w"))==NULL) {            fileres,fileres,\
       printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);            filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
       fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);    fflush(fichtm);
     }  
     printf("Computing Health Expectancies: result on file '%s' \n", filerese);    strcpy(pathr,path);
     fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);    strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     strcpy(fileresstde,"stde");    
     strcat(fileresstde,fileres);    /* Calculates basic frequencies. Computes observed prevalence at single age
     if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {       and prints on file fileres'p'. */
       printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);    freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
       fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);  
     }    fprintf(fichtm,"\n");
     printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);    fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
     fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);  Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
     strcpy(filerescve,"cve");            imx,agemin,agemax,jmin,jmax,jmean);
     strcat(filerescve,fileres);    pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
     if((ficrescveij=fopen(filerescve,"w"))==NULL) {      oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);      newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);      savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
     }      oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
     printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);      
     fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);     
     /* For Powell, parameters are in a vector p[] starting at p[1]
     strcpy(fileresv,"v");       so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     strcat(fileresv,fileres);    p=param[1][1]; /* *(*(*(param +1)+1)+0) */
     if((ficresvij=fopen(fileresv,"w"))==NULL) {  
       printf("Problem with variance resultfile: %s\n", fileresv);exit(0);    globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
       fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);  
     }    if (mle==-3){
     printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);      ximort=matrix(1,NDIM,1,NDIM); 
     fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);  /*     ximort=gsl_matrix_alloc(1,NDIM,1,NDIM); */
       cens=ivector(1,n);
     /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */      ageexmed=vector(1,n);
     prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);      agecens=vector(1,n);
     /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\      dcwave=ivector(1,n);
         ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);   
     */      for (i=1; i<=imx; i++){
         dcwave[i]=-1;
     if (mobilav!=0) {        for (m=firstpass; m<=lastpass; m++)
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          if (s[m][i]>nlstate) {
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){            dcwave[i]=m;
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);            /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
         printf(" Error in movingaverage mobilav=%d\n",mobilav);            break;
       }          }
     }      }
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){      for (i=1; i<=imx; i++) {
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        if (wav[i]>0){
         k=k+1;          ageexmed[i]=agev[mw[1][i]][i];
         fprintf(ficrest,"\n#****** ");          j=wav[i];
         for(j=1;j<=cptcoveff;j++)          agecens[i]=1.; 
           fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
         fprintf(ficrest,"******\n");          if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
         fprintf(ficreseij,"\n#****** ");            cens[i]= 1;
         fprintf(ficresstdeij,"\n#****** ");          }else if (ageexmed[i]< 1) 
         fprintf(ficrescveij,"\n#****** ");            cens[i]= -1;
         for(j=1;j<=cptcoveff;j++) {          if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
           fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            cens[i]=0 ;
           fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        }
           fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        else cens[i]=-1;
         }      }
         fprintf(ficreseij,"******\n");      
         fprintf(ficresstdeij,"******\n");      for (i=1;i<=NDIM;i++) {
         fprintf(ficrescveij,"******\n");        for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
         fprintf(ficresvij,"\n#****** ");      }
         for(j=1;j<=cptcoveff;j++)      
           fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      /*p[1]=0.0268; p[NDIM]=0.083;*/
         fprintf(ficresvij,"******\n");      /*printf("%lf %lf", p[1], p[2]);*/
       
         eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);      
         oldm=oldms;savm=savms;  #ifdef GSL
         evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);        printf("GSL optimization\n");  fprintf(ficlog,"Powell\n");
         cvevsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);    #elsedef
        printf("Powell\n");  fprintf(ficlog,"Powell\n");
         vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);  #endif
         oldm=oldms;savm=savms;      strcpy(filerespow,"pow-mort"); 
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav, strstart);      strcat(filerespow,fileres);
         if(popbased==1){      if((ficrespow=fopen(filerespow,"w"))==NULL) {
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav, strstart);        printf("Problem with resultfile: %s\n", filerespow);
         }        fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
         pstamp(ficrest);  #ifdef GSL
         fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n# Age ( e.. (std) ");      fprintf(ficrespow,"# GSL optimization\n# iter -2*LL");
         for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);  #elsedef
         fprintf(ficrest,"\n");      fprintf(ficrespow,"# Powell\n# iter -2*LL");
   #endif
         epj=vector(1,nlstate+1);      /*  for (i=1;i<=nlstate;i++)
         for(age=bage; age <=fage ;age++){          for(j=1;j<=nlstate+ndeath;j++)
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);          if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
           if (popbased==1) {      */
             if(mobilav ==0){      fprintf(ficrespow,"\n");
               for(i=1; i<=nlstate;i++)  #ifdef GSL
                 prlim[i][i]=probs[(int)age][i][k];      /* gsl starts here */ 
             }else{ /* mobilav */      T = gsl_multimin_fminimizer_nmsimplex;
               for(i=1; i<=nlstate;i++)      gsl_multimin_fminimizer *sfm = NULL;
                 prlim[i][i]=mobaverage[(int)age][i][k];      gsl_vector *ss, *x;
             }      gsl_multimin_function minex_func;
           }  
              /* Initial vertex size vector */
           fprintf(ficrest," %4.0f",age);      ss = gsl_vector_alloc (NDIM);
           for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){      
             for(i=1, epj[j]=0.;i <=nlstate;i++) {      if (ss == NULL){
               epj[j] += prlim[i][i]*eij[i][j][(int)age];        GSL_ERROR_VAL ("failed to allocate space for ss", GSL_ENOMEM, 0);
               /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/      }
             }      /* Set all step sizes to 1 */
             epj[nlstate+1] +=epj[j];      gsl_vector_set_all (ss, 0.001);
           }  
       /* Starting point */
           for(i=1, vepp=0.;i <=nlstate;i++)      
             for(j=1;j <=nlstate;j++)      x = gsl_vector_alloc (NDIM);
               vepp += vareij[i][j][(int)age];      
           fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));      if (x == NULL){
           for(j=1;j <=nlstate;j++){        gsl_vector_free(ss);
             fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));        GSL_ERROR_VAL ("failed to allocate space for x", GSL_ENOMEM, 0);
           }      }
           fprintf(ficrest,"\n");    
         }      /* Initialize method and iterate */
         free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);      /*     p[1]=0.0268; p[NDIM]=0.083; */
         free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);  /*     gsl_vector_set(x, 0, 0.0268); */
         free_vector(epj,1,nlstate+1);  /*     gsl_vector_set(x, 1, 0.083); */
       }      gsl_vector_set(x, 0, p[1]);
     }      gsl_vector_set(x, 1, p[2]);
     free_vector(weight,1,n);  
     free_imatrix(Tvard,1,15,1,2);      minex_func.f = &gompertz_f;
     free_imatrix(s,1,maxwav+1,1,n);      minex_func.n = NDIM;
     free_matrix(anint,1,maxwav,1,n);      minex_func.params = (void *)&p; /* ??? */
     free_matrix(mint,1,maxwav,1,n);      
     free_ivector(cod,1,n);      sfm = gsl_multimin_fminimizer_alloc (T, NDIM);
     free_ivector(tab,1,NCOVMAX);      gsl_multimin_fminimizer_set (sfm, &minex_func, x, ss);
     fclose(ficreseij);      
     fclose(ficresstdeij);      printf("Iterations beginning .....\n\n");
     fclose(ficrescveij);      printf("Iter. #    Intercept       Slope     -Log Likelihood     Simplex size\n");
     fclose(ficresvij);  
     fclose(ficrest);      iteri=0;
     fclose(ficpar);      while (rval == GSL_CONTINUE){
          iteri++;
     /*------- Variance of period (stable) prevalence------*/          status = gsl_multimin_fminimizer_iterate(sfm);
         
     strcpy(fileresvpl,"vpl");        if (status) printf("error: %s\n", gsl_strerror (status));
     strcat(fileresvpl,fileres);        fflush(0);
     if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {        
       printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);        if (status) 
       exit(0);          break;
     }        
     printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);        rval = gsl_multimin_test_size (gsl_multimin_fminimizer_size (sfm), 1e-6);
         ssval = gsl_multimin_fminimizer_size (sfm);
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){        
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        if (rval == GSL_SUCCESS)
         k=k+1;          printf ("converged to a local maximum at\n");
         fprintf(ficresvpl,"\n#****** ");        
         for(j=1;j<=cptcoveff;j++)        printf("%5d ", iteri);
           fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        for (it = 0; it < NDIM; it++){
         fprintf(ficresvpl,"******\n");          printf ("%10.5f ", gsl_vector_get (sfm->x, it));
              }
         varpl=matrix(1,nlstate,(int) bage, (int) fage);        printf("f() = %-10.5f ssize = %.7f\n", sfm->fval, ssval);
         oldm=oldms;savm=savms;      }
         varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);      
         free_matrix(varpl,1,nlstate,(int) bage, (int)fage);      printf("\n\n Please note: Program should be run many times with varying starting points to detemine global maximum\n\n");
       }      
     }      gsl_vector_free(x); /* initial values */
       gsl_vector_free(ss); /* inital step size */
     fclose(ficresvpl);      for (it=0; it<NDIM; it++){
         p[it+1]=gsl_vector_get(sfm->x,it);
     /*---------- End : free ----------------*/        fprintf(ficrespow," %.12lf", p[it]);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      }
     free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);      gsl_multimin_fminimizer_free (sfm); /* p *(sfm.x.data) et p *(sfm.x.data+1)  */
   #endif
   }  /* mle==-3 arrives here for freeing */  #ifdef POWELL
   free_matrix(prlim,1,nlstate,1,nlstate);       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
     free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);  #endif  
     free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);      fclose(ficrespow);
     free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);      
     free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);      hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
     free_matrix(covar,0,NCOVMAX,1,n);  
     free_matrix(matcov,1,npar,1,npar);      for(i=1; i <=NDIM; i++)
     /*free_vector(delti,1,npar);*/        for(j=i+1;j<=NDIM;j++)
     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);          matcov[i][j]=matcov[j][i];
     free_matrix(agev,1,maxwav,1,imx);      
     free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);      printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
     free_ivector(ncodemax,1,8);        for(j=1;j<=NDIM;j++){ 
     free_ivector(Tvar,1,15);          printf("%f ",matcov[i][j]);
     free_ivector(Tprod,1,15);        }
     free_ivector(Tvaraff,1,15);        printf("\n ");
     free_ivector(Tage,1,15);      }
     free_ivector(Tcode,1,100);      
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
     free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);      for (i=1;i<=NDIM;i++) 
     free_imatrix(codtab,1,100,1,10);        printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   fflush(fichtm);  
   fflush(ficgp);      lsurv=vector(1,AGESUP);
        lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
   if((nberr >0) || (nbwarn>0)){      lsurv[agegomp]=100000;
     printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);      
     fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);      for (k=agegomp;k<=AGESUP;k++) {
   }else{        agemortsup=k;
     printf("End of Imach\n");        if (p[1]*exp(p[2]*(k-agegomp))>1) break;
     fprintf(ficlog,"End of Imach\n");      }
   }      
   printf("See log file on %s\n",filelog);      for (k=agegomp;k<agemortsup;k++)
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */        lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
   (void) gettimeofday(&end_time,&tzp);      
   tm = *localtime(&end_time.tv_sec);      for (k=agegomp;k<agemortsup;k++){
   tmg = *gmtime(&end_time.tv_sec);        lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
   strcpy(strtend,asctime(&tm));        sumlpop=sumlpop+lpop[k];
   printf("Local time at start %s\nLocal time at end   %s",strstart, strtend);      }
   fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend);      
   printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));      tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
   printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);        /*  tpop[k+1]=2;*/
   fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));        tpop[k+1]=tpop[k]-lpop[k];
   fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);      }
   /*  printf("Total time was %d uSec.\n", total_usecs);*/      
 /*   if(fileappend(fichtm,optionfilehtm)){ */      
   fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);      printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
   fclose(fichtm);      for (k=agegomp;k<(agemortsup-2);k++) 
   fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);        printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   fclose(fichtmcov);      
   fclose(ficgp);      
   fclose(ficlog);      replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
   /*------ End -----------*/      printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
    printf("Before Current directory %s!\n",pathcd);                       stepm, weightopt,\
    if(chdir(pathcd) != 0)                       model,imx,p,matcov,agemortsup);
     printf("Can't move to directory %s!\n",path);      
   if(getcwd(pathcd,MAXLINE) > 0)      free_vector(lsurv,1,AGESUP);
     printf("Current directory %s!\n",pathcd);      free_vector(lpop,1,AGESUP);
   /*strcat(plotcmd,CHARSEPARATOR);*/      free_vector(tpop,1,AGESUP);
   sprintf(plotcmd,"gnuplot");  #ifdef GSL
 #ifndef UNIX      free_ivector(cens,1,n);
   sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);      free_vector(agecens,1,n);
 #endif      free_ivector(dcwave,1,n);
   if(!stat(plotcmd,&info)){      free_matrix(ximort,1,NDIM,1,NDIM);
     printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);  #endif
     if(!stat(getenv("GNUPLOTBIN"),&info)){    } /* Endof if mle==-3 */
       printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);    
     }else    else{ /* For mle >=1 */
       strcpy(pplotcmd,plotcmd);      globpr=0;/* debug */
 #ifdef UNIX      likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
     strcpy(plotcmd,GNUPLOTPROGRAM);      printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
     if(!stat(plotcmd,&info)){      for (k=1; k<=npar;k++)
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);        printf(" %d %8.5f",k,p[k]);
     }else      printf("\n");
       strcpy(pplotcmd,plotcmd);      globpr=1; /* to print the contributions */
 #endif      likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
   }else      printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
     strcpy(pplotcmd,plotcmd);      for (k=1; k<=npar;k++)
          printf(" %d %8.5f",k,p[k]);
   sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);      printf("\n");
   printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);      if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
   if((outcmd=system(plotcmd)) != 0){      }
     printf("\n Problem with gnuplot\n");      
   }      /*--------- results files --------------*/
   printf(" Wait...");      fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
   while (z[0] != 'q') {      
     /* chdir(path); */      
     printf("\nType e to edit output files, g to graph again and q for exiting: ");      fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     scanf("%s",z);      printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
 /*     if (z[0] == 'c') system("./imach"); */      fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     if (z[0] == 'e') {      for(i=1,jk=1; i <=nlstate; i++){
       printf("Starting browser with: %s",optionfilehtm);fflush(stdout);        for(k=1; k <=(nlstate+ndeath); k++){
       system(optionfilehtm);          if (k != i) {
     }            printf("%d%d ",i,k);
     else if (z[0] == 'g') system(plotcmd);            fprintf(ficlog,"%d%d ",i,k);
     else if (z[0] == 'q') exit(0);            fprintf(ficres,"%1d%1d ",i,k);
   }            for(j=1; j <=ncovmodel; j++){
   end:              printf("%lf ",p[jk]);
   while (z[0] != 'q') {              fprintf(ficlog,"%lf ",p[jk]);
     printf("\nType  q for exiting: ");              fprintf(ficres,"%lf ",p[jk]);
     scanf("%s",z);              jk++; 
   }            }
 }            printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
        /* freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint); */
       /* ,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2); */
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
   #include "prevlim.h"  /* Use ficrespl, ficlog */
       fclose(ficrespl);
   
   #ifdef FREEEXIT2
   #include "freeexit2.h"
   #endif
   
       /*------------- h Pij x at various ages ------------*/
   #include "hpijx.h"
       fclose(ficrespij);
   
     /*-------------- Variance of one-step probabilities---*/
       k=1;
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
   
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
   
       /*---------- Health expectancies, no variances ------------*/
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
         
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         /*}*/
       }
       fclose(ficreseij);
   
   
       /*---------- Health expectancies and variances ------------*/
   
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
   
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
           /*
            */
           /* goto endfree; */
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           pstamp(ficrest);
   
   
           for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
             oldm=oldms;savm=savms; /* Segmentation fault */
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart);
             fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n#  (weighted average of eij where weights are ");
             if(vpopbased==1)
               fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav);
             else
               fprintf(ficrest,"the age specific period (stable) prevalences in each health state \n");
             fprintf(ficrest,"# Age e.. (std) ");
             for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
             fprintf(ficrest,"\n");
   
             epj=vector(1,nlstate+1);
             for(age=bage; age <=fage ;age++){
               prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
               if (vpopbased==1) {
                 if(mobilav ==0){
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=probs[(int)age][i][k];
                 }else{ /* mobilav */ 
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=mobaverage[(int)age][i][k];
                 }
               }
           
               fprintf(ficrest," %4.0f",age);
               for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
                 for(i=1, epj[j]=0.;i <=nlstate;i++) {
                   epj[j] += prlim[i][i]*eij[i][j][(int)age];
                   /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
                 }
                 epj[nlstate+1] +=epj[j];
               }
   
               for(i=1, vepp=0.;i <=nlstate;i++)
                 for(j=1;j <=nlstate;j++)
                   vepp += vareij[i][j][(int)age];
               fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
               for(j=1;j <=nlstate;j++){
                 fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
               }
               fprintf(ficrest,"\n");
             }
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         /*}*/
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,NCOVMAX,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         /*}*/
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
     }  /* mle==-3 arrives here for freeing */
    endfree:
       free_matrix(prlim,1,nlstate,1,nlstate); /*here or after loop ? */
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,NCOVMAX);
       free_ivector(Tvar,1,NCOVMAX);
       free_ivector(Tprod,1,NCOVMAX);
       free_ivector(Tvaraff,1,NCOVMAX);
       free_ivector(Tage,1,NCOVMAX);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %ld Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %ld Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.125  
changed lines
  Added in v.1.146


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>