Diff for /imach/src/imach.c between versions 1.40 and 1.138

version 1.40, 2002/04/19 13:46:19 version 1.138, 2010/04/30 18:19:40
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.138  2010/04/30 18:19:40  brouard
      *** empty log message ***
   This program computes Healthy Life Expectancies from  
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    Revision 1.137  2010/04/29 18:11:38  brouard
   first survey ("cross") where individuals from different ages are    (Module): Checking covariates for more complex models
   interviewed on their health status or degree of disability (in the    than V1+V2. A lot of change to be done. Unstable.
   case of a health survey which is our main interest) -2- at least a  
   second wave of interviews ("longitudinal") which measure each change    Revision 1.136  2010/04/26 20:30:53  brouard
   (if any) in individual health status.  Health expectancies are    (Module): merging some libgsl code. Fixing computation
   computed from the time spent in each health state according to a    of likelione (using inter/intrapolation if mle = 0) in order to
   model. More health states you consider, more time is necessary to reach the    get same likelihood as if mle=1.
   Maximum Likelihood of the parameters involved in the model.  The    Some cleaning of code and comments added.
   simplest model is the multinomial logistic model where pij is the  
   probability to be observed in state j at the second wave    Revision 1.135  2009/10/29 15:33:14  brouard
   conditional to be observed in state i at the first wave. Therefore    (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where  
   'age' is age and 'sex' is a covariate. If you want to have a more    Revision 1.134  2009/10/29 13:18:53  brouard
   complex model than "constant and age", you should modify the program    (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
   where the markup *Covariates have to be included here again* invites  
   you to do it.  More covariates you add, slower the    Revision 1.133  2009/07/06 10:21:25  brouard
   convergence.    just nforces
   
   The advantage of this computer programme, compared to a simple    Revision 1.132  2009/07/06 08:22:05  brouard
   multinomial logistic model, is clear when the delay between waves is not    Many tings
   identical for each individual. Also, if a individual missed an  
   intermediate interview, the information is lost, but taken into    Revision 1.131  2009/06/20 16:22:47  brouard
   account using an interpolation or extrapolation.      Some dimensions resccaled
   
   hPijx is the probability to be observed in state i at age x+h    Revision 1.130  2009/05/26 06:44:34  brouard
   conditional to the observed state i at age x. The delay 'h' can be    (Module): Max Covariate is now set to 20 instead of 8. A
   split into an exact number (nh*stepm) of unobserved intermediate    lot of cleaning with variables initialized to 0. Trying to make
   states. This elementary transition (by month or quarter trimester,    V2+V3*age+V1+V4 strb=V3*age+V1+V4 working better.
   semester or year) is model as a multinomial logistic.  The hPx  
   matrix is simply the matrix product of nh*stepm elementary matrices    Revision 1.129  2007/08/31 13:49:27  lievre
   and the contribution of each individual to the likelihood is simply    Modification of the way of exiting when the covariate is not binary in order to see on the window the error message before exiting
   hPijx.  
     Revision 1.128  2006/06/30 13:02:05  brouard
   Also this programme outputs the covariance matrix of the parameters but also    (Module): Clarifications on computing e.j
   of the life expectancies. It also computes the prevalence limits.  
      Revision 1.127  2006/04/28 18:11:50  brouard
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    (Module): Yes the sum of survivors was wrong since
            Institut national d'études démographiques, Paris.    imach-114 because nhstepm was no more computed in the age
   This software have been partly granted by Euro-REVES, a concerted action    loop. Now we define nhstepma in the age loop.
   from the European Union.    (Module): In order to speed up (in case of numerous covariates) we
   It is copyrighted identically to a GNU software product, ie programme and    compute health expectancies (without variances) in a first step
   software can be distributed freely for non commercial use. Latest version    and then all the health expectancies with variances or standard
   can be accessed at http://euroreves.ined.fr/imach .    deviation (needs data from the Hessian matrices) which slows the
   **********************************************************************/    computation.
      In the future we should be able to stop the program is only health
 #include <math.h>    expectancies and graph are needed without standard deviations.
 #include <stdio.h>  
 #include <stdlib.h>    Revision 1.126  2006/04/28 17:23:28  brouard
 #include <unistd.h>    (Module): Yes the sum of survivors was wrong since
     imach-114 because nhstepm was no more computed in the age
 #define MAXLINE 256    loop. Now we define nhstepma in the age loop.
 #define GNUPLOTPROGRAM "wgnuplot"    Version 0.98h
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/  
 #define FILENAMELENGTH 80    Revision 1.125  2006/04/04 15:20:31  lievre
 /*#define DEBUG*/    Errors in calculation of health expectancies. Age was not initialized.
 #define windows    Forecasting file added.
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */  
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    Revision 1.124  2006/03/22 17:13:53  lievre
     Parameters are printed with %lf instead of %f (more numbers after the comma).
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    The log-likelihood is printed in the log file
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */  
     Revision 1.123  2006/03/20 10:52:43  brouard
 #define NINTERVMAX 8    * imach.c (Module): <title> changed, corresponds to .htm file
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    name. <head> headers where missing.
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */  
 #define NCOVMAX 8 /* Maximum number of covariates */    * imach.c (Module): Weights can have a decimal point as for
 #define MAXN 20000    English (a comma might work with a correct LC_NUMERIC environment,
 #define YEARM 12. /* Number of months per year */    otherwise the weight is truncated).
 #define AGESUP 130    Modification of warning when the covariates values are not 0 or
 #define AGEBASE 40    1.
     Version 0.98g
   
 int erreur; /* Error number */    Revision 1.122  2006/03/20 09:45:41  brouard
 int nvar;    (Module): Weights can have a decimal point as for
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    English (a comma might work with a correct LC_NUMERIC environment,
 int npar=NPARMAX;    otherwise the weight is truncated).
 int nlstate=2; /* Number of live states */    Modification of warning when the covariates values are not 0 or
 int ndeath=1; /* Number of dead states */    1.
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    Version 0.98g
 int popbased=0;  
     Revision 1.121  2006/03/16 17:45:01  lievre
 int *wav; /* Number of waves for this individuual 0 is possible */    * imach.c (Module): Comments concerning covariates added
 int maxwav; /* Maxim number of waves */  
 int jmin, jmax; /* min, max spacing between 2 waves */    * imach.c (Module): refinements in the computation of lli if
 int mle, weightopt;    status=-2 in order to have more reliable computation if stepm is
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    not 1 month. Version 0.98f
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */  
 double jmean; /* Mean space between 2 waves */    Revision 1.120  2006/03/16 15:10:38  lievre
 double **oldm, **newm, **savm; /* Working pointers to matrices */    (Module): refinements in the computation of lli if
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    status=-2 in order to have more reliable computation if stepm is
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    not 1 month. Version 0.98f
 FILE *ficgp,*ficresprob,*ficpop;  
 FILE *ficreseij;    Revision 1.119  2006/03/15 17:42:26  brouard
   char filerese[FILENAMELENGTH];    (Module): Bug if status = -2, the loglikelihood was
  FILE  *ficresvij;    computed as likelihood omitting the logarithm. Version O.98e
   char fileresv[FILENAMELENGTH];  
  FILE  *ficresvpl;    Revision 1.118  2006/03/14 18:20:07  brouard
   char fileresvpl[FILENAMELENGTH];    (Module): varevsij Comments added explaining the second
     table of variances if popbased=1 .
 #define NR_END 1    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
 #define FREE_ARG char*    (Module): Function pstamp added
 #define FTOL 1.0e-10    (Module): Version 0.98d
   
 #define NRANSI    Revision 1.117  2006/03/14 17:16:22  brouard
 #define ITMAX 200    (Module): varevsij Comments added explaining the second
     table of variances if popbased=1 .
 #define TOL 2.0e-4    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
     (Module): Function pstamp added
 #define CGOLD 0.3819660    (Module): Version 0.98d
 #define ZEPS 1.0e-10  
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    Revision 1.116  2006/03/06 10:29:27  brouard
     (Module): Variance-covariance wrong links and
 #define GOLD 1.618034    varian-covariance of ej. is needed (Saito).
 #define GLIMIT 100.0  
 #define TINY 1.0e-20    Revision 1.115  2006/02/27 12:17:45  brouard
     (Module): One freematrix added in mlikeli! 0.98c
 static double maxarg1,maxarg2;  
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    Revision 1.114  2006/02/26 12:57:58  brouard
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    (Module): Some improvements in processing parameter
      filename with strsep.
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))  
 #define rint(a) floor(a+0.5)    Revision 1.113  2006/02/24 14:20:24  brouard
     (Module): Memory leaks checks with valgrind and:
 static double sqrarg;    datafile was not closed, some imatrix were not freed and on matrix
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    allocation too.
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}  
     Revision 1.112  2006/01/30 09:55:26  brouard
 int imx;    (Module): Back to gnuplot.exe instead of wgnuplot.exe
 int stepm;  
 /* Stepm, step in month: minimum step interpolation*/    Revision 1.111  2006/01/25 20:38:18  brouard
     (Module): Lots of cleaning and bugs added (Gompertz)
 int estepm;    (Module): Comments can be added in data file. Missing date values
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/    can be a simple dot '.'.
   
 int m,nb;    Revision 1.110  2006/01/25 00:51:50  brouard
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    (Module): Lots of cleaning and bugs added (Gompertz)
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;  
 double **pmmij, ***probs, ***mobaverage;    Revision 1.109  2006/01/24 19:37:15  brouard
 double dateintmean=0;    (Module): Comments (lines starting with a #) are allowed in data.
   
 double *weight;    Revision 1.108  2006/01/19 18:05:42  lievre
 int **s; /* Status */    Gnuplot problem appeared...
 double *agedc, **covar, idx;    To be fixed
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;  
     Revision 1.107  2006/01/19 16:20:37  brouard
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    Test existence of gnuplot in imach path
 double ftolhess; /* Tolerance for computing hessian */  
     Revision 1.106  2006/01/19 13:24:36  brouard
 /**************** split *************************/    Some cleaning and links added in html output
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )  
 {    Revision 1.105  2006/01/05 20:23:19  lievre
    char *s;                             /* pointer */    *** empty log message ***
    int  l1, l2;                         /* length counters */  
     Revision 1.104  2005/09/30 16:11:43  lievre
    l1 = strlen( path );                 /* length of path */    (Module): sump fixed, loop imx fixed, and simplifications.
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    (Module): If the status is missing at the last wave but we know
 #ifdef windows    that the person is alive, then we can code his/her status as -2
    s = strrchr( path, '\\' );           /* find last / */    (instead of missing=-1 in earlier versions) and his/her
 #else    contributions to the likelihood is 1 - Prob of dying from last
    s = strrchr( path, '/' );            /* find last / */    health status (= 1-p13= p11+p12 in the easiest case of somebody in
 #endif    the healthy state at last known wave). Version is 0.98
    if ( s == NULL ) {                   /* no directory, so use current */  
 #if     defined(__bsd__)                /* get current working directory */    Revision 1.103  2005/09/30 15:54:49  lievre
       extern char       *getwd( );    (Module): sump fixed, loop imx fixed, and simplifications.
   
       if ( getwd( dirc ) == NULL ) {    Revision 1.102  2004/09/15 17:31:30  brouard
 #else    Add the possibility to read data file including tab characters.
       extern char       *getcwd( );  
     Revision 1.101  2004/09/15 10:38:38  brouard
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    Fix on curr_time
 #endif  
          return( GLOCK_ERROR_GETCWD );    Revision 1.100  2004/07/12 18:29:06  brouard
       }    Add version for Mac OS X. Just define UNIX in Makefile
       strcpy( name, path );             /* we've got it */  
    } else {                             /* strip direcotry from path */    Revision 1.99  2004/06/05 08:57:40  brouard
       s++;                              /* after this, the filename */    *** empty log message ***
       l2 = strlen( s );                 /* length of filename */  
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    Revision 1.98  2004/05/16 15:05:56  brouard
       strcpy( name, s );                /* save file name */    New version 0.97 . First attempt to estimate force of mortality
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    directly from the data i.e. without the need of knowing the health
       dirc[l1-l2] = 0;                  /* add zero */    state at each age, but using a Gompertz model: log u =a + b*age .
    }    This is the basic analysis of mortality and should be done before any
    l1 = strlen( dirc );                 /* length of directory */    other analysis, in order to test if the mortality estimated from the
 #ifdef windows    cross-longitudinal survey is different from the mortality estimated
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    from other sources like vital statistic data.
 #else  
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }    The same imach parameter file can be used but the option for mle should be -3.
 #endif  
    s = strrchr( name, '.' );            /* find last / */    Agnès, who wrote this part of the code, tried to keep most of the
    s++;    former routines in order to include the new code within the former code.
    strcpy(ext,s);                       /* save extension */  
    l1= strlen( name);    The output is very simple: only an estimate of the intercept and of
    l2= strlen( s)+1;    the slope with 95% confident intervals.
    strncpy( finame, name, l1-l2);  
    finame[l1-l2]= 0;    Current limitations:
    return( 0 );                         /* we're done */    A) Even if you enter covariates, i.e. with the
 }    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
     B) There is no computation of Life Expectancy nor Life Table.
   
 /******************************************/    Revision 1.97  2004/02/20 13:25:42  lievre
     Version 0.96d. Population forecasting command line is (temporarily)
 void replace(char *s, char*t)    suppressed.
 {  
   int i;    Revision 1.96  2003/07/15 15:38:55  brouard
   int lg=20;    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
   i=0;    rewritten within the same printf. Workaround: many printfs.
   lg=strlen(t);  
   for(i=0; i<= lg; i++) {    Revision 1.95  2003/07/08 07:54:34  brouard
     (s[i] = t[i]);    * imach.c (Repository):
     if (t[i]== '\\') s[i]='/';    (Repository): Using imachwizard code to output a more meaningful covariance
   }    matrix (cov(a12,c31) instead of numbers.
 }  
     Revision 1.94  2003/06/27 13:00:02  brouard
 int nbocc(char *s, char occ)    Just cleaning
 {  
   int i,j=0;    Revision 1.93  2003/06/25 16:33:55  brouard
   int lg=20;    (Module): On windows (cygwin) function asctime_r doesn't
   i=0;    exist so I changed back to asctime which exists.
   lg=strlen(s);    (Module): Version 0.96b
   for(i=0; i<= lg; i++) {  
   if  (s[i] == occ ) j++;    Revision 1.92  2003/06/25 16:30:45  brouard
   }    (Module): On windows (cygwin) function asctime_r doesn't
   return j;    exist so I changed back to asctime which exists.
 }  
     Revision 1.91  2003/06/25 15:30:29  brouard
 void cutv(char *u,char *v, char*t, char occ)    * imach.c (Repository): Duplicated warning errors corrected.
 {    (Repository): Elapsed time after each iteration is now output. It
   int i,lg,j,p=0;    helps to forecast when convergence will be reached. Elapsed time
   i=0;    is stamped in powell.  We created a new html file for the graphs
   for(j=0; j<=strlen(t)-1; j++) {    concerning matrix of covariance. It has extension -cov.htm.
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  
   }    Revision 1.90  2003/06/24 12:34:15  brouard
     (Module): Some bugs corrected for windows. Also, when
   lg=strlen(t);    mle=-1 a template is output in file "or"mypar.txt with the design
   for(j=0; j<p; j++) {    of the covariance matrix to be input.
     (u[j] = t[j]);  
   }    Revision 1.89  2003/06/24 12:30:52  brouard
      u[p]='\0';    (Module): Some bugs corrected for windows. Also, when
     mle=-1 a template is output in file "or"mypar.txt with the design
    for(j=0; j<= lg; j++) {    of the covariance matrix to be input.
     if (j>=(p+1))(v[j-p-1] = t[j]);  
   }    Revision 1.88  2003/06/23 17:54:56  brouard
 }    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
   
 /********************** nrerror ********************/    Revision 1.87  2003/06/18 12:26:01  brouard
     Version 0.96
 void nrerror(char error_text[])  
 {    Revision 1.86  2003/06/17 20:04:08  brouard
   fprintf(stderr,"ERREUR ...\n");    (Module): Change position of html and gnuplot routines and added
   fprintf(stderr,"%s\n",error_text);    routine fileappend.
   exit(1);  
 }    Revision 1.85  2003/06/17 13:12:43  brouard
 /*********************** vector *******************/    * imach.c (Repository): Check when date of death was earlier that
 double *vector(int nl, int nh)    current date of interview. It may happen when the death was just
 {    prior to the death. In this case, dh was negative and likelihood
   double *v;    was wrong (infinity). We still send an "Error" but patch by
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));    assuming that the date of death was just one stepm after the
   if (!v) nrerror("allocation failure in vector");    interview.
   return v-nl+NR_END;    (Repository): Because some people have very long ID (first column)
 }    we changed int to long in num[] and we added a new lvector for
     memory allocation. But we also truncated to 8 characters (left
 /************************ free vector ******************/    truncation)
 void free_vector(double*v, int nl, int nh)    (Repository): No more line truncation errors.
 {  
   free((FREE_ARG)(v+nl-NR_END));    Revision 1.84  2003/06/13 21:44:43  brouard
 }    * imach.c (Repository): Replace "freqsummary" at a correct
     place. It differs from routine "prevalence" which may be called
 /************************ivector *******************************/    many times. Probs is memory consuming and must be used with
 int *ivector(long nl,long nh)    parcimony.
 {    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
   int *v;  
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));    Revision 1.83  2003/06/10 13:39:11  lievre
   if (!v) nrerror("allocation failure in ivector");    *** empty log message ***
   return v-nl+NR_END;  
 }    Revision 1.82  2003/06/05 15:57:20  brouard
     Add log in  imach.c and  fullversion number is now printed.
 /******************free ivector **************************/  
 void free_ivector(int *v, long nl, long nh)  */
 {  /*
   free((FREE_ARG)(v+nl-NR_END));     Interpolated Markov Chain
 }  
     Short summary of the programme:
 /******************* imatrix *******************************/    
 int **imatrix(long nrl, long nrh, long ncl, long nch)    This program computes Healthy Life Expectancies from
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
 {    first survey ("cross") where individuals from different ages are
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;    interviewed on their health status or degree of disability (in the
   int **m;    case of a health survey which is our main interest) -2- at least a
      second wave of interviews ("longitudinal") which measure each change
   /* allocate pointers to rows */    (if any) in individual health status.  Health expectancies are
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));    computed from the time spent in each health state according to a
   if (!m) nrerror("allocation failure 1 in matrix()");    model. More health states you consider, more time is necessary to reach the
   m += NR_END;    Maximum Likelihood of the parameters involved in the model.  The
   m -= nrl;    simplest model is the multinomial logistic model where pij is the
      probability to be observed in state j at the second wave
      conditional to be observed in state i at the first wave. Therefore
   /* allocate rows and set pointers to them */    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));    'age' is age and 'sex' is a covariate. If you want to have a more
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    complex model than "constant and age", you should modify the program
   m[nrl] += NR_END;    where the markup *Covariates have to be included here again* invites
   m[nrl] -= ncl;    you to do it.  More covariates you add, slower the
      convergence.
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  
      The advantage of this computer programme, compared to a simple
   /* return pointer to array of pointers to rows */    multinomial logistic model, is clear when the delay between waves is not
   return m;    identical for each individual. Also, if a individual missed an
 }    intermediate interview, the information is lost, but taken into
     account using an interpolation or extrapolation.  
 /****************** free_imatrix *************************/  
 void free_imatrix(m,nrl,nrh,ncl,nch)    hPijx is the probability to be observed in state i at age x+h
       int **m;    conditional to the observed state i at age x. The delay 'h' can be
       long nch,ncl,nrh,nrl;    split into an exact number (nh*stepm) of unobserved intermediate
      /* free an int matrix allocated by imatrix() */    states. This elementary transition (by month, quarter,
 {    semester or year) is modelled as a multinomial logistic.  The hPx
   free((FREE_ARG) (m[nrl]+ncl-NR_END));    matrix is simply the matrix product of nh*stepm elementary matrices
   free((FREE_ARG) (m+nrl-NR_END));    and the contribution of each individual to the likelihood is simply
 }    hPijx.
   
 /******************* matrix *******************************/    Also this programme outputs the covariance matrix of the parameters but also
 double **matrix(long nrl, long nrh, long ncl, long nch)    of the life expectancies. It also computes the period (stable) prevalence. 
 {    
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
   double **m;             Institut national d'études démographiques, Paris.
     This software have been partly granted by Euro-REVES, a concerted action
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    from the European Union.
   if (!m) nrerror("allocation failure 1 in matrix()");    It is copyrighted identically to a GNU software product, ie programme and
   m += NR_END;    software can be distributed freely for non commercial use. Latest version
   m -= nrl;    can be accessed at http://euroreves.ined.fr/imach .
   
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
   m[nrl] += NR_END;    
   m[nrl] -= ncl;    **********************************************************************/
   /*
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    main
   return m;    read parameterfile
 }    read datafile
     concatwav
 /*************************free matrix ************************/    freqsummary
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)    if (mle >= 1)
 {      mlikeli
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    print results files
   free((FREE_ARG)(m+nrl-NR_END));    if mle==1 
 }       computes hessian
     read end of parameter file: agemin, agemax, bage, fage, estepm
 /******************* ma3x *******************************/        begin-prev-date,...
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)    open gnuplot file
 {    open html file
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;    period (stable) prevalence
   double ***m;     for age prevalim()
     h Pij x
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    variance of p varprob
   if (!m) nrerror("allocation failure 1 in matrix()");    forecasting if prevfcast==1 prevforecast call prevalence()
   m += NR_END;    health expectancies
   m -= nrl;    Variance-covariance of DFLE
     prevalence()
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));     movingaverage()
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    varevsij() 
   m[nrl] += NR_END;    if popbased==1 varevsij(,popbased)
   m[nrl] -= ncl;    total life expectancies
     Variance of period (stable) prevalence
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;   end
   */
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  
   m[nrl][ncl] += NR_END;  
   m[nrl][ncl] -= nll;   
   for (j=ncl+1; j<=nch; j++)  #include <math.h>
     m[nrl][j]=m[nrl][j-1]+nlay;  #include <stdio.h>
    #include <stdlib.h>
   for (i=nrl+1; i<=nrh; i++) {  #include <string.h>
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  #include <unistd.h>
     for (j=ncl+1; j<=nch; j++)  
       m[i][j]=m[i][j-1]+nlay;  #include <limits.h>
   }  #include <sys/types.h>
   return m;  #include <sys/stat.h>
 }  #include <errno.h>
   extern int errno;
 /*************************free ma3x ************************/  
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  /* #include <sys/time.h> */
 {  #include <time.h>
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  #include "timeval.h"
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  
   free((FREE_ARG)(m+nrl-NR_END));  #ifdef GSL
 }  #include <gsl/gsl_errno.h>
   #include <gsl/gsl_multimin.h>
 /***************** f1dim *************************/  #endif
 extern int ncom;  
 extern double *pcom,*xicom;  /* #include <libintl.h> */
 extern double (*nrfunc)(double []);  /* #define _(String) gettext (String) */
    
 double f1dim(double x)  #define MAXLINE 256
 {  
   int j;  #define GNUPLOTPROGRAM "gnuplot"
   double f;  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
   double *xt;  #define FILENAMELENGTH 132
    
   xt=vector(1,ncom);  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
   f=(*nrfunc)(xt);  
   free_vector(xt,1,ncom);  #define MAXPARM 128 /* Maximum number of parameters for the optimization */
   return f;  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
 }  
   #define NINTERVMAX 8
 /*****************brent *************************/  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
 {  #define NCOVMAX 20 /* Maximum number of covariates */
   int iter;  #define MAXN 20000
   double a,b,d,etemp;  #define YEARM 12. /* Number of months per year */
   double fu,fv,fw,fx;  #define AGESUP 130
   double ftemp;  #define AGEBASE 40
   double p,q,r,tol1,tol2,u,v,w,x,xm;  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
   double e=0.0;  #ifdef UNIX
    #define DIRSEPARATOR '/'
   a=(ax < cx ? ax : cx);  #define CHARSEPARATOR "/"
   b=(ax > cx ? ax : cx);  #define ODIRSEPARATOR '\\'
   x=w=v=bx;  #else
   fw=fv=fx=(*f)(x);  #define DIRSEPARATOR '\\'
   for (iter=1;iter<=ITMAX;iter++) {  #define CHARSEPARATOR "\\"
     xm=0.5*(a+b);  #define ODIRSEPARATOR '/'
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  #endif
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  
     printf(".");fflush(stdout);  /* $Id$ */
 #ifdef DEBUG  /* $State$ */
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  char version[]="Imach version 0.98m, April 2010, INED-EUROREVES-Institut de longevite ";
 #endif  char fullversion[]="$Revision$ $Date$"; 
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  char strstart[80];
       *xmin=x;  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
       return fx;  int erreur=0, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
     }  int nvar=0, nforce=0; /* Number of variables, number of forces */
     ftemp=fu;  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov=0; /* Number of covariates, of covariates with '*age' */
     if (fabs(e) > tol1) {  int npar=NPARMAX;
       r=(x-w)*(fx-fv);  int nlstate=2; /* Number of live states */
       q=(x-v)*(fx-fw);  int ndeath=1; /* Number of dead states */
       p=(x-v)*q-(x-w)*r;  int ncovmodel=0, ncovcol=0;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
       q=2.0*(q-r);  int popbased=0;
       if (q > 0.0) p = -p;  
       q=fabs(q);  int *wav; /* Number of waves for this individuual 0 is possible */
       etemp=e;  int maxwav=0; /* Maxim number of waves */
       e=d;  int jmin=0, jmax=0; /* min, max spacing between 2 waves */
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  int ijmin=0, ijmax=0; /* Individuals having jmin and jmax */ 
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  int gipmx=0, gsw=0; /* Global variables on the number of contributions 
       else {                     to the likelihood and the sum of weights (done by funcone)*/
         d=p/q;  int mle=1, weightopt=0;
         u=x+d;  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
         if (u-a < tol2 || b-u < tol2)  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
           d=SIGN(tol1,xm-x);  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
       }             * wave mi and wave mi+1 is not an exact multiple of stepm. */
     } else {  double jmean=1; /* Mean space between 2 waves */
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  double **oldm, **newm, **savm; /* Working pointers to matrices */
     }  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  /*FILE *fic ; */ /* Used in readdata only */
     fu=(*f)(u);  FILE *ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
     if (fu <= fx) {  FILE *ficlog, *ficrespow;
       if (u >= x) a=x; else b=x;  int globpr=0; /* Global variable for printing or not */
       SHFT(v,w,x,u)  double fretone; /* Only one call to likelihood */
         SHFT(fv,fw,fx,fu)  long ipmx=0; /* Number of contributions */
         } else {  double sw; /* Sum of weights */
           if (u < x) a=u; else b=u;  char filerespow[FILENAMELENGTH];
           if (fu <= fw || w == x) {  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
             v=w;  FILE *ficresilk;
             w=u;  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
             fv=fw;  FILE *ficresprobmorprev;
             fw=fu;  FILE *fichtm, *fichtmcov; /* Html File */
           } else if (fu <= fv || v == x || v == w) {  FILE *ficreseij;
             v=u;  char filerese[FILENAMELENGTH];
             fv=fu;  FILE *ficresstdeij;
           }  char fileresstde[FILENAMELENGTH];
         }  FILE *ficrescveij;
   }  char filerescve[FILENAMELENGTH];
   nrerror("Too many iterations in brent");  FILE  *ficresvij;
   *xmin=x;  char fileresv[FILENAMELENGTH];
   return fx;  FILE  *ficresvpl;
 }  char fileresvpl[FILENAMELENGTH];
   char title[MAXLINE];
 /****************** mnbrak ***********************/  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
   char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
             double (*func)(double))  char command[FILENAMELENGTH];
 {  int  outcmd=0;
   double ulim,u,r,q, dum;  
   double fu;  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
    
   *fa=(*func)(*ax);  char filelog[FILENAMELENGTH]; /* Log file */
   *fb=(*func)(*bx);  char filerest[FILENAMELENGTH];
   if (*fb > *fa) {  char fileregp[FILENAMELENGTH];
     SHFT(dum,*ax,*bx,dum)  char popfile[FILENAMELENGTH];
       SHFT(dum,*fb,*fa,dum)  
       }  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
   *cx=(*bx)+GOLD*(*bx-*ax);  
   *fc=(*func)(*cx);  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
   while (*fb > *fc) {  struct timezone tzp;
     r=(*bx-*ax)*(*fb-*fc);  extern int gettimeofday();
     q=(*bx-*cx)*(*fb-*fa);  struct tm tmg, tm, tmf, *gmtime(), *localtime();
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/  long time_value;
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  extern long time();
     ulim=(*bx)+GLIMIT*(*cx-*bx);  char strcurr[80], strfor[80];
     if ((*bx-u)*(u-*cx) > 0.0) {  
       fu=(*func)(u);  char *endptr;
     } else if ((*cx-u)*(u-ulim) > 0.0) {  long lval;
       fu=(*func)(u);  double dval;
       if (fu < *fc) {  
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))  #define NR_END 1
           SHFT(*fb,*fc,fu,(*func)(u))  #define FREE_ARG char*
           }  #define FTOL 1.0e-10
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  
       u=ulim;  #define NRANSI 
       fu=(*func)(u);  #define ITMAX 200 
     } else {  
       u=(*cx)+GOLD*(*cx-*bx);  #define TOL 2.0e-4 
       fu=(*func)(u);  
     }  #define CGOLD 0.3819660 
     SHFT(*ax,*bx,*cx,u)  #define ZEPS 1.0e-10 
       SHFT(*fa,*fb,*fc,fu)  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
       }  
 }  #define GOLD 1.618034 
   #define GLIMIT 100.0 
 /*************** linmin ************************/  #define TINY 1.0e-20 
   
 int ncom;  static double maxarg1,maxarg2;
 double *pcom,*xicom;  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
 double (*nrfunc)(double []);  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
      
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
 {  #define rint(a) floor(a+0.5)
   double brent(double ax, double bx, double cx,  
                double (*f)(double), double tol, double *xmin);  static double sqrarg;
   double f1dim(double x);  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
               double *fc, double (*func)(double));  int agegomp= AGEGOMP;
   int j;  
   double xx,xmin,bx,ax;  int imx; 
   double fx,fb,fa;  int stepm=1;
    /* Stepm, step in month: minimum step interpolation*/
   ncom=n;  
   pcom=vector(1,n);  int estepm;
   xicom=vector(1,n);  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
   nrfunc=func;  
   for (j=1;j<=n;j++) {  int m,nb;
     pcom[j]=p[j];  long *num;
     xicom[j]=xi[j];  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
   }  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
   ax=0.0;  double **pmmij, ***probs;
   xx=1.0;  double *ageexmed,*agecens;
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  double dateintmean=0;
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);  
 #ifdef DEBUG  double *weight;
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  int **s; /* Status */
 #endif  double *agedc, **covar, idx;
   for (j=1;j<=n;j++) {  int **nbcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
     xi[j] *= xmin;  double *lsurv, *lpop, *tpop;
     p[j] += xi[j];  
   }  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
   free_vector(xicom,1,n);  double ftolhess; /* Tolerance for computing hessian */
   free_vector(pcom,1,n);  
 }  /**************** split *************************/
   static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
 /*************** powell ************************/  {
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
             double (*func)(double []))       the name of the file (name), its extension only (ext) and its first part of the name (finame)
 {    */ 
   void linmin(double p[], double xi[], int n, double *fret,    char  *ss;                            /* pointer */
               double (*func)(double []));    int   l1, l2;                         /* length counters */
   int i,ibig,j;  
   double del,t,*pt,*ptt,*xit;    l1 = strlen(path );                   /* length of path */
   double fp,fptt;    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
   double *xits;    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
   pt=vector(1,n);    if ( ss == NULL ) {                   /* no directory, so determine current directory */
   ptt=vector(1,n);      strcpy( name, path );               /* we got the fullname name because no directory */
   xit=vector(1,n);      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
   xits=vector(1,n);        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
   *fret=(*func)(p);      /* get current working directory */
   for (j=1;j<=n;j++) pt[j]=p[j];      /*    extern  char* getcwd ( char *buf , int len);*/
   for (*iter=1;;++(*iter)) {      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
     fp=(*fret);        return( GLOCK_ERROR_GETCWD );
     ibig=0;      }
     del=0.0;      /* got dirc from getcwd*/
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);      printf(" DIRC = %s \n",dirc);
     for (i=1;i<=n;i++)    } else {                              /* strip direcotry from path */
       printf(" %d %.12f",i, p[i]);      ss++;                               /* after this, the filename */
     printf("\n");      l2 = strlen( ss );                  /* length of filename */
     for (i=1;i<=n;i++) {      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
       for (j=1;j<=n;j++) xit[j]=xi[j][i];      strcpy( name, ss );         /* save file name */
       fptt=(*fret);      strncpy( dirc, path, l1 - l2 );     /* now the directory */
 #ifdef DEBUG      dirc[l1-l2] = 0;                    /* add zero */
       printf("fret=%lf \n",*fret);      printf(" DIRC2 = %s \n",dirc);
 #endif    }
       printf("%d",i);fflush(stdout);    /* We add a separator at the end of dirc if not exists */
       linmin(p,xit,n,fret,func);    l1 = strlen( dirc );                  /* length of directory */
       if (fabs(fptt-(*fret)) > del) {    if( dirc[l1-1] != DIRSEPARATOR ){
         del=fabs(fptt-(*fret));      dirc[l1] =  DIRSEPARATOR;
         ibig=i;      dirc[l1+1] = 0; 
       }      printf(" DIRC3 = %s \n",dirc);
 #ifdef DEBUG    }
       printf("%d %.12e",i,(*fret));    ss = strrchr( name, '.' );            /* find last / */
       for (j=1;j<=n;j++) {    if (ss >0){
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);      ss++;
         printf(" x(%d)=%.12e",j,xit[j]);      strcpy(ext,ss);                     /* save extension */
       }      l1= strlen( name);
       for(j=1;j<=n;j++)      l2= strlen(ss)+1;
         printf(" p=%.12e",p[j]);      strncpy( finame, name, l1-l2);
       printf("\n");      finame[l1-l2]= 0;
 #endif    }
     }  
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {    return( 0 );                          /* we're done */
 #ifdef DEBUG  }
       int k[2],l;  
       k[0]=1;  
       k[1]=-1;  /******************************************/
       printf("Max: %.12e",(*func)(p));  
       for (j=1;j<=n;j++)  void replace_back_to_slash(char *s, char*t)
         printf(" %.12e",p[j]);  {
       printf("\n");    int i;
       for(l=0;l<=1;l++) {    int lg=0;
         for (j=1;j<=n;j++) {    i=0;
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];    lg=strlen(t);
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);    for(i=0; i<= lg; i++) {
         }      (s[i] = t[i]);
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));      if (t[i]== '\\') s[i]='/';
       }    }
 #endif  }
   
   char *trimbb(char *out, char *in)
       free_vector(xit,1,n);  { /* Trim multiple blanks in line but keeps first blanks if line starts with blanks */
       free_vector(xits,1,n);    char *s;
       free_vector(ptt,1,n);    s=out;
       free_vector(pt,1,n);    while (*in != '\0'){
       return;      while( *in == ' ' && *(in+1) == ' '){ /* && *(in+1) != '\0'){*/
     }        in++;
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");      }
     for (j=1;j<=n;j++) {      *out++ = *in++;
       ptt[j]=2.0*p[j]-pt[j];    }
       xit[j]=p[j]-pt[j];    *out='\0';
       pt[j]=p[j];    return s;
     }  }
     fptt=(*func)(ptt);  
     if (fptt < fp) {  char *cutv(char *blocc, char *alocc, char *in, char occ)
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);  {
       if (t < 0.0) {    /* cuts string in into blocc and alocc where blocc ends before last occurence of char 'occ' 
         linmin(p,xit,n,fret,func);       and alocc starts after last occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
         for (j=1;j<=n;j++) {       gives blocc="abcdef2ghi" and alocc="j".
           xi[j][ibig]=xi[j][n];       If occ is not found blocc is null and alocc is equal to in. Returns alocc
           xi[j][n]=xit[j];    */
         }    char *s, *t;
 #ifdef DEBUG    t=in;s=in;
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);    while (*in != '\0'){
         for(j=1;j<=n;j++)      while( *in == occ){
           printf(" %.12e",xit[j]);        *blocc++ = *in++;
         printf("\n");        s=in;
 #endif      }
       }      *blocc++ = *in++;
     }    }
   }    if (s == t) /* occ not found */
 }      *(blocc-(in-s))='\0';
     else
 /**** Prevalence limit ****************/      *(blocc-(in-s)-1)='\0';
     in=s;
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)    while ( *in != '\0'){
 {      *alocc++ = *in++;
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit    }
      matrix by transitions matrix until convergence is reached */  
     *alocc='\0';
   int i, ii,j,k;    return s;
   double min, max, maxmin, maxmax,sumnew=0.;  }
   double **matprod2();  
   double **out, cov[NCOVMAX], **pmij();  int nbocc(char *s, char occ)
   double **newm;  {
   double agefin, delaymax=50 ; /* Max number of years to converge */    int i,j=0;
     int lg=20;
   for (ii=1;ii<=nlstate+ndeath;ii++)    i=0;
     for (j=1;j<=nlstate+ndeath;j++){    lg=strlen(s);
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);    for(i=0; i<= lg; i++) {
     }    if  (s[i] == occ ) j++;
     }
    cov[1]=1.;    return j;
    }
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */  
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){  /* void cutv(char *u,char *v, char*t, char occ) */
     newm=savm;  /* { */
     /* Covariates have to be included here again */  /*   /\* cuts string t into u and v where u ends before last occurence of char 'occ'  */
      cov[2]=agefin;  /*      and v starts after last occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2') */
    /*      gives u="abcdef2ghi" and v="j" *\/ */
       for (k=1; k<=cptcovn;k++) {  /*   int i,lg,j,p=0; */
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  /*   i=0; */
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/  /*   lg=strlen(t); */
       }  /*   for(j=0; j<=lg-1; j++) { */
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  /*     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1; */
       for (k=1; k<=cptcovprod;k++)  /*   } */
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  
   /*   for(j=0; j<p; j++) { */
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/  /*     (u[j] = t[j]); */
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/  /*   } */
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/  /*      u[p]='\0'; */
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);  
   /*    for(j=0; j<= lg; j++) { */
     savm=oldm;  /*     if (j>=(p+1))(v[j-p-1] = t[j]); */
     oldm=newm;  /*   } */
     maxmax=0.;  /* } */
     for(j=1;j<=nlstate;j++){  
       min=1.;  /********************** nrerror ********************/
       max=0.;  
       for(i=1; i<=nlstate; i++) {  void nrerror(char error_text[])
         sumnew=0;  {
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];    fprintf(stderr,"ERREUR ...\n");
         prlim[i][j]= newm[i][j]/(1-sumnew);    fprintf(stderr,"%s\n",error_text);
         max=FMAX(max,prlim[i][j]);    exit(EXIT_FAILURE);
         min=FMIN(min,prlim[i][j]);  }
       }  /*********************** vector *******************/
       maxmin=max-min;  double *vector(int nl, int nh)
       maxmax=FMAX(maxmax,maxmin);  {
     }    double *v;
     if(maxmax < ftolpl){    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
       return prlim;    if (!v) nrerror("allocation failure in vector");
     }    return v-nl+NR_END;
   }  }
 }  
   /************************ free vector ******************/
 /*************** transition probabilities ***************/  void free_vector(double*v, int nl, int nh)
   {
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )    free((FREE_ARG)(v+nl-NR_END));
 {  }
   double s1, s2;  
   /*double t34;*/  /************************ivector *******************************/
   int i,j,j1, nc, ii, jj;  int *ivector(long nl,long nh)
   {
     for(i=1; i<= nlstate; i++){    int *v;
     for(j=1; j<i;j++){    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    if (!v) nrerror("allocation failure in ivector");
         /*s2 += param[i][j][nc]*cov[nc];*/    return v-nl+NR_END;
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  }
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/  
       }  /******************free ivector **************************/
       ps[i][j]=s2;  void free_ivector(int *v, long nl, long nh)
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/  {
     }    free((FREE_ARG)(v+nl-NR_END));
     for(j=i+1; j<=nlstate+ndeath;j++){  }
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  /************************lvector *******************************/
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/  long *lvector(long nl,long nh)
       }  {
       ps[i][j]=s2;    long *v;
     }    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
   }    if (!v) nrerror("allocation failure in ivector");
     /*ps[3][2]=1;*/    return v-nl+NR_END;
   }
   for(i=1; i<= nlstate; i++){  
      s1=0;  /******************free lvector **************************/
     for(j=1; j<i; j++)  void free_lvector(long *v, long nl, long nh)
       s1+=exp(ps[i][j]);  {
     for(j=i+1; j<=nlstate+ndeath; j++)    free((FREE_ARG)(v+nl-NR_END));
       s1+=exp(ps[i][j]);  }
     ps[i][i]=1./(s1+1.);  
     for(j=1; j<i; j++)  /******************* imatrix *******************************/
       ps[i][j]= exp(ps[i][j])*ps[i][i];  int **imatrix(long nrl, long nrh, long ncl, long nch) 
     for(j=i+1; j<=nlstate+ndeath; j++)       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
       ps[i][j]= exp(ps[i][j])*ps[i][i];  { 
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
   } /* end i */    int **m; 
     
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){    /* allocate pointers to rows */ 
     for(jj=1; jj<= nlstate+ndeath; jj++){    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
       ps[ii][jj]=0;    if (!m) nrerror("allocation failure 1 in matrix()"); 
       ps[ii][ii]=1;    m += NR_END; 
     }    m -= nrl; 
   }    
     
     /* allocate rows and set pointers to them */ 
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
     for(jj=1; jj<= nlstate+ndeath; jj++){    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
      printf("%lf ",ps[ii][jj]);    m[nrl] += NR_END; 
    }    m[nrl] -= ncl; 
     printf("\n ");    
     }    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
     printf("\n ");printf("%lf ",cov[2]);*/    
 /*    /* return pointer to array of pointers to rows */ 
   for(i=1; i<= npar; i++) printf("%f ",x[i]);    return m; 
   goto end;*/  } 
     return ps;  
 }  /****************** free_imatrix *************************/
   void free_imatrix(m,nrl,nrh,ncl,nch)
 /**************** Product of 2 matrices ******************/        int **m;
         long nch,ncl,nrh,nrl; 
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)       /* free an int matrix allocated by imatrix() */ 
 {  { 
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */    free((FREE_ARG) (m+nrl-NR_END)); 
   /* in, b, out are matrice of pointers which should have been initialized  } 
      before: only the contents of out is modified. The function returns  
      a pointer to pointers identical to out */  /******************* matrix *******************************/
   long i, j, k;  double **matrix(long nrl, long nrh, long ncl, long nch)
   for(i=nrl; i<= nrh; i++)  {
     for(k=ncolol; k<=ncoloh; k++)    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
       for(j=ncl,out[i][k]=0.; j<=nch; j++)    double **m;
         out[i][k] +=in[i][j]*b[j][k];  
     m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   return out;    if (!m) nrerror("allocation failure 1 in matrix()");
 }    m += NR_END;
     m -= nrl;
   
 /************* Higher Matrix Product ***************/    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )    m[nrl] += NR_END;
 {    m[nrl] -= ncl;
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month  
      duration (i.e. until    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.    return m;
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
      (typically every 2 years instead of every month which is too big).     */
      Model is determined by parameters x and covariates have to be  }
      included manually here.  
   /*************************free matrix ************************/
      */  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
   {
   int i, j, d, h, k;    free((FREE_ARG)(m[nrl]+ncl-NR_END));
   double **out, cov[NCOVMAX];    free((FREE_ARG)(m+nrl-NR_END));
   double **newm;  }
   
   /* Hstepm could be zero and should return the unit matrix */  /******************* ma3x *******************************/
   for (i=1;i<=nlstate+ndeath;i++)  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
     for (j=1;j<=nlstate+ndeath;j++){  {
       oldm[i][j]=(i==j ? 1.0 : 0.0);    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
       po[i][j][0]=(i==j ? 1.0 : 0.0);    double ***m;
     }  
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   for(h=1; h <=nhstepm; h++){    if (!m) nrerror("allocation failure 1 in matrix()");
     for(d=1; d <=hstepm; d++){    m += NR_END;
       newm=savm;    m -= nrl;
       /* Covariates have to be included here again */  
       cov[1]=1.;    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    m[nrl] += NR_END;
       for (k=1; k<=cptcovage;k++)    m[nrl] -= ncl;
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  
       for (k=1; k<=cptcovprod;k++)    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  
     m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
     if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/    m[nrl][ncl] += NR_END;
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/    m[nrl][ncl] -= nll;
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,    for (j=ncl+1; j<=nch; j++) 
                    pmij(pmmij,cov,ncovmodel,x,nlstate));      m[nrl][j]=m[nrl][j-1]+nlay;
       savm=oldm;    
       oldm=newm;    for (i=nrl+1; i<=nrh; i++) {
     }      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
     for(i=1; i<=nlstate+ndeath; i++)      for (j=ncl+1; j<=nch; j++) 
       for(j=1;j<=nlstate+ndeath;j++) {        m[i][j]=m[i][j-1]+nlay;
         po[i][j][h]=newm[i][j];    }
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);    return m; 
          */    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
       }             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
   } /* end h */    */
   return po;  }
 }  
   /*************************free ma3x ************************/
   void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
 /*************** log-likelihood *************/  {
 double func( double *x)    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
 {    free((FREE_ARG)(m[nrl]+ncl-NR_END));
   int i, ii, j, k, mi, d, kk;    free((FREE_ARG)(m+nrl-NR_END));
   double l, ll[NLSTATEMAX], cov[NCOVMAX];  }
   double **out;  
   double sw; /* Sum of weights */  /*************** function subdirf ***********/
   double lli; /* Individual log likelihood */  char *subdirf(char fileres[])
   long ipmx;  {
   /*extern weight */    /* Caution optionfilefiname is hidden */
   /* We are differentiating ll according to initial status */    strcpy(tmpout,optionfilefiname);
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/    strcat(tmpout,"/"); /* Add to the right */
   /*for(i=1;i<imx;i++)    strcat(tmpout,fileres);
     printf(" %d\n",s[4][i]);    return tmpout;
   */  }
   cov[1]=1.;  
   /*************** function subdirf2 ***********/
   for(k=1; k<=nlstate; k++) ll[k]=0.;  char *subdirf2(char fileres[], char *preop)
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){  {
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];    
     for(mi=1; mi<= wav[i]-1; mi++){    /* Caution optionfilefiname is hidden */
       for (ii=1;ii<=nlstate+ndeath;ii++)    strcpy(tmpout,optionfilefiname);
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);    strcat(tmpout,"/");
       for(d=0; d<dh[mi][i]; d++){    strcat(tmpout,preop);
         newm=savm;    strcat(tmpout,fileres);
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;    return tmpout;
         for (kk=1; kk<=cptcovage;kk++) {  }
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];  
         }  /*************** function subdirf3 ***********/
          char *subdirf3(char fileres[], char *preop, char *preop2)
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,  {
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));    
         savm=oldm;    /* Caution optionfilefiname is hidden */
         oldm=newm;    strcpy(tmpout,optionfilefiname);
            strcat(tmpout,"/");
            strcat(tmpout,preop);
       } /* end mult */    strcat(tmpout,preop2);
          strcat(tmpout,fileres);
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);    return tmpout;
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/  }
       ipmx +=1;  
       sw += weight[i];  /***************** f1dim *************************/
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;  extern int ncom; 
     } /* end of wave */  extern double *pcom,*xicom;
   } /* end of individual */  extern double (*nrfunc)(double []); 
    
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];  double f1dim(double x) 
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */  { 
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */    int j; 
   return -l;    double f;
 }    double *xt; 
    
     xt=vector(1,ncom); 
 /*********** Maximum Likelihood Estimation ***************/    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
     f=(*nrfunc)(xt); 
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))    free_vector(xt,1,ncom); 
 {    return f; 
   int i,j, iter;  } 
   double **xi,*delti;  
   double fret;  /*****************brent *************************/
   xi=matrix(1,npar,1,npar);  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
   for (i=1;i<=npar;i++)  { 
     for (j=1;j<=npar;j++)    int iter; 
       xi[i][j]=(i==j ? 1.0 : 0.0);    double a,b,d,etemp;
   printf("Powell\n");    double fu,fv,fw,fx;
   powell(p,xi,npar,ftol,&iter,&fret,func);    double ftemp;
     double p,q,r,tol1,tol2,u,v,w,x,xm; 
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));    double e=0.0; 
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));   
     a=(ax < cx ? ax : cx); 
 }    b=(ax > cx ? ax : cx); 
     x=w=v=bx; 
 /**** Computes Hessian and covariance matrix ***/    fw=fv=fx=(*f)(x); 
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))    for (iter=1;iter<=ITMAX;iter++) { 
 {      xm=0.5*(a+b); 
   double  **a,**y,*x,pd;      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
   double **hess;      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
   int i, j,jk;      printf(".");fflush(stdout);
   int *indx;      fprintf(ficlog,".");fflush(ficlog);
   #ifdef DEBUG
   double hessii(double p[], double delta, int theta, double delti[]);      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   double hessij(double p[], double delti[], int i, int j);      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   void lubksb(double **a, int npar, int *indx, double b[]) ;      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
   void ludcmp(double **a, int npar, int *indx, double *d) ;  #endif
       if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
   hess=matrix(1,npar,1,npar);        *xmin=x; 
         return fx; 
   printf("\nCalculation of the hessian matrix. Wait...\n");      } 
   for (i=1;i<=npar;i++){      ftemp=fu;
     printf("%d",i);fflush(stdout);      if (fabs(e) > tol1) { 
     hess[i][i]=hessii(p,ftolhess,i,delti);        r=(x-w)*(fx-fv); 
     /*printf(" %f ",p[i]);*/        q=(x-v)*(fx-fw); 
     /*printf(" %lf ",hess[i][i]);*/        p=(x-v)*q-(x-w)*r; 
   }        q=2.0*(q-r); 
          if (q > 0.0) p = -p; 
   for (i=1;i<=npar;i++) {        q=fabs(q); 
     for (j=1;j<=npar;j++)  {        etemp=e; 
       if (j>i) {        e=d; 
         printf(".%d%d",i,j);fflush(stdout);        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
         hess[i][j]=hessij(p,delti,i,j);          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
         hess[j][i]=hess[i][j];            else { 
         /*printf(" %lf ",hess[i][j]);*/          d=p/q; 
       }          u=x+d; 
     }          if (u-a < tol2 || b-u < tol2) 
   }            d=SIGN(tol1,xm-x); 
   printf("\n");        } 
       } else { 
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
        } 
   a=matrix(1,npar,1,npar);      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
   y=matrix(1,npar,1,npar);      fu=(*f)(u); 
   x=vector(1,npar);      if (fu <= fx) { 
   indx=ivector(1,npar);        if (u >= x) a=x; else b=x; 
   for (i=1;i<=npar;i++)        SHFT(v,w,x,u) 
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];          SHFT(fv,fw,fx,fu) 
   ludcmp(a,npar,indx,&pd);          } else { 
             if (u < x) a=u; else b=u; 
   for (j=1;j<=npar;j++) {            if (fu <= fw || w == x) { 
     for (i=1;i<=npar;i++) x[i]=0;              v=w; 
     x[j]=1;              w=u; 
     lubksb(a,npar,indx,x);              fv=fw; 
     for (i=1;i<=npar;i++){              fw=fu; 
       matcov[i][j]=x[i];            } else if (fu <= fv || v == x || v == w) { 
     }              v=u; 
   }              fv=fu; 
             } 
   printf("\n#Hessian matrix#\n");          } 
   for (i=1;i<=npar;i++) {    } 
     for (j=1;j<=npar;j++) {    nrerror("Too many iterations in brent"); 
       printf("%.3e ",hess[i][j]);    *xmin=x; 
     }    return fx; 
     printf("\n");  } 
   }  
   /****************** mnbrak ***********************/
   /* Recompute Inverse */  
   for (i=1;i<=npar;i++)  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];              double (*func)(double)) 
   ludcmp(a,npar,indx,&pd);  { 
     double ulim,u,r,q, dum;
   /*  printf("\n#Hessian matrix recomputed#\n");    double fu; 
    
   for (j=1;j<=npar;j++) {    *fa=(*func)(*ax); 
     for (i=1;i<=npar;i++) x[i]=0;    *fb=(*func)(*bx); 
     x[j]=1;    if (*fb > *fa) { 
     lubksb(a,npar,indx,x);      SHFT(dum,*ax,*bx,dum) 
     for (i=1;i<=npar;i++){        SHFT(dum,*fb,*fa,dum) 
       y[i][j]=x[i];        } 
       printf("%.3e ",y[i][j]);    *cx=(*bx)+GOLD*(*bx-*ax); 
     }    *fc=(*func)(*cx); 
     printf("\n");    while (*fb > *fc) { 
   }      r=(*bx-*ax)*(*fb-*fc); 
   */      q=(*bx-*cx)*(*fb-*fa); 
       u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
   free_matrix(a,1,npar,1,npar);        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
   free_matrix(y,1,npar,1,npar);      ulim=(*bx)+GLIMIT*(*cx-*bx); 
   free_vector(x,1,npar);      if ((*bx-u)*(u-*cx) > 0.0) { 
   free_ivector(indx,1,npar);        fu=(*func)(u); 
   free_matrix(hess,1,npar,1,npar);      } else if ((*cx-u)*(u-ulim) > 0.0) { 
         fu=(*func)(u); 
         if (fu < *fc) { 
 }          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
             SHFT(*fb,*fc,fu,(*func)(u)) 
 /*************** hessian matrix ****************/            } 
 double hessii( double x[], double delta, int theta, double delti[])      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
 {        u=ulim; 
   int i;        fu=(*func)(u); 
   int l=1, lmax=20;      } else { 
   double k1,k2;        u=(*cx)+GOLD*(*cx-*bx); 
   double p2[NPARMAX+1];        fu=(*func)(u); 
   double res;      } 
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;      SHFT(*ax,*bx,*cx,u) 
   double fx;        SHFT(*fa,*fb,*fc,fu) 
   int k=0,kmax=10;        } 
   double l1;  } 
   
   fx=func(x);  /*************** linmin ************************/
   for (i=1;i<=npar;i++) p2[i]=x[i];  
   for(l=0 ; l <=lmax; l++){  int ncom; 
     l1=pow(10,l);  double *pcom,*xicom;
     delts=delt;  double (*nrfunc)(double []); 
     for(k=1 ; k <kmax; k=k+1){   
       delt = delta*(l1*k);  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
       p2[theta]=x[theta] +delt;  { 
       k1=func(p2)-fx;    double brent(double ax, double bx, double cx, 
       p2[theta]=x[theta]-delt;                 double (*f)(double), double tol, double *xmin); 
       k2=func(p2)-fx;    double f1dim(double x); 
       /*res= (k1-2.0*fx+k2)/delt/delt; */    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */                double *fc, double (*func)(double)); 
          int j; 
 #ifdef DEBUG    double xx,xmin,bx,ax; 
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);    double fx,fb,fa;
 #endif   
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */    ncom=n; 
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){    pcom=vector(1,n); 
         k=kmax;    xicom=vector(1,n); 
       }    nrfunc=func; 
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */    for (j=1;j<=n;j++) { 
         k=kmax; l=lmax*10.;      pcom[j]=p[j]; 
       }      xicom[j]=xi[j]; 
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){    } 
         delts=delt;    ax=0.0; 
       }    xx=1.0; 
     }    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
   }    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
   delti[theta]=delts;  #ifdef DEBUG
   return res;    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
      fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
 }  #endif
     for (j=1;j<=n;j++) { 
 double hessij( double x[], double delti[], int thetai,int thetaj)      xi[j] *= xmin; 
 {      p[j] += xi[j]; 
   int i;    } 
   int l=1, l1, lmax=20;    free_vector(xicom,1,n); 
   double k1,k2,k3,k4,res,fx;    free_vector(pcom,1,n); 
   double p2[NPARMAX+1];  } 
   int k;  
   char *asc_diff_time(long time_sec, char ascdiff[])
   fx=func(x);  {
   for (k=1; k<=2; k++) {    long sec_left, days, hours, minutes;
     for (i=1;i<=npar;i++) p2[i]=x[i];    days = (time_sec) / (60*60*24);
     p2[thetai]=x[thetai]+delti[thetai]/k;    sec_left = (time_sec) % (60*60*24);
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;    hours = (sec_left) / (60*60) ;
     k1=func(p2)-fx;    sec_left = (sec_left) %(60*60);
      minutes = (sec_left) /60;
     p2[thetai]=x[thetai]+delti[thetai]/k;    sec_left = (sec_left) % (60);
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
     k2=func(p2)-fx;    return ascdiff;
    }
     p2[thetai]=x[thetai]-delti[thetai]/k;  
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;  /*************** powell ************************/
     k3=func(p2)-fx;  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
                double (*func)(double [])) 
     p2[thetai]=x[thetai]-delti[thetai]/k;  { 
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;    void linmin(double p[], double xi[], int n, double *fret, 
     k4=func(p2)-fx;                double (*func)(double [])); 
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */    int i,ibig,j; 
 #ifdef DEBUG    double del,t,*pt,*ptt,*xit;
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);    double fp,fptt;
 #endif    double *xits;
   }    int niterf, itmp;
   return res;  
 }    pt=vector(1,n); 
     ptt=vector(1,n); 
 /************** Inverse of matrix **************/    xit=vector(1,n); 
 void ludcmp(double **a, int n, int *indx, double *d)    xits=vector(1,n); 
 {    *fret=(*func)(p); 
   int i,imax,j,k;    for (j=1;j<=n;j++) pt[j]=p[j]; 
   double big,dum,sum,temp;    for (*iter=1;;++(*iter)) { 
   double *vv;      fp=(*fret); 
        ibig=0; 
   vv=vector(1,n);      del=0.0; 
   *d=1.0;      last_time=curr_time;
   for (i=1;i<=n;i++) {      (void) gettimeofday(&curr_time,&tzp);
     big=0.0;      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
     for (j=1;j<=n;j++)      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec); fflush(ficlog);
       if ((temp=fabs(a[i][j])) > big) big=temp;  /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec); */
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");     for (i=1;i<=n;i++) {
     vv[i]=1.0/big;        printf(" %d %.12f",i, p[i]);
   }        fprintf(ficlog," %d %.12lf",i, p[i]);
   for (j=1;j<=n;j++) {        fprintf(ficrespow," %.12lf", p[i]);
     for (i=1;i<j;i++) {      }
       sum=a[i][j];      printf("\n");
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];      fprintf(ficlog,"\n");
       a[i][j]=sum;      fprintf(ficrespow,"\n");fflush(ficrespow);
     }      if(*iter <=3){
     big=0.0;        tm = *localtime(&curr_time.tv_sec);
     for (i=j;i<=n;i++) {        strcpy(strcurr,asctime(&tm));
       sum=a[i][j];  /*       asctime_r(&tm,strcurr); */
       for (k=1;k<j;k++)        forecast_time=curr_time; 
         sum -= a[i][k]*a[k][j];        itmp = strlen(strcurr);
       a[i][j]=sum;        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
       if ( (dum=vv[i]*fabs(sum)) >= big) {          strcurr[itmp-1]='\0';
         big=dum;        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
         imax=i;        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
       }        for(niterf=10;niterf<=30;niterf+=10){
     }          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
     if (j != imax) {          tmf = *localtime(&forecast_time.tv_sec);
       for (k=1;k<=n;k++) {  /*      asctime_r(&tmf,strfor); */
         dum=a[imax][k];          strcpy(strfor,asctime(&tmf));
         a[imax][k]=a[j][k];          itmp = strlen(strfor);
         a[j][k]=dum;          if(strfor[itmp-1]=='\n')
       }          strfor[itmp-1]='\0';
       *d = -(*d);          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
       vv[imax]=vv[j];          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
     }        }
     indx[j]=imax;      }
     if (a[j][j] == 0.0) a[j][j]=TINY;      for (i=1;i<=n;i++) { 
     if (j != n) {        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
       dum=1.0/(a[j][j]);        fptt=(*fret); 
       for (i=j+1;i<=n;i++) a[i][j] *= dum;  #ifdef DEBUG
     }        printf("fret=%lf \n",*fret);
   }        fprintf(ficlog,"fret=%lf \n",*fret);
   free_vector(vv,1,n);  /* Doesn't work */  #endif
 ;        printf("%d",i);fflush(stdout);
 }        fprintf(ficlog,"%d",i);fflush(ficlog);
         linmin(p,xit,n,fret,func); 
 void lubksb(double **a, int n, int *indx, double b[])        if (fabs(fptt-(*fret)) > del) { 
 {          del=fabs(fptt-(*fret)); 
   int i,ii=0,ip,j;          ibig=i; 
   double sum;        } 
    #ifdef DEBUG
   for (i=1;i<=n;i++) {        printf("%d %.12e",i,(*fret));
     ip=indx[i];        fprintf(ficlog,"%d %.12e",i,(*fret));
     sum=b[ip];        for (j=1;j<=n;j++) {
     b[ip]=b[i];          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
     if (ii)          printf(" x(%d)=%.12e",j,xit[j]);
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
     else if (sum) ii=i;        }
     b[i]=sum;        for(j=1;j<=n;j++) {
   }          printf(" p=%.12e",p[j]);
   for (i=n;i>=1;i--) {          fprintf(ficlog," p=%.12e",p[j]);
     sum=b[i];        }
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];        printf("\n");
     b[i]=sum/a[i][i];        fprintf(ficlog,"\n");
   }  #endif
 }      } 
       if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
 /************ Frequencies ********************/  #ifdef DEBUG
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)        int k[2],l;
 {  /* Some frequencies */        k[0]=1;
          k[1]=-1;
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;        printf("Max: %.12e",(*func)(p));
   double ***freq; /* Frequencies */        fprintf(ficlog,"Max: %.12e",(*func)(p));
   double *pp;        for (j=1;j<=n;j++) {
   double pos, k2, dateintsum=0,k2cpt=0;          printf(" %.12e",p[j]);
   FILE *ficresp;          fprintf(ficlog," %.12e",p[j]);
   char fileresp[FILENAMELENGTH];        }
          printf("\n");
   pp=vector(1,nlstate);        fprintf(ficlog,"\n");
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);        for(l=0;l<=1;l++) {
   strcpy(fileresp,"p");          for (j=1;j<=n;j++) {
   strcat(fileresp,fileres);            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
   if((ficresp=fopen(fileresp,"w"))==NULL) {            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
     printf("Problem with prevalence resultfile: %s\n", fileresp);            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
     exit(0);          }
   }          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   j1=0;        }
    #endif
   j=cptcoveff;  
   if (cptcovn<1) {j=1;ncodemax[1]=1;}  
          free_vector(xit,1,n); 
   for(k1=1; k1<=j;k1++){        free_vector(xits,1,n); 
     for(i1=1; i1<=ncodemax[k1];i1++){        free_vector(ptt,1,n); 
       j1++;        free_vector(pt,1,n); 
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);        return; 
         scanf("%d", i);*/      } 
       for (i=-1; i<=nlstate+ndeath; i++)        if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
         for (jk=-1; jk<=nlstate+ndeath; jk++)        for (j=1;j<=n;j++) { 
           for(m=agemin; m <= agemax+3; m++)        ptt[j]=2.0*p[j]-pt[j]; 
             freq[i][jk][m]=0;        xit[j]=p[j]-pt[j]; 
              pt[j]=p[j]; 
       dateintsum=0;      } 
       k2cpt=0;      fptt=(*func)(ptt); 
       for (i=1; i<=imx; i++) {      if (fptt < fp) { 
         bool=1;        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
         if  (cptcovn>0) {        if (t < 0.0) { 
           for (z1=1; z1<=cptcoveff; z1++)          linmin(p,xit,n,fret,func); 
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])          for (j=1;j<=n;j++) { 
               bool=0;            xi[j][ibig]=xi[j][n]; 
         }            xi[j][n]=xit[j]; 
         if (bool==1) {          }
           for(m=firstpass; m<=lastpass; m++){  #ifdef DEBUG
             k2=anint[m][i]+(mint[m][i]/12.);          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
             if ((k2>=dateprev1) && (k2<=dateprev2)) {          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
               if(agev[m][i]==0) agev[m][i]=agemax+1;          for(j=1;j<=n;j++){
               if(agev[m][i]==1) agev[m][i]=agemax+2;            printf(" %.12e",xit[j]);
               if (m<lastpass) {            fprintf(ficlog," %.12e",xit[j]);
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];          }
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];          printf("\n");
               }          fprintf(ficlog,"\n");
                #endif
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {        }
                 dateintsum=dateintsum+k2;      } 
                 k2cpt++;    } 
               }  } 
             }  
           }  /**** Prevalence limit (stable or period prevalence)  ****************/
         }  
       }  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
          {
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
        matrix by transitions matrix until convergence is reached */
       if  (cptcovn>0) {  
         fprintf(ficresp, "\n#********** Variable ");    int i, ii,j,k;
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    double min, max, maxmin, maxmax,sumnew=0.;
         fprintf(ficresp, "**********\n#");    double **matprod2();
       }    double **out, cov[NCOVMAX+1], **pmij();
       for(i=1; i<=nlstate;i++)    double **newm;
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);    double agefin, delaymax=50 ; /* Max number of years to converge */
       fprintf(ficresp, "\n");  
          for (ii=1;ii<=nlstate+ndeath;ii++)
       for(i=(int)agemin; i <= (int)agemax+3; i++){      for (j=1;j<=nlstate+ndeath;j++){
         if(i==(int)agemax+3)        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           printf("Total");      }
         else  
           printf("Age %d", i);     cov[1]=1.;
         for(jk=1; jk <=nlstate ; jk++){   
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
             pp[jk] += freq[jk][m][i];    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
         }      newm=savm;
         for(jk=1; jk <=nlstate ; jk++){      /* Covariates have to be included here again */
           for(m=-1, pos=0; m <=0 ; m++)      cov[2]=agefin;
             pos += freq[jk][m][i];      
           if(pp[jk]>=1.e-10)      for (k=1; k<=cptcovn;k++) {
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);        cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
           else        /*        printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
             printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);      }
         }      for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
       for (k=1; k<=cptcovprod;k++)
         for(jk=1; jk <=nlstate ; jk++){        cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]] * nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)      
             pp[jk] += freq[jk][m][i];      /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
         }      /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
         for(jk=1,pos=0; jk <=nlstate ; jk++)      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
           pos += pp[jk];      
         for(jk=1; jk <=nlstate ; jk++){      savm=oldm;
           if(pos>=1.e-5)      oldm=newm;
             printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);      maxmax=0.;
           else      for(j=1;j<=nlstate;j++){
             printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);        min=1.;
           if( i <= (int) agemax){        max=0.;
             if(pos>=1.e-5){        for(i=1; i<=nlstate; i++) {
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);          sumnew=0;
               probs[i][jk][j1]= pp[jk]/pos;          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/          prlim[i][j]= newm[i][j]/(1-sumnew);
             }          max=FMAX(max,prlim[i][j]);
             else          min=FMIN(min,prlim[i][j]);
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);        }
           }        maxmin=max-min;
         }        maxmax=FMAX(maxmax,maxmin);
              }
         for(jk=-1; jk <=nlstate+ndeath; jk++)      if(maxmax < ftolpl){
           for(m=-1; m <=nlstate+ndeath; m++)        return prlim;
             if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);      }
         if(i <= (int) agemax)    }
           fprintf(ficresp,"\n");  }
         printf("\n");  
       }  /*************** transition probabilities ***************/ 
     }  
   }  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
   dateintmean=dateintsum/k2cpt;  {
      /* According to parameters values stored in x and the covariate's values stored in cov,
   fclose(ficresp);       computes the probability to be observed in state j being in state i by appying the
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);       model to the ncovmodel covariates (including constant and age).
   free_vector(pp,1,nlstate);       lnpijopii=ln(pij/pii)= aij+bij*age+cij*v1+dij*v2+... = sum_nc=1^ncovmodel xij(nc)*cov[nc]
         and, according on how parameters are entered, the position of the coefficient xij(nc) of the
   /* End of Freq */       ncth covariate in the global vector x is given by the formula:
 }       j<i nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel
        j>=i nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel
 /************ Prevalence ********************/       Computes ln(pij/pii) (lnpijopii), deduces pij/pii by exponentiation,
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)       sums on j different of i to get 1-pii/pii, deduces pii, and then all pij.
 {  /* Some frequencies */       Outputs ps[i][j] the probability to be observed in j being in j according to
         the values of the covariates cov[nc] and corresponding parameter values x[nc+shiftij]
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;    */
   double ***freq; /* Frequencies */    double s1, lnpijopii;
   double *pp;    /*double t34;*/
   double pos, k2;    int i,j,j1, nc, ii, jj;
   
   pp=vector(1,nlstate);      for(i=1; i<= nlstate; i++){
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);        for(j=1; j<i;j++){
            for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);            /*lnpijopii += param[i][j][nc]*cov[nc];*/
   j1=0;            lnpijopii += x[nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel]*cov[nc];
    /*       printf("Int j<i s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
   j=cptcoveff;          }
   if (cptcovn<1) {j=1;ncodemax[1]=1;}          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
    /*      printf("s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
  for(k1=1; k1<=j;k1++){        }
     for(i1=1; i1<=ncodemax[k1];i1++){        for(j=i+1; j<=nlstate+ndeath;j++){
       j1++;          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
              /*lnpijopii += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];*/
       for (i=-1; i<=nlstate+ndeath; i++)              lnpijopii += x[nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel]*cov[nc];
         for (jk=-1; jk<=nlstate+ndeath; jk++)    /*        printf("Int j>i s1=%.17e, lnpijopii=%.17e %lx %lx\n",s1,lnpijopii,s1,lnpijopii); */
           for(m=agemin; m <= agemax+3; m++)          }
             freq[i][jk][m]=0;          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
              }
       for (i=1; i<=imx; i++) {      }
         bool=1;      
         if  (cptcovn>0) {      for(i=1; i<= nlstate; i++){
           for (z1=1; z1<=cptcoveff; z1++)        s1=0;
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])        for(j=1; j<i; j++){
               bool=0;          s1+=exp(ps[i][j]); /* In fact sums pij/pii */
         }          /*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
         if (bool==1) {        }
           for(m=firstpass; m<=lastpass; m++){        for(j=i+1; j<=nlstate+ndeath; j++){
             k2=anint[m][i]+(mint[m][i]/12.);          s1+=exp(ps[i][j]); /* In fact sums pij/pii */
             if ((k2>=dateprev1) && (k2<=dateprev2)) {          /*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
               if(agev[m][i]==0) agev[m][i]=agemax+1;        }
               if(agev[m][i]==1) agev[m][i]=agemax+2;        /* s1= sum_{j<>i} pij/pii=(1-pii)/pii and thus pii is known from s1 */
               if (m<lastpass) freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];        ps[i][i]=1./(s1+1.);
               /* freq[s[m][i]][s[m+1][i]][(int)(agemax+3+1)] += weight[i];  */        /* Computing other pijs */
             }        for(j=1; j<i; j++)
           }          ps[i][j]= exp(ps[i][j])*ps[i][i];
         }        for(j=i+1; j<=nlstate+ndeath; j++)
       }          ps[i][j]= exp(ps[i][j])*ps[i][i];
         for(i=(int)agemin; i <= (int)agemax+3; i++){        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
           for(jk=1; jk <=nlstate ; jk++){      } /* end i */
             for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)      
               pp[jk] += freq[jk][m][i];      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
           }        for(jj=1; jj<= nlstate+ndeath; jj++){
           for(jk=1; jk <=nlstate ; jk++){          ps[ii][jj]=0;
             for(m=-1, pos=0; m <=0 ; m++)          ps[ii][ii]=1;
             pos += freq[jk][m][i];        }
         }      }
              
          for(jk=1; jk <=nlstate ; jk++){  
            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
              pp[jk] += freq[jk][m][i];  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
          }  /*         printf("ddd %lf ",ps[ii][jj]); */
            /*       } */
          for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];  /*       printf("\n "); */
   /*        } */
          for(jk=1; jk <=nlstate ; jk++){            /*        printf("\n ");printf("%lf ",cov[2]); */
            if( i <= (int) agemax){         /*
              if(pos>=1.e-5){        for(i=1; i<= npar; i++) printf("%f ",x[i]);
                probs[i][jk][j1]= pp[jk]/pos;        goto end;*/
              }      return ps;
            }  }
          }  
            /**************** Product of 2 matrices ******************/
         }  
     }  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
   }  {
      /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
         b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);    /* in, b, out are matrice of pointers which should have been initialized 
   free_vector(pp,1,nlstate);       before: only the contents of out is modified. The function returns
         a pointer to pointers identical to out */
 }  /* End of Freq */    long i, j, k;
     for(i=nrl; i<= nrh; i++)
 /************* Waves Concatenation ***************/      for(k=ncolol; k<=ncoloh; k++)
         for(j=ncl,out[i][k]=0.; j<=nch; j++)
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)          out[i][k] +=in[i][j]*b[j][k];
 {  
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.    return out;
      Death is a valid wave (if date is known).  }
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i  
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]  
      and mw[mi+1][i]. dh depends on stepm.  /************* Higher Matrix Product ***************/
      */  
   double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
   int i, mi, m;  {
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;    /* Computes the transition matrix starting at age 'age' over 
      double sum=0., jmean=0.;*/       'nhstepm*hstepm*stepm' months (i.e. until
        age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
   int j, k=0,jk, ju, jl;       nhstepm*hstepm matrices. 
   double sum=0.;       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
   jmin=1e+5;       (typically every 2 years instead of every month which is too big 
   jmax=-1;       for the memory).
   jmean=0.;       Model is determined by parameters x and covariates have to be 
   for(i=1; i<=imx; i++){       included manually here. 
     mi=0;  
     m=firstpass;       */
     while(s[m][i] <= nlstate){  
       if(s[m][i]>=1)    int i, j, d, h, k;
         mw[++mi][i]=m;    double **out, cov[NCOVMAX+1];
       if(m >=lastpass)    double **newm;
         break;  
       else    /* Hstepm could be zero and should return the unit matrix */
         m++;    for (i=1;i<=nlstate+ndeath;i++)
     }/* end while */      for (j=1;j<=nlstate+ndeath;j++){
     if (s[m][i] > nlstate){        oldm[i][j]=(i==j ? 1.0 : 0.0);
       mi++;     /* Death is another wave */        po[i][j][0]=(i==j ? 1.0 : 0.0);
       /* if(mi==0)  never been interviewed correctly before death */      }
          /* Only death is a correct wave */    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
       mw[mi][i]=m;    for(h=1; h <=nhstepm; h++){
     }      for(d=1; d <=hstepm; d++){
         newm=savm;
     wav[i]=mi;        /* Covariates have to be included here again */
     if(mi==0)        cov[1]=1.;
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
   }        for (k=1; k<=cptcovn;k++) 
           cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   for(i=1; i<=imx; i++){        for (k=1; k<=cptcovage;k++)
     for(mi=1; mi<wav[i];mi++){          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
       if (stepm <=0)        for (k=1; k<=cptcovprod;k++)
         dh[mi][i]=1;          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
       else{  
         if (s[mw[mi+1][i]][i] > nlstate) {  
           if (agedc[i] < 2*AGESUP) {        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
           if(j==0) j=1;  /* Survives at least one month after exam */        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
           k=k+1;                     pmij(pmmij,cov,ncovmodel,x,nlstate));
           if (j >= jmax) jmax=j;        savm=oldm;
           if (j <= jmin) jmin=j;        oldm=newm;
           sum=sum+j;      }
           /*if (j<0) printf("j=%d num=%d \n",j,i); */      for(i=1; i<=nlstate+ndeath; i++)
           }        for(j=1;j<=nlstate+ndeath;j++) {
         }          po[i][j][h]=newm[i][j];
         else{          /*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));        }
           k=k+1;      /*printf("h=%d ",h);*/
           if (j >= jmax) jmax=j;    } /* end h */
           else if (j <= jmin)jmin=j;  /*     printf("\n H=%d \n",h); */
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */    return po;
           sum=sum+j;  }
         }  
         jk= j/stepm;  
         jl= j -jk*stepm;  /*************** log-likelihood *************/
         ju= j -(jk+1)*stepm;  double func( double *x)
         if(jl <= -ju)  {
           dh[mi][i]=jk;    int i, ii, j, k, mi, d, kk;
         else    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
           dh[mi][i]=jk+1;    double **out;
         if(dh[mi][i]==0)    double sw; /* Sum of weights */
           dh[mi][i]=1; /* At least one step */    double lli; /* Individual log likelihood */
       }    int s1, s2;
     }    double bbh, survp;
   }    long ipmx;
   jmean=sum/k;    /*extern weight */
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);    /* We are differentiating ll according to initial status */
  }    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
 /*********** Tricode ****************************/    /*for(i=1;i<imx;i++) 
 void tricode(int *Tvar, int **nbcode, int imx)      printf(" %d\n",s[4][i]);
 {    */
   int Ndum[20],ij=1, k, j, i;    cov[1]=1.;
   int cptcode=0;  
   cptcoveff=0;    for(k=1; k<=nlstate; k++) ll[k]=0.;
    
   for (k=0; k<19; k++) Ndum[k]=0;    if(mle==1){
   for (k=1; k<=7; k++) ncodemax[k]=0;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         /* Computes the values of the ncovmodel covariates of the model
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {           depending if the covariates are fixed or variying (age dependent) and stores them in cov[]
     for (i=1; i<=imx; i++) {           Then computes with function pmij which return a matrix p[i][j] giving the elementary probability
       ij=(int)(covar[Tvar[j]][i]);           to be observed in j being in i according to the model.
       Ndum[ij]++;         */
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       if (ij > cptcode) cptcode=ij;        /* In model V2+V1*V4+age*V3+V3*V2 Tvar[1] is V2, Tvar[2=V1*V4] 
     }           is 6, Tvar[3=age*V3] should not be computed because of age Tvar[4=V3*V2] 
            has been calculated etc */
     for (i=0; i<=cptcode; i++) {        for(mi=1; mi<= wav[i]-1; mi++){
       if(Ndum[i]!=0) ncodemax[j]++;          for (ii=1;ii<=nlstate+ndeath;ii++)
     }            for (j=1;j<=nlstate+ndeath;j++){
     ij=1;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               savm[ii][j]=(ii==j ? 1.0 : 0.0);
             }
     for (i=1; i<=ncodemax[j]; i++) {          for(d=0; d<dh[mi][i]; d++){
       for (k=0; k<=19; k++) {            newm=savm;
         if (Ndum[k] != 0) {            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           nbcode[Tvar[j]][ij]=k;            for (kk=1; kk<=cptcovage;kk++) {
                        cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; /* Tage[kk] gives the data-covariate associated with age */
           ij++;            }
         }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         if (ij > ncodemax[j]) break;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       }              savm=oldm;
     }            oldm=newm;
   }            } /* end mult */
         
  for (k=0; k<19; k++) Ndum[k]=0;          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
           /* But now since version 0.9 we anticipate for bias at large stepm.
  for (i=1; i<=ncovmodel-2; i++) {           * If stepm is larger than one month (smallest stepm) and if the exact delay 
       ij=Tvar[i];           * (in months) between two waves is not a multiple of stepm, we rounded to 
       Ndum[ij]++;           * the nearest (and in case of equal distance, to the lowest) interval but now
     }           * we keep into memory the bias bh[mi][i] and also the previous matrix product
            * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
  ij=1;           * probability in order to take into account the bias as a fraction of the way
  for (i=1; i<=10; i++) {           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
    if((Ndum[i]!=0) && (i<=ncovcol)){           * -stepm/2 to stepm/2 .
      Tvaraff[ij]=i;           * For stepm=1 the results are the same as for previous versions of Imach.
      ij++;           * For stepm > 1 the results are less biased than in previous versions. 
    }           */
  }          s1=s[mw[mi][i]][i];
            s2=s[mw[mi+1][i]][i];
     cptcoveff=ij-1;          bbh=(double)bh[mi][i]/(double)stepm; 
 }          /* bias bh is positive if real duration
            * is higher than the multiple of stepm and negative otherwise.
 /*********** Health Expectancies ****************/           */
           /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm)          if( s2 > nlstate){ 
 {            /* i.e. if s2 is a death state and if the date of death is known 
   /* Health expectancies */               then the contribution to the likelihood is the probability to 
   int i, j, nhstepm, hstepm, h, nstepm;               die between last step unit time and current  step unit time, 
   double age, agelim, hf;               which is also equal to probability to die before dh 
   double ***p3mat;               minus probability to die before dh-stepm . 
                 In version up to 0.92 likelihood was computed
   fprintf(ficreseij,"# Health expectancies\n");          as if date of death was unknown. Death was treated as any other
   fprintf(ficreseij,"# Age");          health state: the date of the interview describes the actual state
   for(i=1; i<=nlstate;i++)          and not the date of a change in health state. The former idea was
     for(j=1; j<=nlstate;j++)          to consider that at each interview the state was recorded
       fprintf(ficreseij," %1d-%1d",i,j);          (healthy, disable or death) and IMaCh was corrected; but when we
   fprintf(ficreseij,"\n");          introduced the exact date of death then we should have modified
           the contribution of an exact death to the likelihood. This new
   if(estepm < stepm){          contribution is smaller and very dependent of the step unit
     printf ("Problem %d lower than %d\n",estepm, stepm);          stepm. It is no more the probability to die between last interview
   }          and month of death but the probability to survive from last
   else  hstepm=estepm;            interview up to one month before death multiplied by the
   /* We compute the life expectancy from trapezoids spaced every estepm months          probability to die within a month. Thanks to Chris
    * This is mainly to measure the difference between two models: for example          Jackson for correcting this bug.  Former versions increased
    * if stepm=24 months pijx are given only every 2 years and by summing them          mortality artificially. The bad side is that we add another loop
    * we are calculating an estimate of the Life Expectancy assuming a linear          which slows down the processing. The difference can be up to 10%
    * progression inbetween and thus overestimating or underestimating according          lower mortality.
    * to the curvature of the survival function. If, for the same date, we            */
    * estimate the model with stepm=1 month, we can keep estepm to 24 months            lli=log(out[s1][s2] - savm[s1][s2]);
    * to compare the new estimate of Life expectancy with the same linear  
    * hypothesis. A more precise result, taking into account a more precise  
    * curvature will be obtained if estepm is as small as stepm. */          } else if  (s2==-2) {
             for (j=1,survp=0. ; j<=nlstate; j++) 
   /* For example we decided to compute the life expectancy with the smallest unit */              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.            /*survp += out[s1][j]; */
      nhstepm is the number of hstepm from age to agelim            lli= log(survp);
      nstepm is the number of stepm from age to agelin.          }
      Look at hpijx to understand the reason of that which relies in memory size          
      and note for a fixed period like estepm months */          else if  (s2==-4) { 
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the            for (j=3,survp=0. ; j<=nlstate; j++)  
      survival function given by stepm (the optimization length). Unfortunately it              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
      means that if the survival funtion is printed only each two years of age and if            lli= log(survp); 
      you sum them up and add 1 year (area under the trapezoids) you won't get the same          } 
      results. So we changed our mind and took the option of the best precision.  
   */          else if  (s2==-5) { 
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */            for (j=1,survp=0. ; j<=2; j++)  
               survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   agelim=AGESUP;            lli= log(survp); 
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */          } 
     /* nhstepm age range expressed in number of stepm */          
     nstepm=(int) rint((agelim-age)*YEARM/stepm);          else{
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
     /* if (stepm >= YEARM) hstepm=1;*/            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */          } 
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
     /* Computed by stepm unit matrices, product of hstepm matrices, stored          /*if(lli ==000.0)*/
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);            ipmx +=1;
            sw += weight[i];
     /*for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++) printf("%f %.5f\n", age*12+h, p3mat[1][1][h]);*/          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         } /* end of wave */
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */      } /* end of individual */
     for(i=1; i<=nlstate;i++)    }  else if(mle==2){
       for(j=1; j<=nlstate;j++)      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;        for(mi=1; mi<= wav[i]-1; mi++){
           /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/          for (ii=1;ii<=nlstate+ndeath;ii++)
         }            for (j=1;j<=nlstate+ndeath;j++){
     fprintf(ficreseij,"%3.0f",age );              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     for(i=1; i<=nlstate;i++)              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       for(j=1; j<=nlstate;j++){            }
         fprintf(ficreseij," %9.4f", eij[i][j][(int)age]);          for(d=0; d<=dh[mi][i]; d++){
       }            newm=savm;
     fprintf(ficreseij,"\n");            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            for (kk=1; kk<=cptcovage;kk++) {
   }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 }            }
             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 /************ Variance ******************/                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm)            savm=oldm;
 {            oldm=newm;
   /* Variance of health expectancies */          } /* end mult */
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/        
   double **newm;          s1=s[mw[mi][i]][i];
   double **dnewm,**doldm;          s2=s[mw[mi+1][i]][i];
   int i, j, nhstepm, hstepm, h, nstepm ;          bbh=(double)bh[mi][i]/(double)stepm; 
   int k, cptcode;          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
   double *xp;          ipmx +=1;
   double **gp, **gm;          sw += weight[i];
   double ***gradg, ***trgradg;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   double ***p3mat;        } /* end of wave */
   double age,agelim, hf;      } /* end of individual */
   int theta;    }  else if(mle==3){  /* exponential inter-extrapolation */
       for (i=1,ipmx=0, sw=0.; i<=imx; i++){
    fprintf(ficresvij,"# Covariances of life expectancies\n");        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   fprintf(ficresvij,"# Age");        for(mi=1; mi<= wav[i]-1; mi++){
   for(i=1; i<=nlstate;i++)          for (ii=1;ii<=nlstate+ndeath;ii++)
     for(j=1; j<=nlstate;j++)            for (j=1;j<=nlstate+ndeath;j++){
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   fprintf(ficresvij,"\n");              savm[ii][j]=(ii==j ? 1.0 : 0.0);
             }
   xp=vector(1,npar);          for(d=0; d<dh[mi][i]; d++){
   dnewm=matrix(1,nlstate,1,npar);            newm=savm;
   doldm=matrix(1,nlstate,1,nlstate);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
              for (kk=1; kk<=cptcovage;kk++) {
   if(estepm < stepm){              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     printf ("Problem %d lower than %d\n",estepm, stepm);            }
   }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   else  hstepm=estepm;                           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   /* For example we decided to compute the life expectancy with the smallest unit */            savm=oldm;
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.            oldm=newm;
      nhstepm is the number of hstepm from age to agelim          } /* end mult */
      nstepm is the number of stepm from age to agelin.        
      Look at hpijx to understand the reason of that which relies in memory size          s1=s[mw[mi][i]][i];
      and note for a fixed period like k years */          s2=s[mw[mi+1][i]][i];
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the          bbh=(double)bh[mi][i]/(double)stepm; 
      survival function given by stepm (the optimization length). Unfortunately it          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
      means that if the survival funtion is printed only each two years of age and if          ipmx +=1;
      you sum them up and add 1 year (area under the trapezoids) you won't get the same          sw += weight[i];
      results. So we changed our mind and took the option of the best precision.          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   */        } /* end of wave */
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */      } /* end of individual */
   agelim = AGESUP;    }else if (mle==4){  /* ml=4 no inter-extrapolation */
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */        for(mi=1; mi<= wav[i]-1; mi++){
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          for (ii=1;ii<=nlstate+ndeath;ii++)
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);            for (j=1;j<=nlstate+ndeath;j++){
     gp=matrix(0,nhstepm,1,nlstate);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     gm=matrix(0,nhstepm,1,nlstate);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
             }
     for(theta=1; theta <=npar; theta++){          for(d=0; d<dh[mi][i]; d++){
       for(i=1; i<=npar; i++){ /* Computes gradient */            newm=savm;
         xp[i] = x[i] + (i==theta ?delti[theta]:0);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       }            for (kk=1; kk<=cptcovage;kk++) {
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);                cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);            }
           
       if (popbased==1) {            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         for(i=1; i<=nlstate;i++)                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           prlim[i][i]=probs[(int)age][i][ij];            savm=oldm;
       }            oldm=newm;
            } /* end mult */
       for(j=1; j<= nlstate; j++){        
         for(h=0; h<=nhstepm; h++){          s1=s[mw[mi][i]][i];
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)          s2=s[mw[mi+1][i]][i];
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];          if( s2 > nlstate){ 
         }            lli=log(out[s1][s2] - savm[s1][s2]);
       }          }else{
                lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
       for(i=1; i<=npar; i++) /* Computes gradient */          }
         xp[i] = x[i] - (i==theta ?delti[theta]:0);          ipmx +=1;
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            sw += weight[i];
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
    /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
       if (popbased==1) {        } /* end of wave */
         for(i=1; i<=nlstate;i++)      } /* end of individual */
           prlim[i][i]=probs[(int)age][i][ij];    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
       }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       for(j=1; j<= nlstate; j++){        for(mi=1; mi<= wav[i]-1; mi++){
         for(h=0; h<=nhstepm; h++){          for (ii=1;ii<=nlstate+ndeath;ii++)
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)            for (j=1;j<=nlstate+ndeath;j++){
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       }            }
           for(d=0; d<dh[mi][i]; d++){
       for(j=1; j<= nlstate; j++)            newm=savm;
         for(h=0; h<=nhstepm; h++){            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];            for (kk=1; kk<=cptcovage;kk++) {
         }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     } /* End theta */            }
           
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                          1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     for(h=0; h<=nhstepm; h++)            savm=oldm;
       for(j=1; j<=nlstate;j++)            oldm=newm;
         for(theta=1; theta <=npar; theta++)          } /* end mult */
           trgradg[h][j][theta]=gradg[h][theta][j];        
           s1=s[mw[mi][i]][i];
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */          s2=s[mw[mi+1][i]][i];
     for(i=1;i<=nlstate;i++)          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
       for(j=1;j<=nlstate;j++)          ipmx +=1;
         vareij[i][j][(int)age] =0.;          sw += weight[i];
           ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     for(h=0;h<=nhstepm;h++){          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
       for(k=0;k<=nhstepm;k++){        } /* end of wave */
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);      } /* end of individual */
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);    } /* End of if */
         for(i=1;i<=nlstate;i++)    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
           for(j=1;j<=nlstate;j++)    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
       }    return -l;
     }  }
   
     fprintf(ficresvij,"%.0f ",age );  /*************** log-likelihood *************/
     for(i=1; i<=nlstate;i++)  double funcone( double *x)
       for(j=1; j<=nlstate;j++){  {
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);    /* Same as likeli but slower because of a lot of printf and if */
       }    int i, ii, j, k, mi, d, kk;
     fprintf(ficresvij,"\n");    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
     free_matrix(gp,0,nhstepm,1,nlstate);    double **out;
     free_matrix(gm,0,nhstepm,1,nlstate);    double lli; /* Individual log likelihood */
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);    double llt;
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);    int s1, s2;
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    double bbh, survp;
   } /* End age */    /*extern weight */
      /* We are differentiating ll according to initial status */
   free_vector(xp,1,npar);    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   free_matrix(doldm,1,nlstate,1,npar);    /*for(i=1;i<imx;i++) 
   free_matrix(dnewm,1,nlstate,1,nlstate);      printf(" %d\n",s[4][i]);
     */
 }    cov[1]=1.;
   
 /************ Variance of prevlim ******************/    for(k=1; k<=nlstate; k++) ll[k]=0.;
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)  
 {    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   /* Variance of prevalence limit */      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/      for(mi=1; mi<= wav[i]-1; mi++){
   double **newm;        for (ii=1;ii<=nlstate+ndeath;ii++)
   double **dnewm,**doldm;          for (j=1;j<=nlstate+ndeath;j++){
   int i, j, nhstepm, hstepm;            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   int k, cptcode;            savm[ii][j]=(ii==j ? 1.0 : 0.0);
   double *xp;          }
   double *gp, *gm;        for(d=0; d<dh[mi][i]; d++){
   double **gradg, **trgradg;          newm=savm;
   double age,agelim;          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   int theta;          for (kk=1; kk<=cptcovage;kk++) {
                cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");          }
   fprintf(ficresvpl,"# Age");          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   for(i=1; i<=nlstate;i++)                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       fprintf(ficresvpl," %1d-%1d",i,i);          savm=oldm;
   fprintf(ficresvpl,"\n");          oldm=newm;
         } /* end mult */
   xp=vector(1,npar);        
   dnewm=matrix(1,nlstate,1,npar);        s1=s[mw[mi][i]][i];
   doldm=matrix(1,nlstate,1,nlstate);        s2=s[mw[mi+1][i]][i];
          bbh=(double)bh[mi][i]/(double)stepm; 
   hstepm=1*YEARM; /* Every year of age */        /* bias is positive if real duration
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */         * is higher than the multiple of stepm and negative otherwise.
   agelim = AGESUP;         */
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */        if( s2 > nlstate && (mle <5) ){  /* Jackson */
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */          lli=log(out[s1][s2] - savm[s1][s2]);
     if (stepm >= YEARM) hstepm=1;        } else if  (s2==-2) {
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */          for (j=1,survp=0. ; j<=nlstate; j++) 
     gradg=matrix(1,npar,1,nlstate);            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
     gp=vector(1,nlstate);          lli= log(survp);
     gm=vector(1,nlstate);        }else if (mle==1){
           lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
     for(theta=1; theta <=npar; theta++){        } else if(mle==2){
       for(i=1; i<=npar; i++){ /* Computes gradient */          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
         xp[i] = x[i] + (i==theta ?delti[theta]:0);        } else if(mle==3){  /* exponential inter-extrapolation */
       }          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        } else if (mle==4){  /* mle=4 no inter-extrapolation */
       for(i=1;i<=nlstate;i++)          lli=log(out[s1][s2]); /* Original formula */
         gp[i] = prlim[i][i];        } else{  /* mle=0 back to 1 */
              lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
       for(i=1; i<=npar; i++) /* Computes gradient */          /*lli=log(out[s1][s2]); */ /* Original formula */
         xp[i] = x[i] - (i==theta ?delti[theta]:0);        } /* End of if */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        ipmx +=1;
       for(i=1;i<=nlstate;i++)        sw += weight[i];
         gm[i] = prlim[i][i];        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
       for(i=1;i<=nlstate;i++)        if(globpr){
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];          fprintf(ficresilk,"%9d %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
     } /* End theta */   %11.6f %11.6f %11.6f ", \
                   num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
     trgradg =matrix(1,nlstate,1,npar);                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
           for(k=1,llt=0.,l=0.; k<=nlstate; k++){
     for(j=1; j<=nlstate;j++)            llt +=ll[k]*gipmx/gsw;
       for(theta=1; theta <=npar; theta++)            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
         trgradg[j][theta]=gradg[theta][j];          }
           fprintf(ficresilk," %10.6f\n", -llt);
     for(i=1;i<=nlstate;i++)        }
       varpl[i][(int)age] =0.;      } /* end of wave */
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);    } /* end of individual */
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
     for(i=1;i<=nlstate;i++)    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
     if(globpr==0){ /* First time we count the contributions and weights */
     fprintf(ficresvpl,"%.0f ",age );      gipmx=ipmx;
     for(i=1; i<=nlstate;i++)      gsw=sw;
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));    }
     fprintf(ficresvpl,"\n");    return -l;
     free_vector(gp,1,nlstate);  }
     free_vector(gm,1,nlstate);  
     free_matrix(gradg,1,npar,1,nlstate);  
     free_matrix(trgradg,1,nlstate,1,npar);  /*************** function likelione ***********/
   } /* End age */  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
   {
   free_vector(xp,1,npar);    /* This routine should help understanding what is done with 
   free_matrix(doldm,1,nlstate,1,npar);       the selection of individuals/waves and
   free_matrix(dnewm,1,nlstate,1,nlstate);       to check the exact contribution to the likelihood.
        Plotting could be done.
 }     */
     int k;
 /************ Variance of one-step probabilities  ******************/  
 void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)    if(*globpri !=0){ /* Just counts and sums, no printings */
 {      strcpy(fileresilk,"ilk"); 
   int i, j, i1, k1, j1, z1;      strcat(fileresilk,fileres);
   int k=0, cptcode;      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
   double **dnewm,**doldm;        printf("Problem with resultfile: %s\n", fileresilk);
   double *xp;        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
   double *gp, *gm;      }
   double **gradg, **trgradg;      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
   double age,agelim, cov[NCOVMAX];      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
   int theta;      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
   char fileresprob[FILENAMELENGTH];      for(k=1; k<=nlstate; k++) 
         fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
   strcpy(fileresprob,"prob");      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
   strcat(fileresprob,fileres);    }
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {  
     printf("Problem with resultfile: %s\n", fileresprob);    *fretone=(*funcone)(p);
   }    if(*globpri !=0){
   printf("Computing variance of one-step probabilities: result on file '%s' \n",fileresprob);      fclose(ficresilk);
        fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
       fflush(fichtm); 
   xp=vector(1,npar);    } 
   dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    return;
   doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));  }
    
   cov[1]=1;  
   j=cptcoveff;  /*********** Maximum Likelihood Estimation ***************/
   if (cptcovn<1) {j=1;ncodemax[1]=1;}  
   j1=0;  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
   for(k1=1; k1<=1;k1++){  {
     for(i1=1; i1<=ncodemax[k1];i1++){    int i,j, iter;
     j1++;    double **xi;
     double fret;
     if  (cptcovn>0) {    double fretone; /* Only one call to likelihood */
       fprintf(ficresprob, "\n#********** Variable ");    /*  char filerespow[FILENAMELENGTH];*/
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    xi=matrix(1,npar,1,npar);
       fprintf(ficresprob, "**********\n#");    for (i=1;i<=npar;i++)
     }      for (j=1;j<=npar;j++)
            xi[i][j]=(i==j ? 1.0 : 0.0);
       for (age=bage; age<=fage; age ++){    printf("Powell\n");  fprintf(ficlog,"Powell\n");
         cov[2]=age;    strcpy(filerespow,"pow"); 
         for (k=1; k<=cptcovn;k++) {    strcat(filerespow,fileres);
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];    if((ficrespow=fopen(filerespow,"w"))==NULL) {
                printf("Problem with resultfile: %s\n", filerespow);
         }      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    }
         for (k=1; k<=cptcovprod;k++)    fprintf(ficrespow,"# Powell\n# iter -2*LL");
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    for (i=1;i<=nlstate;i++)
              for(j=1;j<=nlstate+ndeath;j++)
         gradg=matrix(1,npar,1,9);        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
         trgradg=matrix(1,9,1,npar);    fprintf(ficrespow,"\n");
         gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));  
         gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));    powell(p,xi,npar,ftol,&iter,&fret,func);
      
         for(theta=1; theta <=npar; theta++){    free_matrix(xi,1,npar,1,npar);
           for(i=1; i<=npar; i++)    fclose(ficrespow);
             xp[i] = x[i] + (i==theta ?delti[theta]:0);    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
              fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
           pmij(pmmij,cov,ncovmodel,xp,nlstate);    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
            
           k=0;  }
           for(i=1; i<= (nlstate+ndeath); i++){  
             for(j=1; j<=(nlstate+ndeath);j++){  /**** Computes Hessian and covariance matrix ***/
               k=k+1;  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
               gp[k]=pmmij[i][j];  {
             }    double  **a,**y,*x,pd;
           }    double **hess;
              int i, j,jk;
           for(i=1; i<=npar; i++)    int *indx;
             xp[i] = x[i] - (i==theta ?delti[theta]:0);  
        double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
           pmij(pmmij,cov,ncovmodel,xp,nlstate);    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
           k=0;    void lubksb(double **a, int npar, int *indx, double b[]) ;
           for(i=1; i<=(nlstate+ndeath); i++){    void ludcmp(double **a, int npar, int *indx, double *d) ;
             for(j=1; j<=(nlstate+ndeath);j++){    double gompertz(double p[]);
               k=k+1;    hess=matrix(1,npar,1,npar);
               gm[k]=pmmij[i][j];  
             }    printf("\nCalculation of the hessian matrix. Wait...\n");
           }    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
          for (i=1;i<=npar;i++){
           for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)      printf("%d",i);fflush(stdout);
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];        fprintf(ficlog,"%d",i);fflush(ficlog);
         }     
        hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
         for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)      
           for(theta=1; theta <=npar; theta++)      /*  printf(" %f ",p[i]);
             trgradg[j][theta]=gradg[theta][j];          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
            }
         matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);    
         matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);    for (i=1;i<=npar;i++) {
              for (j=1;j<=npar;j++)  {
         pmij(pmmij,cov,ncovmodel,x,nlstate);        if (j>i) { 
                  printf(".%d%d",i,j);fflush(stdout);
         k=0;          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
         for(i=1; i<=(nlstate+ndeath); i++){          hess[i][j]=hessij(p,delti,i,j,func,npar);
           for(j=1; j<=(nlstate+ndeath);j++){          
             k=k+1;          hess[j][i]=hess[i][j];    
             gm[k]=pmmij[i][j];          /*printf(" %lf ",hess[i][j]);*/
           }        }
         }      }
          }
      /*printf("\n%d ",(int)age);    printf("\n");
      for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){    fprintf(ficlog,"\n");
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));  
      }*/    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
     fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
         fprintf(ficresprob,"\n%d ",(int)age);    
     a=matrix(1,npar,1,npar);
         for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++)    y=matrix(1,npar,1,npar);
           fprintf(ficresprob,"%.3e (%.3e) ",gm[i],doldm[i][i]);    x=vector(1,npar);
      indx=ivector(1,npar);
       }    for (i=1;i<=npar;i++)
     }      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));    ludcmp(a,npar,indx,&pd);
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));  
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    for (j=1;j<=npar;j++) {
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);      for (i=1;i<=npar;i++) x[i]=0;
   }      x[j]=1;
   free_vector(xp,1,npar);      lubksb(a,npar,indx,x);
   fclose(ficresprob);      for (i=1;i<=npar;i++){ 
          matcov[i][j]=x[i];
 }      }
     }
 /******************* Printing html file ***********/  
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \    printf("\n#Hessian matrix#\n");
  int lastpass, int stepm, int weightopt, char model[],\    fprintf(ficlog,"\n#Hessian matrix#\n");
  int imx,int jmin, int jmax, double jmeanint,char optionfile[], \    for (i=1;i<=npar;i++) { 
  char optionfilehtm[],char rfileres[], char optionfilegnuplot[],\      for (j=1;j<=npar;j++) { 
  char version[], int popforecast, int estepm ){        printf("%.3e ",hess[i][j]);
   int jj1, k1, i1, cpt;        fprintf(ficlog,"%.3e ",hess[i][j]);
   FILE *fichtm;      }
   /*char optionfilehtm[FILENAMELENGTH];*/      printf("\n");
       fprintf(ficlog,"\n");
   strcpy(optionfilehtm,optionfile);    }
   strcat(optionfilehtm,".htm");  
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {    /* Recompute Inverse */
     printf("Problem with %s \n",optionfilehtm), exit(0);    for (i=1;i<=npar;i++)
   }      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
     ludcmp(a,npar,indx,&pd);
  fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n  
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n    /*  printf("\n#Hessian matrix recomputed#\n");
 \n  
 Total number of observations=%d <br>\n    for (j=1;j<=npar;j++) {
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n      for (i=1;i<=npar;i++) x[i]=0;
 <hr  size=\"2\" color=\"#EC5E5E\">      x[j]=1;
  <ul><li>Outputs files<br>\n      lubksb(a,npar,indx,x);
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n      for (i=1;i<=npar;i++){ 
  - Gnuplot file name: <a href=\"%s\">%s</a><br>\n        y[i][j]=x[i];
  - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n        printf("%.3e ",y[i][j]);
  - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>\n        fprintf(ficlog,"%.3e ",y[i][j]);
  - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>\n      }
  - Life expectancies by age and initial health status (estepm=%2d months): <a href=\"e%s\">e%s</a> <br>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot,fileres,fileres,fileres,fileres,fileres,fileres,estepm,fileres,fileres);      printf("\n");
       fprintf(ficlog,"\n");
  fprintf(fichtm,"\n    }
  - Parameter file with estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>\n    */
  - Variances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n  
  - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>\n    free_matrix(a,1,npar,1,npar);
  - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);    free_matrix(y,1,npar,1,npar);
     free_vector(x,1,npar);
  if(popforecast==1) fprintf(fichtm,"\n    free_ivector(indx,1,npar);
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n    free_matrix(hess,1,npar,1,npar);
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n  
         <br>",fileres,fileres,fileres,fileres);  
  else  }
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);  
 fprintf(fichtm," <li>Graphs</li><p>");  /*************** hessian matrix ****************/
   double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
  m=cptcoveff;  {
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}    int i;
     int l=1, lmax=20;
  jj1=0;    double k1,k2;
  for(k1=1; k1<=m;k1++){    double p2[MAXPARM+1]; /* identical to x */
    for(i1=1; i1<=ncodemax[k1];i1++){    double res;
        jj1++;    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
        if (cptcovn > 0) {    double fx;
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");    int k=0,kmax=10;
          for (cpt=1; cpt<=cptcoveff;cpt++)    double l1;
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);  
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");    fx=func(x);
        }    for (i=1;i<=npar;i++) p2[i]=x[i];
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>    for(l=0 ; l <=lmax; l++){
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);          l1=pow(10,l);
        for(cpt=1; cpt<nlstate;cpt++){      delts=delt;
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>      for(k=1 ; k <kmax; k=k+1){
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);        delt = delta*(l1*k);
        }        p2[theta]=x[theta] +delt;
     for(cpt=1; cpt<=nlstate;cpt++) {        k1=func(p2)-fx;
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident        p2[theta]=x[theta]-delt;
 interval) in state (%d): v%s%d%d.gif <br>        k2=func(p2)-fx;
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);          /*res= (k1-2.0*fx+k2)/delt/delt; */
      }        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
      for(cpt=1; cpt<=nlstate;cpt++) {        
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>  #ifdef DEBUGHESS
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
      }        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
      fprintf(fichtm,"\n<br>- Total life expectancy by age and  #endif
 health expectancies in states (1) and (2): e%s%d.gif<br>        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
 fprintf(fichtm,"\n</body>");          k=kmax;
    }        }
    }        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
 fclose(fichtm);          k=kmax; l=lmax*10.;
 }        }
         else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
 /******************* Gnuplot file **************/          delts=delt;
 void printinggnuplot(char fileres[],char optionfilefiname[],char optionfile[],char optionfilegnuplot[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){        }
       }
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;    }
     delti[theta]=delts;
   strcpy(optionfilegnuplot,optionfilefiname);    return res; 
   strcat(optionfilegnuplot,".gp.txt");    
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {  }
     printf("Problem with file %s",optionfilegnuplot);  
   }  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
   {
 #ifdef windows    int i;
     fprintf(ficgp,"cd \"%s\" \n",pathc);    int l=1, l1, lmax=20;
 #endif    double k1,k2,k3,k4,res,fx;
 m=pow(2,cptcoveff);    double p2[MAXPARM+1];
      int k;
  /* 1eme*/  
   for (cpt=1; cpt<= nlstate ; cpt ++) {    fx=func(x);
    for (k1=1; k1<= m ; k1 ++) {    for (k=1; k<=2; k++) {
       for (i=1;i<=npar;i++) p2[i]=x[i];
 #ifdef windows      p2[thetai]=x[thetai]+delti[thetai]/k;
     fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
 #endif      k1=func(p2)-fx;
 #ifdef unix    
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);      p2[thetai]=x[thetai]+delti[thetai]/k;
 #endif      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
       k2=func(p2)-fx;
 for (i=1; i<= nlstate ; i ++) {    
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");      p2[thetai]=x[thetai]-delti[thetai]/k;
   else fprintf(ficgp," \%%*lf (\%%*lf)");      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
 }      k3=func(p2)-fx;
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);    
     for (i=1; i<= nlstate ; i ++) {      p2[thetai]=x[thetai]-delti[thetai]/k;
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   else fprintf(ficgp," \%%*lf (\%%*lf)");      k4=func(p2)-fx;
 }      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);  #ifdef DEBUG
      for (i=1; i<= nlstate ; i ++) {      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   else fprintf(ficgp," \%%*lf (\%%*lf)");  #endif
 }      }
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));    return res;
 #ifdef unix  }
 fprintf(ficgp,"\nset ter gif small size 400,300");  
 #endif  /************** Inverse of matrix **************/
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);  void ludcmp(double **a, int n, int *indx, double *d) 
    }  { 
   }    int i,imax,j,k; 
   /*2 eme*/    double big,dum,sum,temp; 
     double *vv; 
   for (k1=1; k1<= m ; k1 ++) {   
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",ageminpar,fage);    vv=vector(1,n); 
        *d=1.0; 
     for (i=1; i<= nlstate+1 ; i ++) {    for (i=1;i<=n;i++) { 
       k=2*i;      big=0.0; 
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);      for (j=1;j<=n;j++) 
       for (j=1; j<= nlstate+1 ; j ++) {        if ((temp=fabs(a[i][j])) > big) big=temp; 
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
   else fprintf(ficgp," \%%*lf (\%%*lf)");      vv[i]=1.0/big; 
 }      } 
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");    for (j=1;j<=n;j++) { 
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);      for (i=1;i<j;i++) { 
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);        sum=a[i][j]; 
       for (j=1; j<= nlstate+1 ; j ++) {        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");        a[i][j]=sum; 
         else fprintf(ficgp," \%%*lf (\%%*lf)");      } 
 }        big=0.0; 
       fprintf(ficgp,"\" t\"\" w l 0,");      for (i=j;i<=n;i++) { 
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);        sum=a[i][j]; 
       for (j=1; j<= nlstate+1 ; j ++) {        for (k=1;k<j;k++) 
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");          sum -= a[i][k]*a[k][j]; 
   else fprintf(ficgp," \%%*lf (\%%*lf)");        a[i][j]=sum; 
 }          if ( (dum=vv[i]*fabs(sum)) >= big) { 
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");          big=dum; 
       else fprintf(ficgp,"\" t\"\" w l 0,");          imax=i; 
     }        } 
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);      } 
   }      if (j != imax) { 
          for (k=1;k<=n;k++) { 
   /*3eme*/          dum=a[imax][k]; 
           a[imax][k]=a[j][k]; 
   for (k1=1; k1<= m ; k1 ++) {          a[j][k]=dum; 
     for (cpt=1; cpt<= nlstate ; cpt ++) {        } 
       k=2+nlstate*(cpt-1);        *d = -(*d); 
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);        vv[imax]=vv[j]; 
       for (i=1; i< nlstate ; i ++) {      } 
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+i,cpt,i+1);      indx[j]=imax; 
       }      if (a[j][j] == 0.0) a[j][j]=TINY; 
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);      if (j != n) { 
     }        dum=1.0/(a[j][j]); 
     }        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
        } 
   /* CV preval stat */    } 
     for (k1=1; k1<= m ; k1 ++) {    free_vector(vv,1,n);  /* Doesn't work */
     for (cpt=1; cpt<nlstate ; cpt ++) {  ;
       k=3;  } 
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);  
   void lubksb(double **a, int n, int *indx, double b[]) 
       for (i=1; i< nlstate ; i ++)  { 
         fprintf(ficgp,"+$%d",k+i+1);    int i,ii=0,ip,j; 
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);    double sum; 
         
       l=3+(nlstate+ndeath)*cpt;    for (i=1;i<=n;i++) { 
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);      ip=indx[i]; 
       for (i=1; i< nlstate ; i ++) {      sum=b[ip]; 
         l=3+(nlstate+ndeath)*cpt;      b[ip]=b[i]; 
         fprintf(ficgp,"+$%d",l+i+1);      if (ii) 
       }        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);        else if (sum) ii=i; 
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);      b[i]=sum; 
     }    } 
   }      for (i=n;i>=1;i--) { 
        sum=b[i]; 
   /* proba elementaires */      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
    for(i=1,jk=1; i <=nlstate; i++){      b[i]=sum/a[i][i]; 
     for(k=1; k <=(nlstate+ndeath); k++){    } 
       if (k != i) {  } 
         for(j=1; j <=ncovmodel; j++){  
          void pstamp(FILE *fichier)
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);  {
           jk++;    fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
           fprintf(ficgp,"\n");  }
         }  
       }  /************ Frequencies ********************/
     }  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
     }  {  /* Some frequencies */
     
     for(jk=1; jk <=m; jk++) {    int i, m, jk, k1,i1, j1, bool, z1,j;
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);    int first;
    i=1;    double ***freq; /* Frequencies */
    for(k2=1; k2<=nlstate; k2++) {    double *pp, **prop;
      k3=i;    double pos,posprop, k2, dateintsum=0,k2cpt=0;
      for(k=1; k<=(nlstate+ndeath); k++) {    char fileresp[FILENAMELENGTH];
        if (k != k2){    
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);    pp=vector(1,nlstate);
 ij=1;    prop=matrix(1,nlstate,iagemin,iagemax+3);
         for(j=3; j <=ncovmodel; j++) {    strcpy(fileresp,"p");
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {    strcat(fileresp,fileres);
             fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);    if((ficresp=fopen(fileresp,"w"))==NULL) {
             ij++;      printf("Problem with prevalence resultfile: %s\n", fileresp);
           }      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
           else      exit(0);
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    }
         }    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
           fprintf(ficgp,")/(1");    j1=0;
            
         for(k1=1; k1 <=nlstate; k1++){      j=cptcoveff;
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);    if (cptcovn<1) {j=1;ncodemax[1]=1;}
 ij=1;  
           for(j=3; j <=ncovmodel; j++){    first=1;
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {  
             fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);    for(k1=1; k1<=j;k1++){
             ij++;      for(i1=1; i1<=ncodemax[k1];i1++){
           }        j1++;
           else        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);          scanf("%d", i);*/
           }        for (i=-5; i<=nlstate+ndeath; i++)  
           fprintf(ficgp,")");          for (jk=-5; jk<=nlstate+ndeath; jk++)  
         }            for(m=iagemin; m <= iagemax+3; m++)
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);              freq[i][jk][m]=0;
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");  
         i=i+ncovmodel;      for (i=1; i<=nlstate; i++)  
        }        for(m=iagemin; m <= iagemax+3; m++)
      }          prop[i][m]=0;
    }        
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);        dateintsum=0;
    }        k2cpt=0;
            for (i=1; i<=imx; i++) {
   fclose(ficgp);          bool=1;
 }  /* end gnuplot */          if  (cptcovn>0) {
             for (z1=1; z1<=cptcoveff; z1++) 
               if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
 /*************** Moving average **************/                bool=0;
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){          }
           if (bool==1){
   int i, cpt, cptcod;            for(m=firstpass; m<=lastpass; m++){
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)              k2=anint[m][i]+(mint[m][i]/12.);
       for (i=1; i<=nlstate;i++)              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)                if(agev[m][i]==0) agev[m][i]=iagemax+1;
           mobaverage[(int)agedeb][i][cptcod]=0.;                if(agev[m][i]==1) agev[m][i]=iagemax+2;
                    if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){                if (m<lastpass) {
       for (i=1; i<=nlstate;i++){                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
           for (cpt=0;cpt<=4;cpt++){                }
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];                
           }                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;                  dateintsum=dateintsum+k2;
         }                  k2cpt++;
       }                }
     }                /*}*/
                }
 }          }
         }
          
 /************** Forecasting ******************/        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){        pstamp(ficresp);
          if  (cptcovn>0) {
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;          fprintf(ficresp, "\n#********** Variable "); 
   int *popage;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;          fprintf(ficresp, "**********\n#");
   double *popeffectif,*popcount;        }
   double ***p3mat;        for(i=1; i<=nlstate;i++) 
   char fileresf[FILENAMELENGTH];          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
         fprintf(ficresp, "\n");
  agelim=AGESUP;        
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;        for(i=iagemin; i <= iagemax+3; i++){
           if(i==iagemax+3){
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);            fprintf(ficlog,"Total");
            }else{
              if(first==1){
   strcpy(fileresf,"f");              first=0;
   strcat(fileresf,fileres);              printf("See log file for details...\n");
   if((ficresf=fopen(fileresf,"w"))==NULL) {            }
     printf("Problem with forecast resultfile: %s\n", fileresf);            fprintf(ficlog,"Age %d", i);
   }          }
   printf("Computing forecasting: result on file '%s' \n", fileresf);          for(jk=1; jk <=nlstate ; jk++){
             for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
   if (cptcoveff==0) ncodemax[cptcoveff]=1;              pp[jk] += freq[jk][m][i]; 
           }
   if (mobilav==1) {          for(jk=1; jk <=nlstate ; jk++){
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);            for(m=-1, pos=0; m <=0 ; m++)
     movingaverage(agedeb, fage, ageminpar, mobaverage);              pos += freq[jk][m][i];
   }            if(pp[jk]>=1.e-10){
               if(first==1){
   stepsize=(int) (stepm+YEARM-1)/YEARM;                printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
   if (stepm<=12) stepsize=1;              }
                fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
   agelim=AGESUP;            }else{
                if(first==1)
   hstepm=1;                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
   hstepm=hstepm/stepm;              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
   yp1=modf(dateintmean,&yp);            }
   anprojmean=yp;          }
   yp2=modf((yp1*12),&yp);  
   mprojmean=yp;          for(jk=1; jk <=nlstate ; jk++){
   yp1=modf((yp2*30.5),&yp);            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
   jprojmean=yp;              pp[jk] += freq[jk][m][i];
   if(jprojmean==0) jprojmean=1;          }       
   if(mprojmean==0) jprojmean=1;          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
              pos += pp[jk];
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);            posprop += prop[jk][i];
            }
   for(cptcov=1;cptcov<=i2;cptcov++){          for(jk=1; jk <=nlstate ; jk++){
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){            if(pos>=1.e-5){
       k=k+1;              if(first==1)
       fprintf(ficresf,"\n#******");                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
       for(j=1;j<=cptcoveff;j++) {              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            }else{
       }              if(first==1)
       fprintf(ficresf,"******\n");                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
       fprintf(ficresf,"# StartingAge FinalAge");              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);            }
                  if( i <= iagemax){
                    if(pos>=1.e-5){
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
         fprintf(ficresf,"\n");                /*probs[i][jk][j1]= pp[jk]/pos;*/
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);                  /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
               }
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){              else
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
           nhstepm = nhstepm/hstepm;            }
                    }
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          
           oldm=oldms;savm=savms;          for(jk=-1; jk <=nlstate+ndeath; jk++)
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);              for(m=-1; m <=nlstate+ndeath; m++)
                      if(freq[jk][m][i] !=0 ) {
           for (h=0; h<=nhstepm; h++){              if(first==1)
             if (h==(int) (calagedate+YEARM*cpt)) {                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
             }              }
             for(j=1; j<=nlstate+ndeath;j++) {          if(i <= iagemax)
               kk1=0.;kk2=0;            fprintf(ficresp,"\n");
               for(i=1; i<=nlstate;i++) {                        if(first==1)
                 if (mobilav==1)            printf("Others in log...\n");
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];          fprintf(ficlog,"\n");
                 else {        }
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];      }
                 }    }
                    dateintmean=dateintsum/k2cpt; 
               }   
               if (h==(int)(calagedate+12*cpt)){    fclose(ficresp);
                 fprintf(ficresf," %.3f", kk1);    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
                            free_vector(pp,1,nlstate);
               }    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
             }    /* End of Freq */
           }  }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
         }  /************ Prevalence ********************/
       }  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
     }  {  
   }    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
               in each health status at the date of interview (if between dateprev1 and dateprev2).
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);       We still use firstpass and lastpass as another selection.
     */
   fclose(ficresf);   
 }    int i, m, jk, k1, i1, j1, bool, z1,j;
 /************** Forecasting ******************/    double ***freq; /* Frequencies */
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){    double *pp, **prop;
      double pos,posprop; 
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;    double  y2; /* in fractional years */
   int *popage;    int iagemin, iagemax;
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;  
   double *popeffectif,*popcount;    iagemin= (int) agemin;
   double ***p3mat,***tabpop,***tabpopprev;    iagemax= (int) agemax;
   char filerespop[FILENAMELENGTH];    /*pp=vector(1,nlstate);*/
     prop=matrix(1,nlstate,iagemin,iagemax+3); 
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    j1=0;
   agelim=AGESUP;    
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;    j=cptcoveff;
      if (cptcovn<1) {j=1;ncodemax[1]=1;}
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    
      for(k1=1; k1<=j;k1++){
        for(i1=1; i1<=ncodemax[k1];i1++){
   strcpy(filerespop,"pop");        j1++;
   strcat(filerespop,fileres);        
   if((ficrespop=fopen(filerespop,"w"))==NULL) {        for (i=1; i<=nlstate; i++)  
     printf("Problem with forecast resultfile: %s\n", filerespop);          for(m=iagemin; m <= iagemax+3; m++)
   }            prop[i][m]=0.0;
   printf("Computing forecasting: result on file '%s' \n", filerespop);       
         for (i=1; i<=imx; i++) { /* Each individual */
   if (cptcoveff==0) ncodemax[cptcoveff]=1;          bool=1;
           if  (cptcovn>0) {
   if (mobilav==1) {            for (z1=1; z1<=cptcoveff; z1++) 
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
     movingaverage(agedeb, fage, ageminpar, mobaverage);                bool=0;
   }          } 
           if (bool==1) { 
   stepsize=(int) (stepm+YEARM-1)/YEARM;            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
   if (stepm<=12) stepsize=1;              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
                if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
   agelim=AGESUP;                if(agev[m][i]==0) agev[m][i]=iagemax+1;
                  if(agev[m][i]==1) agev[m][i]=iagemax+2;
   hstepm=1;                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
   hstepm=hstepm/stepm;                if (s[m][i]>0 && s[m][i]<=nlstate) { 
                    /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
   if (popforecast==1) {                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
     if((ficpop=fopen(popfile,"r"))==NULL) {                  prop[s[m][i]][iagemax+3] += weight[i]; 
       printf("Problem with population file : %s\n",popfile);exit(0);                } 
     }              }
     popage=ivector(0,AGESUP);            } /* end selection of waves */
     popeffectif=vector(0,AGESUP);          }
     popcount=vector(0,AGESUP);        }
            for(i=iagemin; i <= iagemax+3; i++){  
     i=1;            
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
                posprop += prop[jk][i]; 
     imx=i;          } 
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];  
   }          for(jk=1; jk <=nlstate ; jk++){     
             if( i <=  iagemax){ 
   for(cptcov=1;cptcov<=i2;cptcov++){              if(posprop>=1.e-5){ 
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){                probs[i][jk][j1]= prop[jk][i]/posprop;
       k=k+1;              } else
       fprintf(ficrespop,"\n#******");                printf("Warning Observed prevalence probs[%d][%d][%d]=%lf because of lack of cases\n",jk,i,j1,probs[i][jk][j1]);
       for(j=1;j<=cptcoveff;j++) {            } 
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          }/* end jk */ 
       }        }/* end i */ 
       fprintf(ficrespop,"******\n");      } /* end i1 */
       fprintf(ficrespop,"# Age");    } /* end k1 */
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);    
       if (popforecast==1)  fprintf(ficrespop," [Population]");    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
          /*free_vector(pp,1,nlstate);*/
       for (cpt=0; cpt<=0;cpt++) {    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);    }  /* End of prevalence */
          
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){  /************* Waves Concatenation ***************/
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);  
           nhstepm = nhstepm/hstepm;  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
            {
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
           oldm=oldms;savm=savms;       Death is a valid wave (if date is known).
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);         mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
               dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
           for (h=0; h<=nhstepm; h++){       and mw[mi+1][i]. dh depends on stepm.
             if (h==(int) (calagedate+YEARM*cpt)) {       */
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);  
             }    int i, mi, m;
             for(j=1; j<=nlstate+ndeath;j++) {    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
               kk1=0.;kk2=0;       double sum=0., jmean=0.;*/
               for(i=1; i<=nlstate;i++) {                  int first;
                 if (mobilav==1)    int j, k=0,jk, ju, jl;
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];    double sum=0.;
                 else {    first=0;
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];    jmin=1e+5;
                 }    jmax=-1;
               }    jmean=0.;
               if (h==(int)(calagedate+12*cpt)){    for(i=1; i<=imx; i++){
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;      mi=0;
                   /*fprintf(ficrespop," %.3f", kk1);      m=firstpass;
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/      while(s[m][i] <= nlstate){
               }        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
             }          mw[++mi][i]=m;
             for(i=1; i<=nlstate;i++){        if(m >=lastpass)
               kk1=0.;          break;
                 for(j=1; j<=nlstate;j++){        else
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];          m++;
                 }      }/* end while */
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];      if (s[m][i] > nlstate){
             }        mi++;     /* Death is another wave */
         /* if(mi==0)  never been interviewed correctly before death */
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)           /* Only death is a correct wave */
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);        mw[mi][i]=m;
           }      }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
         }      wav[i]=mi;
       }      if(mi==0){
          nbwarn++;
   /******/        if(first==0){
           printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {          first=1;
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);          }
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){        if(first==1){
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
           nhstepm = nhstepm/hstepm;        }
                } /* end mi==0 */
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    } /* End individuals */
           oldm=oldms;savm=savms;  
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      for(i=1; i<=imx; i++){
           for (h=0; h<=nhstepm; h++){      for(mi=1; mi<wav[i];mi++){
             if (h==(int) (calagedate+YEARM*cpt)) {        if (stepm <=0)
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);          dh[mi][i]=1;
             }        else{
             for(j=1; j<=nlstate+ndeath;j++) {          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
               kk1=0.;kk2=0;            if (agedc[i] < 2*AGESUP) {
               for(i=1; i<=nlstate;i++) {                            j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];                  if(j==0) j=1;  /* Survives at least one month after exam */
               }              else if(j<0){
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);                nberr++;
             }                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
           }                j=1; /* Temporary Dangerous patch */
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
         }                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
       }                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
    }              }
   }              k=k+1;
                if (j >= jmax){
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);                jmax=j;
                 ijmax=i;
   if (popforecast==1) {              }
     free_ivector(popage,0,AGESUP);              if (j <= jmin){
     free_vector(popeffectif,0,AGESUP);                jmin=j;
     free_vector(popcount,0,AGESUP);                ijmin=i;
   }              }
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);              sum=sum+j;
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
   fclose(ficrespop);              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
 }            }
           }
 /***********************************************/          else{
 /**************** Main Program *****************/            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
 /***********************************************/  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
   
 int main(int argc, char *argv[])            k=k+1;
 {            if (j >= jmax) {
               jmax=j;
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;              ijmax=i;
   double agedeb, agefin,hf;            }
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;            else if (j <= jmin){
               jmin=j;
   double fret;              ijmin=i;
   double **xi,tmp,delta;            }
             /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
   double dum; /* Dummy variable */            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
   double ***p3mat;            if(j<0){
   int *indx;              nberr++;
   char line[MAXLINE], linepar[MAXLINE];              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   char title[MAXLINE];              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];            }
   char optionfilext[10], optionfilefiname[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilegnuplot[FILENAMELENGTH], plotcmd[FILENAMELENGTH];            sum=sum+j;
            }
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];          jk= j/stepm;
           jl= j -jk*stepm;
   char filerest[FILENAMELENGTH];          ju= j -(jk+1)*stepm;
   char fileregp[FILENAMELENGTH];          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
   char popfile[FILENAMELENGTH];            if(jl==0){
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];              dh[mi][i]=jk;
   int firstobs=1, lastobs=10;              bh[mi][i]=0;
   int sdeb, sfin; /* Status at beginning and end */            }else{ /* We want a negative bias in order to only have interpolation ie
   int c,  h , cpt,l;                    * to avoid the price of an extra matrix product in likelihood */
   int ju,jl, mi;              dh[mi][i]=jk+1;
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;              bh[mi][i]=ju;
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;            }
   int mobilav=0,popforecast=0;          }else{
   int hstepm, nhstepm;            if(jl <= -ju){
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1;              dh[mi][i]=jk;
               bh[mi][i]=jl;       /* bias is positive if real duration
   double bage, fage, age, agelim, agebase;                                   * is higher than the multiple of stepm and negative otherwise.
   double ftolpl=FTOL;                                   */
   double **prlim;            }
   double *severity;            else{
   double ***param; /* Matrix of parameters */              dh[mi][i]=jk+1;
   double  *p;              bh[mi][i]=ju;
   double **matcov; /* Matrix of covariance */            }
   double ***delti3; /* Scale */            if(dh[mi][i]==0){
   double *delti; /* Scale */              dh[mi][i]=1; /* At least one step */
   double ***eij, ***vareij;              bh[mi][i]=ju; /* At least one step */
   double **varpl; /* Variances of prevalence limits by age */              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
   double *epj, vepp;            }
   double kk1, kk2;          } /* end if mle */
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;        }
        } /* end wave */
     }
   char version[80]="Imach version 0.8b, March 2002, INED-EUROREVES ";    jmean=sum/k;
   char *alph[]={"a","a","b","c","d","e"}, str[4];    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
     fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
    }
   char z[1]="c", occ;  
 #include <sys/time.h>  /*********** Tricode ****************************/
 #include <time.h>  void tricode(int *Tvar, int **nbcode, int imx)
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];  {
      /* Uses cptcovn+2*cptcovprod as the number of covariates */
   /* long total_usecs;    /*      Tvar[i]=atoi(stre); /* find 'n' in Vn and stores in Tvar. If model=V2+V1 Tvar[1]=2 and Tvar[2]=1 */
   struct timeval start_time, end_time;  
      int Ndum[20],ij=1, k=0, j=0, i=0, maxncov=NCOVMAX;
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */    int modmaxcovj=0; /* Modality max of covariates j */
   getcwd(pathcd, size);    cptcoveff=0; 
    
   printf("\n%s",version);    for (k=0; k<maxncov; k++) Ndum[k]=0;
   if(argc <=1){    for (k=1; k<=7; k++) ncodemax[k]=0; /* Horrible constant again */
     printf("\nEnter the parameter file name: ");  
     scanf("%s",pathtot);    for (j=1; j<=(cptcovn+2*cptcovprod); j++) { /* For each covariate j */
   }      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum value of the 
   else{                                 modality of this covariate Vj*/ 
     strcpy(pathtot,argv[1]);        ij=(int)(covar[Tvar[j]][i]); /* ij=0 or 1 or -1. Finds for covariate j, n=Tvar[j] of Vn . ij is the
   }                                        modality of the nth covariate of individual i. */
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/        Ndum[ij]++; /*counts and stores the occurence of this modality 0, 1, -1*/
   /*cygwin_split_path(pathtot,path,optionfile);        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/        if (ij > modmaxcovj) modmaxcovj=ij; 
   /* cutv(path,optionfile,pathtot,'\\');*/        /* getting the maximum value of the modality of the covariate
            (should be 0 or 1 now) Tvar[j]. If V=sex and male is coded 0 and
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);           female is 1, then modmaxcovj=1.*/
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);      }
   chdir(path);      /* Ndum[0] = frequency of 0 for model-covariate j, Ndum[1] frequency of 1 etc. */
   replace(pathc,path);      for (i=0; i<=modmaxcovj; i++) { /* i=-1 ? 0 and 1*//* For each modality of model-cov j */
         if( Ndum[i] != 0 )
 /*-------- arguments in the command line --------*/          ncodemax[j]++; 
         /* Number of modalities of the j th covariate. In fact
   strcpy(fileres,"r");           ncodemax[j]=2 (dichotom. variables only) but it could be more for
   strcat(fileres, optionfilefiname);           historical reasons */
   strcat(fileres,".txt");    /* Other files have txt extension */      } /* Ndum[-1] number of undefined modalities */
   
   /*---------arguments file --------*/      /* j is a covariate, n=Tvar[j] of Vn; Fills nbcode */
       ij=1; 
   if((ficpar=fopen(optionfile,"r"))==NULL)    {      for (i=1; i<=ncodemax[j]; i++) { /* i= 1 to 2 for dichotomous */
     printf("Problem with optionfile %s\n",optionfile);        for (k=0; k<= modmaxcovj; k++) { /* k=-1 ? NCOVMAX*//* maxncov or modmaxcovj */
     goto end;          if (Ndum[k] != 0) { /* If at least one individual responded to this modality k */
   }            nbcode[Tvar[j]][ij]=k;  /* stores the modality in an array nbcode. 
                                        k is a modality. If we have model=V1+V1*sex 
   strcpy(filereso,"o");                                       then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
   strcat(filereso,fileres);            ij++;
   if((ficparo=fopen(filereso,"w"))==NULL) {          }
     printf("Problem with Output resultfile: %s\n", filereso);goto end;          if (ij > ncodemax[j]) break; 
   }        }  /* end of loop on */
       } /* end of loop on modality */ 
   /* Reads comments: lines beginning with '#' */    } /* end of loop on model-covariate j. nbcode[Tvarj][1]=0 and nbcode[Tvarj][2]=1 sets the value of covariate j*/  
   while((c=getc(ficpar))=='#' && c!= EOF){    
     ungetc(c,ficpar);    for (k=0; k< maxncov; k++) Ndum[k]=0;
     fgets(line, MAXLINE, ficpar);    
     puts(line);    for (i=1; i<=ncovmodel-2; i++) { /* -2, cste and age */
     fputs(line,ficparo);     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
   }     ij=Tvar[i]; /* Tvar might be -1 if status was unknown */
   ungetc(c,ficpar);     Ndum[ij]++;
    }
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);  
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);   ij=1;
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);   for (i=1; i<= maxncov; i++) { /* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) */
 while((c=getc(ficpar))=='#' && c!= EOF){     if((Ndum[i]!=0) && (i<=ncovcol)){
     ungetc(c,ficpar);       Tvaraff[ij]=i; /*For printing */
     fgets(line, MAXLINE, ficpar);       ij++;
     puts(line);     }
     fputs(line,ficparo);   }
   }   ij--;
   ungetc(c,ficpar);   cptcoveff=ij; /*Number of simple covariates*/
    }
      
   covar=matrix(0,NCOVMAX,1,n);  /*********** Health Expectancies ****************/
   cptcovn=0;  
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;  void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
   
   ncovmodel=2+cptcovn;  {
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */    /* Health expectancies, no variances */
      int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;
   /* Read guess parameters */    int nhstepma, nstepma; /* Decreasing with age */
   /* Reads comments: lines beginning with '#' */    double age, agelim, hf;
   while((c=getc(ficpar))=='#' && c!= EOF){    double ***p3mat;
     ungetc(c,ficpar);    double eip;
     fgets(line, MAXLINE, ficpar);  
     puts(line);    pstamp(ficreseij);
     fputs(line,ficparo);    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
   }    fprintf(ficreseij,"# Age");
   ungetc(c,ficpar);    for(i=1; i<=nlstate;i++){
        for(j=1; j<=nlstate;j++){
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);        fprintf(ficreseij," e%1d%1d ",i,j);
     for(i=1; i <=nlstate; i++)      }
     for(j=1; j <=nlstate+ndeath-1; j++){      fprintf(ficreseij," e%1d. ",i);
       fscanf(ficpar,"%1d%1d",&i1,&j1);    }
       fprintf(ficparo,"%1d%1d",i1,j1);    fprintf(ficreseij,"\n");
       printf("%1d%1d",i,j);  
       for(k=1; k<=ncovmodel;k++){    
         fscanf(ficpar," %lf",&param[i][j][k]);    if(estepm < stepm){
         printf(" %lf",param[i][j][k]);      printf ("Problem %d lower than %d\n",estepm, stepm);
         fprintf(ficparo," %lf",param[i][j][k]);    }
       }    else  hstepm=estepm;   
       fscanf(ficpar,"\n");    /* We compute the life expectancy from trapezoids spaced every estepm months
       printf("\n");     * This is mainly to measure the difference between two models: for example
       fprintf(ficparo,"\n");     * if stepm=24 months pijx are given only every 2 years and by summing them
     }     * we are calculating an estimate of the Life Expectancy assuming a linear 
       * progression in between and thus overestimating or underestimating according
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;     * to the curvature of the survival function. If, for the same date, we 
      * estimate the model with stepm=1 month, we can keep estepm to 24 months
   p=param[1][1];     * to compare the new estimate of Life expectancy with the same linear 
       * hypothesis. A more precise result, taking into account a more precise
   /* Reads comments: lines beginning with '#' */     * curvature will be obtained if estepm is as small as stepm. */
   while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);    /* For example we decided to compute the life expectancy with the smallest unit */
     fgets(line, MAXLINE, ficpar);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
     puts(line);       nhstepm is the number of hstepm from age to agelim 
     fputs(line,ficparo);       nstepm is the number of stepm from age to agelin. 
   }       Look at hpijx to understand the reason of that which relies in memory size
   ungetc(c,ficpar);       and note for a fixed period like estepm months */
     /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);       survival function given by stepm (the optimization length). Unfortunately it
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */       means that if the survival funtion is printed only each two years of age and if
   for(i=1; i <=nlstate; i++){       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
     for(j=1; j <=nlstate+ndeath-1; j++){       results. So we changed our mind and took the option of the best precision.
       fscanf(ficpar,"%1d%1d",&i1,&j1);    */
       printf("%1d%1d",i,j);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
       fprintf(ficparo,"%1d%1d",i1,j1);  
       for(k=1; k<=ncovmodel;k++){    agelim=AGESUP;
         fscanf(ficpar,"%le",&delti3[i][j][k]);    /* If stepm=6 months */
         printf(" %le",delti3[i][j][k]);      /* Computed by stepm unit matrices, product of hstepm matrices, stored
         fprintf(ficparo," %le",delti3[i][j][k]);         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
       }      
       fscanf(ficpar,"\n");  /* nhstepm age range expressed in number of stepm */
       printf("\n");    nstepm=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
       fprintf(ficparo,"\n");    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     }    /* if (stepm >= YEARM) hstepm=1;*/
   }    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   delti=delti3[1][1];    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
    
   /* Reads comments: lines beginning with '#' */    for (age=bage; age<=fage; age ++){ 
   while((c=getc(ficpar))=='#' && c!= EOF){      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
     ungetc(c,ficpar);      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     fgets(line, MAXLINE, ficpar);      /* if (stepm >= YEARM) hstepm=1;*/
     puts(line);      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
     fputs(line,ficparo);  
   }      /* If stepm=6 months */
   ungetc(c,ficpar);      /* Computed by stepm unit matrices, product of hstepma matrices, stored
           in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
   matcov=matrix(1,npar,1,npar);      
   for(i=1; i <=npar; i++){      hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
     fscanf(ficpar,"%s",&str);      
     printf("%s",str);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
     fprintf(ficparo,"%s",str);      
     for(j=1; j <=i; j++){      printf("%d|",(int)age);fflush(stdout);
       fscanf(ficpar," %le",&matcov[i][j]);      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
       printf(" %.5le",matcov[i][j]);      
       fprintf(ficparo," %.5le",matcov[i][j]);      /* Computing expectancies */
     }      for(i=1; i<=nlstate;i++)
     fscanf(ficpar,"\n");        for(j=1; j<=nlstate;j++)
     printf("\n");          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
     fprintf(ficparo,"\n");            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
   }            
   for(i=1; i <=npar; i++)            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
     for(j=i+1;j<=npar;j++)  
       matcov[i][j]=matcov[j][i];          }
      
   printf("\n");      fprintf(ficreseij,"%3.0f",age );
       for(i=1; i<=nlstate;i++){
         eip=0;
     /*-------- Rewriting paramater file ----------*/        for(j=1; j<=nlstate;j++){
      strcpy(rfileres,"r");    /* "Rparameterfile */          eip +=eij[i][j][(int)age];
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/          fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
      strcat(rfileres,".");    /* */        }
      strcat(rfileres,optionfilext);    /* Other files have txt extension */        fprintf(ficreseij,"%9.4f", eip );
     if((ficres =fopen(rfileres,"w"))==NULL) {      }
       printf("Problem writing new parameter file: %s\n", fileres);goto end;      fprintf(ficreseij,"\n");
     }      
     fprintf(ficres,"#%s\n",version);    }
        free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     /*-------- data file ----------*/    printf("\n");
     if((fic=fopen(datafile,"r"))==NULL)    {    fprintf(ficlog,"\n");
       printf("Problem with datafile: %s\n", datafile);goto end;    
     }  }
   
     n= lastobs;  void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
     severity = vector(1,maxwav);  
     outcome=imatrix(1,maxwav+1,1,n);  {
     num=ivector(1,n);    /* Covariances of health expectancies eij and of total life expectancies according
     moisnais=vector(1,n);     to initial status i, ei. .
     annais=vector(1,n);    */
     moisdc=vector(1,n);    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
     andc=vector(1,n);    int nhstepma, nstepma; /* Decreasing with age */
     agedc=vector(1,n);    double age, agelim, hf;
     cod=ivector(1,n);    double ***p3matp, ***p3matm, ***varhe;
     weight=vector(1,n);    double **dnewm,**doldm;
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */    double *xp, *xm;
     mint=matrix(1,maxwav,1,n);    double **gp, **gm;
     anint=matrix(1,maxwav,1,n);    double ***gradg, ***trgradg;
     s=imatrix(1,maxwav+1,1,n);    int theta;
     adl=imatrix(1,maxwav+1,1,n);      
     tab=ivector(1,NCOVMAX);    double eip, vip;
     ncodemax=ivector(1,8);  
     varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
     i=1;    xp=vector(1,npar);
     while (fgets(line, MAXLINE, fic) != NULL)    {    xm=vector(1,npar);
       if ((i >= firstobs) && (i <=lastobs)) {    dnewm=matrix(1,nlstate*nlstate,1,npar);
            doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
         for (j=maxwav;j>=1;j--){    
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);    pstamp(ficresstdeij);
           strcpy(line,stra);    fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);    fprintf(ficresstdeij,"# Age");
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);    for(i=1; i<=nlstate;i++){
         }      for(j=1; j<=nlstate;j++)
                fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);      fprintf(ficresstdeij," e%1d. ",i);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);    }
     fprintf(ficresstdeij,"\n");
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);  
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);    pstamp(ficrescveij);
     fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);    fprintf(ficrescveij,"# Age");
         for (j=ncovcol;j>=1;j--){    for(i=1; i<=nlstate;i++)
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);      for(j=1; j<=nlstate;j++){
         }        cptj= (j-1)*nlstate+i;
         num[i]=atol(stra);        for(i2=1; i2<=nlstate;i2++)
                  for(j2=1; j2<=nlstate;j2++){
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){            cptj2= (j2-1)*nlstate+i2;
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/            if(cptj2 <= cptj)
               fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
         i=i+1;          }
       }      }
     }    fprintf(ficrescveij,"\n");
     /* printf("ii=%d", ij);    
        scanf("%d",i);*/    if(estepm < stepm){
   imx=i-1; /* Number of individuals */      printf ("Problem %d lower than %d\n",estepm, stepm);
     }
   /* for (i=1; i<=imx; i++){    else  hstepm=estepm;   
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;    /* We compute the life expectancy from trapezoids spaced every estepm months
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;     * This is mainly to measure the difference between two models: for example
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;     * if stepm=24 months pijx are given only every 2 years and by summing them
     }*/     * we are calculating an estimate of the Life Expectancy assuming a linear 
    /*  for (i=1; i<=imx; i++){     * progression in between and thus overestimating or underestimating according
      if (s[4][i]==9)  s[4][i]=-1;     * to the curvature of the survival function. If, for the same date, we 
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/     * estimate the model with stepm=1 month, we can keep estepm to 24 months
       * to compare the new estimate of Life expectancy with the same linear 
       * hypothesis. A more precise result, taking into account a more precise
   /* Calculation of the number of parameter from char model*/     * curvature will be obtained if estepm is as small as stepm. */
   Tvar=ivector(1,15);  
   Tprod=ivector(1,15);    /* For example we decided to compute the life expectancy with the smallest unit */
   Tvaraff=ivector(1,15);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   Tvard=imatrix(1,15,1,2);       nhstepm is the number of hstepm from age to agelim 
   Tage=ivector(1,15);             nstepm is the number of stepm from age to agelin. 
           Look at hpijx to understand the reason of that which relies in memory size
   if (strlen(model) >1){       and note for a fixed period like estepm months */
     j=0, j1=0, k1=1, k2=1;    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
     j=nbocc(model,'+');       survival function given by stepm (the optimization length). Unfortunately it
     j1=nbocc(model,'*');       means that if the survival funtion is printed only each two years of age and if
     cptcovn=j+1;       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
     cptcovprod=j1;       results. So we changed our mind and took the option of the best precision.
        */
     strcpy(modelsav,model);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){  
       printf("Error. Non available option model=%s ",model);    /* If stepm=6 months */
       goto end;    /* nhstepm age range expressed in number of stepm */
     }    agelim=AGESUP;
        nstepm=(int) rint((agelim-bage)*YEARM/stepm); 
     for(i=(j+1); i>=1;i--){    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
       cutv(stra,strb,modelsav,'+');    /* if (stepm >= YEARM) hstepm=1;*/
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/    
       /*scanf("%d",i);*/    p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       if (strchr(strb,'*')) {    p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         cutv(strd,strc,strb,'*');    gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
         if (strcmp(strc,"age")==0) {    trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
           cptcovprod--;    gp=matrix(0,nhstepm,1,nlstate*nlstate);
           cutv(strb,stre,strd,'V');    gm=matrix(0,nhstepm,1,nlstate*nlstate);
           Tvar[i]=atoi(stre);  
           cptcovage++;    for (age=bage; age<=fage; age ++){ 
             Tage[cptcovage]=i;      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
             /*printf("stre=%s ", stre);*/      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
         }      /* if (stepm >= YEARM) hstepm=1;*/
         else if (strcmp(strd,"age")==0) {      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
           cptcovprod--;  
           cutv(strb,stre,strc,'V');      /* If stepm=6 months */
           Tvar[i]=atoi(stre);      /* Computed by stepm unit matrices, product of hstepma matrices, stored
           cptcovage++;         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
           Tage[cptcovage]=i;      
         }      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
         else {  
           cutv(strb,stre,strc,'V');      /* Computing  Variances of health expectancies */
           Tvar[i]=ncovcol+k1;      /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
           cutv(strb,strc,strd,'V');         decrease memory allocation */
           Tprod[k1]=i;      for(theta=1; theta <=npar; theta++){
           Tvard[k1][1]=atoi(strc);        for(i=1; i<=npar; i++){ 
           Tvard[k1][2]=atoi(stre);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
           Tvar[cptcovn+k2]=Tvard[k1][1];          xm[i] = x[i] - (i==theta ?delti[theta]:0);
           Tvar[cptcovn+k2+1]=Tvard[k1][2];        }
           for (k=1; k<=lastobs;k++)        hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];        hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
           k1++;    
           k2=k2+2;        for(j=1; j<= nlstate; j++){
         }          for(i=1; i<=nlstate; i++){
       }            for(h=0; h<=nhstepm-1; h++){
       else {              gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/              gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
        /*  scanf("%d",i);*/            }
       cutv(strd,strc,strb,'V');          }
       Tvar[i]=atoi(strc);        }
       }       
       strcpy(modelsav,stra);          for(ij=1; ij<= nlstate*nlstate; ij++)
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);          for(h=0; h<=nhstepm-1; h++){
         scanf("%d",i);*/            gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
     }          }
 }      }/* End theta */
        
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);      
   printf("cptcovprod=%d ", cptcovprod);      for(h=0; h<=nhstepm-1; h++)
   scanf("%d ",i);*/        for(j=1; j<=nlstate*nlstate;j++)
     fclose(fic);          for(theta=1; theta <=npar; theta++)
             trgradg[h][j][theta]=gradg[h][theta][j];
     /*  if(mle==1){*/      
     if (weightopt != 1) { /* Maximisation without weights*/  
       for(i=1;i<=n;i++) weight[i]=1.0;       for(ij=1;ij<=nlstate*nlstate;ij++)
     }        for(ji=1;ji<=nlstate*nlstate;ji++)
     /*-calculation of age at interview from date of interview and age at death -*/          varhe[ij][ji][(int)age] =0.;
     agev=matrix(1,maxwav,1,imx);  
        printf("%d|",(int)age);fflush(stdout);
     for (i=1; i<=imx; i++) {       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
       for(m=2; (m<= maxwav); m++) {       for(h=0;h<=nhstepm-1;h++){
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){        for(k=0;k<=nhstepm-1;k++){
          anint[m][i]=9999;          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
          s[m][i]=-1;          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
        }          for(ij=1;ij<=nlstate*nlstate;ij++)
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;            for(ji=1;ji<=nlstate*nlstate;ji++)
       }              varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
     }        }
       }
     for (i=1; i<=imx; i++)  {  
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);      /* Computing expectancies */
       for(m=1; (m<= maxwav); m++){      hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
         if(s[m][i] >0){      for(i=1; i<=nlstate;i++)
           if (s[m][i] >= nlstate+1) {        for(j=1; j<=nlstate;j++)
             if(agedc[i]>0)          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
               if(moisdc[i]!=99 && andc[i]!=9999)            eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
                 agev[m][i]=agedc[i];            
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
            else {  
               if (andc[i]!=9999){          }
               printf("Warning negative age at death: %d line:%d\n",num[i],i);  
               agev[m][i]=-1;      fprintf(ficresstdeij,"%3.0f",age );
               }      for(i=1; i<=nlstate;i++){
             }        eip=0.;
           }        vip=0.;
           else if(s[m][i] !=9){ /* Should no more exist */        for(j=1; j<=nlstate;j++){
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);          eip += eij[i][j][(int)age];
             if(mint[m][i]==99 || anint[m][i]==9999)          for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
               agev[m][i]=1;            vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
             else if(agev[m][i] <agemin){          fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
               agemin=agev[m][i];        }
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/        fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
             }      }
             else if(agev[m][i] >agemax){      fprintf(ficresstdeij,"\n");
               agemax=agev[m][i];  
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/      fprintf(ficrescveij,"%3.0f",age );
             }      for(i=1; i<=nlstate;i++)
             /*agev[m][i]=anint[m][i]-annais[i];*/        for(j=1; j<=nlstate;j++){
             /*   agev[m][i] = age[i]+2*m;*/          cptj= (j-1)*nlstate+i;
           }          for(i2=1; i2<=nlstate;i2++)
           else { /* =9 */            for(j2=1; j2<=nlstate;j2++){
             agev[m][i]=1;              cptj2= (j2-1)*nlstate+i2;
             s[m][i]=-1;              if(cptj2 <= cptj)
           }                fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
         }            }
         else /*= 0 Unknown */        }
           agev[m][i]=1;      fprintf(ficrescveij,"\n");
       }     
        }
     }    free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
     for (i=1; i<=imx; i++)  {    free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
       for(m=1; (m<= maxwav); m++){    free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
         if (s[m][i] > (nlstate+ndeath)) {    free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
           printf("Error: Wrong value in nlstate or ndeath\n");      free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           goto end;    free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         }    printf("\n");
       }    fprintf(ficlog,"\n");
     }  
     free_vector(xm,1,npar);
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);    free_vector(xp,1,npar);
     free_matrix(dnewm,1,nlstate*nlstate,1,npar);
     free_vector(severity,1,maxwav);    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
     free_imatrix(outcome,1,maxwav+1,1,n);    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
     free_vector(moisnais,1,n);  }
     free_vector(annais,1,n);  
     /* free_matrix(mint,1,maxwav,1,n);  /************ Variance ******************/
        free_matrix(anint,1,maxwav,1,n);*/  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
     free_vector(moisdc,1,n);  {
     free_vector(andc,1,n);    /* Variance of health expectancies */
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
        /* double **newm;*/
     wav=ivector(1,imx);    double **dnewm,**doldm;
     dh=imatrix(1,lastpass-firstpass+1,1,imx);    double **dnewmp,**doldmp;
     mw=imatrix(1,lastpass-firstpass+1,1,imx);    int i, j, nhstepm, hstepm, h, nstepm ;
        int k, cptcode;
     /* Concatenates waves */    double *xp;
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);    double **gp, **gm;  /* for var eij */
     double ***gradg, ***trgradg; /*for var eij */
     double **gradgp, **trgradgp; /* for var p point j */
       Tcode=ivector(1,100);    double *gpp, *gmp; /* for var p point j */
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
       ncodemax[1]=1;    double ***p3mat;
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);    double age,agelim, hf;
          double ***mobaverage;
    codtab=imatrix(1,100,1,10);    int theta;
    h=0;    char digit[4];
    m=pow(2,cptcoveff);    char digitp[25];
    
    for(k=1;k<=cptcoveff; k++){    char fileresprobmorprev[FILENAMELENGTH];
      for(i=1; i <=(m/pow(2,k));i++){  
        for(j=1; j <= ncodemax[k]; j++){    if(popbased==1){
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){      if(mobilav!=0)
            h++;        strcpy(digitp,"-populbased-mobilav-");
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;      else strcpy(digitp,"-populbased-nomobil-");
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/    }
          }    else 
        }      strcpy(digitp,"-stablbased-");
      }  
    }    if (mobilav!=0) {
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       codtab[1][2]=1;codtab[2][2]=2; */      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
    /* for(i=1; i <=m ;i++){        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
       for(k=1; k <=cptcovn; k++){        printf(" Error in movingaverage mobilav=%d\n",mobilav);
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);      }
       }    }
       printf("\n");  
       }    strcpy(fileresprobmorprev,"prmorprev"); 
       scanf("%d",i);*/    sprintf(digit,"%-d",ij);
        /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
    /* Calculates basic frequencies. Computes observed prevalence at single age    strcat(fileresprobmorprev,digit); /* Tvar to be done */
        and prints on file fileres'p'. */    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
     strcat(fileresprobmorprev,fileres);
        if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
          printf("Problem with resultfile: %s\n", fileresprobmorprev);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    }
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */   
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
          pstamp(ficresprobmorprev);
     /* For Powell, parameters are in a vector p[] starting at p[1]    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
       fprintf(ficresprobmorprev," p.%-d SE",j);
     if(mle==1){      for(i=1; i<=nlstate;i++)
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
     }    }  
        fprintf(ficresprobmorprev,"\n");
     /*--------- results files --------------*/    fprintf(ficgp,"\n# Routine varevsij");
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
      fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
     fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
    jk=1;  /*   } */
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    pstamp(ficresvij);
    for(i=1,jk=1; i <=nlstate; i++){    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
      for(k=1; k <=(nlstate+ndeath); k++){    if(popbased==1)
        if (k != i)      fprintf(ficresvij,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d\n",mobilav);
          {    else
            printf("%d%d ",i,k);      fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
            fprintf(ficres,"%1d%1d ",i,k);    fprintf(ficresvij,"# Age");
            for(j=1; j <=ncovmodel; j++){    for(i=1; i<=nlstate;i++)
              printf("%f ",p[jk]);      for(j=1; j<=nlstate;j++)
              fprintf(ficres,"%f ",p[jk]);        fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
              jk++;    fprintf(ficresvij,"\n");
            }  
            printf("\n");    xp=vector(1,npar);
            fprintf(ficres,"\n");    dnewm=matrix(1,nlstate,1,npar);
          }    doldm=matrix(1,nlstate,1,nlstate);
      }    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
    }    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
  if(mle==1){  
     /* Computing hessian and covariance matrix */    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
     ftolhess=ftol; /* Usually correct */    gpp=vector(nlstate+1,nlstate+ndeath);
     hesscov(matcov, p, npar, delti, ftolhess, func);    gmp=vector(nlstate+1,nlstate+ndeath);
  }    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");    
     printf("# Scales (for hessian or gradient estimation)\n");    if(estepm < stepm){
      for(i=1,jk=1; i <=nlstate; i++){      printf ("Problem %d lower than %d\n",estepm, stepm);
       for(j=1; j <=nlstate+ndeath; j++){    }
         if (j!=i) {    else  hstepm=estepm;   
           fprintf(ficres,"%1d%1d",i,j);    /* For example we decided to compute the life expectancy with the smallest unit */
           printf("%1d%1d",i,j);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
           for(k=1; k<=ncovmodel;k++){       nhstepm is the number of hstepm from age to agelim 
             printf(" %.5e",delti[jk]);       nstepm is the number of stepm from age to agelin. 
             fprintf(ficres," %.5e",delti[jk]);       Look at function hpijx to understand why (it is linked to memory size questions) */
             jk++;    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
           }       survival function given by stepm (the optimization length). Unfortunately it
           printf("\n");       means that if the survival funtion is printed every two years of age and if
           fprintf(ficres,"\n");       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
         }       results. So we changed our mind and took the option of the best precision.
       }    */
      }    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
        agelim = AGESUP;
     k=1;    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     for(i=1;i<=npar;i++){      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       /*  if (k>nlstate) k=1;      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
       i1=(i-1)/(ncovmodel*nlstate)+1;      gp=matrix(0,nhstepm,1,nlstate);
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);      gm=matrix(0,nhstepm,1,nlstate);
       printf("%s%d%d",alph[k],i1,tab[i]);*/  
       fprintf(ficres,"%3d",i);  
       printf("%3d",i);      for(theta=1; theta <=npar; theta++){
       for(j=1; j<=i;j++){        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
         fprintf(ficres," %.5e",matcov[i][j]);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
         printf(" %.5e",matcov[i][j]);        }
       }        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
       fprintf(ficres,"\n");        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
       printf("\n");  
       k++;        if (popbased==1) {
     }          if(mobilav ==0){
                for(i=1; i<=nlstate;i++)
     while((c=getc(ficpar))=='#' && c!= EOF){              prlim[i][i]=probs[(int)age][i][ij];
       ungetc(c,ficpar);          }else{ /* mobilav */ 
       fgets(line, MAXLINE, ficpar);            for(i=1; i<=nlstate;i++)
       puts(line);              prlim[i][i]=mobaverage[(int)age][i][ij];
       fputs(line,ficparo);          }
     }        }
     ungetc(c,ficpar);    
     estepm=0;        for(j=1; j<= nlstate; j++){
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);          for(h=0; h<=nhstepm; h++){
     if (estepm==0 || estepm < stepm) estepm=stepm;            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
     if (fage <= 2) {              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
       bage = ageminpar;          }
       fage = agemaxpar;        }
     }        /* This for computing probability of death (h=1 means
               computed over hstepm matrices product = hstepm*stepm months) 
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");           as a weighted average of prlim.
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);        */
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);        for(j=nlstate+1;j<=nlstate+ndeath;j++){
            for(i=1,gpp[j]=0.; i<= nlstate; i++)
     while((c=getc(ficpar))=='#' && c!= EOF){            gpp[j] += prlim[i][i]*p3mat[i][j][1];
     ungetc(c,ficpar);        }    
     fgets(line, MAXLINE, ficpar);        /* end probability of death */
     puts(line);  
     fputs(line,ficparo);        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
   }          xp[i] = x[i] - (i==theta ?delti[theta]:0);
   ungetc(c,ficpar);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
          prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);   
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);        if (popbased==1) {
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);          if(mobilav ==0){
                  for(i=1; i<=nlstate;i++)
   while((c=getc(ficpar))=='#' && c!= EOF){              prlim[i][i]=probs[(int)age][i][ij];
     ungetc(c,ficpar);          }else{ /* mobilav */ 
     fgets(line, MAXLINE, ficpar);            for(i=1; i<=nlstate;i++)
     puts(line);              prlim[i][i]=mobaverage[(int)age][i][ij];
     fputs(line,ficparo);          }
   }        }
   ungetc(c,ficpar);  
          for(j=1; j<= nlstate; j++){  /* Sum of wi * eij = e.j */
           for(h=0; h<=nhstepm; h++){
    dateprev1=anprev1+mprev1/12.+jprev1/365.;            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
    dateprev2=anprev2+mprev2/12.+jprev2/365.;              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
           }
   fscanf(ficpar,"pop_based=%d\n",&popbased);        }
   fprintf(ficparo,"pop_based=%d\n",popbased);          /* This for computing probability of death (h=1 means
   fprintf(ficres,"pop_based=%d\n",popbased);             computed over hstepm matrices product = hstepm*stepm months) 
             as a weighted average of prlim.
   while((c=getc(ficpar))=='#' && c!= EOF){        */
     ungetc(c,ficpar);        for(j=nlstate+1;j<=nlstate+ndeath;j++){
     fgets(line, MAXLINE, ficpar);          for(i=1,gmp[j]=0.; i<= nlstate; i++)
     puts(line);           gmp[j] += prlim[i][i]*p3mat[i][j][1];
     fputs(line,ficparo);        }    
   }        /* end probability of death */
   ungetc(c,ficpar);  
         for(j=1; j<= nlstate; j++) /* vareij */
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);          for(h=0; h<=nhstepm; h++){
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);          }
   
         for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
 while((c=getc(ficpar))=='#' && c!= EOF){          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
     ungetc(c,ficpar);        }
     fgets(line, MAXLINE, ficpar);  
     puts(line);      } /* End theta */
     fputs(line,ficparo);  
   }      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
   ungetc(c,ficpar);  
       for(h=0; h<=nhstepm; h++) /* veij */
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);        for(j=1; j<=nlstate;j++)
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);          for(theta=1; theta <=npar; theta++)
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);            trgradg[h][j][theta]=gradg[h][theta][j];
   
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
         for(theta=1; theta <=npar; theta++)
 /*------------ gnuplot -------------*/          trgradgp[j][theta]=gradgp[theta][j];
  printinggnuplot(fileres,optionfilefiname,optionfile,optionfilegnuplot, ageminpar,agemaxpar,fage, pathc,p);    
    
 /*------------ free_vector  -------------*/      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
  chdir(path);      for(i=1;i<=nlstate;i++)
          for(j=1;j<=nlstate;j++)
  free_ivector(wav,1,imx);          vareij[i][j][(int)age] =0.;
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);  
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);        for(h=0;h<=nhstepm;h++){
  free_ivector(num,1,n);        for(k=0;k<=nhstepm;k++){
  free_vector(agedc,1,n);          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
  /*free_matrix(covar,1,NCOVMAX,1,n);*/          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
  fclose(ficparo);          for(i=1;i<=nlstate;i++)
  fclose(ficres);            for(j=1;j<=nlstate;j++)
               vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
 /*--------- index.htm --------*/        }
       }
   printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,optionfile,optionfilehtm,rfileres,optionfilegnuplot,version,popforecast,estepm);    
       /* pptj */
        matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
   /*--------------- Prevalence limit --------------*/      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
        for(j=nlstate+1;j<=nlstate+ndeath;j++)
   strcpy(filerespl,"pl");        for(i=nlstate+1;i<=nlstate+ndeath;i++)
   strcat(filerespl,fileres);          varppt[j][i]=doldmp[j][i];
   if((ficrespl=fopen(filerespl,"w"))==NULL) {      /* end ppptj */
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;      /*  x centered again */
   }      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
   fprintf(ficrespl,"#Prevalence limit\n");   
   fprintf(ficrespl,"#Age ");      if (popbased==1) {
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);        if(mobilav ==0){
   fprintf(ficrespl,"\n");          for(i=1; i<=nlstate;i++)
              prlim[i][i]=probs[(int)age][i][ij];
   prlim=matrix(1,nlstate,1,nlstate);        }else{ /* mobilav */ 
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          for(i=1; i<=nlstate;i++)
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */            prlim[i][i]=mobaverage[(int)age][i][ij];
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        }
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      }
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */               
   k=0;      /* This for computing probability of death (h=1 means
   agebase=ageminpar;         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
   agelim=agemaxpar;         as a weighted average of prlim.
   ftolpl=1.e-10;      */
   i1=cptcoveff;      for(j=nlstate+1;j<=nlstate+ndeath;j++){
   if (cptcovn < 1){i1=1;}        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
           gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
   for(cptcov=1;cptcov<=i1;cptcov++){      }    
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      /* end probability of death */
         k=k+1;  
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
         fprintf(ficrespl,"\n#******");      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
         for(j=1;j<=cptcoveff;j++)        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        for(i=1; i<=nlstate;i++){
         fprintf(ficrespl,"******\n");          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
                }
         for (age=agebase; age<=agelim; age++){      } 
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);      fprintf(ficresprobmorprev,"\n");
           fprintf(ficrespl,"%.0f",age );  
           for(i=1; i<=nlstate;i++)      fprintf(ficresvij,"%.0f ",age );
           fprintf(ficrespl," %.5f", prlim[i][i]);      for(i=1; i<=nlstate;i++)
           fprintf(ficrespl,"\n");        for(j=1; j<=nlstate;j++){
         }          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
       }        }
     }      fprintf(ficresvij,"\n");
   fclose(ficrespl);      free_matrix(gp,0,nhstepm,1,nlstate);
       free_matrix(gm,0,nhstepm,1,nlstate);
   /*------------- h Pij x at various ages ------------*/      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
        free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   if((ficrespij=fopen(filerespij,"w"))==NULL) {    } /* End age */
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;    free_vector(gpp,nlstate+1,nlstate+ndeath);
   }    free_vector(gmp,nlstate+1,nlstate+ndeath);
   printf("Computing pij: result on file '%s' \n", filerespij);    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
      free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
   stepsize=(int) (stepm+YEARM-1)/YEARM;    fprintf(ficgp,"\nunset parametric;unset label; set ter png small;set size 0.65, 0.65");
   /*if (stepm<=24) stepsize=2;*/    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
     fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
   agelim=AGESUP;  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   hstepm=stepsize*YEARM; /* Every year of age */  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
      fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
   k=0;    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
   for(cptcov=1;cptcov<=i1;cptcov++){    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
       k=k+1;    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
         fprintf(ficrespij,"\n#****** ");    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
         for(j=1;j<=cptcoveff;j++)  */
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
         fprintf(ficrespij,"******\n");    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
          
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */    free_vector(xp,1,npar);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    free_matrix(doldm,1,nlstate,1,nlstate);
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    free_matrix(dnewm,1,nlstate,1,npar);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
           oldm=oldms;savm=savms;    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
           fprintf(ficrespij,"# Age");    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
           for(i=1; i<=nlstate;i++)    fclose(ficresprobmorprev);
             for(j=1; j<=nlstate+ndeath;j++)    fflush(ficgp);
               fprintf(ficrespij," %1d-%1d",i,j);    fflush(fichtm); 
           fprintf(ficrespij,"\n");  }  /* end varevsij */
            for (h=0; h<=nhstepm; h++){  
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );  /************ Variance of prevlim ******************/
             for(i=1; i<=nlstate;i++)  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
               for(j=1; j<=nlstate+ndeath;j++)  {
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);    /* Variance of prevalence limit */
             fprintf(ficrespij,"\n");    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
              }    double **newm;
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    double **dnewm,**doldm;
           fprintf(ficrespij,"\n");    int i, j, nhstepm, hstepm;
         }    int k, cptcode;
     }    double *xp;
   }    double *gp, *gm;
     double **gradg, **trgradg;
   varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);    double age,agelim;
     int theta;
   fclose(ficrespij);    
     pstamp(ficresvpl);
     fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
   /*---------- Forecasting ------------------*/    fprintf(ficresvpl,"# Age");
   if((stepm == 1) && (strcmp(model,".")==0)){    for(i=1; i<=nlstate;i++)
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);        fprintf(ficresvpl," %1d-%1d",i,i);
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);    fprintf(ficresvpl,"\n");
     free_matrix(mint,1,maxwav,1,n);  
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);    xp=vector(1,npar);
     free_vector(weight,1,n);}    dnewm=matrix(1,nlstate,1,npar);
   else{    doldm=matrix(1,nlstate,1,nlstate);
     erreur=108;    
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);    hstepm=1*YEARM; /* Every year of age */
   }    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
      agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   /*---------- Health expectancies and variances ------------*/      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       if (stepm >= YEARM) hstepm=1;
   strcpy(filerest,"t");      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   strcat(filerest,fileres);      gradg=matrix(1,npar,1,nlstate);
   if((ficrest=fopen(filerest,"w"))==NULL) {      gp=vector(1,nlstate);
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;      gm=vector(1,nlstate);
   }  
   printf("Computing Total LEs with variances: file '%s' \n", filerest);      for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient */
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
   strcpy(filerese,"e");        }
   strcat(filerese,fileres);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   if((ficreseij=fopen(filerese,"w"))==NULL) {        for(i=1;i<=nlstate;i++)
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);          gp[i] = prlim[i][i];
   }      
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);        for(i=1; i<=npar; i++) /* Computes gradient */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
  strcpy(fileresv,"v");        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   strcat(fileresv,fileres);        for(i=1;i<=nlstate;i++)
   if((ficresvij=fopen(fileresv,"w"))==NULL) {          gm[i] = prlim[i][i];
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);  
   }        for(i=1;i<=nlstate;i++)
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
       } /* End theta */
   k=0;  
   for(cptcov=1;cptcov<=i1;cptcov++){      trgradg =matrix(1,nlstate,1,npar);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  
       k=k+1;      for(j=1; j<=nlstate;j++)
       fprintf(ficrest,"\n#****** ");        for(theta=1; theta <=npar; theta++)
       for(j=1;j<=cptcoveff;j++)          trgradg[j][theta]=gradg[theta][j];
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
       fprintf(ficrest,"******\n");      for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] =0.;
       fprintf(ficreseij,"\n#****** ");      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
       for(j=1;j<=cptcoveff;j++)      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      for(i=1;i<=nlstate;i++)
       fprintf(ficreseij,"******\n");        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   
       fprintf(ficresvij,"\n#****** ");      fprintf(ficresvpl,"%.0f ",age );
       for(j=1;j<=cptcoveff;j++)      for(i=1; i<=nlstate;i++)
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
       fprintf(ficresvij,"******\n");      fprintf(ficresvpl,"\n");
       free_vector(gp,1,nlstate);
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);      free_vector(gm,1,nlstate);
       oldm=oldms;savm=savms;      free_matrix(gradg,1,npar,1,nlstate);
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm);        free_matrix(trgradg,1,nlstate,1,npar);
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    } /* End age */
       oldm=oldms;savm=savms;  
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm);    free_vector(xp,1,npar);
        free_matrix(doldm,1,nlstate,1,npar);
     free_matrix(dnewm,1,nlstate,1,nlstate);
    
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");  }
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);  
       fprintf(ficrest,"\n");  /************ Variance of one-step probabilities  ******************/
   void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
       epj=vector(1,nlstate+1);  {
       for(age=bage; age <=fage ;age++){    int i, j=0,  i1, k1, l1, t, tj;
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    int k2, l2, j1,  z1;
         if (popbased==1) {    int k=0,l, cptcode;
           for(i=1; i<=nlstate;i++)    int first=1, first1;
             prlim[i][i]=probs[(int)age][i][k];    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
         }    double **dnewm,**doldm;
            double *xp;
         fprintf(ficrest," %4.0f",age);    double *gp, *gm;
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){    double **gradg, **trgradg;
           for(i=1, epj[j]=0.;i <=nlstate;i++) {    double **mu;
             epj[j] += prlim[i][i]*eij[i][j][(int)age];    double age,agelim, cov[NCOVMAX];
           }    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
           epj[nlstate+1] +=epj[j];    int theta;
         }    char fileresprob[FILENAMELENGTH];
         for(i=1, vepp=0.;i <=nlstate;i++)    char fileresprobcov[FILENAMELENGTH];
           for(j=1;j <=nlstate;j++)    char fileresprobcor[FILENAMELENGTH];
             vepp += vareij[i][j][(int)age];  
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));    double ***varpij;
         for(j=1;j <=nlstate;j++){  
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));    strcpy(fileresprob,"prob"); 
         }    strcat(fileresprob,fileres);
         fprintf(ficrest,"\n");    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
       }      printf("Problem with resultfile: %s\n", fileresprob);
     }      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
   }    }
     strcpy(fileresprobcov,"probcov"); 
   fclose(ficreseij);    strcat(fileresprobcov,fileres);
   fclose(ficresvij);    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
   fclose(ficrest);      printf("Problem with resultfile: %s\n", fileresprobcov);
   fclose(ficpar);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
   free_vector(epj,1,nlstate+1);    }
      strcpy(fileresprobcor,"probcor"); 
   /*------- Variance limit prevalence------*/      strcat(fileresprobcor,fileres);
     if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
   strcpy(fileresvpl,"vpl");      printf("Problem with resultfile: %s\n", fileresprobcor);
   strcat(fileresvpl,fileres);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {    }
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     exit(0);    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
   }    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
   k=0;    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
   for(cptcov=1;cptcov<=i1;cptcov++){    pstamp(ficresprob);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
       k=k+1;    fprintf(ficresprob,"# Age");
       fprintf(ficresvpl,"\n#****** ");    pstamp(ficresprobcov);
       for(j=1;j<=cptcoveff;j++)    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    fprintf(ficresprobcov,"# Age");
       fprintf(ficresvpl,"******\n");    pstamp(ficresprobcor);
          fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
       varpl=matrix(1,nlstate,(int) bage, (int) fage);    fprintf(ficresprobcor,"# Age");
       oldm=oldms;savm=savms;  
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);  
     }    for(i=1; i<=nlstate;i++)
  }      for(j=1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprob," p%1d-%1d (SE)",i,j);
   fclose(ficresvpl);        fprintf(ficresprobcov," p%1d-%1d ",i,j);
         fprintf(ficresprobcor," p%1d-%1d ",i,j);
   /*---------- End : free ----------------*/      }  
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);   /* fprintf(ficresprob,"\n");
      fprintf(ficresprobcov,"\n");
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);    fprintf(ficresprobcor,"\n");
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);   */
      xp=vector(1,npar);
      dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);    first=1;
      fprintf(ficgp,"\n# Routine varprob");
   free_matrix(matcov,1,npar,1,npar);    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
   free_vector(delti,1,npar);    fprintf(fichtm,"\n");
   free_matrix(agev,1,maxwav,1,imx);  
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
   if(erreur >0)    file %s<br>\n",optionfilehtmcov);
     printf("End of Imach with error or warning %d\n",erreur);    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
   else   printf("End of Imach\n");  and drawn. It helps understanding how is the covariance between two incidences.\
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
      fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
   /*printf("Total time was %d uSec.\n", total_usecs);*/  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
   /*------ End -----------*/  standard deviations wide on each axis. <br>\
    Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
    and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
  end:  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
 #ifdef windows  
   /* chdir(pathcd);*/    cov[1]=1;
 #endif    tj=cptcoveff;
  /*system("wgnuplot graph.plt");*/    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
  /*system("../gp37mgw/wgnuplot graph.plt");*/    j1=0;
  /*system("cd ../gp37mgw");*/    for(t=1; t<=tj;t++){
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/      for(i1=1; i1<=ncodemax[t];i1++){ 
  strcpy(plotcmd,GNUPLOTPROGRAM);        j1++;
  strcat(plotcmd," ");        if  (cptcovn>0) {
  strcat(plotcmd,optionfilegnuplot);          fprintf(ficresprob, "\n#********** Variable "); 
  system(plotcmd);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprob, "**********\n#\n");
 #ifdef windows          fprintf(ficresprobcov, "\n#********** Variable "); 
   while (z[0] != 'q') {          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     /* chdir(path); */          fprintf(ficresprobcov, "**********\n#\n");
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");          
     scanf("%s",z);          fprintf(ficgp, "\n#********** Variable "); 
     if (z[0] == 'c') system("./imach");          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     else if (z[0] == 'e') system(optionfilehtm);          fprintf(ficgp, "**********\n#\n");
     else if (z[0] == 'g') system(plotcmd);          
     else if (z[0] == 'q') exit(0);          
   }          fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
 #endif          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 }          fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
           
           fprintf(ficresprobcor, "\n#********** Variable ");    
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcor, "**********\n#");    
         }
         
         for (age=bage; age<=fage; age ++){ 
           cov[2]=age;
           for (k=1; k<=cptcovn;k++) {
             cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
           }
           for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           for (k=1; k<=cptcovprod;k++)
             cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           
           gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
           trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
           gp=vector(1,(nlstate)*(nlstate+ndeath));
           gm=vector(1,(nlstate)*(nlstate+ndeath));
       
           for(theta=1; theta <=npar; theta++){
             for(i=1; i<=npar; i++)
               xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
             
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             
             k=0;
             for(i=1; i<= (nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gp[k]=pmmij[i][j];
               }
             }
             
             for(i=1; i<=npar; i++)
               xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
       
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             k=0;
             for(i=1; i<=(nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gm[k]=pmmij[i][j];
               }
             }
        
             for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
               gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
           }
   
           for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
             for(theta=1; theta <=npar; theta++)
               trgradg[j][theta]=gradg[theta][j];
           
           matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
           matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
           free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
           free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   
           pmij(pmmij,cov,ncovmodel,x,nlstate);
           
           k=0;
           for(i=1; i<=(nlstate); i++){
             for(j=1; j<=(nlstate+ndeath);j++){
               k=k+1;
               mu[k][(int) age]=pmmij[i][j];
             }
           }
           for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
             for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
               varpij[i][j][(int)age] = doldm[i][j];
   
           /*printf("\n%d ",(int)age);
             for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             }*/
   
           fprintf(ficresprob,"\n%d ",(int)age);
           fprintf(ficresprobcov,"\n%d ",(int)age);
           fprintf(ficresprobcor,"\n%d ",(int)age);
   
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
             fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
             fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
           }
           i=0;
           for (k=1; k<=(nlstate);k++){
             for (l=1; l<=(nlstate+ndeath);l++){ 
               i=i++;
               fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
               fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
               for (j=1; j<=i;j++){
                 fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                 fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
               }
             }
           }/* end of loop for state */
         } /* end of loop for age */
   
         /* Confidence intervalle of pij  */
         /*
           fprintf(ficgp,"\nunset parametric;unset label");
           fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
           fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
           fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
           fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
         */
   
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
         first1=1;
         for (k2=1; k2<=(nlstate);k2++){
           for (l2=1; l2<=(nlstate+ndeath);l2++){ 
             if(l2==k2) continue;
             j=(k2-1)*(nlstate+ndeath)+l2;
             for (k1=1; k1<=(nlstate);k1++){
               for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                 if(l1==k1) continue;
                 i=(k1-1)*(nlstate+ndeath)+l1;
                 if(i<=j) continue;
                 for (age=bage; age<=fage; age ++){ 
                   if ((int)age %5==0){
                     v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                     v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     mu1=mu[i][(int) age]/stepm*YEARM ;
                     mu2=mu[j][(int) age]/stepm*YEARM;
                     c12=cv12/sqrt(v1*v2);
                     /* Computing eigen value of matrix of covariance */
                     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     if ((lc2 <0) || (lc1 <0) ){
                       printf("Error: One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Continuing by making them positive: WRONG RESULTS.\n", lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);
                       fprintf(ficlog,"Error: One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e\n", lc1, lc2, v1, v2, cv12);fflush(ficlog);
                       lc1=fabs(lc1);
                       lc2=fabs(lc2);
                     }
   
                     /* Eigen vectors */
                     v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                     /*v21=sqrt(1.-v11*v11); *//* error */
                     v21=(lc1-v1)/cv12*v11;
                     v12=-v21;
                     v22=v11;
                     tnalp=v21/v11;
                     if(first1==1){
                       first1=0;
                       printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     }
                     fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     /*printf(fignu*/
                     /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                     /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                     if(first==1){
                       first=0;
                       fprintf(ficgp,"\nset parametric;unset label");
                       fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                       fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
                       fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
    :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }else{
                       first=0;
                       fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }/* if first */
                   } /* age mod 5 */
                 } /* end loop age */
                 fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                 first=1;
               } /*l12 */
             } /* k12 */
           } /*l1 */
         }/* k1 */
       } /* loop covariates */
     }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
     free_vector(xp,1,npar);
     fclose(ficresprob);
     fclose(ficresprobcov);
     fclose(ficresprobcor);
     fflush(ficgp);
     fflush(fichtmcov);
   }
   
   
   /******************* Printing html file ***********/
   void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int estepm ,\
                     double jprev1, double mprev1,double anprev1, \
                     double jprev2, double mprev2,double anprev2){
     int jj1, k1, i1, cpt;
   
      fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
      <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   </ul>");
      fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
      fprintf(fichtm,"\
    - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
              stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
      fprintf(fichtm,"\
    - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
      fprintf(fichtm,"\
    - (a) Life expectancies by health status at initial age, ei. (b) health expectancies by health status at initial age, eij . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n",
              estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
      fprintf(fichtm,"\
    - Population projections by age and states: \
      <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
   
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        /* Pij */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d1.png\">%s%d1.png</a><br> \
   <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
        /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d2.png\">%s%d2.png</a><br> \
   <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
          /* Period (stable) prevalence in each health state */
          for(cpt=1; cpt<nlstate;cpt++){
            fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d%d.png\">%s%d%d.png</a><br> \
   <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
          }
        for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
        }
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   
   
    fprintf(fichtm,"\
   \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
   
    fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
    fprintf(fichtm,"\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   
    fprintf(fichtm,"\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
    fprintf(fichtm,"\
    - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
            estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
    fprintf(fichtm,"\
    - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n",
            estepm, subdirf2(fileres,"t"),subdirf2(fileres,"t"));
    fprintf(fichtm,"\
    - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
            subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    fflush(fichtm);
    fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \
   true period expectancies (those weighted with period prevalences are also\
    drawn in addition to the population based expectancies computed using\
    observed and cahotic prevalences: %s%d.png<br>\
   <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
    fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m0,cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,ij=0,l=0;
     int ng=0;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
     m=pow(2,cptcoveff);
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
    /* 1eme*/
     for (cpt=1; cpt<= nlstate ; cpt ++) {
      for (k1=1; k1<= m ; k1 ++) {
        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else        fprintf(ficgp," \%%*lf (\%%*lf)");
        }
        fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l 0,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
         else fprintf(ficgp,"\" t\"\" w l 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         /*       k=2+nlstate*(2*cpt-2); */
         k=2+(nlstate+1)*(cpt-1);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
           /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
           
         } 
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<=nlstate ; cpt ++) {
         k=3;
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small\nset size 0.65,0.65\n\
   unset log y\n\
   plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
         
         for (i=1; i< nlstate ; i ++)
           fprintf(ficgp,"+$%d",k+i+1);
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         
         l=3+(nlstate+ndeath)*cpt;
         fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
         for (i=1; i< nlstate ; i ++) {
           l=3+(nlstate+ndeath)*cpt;
           fprintf(ficgp,"+$%d",l+i+1);
         }
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       } 
     }  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
   
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;
                for(j=3; j <=ncovmodel; j++) {
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                    ij++;
                  }
                  else
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                      ij++;
                    }
                    else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   #ifdef GSL
   /******************* Gompertz_f Likelihood ******************************/
   double gompertz_f(const gsl_vector *v, void *params)
   { 
     double A,B,LL=0.0,sump=0.,num=0.;
     double *x= (double *) v->data;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
     printf("x[0]=%lf x[1]=%lf\n",x[0],x[1]);
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agecens[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agedc[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)))
                +log(x[0]/YEARM)+x[1]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           LL=LL+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
     printf("x[0]=%lf x[1]=%lf -2*LL*num/sump=%lf\n",x[0],x[1],-2*LL*num/sump);
    
     return -2*LL*num/sump;
   }
   #endif
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small\n set log y\n"); 
     fprintf(ficgp, "set size 0.65,0.65\n");
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   int readdata(char datafile[], int firstobs, int lastobs, int *imax)
   {
   
     /*-------- data file ----------*/
     FILE *fic;
     char dummy[]="                         ";
     int i, j, n;
     int linei, month, year,iout;
     char line[MAXLINE], linetmp[MAXLINE];
     char stra[80], strb[80];
     char *stratrunc;
     int lstra;
   
   
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s\n", datafile);return 1;
       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);return 1;
     }
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
       trimbb(linetmp,line); /* Trims multiple blanks in line */
       for (j=0; line[j]!='\0';j++){
         line[j]=linetmp[j];
       }
     
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb, line, ' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
             fprintf(ficlog,"Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);fflush(ficlog);
             return 1;
           }
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }
         else  if(iout=sscanf(strb,"%s.") != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           fprintf(ficlog,"Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);fflush(ficlog);
           return 1;
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.",dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
           fprintf(ficlog,"Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.") != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       if (year==9999) {
         printf("Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given.  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given. Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
   
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       dval=strtod(strb,&endptr); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%f' at line number %ld, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fprintf(ficlog,"Error reading data around '%f' at line number %ld, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fflush(ficlog);
         return 1;
       }
       weight[i]=dval; 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%d' at line number %ld for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);
             fprintf(ficlog,"Error reading data around '%d' at line number %ld for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);fflush(ficlog);
             return 1;
           }
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%d' at line number %ld for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);
           fprintf(ficlog,"Error reading data around '%d' at line number %ld for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);fflush(ficlog);
           return 1;
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       }  
       lstra=strlen(stra);
        
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
   
     *imax=i-1; /* Number of individuals */
     fclose(fic);
    
     return (0);
     endread:
       printf("Exiting readdata: ");
       fclose(fic);
       return (1);
   
   
   
   }
   
   int decodemodel ( char model[], int lastobs)
   {
     int i, j, k;
     int i1, j1, k1, k2;
     char modelsav[80];
      char stra[80], strb[80], strc[80], strd[80],stre[80];
   
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; /* Number of covariates V1+V2*age+V3 =>(2 plus signs) + 1=3 
                     but the covariates which are product must be computed and stored. */
       cptcovprod=j1; /*Number of products  V1*V2 +v3*age = 2 */
       
       strcpy(modelsav,model); 
       if (strstr(model,"AGE") !=0){
         printf("Error. AGE must be in lower case 'age' model=%s ",model);
         fprintf(ficlog,"Error. AGE must be in lower case model=%s ",model);fflush(ficlog);
         return 1;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
       /* j is the number of + signs in the model V1+V2+V3 j=2 i=3 to 1 */
       /*   modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4  */
       /*  k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tage[cptcovage=1]=4 */
       /*  k=3 V4 Tvar[k=3]= 4 (from V4) */
       /*  k=2 V1 Tvar[k=2]= 1 (from V1) */
       /*  k=1 Tvar[1]=2 (from V2) */
       /*  k=5 Tvar[5] */
       /* for (k=1; k<=cptcovn;k++) { */
       /*  cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]]; */
       /*  } */
       /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
       for(k=cptcovn; k>=1;k--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the first '+' 
                                        modelsav==V2+V1+V4+V3*age strb=V3*age stra=V2+V1+V4 
                                       */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product V2+V1+V4+V3*age strb=V3*age */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn: strb=V3*age strc=age strd=V3 ; V3*V2 strc=V2, strd=V3 */
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V'); /* stre="V3" */
             Tvar[k]=atoi(stre);  /* V2+V1+V4+V3*age Tvar[4]=2 ; V1+V2*age Tvar[2]=2 */
             cptcovage++; /* Sums the number of covariates which include age as a product */
             Tage[cptcovage]=k;  /* Tage[1] = 4 */
             /*printf("stre=%s ", stre);*/
           } else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[k]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=k;
           } else {  /* Age is not in the model product V2+V1+V1*V4+V3*age+V3*V2  strb=V3*V2*/
             /* loops on k1=1 (V3*V2) and k1=2 V4*V3 */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/
             Tvar[k]=ncovcol+k1;  /* For model-covariate k tells which data-covariate to use but
                                     because this model-covariate is a construction we invent a new column
                                     ncovcol + k1
                                     If already ncovcol=4 and model=V2+V1+V1*V4+age*V3+V3*V2
                                     Tvar[3=V1*V4]=4+1 Tvar[5=V3*V2]=4 + 2= 6, etc */
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=k;  /* Tprod[1]=3(=V1*V4) for V2+V1+V1*V4+age*V3+V3*V2  */
             Tvard[k1][1]=atoi(strc); /* m 1 for V1*/
             Tvard[k1][2]=atoi(stre); /* n 4 for V4*/
             Tvar[cptcovn+k2]=Tvard[k1][1]; /* Tvar[(cptcovn=4+k2=1)=5]= 1 (V1) */
             Tvar[cptcovn+k2+1]=Tvard[k1][2];  /* Tvar[(cptcovn=4+(k2=1)+1)=6]= 4 (V4) */
             for (i=1; i<=lastobs;i++){
               /* Computes the new covariate which is a product of
                  covar[n][i]* covar[m][i] and stores it at ncovol+k1 */
               covar[ncovcol+k1][i]=covar[atoi(stre)][i]*covar[atoi(strc)][i];
             }
             k1++;
             k2=k2+2;
           } /* End age is not in the model */
         } /* End if model includes a product */
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
           cutv(strd,strc,strb,'V');
           Tvar[k]=atoi(strc);
         }
         strcpy(modelsav,stra);  /* modelsav=V2+V1+V4 stra=V2+V1+V4 */ 
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
   
     return (0); /* with covar[new additional covariate if product] and Tage if age */ 
     endread:
       printf("Exiting decodemodel: ");
       return (1);
   }
   
   calandcheckages(int imx, int maxwav, double *agemin, double *agemax, int *nberr, int *nbwarn )
   {
     int i, m;
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           *nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           *nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] < *agemin){ 
               *agemin=agev[m][i];
               printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], *agemin);
             }
             else if(agev[m][i] >*agemax){
               *agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           *nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           return 1;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     return (0);
     endread:
       printf("Exiting calandcheckages: ");
       return (1);
   }
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
   #ifdef GSL
     const gsl_multimin_fminimizer_type *T;
     size_t iteri = 0, it;
     int rval = GSL_CONTINUE;
     int status = GSL_SUCCESS;
     double ssval;
   #endif
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int linei, month, year,iout;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
     int vpopbased=0;
   
     char ca[32], cb[32], cc[32];
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char **bp, *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     /*char  *strt;*/
     char strtend[80];
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Dirty */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path); /* Can be a relative path */
     if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
       printf("Current directory %s!\n",pathcd);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement plus one, indepently of n in Vn*/
     /* v1+v2+v3+v2*v4+v5*age makes cptcovn = 5
        v1+v2*age+v2*v3 makes cptcovn = 3
     */
     if (strlen(model)>1) 
       cptcovn=nbocc(model,'+')+1;
     /* ncovprod */
     ncovmodel=2+cptcovn; /*Number of variables including intercept and age = cptcovn + intercept + age : v1+v2+v3+v2*v4+v5*age makes 5+2=7*/
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     nforce= (nlstate+ndeath-1)*nlstate; /* Number of forces ij from state i to j */
     npar= nforce*ncovmodel; /* Number of parameters like aij*/
     if(npar >MAXPARM || nlstate >NLSTATEMAX || ndeath >NDEATHMAX || ncovmodel>NCOVMAX){
       printf("Too complex model for current IMaCh: npar=(nlstate+ndeath-1)*nlstate*ncovmodel=%d >= %d(MAXPARM) or nlstate=%d >= %d(NLSTATEMAX) or ndeath=%d >= %d(NDEATHMAX) or ncovmodel=(k+age+#of+signs)=%d(NCOVMAX) >= %d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fprintf(ficlog,"Too complex model for current IMaCh: %d >=%d(MAXPARM) or %d >=%d(NLSTATEMAX) or %d >=%d(NDEATHMAX) or %d(NCOVMAX) >=%d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fflush(stdout);
       fclose (ficlog);
       goto end;
     }
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       goto end;
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
   It might be a problem of design; if ncovcol and the model are correct\n \
   run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++)
         for(j=1; j <=npar; j++) matcov[i][j]=0.;
         
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
   
     n= lastobs;
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n); /* s[i][j] health state for wave i and individual j */ 
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8); /* hard coded ? */
   
     /* Reads data from file datafile */
     if (readdata(datafile, firstobs, lastobs, &imx)==1)
       goto end;
   
     /* Calculation of the number of parameters from char model */
       /*    modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4 
           k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tag[cptcovage=1]=4
           k=3 V4 Tvar[k=3]= 4 (from V4)
           k=2 V1 Tvar[k=2]= 1 (from V1)
           k=1 Tvar[1]=2 (from V2)
       */
     Tvar=ivector(1,NCOVMAX); /* Was 15 changed to NCOVMAX. */
     /*  V2+V1+V4+age*V3 is a model with 4 covariates (3 plus signs). 
         For each model-covariate stores the data-covariate id. Tvar[1]=2, Tvar[2]=1, Tvar[3]=4, 
         Tvar[4=age*V3] is 3 and 'age' is recorded in Tage.
     */
     /* For model-covariate k tells which data-covariate to use but
       because this model-covariate is a construction we invent a new column
       ncovcol + k1
       If already ncovcol=4 and model=V2+V1+V1*V4+age*V3
       Tvar[3=V1*V4]=4+1 etc */
     Tprod=ivector(1,15); 
     /* Tprod[k1=1]=3(=V1*V4) for V2+V1+V1*V4+age*V3
        if  V2+V1+V1*V4+age*V3+V3*V2   TProd[k1=2]=5 (V3*V2)
     */
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2); /* For V3*V2 Tvard[k1=2][1]=3 (V3) Tvard[k1=2][2]=2(V2) */
     Tage=ivector(1,15); /* Gives the covariate id of covariates associated with age: V2 + V1 + age*V4 + V3*age
                            4 covariates (3 plus signs)
                            Tage[1=V3*age]= 4; Tage[2=age*V4] = 3
                         */  
   
     if(decodemodel(model, lastobs) == 1)
       goto end;
   
     if((double)(lastobs-imx)/(double)imx > 1.10){
       nbwarn++;
       printf("Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
       fprintf(ficlog,"Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
     }
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights. We can have weights different from 1 but want no weight*/
       for(i=1;i<=imx;i++) weight[i]=1.0; /* changed to imx */
     }
   
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     if(calandcheckages(imx, maxwav, &agemin, &agemax, &nberr, &nbwarn) == 1)
       goto end;
   
   
     agegomp=(int)agemin;
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){ /* scans any effective covariate */
       for(i=1; i <=(m/pow(2,k));i++){ /* i=1 to 8/1=8; i=1 to 8/2=4; i=1 to 8/8=1 */ 
         for(j=1; j <= ncodemax[k]; j++){ /* For each modality of this covariate */
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){  /* cpt=1 to 8/2**(3+1-1 or 3+1-3) =1 or 4 */ 
             h++;
             if (h>m) {
               h=1;
               codtab[h][k]=j;
               codtab[h][Tvar[k]]=j;
             }
             printf("h=%d k=%d j=%d codtab[h][k]=%d Tvar[k]=%d codtab[h][Tvar[k]]=%d \n",h, k,j,codtab[h][k],Tvar[k],codtab[h][Tvar[k]]);
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
          printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm);
       exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM); 
   /*     ximort=gsl_matrix_alloc(1,NDIM,1,NDIM); */
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       p[1]=0.0268; p[NDIM]=0.083;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
   #ifdef GSL
       printf("GSL optimization\n");  fprintf(ficlog,"Powell\n");
   #elsedef
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
   #endif
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
   #ifdef GSL
       fprintf(ficrespow,"# GSL optimization\n# iter -2*LL");
   #elsedef
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
   #endif
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
   #ifdef GSL
       /* gsl starts here */ 
       T = gsl_multimin_fminimizer_nmsimplex;
       gsl_multimin_fminimizer *sfm = NULL;
       gsl_vector *ss, *x;
       gsl_multimin_function minex_func;
   
       /* Initial vertex size vector */
       ss = gsl_vector_alloc (NDIM);
       
       if (ss == NULL){
         GSL_ERROR_VAL ("failed to allocate space for ss", GSL_ENOMEM, 0);
       }
       /* Set all step sizes to 1 */
       gsl_vector_set_all (ss, 0.001);
   
       /* Starting point */
       
       x = gsl_vector_alloc (NDIM);
       
       if (x == NULL){
         gsl_vector_free(ss);
         GSL_ERROR_VAL ("failed to allocate space for x", GSL_ENOMEM, 0);
       }
     
       /* Initialize method and iterate */
       /*     p[1]=0.0268; p[NDIM]=0.083; */
   /*     gsl_vector_set(x, 0, 0.0268); */
   /*     gsl_vector_set(x, 1, 0.083); */
       gsl_vector_set(x, 0, p[1]);
       gsl_vector_set(x, 1, p[2]);
   
       minex_func.f = &gompertz_f;
       minex_func.n = NDIM;
       minex_func.params = (void *)&p; /* ??? */
       
       sfm = gsl_multimin_fminimizer_alloc (T, NDIM);
       gsl_multimin_fminimizer_set (sfm, &minex_func, x, ss);
       
       printf("Iterations beginning .....\n\n");
       printf("Iter. #    Intercept       Slope     -Log Likelihood     Simplex size\n");
   
       iteri=0;
       while (rval == GSL_CONTINUE){
         iteri++;
         status = gsl_multimin_fminimizer_iterate(sfm);
         
         if (status) printf("error: %s\n", gsl_strerror (status));
         fflush(0);
         
         if (status) 
           break;
         
         rval = gsl_multimin_test_size (gsl_multimin_fminimizer_size (sfm), 1e-6);
         ssval = gsl_multimin_fminimizer_size (sfm);
         
         if (rval == GSL_SUCCESS)
           printf ("converged to a local maximum at\n");
         
         printf("%5d ", iteri);
         for (it = 0; it < NDIM; it++){
           printf ("%10.5f ", gsl_vector_get (sfm->x, it));
         }
         printf("f() = %-10.5f ssize = %.7f\n", sfm->fval, ssval);
       }
       
       printf("\n\n Please note: Program should be run many times with varying starting points to detemine global maximum\n\n");
       
       gsl_vector_free(x); /* initial values */
       gsl_vector_free(ss); /* inital step size */
       for (it=0; it<NDIM; it++){
         p[it+1]=gsl_vector_get(sfm->x,it);
         fprintf(ficrespow," %.12lf", p[it]);
       }
       gsl_multimin_fminimizer_free (sfm); /* p *(sfm.x.data) et p *(sfm.x.data+1)  */
   #endif
   #ifdef POWELL
        powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
   #endif  
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
   #ifdef GSL
       free_ivector(cens,1,n);
       free_vector(agecens,1,n);
       free_ivector(dcwave,1,n);
       free_matrix(ximort,1,NDIM,1,NDIM);
   #endif
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
       globpr=0;/* debug */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%lf ",p[jk]);
               fprintf(ficlog,"%lf ",p[jk]);
               fprintf(ficres,"%lf ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       pstamp(ficrespl);
       fprintf(ficrespl,"# Period (stable) prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /* to clean */
           printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,codtab[cptcod][cptcov],nbcode);
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       pstamp(ficrespij);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
   
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
   
       /*---------- Health expectancies, no variances ------------*/
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
         
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         }
       }
       fclose(ficreseij);
   
   
       /*---------- Health expectancies and variances ------------*/
   
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
   
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           pstamp(ficrest);
           for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
             oldm=oldms;savm=savms;
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart);   fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n#  (weighted average of eij where weights are ");
             if(vpopbased==1)
               fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav);
             else
               fprintf(ficrest,"the age specific period (stable) prevalences in each health state \n");
             fprintf(ficrest,"# Age e.. (std) ");
             for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
             fprintf(ficrest,"\n");
   
             epj=vector(1,nlstate+1);
             for(age=bage; age <=fage ;age++){
               prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
               if (vpopbased==1) {
                 if(mobilav ==0){
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=probs[(int)age][i][k];
                 }else{ /* mobilav */ 
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=mobaverage[(int)age][i][k];
                 }
               }
           
               fprintf(ficrest," %4.0f",age);
               for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
                 for(i=1, epj[j]=0.;i <=nlstate;i++) {
                   epj[j] += prlim[i][i]*eij[i][j][(int)age];
                   /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
                 }
                 epj[nlstate+1] +=epj[j];
               }
   
               for(i=1, vepp=0.;i <=nlstate;i++)
                 for(j=1;j <=nlstate;j++)
                   vepp += vareij[i][j][(int)age];
               fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
               for(j=1;j <=nlstate;j++){
                 fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
               }
               fprintf(ficrest,"\n");
             }
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
    endfree:
     free_matrix(prlim,1,nlstate,1,nlstate);
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.40  
changed lines
  Added in v.1.138


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>