Diff for /imach/src/imach.c between versions 1.125 and 1.160

version 1.125, 2006/04/04 15:20:31 version 1.160, 2014/09/02 09:24:05
Line 1 Line 1
 /* $Id$  /* $Id$
   $State$    $State$
   $Log$    $Log$
     Revision 1.160  2014/09/02 09:24:05  brouard
     *** empty log message ***
   
     Revision 1.159  2014/09/01 10:34:10  brouard
     Summary: WIN32
     Author: Brouard
   
     Revision 1.158  2014/08/27 17:11:51  brouard
     *** empty log message ***
   
     Revision 1.157  2014/08/27 16:26:55  brouard
     Summary: Preparing windows Visual studio version
     Author: Brouard
   
     In order to compile on Visual studio, time.h is now correct and time_t
     and tm struct should be used. difftime should be used but sometimes I
     just make the differences in raw time format (time(&now).
     Trying to suppress #ifdef LINUX
     Add xdg-open for __linux in order to open default browser.
   
     Revision 1.156  2014/08/25 20:10:10  brouard
     *** empty log message ***
   
     Revision 1.155  2014/08/25 18:32:34  brouard
     Summary: New compile, minor changes
     Author: Brouard
   
     Revision 1.154  2014/06/20 17:32:08  brouard
     Summary: Outputs now all graphs of convergence to period prevalence
   
     Revision 1.153  2014/06/20 16:45:46  brouard
     Summary: If 3 live state, convergence to period prevalence on same graph
     Author: Brouard
   
     Revision 1.152  2014/06/18 17:54:09  brouard
     Summary: open browser, use gnuplot on same dir than imach if not found in the path
   
     Revision 1.151  2014/06/18 16:43:30  brouard
     *** empty log message ***
   
     Revision 1.150  2014/06/18 16:42:35  brouard
     Summary: If gnuplot is not in the path try on same directory than imach binary (OSX)
     Author: brouard
   
     Revision 1.149  2014/06/18 15:51:14  brouard
     Summary: Some fixes in parameter files errors
     Author: Nicolas Brouard
   
     Revision 1.148  2014/06/17 17:38:48  brouard
     Summary: Nothing new
     Author: Brouard
   
     Just a new packaging for OS/X version 0.98nS
   
     Revision 1.147  2014/06/16 10:33:11  brouard
     *** empty log message ***
   
     Revision 1.146  2014/06/16 10:20:28  brouard
     Summary: Merge
     Author: Brouard
   
     Merge, before building revised version.
   
     Revision 1.145  2014/06/10 21:23:15  brouard
     Summary: Debugging with valgrind
     Author: Nicolas Brouard
   
     Lot of changes in order to output the results with some covariates
     After the Edimburgh REVES conference 2014, it seems mandatory to
     improve the code.
     No more memory valgrind error but a lot has to be done in order to
     continue the work of splitting the code into subroutines.
     Also, decodemodel has been improved. Tricode is still not
     optimal. nbcode should be improved. Documentation has been added in
     the source code.
   
     Revision 1.143  2014/01/26 09:45:38  brouard
     Summary: Version 0.98nR (to be improved, but gives same optimization results as 0.98k. Nice, promising
   
     * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
     (Module): Version 0.98nR Running ok, but output format still only works for three covariates.
   
     Revision 1.142  2014/01/26 03:57:36  brouard
     Summary: gnuplot changed plot w l 1 has to be changed to plot w l lt 2
   
     * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
   
     Revision 1.141  2014/01/26 02:42:01  brouard
     * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
   
     Revision 1.140  2011/09/02 10:37:54  brouard
     Summary: times.h is ok with mingw32 now.
   
     Revision 1.139  2010/06/14 07:50:17  brouard
     After the theft of my laptop, I probably lost some lines of codes which were not uploaded to the CVS tree.
     I remember having already fixed agemin agemax which are pointers now but not cvs saved.
   
     Revision 1.138  2010/04/30 18:19:40  brouard
     *** empty log message ***
   
     Revision 1.137  2010/04/29 18:11:38  brouard
     (Module): Checking covariates for more complex models
     than V1+V2. A lot of change to be done. Unstable.
   
     Revision 1.136  2010/04/26 20:30:53  brouard
     (Module): merging some libgsl code. Fixing computation
     of likelione (using inter/intrapolation if mle = 0) in order to
     get same likelihood as if mle=1.
     Some cleaning of code and comments added.
   
     Revision 1.135  2009/10/29 15:33:14  brouard
     (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
   
     Revision 1.134  2009/10/29 13:18:53  brouard
     (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
   
     Revision 1.133  2009/07/06 10:21:25  brouard
     just nforces
   
     Revision 1.132  2009/07/06 08:22:05  brouard
     Many tings
   
     Revision 1.131  2009/06/20 16:22:47  brouard
     Some dimensions resccaled
   
     Revision 1.130  2009/05/26 06:44:34  brouard
     (Module): Max Covariate is now set to 20 instead of 8. A
     lot of cleaning with variables initialized to 0. Trying to make
     V2+V3*age+V1+V4 strb=V3*age+V1+V4 working better.
   
     Revision 1.129  2007/08/31 13:49:27  lievre
     Modification of the way of exiting when the covariate is not binary in order to see on the window the error message before exiting
   
     Revision 1.128  2006/06/30 13:02:05  brouard
     (Module): Clarifications on computing e.j
   
     Revision 1.127  2006/04/28 18:11:50  brouard
     (Module): Yes the sum of survivors was wrong since
     imach-114 because nhstepm was no more computed in the age
     loop. Now we define nhstepma in the age loop.
     (Module): In order to speed up (in case of numerous covariates) we
     compute health expectancies (without variances) in a first step
     and then all the health expectancies with variances or standard
     deviation (needs data from the Hessian matrices) which slows the
     computation.
     In the future we should be able to stop the program is only health
     expectancies and graph are needed without standard deviations.
   
     Revision 1.126  2006/04/28 17:23:28  brouard
     (Module): Yes the sum of survivors was wrong since
     imach-114 because nhstepm was no more computed in the age
     loop. Now we define nhstepma in the age loop.
     Version 0.98h
   
   Revision 1.125  2006/04/04 15:20:31  lievre    Revision 1.125  2006/04/04 15:20:31  lievre
   Errors in calculation of health expectancies. Age was not initialized.    Errors in calculation of health expectancies. Age was not initialized.
   Forecasting file added.    Forecasting file added.
   
   Revision 1.124  2006/03/22 17:13:53  lievre    Revision 1.124  2006/03/22 17:13:53  lievre
   Parameters are printed with %lf instead of %f (more numbers after the comma).    Parameters are printed with %lf instead of %f (more numbers after the comma).
   The log-likelihood is printed in the log file    The log-likelihood is printed in the log file
   
   Revision 1.123  2006/03/20 10:52:43  brouard    Revision 1.123  2006/03/20 10:52:43  brouard
   * imach.c (Module): <title> changed, corresponds to .htm file    * imach.c (Module): <title> changed, corresponds to .htm file
   name. <head> headers where missing.    name. <head> headers where missing.
   
   * imach.c (Module): Weights can have a decimal point as for    * imach.c (Module): Weights can have a decimal point as for
   English (a comma might work with a correct LC_NUMERIC environment,    English (a comma might work with a correct LC_NUMERIC environment,
   otherwise the weight is truncated).    otherwise the weight is truncated).
   Modification of warning when the covariates values are not 0 or    Modification of warning when the covariates values are not 0 or
   1.    1.
   Version 0.98g    Version 0.98g
   
   Revision 1.122  2006/03/20 09:45:41  brouard    Revision 1.122  2006/03/20 09:45:41  brouard
   (Module): Weights can have a decimal point as for    (Module): Weights can have a decimal point as for
   English (a comma might work with a correct LC_NUMERIC environment,    English (a comma might work with a correct LC_NUMERIC environment,
   otherwise the weight is truncated).    otherwise the weight is truncated).
   Modification of warning when the covariates values are not 0 or    Modification of warning when the covariates values are not 0 or
   1.    1.
   Version 0.98g    Version 0.98g
   
   Revision 1.121  2006/03/16 17:45:01  lievre    Revision 1.121  2006/03/16 17:45:01  lievre
   * imach.c (Module): Comments concerning covariates added    * imach.c (Module): Comments concerning covariates added
   
   * imach.c (Module): refinements in the computation of lli if    * imach.c (Module): refinements in the computation of lli if
   status=-2 in order to have more reliable computation if stepm is    status=-2 in order to have more reliable computation if stepm is
   not 1 month. Version 0.98f    not 1 month. Version 0.98f
   
   Revision 1.120  2006/03/16 15:10:38  lievre    Revision 1.120  2006/03/16 15:10:38  lievre
   (Module): refinements in the computation of lli if    (Module): refinements in the computation of lli if
   status=-2 in order to have more reliable computation if stepm is    status=-2 in order to have more reliable computation if stepm is
   not 1 month. Version 0.98f    not 1 month. Version 0.98f
   
   Revision 1.119  2006/03/15 17:42:26  brouard    Revision 1.119  2006/03/15 17:42:26  brouard
   (Module): Bug if status = -2, the loglikelihood was    (Module): Bug if status = -2, the loglikelihood was
   computed as likelihood omitting the logarithm. Version O.98e    computed as likelihood omitting the logarithm. Version O.98e
   
   Revision 1.118  2006/03/14 18:20:07  brouard    Revision 1.118  2006/03/14 18:20:07  brouard
   (Module): varevsij Comments added explaining the second    (Module): varevsij Comments added explaining the second
   table of variances if popbased=1 .    table of variances if popbased=1 .
   (Module): Covariances of eij, ekl added, graphs fixed, new html link.    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   (Module): Function pstamp added    (Module): Function pstamp added
   (Module): Version 0.98d    (Module): Version 0.98d
   
   Revision 1.117  2006/03/14 17:16:22  brouard    Revision 1.117  2006/03/14 17:16:22  brouard
   (Module): varevsij Comments added explaining the second    (Module): varevsij Comments added explaining the second
   table of variances if popbased=1 .    table of variances if popbased=1 .
   (Module): Covariances of eij, ekl added, graphs fixed, new html link.    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   (Module): Function pstamp added    (Module): Function pstamp added
   (Module): Version 0.98d    (Module): Version 0.98d
   
   Revision 1.116  2006/03/06 10:29:27  brouard    Revision 1.116  2006/03/06 10:29:27  brouard
   (Module): Variance-covariance wrong links and    (Module): Variance-covariance wrong links and
   varian-covariance of ej. is needed (Saito).    varian-covariance of ej. is needed (Saito).
   
   Revision 1.115  2006/02/27 12:17:45  brouard    Revision 1.115  2006/02/27 12:17:45  brouard
   (Module): One freematrix added in mlikeli! 0.98c    (Module): One freematrix added in mlikeli! 0.98c
   
   Revision 1.114  2006/02/26 12:57:58  brouard    Revision 1.114  2006/02/26 12:57:58  brouard
   (Module): Some improvements in processing parameter    (Module): Some improvements in processing parameter
   filename with strsep.    filename with strsep.
   
   Revision 1.113  2006/02/24 14:20:24  brouard    Revision 1.113  2006/02/24 14:20:24  brouard
   (Module): Memory leaks checks with valgrind and:    (Module): Memory leaks checks with valgrind and:
   datafile was not closed, some imatrix were not freed and on matrix    datafile was not closed, some imatrix were not freed and on matrix
   allocation too.    allocation too.
   
   Revision 1.112  2006/01/30 09:55:26  brouard    Revision 1.112  2006/01/30 09:55:26  brouard
   (Module): Back to gnuplot.exe instead of wgnuplot.exe    (Module): Back to gnuplot.exe instead of wgnuplot.exe
   
   Revision 1.111  2006/01/25 20:38:18  brouard    Revision 1.111  2006/01/25 20:38:18  brouard
   (Module): Lots of cleaning and bugs added (Gompertz)    (Module): Lots of cleaning and bugs added (Gompertz)
   (Module): Comments can be added in data file. Missing date values    (Module): Comments can be added in data file. Missing date values
   can be a simple dot '.'.    can be a simple dot '.'.
   
   Revision 1.110  2006/01/25 00:51:50  brouard    Revision 1.110  2006/01/25 00:51:50  brouard
   (Module): Lots of cleaning and bugs added (Gompertz)    (Module): Lots of cleaning and bugs added (Gompertz)
   
   Revision 1.109  2006/01/24 19:37:15  brouard    Revision 1.109  2006/01/24 19:37:15  brouard
   (Module): Comments (lines starting with a #) are allowed in data.    (Module): Comments (lines starting with a #) are allowed in data.
   
   Revision 1.108  2006/01/19 18:05:42  lievre    Revision 1.108  2006/01/19 18:05:42  lievre
   Gnuplot problem appeared...    Gnuplot problem appeared...
   To be fixed    To be fixed
   
   Revision 1.107  2006/01/19 16:20:37  brouard    Revision 1.107  2006/01/19 16:20:37  brouard
   Test existence of gnuplot in imach path    Test existence of gnuplot in imach path
   
   Revision 1.106  2006/01/19 13:24:36  brouard    Revision 1.106  2006/01/19 13:24:36  brouard
   Some cleaning and links added in html output    Some cleaning and links added in html output
   
   Revision 1.105  2006/01/05 20:23:19  lievre    Revision 1.105  2006/01/05 20:23:19  lievre
   *** empty log message ***    *** empty log message ***
   
   Revision 1.104  2005/09/30 16:11:43  lievre    Revision 1.104  2005/09/30 16:11:43  lievre
   (Module): sump fixed, loop imx fixed, and simplifications.    (Module): sump fixed, loop imx fixed, and simplifications.
   (Module): If the status is missing at the last wave but we know    (Module): If the status is missing at the last wave but we know
   that the person is alive, then we can code his/her status as -2    that the person is alive, then we can code his/her status as -2
   (instead of missing=-1 in earlier versions) and his/her    (instead of missing=-1 in earlier versions) and his/her
   contributions to the likelihood is 1 - Prob of dying from last    contributions to the likelihood is 1 - Prob of dying from last
   health status (= 1-p13= p11+p12 in the easiest case of somebody in    health status (= 1-p13= p11+p12 in the easiest case of somebody in
   the healthy state at last known wave). Version is 0.98    the healthy state at last known wave). Version is 0.98
   
   Revision 1.103  2005/09/30 15:54:49  lievre    Revision 1.103  2005/09/30 15:54:49  lievre
   (Module): sump fixed, loop imx fixed, and simplifications.    (Module): sump fixed, loop imx fixed, and simplifications.
   
   Revision 1.102  2004/09/15 17:31:30  brouard    Revision 1.102  2004/09/15 17:31:30  brouard
   Add the possibility to read data file including tab characters.    Add the possibility to read data file including tab characters.
   
   Revision 1.101  2004/09/15 10:38:38  brouard    Revision 1.101  2004/09/15 10:38:38  brouard
   Fix on curr_time    Fix on curr_time
   
   Revision 1.100  2004/07/12 18:29:06  brouard    Revision 1.100  2004/07/12 18:29:06  brouard
   Add version for Mac OS X. Just define UNIX in Makefile    Add version for Mac OS X. Just define UNIX in Makefile
   
   Revision 1.99  2004/06/05 08:57:40  brouard    Revision 1.99  2004/06/05 08:57:40  brouard
   *** empty log message ***    *** empty log message ***
   
   Revision 1.98  2004/05/16 15:05:56  brouard    Revision 1.98  2004/05/16 15:05:56  brouard
   New version 0.97 . First attempt to estimate force of mortality    New version 0.97 . First attempt to estimate force of mortality
   directly from the data i.e. without the need of knowing the health    directly from the data i.e. without the need of knowing the health
   state at each age, but using a Gompertz model: log u =a + b*age .    state at each age, but using a Gompertz model: log u =a + b*age .
   This is the basic analysis of mortality and should be done before any    This is the basic analysis of mortality and should be done before any
   other analysis, in order to test if the mortality estimated from the    other analysis, in order to test if the mortality estimated from the
   cross-longitudinal survey is different from the mortality estimated    cross-longitudinal survey is different from the mortality estimated
   from other sources like vital statistic data.    from other sources like vital statistic data.
   
   The same imach parameter file can be used but the option for mle should be -3.    The same imach parameter file can be used but the option for mle should be -3.
   
   Agnès, who wrote this part of the code, tried to keep most of the    Agnès, who wrote this part of the code, tried to keep most of the
   former routines in order to include the new code within the former code.    former routines in order to include the new code within the former code.
   
   The output is very simple: only an estimate of the intercept and of    The output is very simple: only an estimate of the intercept and of
   the slope with 95% confident intervals.    the slope with 95% confident intervals.
   
   Current limitations:    Current limitations:
   A) Even if you enter covariates, i.e. with the    A) Even if you enter covariates, i.e. with the
   model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
   B) There is no computation of Life Expectancy nor Life Table.    B) There is no computation of Life Expectancy nor Life Table.
   
   Revision 1.97  2004/02/20 13:25:42  lievre    Revision 1.97  2004/02/20 13:25:42  lievre
   Version 0.96d. Population forecasting command line is (temporarily)    Version 0.96d. Population forecasting command line is (temporarily)
   suppressed.    suppressed.
   
   Revision 1.96  2003/07/15 15:38:55  brouard    Revision 1.96  2003/07/15 15:38:55  brouard
   * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
   rewritten within the same printf. Workaround: many printfs.    rewritten within the same printf. Workaround: many printfs.
   
   Revision 1.95  2003/07/08 07:54:34  brouard    Revision 1.95  2003/07/08 07:54:34  brouard
   * imach.c (Repository):    * imach.c (Repository):
   (Repository): Using imachwizard code to output a more meaningful covariance    (Repository): Using imachwizard code to output a more meaningful covariance
   matrix (cov(a12,c31) instead of numbers.    matrix (cov(a12,c31) instead of numbers.
   
   Revision 1.94  2003/06/27 13:00:02  brouard    Revision 1.94  2003/06/27 13:00:02  brouard
   Just cleaning    Just cleaning
   
   Revision 1.93  2003/06/25 16:33:55  brouard    Revision 1.93  2003/06/25 16:33:55  brouard
   (Module): On windows (cygwin) function asctime_r doesn't    (Module): On windows (cygwin) function asctime_r doesn't
   exist so I changed back to asctime which exists.    exist so I changed back to asctime which exists.
   (Module): Version 0.96b    (Module): Version 0.96b
   
   Revision 1.92  2003/06/25 16:30:45  brouard    Revision 1.92  2003/06/25 16:30:45  brouard
   (Module): On windows (cygwin) function asctime_r doesn't    (Module): On windows (cygwin) function asctime_r doesn't
   exist so I changed back to asctime which exists.    exist so I changed back to asctime which exists.
   
   Revision 1.91  2003/06/25 15:30:29  brouard    Revision 1.91  2003/06/25 15:30:29  brouard
   * imach.c (Repository): Duplicated warning errors corrected.    * imach.c (Repository): Duplicated warning errors corrected.
   (Repository): Elapsed time after each iteration is now output. It    (Repository): Elapsed time after each iteration is now output. It
   helps to forecast when convergence will be reached. Elapsed time    helps to forecast when convergence will be reached. Elapsed time
   is stamped in powell.  We created a new html file for the graphs    is stamped in powell.  We created a new html file for the graphs
   concerning matrix of covariance. It has extension -cov.htm.    concerning matrix of covariance. It has extension -cov.htm.
   
   Revision 1.90  2003/06/24 12:34:15  brouard    Revision 1.90  2003/06/24 12:34:15  brouard
   (Module): Some bugs corrected for windows. Also, when    (Module): Some bugs corrected for windows. Also, when
   mle=-1 a template is output in file "or"mypar.txt with the design    mle=-1 a template is output in file "or"mypar.txt with the design
   of the covariance matrix to be input.    of the covariance matrix to be input.
   
   Revision 1.89  2003/06/24 12:30:52  brouard    Revision 1.89  2003/06/24 12:30:52  brouard
   (Module): Some bugs corrected for windows. Also, when    (Module): Some bugs corrected for windows. Also, when
   mle=-1 a template is output in file "or"mypar.txt with the design    mle=-1 a template is output in file "or"mypar.txt with the design
   of the covariance matrix to be input.    of the covariance matrix to be input.
   
   Revision 1.88  2003/06/23 17:54:56  brouard    Revision 1.88  2003/06/23 17:54:56  brouard
   * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
   
   Revision 1.87  2003/06/18 12:26:01  brouard    Revision 1.87  2003/06/18 12:26:01  brouard
   Version 0.96    Version 0.96
   
   Revision 1.86  2003/06/17 20:04:08  brouard    Revision 1.86  2003/06/17 20:04:08  brouard
   (Module): Change position of html and gnuplot routines and added    (Module): Change position of html and gnuplot routines and added
   routine fileappend.    routine fileappend.
   
   Revision 1.85  2003/06/17 13:12:43  brouard    Revision 1.85  2003/06/17 13:12:43  brouard
   * imach.c (Repository): Check when date of death was earlier that    * imach.c (Repository): Check when date of death was earlier that
   current date of interview. It may happen when the death was just    current date of interview. It may happen when the death was just
   prior to the death. In this case, dh was negative and likelihood    prior to the death. In this case, dh was negative and likelihood
   was wrong (infinity). We still send an "Error" but patch by    was wrong (infinity). We still send an "Error" but patch by
   assuming that the date of death was just one stepm after the    assuming that the date of death was just one stepm after the
   interview.    interview.
   (Repository): Because some people have very long ID (first column)    (Repository): Because some people have very long ID (first column)
   we changed int to long in num[] and we added a new lvector for    we changed int to long in num[] and we added a new lvector for
   memory allocation. But we also truncated to 8 characters (left    memory allocation. But we also truncated to 8 characters (left
   truncation)    truncation)
   (Repository): No more line truncation errors.    (Repository): No more line truncation errors.
   
   Revision 1.84  2003/06/13 21:44:43  brouard    Revision 1.84  2003/06/13 21:44:43  brouard
   * imach.c (Repository): Replace "freqsummary" at a correct    * imach.c (Repository): Replace "freqsummary" at a correct
   place. It differs from routine "prevalence" which may be called    place. It differs from routine "prevalence" which may be called
   many times. Probs is memory consuming and must be used with    many times. Probs is memory consuming and must be used with
   parcimony.    parcimony.
   Version 0.95a3 (should output exactly the same maximization than 0.8a2)    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
   
   Revision 1.83  2003/06/10 13:39:11  lievre    Revision 1.83  2003/06/10 13:39:11  lievre
   *** empty log message ***    *** empty log message ***
   
   Revision 1.82  2003/06/05 15:57:20  brouard    Revision 1.82  2003/06/05 15:57:20  brouard
   Add log in  imach.c and  fullversion number is now printed.    Add log in  imach.c and  fullversion number is now printed.
   
 */  */
 /*  /*
    Interpolated Markov Chain     Interpolated Markov Chain
   
   Short summary of the programme:    Short summary of the programme:
      
   This program computes Healthy Life Expectancies from    This program computes Healthy Life Expectancies from
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
   first survey ("cross") where individuals from different ages are    first survey ("cross") where individuals from different ages are
   interviewed on their health status or degree of disability (in the    interviewed on their health status or degree of disability (in the
   case of a health survey which is our main interest) -2- at least a    case of a health survey which is our main interest) -2- at least a
   second wave of interviews ("longitudinal") which measure each change    second wave of interviews ("longitudinal") which measure each change
   (if any) in individual health status.  Health expectancies are    (if any) in individual health status.  Health expectancies are
   computed from the time spent in each health state according to a    computed from the time spent in each health state according to a
   model. More health states you consider, more time is necessary to reach the    model. More health states you consider, more time is necessary to reach the
   Maximum Likelihood of the parameters involved in the model.  The    Maximum Likelihood of the parameters involved in the model.  The
   simplest model is the multinomial logistic model where pij is the    simplest model is the multinomial logistic model where pij is the
   probability to be observed in state j at the second wave    probability to be observed in state j at the second wave
   conditional to be observed in state i at the first wave. Therefore    conditional to be observed in state i at the first wave. Therefore
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
   'age' is age and 'sex' is a covariate. If you want to have a more    'age' is age and 'sex' is a covariate. If you want to have a more
   complex model than "constant and age", you should modify the program    complex model than "constant and age", you should modify the program
   where the markup *Covariates have to be included here again* invites    where the markup *Covariates have to be included here again* invites
   you to do it.  More covariates you add, slower the    you to do it.  More covariates you add, slower the
   convergence.    convergence.
   
   The advantage of this computer programme, compared to a simple    The advantage of this computer programme, compared to a simple
   multinomial logistic model, is clear when the delay between waves is not    multinomial logistic model, is clear when the delay between waves is not
   identical for each individual. Also, if a individual missed an    identical for each individual. Also, if a individual missed an
   intermediate interview, the information is lost, but taken into    intermediate interview, the information is lost, but taken into
   account using an interpolation or extrapolation.      account using an interpolation or extrapolation.  
   
   hPijx is the probability to be observed in state i at age x+h    hPijx is the probability to be observed in state i at age x+h
   conditional to the observed state i at age x. The delay 'h' can be    conditional to the observed state i at age x. The delay 'h' can be
   split into an exact number (nh*stepm) of unobserved intermediate    split into an exact number (nh*stepm) of unobserved intermediate
   states. This elementary transition (by month, quarter,    states. This elementary transition (by month, quarter,
   semester or year) is modelled as a multinomial logistic.  The hPx    semester or year) is modelled as a multinomial logistic.  The hPx
   matrix is simply the matrix product of nh*stepm elementary matrices    matrix is simply the matrix product of nh*stepm elementary matrices
   and the contribution of each individual to the likelihood is simply    and the contribution of each individual to the likelihood is simply
   hPijx.    hPijx.
   
   Also this programme outputs the covariance matrix of the parameters but also    Also this programme outputs the covariance matrix of the parameters but also
   of the life expectancies. It also computes the period (stable) prevalence.    of the life expectancies. It also computes the period (stable) prevalence. 
      
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
            Institut national d'études démographiques, Paris.             Institut national d'études démographiques, Paris.
   This software have been partly granted by Euro-REVES, a concerted action    This software have been partly granted by Euro-REVES, a concerted action
   from the European Union.    from the European Union.
   It is copyrighted identically to a GNU software product, ie programme and    It is copyrighted identically to a GNU software product, ie programme and
   software can be distributed freely for non commercial use. Latest version    software can be distributed freely for non commercial use. Latest version
   can be accessed at http://euroreves.ined.fr/imach .    can be accessed at http://euroreves.ined.fr/imach .
   
   Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
   or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
      
   **********************************************************************/    **********************************************************************/
 /*  /*
   main    main
   read parameterfile    read parameterfile
   read datafile    read datafile
   concatwav    concatwav
   freqsummary    freqsummary
   if (mle >= 1)    if (mle >= 1)
     mlikeli      mlikeli
   print results files    print results files
   if mle==1    if mle==1 
      computes hessian       computes hessian
   read end of parameter file: agemin, agemax, bage, fage, estepm    read end of parameter file: agemin, agemax, bage, fage, estepm
       begin-prev-date,...        begin-prev-date,...
   open gnuplot file    open gnuplot file
   open html file    open html file
   period (stable) prevalence    period (stable) prevalence      | pl_nom    1-1 2-2 etc by covariate
    for age prevalim()     for age prevalim()             | #****** V1=0  V2=1  V3=1  V4=0 ******
   h Pij x                                    | 65 1 0 2 1 3 1 4 0  0.96326 0.03674
   variance of p varprob      freexexit2 possible for memory heap.
   forecasting if prevfcast==1 prevforecast call prevalence()  
   health expectancies    h Pij x                         | pij_nom  ficrestpij
   Variance-covariance of DFLE     # Cov Agex agex+h hpijx with i,j= 1-1 1-2     1-3     2-1     2-2     2-3
   prevalence()         1  85   85    1.00000             0.00000 0.00000 0.00000 1.00000 0.00000
    movingaverage()         1  85   86    0.68299             0.22291 0.09410 0.71093 0.00000 0.28907
   varevsij()  
   if popbased==1 varevsij(,popbased)         1  65   99    0.00364             0.00322 0.99314 0.00350 0.00310 0.99340
   total life expectancies         1  65  100    0.00214             0.00204 0.99581 0.00206 0.00196 0.99597
   Variance of period (stable) prevalence    variance of p one-step probabilities varprob  | prob_nom   ficresprob #One-step probabilities and stand. devi in ()
  end     Standard deviation of one-step probabilities | probcor_nom   ficresprobcor #One-step probabilities and correlation matrix
 */     Matrix of variance covariance of one-step probabilities |  probcov_nom ficresprobcov #One-step probabilities and covariance matrix
   
     forecasting if prevfcast==1 prevforecast call prevalence()
     health expectancies
      Variance-covariance of DFLE
 #include <math.h>    prevalence()
 #include <stdio.h>     movingaverage()
 #include <stdlib.h>    varevsij() 
 #include <string.h>    if popbased==1 varevsij(,popbased)
 #include <unistd.h>    total life expectancies
     Variance of period (stable) prevalence
 #include <limits.h>   end
 #include <sys/types.h>  */
 #include <sys/stat.h>  
 #include <errno.h>  
 extern int errno;  
    
 /* #include <sys/time.h> */  #include <math.h>
 #include <time.h>  #include <stdio.h>
 #include "timeval.h"  #include <stdlib.h>
   #include <string.h>
 /* #include <libintl.h> */  
 /* #define _(String) gettext (String) */  #ifdef _WIN32
   #include <io.h>
 #define MAXLINE 256  #else
   #include <unistd.h>
 #define GNUPLOTPROGRAM "gnuplot"  #endif
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/  
 #define FILENAMELENGTH 132  #include <limits.h>
   #include <sys/types.h>
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */  #include <sys/stat.h>
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */  #include <errno.h>
   /* extern int errno; */
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */  
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */  /* #ifdef LINUX */
   /* #include <time.h> */
 #define NINTERVMAX 8  /* #include "timeval.h" */
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */  /* #else */
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */  /* #include <sys/time.h> */
 #define NCOVMAX 8 /* Maximum number of covariates */  /* #endif */
 #define MAXN 20000  
 #define YEARM 12. /* Number of months per year */  #include <time.h>
 #define AGESUP 130  
 #define AGEBASE 40  #ifdef GSL
 #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */  #include <gsl/gsl_errno.h>
 #ifdef UNIX  #include <gsl/gsl_multimin.h>
 #define DIRSEPARATOR '/'  #endif
 #define CHARSEPARATOR "/"  
 #define ODIRSEPARATOR '\\'  /* #include <libintl.h> */
 #else  /* #define _(String) gettext (String) */
 #define DIRSEPARATOR '\\'  
 #define CHARSEPARATOR "\\"  #define MAXLINE 1024 /* Was 256. Overflow with 312 with 2 states and 4 covariates. Should be ok */
 #define ODIRSEPARATOR '/'  
 #endif  #define GNUPLOTPROGRAM "gnuplot"
   /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
 /* $Id$ */  #define FILENAMELENGTH 132
 /* $State$ */  
   #define GLOCK_ERROR_NOPATH              -1      /* empty path */
 char version[]="Imach version 0.98g, March 2006, INED-EUROREVES-Institut de longevite ";  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
 char fullversion[]="$Revision$ $Date$";  
 char strstart[80];  #define MAXPARM 128 /**< Maximum number of parameters for the optimization */
 char optionfilext[10], optionfilefiname[FILENAMELENGTH];  #define NPARMAX 64 /**< (nlstate+ndeath-1)*nlstate*ncovmodel */
 int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */  
 int nvar;  #define NINTERVMAX 8
 int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;  #define NLSTATEMAX 8 /**< Maximum number of live states (for func) */
 int npar=NPARMAX;  #define NDEATHMAX 8 /**< Maximum number of dead states (for func) */
 int nlstate=2; /* Number of live states */  #define NCOVMAX 20 /**< Maximum number of covariates, including generated covariates V1*V2 */
 int ndeath=1; /* Number of dead states */  #define codtabm(h,k)  1 & (h-1) >> (k-1) ;
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */  #define MAXN 20000
 int popbased=0;  #define YEARM 12. /**< Number of months per year */
   #define AGESUP 130
 int *wav; /* Number of waves for this individuual 0 is possible */  #define AGEBASE 40
 int maxwav; /* Maxim number of waves */  #define AGEGOMP 10. /**< Minimal age for Gompertz adjustment */
 int jmin, jmax; /* min, max spacing between 2 waves */  #ifdef _WIN32
 int ijmin, ijmax; /* Individuals having jmin and jmax */  #define DIRSEPARATOR '\\'
 int gipmx, gsw; /* Global variables on the number of contributions  #define CHARSEPARATOR "\\"
                    to the likelihood and the sum of weights (done by funcone)*/  #define ODIRSEPARATOR '/'
 int mle, weightopt;  #else
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */  #define DIRSEPARATOR '/'
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */  #define CHARSEPARATOR "/"
 int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between  #define ODIRSEPARATOR '\\'
            * wave mi and wave mi+1 is not an exact multiple of stepm. */  #endif
 double jmean; /* Mean space between 2 waves */  
 double **oldm, **newm, **savm; /* Working pointers to matrices */  /* $Id$ */
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */  /* $State$ */
 FILE *fic,*ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;  
 FILE *ficlog, *ficrespow;  char version[]="Imach version 0.98nX, August 2014,INED-EUROREVES-Institut de longevite-Japan Society for the Promotion of Science (Grant-in-Aid for Scientific Research 25293121)";
 int globpr; /* Global variable for printing or not */  char fullversion[]="$Revision$ $Date$"; 
 double fretone; /* Only one call to likelihood */  char strstart[80];
 long ipmx; /* Number of contributions */  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
 double sw; /* Sum of weights */  int erreur=0, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
 char filerespow[FILENAMELENGTH];  int nvar=0, nforce=0; /* Number of variables, number of forces */
 char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */  /* Number of covariates model=V2+V1+ V3*age+V2*V4 */
 FILE *ficresilk;  int cptcovn=0; /**< cptcovn number of covariates added in the model (excepting constant and age and age*product) */
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;  int cptcovt=0; /**< cptcovt number of covariates added in the model (excepting constant and age) */
 FILE *ficresprobmorprev;  int cptcovs=0; /**< cptcovs number of simple covariates V2+V1 =2 */
 FILE *fichtm, *fichtmcov; /* Html File */  int cptcovage=0; /**< Number of covariates with age: V3*age only =1 */
 FILE *ficreseij;  int cptcovprodnoage=0; /**< Number of covariate products without age */   
 char filerese[FILENAMELENGTH];  int cptcoveff=0; /* Total number of covariates to vary for printing results */
 FILE *ficresstdeij;  int cptcov=0; /* Working variable */
 char fileresstde[FILENAMELENGTH];  int npar=NPARMAX;
 FILE *ficrescveij;  int nlstate=2; /* Number of live states */
 char filerescve[FILENAMELENGTH];  int ndeath=1; /* Number of dead states */
 FILE  *ficresvij;  int ncovmodel=0, ncovcol=0;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
 char fileresv[FILENAMELENGTH];  int popbased=0;
 FILE  *ficresvpl;  
 char fileresvpl[FILENAMELENGTH];  int *wav; /* Number of waves for this individuual 0 is possible */
 char title[MAXLINE];  int maxwav=0; /* Maxim number of waves */
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];  int jmin=0, jmax=0; /* min, max spacing between 2 waves */
 char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];  int ijmin=0, ijmax=0; /* Individuals having jmin and jmax */ 
 char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH];  int gipmx=0, gsw=0; /* Global variables on the number of contributions 
 char command[FILENAMELENGTH];                     to the likelihood and the sum of weights (done by funcone)*/
 int  outcmd=0;  int mle=1, weightopt=0;
   int **mw; /* mw[mi][i] is number of the mi wave for this individual */
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
   int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
 char filelog[FILENAMELENGTH]; /* Log file */             * wave mi and wave mi+1 is not an exact multiple of stepm. */
 char filerest[FILENAMELENGTH];  double jmean=1; /* Mean space between 2 waves */
 char fileregp[FILENAMELENGTH];  double **matprod2(); /* test */
 char popfile[FILENAMELENGTH];  double **oldm, **newm, **savm; /* Working pointers to matrices */
   double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
 char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;  /*FILE *fic ; */ /* Used in readdata only */
   FILE *ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
 struct timeval start_time, end_time, curr_time, last_time, forecast_time;  FILE *ficlog, *ficrespow;
 struct timezone tzp;  int globpr=0; /* Global variable for printing or not */
 extern int gettimeofday();  double fretone; /* Only one call to likelihood */
 struct tm tmg, tm, tmf, *gmtime(), *localtime();  long ipmx=0; /* Number of contributions */
 long time_value;  double sw; /* Sum of weights */
 extern long time();  char filerespow[FILENAMELENGTH];
 char strcurr[80], strfor[80];  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
   FILE *ficresilk;
 char *endptr;  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
 long lval;  FILE *ficresprobmorprev;
 double dval;  FILE *fichtm, *fichtmcov; /* Html File */
   FILE *ficreseij;
 #define NR_END 1  char filerese[FILENAMELENGTH];
 #define FREE_ARG char*  FILE *ficresstdeij;
 #define FTOL 1.0e-10  char fileresstde[FILENAMELENGTH];
   FILE *ficrescveij;
 #define NRANSI  char filerescve[FILENAMELENGTH];
 #define ITMAX 200  FILE  *ficresvij;
   char fileresv[FILENAMELENGTH];
 #define TOL 2.0e-4  FILE  *ficresvpl;
   char fileresvpl[FILENAMELENGTH];
 #define CGOLD 0.3819660  char title[MAXLINE];
 #define ZEPS 1.0e-10  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
   char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
 #define GOLD 1.618034  char command[FILENAMELENGTH];
 #define GLIMIT 100.0  int  outcmd=0;
 #define TINY 1.0e-20  
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
 static double maxarg1,maxarg2;  
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))  char filelog[FILENAMELENGTH]; /* Log file */
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))  char filerest[FILENAMELENGTH];
    char fileregp[FILENAMELENGTH];
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))  char popfile[FILENAMELENGTH];
 #define rint(a) floor(a+0.5)  
   char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
 static double sqrarg;  
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)  /* struct timeval start_time, end_time, curr_time, last_time, forecast_time; */
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}  /* struct timezone tzp; */
 int agegomp= AGEGOMP;  /* extern int gettimeofday(); */
   struct tm tml, *gmtime(), *localtime();
 int imx;  
 int stepm=1;  extern time_t time();
 /* Stepm, step in month: minimum step interpolation*/  
   struct tm start_time, end_time, curr_time, last_time, forecast_time;
 int estepm;  time_t  rstart_time, rend_time, rcurr_time, rlast_time, rforecast_time; /* raw time */
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/  struct tm tm;
   
 int m,nb;  char strcurr[80], strfor[80];
 long *num;  
 int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;  char *endptr;
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;  long lval;
 double **pmmij, ***probs;  double dval;
 double *ageexmed,*agecens;  
 double dateintmean=0;  #define NR_END 1
   #define FREE_ARG char*
 double *weight;  #define FTOL 1.0e-10
 int **s; /* Status */  
 double *agedc, **covar, idx;  #define NRANSI 
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;  #define ITMAX 200 
 double *lsurv, *lpop, *tpop;  
   #define TOL 2.0e-4 
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */  
 double ftolhess; /* Tolerance for computing hessian */  #define CGOLD 0.3819660 
   #define ZEPS 1.0e-10 
 /**************** split *************************/  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )  
 {  #define GOLD 1.618034 
   /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)  #define GLIMIT 100.0 
      the name of the file (name), its extension only (ext) and its first part of the name (finame)  #define TINY 1.0e-20 
   */  
   char  *ss;                            /* pointer */  static double maxarg1,maxarg2;
   int   l1, l2;                         /* length counters */  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
   #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
   l1 = strlen(path );                   /* length of path */    
   if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
   ss= strrchr( path, DIRSEPARATOR );            /* find last / */  #define rint(a) floor(a+0.5)
   if ( ss == NULL ) {                   /* no directory, so determine current directory */  
     strcpy( name, path );               /* we got the fullname name because no directory */  static double sqrarg;
     /*if(strrchr(path, ODIRSEPARATOR )==NULL)  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
       printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
     /* get current working directory */  int agegomp= AGEGOMP;
     /*    extern  char* getcwd ( char *buf , int len);*/  
     if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {  int imx; 
       return( GLOCK_ERROR_GETCWD );  int stepm=1;
     }  /* Stepm, step in month: minimum step interpolation*/
     /* got dirc from getcwd*/  
     printf(" DIRC = %s \n",dirc);  int estepm;
   } else {                              /* strip direcotry from path */  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
     ss++;                               /* after this, the filename */  
     l2 = strlen( ss );                  /* length of filename */  int m,nb;
     if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );  long *num;
     strcpy( name, ss );         /* save file name */  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
     strncpy( dirc, path, l1 - l2 );     /* now the directory */  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
     dirc[l1-l2] = 0;                    /* add zero */  double **pmmij, ***probs;
     printf(" DIRC2 = %s \n",dirc);  double *ageexmed,*agecens;
   }  double dateintmean=0;
   /* We add a separator at the end of dirc if not exists */  
   l1 = strlen( dirc );                  /* length of directory */  double *weight;
   if( dirc[l1-1] != DIRSEPARATOR ){  int **s; /* Status */
     dirc[l1] =  DIRSEPARATOR;  double *agedc;
     dirc[l1+1] = 0;  double  **covar; /**< covar[j,i], value of jth covariate for individual i,
     printf(" DIRC3 = %s \n",dirc);                    * covar=matrix(0,NCOVMAX,1,n); 
   }                    * cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; */
   ss = strrchr( name, '.' );            /* find last / */  double  idx; 
   if (ss >0){  int **nbcode, *Tvar; /**< model=V2 => Tvar[1]= 2 */
     ss++;  int *Ndum; /** Freq of modality (tricode */
     strcpy(ext,ss);                     /* save extension */  int **codtab; /**< codtab=imatrix(1,100,1,10); */
     l1= strlen( name);  int **Tvard, *Tprod, cptcovprod, *Tvaraff;
     l2= strlen(ss)+1;  double *lsurv, *lpop, *tpop;
     strncpy( finame, name, l1-l2);  
     finame[l1-l2]= 0;  double ftol=FTOL; /**< Tolerance for computing Max Likelihood */
   }  double ftolhess; /**< Tolerance for computing hessian */
   
   return( 0 );                          /* we're done */  /**************** split *************************/
 }  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   {
     /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
 /******************************************/       the name of the file (name), its extension only (ext) and its first part of the name (finame)
     */ 
 void replace_back_to_slash(char *s, char*t)    char  *ss;                            /* pointer */
 {    int   l1, l2;                         /* length counters */
   int i;  
   int lg=0;    l1 = strlen(path );                   /* length of path */
   i=0;    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
   lg=strlen(t);    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
   for(i=0; i<= lg; i++) {    if ( ss == NULL ) {                   /* no directory, so determine current directory */
     (s[i] = t[i]);      strcpy( name, path );               /* we got the fullname name because no directory */
     if (t[i]== '\\') s[i]='/';      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
   }        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
 }      /* get current working directory */
       /*    extern  char* getcwd ( char *buf , int len);*/
 int nbocc(char *s, char occ)      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
 {        return( GLOCK_ERROR_GETCWD );
   int i,j=0;      }
   int lg=20;      /* got dirc from getcwd*/
   i=0;      printf(" DIRC = %s \n",dirc);
   lg=strlen(s);    } else {                              /* strip direcotry from path */
   for(i=0; i<= lg; i++) {      ss++;                               /* after this, the filename */
   if  (s[i] == occ ) j++;      l2 = strlen( ss );                  /* length of filename */
   }      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
   return j;      strcpy( name, ss );         /* save file name */
 }      strncpy( dirc, path, l1 - l2 );     /* now the directory */
       dirc[l1-l2] = 0;                    /* add zero */
 void cutv(char *u,char *v, char*t, char occ)      printf(" DIRC2 = %s \n",dirc);
 {    }
   /* cuts string t into u and v where u ends before first occurence of char 'occ'    /* We add a separator at the end of dirc if not exists */
      and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')    l1 = strlen( dirc );                  /* length of directory */
      gives u="abcedf" and v="ghi2j" */    if( dirc[l1-1] != DIRSEPARATOR ){
   int i,lg,j,p=0;      dirc[l1] =  DIRSEPARATOR;
   i=0;      dirc[l1+1] = 0; 
   for(j=0; j<=strlen(t)-1; j++) {      printf(" DIRC3 = %s \n",dirc);
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;    }
   }    ss = strrchr( name, '.' );            /* find last / */
     if (ss >0){
   lg=strlen(t);      ss++;
   for(j=0; j<p; j++) {      strcpy(ext,ss);                     /* save extension */
     (u[j] = t[j]);      l1= strlen( name);
   }      l2= strlen(ss)+1;
      u[p]='\0';      strncpy( finame, name, l1-l2);
       finame[l1-l2]= 0;
    for(j=0; j<= lg; j++) {    }
     if (j>=(p+1))(v[j-p-1] = t[j]);  
   }    return( 0 );                          /* we're done */
 }  }
   
 /********************** nrerror ********************/  
   /******************************************/
 void nrerror(char error_text[])  
 {  void replace_back_to_slash(char *s, char*t)
   fprintf(stderr,"ERREUR ...\n");  {
   fprintf(stderr,"%s\n",error_text);    int i;
   exit(EXIT_FAILURE);    int lg=0;
 }    i=0;
 /*********************** vector *******************/    lg=strlen(t);
 double *vector(int nl, int nh)    for(i=0; i<= lg; i++) {
 {      (s[i] = t[i]);
   double *v;      if (t[i]== '\\') s[i]='/';
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));    }
   if (!v) nrerror("allocation failure in vector");  }
   return v-nl+NR_END;  
 }  char *trimbb(char *out, char *in)
   { /* Trim multiple blanks in line but keeps first blanks if line starts with blanks */
 /************************ free vector ******************/    char *s;
 void free_vector(double*v, int nl, int nh)    s=out;
 {    while (*in != '\0'){
   free((FREE_ARG)(v+nl-NR_END));      while( *in == ' ' && *(in+1) == ' '){ /* && *(in+1) != '\0'){*/
 }        in++;
       }
 /************************ivector *******************************/      *out++ = *in++;
 int *ivector(long nl,long nh)    }
 {    *out='\0';
   int *v;    return s;
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  }
   if (!v) nrerror("allocation failure in ivector");  
   return v-nl+NR_END;  char *cutl(char *blocc, char *alocc, char *in, char occ)
 }  {
     /* cuts string in into blocc and alocc where blocc ends before first occurence of char 'occ' 
 /******************free ivector **************************/       and alocc starts after first occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
 void free_ivector(int *v, long nl, long nh)       gives blocc="abcdef2ghi" and alocc="j".
 {       If occ is not found blocc is null and alocc is equal to in. Returns blocc
   free((FREE_ARG)(v+nl-NR_END));    */
 }    char *s, *t;
     t=in;s=in;
 /************************lvector *******************************/    while ((*in != occ) && (*in != '\0')){
 long *lvector(long nl,long nh)      *alocc++ = *in++;
 {    }
   long *v;    if( *in == occ){
   v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));      *(alocc)='\0';
   if (!v) nrerror("allocation failure in ivector");      s=++in;
   return v-nl+NR_END;    }
 }   
     if (s == t) {/* occ not found */
 /******************free lvector **************************/      *(alocc-(in-s))='\0';
 void free_lvector(long *v, long nl, long nh)      in=s;
 {    }
   free((FREE_ARG)(v+nl-NR_END));    while ( *in != '\0'){
 }      *blocc++ = *in++;
     }
 /******************* imatrix *******************************/  
 int **imatrix(long nrl, long nrh, long ncl, long nch)    *blocc='\0';
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */    return t;
 {  }
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  char *cutv(char *blocc, char *alocc, char *in, char occ)
   int **m;  {
      /* cuts string in into blocc and alocc where blocc ends before last occurence of char 'occ' 
   /* allocate pointers to rows */       and alocc starts after last occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));       gives blocc="abcdef2ghi" and alocc="j".
   if (!m) nrerror("allocation failure 1 in matrix()");       If occ is not found blocc is null and alocc is equal to in. Returns alocc
   m += NR_END;    */
   m -= nrl;    char *s, *t;
      t=in;s=in;
      while (*in != '\0'){
   /* allocate rows and set pointers to them */      while( *in == occ){
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));        *blocc++ = *in++;
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");        s=in;
   m[nrl] += NR_END;      }
   m[nrl] -= ncl;      *blocc++ = *in++;
      }
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;    if (s == t) /* occ not found */
        *(blocc-(in-s))='\0';
   /* return pointer to array of pointers to rows */    else
   return m;      *(blocc-(in-s)-1)='\0';
 }    in=s;
     while ( *in != '\0'){
 /****************** free_imatrix *************************/      *alocc++ = *in++;
 void free_imatrix(m,nrl,nrh,ncl,nch)    }
       int **m;  
       long nch,ncl,nrh,nrl;    *alocc='\0';
      /* free an int matrix allocated by imatrix() */    return s;
 {  }
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  
   free((FREE_ARG) (m+nrl-NR_END));  int nbocc(char *s, char occ)
 }  {
     int i,j=0;
 /******************* matrix *******************************/    int lg=20;
 double **matrix(long nrl, long nrh, long ncl, long nch)    i=0;
 {    lg=strlen(s);
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;    for(i=0; i<= lg; i++) {
   double **m;    if  (s[i] == occ ) j++;
     }
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    return j;
   if (!m) nrerror("allocation failure 1 in matrix()");  }
   m += NR_END;  
   m -= nrl;  /* void cutv(char *u,char *v, char*t, char occ) */
   /* { */
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  /*   /\* cuts string t into u and v where u ends before last occurence of char 'occ'  */
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  /*      and v starts after last occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2') */
   m[nrl] += NR_END;  /*      gives u="abcdef2ghi" and v="j" *\/ */
   m[nrl] -= ncl;  /*   int i,lg,j,p=0; */
   /*   i=0; */
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  /*   lg=strlen(t); */
   return m;  /*   for(j=0; j<=lg-1; j++) { */
   /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1])  /*     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1; */
    */  /*   } */
 }  
   /*   for(j=0; j<p; j++) { */
 /*************************free matrix ************************/  /*     (u[j] = t[j]); */
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  /*   } */
 {  /*      u[p]='\0'; */
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  
   free((FREE_ARG)(m+nrl-NR_END));  /*    for(j=0; j<= lg; j++) { */
 }  /*     if (j>=(p+1))(v[j-p-1] = t[j]); */
   /*   } */
 /******************* ma3x *******************************/  /* } */
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  
 {  #ifdef _WIN32
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  char * strsep(char **pp, const char *delim)
   double ***m;  {
     char *p, *q;
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));           
   if (!m) nrerror("allocation failure 1 in matrix()");    if ((p = *pp) == NULL)
   m += NR_END;      return 0;
   m -= nrl;    if ((q = strpbrk (p, delim)) != NULL)
     {
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));      *pp = q + 1;
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");      *q = '\0';
   m[nrl] += NR_END;    }
   m[nrl] -= ncl;    else
       *pp = 0;
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    return p;
   }
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  #endif
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  
   m[nrl][ncl] += NR_END;  /********************** nrerror ********************/
   m[nrl][ncl] -= nll;  
   for (j=ncl+1; j<=nch; j++)  void nrerror(char error_text[])
     m[nrl][j]=m[nrl][j-1]+nlay;  {
      fprintf(stderr,"ERREUR ...\n");
   for (i=nrl+1; i<=nrh; i++) {    fprintf(stderr,"%s\n",error_text);
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;    exit(EXIT_FAILURE);
     for (j=ncl+1; j<=nch; j++)  }
       m[i][j]=m[i][j-1]+nlay;  /*********************** vector *******************/
   }  double *vector(int nl, int nh)
   return m;  {
   /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])    double *v;
            &(m[i][j][k]) <=> *((*(m+i) + j)+k)    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
   */    if (!v) nrerror("allocation failure in vector");
 }    return v-nl+NR_END;
   }
 /*************************free ma3x ************************/  
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  /************************ free vector ******************/
 {  void free_vector(double*v, int nl, int nh)
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  {
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    free((FREE_ARG)(v+nl-NR_END));
   free((FREE_ARG)(m+nrl-NR_END));  }
 }  
   /************************ivector *******************************/
 /*************** function subdirf ***********/  int *ivector(long nl,long nh)
 char *subdirf(char fileres[])  {
 {    int *v;
   /* Caution optionfilefiname is hidden */    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
   strcpy(tmpout,optionfilefiname);    if (!v) nrerror("allocation failure in ivector");
   strcat(tmpout,"/"); /* Add to the right */    return v-nl+NR_END;
   strcat(tmpout,fileres);  }
   return tmpout;  
 }  /******************free ivector **************************/
   void free_ivector(int *v, long nl, long nh)
 /*************** function subdirf2 ***********/  {
 char *subdirf2(char fileres[], char *preop)    free((FREE_ARG)(v+nl-NR_END));
 {  }
    
   /* Caution optionfilefiname is hidden */  /************************lvector *******************************/
   strcpy(tmpout,optionfilefiname);  long *lvector(long nl,long nh)
   strcat(tmpout,"/");  {
   strcat(tmpout,preop);    long *v;
   strcat(tmpout,fileres);    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
   return tmpout;    if (!v) nrerror("allocation failure in ivector");
 }    return v-nl+NR_END;
   }
 /*************** function subdirf3 ***********/  
 char *subdirf3(char fileres[], char *preop, char *preop2)  /******************free lvector **************************/
 {  void free_lvector(long *v, long nl, long nh)
    {
   /* Caution optionfilefiname is hidden */    free((FREE_ARG)(v+nl-NR_END));
   strcpy(tmpout,optionfilefiname);  }
   strcat(tmpout,"/");  
   strcat(tmpout,preop);  /******************* imatrix *******************************/
   strcat(tmpout,preop2);  int **imatrix(long nrl, long nrh, long ncl, long nch) 
   strcat(tmpout,fileres);       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
   return tmpout;  { 
 }    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
     int **m; 
 /***************** f1dim *************************/    
 extern int ncom;    /* allocate pointers to rows */ 
 extern double *pcom,*xicom;    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
 extern double (*nrfunc)(double []);    if (!m) nrerror("allocation failure 1 in matrix()"); 
      m += NR_END; 
 double f1dim(double x)    m -= nrl; 
 {    
   int j;    
   double f;    /* allocate rows and set pointers to them */ 
   double *xt;    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
      if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
   xt=vector(1,ncom);    m[nrl] += NR_END; 
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];    m[nrl] -= ncl; 
   f=(*nrfunc)(xt);    
   free_vector(xt,1,ncom);    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
   return f;    
 }    /* return pointer to array of pointers to rows */ 
     return m; 
 /*****************brent *************************/  } 
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  
 {  /****************** free_imatrix *************************/
   int iter;  void free_imatrix(m,nrl,nrh,ncl,nch)
   double a,b,d,etemp;        int **m;
   double fu,fv,fw,fx;        long nch,ncl,nrh,nrl; 
   double ftemp;       /* free an int matrix allocated by imatrix() */ 
   double p,q,r,tol1,tol2,u,v,w,x,xm;  { 
   double e=0.0;    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
      free((FREE_ARG) (m+nrl-NR_END)); 
   a=(ax < cx ? ax : cx);  } 
   b=(ax > cx ? ax : cx);  
   x=w=v=bx;  /******************* matrix *******************************/
   fw=fv=fx=(*f)(x);  double **matrix(long nrl, long nrh, long ncl, long nch)
   for (iter=1;iter<=ITMAX;iter++) {  {
     xm=0.5*(a+b);    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);    double **m;
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  
     printf(".");fflush(stdout);    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     fprintf(ficlog,".");fflush(ficlog);    if (!m) nrerror("allocation failure 1 in matrix()");
 #ifdef DEBUG    m += NR_END;
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    m -= nrl;
     fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
 #endif    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){    m[nrl] += NR_END;
       *xmin=x;    m[nrl] -= ncl;
       return fx;  
     }    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
     ftemp=fu;    return m;
     if (fabs(e) > tol1) {    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) or &(m[1][0])
       r=(x-w)*(fx-fv);  m[i] = address of ith row of the table. &(m[i]) is its value which is another adress
       q=(x-v)*(fx-fw);  that of m[i][0]. In order to get the value p m[i][0] but it is unitialized.
       p=(x-v)*q-(x-w)*r;     */
       q=2.0*(q-r);  }
       if (q > 0.0) p = -p;  
       q=fabs(q);  /*************************free matrix ************************/
       etemp=e;  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
       e=d;  {
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))    free((FREE_ARG)(m[nrl]+ncl-NR_END));
         d=CGOLD*(e=(x >= xm ? a-x : b-x));    free((FREE_ARG)(m+nrl-NR_END));
       else {  }
         d=p/q;  
         u=x+d;  /******************* ma3x *******************************/
         if (u-a < tol2 || b-u < tol2)  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
           d=SIGN(tol1,xm-x);  {
       }    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
     } else {    double ***m;
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  
     }    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));    if (!m) nrerror("allocation failure 1 in matrix()");
     fu=(*f)(u);    m += NR_END;
     if (fu <= fx) {    m -= nrl;
       if (u >= x) a=x; else b=x;  
       SHFT(v,w,x,u)    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
         SHFT(fv,fw,fx,fu)    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
         } else {    m[nrl] += NR_END;
           if (u < x) a=u; else b=u;    m[nrl] -= ncl;
           if (fu <= fw || w == x) {  
             v=w;    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
             w=u;  
             fv=fw;    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
             fw=fu;    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
           } else if (fu <= fv || v == x || v == w) {    m[nrl][ncl] += NR_END;
             v=u;    m[nrl][ncl] -= nll;
             fv=fu;    for (j=ncl+1; j<=nch; j++) 
           }      m[nrl][j]=m[nrl][j-1]+nlay;
         }    
   }    for (i=nrl+1; i<=nrh; i++) {
   nrerror("Too many iterations in brent");      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
   *xmin=x;      for (j=ncl+1; j<=nch; j++) 
   return fx;        m[i][j]=m[i][j-1]+nlay;
 }    }
     return m; 
 /****************** mnbrak ***********************/    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
              &(m[i][j][k]) <=> *((*(m+i) + j)+k)
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,    */
             double (*func)(double))  }
 {  
   double ulim,u,r,q, dum;  /*************************free ma3x ************************/
   double fu;  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
    {
   *fa=(*func)(*ax);    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
   *fb=(*func)(*bx);    free((FREE_ARG)(m[nrl]+ncl-NR_END));
   if (*fb > *fa) {    free((FREE_ARG)(m+nrl-NR_END));
     SHFT(dum,*ax,*bx,dum)  }
       SHFT(dum,*fb,*fa,dum)  
       }  /*************** function subdirf ***********/
   *cx=(*bx)+GOLD*(*bx-*ax);  char *subdirf(char fileres[])
   *fc=(*func)(*cx);  {
   while (*fb > *fc) {    /* Caution optionfilefiname is hidden */
     r=(*bx-*ax)*(*fb-*fc);    strcpy(tmpout,optionfilefiname);
     q=(*bx-*cx)*(*fb-*fa);    strcat(tmpout,"/"); /* Add to the right */
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/    strcat(tmpout,fileres);
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));    return tmpout;
     ulim=(*bx)+GLIMIT*(*cx-*bx);  }
     if ((*bx-u)*(u-*cx) > 0.0) {  
       fu=(*func)(u);  /*************** function subdirf2 ***********/
     } else if ((*cx-u)*(u-ulim) > 0.0) {  char *subdirf2(char fileres[], char *preop)
       fu=(*func)(u);  {
       if (fu < *fc) {    
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))    /* Caution optionfilefiname is hidden */
           SHFT(*fb,*fc,fu,(*func)(u))    strcpy(tmpout,optionfilefiname);
           }    strcat(tmpout,"/");
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {    strcat(tmpout,preop);
       u=ulim;    strcat(tmpout,fileres);
       fu=(*func)(u);    return tmpout;
     } else {  }
       u=(*cx)+GOLD*(*cx-*bx);  
       fu=(*func)(u);  /*************** function subdirf3 ***********/
     }  char *subdirf3(char fileres[], char *preop, char *preop2)
     SHFT(*ax,*bx,*cx,u)  {
       SHFT(*fa,*fb,*fc,fu)    
       }    /* Caution optionfilefiname is hidden */
 }    strcpy(tmpout,optionfilefiname);
     strcat(tmpout,"/");
 /*************** linmin ************************/    strcat(tmpout,preop);
     strcat(tmpout,preop2);
 int ncom;    strcat(tmpout,fileres);
 double *pcom,*xicom;    return tmpout;
 double (*nrfunc)(double []);  }
    
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))  /***************** f1dim *************************/
 {  extern int ncom; 
   double brent(double ax, double bx, double cx,  extern double *pcom,*xicom;
                double (*f)(double), double tol, double *xmin);  extern double (*nrfunc)(double []); 
   double f1dim(double x);   
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,  double f1dim(double x) 
               double *fc, double (*func)(double));  { 
   int j;    int j; 
   double xx,xmin,bx,ax;    double f;
   double fx,fb,fa;    double *xt; 
     
   ncom=n;    xt=vector(1,ncom); 
   pcom=vector(1,n);    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
   xicom=vector(1,n);    f=(*nrfunc)(xt); 
   nrfunc=func;    free_vector(xt,1,ncom); 
   for (j=1;j<=n;j++) {    return f; 
     pcom[j]=p[j];  } 
     xicom[j]=xi[j];  
   }  /*****************brent *************************/
   ax=0.0;  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
   xx=1.0;  { 
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);    int iter; 
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);    double a,b,d,etemp;
 #ifdef DEBUG    double fu=0,fv,fw,fx;
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    double ftemp;
   fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    double p,q,r,tol1,tol2,u,v,w,x,xm; 
 #endif    double e=0.0; 
   for (j=1;j<=n;j++) {   
     xi[j] *= xmin;    a=(ax < cx ? ax : cx); 
     p[j] += xi[j];    b=(ax > cx ? ax : cx); 
   }    x=w=v=bx; 
   free_vector(xicom,1,n);    fw=fv=fx=(*f)(x); 
   free_vector(pcom,1,n);    for (iter=1;iter<=ITMAX;iter++) { 
 }      xm=0.5*(a+b); 
       tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
 char *asc_diff_time(long time_sec, char ascdiff[])      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
 {      printf(".");fflush(stdout);
   long sec_left, days, hours, minutes;      fprintf(ficlog,".");fflush(ficlog);
   days = (time_sec) / (60*60*24);  #ifdef DEBUG
   sec_left = (time_sec) % (60*60*24);      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   hours = (sec_left) / (60*60) ;      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   sec_left = (sec_left) %(60*60);      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
   minutes = (sec_left) /60;  #endif
   sec_left = (sec_left) % (60);      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
   sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);          *xmin=x; 
   return ascdiff;        return fx; 
 }      } 
       ftemp=fu;
 /*************** powell ************************/      if (fabs(e) > tol1) { 
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,        r=(x-w)*(fx-fv); 
             double (*func)(double []))        q=(x-v)*(fx-fw); 
 {        p=(x-v)*q-(x-w)*r; 
   void linmin(double p[], double xi[], int n, double *fret,        q=2.0*(q-r); 
               double (*func)(double []));        if (q > 0.0) p = -p; 
   int i,ibig,j;        q=fabs(q); 
   double del,t,*pt,*ptt,*xit;        etemp=e; 
   double fp,fptt;        e=d; 
   double *xits;        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
   int niterf, itmp;          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
         else { 
   pt=vector(1,n);          d=p/q; 
   ptt=vector(1,n);          u=x+d; 
   xit=vector(1,n);          if (u-a < tol2 || b-u < tol2) 
   xits=vector(1,n);            d=SIGN(tol1,xm-x); 
   *fret=(*func)(p);        } 
   for (j=1;j<=n;j++) pt[j]=p[j];      } else { 
   for (*iter=1;;++(*iter)) {        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
     fp=(*fret);      } 
     ibig=0;      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
     del=0.0;      fu=(*f)(u); 
     last_time=curr_time;      if (fu <= fx) { 
     (void) gettimeofday(&curr_time,&tzp);        if (u >= x) a=x; else b=x; 
     printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);        SHFT(v,w,x,u) 
     fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec); fflush(ficlog);          SHFT(fv,fw,fx,fu) 
 /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec); */          } else { 
    for (i=1;i<=n;i++) {            if (u < x) a=u; else b=u; 
       printf(" %d %.12f",i, p[i]);            if (fu <= fw || w == x) { 
       fprintf(ficlog," %d %.12lf",i, p[i]);              v=w; 
       fprintf(ficrespow," %.12lf", p[i]);              w=u; 
     }              fv=fw; 
     printf("\n");              fw=fu; 
     fprintf(ficlog,"\n");            } else if (fu <= fv || v == x || v == w) { 
     fprintf(ficrespow,"\n");fflush(ficrespow);              v=u; 
     if(*iter <=3){              fv=fu; 
       tm = *localtime(&curr_time.tv_sec);            } 
       strcpy(strcurr,asctime(&tm));          } 
 /*       asctime_r(&tm,strcurr); */    } 
       forecast_time=curr_time;    nrerror("Too many iterations in brent"); 
       itmp = strlen(strcurr);    *xmin=x; 
       if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */    return fx; 
         strcurr[itmp-1]='\0';  } 
       printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);  
       fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);  /****************** mnbrak ***********************/
       for(niterf=10;niterf<=30;niterf+=10){  
         forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
         tmf = *localtime(&forecast_time.tv_sec);              double (*func)(double)) 
 /*      asctime_r(&tmf,strfor); */  { 
         strcpy(strfor,asctime(&tmf));    double ulim,u,r,q, dum;
         itmp = strlen(strfor);    double fu; 
         if(strfor[itmp-1]=='\n')   
         strfor[itmp-1]='\0';    *fa=(*func)(*ax); 
         printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);    *fb=(*func)(*bx); 
         fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);    if (*fb > *fa) { 
       }      SHFT(dum,*ax,*bx,dum) 
     }        SHFT(dum,*fb,*fa,dum) 
     for (i=1;i<=n;i++) {        } 
       for (j=1;j<=n;j++) xit[j]=xi[j][i];    *cx=(*bx)+GOLD*(*bx-*ax); 
       fptt=(*fret);    *fc=(*func)(*cx); 
 #ifdef DEBUG    while (*fb > *fc) { 
       printf("fret=%lf \n",*fret);      r=(*bx-*ax)*(*fb-*fc); 
       fprintf(ficlog,"fret=%lf \n",*fret);      q=(*bx-*cx)*(*fb-*fa); 
 #endif      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
       printf("%d",i);fflush(stdout);        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
       fprintf(ficlog,"%d",i);fflush(ficlog);      ulim=(*bx)+GLIMIT*(*cx-*bx); 
       linmin(p,xit,n,fret,func);      if ((*bx-u)*(u-*cx) > 0.0) { 
       if (fabs(fptt-(*fret)) > del) {        fu=(*func)(u); 
         del=fabs(fptt-(*fret));      } else if ((*cx-u)*(u-ulim) > 0.0) { 
         ibig=i;        fu=(*func)(u); 
       }        if (fu < *fc) { 
 #ifdef DEBUG          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
       printf("%d %.12e",i,(*fret));            SHFT(*fb,*fc,fu,(*func)(u)) 
       fprintf(ficlog,"%d %.12e",i,(*fret));            } 
       for (j=1;j<=n;j++) {      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);        u=ulim; 
         printf(" x(%d)=%.12e",j,xit[j]);        fu=(*func)(u); 
         fprintf(ficlog," x(%d)=%.12e",j,xit[j]);      } else { 
       }        u=(*cx)+GOLD*(*cx-*bx); 
       for(j=1;j<=n;j++) {        fu=(*func)(u); 
         printf(" p=%.12e",p[j]);      } 
         fprintf(ficlog," p=%.12e",p[j]);      SHFT(*ax,*bx,*cx,u) 
       }        SHFT(*fa,*fb,*fc,fu) 
       printf("\n");        } 
       fprintf(ficlog,"\n");  } 
 #endif  
     }  /*************** linmin ************************/
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {  
 #ifdef DEBUG  int ncom; 
       int k[2],l;  double *pcom,*xicom;
       k[0]=1;  double (*nrfunc)(double []); 
       k[1]=-1;   
       printf("Max: %.12e",(*func)(p));  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
       fprintf(ficlog,"Max: %.12e",(*func)(p));  { 
       for (j=1;j<=n;j++) {    double brent(double ax, double bx, double cx, 
         printf(" %.12e",p[j]);                 double (*f)(double), double tol, double *xmin); 
         fprintf(ficlog," %.12e",p[j]);    double f1dim(double x); 
       }    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
       printf("\n");                double *fc, double (*func)(double)); 
       fprintf(ficlog,"\n");    int j; 
       for(l=0;l<=1;l++) {    double xx,xmin,bx,ax; 
         for (j=1;j<=n;j++) {    double fx,fb,fa;
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];   
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);    ncom=n; 
           fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);    pcom=vector(1,n); 
         }    xicom=vector(1,n); 
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    nrfunc=func; 
         fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    for (j=1;j<=n;j++) { 
       }      pcom[j]=p[j]; 
 #endif      xicom[j]=xi[j]; 
     } 
     ax=0.0; 
       free_vector(xit,1,n);    xx=1.0; 
       free_vector(xits,1,n);    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
       free_vector(ptt,1,n);    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
       free_vector(pt,1,n);  #ifdef DEBUG
       return;    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
     }    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");  #endif
     for (j=1;j<=n;j++) {    for (j=1;j<=n;j++) { 
       ptt[j]=2.0*p[j]-pt[j];      xi[j] *= xmin; 
       xit[j]=p[j]-pt[j];      p[j] += xi[j]; 
       pt[j]=p[j];    } 
     }    free_vector(xicom,1,n); 
     fptt=(*func)(ptt);    free_vector(pcom,1,n); 
     if (fptt < fp) {  } 
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);  
       if (t < 0.0) {  char *asc_diff_time(long time_sec, char ascdiff[])
         linmin(p,xit,n,fret,func);  {
         for (j=1;j<=n;j++) {    long sec_left, days, hours, minutes;
           xi[j][ibig]=xi[j][n];    days = (time_sec) / (60*60*24);
           xi[j][n]=xit[j];    sec_left = (time_sec) % (60*60*24);
         }    hours = (sec_left) / (60*60) ;
 #ifdef DEBUG    sec_left = (sec_left) %(60*60);
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);    minutes = (sec_left) /60;
         fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);    sec_left = (sec_left) % (60);
         for(j=1;j<=n;j++){    sprintf(ascdiff,"%ld day(s) %ld hour(s) %ld minute(s) %ld second(s)",days, hours, minutes, sec_left);  
           printf(" %.12e",xit[j]);    return ascdiff;
           fprintf(ficlog," %.12e",xit[j]);  }
         }  
         printf("\n");  /*************** powell ************************/
         fprintf(ficlog,"\n");  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
 #endif              double (*func)(double [])) 
       }  { 
     }    void linmin(double p[], double xi[], int n, double *fret, 
   }                double (*func)(double [])); 
 }    int i,ibig,j; 
     double del,t,*pt,*ptt,*xit;
 /**** Prevalence limit (stable or period prevalence)  ****************/    double fp,fptt;
     double *xits;
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)    int niterf, itmp;
 {  
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit    pt=vector(1,n); 
      matrix by transitions matrix until convergence is reached */    ptt=vector(1,n); 
     xit=vector(1,n); 
   int i, ii,j,k;    xits=vector(1,n); 
   double min, max, maxmin, maxmax,sumnew=0.;    *fret=(*func)(p); 
   double **matprod2();    for (j=1;j<=n;j++) pt[j]=p[j]; 
   double **out, cov[NCOVMAX], **pmij();      rcurr_time = time(NULL);  
   double **newm;    for (*iter=1;;++(*iter)) { 
   double agefin, delaymax=50 ; /* Max number of years to converge */      fp=(*fret); 
       ibig=0; 
   for (ii=1;ii<=nlstate+ndeath;ii++)      del=0.0; 
     for (j=1;j<=nlstate+ndeath;j++){      rlast_time=rcurr_time;
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);      /* (void) gettimeofday(&curr_time,&tzp); */
     }      rcurr_time = time(NULL);  
       curr_time = *localtime(&rcurr_time);
    cov[1]=1.;      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, rcurr_time-rlast_time, rcurr_time-rstart_time);fflush(stdout);
        fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret,rcurr_time-rlast_time, rcurr_time-rstart_time); fflush(ficlog);
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */  /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tm_sec-start_time.tm_sec); */
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){     for (i=1;i<=n;i++) {
     newm=savm;        printf(" %d %.12f",i, p[i]);
     /* Covariates have to be included here again */        fprintf(ficlog," %d %.12lf",i, p[i]);
      cov[2]=agefin;        fprintf(ficrespow," %.12lf", p[i]);
        }
       for (k=1; k<=cptcovn;k++) {      printf("\n");
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];      fprintf(ficlog,"\n");
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/      fprintf(ficrespow,"\n");fflush(ficrespow);
       }      if(*iter <=3){
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];        tml = *localtime(&rcurr_time);
       for (k=1; k<=cptcovprod;k++)        strcpy(strcurr,asctime(&tml));
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  /*       asctime_r(&tm,strcurr); */
         rforecast_time=rcurr_time; 
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/        itmp = strlen(strcurr);
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/          strcurr[itmp-1]='\0';
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time);
         fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time);
     savm=oldm;        for(niterf=10;niterf<=30;niterf+=10){
     oldm=newm;          rforecast_time=rcurr_time+(niterf-*iter)*(rcurr_time-rlast_time);
     maxmax=0.;          forecast_time = *localtime(&rforecast_time);
     for(j=1;j<=nlstate;j++){  /*      asctime_r(&tmf,strfor); */
       min=1.;          strcpy(strfor,asctime(&forecast_time));
       max=0.;          itmp = strlen(strfor);
       for(i=1; i<=nlstate; i++) {          if(strfor[itmp-1]=='\n')
         sumnew=0;          strfor[itmp-1]='\0';
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr);
         prlim[i][j]= newm[i][j]/(1-sumnew);          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr);
         max=FMAX(max,prlim[i][j]);        }
         min=FMIN(min,prlim[i][j]);      }
       }      for (i=1;i<=n;i++) { 
       maxmin=max-min;        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
       maxmax=FMAX(maxmax,maxmin);        fptt=(*fret); 
     }  #ifdef DEBUG
     if(maxmax < ftolpl){        printf("fret=%lf \n",*fret);
       return prlim;        fprintf(ficlog,"fret=%lf \n",*fret);
     }  #endif
   }        printf("%d",i);fflush(stdout);
 }        fprintf(ficlog,"%d",i);fflush(ficlog);
         linmin(p,xit,n,fret,func); 
 /*************** transition probabilities ***************/        if (fabs(fptt-(*fret)) > del) { 
           del=fabs(fptt-(*fret)); 
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )          ibig=i; 
 {        } 
   double s1, s2;  #ifdef DEBUG
   /*double t34;*/        printf("%d %.12e",i,(*fret));
   int i,j,j1, nc, ii, jj;        fprintf(ficlog,"%d %.12e",i,(*fret));
         for (j=1;j<=n;j++) {
     for(i=1; i<= nlstate; i++){          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
       for(j=1; j<i;j++){          printf(" x(%d)=%.12e",j,xit[j]);
         for (nc=1, s2=0.;nc <=ncovmodel; nc++){          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
           /*s2 += param[i][j][nc]*cov[nc];*/        }
           s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];        for(j=1;j<=n;j++) {
 /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */          printf(" p=%.12e",p[j]);
         }          fprintf(ficlog," p=%.12e",p[j]);
         ps[i][j]=s2;        }
 /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */        printf("\n");
       }        fprintf(ficlog,"\n");
       for(j=i+1; j<=nlstate+ndeath;j++){  #endif
         for (nc=1, s2=0.;nc <=ncovmodel; nc++){      } 
           s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
 /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */  #ifdef DEBUG
         }        int k[2],l;
         ps[i][j]=s2;        k[0]=1;
       }        k[1]=-1;
     }        printf("Max: %.12e",(*func)(p));
     /*ps[3][2]=1;*/        fprintf(ficlog,"Max: %.12e",(*func)(p));
            for (j=1;j<=n;j++) {
     for(i=1; i<= nlstate; i++){          printf(" %.12e",p[j]);
       s1=0;          fprintf(ficlog," %.12e",p[j]);
       for(j=1; j<i; j++)        }
         s1+=exp(ps[i][j]);        printf("\n");
       for(j=i+1; j<=nlstate+ndeath; j++)        fprintf(ficlog,"\n");
         s1+=exp(ps[i][j]);        for(l=0;l<=1;l++) {
       ps[i][i]=1./(s1+1.);          for (j=1;j<=n;j++) {
       for(j=1; j<i; j++)            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
         ps[i][j]= exp(ps[i][j])*ps[i][i];            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
       for(j=i+1; j<=nlstate+ndeath; j++)            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
         ps[i][j]= exp(ps[i][j])*ps[i][i];          }
       /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
     } /* end i */          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
            }
     for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){  #endif
       for(jj=1; jj<= nlstate+ndeath; jj++){  
         ps[ii][jj]=0;  
         ps[ii][ii]=1;        free_vector(xit,1,n); 
       }        free_vector(xits,1,n); 
     }        free_vector(ptt,1,n); 
            free_vector(pt,1,n); 
         return; 
 /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */      } 
 /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
 /*         printf("ddd %lf ",ps[ii][jj]); */      for (j=1;j<=n;j++) { 
 /*       } */        ptt[j]=2.0*p[j]-pt[j]; 
 /*       printf("\n "); */        xit[j]=p[j]-pt[j]; 
 /*        } */        pt[j]=p[j]; 
 /*        printf("\n ");printf("%lf ",cov[2]); */      } 
        /*      fptt=(*func)(ptt); 
       for(i=1; i<= npar; i++) printf("%f ",x[i]);      if (fptt < fp) { 
       goto end;*/        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
     return ps;        if (t < 0.0) { 
 }          linmin(p,xit,n,fret,func); 
           for (j=1;j<=n;j++) { 
 /**************** Product of 2 matrices ******************/            xi[j][ibig]=xi[j][n]; 
             xi[j][n]=xit[j]; 
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)          }
 {  #ifdef DEBUG
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   /* in, b, out are matrice of pointers which should have been initialized          for(j=1;j<=n;j++){
      before: only the contents of out is modified. The function returns            printf(" %.12e",xit[j]);
      a pointer to pointers identical to out */            fprintf(ficlog," %.12e",xit[j]);
   long i, j, k;          }
   for(i=nrl; i<= nrh; i++)          printf("\n");
     for(k=ncolol; k<=ncoloh; k++)          fprintf(ficlog,"\n");
       for(j=ncl,out[i][k]=0.; j<=nch; j++)  #endif
         out[i][k] +=in[i][j]*b[j][k];        }
       } 
   return out;    } 
 }  } 
   
   /**** Prevalence limit (stable or period prevalence)  ****************/
 /************* Higher Matrix Product ***************/  
   double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )  {
 {    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
   /* Computes the transition matrix starting at age 'age' over       matrix by transitions matrix until convergence is reached */
      'nhstepm*hstepm*stepm' months (i.e. until  
      age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying    int i, ii,j,k;
      nhstepm*hstepm matrices.    double min, max, maxmin, maxmax,sumnew=0.;
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step    /* double **matprod2(); */ /* test */
      (typically every 2 years instead of every month which is too big    double **out, cov[NCOVMAX+1], **pmij();
      for the memory).    double **newm;
      Model is determined by parameters x and covariates have to be    double agefin, delaymax=50 ; /* Max number of years to converge */
      included manually here.  
     for (ii=1;ii<=nlstate+ndeath;ii++)
      */      for (j=1;j<=nlstate+ndeath;j++){
         oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   int i, j, d, h, k;      }
   double **out, cov[NCOVMAX];  
   double **newm;     cov[1]=1.;
    
   /* Hstepm could be zero and should return the unit matrix */   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   for (i=1;i<=nlstate+ndeath;i++)    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
     for (j=1;j<=nlstate+ndeath;j++){      newm=savm;
       oldm[i][j]=(i==j ? 1.0 : 0.0);      /* Covariates have to be included here again */
       po[i][j][0]=(i==j ? 1.0 : 0.0);      cov[2]=agefin;
     }      
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */      for (k=1; k<=cptcovn;k++) {
   for(h=1; h <=nhstepm; h++){        cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
     for(d=1; d <=hstepm; d++){        /*printf("prevalim ij=%d k=%d Tvar[%d]=%d nbcode=%d cov=%lf codtab[%d][Tvar[%d]]=%d \n",ij,k, k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], ij, k, codtab[ij][Tvar[k]]);*/
       newm=savm;      }
       /* Covariates have to be included here again */      /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
       cov[1]=1.;      /* for (k=1; k<=cptcovprod;k++) /\* Useless *\/ */
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;      /*   cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]] * nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]]; */
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];      
       for (k=1; k<=cptcovage;k++)      /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];      /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
       for (k=1; k<=cptcovprod;k++)      /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];      /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
       /* out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /\* Bug Valgrind *\/ */
       out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /* Bug Valgrind */
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/      
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/      savm=oldm;
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,      oldm=newm;
                    pmij(pmmij,cov,ncovmodel,x,nlstate));      maxmax=0.;
       savm=oldm;      for(j=1;j<=nlstate;j++){
       oldm=newm;        min=1.;
     }        max=0.;
     for(i=1; i<=nlstate+ndeath; i++)        for(i=1; i<=nlstate; i++) {
       for(j=1;j<=nlstate+ndeath;j++) {          sumnew=0;
         po[i][j][h]=newm[i][j];          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);          prlim[i][j]= newm[i][j]/(1-sumnew);
          */          /*printf(" prevalim i=%d, j=%d, prmlim[%d][%d]=%f, agefin=%d \n", i, j, i, j, prlim[i][j],(int)agefin);*/
       }          max=FMAX(max,prlim[i][j]);
   } /* end h */          min=FMIN(min,prlim[i][j]);
   return po;        }
 }        maxmin=max-min;
         maxmax=FMAX(maxmax,maxmin);
       }
 /*************** log-likelihood *************/      if(maxmax < ftolpl){
 double func( double *x)        return prlim;
 {      }
   int i, ii, j, k, mi, d, kk;    }
   double l, ll[NLSTATEMAX], cov[NCOVMAX];  }
   double **out;  
   double sw; /* Sum of weights */  /*************** transition probabilities ***************/ 
   double lli; /* Individual log likelihood */  
   int s1, s2;  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
   double bbh, survp;  {
   long ipmx;    /* According to parameters values stored in x and the covariate's values stored in cov,
   /*extern weight */       computes the probability to be observed in state j being in state i by appying the
   /* We are differentiating ll according to initial status */       model to the ncovmodel covariates (including constant and age).
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/       lnpijopii=ln(pij/pii)= aij+bij*age+cij*v1+dij*v2+... = sum_nc=1^ncovmodel xij(nc)*cov[nc]
   /*for(i=1;i<imx;i++)       and, according on how parameters are entered, the position of the coefficient xij(nc) of the
     printf(" %d\n",s[4][i]);       ncth covariate in the global vector x is given by the formula:
   */       j<i nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel
   cov[1]=1.;       j>=i nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel
        Computes ln(pij/pii) (lnpijopii), deduces pij/pii by exponentiation,
   for(k=1; k<=nlstate; k++) ll[k]=0.;       sums on j different of i to get 1-pii/pii, deduces pii, and then all pij.
        Outputs ps[i][j] the probability to be observed in j being in j according to
   if(mle==1){       the values of the covariates cov[nc] and corresponding parameter values x[nc+shiftij]
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){    */
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];    double s1, lnpijopii;
       for(mi=1; mi<= wav[i]-1; mi++){    /*double t34;*/
         for (ii=1;ii<=nlstate+ndeath;ii++)    int i,j,j1, nc, ii, jj;
           for (j=1;j<=nlstate+ndeath;j++){  
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);      for(i=1; i<= nlstate; i++){
             savm[ii][j]=(ii==j ? 1.0 : 0.0);        for(j=1; j<i;j++){
           }          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
         for(d=0; d<dh[mi][i]; d++){            /*lnpijopii += param[i][j][nc]*cov[nc];*/
           newm=savm;            lnpijopii += x[nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel]*cov[nc];
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;  /*       printf("Int j<i s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
           for (kk=1; kk<=cptcovage;kk++) {          }
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
           }  /*      printf("s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,        }
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));        for(j=i+1; j<=nlstate+ndeath;j++){
           savm=oldm;          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
           oldm=newm;            /*lnpijopii += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];*/
         } /* end mult */            lnpijopii += x[nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel]*cov[nc];
        /*        printf("Int j>i s1=%.17e, lnpijopii=%.17e %lx %lx\n",s1,lnpijopii,s1,lnpijopii); */
         /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */          }
         /* But now since version 0.9 we anticipate for bias at large stepm.          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
          * If stepm is larger than one month (smallest stepm) and if the exact delay        }
          * (in months) between two waves is not a multiple of stepm, we rounded to      }
          * the nearest (and in case of equal distance, to the lowest) interval but now      
          * we keep into memory the bias bh[mi][i] and also the previous matrix product      for(i=1; i<= nlstate; i++){
          * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the        s1=0;
          * probability in order to take into account the bias as a fraction of the way        for(j=1; j<i; j++){
          * from savm to out if bh is negative or even beyond if bh is positive. bh varies          s1+=exp(ps[i][j]); /* In fact sums pij/pii */
          * -stepm/2 to stepm/2 .          /*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
          * For stepm=1 the results are the same as for previous versions of Imach.        }
          * For stepm > 1 the results are less biased than in previous versions.        for(j=i+1; j<=nlstate+ndeath; j++){
          */          s1+=exp(ps[i][j]); /* In fact sums pij/pii */
         s1=s[mw[mi][i]][i];          /*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
         s2=s[mw[mi+1][i]][i];        }
         bbh=(double)bh[mi][i]/(double)stepm;        /* s1= sum_{j<>i} pij/pii=(1-pii)/pii and thus pii is known from s1 */
         /* bias bh is positive if real duration        ps[i][i]=1./(s1+1.);
          * is higher than the multiple of stepm and negative otherwise.        /* Computing other pijs */
          */        for(j=1; j<i; j++)
         /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/          ps[i][j]= exp(ps[i][j])*ps[i][i];
         if( s2 > nlstate){        for(j=i+1; j<=nlstate+ndeath; j++)
           /* i.e. if s2 is a death state and if the date of death is known          ps[i][j]= exp(ps[i][j])*ps[i][i];
              then the contribution to the likelihood is the probability to        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
              die between last step unit time and current  step unit time,      } /* end i */
              which is also equal to probability to die before dh      
              minus probability to die before dh-stepm .      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
              In version up to 0.92 likelihood was computed        for(jj=1; jj<= nlstate+ndeath; jj++){
         as if date of death was unknown. Death was treated as any other          ps[ii][jj]=0;
         health state: the date of the interview describes the actual state          ps[ii][ii]=1;
         and not the date of a change in health state. The former idea was        }
         to consider that at each interview the state was recorded      }
         (healthy, disable or death) and IMaCh was corrected; but when we      
         introduced the exact date of death then we should have modified      
         the contribution of an exact death to the likelihood. This new      /* for(ii=1; ii<= nlstate+ndeath; ii++){ */
         contribution is smaller and very dependent of the step unit      /*   for(jj=1; jj<= nlstate+ndeath; jj++){ */
         stepm. It is no more the probability to die between last interview      /*  printf(" pmij  ps[%d][%d]=%lf ",ii,jj,ps[ii][jj]); */
         and month of death but the probability to survive from last      /*   } */
         interview up to one month before death multiplied by the      /*   printf("\n "); */
         probability to die within a month. Thanks to Chris      /* } */
         Jackson for correcting this bug.  Former versions increased      /* printf("\n ");printf("%lf ",cov[2]);*/
         mortality artificially. The bad side is that we add another loop      /*
         which slows down the processing. The difference can be up to 10%        for(i=1; i<= npar; i++) printf("%f ",x[i]);
         lower mortality.        goto end;*/
           */      return ps;
           lli=log(out[s1][s2] - savm[s1][s2]);  }
   
   /**************** Product of 2 matrices ******************/
         } else if  (s2==-2) {  
           for (j=1,survp=0. ; j<=nlstate; j++)  double **matprod2(double **out, double **in,int nrl, int nrh, int ncl, int nch, int ncolol, int ncoloh, double **b)
             survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];  {
           /*survp += out[s1][j]; */    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
           lli= log(survp);       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
         }    /* in, b, out are matrice of pointers which should have been initialized 
               before: only the contents of out is modified. The function returns
         else if  (s2==-4) {       a pointer to pointers identical to out */
           for (j=3,survp=0. ; j<=nlstate; j++)      int i, j, k;
             survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];    for(i=nrl; i<= nrh; i++)
           lli= log(survp);      for(k=ncolol; k<=ncoloh; k++){
         }        out[i][k]=0.;
         for(j=ncl; j<=nch; j++)
         else if  (s2==-5) {          out[i][k] +=in[i][j]*b[j][k];
           for (j=1,survp=0. ; j<=2; j++)        }
             survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];    return out;
           lli= log(survp);  }
         }  
          
         else{  /************* Higher Matrix Product ***************/
           lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */  
           /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
         }  {
         /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/    /* Computes the transition matrix starting at age 'age' over 
         /*if(lli ==000.0)*/       'nhstepm*hstepm*stepm' months (i.e. until
         /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
         ipmx +=1;       nhstepm*hstepm matrices. 
         sw += weight[i];       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;       (typically every 2 years instead of every month which is too big 
       } /* end of wave */       for the memory).
     } /* end of individual */       Model is determined by parameters x and covariates have to be 
   }  else if(mle==2){       included manually here. 
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){  
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];       */
       for(mi=1; mi<= wav[i]-1; mi++){  
         for (ii=1;ii<=nlstate+ndeath;ii++)    int i, j, d, h, k;
           for (j=1;j<=nlstate+ndeath;j++){    double **out, cov[NCOVMAX+1];
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);    double **newm;
             savm[ii][j]=(ii==j ? 1.0 : 0.0);  
           }    /* Hstepm could be zero and should return the unit matrix */
         for(d=0; d<=dh[mi][i]; d++){    for (i=1;i<=nlstate+ndeath;i++)
           newm=savm;      for (j=1;j<=nlstate+ndeath;j++){
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;        oldm[i][j]=(i==j ? 1.0 : 0.0);
           for (kk=1; kk<=cptcovage;kk++) {        po[i][j][0]=(i==j ? 1.0 : 0.0);
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];      }
           }    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,    for(h=1; h <=nhstepm; h++){
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));      for(d=1; d <=hstepm; d++){
           savm=oldm;        newm=savm;
           oldm=newm;        /* Covariates have to be included here again */
         } /* end mult */        cov[1]=1.;
              cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
         s1=s[mw[mi][i]][i];        for (k=1; k<=cptcovn;k++) 
         s2=s[mw[mi+1][i]][i];          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
         bbh=(double)bh[mi][i]/(double)stepm;        for (k=1; k<=cptcovage;k++)
         lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
         ipmx +=1;        for (k=1; k<=cptcovprod;k++) /* Useless because included in cptcovn */
         sw += weight[i];          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;  
       } /* end of wave */  
     } /* end of individual */        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
   }  else if(mle==3){  /* exponential inter-extrapolation */        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];                     pmij(pmmij,cov,ncovmodel,x,nlstate));
       for(mi=1; mi<= wav[i]-1; mi++){        savm=oldm;
         for (ii=1;ii<=nlstate+ndeath;ii++)        oldm=newm;
           for (j=1;j<=nlstate+ndeath;j++){      }
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);      for(i=1; i<=nlstate+ndeath; i++)
             savm[ii][j]=(ii==j ? 1.0 : 0.0);        for(j=1;j<=nlstate+ndeath;j++) {
           }          po[i][j][h]=newm[i][j];
         for(d=0; d<dh[mi][i]; d++){          /*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/
           newm=savm;        }
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;      /*printf("h=%d ",h);*/
           for (kk=1; kk<=cptcovage;kk++) {    } /* end h */
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];  /*     printf("\n H=%d \n",h); */
           }    return po;
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,  }
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));  
           savm=oldm;  
           oldm=newm;  /*************** log-likelihood *************/
         } /* end mult */  double func( double *x)
        {
         s1=s[mw[mi][i]][i];    int i, ii, j, k, mi, d, kk;
         s2=s[mw[mi+1][i]][i];    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
         bbh=(double)bh[mi][i]/(double)stepm;    double **out;
         lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */    double sw; /* Sum of weights */
         ipmx +=1;    double lli; /* Individual log likelihood */
         sw += weight[i];    int s1, s2;
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;    double bbh, survp;
       } /* end of wave */    long ipmx;
     } /* end of individual */    /*extern weight */
   }else if (mle==4){  /* ml=4 no inter-extrapolation */    /* We are differentiating ll according to initial status */
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];    /*for(i=1;i<imx;i++) 
       for(mi=1; mi<= wav[i]-1; mi++){      printf(" %d\n",s[4][i]);
         for (ii=1;ii<=nlstate+ndeath;ii++)    */
           for (j=1;j<=nlstate+ndeath;j++){    cov[1]=1.;
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);  
             savm[ii][j]=(ii==j ? 1.0 : 0.0);    for(k=1; k<=nlstate; k++) ll[k]=0.;
           }  
         for(d=0; d<dh[mi][i]; d++){    if(mle==1){
           newm=savm;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;        /* Computes the values of the ncovmodel covariates of the model
           for (kk=1; kk<=cptcovage;kk++) {           depending if the covariates are fixed or variying (age dependent) and stores them in cov[]
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];           Then computes with function pmij which return a matrix p[i][j] giving the elementary probability
           }           to be observed in j being in i according to the model.
                 */
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,        for (k=1; k<=cptcovn;k++){ /* Simple and product covariates without age* products */
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));          cov[2+k]=covar[Tvar[k]][i];
           savm=oldm;        }
           oldm=newm;        /* In model V2+V1*V4+age*V3+V3*V2 Tvar[1] is V2, Tvar[2=V1*V4] 
         } /* end mult */           is 6, Tvar[3=age*V3] should not be computed because of age Tvar[4=V3*V2] 
                 has been calculated etc */
         s1=s[mw[mi][i]][i];        for(mi=1; mi<= wav[i]-1; mi++){
         s2=s[mw[mi+1][i]][i];          for (ii=1;ii<=nlstate+ndeath;ii++)
         if( s2 > nlstate){            for (j=1;j<=nlstate+ndeath;j++){
           lli=log(out[s1][s2] - savm[s1][s2]);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         }else{              savm[ii][j]=(ii==j ? 1.0 : 0.0);
           lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */            }
         }          for(d=0; d<dh[mi][i]; d++){
         ipmx +=1;            newm=savm;
         sw += weight[i];            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;            for (kk=1; kk<=cptcovage;kk++) {
 /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; /* Tage[kk] gives the data-covariate associated with age */
       } /* end of wave */            }
     } /* end of individual */            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){            savm=oldm;
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];            oldm=newm;
       for(mi=1; mi<= wav[i]-1; mi++){          } /* end mult */
         for (ii=1;ii<=nlstate+ndeath;ii++)        
           for (j=1;j<=nlstate+ndeath;j++){          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);          /* But now since version 0.9 we anticipate for bias at large stepm.
             savm[ii][j]=(ii==j ? 1.0 : 0.0);           * If stepm is larger than one month (smallest stepm) and if the exact delay 
           }           * (in months) between two waves is not a multiple of stepm, we rounded to 
         for(d=0; d<dh[mi][i]; d++){           * the nearest (and in case of equal distance, to the lowest) interval but now
           newm=savm;           * we keep into memory the bias bh[mi][i] and also the previous matrix product
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
           for (kk=1; kk<=cptcovage;kk++) {           * probability in order to take into account the bias as a fraction of the way
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
           }           * -stepm/2 to stepm/2 .
                   * For stepm=1 the results are the same as for previous versions of Imach.
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,           * For stepm > 1 the results are less biased than in previous versions. 
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));           */
           savm=oldm;          s1=s[mw[mi][i]][i];
           oldm=newm;          s2=s[mw[mi+1][i]][i];
         } /* end mult */          bbh=(double)bh[mi][i]/(double)stepm; 
                /* bias bh is positive if real duration
         s1=s[mw[mi][i]][i];           * is higher than the multiple of stepm and negative otherwise.
         s2=s[mw[mi+1][i]][i];           */
         lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
         ipmx +=1;          if( s2 > nlstate){ 
         sw += weight[i];            /* i.e. if s2 is a death state and if the date of death is known 
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;               then the contribution to the likelihood is the probability to 
         /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/               die between last step unit time and current  step unit time, 
       } /* end of wave */               which is also equal to probability to die before dh 
     } /* end of individual */               minus probability to die before dh-stepm . 
   } /* End of if */               In version up to 0.92 likelihood was computed
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];          as if date of death was unknown. Death was treated as any other
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */          health state: the date of the interview describes the actual state
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */          and not the date of a change in health state. The former idea was
   return -l;          to consider that at each interview the state was recorded
 }          (healthy, disable or death) and IMaCh was corrected; but when we
           introduced the exact date of death then we should have modified
 /*************** log-likelihood *************/          the contribution of an exact death to the likelihood. This new
 double funcone( double *x)          contribution is smaller and very dependent of the step unit
 {          stepm. It is no more the probability to die between last interview
   /* Same as likeli but slower because of a lot of printf and if */          and month of death but the probability to survive from last
   int i, ii, j, k, mi, d, kk;          interview up to one month before death multiplied by the
   double l, ll[NLSTATEMAX], cov[NCOVMAX];          probability to die within a month. Thanks to Chris
   double **out;          Jackson for correcting this bug.  Former versions increased
   double lli; /* Individual log likelihood */          mortality artificially. The bad side is that we add another loop
   double llt;          which slows down the processing. The difference can be up to 10%
   int s1, s2;          lower mortality.
   double bbh, survp;            */
   /*extern weight */            lli=log(out[s1][s2] - savm[s1][s2]);
   /* We are differentiating ll according to initial status */  
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/  
   /*for(i=1;i<imx;i++)          } else if  (s2==-2) {
     printf(" %d\n",s[4][i]);            for (j=1,survp=0. ; j<=nlstate; j++) 
   */              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   cov[1]=1.;            /*survp += out[s1][j]; */
             lli= log(survp);
   for(k=1; k<=nlstate; k++) ll[k]=0.;          }
           
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){          else if  (s2==-4) { 
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];            for (j=3,survp=0. ; j<=nlstate; j++)  
     for(mi=1; mi<= wav[i]-1; mi++){              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
       for (ii=1;ii<=nlstate+ndeath;ii++)            lli= log(survp); 
         for (j=1;j<=nlstate+ndeath;j++){          } 
           oldm[ii][j]=(ii==j ? 1.0 : 0.0);  
           savm[ii][j]=(ii==j ? 1.0 : 0.0);          else if  (s2==-5) { 
         }            for (j=1,survp=0. ; j<=2; j++)  
       for(d=0; d<dh[mi][i]; d++){              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
         newm=savm;            lli= log(survp); 
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;          } 
         for (kk=1; kk<=cptcovage;kk++) {          
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];          else{
         }            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));          } 
         savm=oldm;          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
         oldm=newm;          /*if(lli ==000.0)*/
       } /* end mult */          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
                ipmx +=1;
       s1=s[mw[mi][i]][i];          sw += weight[i];
       s2=s[mw[mi+1][i]][i];          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       bbh=(double)bh[mi][i]/(double)stepm;        } /* end of wave */
       /* bias is positive if real duration      } /* end of individual */
        * is higher than the multiple of stepm and negative otherwise.    }  else if(mle==2){
        */      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       if( s2 > nlstate && (mle <5) ){  /* Jackson */        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         lli=log(out[s1][s2] - savm[s1][s2]);        for(mi=1; mi<= wav[i]-1; mi++){
       } else if  (s2==-2) {          for (ii=1;ii<=nlstate+ndeath;ii++)
         for (j=1,survp=0. ; j<=nlstate; j++)            for (j=1;j<=nlstate+ndeath;j++){
           survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         lli= log(survp);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       }else if (mle==1){            }
         lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */          for(d=0; d<=dh[mi][i]; d++){
       } else if(mle==2){            newm=savm;
         lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       } else if(mle==3){  /* exponential inter-extrapolation */            for (kk=1; kk<=cptcovage;kk++) {
         lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       } else if (mle==4){  /* mle=4 no inter-extrapolation */            }
         lli=log(out[s1][s2]); /* Original formula */            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         lli=log(out[s1][s2]); /* Original formula */            savm=oldm;
       } /* End of if */            oldm=newm;
       ipmx +=1;          } /* end mult */
       sw += weight[i];        
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;          s1=s[mw[mi][i]][i];
 /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */          s2=s[mw[mi+1][i]][i];
       if(globpr){          bbh=(double)bh[mi][i]/(double)stepm; 
         fprintf(ficresilk,"%9d %6d %2d %2d %1d %1d %3d %11.6f %8.4f\          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
  %11.6f %11.6f %11.6f ", \          ipmx +=1;
                 num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],          sw += weight[i];
                 2*weight[i]*lli,out[s1][s2],savm[s1][s2]);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         for(k=1,llt=0.,l=0.; k<=nlstate; k++){        } /* end of wave */
           llt +=ll[k]*gipmx/gsw;      } /* end of individual */
           fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);    }  else if(mle==3){  /* exponential inter-extrapolation */
         }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         fprintf(ficresilk," %10.6f\n", -llt);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       }        for(mi=1; mi<= wav[i]-1; mi++){
     } /* end of wave */          for (ii=1;ii<=nlstate+ndeath;ii++)
   } /* end of individual */            for (j=1;j<=nlstate+ndeath;j++){
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */            }
   if(globpr==0){ /* First time we count the contributions and weights */          for(d=0; d<dh[mi][i]; d++){
     gipmx=ipmx;            newm=savm;
     gsw=sw;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   }            for (kk=1; kk<=cptcovage;kk++) {
   return -l;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 }            }
             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                          1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 /*************** function likelione ***********/            savm=oldm;
 void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))            oldm=newm;
 {          } /* end mult */
   /* This routine should help understanding what is done with        
      the selection of individuals/waves and          s1=s[mw[mi][i]][i];
      to check the exact contribution to the likelihood.          s2=s[mw[mi+1][i]][i];
      Plotting could be done.          bbh=(double)bh[mi][i]/(double)stepm; 
    */          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   int k;          ipmx +=1;
           sw += weight[i];
   if(*globpri !=0){ /* Just counts and sums, no printings */          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     strcpy(fileresilk,"ilk");        } /* end of wave */
     strcat(fileresilk,fileres);      } /* end of individual */
     if((ficresilk=fopen(fileresilk,"w"))==NULL) {    }else if (mle==4){  /* ml=4 no inter-extrapolation */
       printf("Problem with resultfile: %s\n", fileresilk);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     }        for(mi=1; mi<= wav[i]-1; mi++){
     fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");          for (ii=1;ii<=nlstate+ndeath;ii++)
     fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");            for (j=1;j<=nlstate+ndeath;j++){
     /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     for(k=1; k<=nlstate; k++)              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);            }
     fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");          for(d=0; d<dh[mi][i]; d++){
   }            newm=savm;
             cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   *fretone=(*funcone)(p);            for (kk=1; kk<=cptcovage;kk++) {
   if(*globpri !=0){              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     fclose(ficresilk);            }
     fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));          
     fflush(fichtm);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   return;            savm=oldm;
 }            oldm=newm;
           } /* end mult */
         
 /*********** Maximum Likelihood Estimation ***************/          s1=s[mw[mi][i]][i];
           s2=s[mw[mi+1][i]][i];
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))          if( s2 > nlstate){ 
 {            lli=log(out[s1][s2] - savm[s1][s2]);
   int i,j, iter;          }else{
   double **xi;            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
   double fret;          }
   double fretone; /* Only one call to likelihood */          ipmx +=1;
   /*  char filerespow[FILENAMELENGTH];*/          sw += weight[i];
   xi=matrix(1,npar,1,npar);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   for (i=1;i<=npar;i++)  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
     for (j=1;j<=npar;j++)        } /* end of wave */
       xi[i][j]=(i==j ? 1.0 : 0.0);      } /* end of individual */
   printf("Powell\n");  fprintf(ficlog,"Powell\n");    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
   strcpy(filerespow,"pow");      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   strcat(filerespow,fileres);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   if((ficrespow=fopen(filerespow,"w"))==NULL) {        for(mi=1; mi<= wav[i]-1; mi++){
     printf("Problem with resultfile: %s\n", filerespow);          for (ii=1;ii<=nlstate+ndeath;ii++)
     fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);            for (j=1;j<=nlstate+ndeath;j++){
   }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   fprintf(ficrespow,"# Powell\n# iter -2*LL");              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   for (i=1;i<=nlstate;i++)            }
     for(j=1;j<=nlstate+ndeath;j++)          for(d=0; d<dh[mi][i]; d++){
       if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);            newm=savm;
   fprintf(ficrespow,"\n");            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             for (kk=1; kk<=cptcovage;kk++) {
   powell(p,xi,npar,ftol,&iter,&fret,func);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             }
   free_matrix(xi,1,npar,1,npar);          
   fclose(ficrespow);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));            savm=oldm;
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));            oldm=newm;
           } /* end mult */
 }        
           s1=s[mw[mi][i]][i];
 /**** Computes Hessian and covariance matrix ***/          s2=s[mw[mi+1][i]][i];
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
 {          ipmx +=1;
   double  **a,**y,*x,pd;          sw += weight[i];
   double **hess;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   int i, j,jk;          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
   int *indx;        } /* end of wave */
       } /* end of individual */
   double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);    } /* End of if */
   double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   void lubksb(double **a, int npar, int *indx, double b[]) ;    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   void ludcmp(double **a, int npar, int *indx, double *d) ;    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   double gompertz(double p[]);    return -l;
   hess=matrix(1,npar,1,npar);  }
   
   printf("\nCalculation of the hessian matrix. Wait...\n");  /*************** log-likelihood *************/
   fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");  double funcone( double *x)
   for (i=1;i<=npar;i++){  {
     printf("%d",i);fflush(stdout);    /* Same as likeli but slower because of a lot of printf and if */
     fprintf(ficlog,"%d",i);fflush(ficlog);    int i, ii, j, k, mi, d, kk;
        double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
      hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);    double **out;
        double lli; /* Individual log likelihood */
     /*  printf(" %f ",p[i]);    double llt;
         printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/    int s1, s2;
   }    double bbh, survp;
      /*extern weight */
   for (i=1;i<=npar;i++) {    /* We are differentiating ll according to initial status */
     for (j=1;j<=npar;j++)  {    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
       if (j>i) {    /*for(i=1;i<imx;i++) 
         printf(".%d%d",i,j);fflush(stdout);      printf(" %d\n",s[4][i]);
         fprintf(ficlog,".%d%d",i,j);fflush(ficlog);    */
         hess[i][j]=hessij(p,delti,i,j,func,npar);    cov[1]=1.;
          
         hess[j][i]=hess[i][j];        for(k=1; k<=nlstate; k++) ll[k]=0.;
         /*printf(" %lf ",hess[i][j]);*/  
       }    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     }      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   }      for(mi=1; mi<= wav[i]-1; mi++){
   printf("\n");        for (ii=1;ii<=nlstate+ndeath;ii++)
   fprintf(ficlog,"\n");          for (j=1;j<=nlstate+ndeath;j++){
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");            savm[ii][j]=(ii==j ? 1.0 : 0.0);
   fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");          }
          for(d=0; d<dh[mi][i]; d++){
   a=matrix(1,npar,1,npar);          newm=savm;
   y=matrix(1,npar,1,npar);          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   x=vector(1,npar);          for (kk=1; kk<=cptcovage;kk++) {
   indx=ivector(1,npar);            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   for (i=1;i<=npar;i++)          }
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];          /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
   ludcmp(a,npar,indx,&pd);          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   for (j=1;j<=npar;j++) {          /* out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, */
     for (i=1;i<=npar;i++) x[i]=0;          /*           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); */
     x[j]=1;          savm=oldm;
     lubksb(a,npar,indx,x);          oldm=newm;
     for (i=1;i<=npar;i++){        } /* end mult */
       matcov[i][j]=x[i];        
     }        s1=s[mw[mi][i]][i];
   }        s2=s[mw[mi+1][i]][i];
         bbh=(double)bh[mi][i]/(double)stepm; 
   printf("\n#Hessian matrix#\n");        /* bias is positive if real duration
   fprintf(ficlog,"\n#Hessian matrix#\n");         * is higher than the multiple of stepm and negative otherwise.
   for (i=1;i<=npar;i++) {         */
     for (j=1;j<=npar;j++) {        if( s2 > nlstate && (mle <5) ){  /* Jackson */
       printf("%.3e ",hess[i][j]);          lli=log(out[s1][s2] - savm[s1][s2]);
       fprintf(ficlog,"%.3e ",hess[i][j]);        } else if  (s2==-2) {
     }          for (j=1,survp=0. ; j<=nlstate; j++) 
     printf("\n");            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
     fprintf(ficlog,"\n");          lli= log(survp);
   }        }else if (mle==1){
           lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   /* Recompute Inverse */        } else if(mle==2){
   for (i=1;i<=npar;i++)          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];        } else if(mle==3){  /* exponential inter-extrapolation */
   ludcmp(a,npar,indx,&pd);          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
         } else if (mle==4){  /* mle=4 no inter-extrapolation */
   /*  printf("\n#Hessian matrix recomputed#\n");          lli=log(out[s1][s2]); /* Original formula */
         } else{  /* mle=0 back to 1 */
   for (j=1;j<=npar;j++) {          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
     for (i=1;i<=npar;i++) x[i]=0;          /*lli=log(out[s1][s2]); */ /* Original formula */
     x[j]=1;        } /* End of if */
     lubksb(a,npar,indx,x);        ipmx +=1;
     for (i=1;i<=npar;i++){        sw += weight[i];
       y[i][j]=x[i];        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       printf("%.3e ",y[i][j]);        /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
       fprintf(ficlog,"%.3e ",y[i][j]);        if(globpr){
     }          fprintf(ficresilk,"%9ld %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
     printf("\n");   %11.6f %11.6f %11.6f ", \
     fprintf(ficlog,"\n");                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
   }                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
   */          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
             llt +=ll[k]*gipmx/gsw;
   free_matrix(a,1,npar,1,npar);            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
   free_matrix(y,1,npar,1,npar);          }
   free_vector(x,1,npar);          fprintf(ficresilk," %10.6f\n", -llt);
   free_ivector(indx,1,npar);        }
   free_matrix(hess,1,npar,1,npar);      } /* end of wave */
     } /* end of individual */
     for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
 }    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
     l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
 /*************** hessian matrix ****************/    if(globpr==0){ /* First time we count the contributions and weights */
 double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)      gipmx=ipmx;
 {      gsw=sw;
   int i;    }
   int l=1, lmax=20;    return -l;
   double k1,k2;  }
   double p2[NPARMAX+1];  
   double res;  
   double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;  /*************** function likelione ***********/
   double fx;  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
   int k=0,kmax=10;  {
   double l1;    /* This routine should help understanding what is done with 
        the selection of individuals/waves and
   fx=func(x);       to check the exact contribution to the likelihood.
   for (i=1;i<=npar;i++) p2[i]=x[i];       Plotting could be done.
   for(l=0 ; l <=lmax; l++){     */
     l1=pow(10,l);    int k;
     delts=delt;  
     for(k=1 ; k <kmax; k=k+1){    if(*globpri !=0){ /* Just counts and sums, no printings */
       delt = delta*(l1*k);      strcpy(fileresilk,"ilk"); 
       p2[theta]=x[theta] +delt;      strcat(fileresilk,fileres);
       k1=func(p2)-fx;      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
       p2[theta]=x[theta]-delt;        printf("Problem with resultfile: %s\n", fileresilk);
       k2=func(p2)-fx;        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
       /*res= (k1-2.0*fx+k2)/delt/delt; */      }
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
            fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
 #ifdef DEBUG      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);      for(k=1; k<=nlstate; k++) 
       fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
 #endif      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */    }
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){  
         k=kmax;    *fretone=(*funcone)(p);
       }    if(*globpri !=0){
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */      fclose(ficresilk);
         k=kmax; l=lmax*10.;      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
       }      fflush(fichtm); 
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){    } 
         delts=delt;    return;
       }  }
     }  
   }  
   delti[theta]=delts;  /*********** Maximum Likelihood Estimation ***************/
   return res;  
    void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
 }  {
     int i,j, iter;
 double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)    double **xi;
 {    double fret;
   int i;    double fretone; /* Only one call to likelihood */
   int l=1, l1, lmax=20;    /*  char filerespow[FILENAMELENGTH];*/
   double k1,k2,k3,k4,res,fx;    xi=matrix(1,npar,1,npar);
   double p2[NPARMAX+1];    for (i=1;i<=npar;i++)
   int k;      for (j=1;j<=npar;j++)
         xi[i][j]=(i==j ? 1.0 : 0.0);
   fx=func(x);    printf("Powell\n");  fprintf(ficlog,"Powell\n");
   for (k=1; k<=2; k++) {    strcpy(filerespow,"pow"); 
     for (i=1;i<=npar;i++) p2[i]=x[i];    strcat(filerespow,fileres);
     p2[thetai]=x[thetai]+delti[thetai]/k;    if((ficrespow=fopen(filerespow,"w"))==NULL) {
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;      printf("Problem with resultfile: %s\n", filerespow);
     k1=func(p2)-fx;      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
      }
     p2[thetai]=x[thetai]+delti[thetai]/k;    fprintf(ficrespow,"# Powell\n# iter -2*LL");
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;    for (i=1;i<=nlstate;i++)
     k2=func(p2)-fx;      for(j=1;j<=nlstate+ndeath;j++)
          if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
     p2[thetai]=x[thetai]-delti[thetai]/k;    fprintf(ficrespow,"\n");
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;  
     k3=func(p2)-fx;    powell(p,xi,npar,ftol,&iter,&fret,func);
    
     p2[thetai]=x[thetai]-delti[thetai]/k;    free_matrix(xi,1,npar,1,npar);
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;    fclose(ficrespow);
     k4=func(p2)-fx;    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
 #ifdef DEBUG    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);  
     fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);  }
 #endif  
   }  /**** Computes Hessian and covariance matrix ***/
   return res;  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
 }  {
     double  **a,**y,*x,pd;
 /************** Inverse of matrix **************/    double **hess;
 void ludcmp(double **a, int n, int *indx, double *d)    int i, j,jk;
 {    int *indx;
   int i,imax,j,k;  
   double big,dum,sum,temp;    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
   double *vv;    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
      void lubksb(double **a, int npar, int *indx, double b[]) ;
   vv=vector(1,n);    void ludcmp(double **a, int npar, int *indx, double *d) ;
   *d=1.0;    double gompertz(double p[]);
   for (i=1;i<=n;i++) {    hess=matrix(1,npar,1,npar);
     big=0.0;  
     for (j=1;j<=n;j++)    printf("\nCalculation of the hessian matrix. Wait...\n");
       if ((temp=fabs(a[i][j])) > big) big=temp;    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");    for (i=1;i<=npar;i++){
     vv[i]=1.0/big;      printf("%d",i);fflush(stdout);
   }      fprintf(ficlog,"%d",i);fflush(ficlog);
   for (j=1;j<=n;j++) {     
     for (i=1;i<j;i++) {       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
       sum=a[i][j];      
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];      /*  printf(" %f ",p[i]);
       a[i][j]=sum;          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
     }    }
     big=0.0;    
     for (i=j;i<=n;i++) {    for (i=1;i<=npar;i++) {
       sum=a[i][j];      for (j=1;j<=npar;j++)  {
       for (k=1;k<j;k++)        if (j>i) { 
         sum -= a[i][k]*a[k][j];          printf(".%d%d",i,j);fflush(stdout);
       a[i][j]=sum;          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
       if ( (dum=vv[i]*fabs(sum)) >= big) {          hess[i][j]=hessij(p,delti,i,j,func,npar);
         big=dum;          
         imax=i;          hess[j][i]=hess[i][j];    
       }          /*printf(" %lf ",hess[i][j]);*/
     }        }
     if (j != imax) {      }
       for (k=1;k<=n;k++) {    }
         dum=a[imax][k];    printf("\n");
         a[imax][k]=a[j][k];    fprintf(ficlog,"\n");
         a[j][k]=dum;  
       }    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
       *d = -(*d);    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
       vv[imax]=vv[j];    
     }    a=matrix(1,npar,1,npar);
     indx[j]=imax;    y=matrix(1,npar,1,npar);
     if (a[j][j] == 0.0) a[j][j]=TINY;    x=vector(1,npar);
     if (j != n) {    indx=ivector(1,npar);
       dum=1.0/(a[j][j]);    for (i=1;i<=npar;i++)
       for (i=j+1;i<=n;i++) a[i][j] *= dum;      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
     }    ludcmp(a,npar,indx,&pd);
   }  
   free_vector(vv,1,n);  /* Doesn't work */    for (j=1;j<=npar;j++) {
 ;      for (i=1;i<=npar;i++) x[i]=0;
 }      x[j]=1;
       lubksb(a,npar,indx,x);
 void lubksb(double **a, int n, int *indx, double b[])      for (i=1;i<=npar;i++){ 
 {        matcov[i][j]=x[i];
   int i,ii=0,ip,j;      }
   double sum;    }
    
   for (i=1;i<=n;i++) {    printf("\n#Hessian matrix#\n");
     ip=indx[i];    fprintf(ficlog,"\n#Hessian matrix#\n");
     sum=b[ip];    for (i=1;i<=npar;i++) { 
     b[ip]=b[i];      for (j=1;j<=npar;j++) { 
     if (ii)        printf("%.3e ",hess[i][j]);
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];        fprintf(ficlog,"%.3e ",hess[i][j]);
     else if (sum) ii=i;      }
     b[i]=sum;      printf("\n");
   }      fprintf(ficlog,"\n");
   for (i=n;i>=1;i--) {    }
     sum=b[i];  
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];    /* Recompute Inverse */
     b[i]=sum/a[i][i];    for (i=1;i<=npar;i++)
   }      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
 }    ludcmp(a,npar,indx,&pd);
   
 void pstamp(FILE *fichier)    /*  printf("\n#Hessian matrix recomputed#\n");
 {  
   fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);    for (j=1;j<=npar;j++) {
 }      for (i=1;i<=npar;i++) x[i]=0;
       x[j]=1;
 /************ Frequencies ********************/      lubksb(a,npar,indx,x);
 void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])      for (i=1;i<=npar;i++){ 
 {  /* Some frequencies */        y[i][j]=x[i];
          printf("%.3e ",y[i][j]);
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;        fprintf(ficlog,"%.3e ",y[i][j]);
   int first;      }
   double ***freq; /* Frequencies */      printf("\n");
   double *pp, **prop;      fprintf(ficlog,"\n");
   double pos,posprop, k2, dateintsum=0,k2cpt=0;    }
   char fileresp[FILENAMELENGTH];    */
    
   pp=vector(1,nlstate);    free_matrix(a,1,npar,1,npar);
   prop=matrix(1,nlstate,iagemin,iagemax+3);    free_matrix(y,1,npar,1,npar);
   strcpy(fileresp,"p");    free_vector(x,1,npar);
   strcat(fileresp,fileres);    free_ivector(indx,1,npar);
   if((ficresp=fopen(fileresp,"w"))==NULL) {    free_matrix(hess,1,npar,1,npar);
     printf("Problem with prevalence resultfile: %s\n", fileresp);  
     fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);  
     exit(0);  }
   }  
   freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);  /*************** hessian matrix ****************/
   j1=0;  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
    {
   j=cptcoveff;    int i;
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    int l=1, lmax=20;
     double k1,k2;
   first=1;    double p2[MAXPARM+1]; /* identical to x */
     double res;
   for(k1=1; k1<=j;k1++){    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
     for(i1=1; i1<=ncodemax[k1];i1++){    double fx;
       j1++;    int k=0,kmax=10;
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);    double l1;
         scanf("%d", i);*/  
       for (i=-5; i<=nlstate+ndeath; i++)      fx=func(x);
         for (jk=-5; jk<=nlstate+ndeath; jk++)      for (i=1;i<=npar;i++) p2[i]=x[i];
           for(m=iagemin; m <= iagemax+3; m++)    for(l=0 ; l <=lmax; l++){  /* Enlarging the zone around the Maximum */
             freq[i][jk][m]=0;      l1=pow(10,l);
       delts=delt;
     for (i=1; i<=nlstate; i++)        for(k=1 ; k <kmax; k=k+1){
       for(m=iagemin; m <= iagemax+3; m++)        delt = delta*(l1*k);
         prop[i][m]=0;        p2[theta]=x[theta] +delt;
              k1=func(p2)-fx;   /* Might be negative if too close to the theoretical maximum */
       dateintsum=0;        p2[theta]=x[theta]-delt;
       k2cpt=0;        k2=func(p2)-fx;
       for (i=1; i<=imx; i++) {        /*res= (k1-2.0*fx+k2)/delt/delt; */
         bool=1;        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
         if  (cptcovn>0) {        
           for (z1=1; z1<=cptcoveff; z1++)  #ifdef DEBUGHESS
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
               bool=0;        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
         }  #endif
         if (bool==1){        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
           for(m=firstpass; m<=lastpass; m++){        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
             k2=anint[m][i]+(mint[m][i]/12.);          k=kmax;
             /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/        }
               if(agev[m][i]==0) agev[m][i]=iagemax+1;        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
               if(agev[m][i]==1) agev[m][i]=iagemax+2;          k=kmax; l=lmax*10.;
               if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];        }
               if (m<lastpass) {        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];          delts=delt;
                 freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];        }
               }      }
                  }
               if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {    delti[theta]=delts;
                 dateintsum=dateintsum+k2;    return res; 
                 k2cpt++;    
               }  }
               /*}*/  
           }  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
         }  {
       }    int i;
            int l=1, l1, lmax=20;
       /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/    double k1,k2,k3,k4,res,fx;
       pstamp(ficresp);    double p2[MAXPARM+1];
       if  (cptcovn>0) {    int k;
         fprintf(ficresp, "\n#********** Variable ");  
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    fx=func(x);
         fprintf(ficresp, "**********\n#");    for (k=1; k<=2; k++) {
       }      for (i=1;i<=npar;i++) p2[i]=x[i];
       for(i=1; i<=nlstate;i++)      p2[thetai]=x[thetai]+delti[thetai]/k;
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
       fprintf(ficresp, "\n");      k1=func(p2)-fx;
          
       for(i=iagemin; i <= iagemax+3; i++){      p2[thetai]=x[thetai]+delti[thetai]/k;
         if(i==iagemax+3){      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
           fprintf(ficlog,"Total");      k2=func(p2)-fx;
         }else{    
           if(first==1){      p2[thetai]=x[thetai]-delti[thetai]/k;
             first=0;      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
             printf("See log file for details...\n");      k3=func(p2)-fx;
           }    
           fprintf(ficlog,"Age %d", i);      p2[thetai]=x[thetai]-delti[thetai]/k;
         }      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
         for(jk=1; jk <=nlstate ; jk++){      k4=func(p2)-fx;
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
             pp[jk] += freq[jk][m][i];  #ifdef DEBUG
         }      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
         for(jk=1; jk <=nlstate ; jk++){      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
           for(m=-1, pos=0; m <=0 ; m++)  #endif
             pos += freq[jk][m][i];    }
           if(pp[jk]>=1.e-10){    return res;
             if(first==1){  }
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);  
             }  /************** Inverse of matrix **************/
             fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);  void ludcmp(double **a, int n, int *indx, double *d) 
           }else{  { 
             if(first==1)    int i,imax,j,k; 
               printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);    double big,dum,sum,temp; 
             fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);    double *vv; 
           }   
         }    vv=vector(1,n); 
     *d=1.0; 
         for(jk=1; jk <=nlstate ; jk++){    for (i=1;i<=n;i++) { 
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)      big=0.0; 
             pp[jk] += freq[jk][m][i];      for (j=1;j<=n;j++) 
         }              if ((temp=fabs(a[i][j])) > big) big=temp; 
         for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
           pos += pp[jk];      vv[i]=1.0/big; 
           posprop += prop[jk][i];    } 
         }    for (j=1;j<=n;j++) { 
         for(jk=1; jk <=nlstate ; jk++){      for (i=1;i<j;i++) { 
           if(pos>=1.e-5){        sum=a[i][j]; 
             if(first==1)        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
               printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);        a[i][j]=sum; 
             fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);      } 
           }else{      big=0.0; 
             if(first==1)      for (i=j;i<=n;i++) { 
               printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);        sum=a[i][j]; 
             fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);        for (k=1;k<j;k++) 
           }          sum -= a[i][k]*a[k][j]; 
           if( i <= iagemax){        a[i][j]=sum; 
             if(pos>=1.e-5){        if ( (dum=vv[i]*fabs(sum)) >= big) { 
               fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);          big=dum; 
               /*probs[i][jk][j1]= pp[jk]/pos;*/          imax=i; 
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/        } 
             }      } 
             else      if (j != imax) { 
               fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);        for (k=1;k<=n;k++) { 
           }          dum=a[imax][k]; 
         }          a[imax][k]=a[j][k]; 
                  a[j][k]=dum; 
         for(jk=-1; jk <=nlstate+ndeath; jk++)        } 
           for(m=-1; m <=nlstate+ndeath; m++)        *d = -(*d); 
             if(freq[jk][m][i] !=0 ) {        vv[imax]=vv[j]; 
             if(first==1)      } 
               printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);      indx[j]=imax; 
               fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);      if (a[j][j] == 0.0) a[j][j]=TINY; 
             }      if (j != n) { 
         if(i <= iagemax)        dum=1.0/(a[j][j]); 
           fprintf(ficresp,"\n");        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
         if(first==1)      } 
           printf("Others in log...\n");    } 
         fprintf(ficlog,"\n");    free_vector(vv,1,n);  /* Doesn't work */
       }  ;
     }  } 
   }  
   dateintmean=dateintsum/k2cpt;  void lubksb(double **a, int n, int *indx, double b[]) 
    { 
   fclose(ficresp);    int i,ii=0,ip,j; 
   free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);    double sum; 
   free_vector(pp,1,nlstate);   
   free_matrix(prop,1,nlstate,iagemin, iagemax+3);    for (i=1;i<=n;i++) { 
   /* End of Freq */      ip=indx[i]; 
 }      sum=b[ip]; 
       b[ip]=b[i]; 
 /************ Prevalence ********************/      if (ii) 
 void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
 {        else if (sum) ii=i; 
   /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people      b[i]=sum; 
      in each health status at the date of interview (if between dateprev1 and dateprev2).    } 
      We still use firstpass and lastpass as another selection.    for (i=n;i>=1;i--) { 
   */      sum=b[i]; 
        for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;      b[i]=sum/a[i][i]; 
   double ***freq; /* Frequencies */    } 
   double *pp, **prop;  } 
   double pos,posprop;  
   double  y2; /* in fractional years */  void pstamp(FILE *fichier)
   int iagemin, iagemax;  {
     fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
   iagemin= (int) agemin;  }
   iagemax= (int) agemax;  
   /*pp=vector(1,nlstate);*/  /************ Frequencies ********************/
   prop=matrix(1,nlstate,iagemin,iagemax+3);  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
   /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/  {  /* Some frequencies */
   j1=0;    
      int i, m, jk, k1,i1, j1, bool, z1,j;
   j=cptcoveff;    int first;
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    double ***freq; /* Frequencies */
      double *pp, **prop;
   for(k1=1; k1<=j;k1++){    double pos,posprop, k2, dateintsum=0,k2cpt=0;
     for(i1=1; i1<=ncodemax[k1];i1++){    char fileresp[FILENAMELENGTH];
       j1++;    
          pp=vector(1,nlstate);
       for (i=1; i<=nlstate; i++)      prop=matrix(1,nlstate,iagemin,iagemax+3);
         for(m=iagemin; m <= iagemax+3; m++)    strcpy(fileresp,"p");
           prop[i][m]=0.0;    strcat(fileresp,fileres);
          if((ficresp=fopen(fileresp,"w"))==NULL) {
       for (i=1; i<=imx; i++) { /* Each individual */      printf("Problem with prevalence resultfile: %s\n", fileresp);
         bool=1;      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
         if  (cptcovn>0) {      exit(0);
           for (z1=1; z1<=cptcoveff; z1++)    }
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
               bool=0;    j1=0;
         }    
         if (bool==1) {    j=cptcoveff;
           for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/    if (cptcovn<1) {j=1;ncodemax[1]=1;}
             y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */  
             if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */    first=1;
               if(agev[m][i]==0) agev[m][i]=iagemax+1;  
               if(agev[m][i]==1) agev[m][i]=iagemax+2;    /* for(k1=1; k1<=j ; k1++){   /* Loop on covariates */
               if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m);    /*  for(i1=1; i1<=ncodemax[k1];i1++){ /* Now it is 2 */
               if (s[m][i]>0 && s[m][i]<=nlstate) {    /*    j1++;
                 /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/  */
                 prop[s[m][i]][(int)agev[m][i]] += weight[i];    for (j1 = 1; j1 <= (int) pow(2,cptcoveff); j1++){
                 prop[s[m][i]][iagemax+3] += weight[i];        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
               }          scanf("%d", i);*/
             }        for (i=-5; i<=nlstate+ndeath; i++)  
           } /* end selection of waves */          for (jk=-5; jk<=nlstate+ndeath; jk++)  
         }            for(m=iagemin; m <= iagemax+3; m++)
       }              freq[i][jk][m]=0;
       for(i=iagemin; i <= iagemax+3; i++){          
                for (i=1; i<=nlstate; i++)  
         for(jk=1,posprop=0; jk <=nlstate ; jk++) {          for(m=iagemin; m <= iagemax+3; m++)
           posprop += prop[jk][i];            prop[i][m]=0;
         }        
         dateintsum=0;
         for(jk=1; jk <=nlstate ; jk++){            k2cpt=0;
           if( i <=  iagemax){        for (i=1; i<=imx; i++) {
             if(posprop>=1.e-5){          bool=1;
               probs[i][jk][j1]= prop[jk][i]/posprop;          if  (cptcovn>0) { /* Filter is here: Must be looked at for model=V1+V2+V3+V4 */
             }            for (z1=1; z1<=cptcoveff; z1++)       
           }              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]){
         }/* end jk */                  /* Tests if the value of each of the covariates of i is equal to filter j1 */
       }/* end i */                bool=0;
     } /* end i1 */                /* printf("bool=%d i=%d, z1=%d, Tvaraff[%d]=%d, covar[Tvarff][%d]=%2f, codtab[%d][%d]=%d, nbcode[Tvaraff][codtab[%d][%d]=%d, j1=%d\n", 
   } /* end k1 */                  bool,i,z1, z1, Tvaraff[z1],i,covar[Tvaraff[z1]][i],j1,z1,codtab[j1][z1],
                    j1,z1,nbcode[Tvaraff[z1]][codtab[j1][z1]],j1);*/
   /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/                /* For j1=7 in V1+V2+V3+V4 = 0 1 1 0 and codtab[7][3]=1 and nbcde[3][?]=1*/
   /*free_vector(pp,1,nlstate);*/              } 
   free_matrix(prop,1,nlstate, iagemin,iagemax+3);          }
 }  /* End of prevalence */   
           if (bool==1){
 /************* Waves Concatenation ***************/            for(m=firstpass; m<=lastpass; m++){
               k2=anint[m][i]+(mint[m][i]/12.);
 void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
 {                if(agev[m][i]==0) agev[m][i]=iagemax+1;
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.                if(agev[m][i]==1) agev[m][i]=iagemax+2;
      Death is a valid wave (if date is known).                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i                if (m<lastpass) {
      dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
      and mw[mi+1][i]. dh depends on stepm.                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
      */                }
                 
   int i, mi, m;                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;                  dateintsum=dateintsum+k2;
      double sum=0., jmean=0.;*/                  k2cpt++;
   int first;                }
   int j, k=0,jk, ju, jl;                /*}*/
   double sum=0.;            }
   first=0;          }
   jmin=1e+5;        } /* end i */
   jmax=-1;         
   jmean=0.;        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
   for(i=1; i<=imx; i++){        pstamp(ficresp);
     mi=0;        if  (cptcovn>0) {
     m=firstpass;          fprintf(ficresp, "\n#********** Variable "); 
     while(s[m][i] <= nlstate){          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)          fprintf(ficresp, "**********\n#");
         mw[++mi][i]=m;          fprintf(ficlog, "\n#********** Variable "); 
       if(m >=lastpass)          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficlog, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
         break;          fprintf(ficlog, "**********\n#");
       else        }
         m++;        for(i=1; i<=nlstate;i++) 
     }/* end while */          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
     if (s[m][i] > nlstate){        fprintf(ficresp, "\n");
       mi++;     /* Death is another wave */        
       /* if(mi==0)  never been interviewed correctly before death */        for(i=iagemin; i <= iagemax+3; i++){
          /* Only death is a correct wave */          if(i==iagemax+3){
       mw[mi][i]=m;            fprintf(ficlog,"Total");
     }          }else{
             if(first==1){
     wav[i]=mi;              first=0;
     if(mi==0){              printf("See log file for details...\n");
       nbwarn++;            }
       if(first==0){            fprintf(ficlog,"Age %d", i);
         printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);          }
         first=1;          for(jk=1; jk <=nlstate ; jk++){
       }            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
       if(first==1){              pp[jk] += freq[jk][m][i]; 
         fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);          }
       }          for(jk=1; jk <=nlstate ; jk++){
     } /* end mi==0 */            for(m=-1, pos=0; m <=0 ; m++)
   } /* End individuals */              pos += freq[jk][m][i];
             if(pp[jk]>=1.e-10){
   for(i=1; i<=imx; i++){              if(first==1){
     for(mi=1; mi<wav[i];mi++){                printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
       if (stepm <=0)              }
         dh[mi][i]=1;              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
       else{            }else{
         if (s[mw[mi+1][i]][i] > nlstate) { /* A death */              if(first==1)
           if (agedc[i] < 2*AGESUP) {                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
             j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
             if(j==0) j=1;  /* Survives at least one month after exam */            }
             else if(j<0){          }
               nberr++;  
               printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);          for(jk=1; jk <=nlstate ; jk++){
               j=1; /* Temporary Dangerous patch */            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
               printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);              pp[jk] += freq[jk][m][i];
               fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);          }       
               fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
             }            pos += pp[jk];
             k=k+1;            posprop += prop[jk][i];
             if (j >= jmax){          }
               jmax=j;          for(jk=1; jk <=nlstate ; jk++){
               ijmax=i;            if(pos>=1.e-5){
             }              if(first==1)
             if (j <= jmin){                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
               jmin=j;              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
               ijmin=i;            }else{
             }              if(first==1)
             sum=sum+j;                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
             /*if (j<0) printf("j=%d num=%d \n",j,i);*/              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
             /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/            }
           }            if( i <= iagemax){
         }              if(pos>=1.e-5){
         else{                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));                /*probs[i][jk][j1]= pp[jk]/pos;*/
 /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
               }
           k=k+1;              else
           if (j >= jmax) {                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
             jmax=j;            }
             ijmax=i;          }
           }          
           else if (j <= jmin){          for(jk=-1; jk <=nlstate+ndeath; jk++)
             jmin=j;            for(m=-1; m <=nlstate+ndeath; m++)
             ijmin=i;              if(freq[jk][m][i] !=0 ) {
           }              if(first==1)
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
           /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
           if(j<0){              }
             nberr++;          if(i <= iagemax)
             printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);            fprintf(ficresp,"\n");
             fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);          if(first==1)
           }            printf("Others in log...\n");
           sum=sum+j;          fprintf(ficlog,"\n");
         }        }
         jk= j/stepm;        /*}*/
         jl= j -jk*stepm;    }
         ju= j -(jk+1)*stepm;    dateintmean=dateintsum/k2cpt; 
         if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */   
           if(jl==0){    fclose(ficresp);
             dh[mi][i]=jk;    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
             bh[mi][i]=0;    free_vector(pp,1,nlstate);
           }else{ /* We want a negative bias in order to only have interpolation ie    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
                   * at the price of an extra matrix product in likelihood */    /* End of Freq */
             dh[mi][i]=jk+1;  }
             bh[mi][i]=ju;  
           }  /************ Prevalence ********************/
         }else{  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
           if(jl <= -ju){  {  
             dh[mi][i]=jk;    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
             bh[mi][i]=jl;       /* bias is positive if real duration       in each health status at the date of interview (if between dateprev1 and dateprev2).
                                  * is higher than the multiple of stepm and negative otherwise.       We still use firstpass and lastpass as another selection.
                                  */    */
           }   
           else{    int i, m, jk, k1, i1, j1, bool, z1,j;
             dh[mi][i]=jk+1;    double ***freq; /* Frequencies */
             bh[mi][i]=ju;    double *pp, **prop;
           }    double pos,posprop; 
           if(dh[mi][i]==0){    double  y2; /* in fractional years */
             dh[mi][i]=1; /* At least one step */    int iagemin, iagemax;
             bh[mi][i]=ju; /* At least one step */    int first; /** to stop verbosity which is redirected to log file */
             /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/  
           }    iagemin= (int) agemin;
         } /* end if mle */    iagemax= (int) agemax;
       }    /*pp=vector(1,nlstate);*/
     } /* end wave */    prop=matrix(1,nlstate,iagemin,iagemax+3); 
   }    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
   jmean=sum/k;    j1=0;
   printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);    
   fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);    /*j=cptcoveff;*/
  }    if (cptcovn<1) {j=1;ncodemax[1]=1;}
     
 /*********** Tricode ****************************/    first=1;
 void tricode(int *Tvar, int **nbcode, int imx)    for(j1=1; j1<= (int) pow(2,cptcoveff);j1++){
 {      /*for(i1=1; i1<=ncodemax[k1];i1++){
          j1++;*/
   int Ndum[20],ij=1, k, j, i, maxncov=19;        
   int cptcode=0;        for (i=1; i<=nlstate; i++)  
   cptcoveff=0;          for(m=iagemin; m <= iagemax+3; m++)
              prop[i][m]=0.0;
   for (k=0; k<maxncov; k++) Ndum[k]=0;       
   for (k=1; k<=7; k++) ncodemax[k]=0;        for (i=1; i<=imx; i++) { /* Each individual */
           bool=1;
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {          if  (cptcovn>0) {
     for (i=1; i<=imx; i++) { /*reads the data file to get the maximum            for (z1=1; z1<=cptcoveff; z1++) 
                                modality*/              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
       ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/                bool=0;
       Ndum[ij]++; /*store the modality */          } 
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/          if (bool==1) { 
       if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
                                        Tvar[j]. If V=sex and male is 0 and              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
                                        female is 1, then  cptcode=1.*/              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
     }                if(agev[m][i]==0) agev[m][i]=iagemax+1;
                 if(agev[m][i]==1) agev[m][i]=iagemax+2;
     for (i=0; i<=cptcode; i++) {                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
       if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */                if (s[m][i]>0 && s[m][i]<=nlstate) { 
     }                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
                   prop[s[m][i]][(int)agev[m][i]] += weight[i];
     ij=1;                  prop[s[m][i]][iagemax+3] += weight[i]; 
     for (i=1; i<=ncodemax[j]; i++) {                } 
       for (k=0; k<= maxncov; k++) {              }
         if (Ndum[k] != 0) {            } /* end selection of waves */
           nbcode[Tvar[j]][ij]=k;          }
           /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */        }
                  for(i=iagemin; i <= iagemax+3; i++){  
           ij++;          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
         }            posprop += prop[jk][i]; 
         if (ij > ncodemax[j]) break;          } 
       }            
     }          for(jk=1; jk <=nlstate ; jk++){     
   }              if( i <=  iagemax){ 
               if(posprop>=1.e-5){ 
  for (k=0; k< maxncov; k++) Ndum[k]=0;                probs[i][jk][j1]= prop[jk][i]/posprop;
               } else{
  for (i=1; i<=ncovmodel-2; i++) {                if(first==1){
    /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/                  first=0;
    ij=Tvar[i];                  printf("Warning Observed prevalence probs[%d][%d][%d]=%lf because of lack of cases\nSee others on log file...\n",jk,i,j1,probs[i][jk][j1]);
    Ndum[ij]++;                }
  }              }
             } 
  ij=1;          }/* end jk */ 
  for (i=1; i<= maxncov; i++) {        }/* end i */ 
    if((Ndum[i]!=0) && (i<=ncovcol)){      /*} *//* end i1 */
      Tvaraff[ij]=i; /*For printing */    } /* end j1 */
      ij++;    
    }    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
  }    /*free_vector(pp,1,nlstate);*/
      free_matrix(prop,1,nlstate, iagemin,iagemax+3);
  cptcoveff=ij-1; /*Number of simple covariates*/  }  /* End of prevalence */
 }  
   /************* Waves Concatenation ***************/
 /*********** Health Expectancies ****************/  
   void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )  {
     /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
 {       Death is a valid wave (if date is known).
   /* Health expectancies, no variances */       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
   double age, agelim, hf;       and mw[mi+1][i]. dh depends on stepm.
   double ***p3mat;       */
   double eip;  
     int i, mi, m;
   pstamp(ficreseij);    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
   fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");       double sum=0., jmean=0.;*/
   fprintf(ficreseij,"# Age");    int first;
   for(i=1; i<=nlstate;i++){    int j, k=0,jk, ju, jl;
     for(j=1; j<=nlstate;j++){    double sum=0.;
       fprintf(ficreseij," e%1d%1d ",i,j);    first=0;
     }    jmin=1e+5;
     fprintf(ficreseij," e%1d. ",i);    jmax=-1;
   }    jmean=0.;
   fprintf(ficreseij,"\n");    for(i=1; i<=imx; i++){
       mi=0;
        m=firstpass;
   if(estepm < stepm){      while(s[m][i] <= nlstate){
     printf ("Problem %d lower than %d\n",estepm, stepm);        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
   }          mw[++mi][i]=m;
   else  hstepm=estepm;          if(m >=lastpass)
   /* We compute the life expectancy from trapezoids spaced every estepm months          break;
    * This is mainly to measure the difference between two models: for example        else
    * if stepm=24 months pijx are given only every 2 years and by summing them          m++;
    * we are calculating an estimate of the Life Expectancy assuming a linear      }/* end while */
    * progression in between and thus overestimating or underestimating according      if (s[m][i] > nlstate){
    * to the curvature of the survival function. If, for the same date, we        mi++;     /* Death is another wave */
    * estimate the model with stepm=1 month, we can keep estepm to 24 months        /* if(mi==0)  never been interviewed correctly before death */
    * to compare the new estimate of Life expectancy with the same linear           /* Only death is a correct wave */
    * hypothesis. A more precise result, taking into account a more precise        mw[mi][i]=m;
    * curvature will be obtained if estepm is as small as stepm. */      }
   
   /* For example we decided to compute the life expectancy with the smallest unit */      wav[i]=mi;
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.      if(mi==0){
      nhstepm is the number of hstepm from age to agelim        nbwarn++;
      nstepm is the number of stepm from age to agelin.        if(first==0){
      Look at hpijx to understand the reason of that which relies in memory size          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
      and note for a fixed period like estepm months */          first=1;
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the        }
      survival function given by stepm (the optimization length). Unfortunately it        if(first==1){
      means that if the survival funtion is printed only each two years of age and if          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
      you sum them up and add 1 year (area under the trapezoids) you won't get the same        }
      results. So we changed our mind and took the option of the best precision.      } /* end mi==0 */
   */    } /* End individuals */
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */  
     for(i=1; i<=imx; i++){
   agelim=AGESUP;      for(mi=1; mi<wav[i];mi++){
   /* If stepm=6 months */        if (stepm <=0)
     /* Computed by stepm unit matrices, product of hstepm matrices, stored          dh[mi][i]=1;
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */        else{
              if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
 /* nhstepm age range expressed in number of stepm */            if (agedc[i] < 2*AGESUP) {
   nstepm=(int) rint((agelim-bage)*YEARM/stepm);              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
   /* Typically if 20 years nstepm = 20*12/6=40 stepm */              if(j==0) j=1;  /* Survives at least one month after exam */
   /* if (stepm >= YEARM) hstepm=1;*/              else if(j<0){
   nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */                nberr++;
   p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                 j=1; /* Temporary Dangerous patch */
   for (age=bage; age<=fage; age ++){                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
                 fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                 fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);                }
                  k=k+1;
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */              if (j >= jmax){
                    jmax=j;
     printf("%d|",(int)age);fflush(stdout);                ijmax=i;
     fprintf(ficlog,"%d|",(int)age);fflush(ficlog);              }
                  if (j <= jmin){
                 jmin=j;
     /* Computing expectancies */                ijmin=i;
     for(i=1; i<=nlstate;i++)              }
       for(j=1; j<=nlstate;j++)              sum=sum+j;
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
                      }
           /*if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/          }
           else{
         }            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
      /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
     fprintf(ficreseij,"%3.0f",age );  
     for(i=1; i<=nlstate;i++){            k=k+1;
       eip=0;            if (j >= jmax) {
       for(j=1; j<=nlstate;j++){              jmax=j;
         eip +=eij[i][j][(int)age];              ijmax=i;
         fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );            }
       }            else if (j <= jmin){
       fprintf(ficreseij,"%9.4f", eip );              jmin=j;
     }              ijmin=i;
     fprintf(ficreseij,"\n");            }
                /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
   }            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
   free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            if(j<0){
   printf("\n");              nberr++;
   fprintf(ficlog,"\n");              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 }            }
             sum=sum+j;
 void cvevsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )          }
           jk= j/stepm;
 {          jl= j -jk*stepm;
   /* Covariances of health expectancies eij and of total life expectancies according          ju= j -(jk+1)*stepm;
    to initial status i, ei. .          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
   */            if(jl==0){
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;              dh[mi][i]=jk;
   double age, agelim, hf;              bh[mi][i]=0;
   double ***p3matp, ***p3matm, ***varhe;            }else{ /* We want a negative bias in order to only have interpolation ie
   double **dnewm,**doldm;                    * to avoid the price of an extra matrix product in likelihood */
   double *xp, *xm;              dh[mi][i]=jk+1;
   double **gp, **gm;              bh[mi][i]=ju;
   double ***gradg, ***trgradg;            }
   int theta;          }else{
             if(jl <= -ju){
   double eip, vip;              dh[mi][i]=jk;
               bh[mi][i]=jl;       /* bias is positive if real duration
   varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);                                   * is higher than the multiple of stepm and negative otherwise.
   xp=vector(1,npar);                                   */
   xm=vector(1,npar);            }
   dnewm=matrix(1,nlstate*nlstate,1,npar);            else{
   doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);              dh[mi][i]=jk+1;
                bh[mi][i]=ju;
   pstamp(ficresstdeij);            }
   fprintf(ficresstdeij,"# Health expectancies with standard errors\n");            if(dh[mi][i]==0){
   fprintf(ficresstdeij,"# Age");              dh[mi][i]=1; /* At least one step */
   for(i=1; i<=nlstate;i++){              bh[mi][i]=ju; /* At least one step */
     for(j=1; j<=nlstate;j++)              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
       fprintf(ficresstdeij," e%1d%1d (SE)",i,j);            }
     fprintf(ficresstdeij," e%1d. ",i);          } /* end if mle */
   }        }
   fprintf(ficresstdeij,"\n");      } /* end wave */
     }
   pstamp(ficrescveij);    jmean=sum/k;
   fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
   fprintf(ficrescveij,"# Age");    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %d) Max=%d (%d) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
   for(i=1; i<=nlstate;i++)   }
     for(j=1; j<=nlstate;j++){  
       cptj= (j-1)*nlstate+i;  /*********** Tricode ****************************/
       for(i2=1; i2<=nlstate;i2++)  void tricode(int *Tvar, int **nbcode, int imx, int *Ndum)
         for(j2=1; j2<=nlstate;j2++){  {
           cptj2= (j2-1)*nlstate+i2;    /**< Uses cptcovn+2*cptcovprod as the number of covariates */
           if(cptj2 <= cptj)    /*      Tvar[i]=atoi(stre);  find 'n' in Vn and stores in Tvar. If model=V2+V1 Tvar[1]=2 and Tvar[2]=1 
             fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);    /* Boring subroutine which should only output nbcode[Tvar[j]][k]
         }     * Tvar[5] in V2+V1+V3*age+V2*V4 is 2 (V2)
     }    /* nbcode[Tvar[j]][1]= 
   fprintf(ficrescveij,"\n");    */
    
   if(estepm < stepm){    int ij=1, k=0, j=0, i=0, maxncov=NCOVMAX;
     printf ("Problem %d lower than %d\n",estepm, stepm);    int modmaxcovj=0; /* Modality max of covariates j */
   }    int cptcode=0; /* Modality max of covariates j */
   else  hstepm=estepm;      int modmincovj=0; /* Modality min of covariates j */
   /* We compute the life expectancy from trapezoids spaced every estepm months  
    * This is mainly to measure the difference between two models: for example  
    * if stepm=24 months pijx are given only every 2 years and by summing them    cptcoveff=0; 
    * we are calculating an estimate of the Life Expectancy assuming a linear   
    * progression in between and thus overestimating or underestimating according    for (k=-1; k < maxncov; k++) Ndum[k]=0;
    * to the curvature of the survival function. If, for the same date, we    for (k=1; k <= maxncov; k++) ncodemax[k]=0; /* Horrible constant again replaced by NCOVMAX */
    * estimate the model with stepm=1 month, we can keep estepm to 24 months  
    * to compare the new estimate of Life expectancy with the same linear    /* Loop on covariates without age and products */
    * hypothesis. A more precise result, taking into account a more precise    for (j=1; j<=(cptcovs); j++) { /* model V1 + V2*age+ V3 + V3*V4 : V1 + V3 = 2 only */
    * curvature will be obtained if estepm is as small as stepm. */      for (i=1; i<=imx; i++) { /* Lopp on individuals: reads the data file to get the maximum value of the 
                                  modality of this covariate Vj*/ 
   /* For example we decided to compute the life expectancy with the smallest unit */        ij=(int)(covar[Tvar[j]][i]); /* ij=0 or 1 or -1. Value of the covariate Tvar[j] for individual i
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.                                      * If product of Vn*Vm, still boolean *:
      nhstepm is the number of hstepm from age to agelim                                      * If it was coded 1, 2, 3, 4 should be splitted into 3 boolean variables
      nstepm is the number of stepm from age to agelin.                                      * 1 => 0 0 0, 2 => 0 0 1, 3 => 0 1 1, 4=1 0 0   */
      Look at hpijx to understand the reason of that which relies in memory size        /* Finds for covariate j, n=Tvar[j] of Vn . ij is the
      and note for a fixed period like estepm months */                                        modality of the nth covariate of individual i. */
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the        if (ij > modmaxcovj)
      survival function given by stepm (the optimization length). Unfortunately it          modmaxcovj=ij; 
      means that if the survival funtion is printed only each two years of age and if        else if (ij < modmincovj) 
      you sum them up and add 1 year (area under the trapezoids) you won't get the same          modmincovj=ij; 
      results. So we changed our mind and took the option of the best precision.        if ((ij < -1) && (ij > NCOVMAX)){
   */          printf( "Error: minimal is less than -1 or maximal is bigger than %d. Exiting. \n", NCOVMAX );
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */          exit(1);
         }else
   /* If stepm=6 months */        Ndum[ij]++; /*counts and stores the occurence of this modality 0, 1, -1*/
   /* nhstepm age range expressed in number of stepm */        /*  If coded 1, 2, 3 , counts the number of 1 Ndum[1], number of 2, Ndum[2], etc */
   agelim=AGESUP;        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
   nstepm=(int) rint((agelim-bage)*YEARM/stepm);        /* getting the maximum value of the modality of the covariate
   /* Typically if 20 years nstepm = 20*12/6=40 stepm */           (should be 0 or 1 now) Tvar[j]. If V=sex and male is coded 0 and
   /* if (stepm >= YEARM) hstepm=1;*/           female is 1, then modmaxcovj=1.*/
   nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */      }
        printf(" Minimal and maximal values of %d th covariate V%d: min=%d max=%d \n", j, Tvar[j], modmincovj, modmaxcovj);
   p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      cptcode=modmaxcovj;
   p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      /* Ndum[0] = frequency of 0 for model-covariate j, Ndum[1] frequency of 1 etc. */
   gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);     /*for (i=0; i<=cptcode; i++) {*/
   trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);      for (i=modmincovj;  i<=modmaxcovj; i++) { /* i=-1 ? 0 and 1*//* For each value of the modality of model-cov j */
   gp=matrix(0,nhstepm,1,nlstate*nlstate);        printf("Frequencies of covariates %d V%d %d\n", j, Tvar[j], Ndum[i]);
   gm=matrix(0,nhstepm,1,nlstate*nlstate);        if( Ndum[i] != 0 ){ /* Counts if nobody answered, empty modality */
           ncodemax[j]++;  /* ncodemax[j]= Number of non-null modalities of the j th covariate. */
   for (age=bage; age<=fage; age ++){        }
         /* In fact  ncodemax[j]=2 (dichotom. variables only) but it could be more for
     /* Computed by stepm unit matrices, product of hstepm matrices, stored           historical reasons: 3 if coded 1, 2, 3 and 4 and Ndum[2]=0 */
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */      } /* Ndum[-1] number of undefined modalities */
    
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */      /* j is a covariate, n=Tvar[j] of Vn; Fills nbcode */
       /* For covariate j, modalities could be 1, 2, 3, 4. If Ndum[2]=0 ncodemax[j] is not 4 but 3 */
     /* Computing  Variances of health expectancies */      /* If Ndum[3}= 635; Ndum[4]=0; Ndum[5]=0; Ndum[6]=27; Ndum[7]=125;
     /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to         modmincovj=3; modmaxcovj = 7;
        decrease memory allocation */         There are only 3 modalities non empty (or 2 if 27 is too few) : ncodemax[j]=3;
     for(theta=1; theta <=npar; theta++){         which will be coded 0, 1, 2 which in binary on 3-1 digits are 0=00 1=01, 2=10; defining two dummy 
       for(i=1; i<=npar; i++){         variables V1_1 and V1_2.
         xp[i] = x[i] + (i==theta ?delti[theta]:0);         nbcode[Tvar[j]][ij]=k;
         xm[i] = x[i] - (i==theta ?delti[theta]:0);         nbcode[Tvar[j]][1]=0;
       }         nbcode[Tvar[j]][2]=1;
       hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);           nbcode[Tvar[j]][3]=2;
       hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);        */
        ij=1; /* ij is similar to i but can jumps over null modalities */
       for(j=1; j<= nlstate; j++){      for (i=modmincovj; i<=modmaxcovj; i++) { /* i= 1 to 2 for dichotomous, or from 1 to 3 */
         for(i=1; i<=nlstate; i++){        for (k=0; k<= cptcode; k++) { /* k=-1 ? k=0 to 1 *//* Could be 1 to 4 */
           for(h=0; h<=nhstepm-1; h++){          /*recode from 0 */
             gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;          if (Ndum[k] != 0) { /* If at least one individual responded to this modality k */
             gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;            nbcode[Tvar[j]][ij]=k;  /* stores the modality in an array nbcode. 
           }                                       k is a modality. If we have model=V1+V1*sex 
         }                                       then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
       }            ij++;
                }
       for(ij=1; ij<= nlstate*nlstate; ij++)          if (ij > ncodemax[j]) break; 
         for(h=0; h<=nhstepm-1; h++){        }  /* end of loop on */
           gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];      } /* end of loop on modality */ 
         }    } /* end of loop on model-covariate j. nbcode[Tvarj][1]=0 and nbcode[Tvarj][2]=1 sets the value of covariate j*/  
     }/* End theta */    
       for (k=-1; k< maxncov; k++) Ndum[k]=0; 
        
     for(h=0; h<=nhstepm-1; h++)    for (i=1; i<=ncovmodel-2; i++) { /* -2, cste and age */ 
       for(j=1; j<=nlstate*nlstate;j++)     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/ 
         for(theta=1; theta <=npar; theta++)     ij=Tvar[i]; /* Tvar might be -1 if status was unknown */ 
           trgradg[h][j][theta]=gradg[h][theta][j];     Ndum[ij]++; 
       } 
   
      for(ij=1;ij<=nlstate*nlstate;ij++)   ij=1;
       for(ji=1;ji<=nlstate*nlstate;ji++)   for (i=0; i<=  maxncov-1; i++) { /* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) */
         varhe[ij][ji][(int)age] =0.;     /*printf("Ndum[%d]=%d\n",i, Ndum[i]);*/
      if((Ndum[i]!=0) && (i<=ncovcol)){
      printf("%d|",(int)age);fflush(stdout);       /*printf("diff Ndum[%d]=%d\n",i, Ndum[i]);*/
      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);       Tvaraff[ij]=i; /*For printing (unclear) */
      for(h=0;h<=nhstepm-1;h++){       ij++;
       for(k=0;k<=nhstepm-1;k++){     }else
         matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);         Tvaraff[ij]=0;
         matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);   }
         for(ij=1;ij<=nlstate*nlstate;ij++)   ij--;
           for(ji=1;ji<=nlstate*nlstate;ji++)   cptcoveff=ij; /*Number of total covariates*/
             varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;  
       }  }
     }  
   
     /* Computing expectancies */  /*********** Health Expectancies ****************/
     hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);    
     for(i=1; i<=nlstate;i++)  void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
       for(j=1; j<=nlstate;j++)  
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){  {
           eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;    /* Health expectancies, no variances */
              int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;
           /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/    int nhstepma, nstepma; /* Decreasing with age */
     double age, agelim, hf;
         }    double ***p3mat;
     double eip;
     fprintf(ficresstdeij,"%3.0f",age );  
     for(i=1; i<=nlstate;i++){    pstamp(ficreseij);
       eip=0.;    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
       vip=0.;    fprintf(ficreseij,"# Age");
       for(j=1; j<=nlstate;j++){    for(i=1; i<=nlstate;i++){
         eip += eij[i][j][(int)age];      for(j=1; j<=nlstate;j++){
         for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */        fprintf(ficreseij," e%1d%1d ",i,j);
           vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];      }
         fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );      fprintf(ficreseij," e%1d. ",i);
       }    }
       fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));    fprintf(ficreseij,"\n");
     }  
     fprintf(ficresstdeij,"\n");    
     if(estepm < stepm){
     fprintf(ficrescveij,"%3.0f",age );      printf ("Problem %d lower than %d\n",estepm, stepm);
     for(i=1; i<=nlstate;i++)    }
       for(j=1; j<=nlstate;j++){    else  hstepm=estepm;   
         cptj= (j-1)*nlstate+i;    /* We compute the life expectancy from trapezoids spaced every estepm months
         for(i2=1; i2<=nlstate;i2++)     * This is mainly to measure the difference between two models: for example
           for(j2=1; j2<=nlstate;j2++){     * if stepm=24 months pijx are given only every 2 years and by summing them
             cptj2= (j2-1)*nlstate+i2;     * we are calculating an estimate of the Life Expectancy assuming a linear 
             if(cptj2 <= cptj)     * progression in between and thus overestimating or underestimating according
               fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);     * to the curvature of the survival function. If, for the same date, we 
           }     * estimate the model with stepm=1 month, we can keep estepm to 24 months
       }     * to compare the new estimate of Life expectancy with the same linear 
     fprintf(ficrescveij,"\n");     * hypothesis. A more precise result, taking into account a more precise
         * curvature will be obtained if estepm is as small as stepm. */
   }  
   free_matrix(gm,0,nhstepm,1,nlstate*nlstate);    /* For example we decided to compute the life expectancy with the smallest unit */
   free_matrix(gp,0,nhstepm,1,nlstate*nlstate);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);       nhstepm is the number of hstepm from age to agelim 
   free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);       nstepm is the number of stepm from age to agelin. 
   free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);       Look at hpijx to understand the reason of that which relies in memory size
   free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);       and note for a fixed period like estepm months */
   printf("\n");    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   fprintf(ficlog,"\n");       survival function given by stepm (the optimization length). Unfortunately it
        means that if the survival funtion is printed only each two years of age and if
   free_vector(xm,1,npar);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   free_vector(xp,1,npar);       results. So we changed our mind and took the option of the best precision.
   free_matrix(dnewm,1,nlstate*nlstate,1,npar);    */
   free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);  
 }    agelim=AGESUP;
     /* If stepm=6 months */
 /************ Variance ******************/      /* Computed by stepm unit matrices, product of hstepm matrices, stored
 void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
 {      
   /* Variance of health expectancies */  /* nhstepm age range expressed in number of stepm */
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    nstepm=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
   /* double **newm;*/    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
   double **dnewm,**doldm;    /* if (stepm >= YEARM) hstepm=1;*/
   double **dnewmp,**doldmp;    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   int i, j, nhstepm, hstepm, h, nstepm ;    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   int k, cptcode;  
   double *xp;    for (age=bage; age<=fage; age ++){ 
   double **gp, **gm;  /* for var eij */      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
   double ***gradg, ***trgradg; /*for var eij */      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
   double **gradgp, **trgradgp; /* for var p point j */      /* if (stepm >= YEARM) hstepm=1;*/
   double *gpp, *gmp; /* for var p point j */      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
   double **varppt; /* for var p point j nlstate to nlstate+ndeath */  
   double ***p3mat;      /* If stepm=6 months */
   double age,agelim, hf;      /* Computed by stepm unit matrices, product of hstepma matrices, stored
   double ***mobaverage;         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
   int theta;      
   char digit[4];      hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
   char digitp[25];      
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   char fileresprobmorprev[FILENAMELENGTH];      
       printf("%d|",(int)age);fflush(stdout);
   if(popbased==1){      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
     if(mobilav!=0)      
       strcpy(digitp,"-populbased-mobilav-");      /* Computing expectancies */
     else strcpy(digitp,"-populbased-nomobil-");      for(i=1; i<=nlstate;i++)
   }        for(j=1; j<=nlstate;j++)
   else          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
     strcpy(digitp,"-stablbased-");            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
             
   if (mobilav!=0) {            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
     if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){          }
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);  
       printf(" Error in movingaverage mobilav=%d\n",mobilav);      fprintf(ficreseij,"%3.0f",age );
     }      for(i=1; i<=nlstate;i++){
   }        eip=0;
         for(j=1; j<=nlstate;j++){
   strcpy(fileresprobmorprev,"prmorprev");          eip +=eij[i][j][(int)age];
   sprintf(digit,"%-d",ij);          fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
   /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/        }
   strcat(fileresprobmorprev,digit); /* Tvar to be done */        fprintf(ficreseij,"%9.4f", eip );
   strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */      }
   strcat(fileresprobmorprev,fileres);      fprintf(ficreseij,"\n");
   if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {      
     printf("Problem with resultfile: %s\n", fileresprobmorprev);    }
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);    free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   }    printf("\n");
   printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);    fprintf(ficlog,"\n");
      
   fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);  }
   pstamp(ficresprobmorprev);  
   fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);  void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
   fprintf(ficresprobmorprev,"# Age cov=%-d",ij);  
   for(j=nlstate+1; j<=(nlstate+ndeath);j++){  {
     fprintf(ficresprobmorprev," p.%-d SE",j);    /* Covariances of health expectancies eij and of total life expectancies according
     for(i=1; i<=nlstate;i++)     to initial status i, ei. .
       fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);    */
   }      int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
   fprintf(ficresprobmorprev,"\n");    int nhstepma, nstepma; /* Decreasing with age */
   fprintf(ficgp,"\n# Routine varevsij");    double age, agelim, hf;
   /* fprintf(fichtm, "#Local time at start: %s", strstart);*/    double ***p3matp, ***p3matm, ***varhe;
   fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");    double **dnewm,**doldm;
   fprintf(fichtm,"\n<br>%s  <br>\n",digitp);    double *xp, *xm;
 /*   } */    double **gp, **gm;
   varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);    double ***gradg, ***trgradg;
   pstamp(ficresvij);    int theta;
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");  
   if(popbased==1)    double eip, vip;
     fprintf(ficresvij,"the age specific prevalence observed in the population i.e cross-sectionally\n in each health state (popbased=1)");  
   else    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
     fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");    xp=vector(1,npar);
   fprintf(ficresvij,"# Age");    xm=vector(1,npar);
   for(i=1; i<=nlstate;i++)    dnewm=matrix(1,nlstate*nlstate,1,npar);
     for(j=1; j<=nlstate;j++)    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
       fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);    
   fprintf(ficresvij,"\n");    pstamp(ficresstdeij);
     fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
   xp=vector(1,npar);    fprintf(ficresstdeij,"# Age");
   dnewm=matrix(1,nlstate,1,npar);    for(i=1; i<=nlstate;i++){
   doldm=matrix(1,nlstate,1,nlstate);      for(j=1; j<=nlstate;j++)
   dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);        fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
   doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);      fprintf(ficresstdeij," e%1d. ",i);
     }
   gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);    fprintf(ficresstdeij,"\n");
   gpp=vector(nlstate+1,nlstate+ndeath);  
   gmp=vector(nlstate+1,nlstate+ndeath);    pstamp(ficrescveij);
   trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/    fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
      fprintf(ficrescveij,"# Age");
   if(estepm < stepm){    for(i=1; i<=nlstate;i++)
     printf ("Problem %d lower than %d\n",estepm, stepm);      for(j=1; j<=nlstate;j++){
   }        cptj= (j-1)*nlstate+i;
   else  hstepm=estepm;          for(i2=1; i2<=nlstate;i2++)
   /* For example we decided to compute the life expectancy with the smallest unit */          for(j2=1; j2<=nlstate;j2++){
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.            cptj2= (j2-1)*nlstate+i2;
      nhstepm is the number of hstepm from age to agelim            if(cptj2 <= cptj)
      nstepm is the number of stepm from age to agelin.              fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
      Look at hpijx to understand the reason of that which relies in memory size          }
      and note for a fixed period like k years */      }
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the    fprintf(ficrescveij,"\n");
      survival function given by stepm (the optimization length). Unfortunately it    
      means that if the survival funtion is printed every two years of age and if    if(estepm < stepm){
      you sum them up and add 1 year (area under the trapezoids) you won't get the same      printf ("Problem %d lower than %d\n",estepm, stepm);
      results. So we changed our mind and took the option of the best precision.    }
   */    else  hstepm=estepm;   
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */    /* We compute the life expectancy from trapezoids spaced every estepm months
   agelim = AGESUP;     * This is mainly to measure the difference between two models: for example
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */     * if stepm=24 months pijx are given only every 2 years and by summing them
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */     * we are calculating an estimate of the Life Expectancy assuming a linear 
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */     * progression in between and thus overestimating or underestimating according
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);     * to the curvature of the survival function. If, for the same date, we 
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);     * estimate the model with stepm=1 month, we can keep estepm to 24 months
     gp=matrix(0,nhstepm,1,nlstate);     * to compare the new estimate of Life expectancy with the same linear 
     gm=matrix(0,nhstepm,1,nlstate);     * hypothesis. A more precise result, taking into account a more precise
      * curvature will be obtained if estepm is as small as stepm. */
   
     for(theta=1; theta <=npar; theta++){    /* For example we decided to compute the life expectancy with the smallest unit */
       for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
         xp[i] = x[i] + (i==theta ?delti[theta]:0);       nhstepm is the number of hstepm from age to agelim 
       }       nstepm is the number of stepm from age to agelin. 
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);         Look at hpijx to understand the reason of that which relies in memory size
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);       and note for a fixed period like estepm months */
     /* We decided (b) to get a life expectancy respecting the most precise curvature of the
       if (popbased==1) {       survival function given by stepm (the optimization length). Unfortunately it
         if(mobilav ==0){       means that if the survival funtion is printed only each two years of age and if
           for(i=1; i<=nlstate;i++)       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
             prlim[i][i]=probs[(int)age][i][ij];       results. So we changed our mind and took the option of the best precision.
         }else{ /* mobilav */    */
           for(i=1; i<=nlstate;i++)    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
             prlim[i][i]=mobaverage[(int)age][i][ij];  
         }    /* If stepm=6 months */
       }    /* nhstepm age range expressed in number of stepm */
      agelim=AGESUP;
       for(j=1; j<= nlstate; j++){    nstepm=(int) rint((agelim-bage)*YEARM/stepm); 
         for(h=0; h<=nhstepm; h++){    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)    /* if (stepm >= YEARM) hstepm=1;*/
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
         }    
       }    p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       /* This for computing probability of death (h=1 means    p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
          computed over hstepm matrices product = hstepm*stepm months)    gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
          as a weighted average of prlim.    trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
       */    gp=matrix(0,nhstepm,1,nlstate*nlstate);
       for(j=nlstate+1;j<=nlstate+ndeath;j++){    gm=matrix(0,nhstepm,1,nlstate*nlstate);
         for(i=1,gpp[j]=0.; i<= nlstate; i++)  
           gpp[j] += prlim[i][i]*p3mat[i][j][1];    for (age=bage; age<=fage; age ++){ 
       }          nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
       /* end probability of death */      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
       /* if (stepm >= YEARM) hstepm=1;*/
       for(i=1; i<=npar; i++) /* Computes gradient x - delta */      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
         xp[i] = x[i] - (i==theta ?delti[theta]:0);  
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        /* If stepm=6 months */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      /* Computed by stepm unit matrices, product of hstepma matrices, stored
           in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
       if (popbased==1) {      
         if(mobilav ==0){      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
           for(i=1; i<=nlstate;i++)  
             prlim[i][i]=probs[(int)age][i][ij];      /* Computing  Variances of health expectancies */
         }else{ /* mobilav */      /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
           for(i=1; i<=nlstate;i++)         decrease memory allocation */
             prlim[i][i]=mobaverage[(int)age][i][ij];      for(theta=1; theta <=npar; theta++){
         }        for(i=1; i<=npar; i++){ 
       }          xp[i] = x[i] + (i==theta ?delti[theta]:0);
           xm[i] = x[i] - (i==theta ?delti[theta]:0);
       for(j=1; j<= nlstate; j++){        }
         for(h=0; h<=nhstepm; h++){        hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)        hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];    
         }        for(j=1; j<= nlstate; j++){
       }          for(i=1; i<=nlstate; i++){
       /* This for computing probability of death (h=1 means            for(h=0; h<=nhstepm-1; h++){
          computed over hstepm matrices product = hstepm*stepm months)              gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
          as a weighted average of prlim.              gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
       */            }
       for(j=nlstate+1;j<=nlstate+ndeath;j++){          }
         for(i=1,gmp[j]=0.; i<= nlstate; i++)        }
          gmp[j] += prlim[i][i]*p3mat[i][j][1];       
       }            for(ij=1; ij<= nlstate*nlstate; ij++)
       /* end probability of death */          for(h=0; h<=nhstepm-1; h++){
             gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
       for(j=1; j<= nlstate; j++) /* vareij */          }
         for(h=0; h<=nhstepm; h++){      }/* End theta */
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];      
         }      
       for(h=0; h<=nhstepm-1; h++)
       for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */        for(j=1; j<=nlstate*nlstate;j++)
         gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];          for(theta=1; theta <=npar; theta++)
       }            trgradg[h][j][theta]=gradg[h][theta][j];
       
     } /* End theta */  
        for(ij=1;ij<=nlstate*nlstate;ij++)
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */        for(ji=1;ji<=nlstate*nlstate;ji++)
           varhe[ij][ji][(int)age] =0.;
     for(h=0; h<=nhstepm; h++) /* veij */  
       for(j=1; j<=nlstate;j++)       printf("%d|",(int)age);fflush(stdout);
         for(theta=1; theta <=npar; theta++)       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
           trgradg[h][j][theta]=gradg[h][theta][j];       for(h=0;h<=nhstepm-1;h++){
         for(k=0;k<=nhstepm-1;k++){
     for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
       for(theta=1; theta <=npar; theta++)          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
         trgradgp[j][theta]=gradgp[theta][j];          for(ij=1;ij<=nlstate*nlstate;ij++)
              for(ji=1;ji<=nlstate*nlstate;ji++)
               varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */        }
     for(i=1;i<=nlstate;i++)      }
       for(j=1;j<=nlstate;j++)  
         vareij[i][j][(int)age] =0.;      /* Computing expectancies */
       hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
     for(h=0;h<=nhstepm;h++){      for(i=1; i<=nlstate;i++)
       for(k=0;k<=nhstepm;k++){        for(j=1; j<=nlstate;j++)
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);            eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
         for(i=1;i<=nlstate;i++)            
           for(j=1;j<=nlstate;j++)            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;  
       }          }
     }  
        fprintf(ficresstdeij,"%3.0f",age );
     /* pptj */      for(i=1; i<=nlstate;i++){
     matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);        eip=0.;
     matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);        vip=0.;
     for(j=nlstate+1;j<=nlstate+ndeath;j++)        for(j=1; j<=nlstate;j++){
       for(i=nlstate+1;i<=nlstate+ndeath;i++)          eip += eij[i][j][(int)age];
         varppt[j][i]=doldmp[j][i];          for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
     /* end ppptj */            vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
     /*  x centered again */          fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);          }
     prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);        fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
        }
     if (popbased==1) {      fprintf(ficresstdeij,"\n");
       if(mobilav ==0){  
         for(i=1; i<=nlstate;i++)      fprintf(ficrescveij,"%3.0f",age );
           prlim[i][i]=probs[(int)age][i][ij];      for(i=1; i<=nlstate;i++)
       }else{ /* mobilav */        for(j=1; j<=nlstate;j++){
         for(i=1; i<=nlstate;i++)          cptj= (j-1)*nlstate+i;
           prlim[i][i]=mobaverage[(int)age][i][ij];          for(i2=1; i2<=nlstate;i2++)
       }            for(j2=1; j2<=nlstate;j2++){
     }              cptj2= (j2-1)*nlstate+i2;
                            if(cptj2 <= cptj)
     /* This for computing probability of death (h=1 means                fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
        computed over hstepm (estepm) matrices product = hstepm*stepm months)            }
        as a weighted average of prlim.        }
     */      fprintf(ficrescveij,"\n");
     for(j=nlstate+1;j<=nlstate+ndeath;j++){     
       for(i=1,gmp[j]=0.;i<= nlstate; i++)    }
         gmp[j] += prlim[i][i]*p3mat[i][j][1];    free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
     }        free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
     /* end probability of death */    free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
     free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
     fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);    free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){    free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));    printf("\n");
       for(i=1; i<=nlstate;i++){    fprintf(ficlog,"\n");
         fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);  
       }    free_vector(xm,1,npar);
     }    free_vector(xp,1,npar);
     fprintf(ficresprobmorprev,"\n");    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
     free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
     fprintf(ficresvij,"%.0f ",age );    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
     for(i=1; i<=nlstate;i++)  }
       for(j=1; j<=nlstate;j++){  
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);  /************ Variance ******************/
       }  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
     fprintf(ficresvij,"\n");  {
     free_matrix(gp,0,nhstepm,1,nlstate);    /* Variance of health expectancies */
     free_matrix(gm,0,nhstepm,1,nlstate);    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);    /* double **newm;*/
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);    double **dnewm,**doldm;
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    double **dnewmp,**doldmp;
   } /* End age */    int i, j, nhstepm, hstepm, h, nstepm ;
   free_vector(gpp,nlstate+1,nlstate+ndeath);    int k, cptcode;
   free_vector(gmp,nlstate+1,nlstate+ndeath);    double *xp;
   free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);    double **gp, **gm;  /* for var eij */
   free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/    double ***gradg, ***trgradg; /*for var eij */
   fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");    double **gradgp, **trgradgp; /* for var p point j */
   /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */    double *gpp, *gmp; /* for var p point j */
   fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
 /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */    double ***p3mat;
 /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */    double age,agelim, hf;
 /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */    double ***mobaverage;
   fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));    int theta;
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));    char digit[4];
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));    char digitp[25];
   fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));  
   fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);    char fileresprobmorprev[FILENAMELENGTH];
   /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);  
 */    if(popbased==1){
 /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */      if(mobilav!=0)
   fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);        strcpy(digitp,"-populbased-mobilav-");
       else strcpy(digitp,"-populbased-nomobil-");
   free_vector(xp,1,npar);    }
   free_matrix(doldm,1,nlstate,1,nlstate);    else 
   free_matrix(dnewm,1,nlstate,1,npar);      strcpy(digitp,"-stablbased-");
   free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);  
   free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);    if (mobilav!=0) {
   free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
   fclose(ficresprobmorprev);        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
   fflush(ficgp);        printf(" Error in movingaverage mobilav=%d\n",mobilav);
   fflush(fichtm);      }
 }  /* end varevsij */    }
   
 /************ Variance of prevlim ******************/    strcpy(fileresprobmorprev,"prmorprev"); 
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])    sprintf(digit,"%-d",ij);
 {    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
   /* Variance of prevalence limit */    strcat(fileresprobmorprev,digit); /* Tvar to be done */
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
   double **newm;    strcat(fileresprobmorprev,fileres);
   double **dnewm,**doldm;    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
   int i, j, nhstepm, hstepm;      printf("Problem with resultfile: %s\n", fileresprobmorprev);
   int k, cptcode;      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
   double *xp;    }
   double *gp, *gm;    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   double **gradg, **trgradg;   
   double age,agelim;    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   int theta;    pstamp(ficresprobmorprev);
      fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
   pstamp(ficresvpl);    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
   fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
   fprintf(ficresvpl,"# Age");      fprintf(ficresprobmorprev," p.%-d SE",j);
   for(i=1; i<=nlstate;i++)      for(i=1; i<=nlstate;i++)
       fprintf(ficresvpl," %1d-%1d",i,i);        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
   fprintf(ficresvpl,"\n");    }  
     fprintf(ficresprobmorprev,"\n");
   xp=vector(1,npar);    fprintf(ficgp,"\n# Routine varevsij");
   dnewm=matrix(1,nlstate,1,npar);    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
   doldm=matrix(1,nlstate,1,nlstate);    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
      fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
   hstepm=1*YEARM; /* Every year of age */  /*   } */
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   agelim = AGESUP;    pstamp(ficresvij);
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    if(popbased==1)
     if (stepm >= YEARM) hstepm=1;      fprintf(ficresvij,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d\n",mobilav);
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    else
     gradg=matrix(1,npar,1,nlstate);      fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
     gp=vector(1,nlstate);    fprintf(ficresvij,"# Age");
     gm=vector(1,nlstate);    for(i=1; i<=nlstate;i++)
       for(j=1; j<=nlstate;j++)
     for(theta=1; theta <=npar; theta++){        fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
       for(i=1; i<=npar; i++){ /* Computes gradient */    fprintf(ficresvij,"\n");
         xp[i] = x[i] + (i==theta ?delti[theta]:0);  
       }    xp=vector(1,npar);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    dnewm=matrix(1,nlstate,1,npar);
       for(i=1;i<=nlstate;i++)    doldm=matrix(1,nlstate,1,nlstate);
         gp[i] = prlim[i][i];    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
        doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
       for(i=1; i<=npar; i++) /* Computes gradient */  
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    gpp=vector(nlstate+1,nlstate+ndeath);
       for(i=1;i<=nlstate;i++)    gmp=vector(nlstate+1,nlstate+ndeath);
         gm[i] = prlim[i][i];    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     
       for(i=1;i<=nlstate;i++)    if(estepm < stepm){
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];      printf ("Problem %d lower than %d\n",estepm, stepm);
     } /* End theta */    }
     else  hstepm=estepm;   
     trgradg =matrix(1,nlstate,1,npar);    /* For example we decided to compute the life expectancy with the smallest unit */
     /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
     for(j=1; j<=nlstate;j++)       nhstepm is the number of hstepm from age to agelim 
       for(theta=1; theta <=npar; theta++)       nstepm is the number of stepm from age to agelin. 
         trgradg[j][theta]=gradg[theta][j];       Look at function hpijx to understand why (it is linked to memory size questions) */
     /* We decided (b) to get a life expectancy respecting the most precise curvature of the
     for(i=1;i<=nlstate;i++)       survival function given by stepm (the optimization length). Unfortunately it
       varpl[i][(int)age] =0.;       means that if the survival funtion is printed every two years of age and if
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);       results. So we changed our mind and took the option of the best precision.
     for(i=1;i<=nlstate;i++)    */
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     agelim = AGESUP;
     fprintf(ficresvpl,"%.0f ",age );    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
     for(i=1; i<=nlstate;i++)      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     fprintf(ficresvpl,"\n");      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     free_vector(gp,1,nlstate);      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
     free_vector(gm,1,nlstate);      gp=matrix(0,nhstepm,1,nlstate);
     free_matrix(gradg,1,npar,1,nlstate);      gm=matrix(0,nhstepm,1,nlstate);
     free_matrix(trgradg,1,nlstate,1,npar);  
   } /* End age */  
       for(theta=1; theta <=npar; theta++){
   free_vector(xp,1,npar);        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
   free_matrix(doldm,1,nlstate,1,npar);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
   free_matrix(dnewm,1,nlstate,1,nlstate);        }
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
 }        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   
 /************ Variance of one-step probabilities  ******************/        if (popbased==1) {
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])          if(mobilav ==0){
 {            for(i=1; i<=nlstate;i++)
   int i, j=0,  i1, k1, l1, t, tj;              prlim[i][i]=probs[(int)age][i][ij];
   int k2, l2, j1,  z1;          }else{ /* mobilav */ 
   int k=0,l, cptcode;            for(i=1; i<=nlstate;i++)
   int first=1, first1;              prlim[i][i]=mobaverage[(int)age][i][ij];
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;          }
   double **dnewm,**doldm;        }
   double *xp;    
   double *gp, *gm;        for(j=1; j<= nlstate; j++){
   double **gradg, **trgradg;          for(h=0; h<=nhstepm; h++){
   double **mu;            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
   double age,agelim, cov[NCOVMAX];              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */          }
   int theta;        }
   char fileresprob[FILENAMELENGTH];        /* This for computing probability of death (h=1 means
   char fileresprobcov[FILENAMELENGTH];           computed over hstepm matrices product = hstepm*stepm months) 
   char fileresprobcor[FILENAMELENGTH];           as a weighted average of prlim.
         */
   double ***varpij;        for(j=nlstate+1;j<=nlstate+ndeath;j++){
           for(i=1,gpp[j]=0.; i<= nlstate; i++)
   strcpy(fileresprob,"prob");            gpp[j] += prlim[i][i]*p3mat[i][j][1];
   strcat(fileresprob,fileres);        }    
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {        /* end probability of death */
     printf("Problem with resultfile: %s\n", fileresprob);  
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
   }          xp[i] = x[i] - (i==theta ?delti[theta]:0);
   strcpy(fileresprobcov,"probcov");        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   strcat(fileresprobcov,fileres);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {   
     printf("Problem with resultfile: %s\n", fileresprobcov);        if (popbased==1) {
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);          if(mobilav ==0){
   }            for(i=1; i<=nlstate;i++)
   strcpy(fileresprobcor,"probcor");              prlim[i][i]=probs[(int)age][i][ij];
   strcat(fileresprobcor,fileres);          }else{ /* mobilav */ 
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {            for(i=1; i<=nlstate;i++)
     printf("Problem with resultfile: %s\n", fileresprobcor);              prlim[i][i]=mobaverage[(int)age][i][ij];
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);          }
   }        }
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);  
   fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);        for(j=1; j<= nlstate; j++){  /* Sum of wi * eij = e.j */
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);          for(h=0; h<=nhstepm; h++){
   fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
   fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);          }
   pstamp(ficresprob);        }
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");        /* This for computing probability of death (h=1 means
   fprintf(ficresprob,"# Age");           computed over hstepm matrices product = hstepm*stepm months) 
   pstamp(ficresprobcov);           as a weighted average of prlim.
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");        */
   fprintf(ficresprobcov,"# Age");        for(j=nlstate+1;j<=nlstate+ndeath;j++){
   pstamp(ficresprobcor);          for(i=1,gmp[j]=0.; i<= nlstate; i++)
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");           gmp[j] += prlim[i][i]*p3mat[i][j][1];
   fprintf(ficresprobcor,"# Age");        }    
         /* end probability of death */
   
   for(i=1; i<=nlstate;i++)        for(j=1; j<= nlstate; j++) /* vareij */
     for(j=1; j<=(nlstate+ndeath);j++){          for(h=0; h<=nhstepm; h++){
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
       fprintf(ficresprobcov," p%1d-%1d ",i,j);          }
       fprintf(ficresprobcor," p%1d-%1d ",i,j);  
     }          for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
  /* fprintf(ficresprob,"\n");          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
   fprintf(ficresprobcov,"\n");        }
   fprintf(ficresprobcor,"\n");  
  */      } /* End theta */
  xp=vector(1,npar);  
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));  
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);      for(h=0; h<=nhstepm; h++) /* veij */
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);        for(j=1; j<=nlstate;j++)
   first=1;          for(theta=1; theta <=npar; theta++)
   fprintf(ficgp,"\n# Routine varprob");            trgradg[h][j][theta]=gradg[h][theta][j];
   fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");  
   fprintf(fichtm,"\n");      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
         for(theta=1; theta <=npar; theta++)
   fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);          trgradgp[j][theta]=gradgp[theta][j];
   fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\    
   file %s<br>\n",optionfilehtmcov);  
   fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
 and drawn. It helps understanding how is the covariance between two incidences.\      for(i=1;i<=nlstate;i++)
  They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");        for(j=1;j<=nlstate;j++)
   fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \          vareij[i][j][(int)age] =0.;
 It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \  
 would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \      for(h=0;h<=nhstepm;h++){
 standard deviations wide on each axis. <br>\        for(k=0;k<=nhstepm;k++){
  Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
  and made the appropriate rotation to look at the uncorrelated principal directions.<br>\          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
 To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");          for(i=1;i<=nlstate;i++)
             for(j=1;j<=nlstate;j++)
   cov[1]=1;              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
   tj=cptcoveff;        }
   if (cptcovn<1) {tj=1;ncodemax[1]=1;}      }
   j1=0;    
   for(t=1; t<=tj;t++){      /* pptj */
     for(i1=1; i1<=ncodemax[t];i1++){      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
       j1++;      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
       if  (cptcovn>0) {      for(j=nlstate+1;j<=nlstate+ndeath;j++)
         fprintf(ficresprob, "\n#********** Variable ");        for(i=nlstate+1;i<=nlstate+ndeath;i++)
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          varppt[j][i]=doldmp[j][i];
         fprintf(ficresprob, "**********\n#\n");      /* end ppptj */
         fprintf(ficresprobcov, "\n#********** Variable ");      /*  x centered again */
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
         fprintf(ficresprobcov, "**********\n#\n");      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
           
         fprintf(ficgp, "\n#********** Variable ");      if (popbased==1) {
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        if(mobilav ==0){
         fprintf(ficgp, "**********\n#\n");          for(i=1; i<=nlstate;i++)
                    prlim[i][i]=probs[(int)age][i][ij];
                }else{ /* mobilav */ 
         fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable ");          for(i=1; i<=nlstate;i++)
         for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);            prlim[i][i]=mobaverage[(int)age][i][ij];
         fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");        }
              }
         fprintf(ficresprobcor, "\n#********** Variable ");                   
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);      /* This for computing probability of death (h=1 means
         fprintf(ficresprobcor, "**********\n#");             computed over hstepm (estepm) matrices product = hstepm*stepm months) 
       }         as a weighted average of prlim.
            */
       for (age=bage; age<=fage; age ++){      for(j=nlstate+1;j<=nlstate+ndeath;j++){
         cov[2]=age;        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
         for (k=1; k<=cptcovn;k++) {          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];      }    
         }      /* end probability of death */
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  
         for (k=1; k<=cptcovprod;k++)      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
                fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));        for(i=1; i<=nlstate;i++){
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
         gp=vector(1,(nlstate)*(nlstate+ndeath));        }
         gm=vector(1,(nlstate)*(nlstate+ndeath));      } 
          fprintf(ficresprobmorprev,"\n");
         for(theta=1; theta <=npar; theta++){  
           for(i=1; i<=npar; i++)      fprintf(ficresvij,"%.0f ",age );
             xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);      for(i=1; i<=nlstate;i++)
                  for(j=1; j<=nlstate;j++){
           pmij(pmmij,cov,ncovmodel,xp,nlstate);          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
                  }
           k=0;      fprintf(ficresvij,"\n");
           for(i=1; i<= (nlstate); i++){      free_matrix(gp,0,nhstepm,1,nlstate);
             for(j=1; j<=(nlstate+ndeath);j++){      free_matrix(gm,0,nhstepm,1,nlstate);
               k=k+1;      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
               gp[k]=pmmij[i][j];      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
             }      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }    } /* End age */
              free_vector(gpp,nlstate+1,nlstate+ndeath);
           for(i=1; i<=npar; i++)    free_vector(gmp,nlstate+1,nlstate+ndeath);
             xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
        free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
           pmij(pmmij,cov,ncovmodel,xp,nlstate);    fprintf(ficgp,"\nunset parametric;unset label; set ter png small size 320, 240");
           k=0;    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
           for(i=1; i<=(nlstate); i++){    fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
             for(j=1; j<=(nlstate+ndeath);j++){  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
               k=k+1;  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
               gm[k]=pmmij[i][j];  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
             }    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l lt 1 ",subdirf(fileresprobmorprev));
           }    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l lt 2 ",subdirf(fileresprobmorprev));
          fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l lt 2 ",subdirf(fileresprobmorprev));
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
             gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];      fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
         }    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
   */
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
           for(theta=1; theta <=npar; theta++)    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
             trgradg[j][theta]=gradg[theta][j];  
            free_vector(xp,1,npar);
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);    free_matrix(doldm,1,nlstate,1,nlstate);
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);    free_matrix(dnewm,1,nlstate,1,npar);
         free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
         free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
         free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
         free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficresprobmorprev);
         pmij(pmmij,cov,ncovmodel,x,nlstate);    fflush(ficgp);
            fflush(fichtm); 
         k=0;  }  /* end varevsij */
         for(i=1; i<=(nlstate); i++){  
           for(j=1; j<=(nlstate+ndeath);j++){  /************ Variance of prevlim ******************/
             k=k+1;  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
             mu[k][(int) age]=pmmij[i][j];  {
           }    /* Variance of prevalence limit */
         }    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)    double **newm;
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)    double **dnewm,**doldm;
             varpij[i][j][(int)age] = doldm[i][j];    int i, j, nhstepm, hstepm;
     int k, cptcode;
         /*printf("\n%d ",(int)age);    double *xp;
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){    double *gp, *gm;
           printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));    double **gradg, **trgradg;
           fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));    double age,agelim;
           }*/    int theta;
     
         fprintf(ficresprob,"\n%d ",(int)age);    pstamp(ficresvpl);
         fprintf(ficresprobcov,"\n%d ",(int)age);    fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
         fprintf(ficresprobcor,"\n%d ",(int)age);    fprintf(ficresvpl,"# Age");
     for(i=1; i<=nlstate;i++)
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)        fprintf(ficresvpl," %1d-%1d",i,i);
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));    fprintf(ficresvpl,"\n");
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){  
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);    xp=vector(1,npar);
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);    dnewm=matrix(1,nlstate,1,npar);
         }    doldm=matrix(1,nlstate,1,nlstate);
         i=0;    
         for (k=1; k<=(nlstate);k++){    hstepm=1*YEARM; /* Every year of age */
           for (l=1; l<=(nlstate+ndeath);l++){    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
             i=i++;    agelim = AGESUP;
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             for (j=1; j<=i;j++){      if (stepm >= YEARM) hstepm=1;
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));      gradg=matrix(1,npar,1,nlstate);
             }      gp=vector(1,nlstate);
           }      gm=vector(1,nlstate);
         }/* end of loop for state */  
       } /* end of loop for age */      for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient */
       /* Confidence intervalle of pij  */          xp[i] = x[i] + (i==theta ?delti[theta]:0);
       /*        }
         fprintf(ficgp,"\nset noparametric;unset label");        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");        for(i=1;i<=nlstate;i++)
         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");          gp[i] = prlim[i][i];
         fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);      
         fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);        for(i=1; i<=npar; i++) /* Computes gradient */
         fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
         fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
       */        for(i=1;i<=nlstate;i++)
           gm[i] = prlim[i][i];
       /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/  
       first1=1;        for(i=1;i<=nlstate;i++)
       for (k2=1; k2<=(nlstate);k2++){          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
         for (l2=1; l2<=(nlstate+ndeath);l2++){      } /* End theta */
           if(l2==k2) continue;  
           j=(k2-1)*(nlstate+ndeath)+l2;      trgradg =matrix(1,nlstate,1,npar);
           for (k1=1; k1<=(nlstate);k1++){  
             for (l1=1; l1<=(nlstate+ndeath);l1++){      for(j=1; j<=nlstate;j++)
               if(l1==k1) continue;        for(theta=1; theta <=npar; theta++)
               i=(k1-1)*(nlstate+ndeath)+l1;          trgradg[j][theta]=gradg[theta][j];
               if(i<=j) continue;  
               for (age=bage; age<=fage; age ++){      for(i=1;i<=nlstate;i++)
                 if ((int)age %5==0){        varpl[i][(int)age] =0.;
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;      for(i=1;i<=nlstate;i++)
                   mu1=mu[i][(int) age]/stepm*YEARM ;        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
                   mu2=mu[j][(int) age]/stepm*YEARM;  
                   c12=cv12/sqrt(v1*v2);      fprintf(ficresvpl,"%.0f ",age );
                   /* Computing eigen value of matrix of covariance */      for(i=1; i<=nlstate;i++)
                   lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
                   lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;      fprintf(ficresvpl,"\n");
                   /* Eigen vectors */      free_vector(gp,1,nlstate);
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));      free_vector(gm,1,nlstate);
                   /*v21=sqrt(1.-v11*v11); *//* error */      free_matrix(gradg,1,npar,1,nlstate);
                   v21=(lc1-v1)/cv12*v11;      free_matrix(trgradg,1,nlstate,1,npar);
                   v12=-v21;    } /* End age */
                   v22=v11;  
                   tnalp=v21/v11;    free_vector(xp,1,npar);
                   if(first1==1){    free_matrix(doldm,1,nlstate,1,npar);
                     first1=0;    free_matrix(dnewm,1,nlstate,1,nlstate);
                     printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);  
                   }  }
                   fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);  
                   /*printf(fignu*/  /************ Variance of one-step probabilities  ******************/
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
                   /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */  {
                   if(first==1){    int i, j=0,  i1, k1, l1, t, tj;
                     first=0;    int k2, l2, j1,  z1;
                     fprintf(ficgp,"\nset parametric;unset label");    int k=0,l, cptcode;
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);    int first=1, first1, first2;
                     fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
                     fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\    double **dnewm,**doldm;
  :<a href=\"%s%d%1d%1d-%1d%1d.png\">\    double *xp;
 %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\    double *gp, *gm;
                             subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\    double **gradg, **trgradg;
                             subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);    double **mu;
                     fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);    double age,agelim, cov[NCOVMAX+1];
                     fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
                     fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);    int theta;
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);    char fileresprob[FILENAMELENGTH];
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);    char fileresprobcov[FILENAMELENGTH];
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\    char fileresprobcor[FILENAMELENGTH];
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\    double ***varpij;
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));  
                   }else{    strcpy(fileresprob,"prob"); 
                     first=0;    strcat(fileresprob,fileres);
                     fprintf(fichtmcov," %d (%.3f),",(int) age, c12);    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);      printf("Problem with resultfile: %s\n", fileresprob);
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\    }
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\    strcpy(fileresprobcov,"probcov"); 
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));    strcat(fileresprobcov,fileres);
                   }/* if first */    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
                 } /* age mod 5 */      printf("Problem with resultfile: %s\n", fileresprobcov);
               } /* end loop age */      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
               fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);    }
               first=1;    strcpy(fileresprobcor,"probcor"); 
             } /*l12 */    strcat(fileresprobcor,fileres);
           } /* k12 */    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
         } /*l1 */      printf("Problem with resultfile: %s\n", fileresprobcor);
       }/* k1 */      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     } /* loop covariates */    }
   }    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
   free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
   free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
   free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
   free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
   free_vector(xp,1,npar);    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
   fclose(ficresprob);    pstamp(ficresprob);
   fclose(ficresprobcov);    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
   fclose(ficresprobcor);    fprintf(ficresprob,"# Age");
   fflush(ficgp);    pstamp(ficresprobcov);
   fflush(fichtmcov);    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
 }    fprintf(ficresprobcov,"# Age");
     pstamp(ficresprobcor);
     fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
 /******************* Printing html file ***********/    fprintf(ficresprobcor,"# Age");
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \  
                   int lastpass, int stepm, int weightopt, char model[],\  
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\    for(i=1; i<=nlstate;i++)
                   int popforecast, int estepm ,\      for(j=1; j<=(nlstate+ndeath);j++){
                   double jprev1, double mprev1,double anprev1, \        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
                   double jprev2, double mprev2,double anprev2){        fprintf(ficresprobcov," p%1d-%1d ",i,j);
   int jj1, k1, i1, cpt;        fprintf(ficresprobcor," p%1d-%1d ",i,j);
       }  
    fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \   /* fprintf(ficresprob,"\n");
    <li><a href='#secondorder'>Result files (second order (variance)</a>\n \    fprintf(ficresprobcov,"\n");
 </ul>");    fprintf(ficresprobcor,"\n");
    fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \   */
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",    xp=vector(1,npar);
            jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
    fprintf(fichtm,"\    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
  - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
            stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
    fprintf(fichtm,"\    first=1;
  - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",    fprintf(ficgp,"\n# Routine varprob");
            subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
    fprintf(fichtm,"\    fprintf(fichtm,"\n");
  - (a) Life expectancies by health status at initial age, (b) health expectancies by health status at initial age:  ei., eij . If one or more covariate are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \  
    <a href=\"%s\">%s</a> <br>\n",    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
            estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));    fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
    fprintf(fichtm,"\    file %s<br>\n",optionfilehtmcov);
  - Population projections by age and states: \    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
    <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));  and drawn. It helps understanding how is the covariance between two incidences.\
    They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
 fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
   It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
  m=cptcoveff;  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}  standard deviations wide on each axis. <br>\
    Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
  jj1=0;   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
  for(k1=1; k1<=m;k1++){  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
    for(i1=1; i1<=ncodemax[k1];i1++){  
      jj1++;    cov[1]=1;
      if (cptcovn > 0) {    /* tj=cptcoveff; */
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");    tj = (int) pow(2,cptcoveff);
        for (cpt=1; cpt<=cptcoveff;cpt++)    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);    j1=0;
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");    for(j1=1; j1<=tj;j1++){
      }      /*for(i1=1; i1<=ncodemax[t];i1++){ */
      /* Pij */      /*j1++;*/
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d1.png\">%s%d1.png</a><br> \        if  (cptcovn>0) {
 <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);              fprintf(ficresprob, "\n#********** Variable "); 
      /* Quasi-incidences */          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\          fprintf(ficresprob, "**********\n#\n");
  before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d2.png\">%s%d2.png</a><br> \          fprintf(ficresprobcov, "\n#********** Variable "); 
 <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
        /* Period (stable) prevalence in each health state */          fprintf(ficresprobcov, "**********\n#\n");
        for(cpt=1; cpt<nlstate;cpt++){          
          fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d%d.png\">%s%d%d.png</a><br> \          fprintf(ficgp, "\n#********** Variable "); 
 <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
        }          fprintf(ficgp, "**********\n#\n");
      for(cpt=1; cpt<=nlstate;cpt++) {          
         fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \          
 <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);          fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
      }          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
    } /* end i1 */          fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
  }/* End k1 */          
  fprintf(fichtm,"</ul>");          fprintf(ficresprobcor, "\n#********** Variable ");    
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcor, "**********\n#");    
  fprintf(fichtm,"\        }
 \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\        
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);        gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
  fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",        gp=vector(1,(nlstate)*(nlstate+ndeath));
          subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));        gm=vector(1,(nlstate)*(nlstate+ndeath));
  fprintf(fichtm,"\        for (age=bage; age<=fage; age ++){ 
  - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",          cov[2]=age;
          subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));          for (k=1; k<=cptcovn;k++) {
             cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];/* j1 1 2 3 4
  fprintf(fichtm,"\                                                           * 1  1 1 1 1
  - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",                                                           * 2  2 1 1 1
          subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));                                                           * 3  1 2 1 1
  fprintf(fichtm,"\                                                           */
  - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \            /* nbcode[1][1]=0 nbcode[1][2]=1;*/
    <a href=\"%s\">%s</a> <br>\n</li>",          }
            estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
  fprintf(fichtm,"\          for (k=1; k<=cptcovprod;k++)
  - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
    <a href=\"%s\">%s</a> <br>\n</li>",          
            estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));      
  fprintf(fichtm,"\          for(theta=1; theta <=npar; theta++){
  - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), eij are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences (i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",            for(i=1; i<=npar; i++)
          estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
  fprintf(fichtm,"\            
  - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors: <a href=\"%s\">%s</a> <br>\n",            pmij(pmmij,cov,ncovmodel,xp,nlstate);
          subdirf2(fileres,"t"),subdirf2(fileres,"t"));            
  fprintf(fichtm,"\            k=0;
  - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\            for(i=1; i<= (nlstate); i++){
          subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));              for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
 /*  if(popforecast==1) fprintf(fichtm,"\n */                gp[k]=pmmij[i][j];
 /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */              }
 /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */            }
 /*      <br>",fileres,fileres,fileres,fileres); */            
 /*  else  */            for(i=1; i<=npar; i++)
 /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
  fflush(fichtm);      
  fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");            pmij(pmmij,cov,ncovmodel,xp,nlstate);
             k=0;
  m=cptcoveff;            for(i=1; i<=(nlstate); i++){
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}              for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
  jj1=0;                gm[k]=pmmij[i][j];
  for(k1=1; k1<=m;k1++){              }
    for(i1=1; i1<=ncodemax[k1];i1++){            }
      jj1++;       
      if (cptcovn > 0) {            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
        for (cpt=1; cpt<=cptcoveff;cpt++)          }
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);  
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
      }            for(theta=1; theta <=npar; theta++)
      for(cpt=1; cpt<=nlstate;cpt++) {              trgradg[j][theta]=gradg[theta][j];
        fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \          
 prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
 <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);            matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
      }  
      fprintf(fichtm,"\n<br>- Total life expectancy by age and \          pmij(pmmij,cov,ncovmodel,x,nlstate);
 health expectancies in states (1) and (2): %s%d.png<br>\          
 <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);          k=0;
    } /* end i1 */          for(i=1; i<=(nlstate); i++){
  }/* End k1 */            for(j=1; j<=(nlstate+ndeath);j++){
  fprintf(fichtm,"</ul>");              k=k+1;
  fflush(fichtm);              mu[k][(int) age]=pmmij[i][j];
 }            }
           }
 /******************* Gnuplot file **************/          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
 void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
               varpij[i][j][(int)age] = doldm[i][j];
   char dirfileres[132],optfileres[132];  
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;          /*printf("\n%d ",(int)age);
   int ng;            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
 /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
 /*     printf("Problem with file %s",optionfilegnuplot); */            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
 /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */            }*/
 /*   } */  
           fprintf(ficresprob,"\n%d ",(int)age);
   /*#ifdef windows */          fprintf(ficresprobcov,"\n%d ",(int)age);
   fprintf(ficgp,"cd \"%s\" \n",pathc);          fprintf(ficresprobcor,"\n%d ",(int)age);
     /*#endif */  
   m=pow(2,cptcoveff);          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
             fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
   strcpy(dirfileres,optionfilefiname);          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
   strcpy(optfileres,"vpl");            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
  /* 1eme*/            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
   for (cpt=1; cpt<= nlstate ; cpt ++) {          }
    for (k1=1; k1<= m ; k1 ++) {          i=0;
      fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);          for (k=1; k<=(nlstate);k++){
      fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);            for (l=1; l<=(nlstate+ndeath);l++){ 
      fprintf(ficgp,"set xlabel \"Age\" \n\              i++;
 set ylabel \"Probability\" \n\              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
 set ter png small\n\              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
 set size 0.65,0.65\n\              for (j=1; j<=i;j++){
 plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);                /* printf(" k=%d l=%d i=%d j=%d\n",k,l,i,j);fflush(stdout); */
                 fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
      for (i=1; i<= nlstate ; i ++) {                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");              }
        else fprintf(ficgp," \%%*lf (\%%*lf)");            }
      }          }/* end of loop for state */
      fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);        } /* end of loop for age */
      for (i=1; i<= nlstate ; i ++) {        free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");        free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
        else fprintf(ficgp," \%%*lf (\%%*lf)");        free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
      }        free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
      fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);        
      for (i=1; i<= nlstate ; i ++) {        /* Confidence intervalle of pij  */
        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");        /*
        else fprintf(ficgp," \%%*lf (\%%*lf)");          fprintf(ficgp,"\nunset parametric;unset label");
      }            fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
      fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
    }          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
   }          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
   /*2 eme*/          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
            fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
   for (k1=1; k1<= m ; k1 ++) {        */
     fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);  
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
            first1=1;first2=2;
     for (i=1; i<= nlstate+1 ; i ++) {        for (k2=1; k2<=(nlstate);k2++){
       k=2*i;          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);            if(l2==k2) continue;
       for (j=1; j<= nlstate+1 ; j ++) {            j=(k2-1)*(nlstate+ndeath)+l2;
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");            for (k1=1; k1<=(nlstate);k1++){
         else fprintf(ficgp," \%%*lf (\%%*lf)");              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
       }                  if(l1==k1) continue;
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");                i=(k1-1)*(nlstate+ndeath)+l1;
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);                if(i<=j) continue;
       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);                for (age=bage; age<=fage; age ++){ 
       for (j=1; j<= nlstate+1 ; j ++) {                  if ((int)age %5==0){
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
         else fprintf(ficgp," \%%*lf (\%%*lf)");                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
       }                      cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
       fprintf(ficgp,"\" t\"\" w l 0,");                    mu1=mu[i][(int) age]/stepm*YEARM ;
       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);                    mu2=mu[j][(int) age]/stepm*YEARM;
       for (j=1; j<= nlstate+1 ; j ++) {                    c12=cv12/sqrt(v1*v2);
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");                    /* Computing eigen value of matrix of covariance */
         else fprintf(ficgp," \%%*lf (\%%*lf)");                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
       }                      lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");                    if ((lc2 <0) || (lc1 <0) ){
       else fprintf(ficgp,"\" t\"\" w l 0,");                      if(first2==1){
     }                        first1=0;
   }                      printf("Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS. See log file for details...\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);
                        }
   /*3eme*/                      fprintf(ficlog,"Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS.\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);fflush(ficlog);
                        /* lc1=fabs(lc1); */ /* If we want to have them positive */
   for (k1=1; k1<= m ; k1 ++) {                      /* lc2=fabs(lc2); */
     for (cpt=1; cpt<= nlstate ; cpt ++) {                    }
       /*       k=2+nlstate*(2*cpt-2); */  
       k=2+(nlstate+1)*(cpt-1);                    /* Eigen vectors */
       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
       fprintf(ficgp,"set ter png small\n\                    /*v21=sqrt(1.-v11*v11); *//* error */
 set size 0.65,0.65\n\                    v21=(lc1-v1)/cv12*v11;
 plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);                    v12=-v21;
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);                    v22=v11;
         for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");                    tnalp=v21/v11;
         fprintf(ficgp,"\" t \"e%d1\" w l",cpt);                    if(first1==1){
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);                      first1=0;
         for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
         fprintf(ficgp,"\" t \"e%d1\" w l",cpt);                    }
                            fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
       */                    /*printf(fignu*/
       for (i=1; i< nlstate ; i ++) {                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
         /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/                    if(first==1){
                              first=0;
       }                      fprintf(ficgp,"\nset parametric;unset label");
       fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
     }                      fprintf(ficgp,"\nset ter png small size 320, 240");
   }                      fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
     :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   /* CV preval stable (period) */  %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
   for (k1=1; k1<= m ; k1 ++) {                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
     for (cpt=1; cpt<=nlstate ; cpt ++) {                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
       k=3;                      fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);                      fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
 set ter png small\nset size 0.65,0.65\n\                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
 unset log y\n\                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
 plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                                    mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
       for (i=1; i< nlstate ; i ++)                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
         fprintf(ficgp,"+$%d",k+i+1);                    }else{
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);                      first=0;
                            fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
       l=3+(nlstate+ndeath)*cpt;                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
       fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
       for (i=1; i< nlstate ; i ++) {                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
         l=3+(nlstate+ndeath)*cpt;                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
         fprintf(ficgp,"+$%d",l+i+1);                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
       }                    }/* if first */
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);                    } /* age mod 5 */
     }                } /* end loop age */
   }                  fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                  first=1;
   /* proba elementaires */              } /*l12 */
   for(i=1,jk=1; i <=nlstate; i++){            } /* k12 */
     for(k=1; k <=(nlstate+ndeath); k++){          } /*l1 */
       if (k != i) {        }/* k1 */
         for(j=1; j <=ncovmodel; j++){        /* } /* loop covariates */
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);    }
           jk++;    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
           fprintf(ficgp,"\n");    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
         }    free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
       }    free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
     }    free_vector(xp,1,npar);
    }    fclose(ficresprob);
     fclose(ficresprobcov);
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/    fclose(ficresprobcor);
      for(jk=1; jk <=m; jk++) {    fflush(ficgp);
        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng);    fflush(fichtmcov);
        if (ng==2)  }
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");  
        else  
          fprintf(ficgp,"\nset title \"Probability\"\n");  /******************* Printing html file ***********/
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
        i=1;                    int lastpass, int stepm, int weightopt, char model[],\
        for(k2=1; k2<=nlstate; k2++) {                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
          k3=i;                    int popforecast, int estepm ,\
          for(k=1; k<=(nlstate+ndeath); k++) {                    double jprev1, double mprev1,double anprev1, \
            if (k != k2){                    double jprev2, double mprev2,double anprev2){
              if(ng==2)    int jj1, k1, i1, cpt;
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);  
              else     fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);     <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
              ij=1;  </ul>");
              for(j=3; j <=ncovmodel; j++) {     fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);             jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
                  ij++;     fprintf(fichtm,"\
                }   - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
                else             stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);     fprintf(fichtm,"\
              }   - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
              fprintf(ficgp,")/(1");             subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
                   fprintf(fichtm,"\
              for(k1=1; k1 <=nlstate; k1++){     - (a) Life expectancies by health status at initial age, ei. (b) health expectancies by health status at initial age, eij . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);     <a href=\"%s\">%s</a> <br>\n",
                ij=1;             estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
                for(j=3; j <=ncovmodel; j++){     fprintf(fichtm,"\
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {   - Population projections by age and states: \
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);     <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
                    ij++;  
                  }  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
                  else  
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);   m=pow(2,cptcoveff);
                }   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
                fprintf(ficgp,")");  
              }   jj1=0;
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);   for(k1=1; k1<=m;k1++){
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");     for(i1=1; i1<=ncodemax[k1];i1++){
              i=i+ncovmodel;       jj1++;
            }       if (cptcovn > 0) {
          } /* end k */         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
        } /* end k2 */         for (cpt=1; cpt<=cptcoveff;cpt++) 
      } /* end jk */           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
    } /* end ng */         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
    fflush(ficgp);       }
 }  /* end gnuplot */       /* Pij */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d_1.png\">%s%d_1.png</a><br> \
   <img src=\"%s%d_1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
 /*************** Moving average **************/       /* Quasi-incidences */
 int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d_2.png\">%s%d_2.png</a><br> \
   int i, cpt, cptcod;  <img src=\"%s%d_2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
   int modcovmax =1;         /* Period (stable) prevalence in each health state */
   int mobilavrange, mob;         for(cpt=1; cpt<=nlstate;cpt++){
   double age;           fprintf(fichtm,"<br>- Convergence from each state (1 to %d) to period (stable) prevalence in state %d <a href=\"%s%d_%d.png\">%s%d_%d.png</a><br> \
   <img src=\"%s%d_%d.png\">",nlstate, cpt, subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
   modcovmax=2*cptcoveff;/* Max number of modalities. We suppose         }
                            a covariate has 2 modalities */       for(cpt=1; cpt<=nlstate;cpt++) {
   if (cptcovn<1) modcovmax=1; /* At least 1 pass */          fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies in each alive state (1 to %d) : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
   <img src=\"%s%d%d.png\">",cpt,nlstate,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
   if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){       }
     if(mobilav==1) mobilavrange=5; /* default */     } /* end i1 */
     else mobilavrange=mobilav;   }/* End k1 */
     for (age=bage; age<=fage; age++)   fprintf(fichtm,"</ul>");
       for (i=1; i<=nlstate;i++)  
         for (cptcod=1;cptcod<=modcovmax;cptcod++)  
           mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];   fprintf(fichtm,"\
     /* We keep the original values on the extreme ages bage, fage and for  \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
        fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
        we use a 5 terms etc. until the borders are no more concerned.  
     */   fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
     for (mob=3;mob <=mobilavrange;mob=mob+2){           subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
       for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){   fprintf(fichtm,"\
         for (i=1; i<=nlstate;i++){   - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
           for (cptcod=1;cptcod<=modcovmax;cptcod++){           subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
             mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];  
               for (cpt=1;cpt<=(mob-1)/2;cpt++){   fprintf(fichtm,"\
                 mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];   - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
                 mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];           subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
               }   fprintf(fichtm,"\
             mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;   - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
           }     <a href=\"%s\">%s</a> <br>\n</li>",
         }             estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
       }/* end age */   fprintf(fichtm,"\
     }/* end mob */   - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
   }else return -1;     <a href=\"%s\">%s</a> <br>\n</li>",
   return 0;             estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
 }/* End movingaverage */   fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
            estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
 /************** Forecasting ******************/   fprintf(fichtm,"\
 prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){   - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n",
   /* proj1, year, month, day of starting projection           estepm, subdirf2(fileres,"t"),subdirf2(fileres,"t"));
      agemin, agemax range of age   fprintf(fichtm,"\
      dateprev1 dateprev2 range of dates during which prevalence is computed   - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
      anproj2 year of en of projection (same day and month as proj1).           subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   */  
   int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;  /*  if(popforecast==1) fprintf(fichtm,"\n */
   int *popage;  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   double agec; /* generic age */  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;  /*      <br>",fileres,fileres,fileres,fileres); */
   double *popeffectif,*popcount;  /*  else  */
   double ***p3mat;  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
   double ***mobaverage;   fflush(fichtm);
   char fileresf[FILENAMELENGTH];   fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
   agelim=AGESUP;   m=pow(2,cptcoveff);
   prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
    
   strcpy(fileresf,"f");   jj1=0;
   strcat(fileresf,fileres);   for(k1=1; k1<=m;k1++){
   if((ficresf=fopen(fileresf,"w"))==NULL) {     for(i1=1; i1<=ncodemax[k1];i1++){
     printf("Problem with forecast resultfile: %s\n", fileresf);       jj1++;
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);       if (cptcovn > 0) {
   }         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
   printf("Computing forecasting: result on file '%s' \n", fileresf);         for (cpt=1; cpt<=cptcoveff;cpt++) 
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
   if (cptcoveff==0) ncodemax[cptcoveff]=1;       }
        for(cpt=1; cpt<=nlstate;cpt++) {
   if (mobilav!=0) {         fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  prevalence (with 95%% confidence interval) in state (%d): %s%d_%d.png <br>\
     if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){  <img src=\"%s%d_%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);       }
       printf(" Error in movingaverage mobilav=%d\n",mobilav);       fprintf(fichtm,"\n<br>- Total life expectancy by age and \
     }  health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \
   }  true period expectancies (those weighted with period prevalences are also\
    drawn in addition to the population based expectancies computed using\
   stepsize=(int) (stepm+YEARM-1)/YEARM;   observed and cahotic prevalences: %s%d.png<br>\
   if (stepm<=12) stepsize=1;  <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
   if(estepm < stepm){     } /* end i1 */
     printf ("Problem %d lower than %d\n",estepm, stepm);   }/* End k1 */
   }   fprintf(fichtm,"</ul>");
   else  hstepm=estepm;     fflush(fichtm);
   }
   hstepm=hstepm/stepm;  
   yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and  /******************* Gnuplot file **************/
                                fractional in yp1 */  void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   anprojmean=yp;  
   yp2=modf((yp1*12),&yp);    char dirfileres[132],optfileres[132];
   mprojmean=yp;    int m0,cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,ij=0,l=0;
   yp1=modf((yp2*30.5),&yp);    int ng=0;
   jprojmean=yp;  /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   if(jprojmean==0) jprojmean=1;  /*     printf("Problem with file %s",optionfilegnuplot); */
   if(mprojmean==0) jprojmean=1;  /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   i1=cptcoveff;  
   if (cptcovn < 1){i1=1;}    /*#ifdef windows */
      fprintf(ficgp,"cd \"%s\" \n",pathc);
   fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2);      /*#endif */
      m=pow(2,cptcoveff);
   fprintf(ficresf,"#****** Routine prevforecast **\n");  
     strcpy(dirfileres,optionfilefiname);
 /*            if (h==(int)(YEARM*yearp)){ */    strcpy(optfileres,"vpl");
   for(cptcov=1, k=0;cptcov<=i1;cptcov++){   /* 1eme*/
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    fprintf(ficgp,"\n# 1st: Period (stable) prevalence with CI: 'vpl' files\n");
       k=k+1;    for (cpt=1; cpt<= nlstate ; cpt ++) {
       fprintf(ficresf,"\n#******");      for (k1=1; k1<= m ; k1 ++) { /* plot [100000000000000000000:-100000000000000000000] "mysbiaspar/vplrmysbiaspar.txt to check */
       for(j=1;j<=cptcoveff;j++) {       fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
         fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);       fprintf(ficgp,"\n#set out \"v%s%d_%d.png\" \n",optionfilefiname,cpt,k1);
       }       fprintf(ficgp,"set xlabel \"Age\" \n\
       fprintf(ficresf,"******\n");  set ylabel \"Probability\" \n\
       fprintf(ficresf,"# Covariate valuofcovar yearproj age");  set ter png small size 320, 240\n\
       for(j=1; j<=nlstate+ndeath;j++){  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
         for(i=1; i<=nlstate;i++)                
           fprintf(ficresf," p%d%d",i,j);       for (i=1; i<= nlstate ; i ++) {
         fprintf(ficresf," p.%d",j);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
       }         else        fprintf(ficgp," \%%*lf (\%%*lf)");
       for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) {       }
         fprintf(ficresf,"\n");       fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l lt 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);         for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
         for (agec=fage; agec>=(ageminpar-1); agec--){         else fprintf(ficgp," \%%*lf (\%%*lf)");
           nhstepm=(int) rint((agelim-agec)*YEARM/stepm);       } 
           nhstepm = nhstepm/hstepm;       fprintf(ficgp,"\" t\"95\%% CI\" w l lt 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);       for (i=1; i<= nlstate ; i ++) {
           oldm=oldms;savm=savms;         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
           hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);           else fprintf(ficgp," \%%*lf (\%%*lf)");
               }  
           for (h=0; h<=nhstepm; h++){       fprintf(ficgp,"\" t\"\" w l lt 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l lt 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
             if (h*hstepm/YEARM*stepm ==yearp) {     }
               fprintf(ficresf,"\n");    }
               for(j=1;j<=cptcoveff;j++)    /*2 eme*/
                 fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    fprintf(ficgp,"\n# 2nd: Total life expectancy with CI: 't' files\n");
               fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);    for (k1=1; k1<= m ; k1 ++) { 
             }      fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
             for(j=1; j<=nlstate+ndeath;j++) {      fprintf(ficgp,"set ylabel \"Years\" \nset ter png small size 320, 240\nplot [%.f:%.f] ",ageminpar,fage);
               ppij=0.;      
               for(i=1; i<=nlstate;i++) {      for (i=1; i<= nlstate+1 ; i ++) {
                 if (mobilav==1)        k=2*i;
                   ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
                 else {        for (j=1; j<= nlstate+1 ; j ++) {
                   ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
                 }          else fprintf(ficgp," \%%*lf (\%%*lf)");
                 if (h*hstepm/YEARM*stepm== yearp) {        }   
                   fprintf(ficresf," %.3f", p3mat[i][j][h]);        if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
                 }        else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
               } /* end i */        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
               if (h*hstepm/YEARM*stepm==yearp) {        for (j=1; j<= nlstate+1 ; j ++) {
                 fprintf(ficresf," %.3f", ppij);          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
               }          else fprintf(ficgp," \%%*lf (\%%*lf)");
             }/* end j */        }   
           } /* end h */        fprintf(ficgp,"\" t\"\" w l lt 0,");
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         } /* end agec */        for (j=1; j<= nlstate+1 ; j ++) {
       } /* end yearp */          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
     } /* end cptcod */          else fprintf(ficgp," \%%*lf (\%%*lf)");
   } /* end  cptcov */        }   
                if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l lt 0");
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        else fprintf(ficgp,"\" t\"\" w l lt 0,");
       }
   fclose(ficresf);    }
 }    
     /*3eme*/
 /************** Forecasting *****not tested NB*************/    
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){    for (k1=1; k1<= m ; k1 ++) { 
        for (cpt=1; cpt<= nlstate ; cpt ++) {
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;        /*       k=2+nlstate*(2*cpt-2); */
   int *popage;        k=2+(nlstate+1)*(cpt-1);
   double calagedatem, agelim, kk1, kk2;        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
   double *popeffectif,*popcount;        fprintf(ficgp,"set ter png small size 320, 240\n\
   double ***p3mat,***tabpop,***tabpopprev;  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
   double ***mobaverage;        /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
   char filerespop[FILENAMELENGTH];          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
   agelim=AGESUP;          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
   calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;          
          */
   prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);        for (i=1; i< nlstate ; i ++) {
            fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
            /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
   strcpy(filerespop,"pop");          
   strcat(filerespop,fileres);        } 
   if((ficrespop=fopen(filerespop,"w"))==NULL) {        fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
     printf("Problem with forecast resultfile: %s\n", filerespop);      }
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);    }
   }    
   printf("Computing forecasting: result on file '%s' \n", filerespop);    /* CV preval stable (period) */
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);    for (k1=1; k1<= m ; k1 ++) { /* For each multivariate if any */
       for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */
   if (cptcoveff==0) ncodemax[cptcoveff]=1;        k=3;
         fprintf(ficgp,"\n#\n#\n#CV preval stable (period): 'pij' files, cov=%d state=%d",k1, cpt);
   if (mobilav!=0) {        fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
     if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){  set ter png small size 320, 240\n\
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);  unset log y\n\
       printf(" Error in movingaverage mobilav=%d\n",mobilav);  plot [%.f:%.f]  ", ageminpar, agemaxpar);
     }        for (i=1; i<= nlstate ; i ++){
   }          if(i==1)
             fprintf(ficgp,"\"%s\"",subdirf2(fileres,"pij"));
   stepsize=(int) (stepm+YEARM-1)/YEARM;          else
   if (stepm<=12) stepsize=1;            fprintf(ficgp,", '' ");
            l=(nlstate+ndeath)*(i-1)+1;
   agelim=AGESUP;          fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l);
            for (j=1; j<= (nlstate-1) ; j ++)
   hstepm=1;            fprintf(ficgp,"+$%d",k+l+j);
   hstepm=hstepm/stepm;          fprintf(ficgp,")) t \"prev(%d,%d)\" w l",i,cpt);
          } /* nlstate */
   if (popforecast==1) {        fprintf(ficgp,"\n");
     if((ficpop=fopen(popfile,"r"))==NULL) {      } /* end cpt state*/ 
       printf("Problem with population file : %s\n",popfile);exit(0);    } /* end covariate */  
       fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);    
     }    /* proba elementaires */
     popage=ivector(0,AGESUP);    for(i=1,jk=1; i <=nlstate; i++){
     popeffectif=vector(0,AGESUP);      for(k=1; k <=(nlstate+ndeath); k++){
     popcount=vector(0,AGESUP);        if (k != i) {
              for(j=1; j <=ncovmodel; j++){
     i=1;              fprintf(ficgp,"p%d=%f ",jk,p[jk]);
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;            jk++; 
                fprintf(ficgp,"\n");
     imx=i;          }
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];        }
   }      }
      }
   for(cptcov=1,k=0;cptcov<=i2;cptcov++){    /*goto avoid;*/
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){     for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
       k=k+1;       for(jk=1; jk <=m; jk++) {
       fprintf(ficrespop,"\n#******");         fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
       for(j=1;j<=cptcoveff;j++) {         if (ng==2)
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);           fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
       }         else
       fprintf(ficrespop,"******\n");           fprintf(ficgp,"\nset title \"Probability\"\n");
       fprintf(ficrespop,"# Age");         fprintf(ficgp,"\nset ter png small size 320, 240\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);         i=1;
       if (popforecast==1)  fprintf(ficrespop," [Population]");         for(k2=1; k2<=nlstate; k2++) {
                 k3=i;
       for (cpt=0; cpt<=0;cpt++) {           for(k=1; k<=(nlstate+ndeath); k++) {
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);               if (k != k2){
                       if(ng==2)
         for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){                 fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);               else
           nhstepm = nhstepm/hstepm;                 fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                         ij=1;/* To be checked else nbcode[0][0] wrong */
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);               for(j=3; j <=ncovmodel; j++) {
           oldm=oldms;savm=savms;                 /* if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) { /\* Bug valgrind *\/ */
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);                   /*        /\*fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);*\/ */
                         /*        ij++; */
           for (h=0; h<=nhstepm; h++){                 /* } */
             if (h==(int) (calagedatem+YEARM*cpt)) {                 /* else */
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);                   fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
             }               }
             for(j=1; j<=nlstate+ndeath;j++) {               fprintf(ficgp,")/(1");
               kk1=0.;kk2=0;               
               for(i=1; i<=nlstate;i++) {                             for(k1=1; k1 <=nlstate; k1++){   
                 if (mobilav==1)                 fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];                 ij=1;
                 else {                 for(j=3; j <=ncovmodel; j++){
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];                   /* if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) { */
                 }                   /*   fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]); */
               }                   /*   ij++; */
               if (h==(int)(calagedatem+12*cpt)){                   /* } */
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;                   /* else */
                   /*fprintf(ficrespop," %.3f", kk1);                     fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/                 }
               }                 fprintf(ficgp,")");
             }               }
             for(i=1; i<=nlstate;i++){               fprintf(ficgp,") t \"p%d%d\" ", k2,k);
               kk1=0.;               if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                 for(j=1; j<=nlstate;j++){               i=i+ncovmodel;
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];             }
                 }           } /* end k */
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];         } /* end k2 */
             }       } /* end jk */
      } /* end ng */
             if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++)   avoid:
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);     fflush(ficgp); 
           }  }  /* end gnuplot */
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
         }  
       }  /*************** Moving average **************/
    int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   /******/  
     int i, cpt, cptcod;
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {    int modcovmax =1;
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);      int mobilavrange, mob;
         for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){    double age;
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);  
           nhstepm = nhstepm/hstepm;    modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                                       a covariate has 2 modalities */
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    if (cptcovn<1) modcovmax=1; /* At least 1 pass */
           oldm=oldms;savm=savms;  
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
           for (h=0; h<=nhstepm; h++){      if(mobilav==1) mobilavrange=5; /* default */
             if (h==(int) (calagedatem+YEARM*cpt)) {      else mobilavrange=mobilav;
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);      for (age=bage; age<=fage; age++)
             }        for (i=1; i<=nlstate;i++)
             for(j=1; j<=nlstate+ndeath;j++) {          for (cptcod=1;cptcod<=modcovmax;cptcod++)
               kk1=0.;kk2=0;            mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
               for(i=1; i<=nlstate;i++) {                    /* We keep the original values on the extreme ages bage, fage and for 
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];             fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
               }         we use a 5 terms etc. until the borders are no more concerned. 
               if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);              */ 
             }      for (mob=3;mob <=mobilavrange;mob=mob+2){
           }        for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          for (i=1; i<=nlstate;i++){
         }            for (cptcod=1;cptcod<=modcovmax;cptcod++){
       }              mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
    }                for (cpt=1;cpt<=(mob-1)/2;cpt++){
   }                  mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                    mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);                }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
   if (popforecast==1) {            }
     free_ivector(popage,0,AGESUP);          }
     free_vector(popeffectif,0,AGESUP);        }/* end age */
     free_vector(popcount,0,AGESUP);      }/* end mob */
   }    }else return -1;
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    return 0;
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  }/* End movingaverage */
   fclose(ficrespop);  
 } /* End of popforecast */  
   /************** Forecasting ******************/
 int fileappend(FILE *fichier, char *optionfich)  prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
 {    /* proj1, year, month, day of starting projection 
   if((fichier=fopen(optionfich,"a"))==NULL) {       agemin, agemax range of age
     printf("Problem with file: %s\n", optionfich);       dateprev1 dateprev2 range of dates during which prevalence is computed
     fprintf(ficlog,"Problem with file: %s\n", optionfich);       anproj2 year of en of projection (same day and month as proj1).
     return (0);    */
   }    int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
   fflush(fichier);    int *popage;
   return (1);    double agec; /* generic age */
 }    double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
 /**************** function prwizard **********************/    double ***mobaverage;
 void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)    char fileresf[FILENAMELENGTH];
 {  
     agelim=AGESUP;
   /* Wizard to print covariance matrix template */    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
   char ca[32], cb[32], cc[32];    strcpy(fileresf,"f"); 
   int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;    strcat(fileresf,fileres);
   int numlinepar;    if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
   printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");      fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
   fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    }
   for(i=1; i <=nlstate; i++){    printf("Computing forecasting: result on file '%s' \n", fileresf);
     jj=0;    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
     for(j=1; j <=nlstate+ndeath; j++){  
       if(j==i) continue;    if (cptcoveff==0) ncodemax[cptcoveff]=1;
       jj++;  
       /*ca[0]= k+'a'-1;ca[1]='\0';*/    if (mobilav!=0) {
       printf("%1d%1d",i,j);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       fprintf(ficparo,"%1d%1d",i,j);      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
       for(k=1; k<=ncovmodel;k++){        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         /*        printf(" %lf",param[i][j][k]); */        printf(" Error in movingaverage mobilav=%d\n",mobilav);
         /*        fprintf(ficparo," %lf",param[i][j][k]); */      }
         printf(" 0.");    }
         fprintf(ficparo," 0.");  
       }    stepsize=(int) (stepm+YEARM-1)/YEARM;
       printf("\n");    if (stepm<=12) stepsize=1;
       fprintf(ficparo,"\n");    if(estepm < stepm){
     }      printf ("Problem %d lower than %d\n",estepm, stepm);
   }    }
   printf("# Scales (for hessian or gradient estimation)\n");    else  hstepm=estepm;   
   fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");  
   npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/    hstepm=hstepm/stepm; 
   for(i=1; i <=nlstate; i++){    yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
     jj=0;                                 fractional in yp1 */
     for(j=1; j <=nlstate+ndeath; j++){    anprojmean=yp;
       if(j==i) continue;    yp2=modf((yp1*12),&yp);
       jj++;    mprojmean=yp;
       fprintf(ficparo,"%1d%1d",i,j);    yp1=modf((yp2*30.5),&yp);
       printf("%1d%1d",i,j);    jprojmean=yp;
       fflush(stdout);    if(jprojmean==0) jprojmean=1;
       for(k=1; k<=ncovmodel;k++){    if(mprojmean==0) jprojmean=1;
         /*      printf(" %le",delti3[i][j][k]); */  
         /*      fprintf(ficparo," %le",delti3[i][j][k]); */    i1=cptcoveff;
         printf(" 0.");    if (cptcovn < 1){i1=1;}
         fprintf(ficparo," 0.");    
       }    fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
       numlinepar++;    
       printf("\n");    fprintf(ficresf,"#****** Routine prevforecast **\n");
       fprintf(ficparo,"\n");  
     }  /*            if (h==(int)(YEARM*yearp)){ */
   }    for(cptcov=1, k=0;cptcov<=i1;cptcov++){
   printf("# Covariance matrix\n");      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
 /* # 121 Var(a12)\n\ */        k=k+1;
 /* # 122 Cov(b12,a12) Var(b12)\n\ */        fprintf(ficresf,"\n#******");
 /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */        for(j=1;j<=cptcoveff;j++) {
 /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */          fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */        }
 /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */        fprintf(ficresf,"******\n");
 /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */        fprintf(ficresf,"# Covariate valuofcovar yearproj age");
 /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */        for(j=1; j<=nlstate+ndeath;j++){ 
   fflush(stdout);          for(i=1; i<=nlstate;i++)              
   fprintf(ficparo,"# Covariance matrix\n");            fprintf(ficresf," p%d%d",i,j);
   /* # 121 Var(a12)\n\ */          fprintf(ficresf," p.%d",j);
   /* # 122 Cov(b12,a12) Var(b12)\n\ */        }
   /* #   ...\n\ */        for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
   /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */          fprintf(ficresf,"\n");
            fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   for(itimes=1;itimes<=2;itimes++){  
     jj=0;          for (agec=fage; agec>=(ageminpar-1); agec--){ 
     for(i=1; i <=nlstate; i++){            nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
       for(j=1; j <=nlstate+ndeath; j++){            nhstepm = nhstepm/hstepm; 
         if(j==i) continue;            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         for(k=1; k<=ncovmodel;k++){            oldm=oldms;savm=savms;
           jj++;            hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           ca[0]= k+'a'-1;ca[1]='\0';          
           if(itimes==1){            for (h=0; h<=nhstepm; h++){
             printf("#%1d%1d%d",i,j,k);              if (h*hstepm/YEARM*stepm ==yearp) {
             fprintf(ficparo,"#%1d%1d%d",i,j,k);                fprintf(ficresf,"\n");
           }else{                for(j=1;j<=cptcoveff;j++) 
             printf("%1d%1d%d",i,j,k);                  fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficparo,"%1d%1d%d",i,j,k);                fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
             /*  printf(" %.5le",matcov[i][j]); */              } 
           }              for(j=1; j<=nlstate+ndeath;j++) {
           ll=0;                ppij=0.;
           for(li=1;li <=nlstate; li++){                for(i=1; i<=nlstate;i++) {
             for(lj=1;lj <=nlstate+ndeath; lj++){                  if (mobilav==1) 
               if(lj==li) continue;                    ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
               for(lk=1;lk<=ncovmodel;lk++){                  else {
                 ll++;                    ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                 if(ll<=jj){                  }
                   cb[0]= lk +'a'-1;cb[1]='\0';                  if (h*hstepm/YEARM*stepm== yearp) {
                   if(ll<jj){                    fprintf(ficresf," %.3f", p3mat[i][j][h]);
                     if(itimes==1){                  }
                       printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);                } /* end i */
                       fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);                if (h*hstepm/YEARM*stepm==yearp) {
                     }else{                  fprintf(ficresf," %.3f", ppij);
                       printf(" 0.");                }
                       fprintf(ficparo," 0.");              }/* end j */
                     }            } /* end h */
                   }else{            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                     if(itimes==1){          } /* end agec */
                       printf(" Var(%s%1d%1d)",ca,i,j);        } /* end yearp */
                       fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);      } /* end cptcod */
                     }else{    } /* end  cptcov */
                       printf(" 0.");         
                       fprintf(ficparo," 0.");    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
                     }  
                   }    fclose(ficresf);
                 }  }
               } /* end lk */  
             } /* end lj */  /************** Forecasting *****not tested NB*************/
           } /* end li */  populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
           printf("\n");    
           fprintf(ficparo,"\n");    int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
           numlinepar++;    int *popage;
         } /* end k*/    double calagedatem, agelim, kk1, kk2;
       } /*end j */    double *popeffectif,*popcount;
     } /* end i */    double ***p3mat,***tabpop,***tabpopprev;
   } /* end itimes */    double ***mobaverage;
     char filerespop[FILENAMELENGTH];
 } /* end of prwizard */  
 /******************* Gompertz Likelihood ******************************/    tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 double gompertz(double x[])    tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 {    agelim=AGESUP;
   double A,B,L=0.0,sump=0.,num=0.;    calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
   int i,n=0; /* n is the size of the sample */    
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
   for (i=0;i<=imx-1 ; i++) {    
     sump=sump+weight[i];    
     /*    sump=sump+1;*/    strcpy(filerespop,"pop"); 
     num=num+1;    strcat(filerespop,fileres);
   }    if((ficrespop=fopen(filerespop,"w"))==NULL) {
        printf("Problem with forecast resultfile: %s\n", filerespop);
        fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
   /* for (i=0; i<=imx; i++)    }
      if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/    printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   for (i=1;i<=imx ; i++)  
     {    if (cptcoveff==0) ncodemax[cptcoveff]=1;
       if (cens[i] == 1 && wav[i]>1)  
         A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));    if (mobilav!=0) {
            mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (cens[i] == 0 && wav[i]>1)      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
              +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);          printf(" Error in movingaverage mobilav=%d\n",mobilav);
            }
       /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */    }
       if (wav[i] > 1 ) { /* ??? */  
         L=L+A*weight[i];    stepsize=(int) (stepm+YEARM-1)/YEARM;
         /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/    if (stepm<=12) stepsize=1;
       }    
     }    agelim=AGESUP;
     
  /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/    hstepm=1;
      hstepm=hstepm/stepm; 
   return -2*L*num/sump;    
 }    if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
 /******************* Printing html file ***********/        printf("Problem with population file : %s\n",popfile);exit(0);
 void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \        fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
                   int lastpass, int stepm, int weightopt, char model[],\      } 
                   int imx,  double p[],double **matcov,double agemortsup){      popage=ivector(0,AGESUP);
   int i,k;      popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
   fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");      
   fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);      i=1;   
   for (i=1;i<=2;i++)      while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
     fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));     
   fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");      imx=i;
   fprintf(fichtm,"</ul>");      for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
 fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");  
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
  fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
  for (k=agegomp;k<(agemortsup-2);k++)        fprintf(ficrespop,"\n#******");
    fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);        for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
          }
   fflush(fichtm);        fprintf(ficrespop,"******\n");
 }        fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
 /******************* Gnuplot file **************/        if (popforecast==1)  fprintf(ficrespop," [Population]");
 void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){        
         for (cpt=0; cpt<=0;cpt++) { 
   char dirfileres[132],optfileres[132];          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;          
   int ng;          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
   /*#ifdef windows */            
   fprintf(ficgp,"cd \"%s\" \n",pathc);            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     /*#endif */            oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
   strcpy(dirfileres,optionfilefiname);            for (h=0; h<=nhstepm; h++){
   strcpy(optfileres,"vpl");              if (h==(int) (calagedatem+YEARM*cpt)) {
   fprintf(ficgp,"set out \"graphmort.png\"\n ");                fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
   fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n ");              } 
   fprintf(ficgp, "set ter png small\n set log y\n");              for(j=1; j<=nlstate+ndeath;j++) {
   fprintf(ficgp, "set size 0.65,0.65\n");                kk1=0.;kk2=0;
   fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);                for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
 }                    kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
 /***********************************************/                  tabpop[(int)(agedeb)][j][cptcod]=kk1;
 /**************** Main Program *****************/                    /*fprintf(ficrespop," %.3f", kk1);
 /***********************************************/                      if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
 int main(int argc, char *argv[])              }
 {              for(i=1; i<=nlstate;i++){
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);                kk1=0.;
   int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;                  for(j=1; j<=nlstate;j++){
   int linei, month, year,iout;                    kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
   int jj, ll, li, lj, lk, imk;                  }
   int numlinepar=0; /* Current linenumber of parameter file */                    tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
   int itimes;              }
   int NDIM=2;  
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
   char ca[32], cb[32], cc[32];                fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
   char dummy[]="                         ";            }
   /*  FILE *fichtm; *//* Html File */            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   /* FILE *ficgp;*/ /*Gnuplot File */          }
   struct stat info;        }
   double agedeb, agefin,hf;   
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;    /******/
   
   double fret;        for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
   double **xi,tmp,delta;          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
   double dum; /* Dummy variable */            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
   double ***p3mat;            nhstepm = nhstepm/hstepm; 
   double ***mobaverage;            
   int *indx;            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   char line[MAXLINE], linepar[MAXLINE];            oldm=oldms;savm=savms;
   char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
   char pathr[MAXLINE], pathimach[MAXLINE];            for (h=0; h<=nhstepm; h++){
   char **bp, *tok, *val; /* pathtot */              if (h==(int) (calagedatem+YEARM*cpt)) {
   int firstobs=1, lastobs=10;                fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
   int sdeb, sfin; /* Status at beginning and end */              } 
   int c,  h , cpt,l;              for(j=1; j<=nlstate+ndeath;j++) {
   int ju,jl, mi;                kk1=0.;kk2=0;
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;                for(i=1; i<=nlstate;i++) {              
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab;                  kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
   int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */                }
   int mobilav=0,popforecast=0;                if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
   int hstepm, nhstepm;              }
   int agemortsup;            }
   float  sumlpop=0.;            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;          }
   double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;        }
      } 
   double bage, fage, age, agelim, agebase;    }
   double ftolpl=FTOL;   
   double **prlim;    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   double *severity;  
   double ***param; /* Matrix of parameters */    if (popforecast==1) {
   double  *p;      free_ivector(popage,0,AGESUP);
   double **matcov; /* Matrix of covariance */      free_vector(popeffectif,0,AGESUP);
   double ***delti3; /* Scale */      free_vector(popcount,0,AGESUP);
   double *delti; /* Scale */    }
   double ***eij, ***vareij;    free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   double **varpl; /* Variances of prevalence limits by age */    free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   double *epj, vepp;    fclose(ficrespop);
   double kk1, kk2;  } /* End of popforecast */
   double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;  
   double **ximort;  int fileappend(FILE *fichier, char *optionfich)
   char *alph[]={"a","a","b","c","d","e"}, str[4];  {
   int *dcwave;    if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
   char z[1]="c", occ;      fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];    }
   char  *strt, strtend[80];    fflush(fichier);
   char *stratrunc;    return (1);
   int lstra;  }
   
   long total_usecs;  
    /**************** function prwizard **********************/
 /*   setlocale (LC_ALL, ""); */  void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
 /*   bindtextdomain (PACKAGE, LOCALEDIR); */  {
 /*   textdomain (PACKAGE); */  
 /*   setlocale (LC_CTYPE, ""); */    /* Wizard to print covariance matrix template */
 /*   setlocale (LC_MESSAGES, ""); */  
     char ca[32], cb[32], cc[32];
   /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */    int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
   (void) gettimeofday(&start_time,&tzp);    int numlinepar;
   curr_time=start_time;  
   tm = *localtime(&start_time.tv_sec);    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
   tmg = *gmtime(&start_time.tv_sec);    fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
   strcpy(strstart,asctime(&tm));    for(i=1; i <=nlstate; i++){
       jj=0;
 /*  printf("Localtime (at start)=%s",strstart); */      for(j=1; j <=nlstate+ndeath; j++){
 /*  tp.tv_sec = tp.tv_sec +86400; */        if(j==i) continue;
 /*  tm = *localtime(&start_time.tv_sec); */        jj++;
 /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */        /*ca[0]= k+'a'-1;ca[1]='\0';*/
 /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */        printf("%1d%1d",i,j);
 /*   tmg.tm_hour=tmg.tm_hour + 1; */        fprintf(ficparo,"%1d%1d",i,j);
 /*   tp.tv_sec = mktime(&tmg); */        for(k=1; k<=ncovmodel;k++){
 /*   strt=asctime(&tmg); */          /*        printf(" %lf",param[i][j][k]); */
 /*   printf("Time(after) =%s",strstart);  */          /*        fprintf(ficparo," %lf",param[i][j][k]); */
 /*  (void) time (&time_value);          printf(" 0.");
 *  printf("time=%d,t-=%d\n",time_value,time_value-86400);          fprintf(ficparo," 0.");
 *  tm = *localtime(&time_value);        }
 *  strstart=asctime(&tm);        printf("\n");
 *  printf("tim_value=%d,asctime=%s\n",time_value,strstart);        fprintf(ficparo,"\n");
 */      }
     }
   nberr=0; /* Number of errors and warnings */    printf("# Scales (for hessian or gradient estimation)\n");
   nbwarn=0;    fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
   getcwd(pathcd, size);    npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
   printf("\n%s\n%s",version,fullversion);      jj=0;
   if(argc <=1){      for(j=1; j <=nlstate+ndeath; j++){
     printf("\nEnter the parameter file name: ");        if(j==i) continue;
     fgets(pathr,FILENAMELENGTH,stdin);        jj++;
     i=strlen(pathr);        fprintf(ficparo,"%1d%1d",i,j);
     if(pathr[i-1]=='\n')        printf("%1d%1d",i,j);
       pathr[i-1]='\0';        fflush(stdout);
    for (tok = pathr; tok != NULL; ){        for(k=1; k<=ncovmodel;k++){
       printf("Pathr |%s|\n",pathr);          /*      printf(" %le",delti3[i][j][k]); */
       while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');          /*      fprintf(ficparo," %le",delti3[i][j][k]); */
       printf("val= |%s| pathr=%s\n",val,pathr);          printf(" 0.");
       strcpy (pathtot, val);          fprintf(ficparo," 0.");
       if(pathr[0] == '\0') break; /* Dirty */        }
     }        numlinepar++;
   }        printf("\n");
   else{        fprintf(ficparo,"\n");
     strcpy(pathtot,argv[1]);      }
   }    }
   /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/    printf("# Covariance matrix\n");
   /*cygwin_split_path(pathtot,path,optionfile);  /* # 121 Var(a12)\n\ */
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/  /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* cutv(path,optionfile,pathtot,'\\');*/  /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* Split argv[0], imach program to get pathimach */  /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);  /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);  /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);  /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
  /*   strcpy(pathimach,argv[0]); */    fflush(stdout);
   /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */    fprintf(ficparo,"# Covariance matrix\n");
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);    /* # 121 Var(a12)\n\ */
   printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);    /* # 122 Cov(b12,a12) Var(b12)\n\ */
   chdir(path); /* Can be a relative path */    /* #   ...\n\ */
   if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */    /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     printf("Current directory %s!\n",pathcd);    
   strcpy(command,"mkdir ");    for(itimes=1;itimes<=2;itimes++){
   strcat(command,optionfilefiname);      jj=0;
   if((outcmd=system(command)) != 0){      for(i=1; i <=nlstate; i++){
     printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);        for(j=1; j <=nlstate+ndeath; j++){
     /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */          if(j==i) continue;
     /* fclose(ficlog); */          for(k=1; k<=ncovmodel;k++){
 /*     exit(1); */            jj++;
   }            ca[0]= k+'a'-1;ca[1]='\0';
 /*   if((imk=mkdir(optionfilefiname))<0){ */            if(itimes==1){
 /*     perror("mkdir"); */              printf("#%1d%1d%d",i,j,k);
 /*   } */              fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
   /*-------- arguments in the command line --------*/              printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
   /* Log file */              /*  printf(" %.5le",matcov[i][j]); */
   strcat(filelog, optionfilefiname);            }
   strcat(filelog,".log");    /* */            ll=0;
   if((ficlog=fopen(filelog,"w"))==NULL)    {            for(li=1;li <=nlstate; li++){
     printf("Problem with logfile %s\n",filelog);              for(lj=1;lj <=nlstate+ndeath; lj++){
     goto end;                if(lj==li) continue;
   }                for(lk=1;lk<=ncovmodel;lk++){
   fprintf(ficlog,"Log filename:%s\n",filelog);                  ll++;
   fprintf(ficlog,"\n%s\n%s",version,fullversion);                  if(ll<=jj){
   fprintf(ficlog,"\nEnter the parameter file name: \n");                    cb[0]= lk +'a'-1;cb[1]='\0';
   fprintf(ficlog,"pathimach=%s\npathtot=%s\n\                    if(ll<jj){
  path=%s \n\                      if(itimes==1){
  optionfile=%s\n\                        printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
  optionfilext=%s\n\                        fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
  optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);                      }else{
                         printf(" 0.");
   printf("Local time (at start):%s",strstart);                        fprintf(ficparo," 0.");
   fprintf(ficlog,"Local time (at start): %s",strstart);                      }
   fflush(ficlog);                    }else{
 /*   (void) gettimeofday(&curr_time,&tzp); */                      if(itimes==1){
 /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */                        printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
   /* */                      }else{
   strcpy(fileres,"r");                        printf(" 0.");
   strcat(fileres, optionfilefiname);                        fprintf(ficparo," 0.");
   strcat(fileres,".txt");    /* Other files have txt extension */                      }
                     }
   /*---------arguments file --------*/                  }
                 } /* end lk */
   if((ficpar=fopen(optionfile,"r"))==NULL)    {              } /* end lj */
     printf("Problem with optionfile %s\n",optionfile);            } /* end li */
     fprintf(ficlog,"Problem with optionfile %s\n",optionfile);            printf("\n");
     fflush(ficlog);            fprintf(ficparo,"\n");
     goto end;            numlinepar++;
   }          } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   strcpy(filereso,"o");  
   strcat(filereso,fileres);  } /* end of prwizard */
   if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */  /******************* Gompertz Likelihood ******************************/
     printf("Problem with Output resultfile: %s\n", filereso);  double gompertz(double x[])
     fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);  { 
     fflush(ficlog);    double A,B,L=0.0,sump=0.,num=0.;
     goto end;    int i,n=0; /* n is the size of the sample */
   }  
     for (i=0;i<=imx-1 ; i++) {
   /* Reads comments: lines beginning with '#' */      sump=sump+weight[i];
   numlinepar=0;      /*    sump=sump+1;*/
   while((c=getc(ficpar))=='#' && c!= EOF){      num=num+1;
     ungetc(c,ficpar);    }
     fgets(line, MAXLINE, ficpar);   
     numlinepar++;   
     puts(line);    /* for (i=0; i<=imx; i++) 
     fputs(line,ficparo);       if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
     fputs(line,ficlog);  
   }    for (i=1;i<=imx ; i++)
   ungetc(c,ficpar);      {
         if (cens[i] == 1 && wav[i]>1)
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);          A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
   numlinepar++;        
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);        if (cens[i] == 0 && wav[i]>1)
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);          A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
   fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);               +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
   fflush(ficlog);        
   while((c=getc(ficpar))=='#' && c!= EOF){        /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
     ungetc(c,ficpar);        if (wav[i] > 1 ) { /* ??? */
     fgets(line, MAXLINE, ficpar);          L=L+A*weight[i];
     numlinepar++;          /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
     puts(line);        }
     fputs(line,ficparo);      }
     fputs(line,ficlog);  
   }   /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
   ungetc(c,ficpar);   
     return -2*L*num/sump;
      }
   covar=matrix(0,NCOVMAX,1,n);  
   cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/  #ifdef GSL
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;  /******************* Gompertz_f Likelihood ******************************/
   double gompertz_f(const gsl_vector *v, void *params)
   ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */  { 
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */    double A,B,LL=0.0,sump=0.,num=0.;
   npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/    double *x= (double *) v->data;
     int i,n=0; /* n is the size of the sample */
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);  
   delti=delti3[1][1];    for (i=0;i<=imx-1 ; i++) {
   /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/      sump=sump+weight[i];
   if(mle==-1){ /* Print a wizard for help writing covariance matrix */      /*    sump=sump+1;*/
     prwizard(ncovmodel, nlstate, ndeath, model, ficparo);      num=num+1;
     printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);    }
     fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);   
     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);   
     fclose (ficparo);    /* for (i=0; i<=imx; i++) 
     fclose (ficlog);       if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
     goto end;    printf("x[0]=%lf x[1]=%lf\n",x[0],x[1]);
     exit(0);    for (i=1;i<=imx ; i++)
   }      {
   else if(mle==-3) {        if (cens[i] == 1 && wav[i]>1)
     prwizard(ncovmodel, nlstate, ndeath, model, ficparo);          A=-x[0]/(x[1])*(exp(x[1]*(agecens[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)));
     printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);        
     fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);        if (cens[i] == 0 && wav[i]>1)
     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);          A=-x[0]/(x[1])*(exp(x[1]*(agedc[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)))
     matcov=matrix(1,npar,1,npar);               +log(x[0]/YEARM)+x[1]*(agedc[i]-agegomp)+log(YEARM);  
   }        
   else{        /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
     /* Read guess parameters */        if (wav[i] > 1 ) { /* ??? */
     /* Reads comments: lines beginning with '#' */          LL=LL+A*weight[i];
     while((c=getc(ficpar))=='#' && c!= EOF){          /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
       ungetc(c,ficpar);        }
       fgets(line, MAXLINE, ficpar);      }
       numlinepar++;  
       puts(line);   /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
       fputs(line,ficparo);    printf("x[0]=%lf x[1]=%lf -2*LL*num/sump=%lf\n",x[0],x[1],-2*LL*num/sump);
       fputs(line,ficlog);   
     }    return -2*LL*num/sump;
     ungetc(c,ficpar);  }
      #endif
     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);  
     for(i=1; i <=nlstate; i++){  /******************* Printing html file ***********/
       j=0;  void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
       for(jj=1; jj <=nlstate+ndeath; jj++){                    int lastpass, int stepm, int weightopt, char model[],\
         if(jj==i) continue;                    int imx,  double p[],double **matcov,double agemortsup){
         j++;    int i,k;
         fscanf(ficpar,"%1d%1d",&i1,&j1);  
         if ((i1 != i) && (j1 != j)){    fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \    fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
 It might be a problem of design; if ncovcol and the model are correct\n \    for (i=1;i<=2;i++) 
 run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);      fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
           exit(1);    fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
         }    fprintf(fichtm,"</ul>");
         fprintf(ficparo,"%1d%1d",i1,j1);  
         if(mle==1)  fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
           printf("%1d%1d",i,j);  
         fprintf(ficlog,"%1d%1d",i,j);   fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
         for(k=1; k<=ncovmodel;k++){  
           fscanf(ficpar," %lf",&param[i][j][k]);   for (k=agegomp;k<(agemortsup-2);k++) 
           if(mle==1){     fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
             printf(" %lf",param[i][j][k]);  
             fprintf(ficlog," %lf",param[i][j][k]);   
           }    fflush(fichtm);
           else  }
             fprintf(ficlog," %lf",param[i][j][k]);  
           fprintf(ficparo," %lf",param[i][j][k]);  /******************* Gnuplot file **************/
         }  void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
         fscanf(ficpar,"\n");  
         numlinepar++;    char dirfileres[132],optfileres[132];
         if(mle==1)    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
           printf("\n");    int ng;
         fprintf(ficlog,"\n");  
         fprintf(ficparo,"\n");  
       }    /*#ifdef windows */
     }      fprintf(ficgp,"cd \"%s\" \n",pathc);
     fflush(ficlog);      /*#endif */
   
     p=param[1][1];  
        strcpy(dirfileres,optionfilefiname);
     /* Reads comments: lines beginning with '#' */    strcpy(optfileres,"vpl");
     while((c=getc(ficpar))=='#' && c!= EOF){    fprintf(ficgp,"set out \"graphmort.png\"\n "); 
       ungetc(c,ficpar);    fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
       fgets(line, MAXLINE, ficpar);    fprintf(ficgp, "set ter png small size 320, 240\n set log y\n"); 
       numlinepar++;    /* fprintf(ficgp, "set size 0.65,0.65\n"); */
       puts(line);    fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
       fputs(line,ficparo);  
       fputs(line,ficlog);  } 
     }  
     ungetc(c,ficpar);  int readdata(char datafile[], int firstobs, int lastobs, int *imax)
   {
     for(i=1; i <=nlstate; i++){  
       for(j=1; j <=nlstate+ndeath-1; j++){    /*-------- data file ----------*/
         fscanf(ficpar,"%1d%1d",&i1,&j1);    FILE *fic;
         if ((i1-i)*(j1-j)!=0){    char dummy[]="                         ";
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);    int i, j, n;
           exit(1);    int linei, month, year,iout;
         }    char line[MAXLINE], linetmp[MAXLINE];
         printf("%1d%1d",i,j);    char stra[80], strb[80];
         fprintf(ficparo,"%1d%1d",i1,j1);    char *stratrunc;
         fprintf(ficlog,"%1d%1d",i1,j1);    int lstra;
         for(k=1; k<=ncovmodel;k++){  
           fscanf(ficpar,"%le",&delti3[i][j][k]);  
           printf(" %le",delti3[i][j][k]);    if((fic=fopen(datafile,"r"))==NULL)    {
           fprintf(ficparo," %le",delti3[i][j][k]);      printf("Problem while opening datafile: %s\n", datafile);return 1;
           fprintf(ficlog," %le",delti3[i][j][k]);      fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);return 1;
         }    }
         fscanf(ficpar,"\n");  
         numlinepar++;    i=1;
         printf("\n");    linei=0;
         fprintf(ficparo,"\n");    while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
         fprintf(ficlog,"\n");      linei=linei+1;
       }      for(j=strlen(line); j>=0;j--){  /* Untabifies line */
     }        if(line[j] == '\t')
     fflush(ficlog);          line[j] = ' ';
       }
     delti=delti3[1][1];      for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
     /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */      line[j+1]=0;  /* Trims blanks at end of line */
        if(line[0]=='#'){
     /* Reads comments: lines beginning with '#' */        fprintf(ficlog,"Comment line\n%s\n",line);
     while((c=getc(ficpar))=='#' && c!= EOF){        printf("Comment line\n%s\n",line);
       ungetc(c,ficpar);        continue;
       fgets(line, MAXLINE, ficpar);      }
       numlinepar++;      trimbb(linetmp,line); /* Trims multiple blanks in line */
       puts(line);      for (j=0; line[j]!='\0';j++){
       fputs(line,ficparo);        line[j]=linetmp[j];
       fputs(line,ficlog);      }
     }    
     ungetc(c,ficpar);  
        for (j=maxwav;j>=1;j--){
     matcov=matrix(1,npar,1,npar);        cutv(stra, strb, line, ' '); 
     for(i=1; i <=npar; i++){        if(strb[0]=='.') { /* Missing status */
       fscanf(ficpar,"%s",&str);          lval=-1;
       if(mle==1)        }else{
         printf("%s",str);          errno=0;
       fprintf(ficlog,"%s",str);          lval=strtol(strb,&endptr,10); 
       fprintf(ficparo,"%s",str);        /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
       for(j=1; j <=i; j++){          if( strb[0]=='\0' || (*endptr != '\0')){
         fscanf(ficpar," %le",&matcov[i][j]);            printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
         if(mle==1){            fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);fflush(ficlog);
           printf(" %.5le",matcov[i][j]);            return 1;
         }          }
         fprintf(ficlog," %.5le",matcov[i][j]);        }
         fprintf(ficparo," %.5le",matcov[i][j]);        s[j][i]=lval;
       }        
       fscanf(ficpar,"\n");        strcpy(line,stra);
       numlinepar++;        cutv(stra, strb,line,' ');
       if(mle==1)        if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         printf("\n");        }
       fprintf(ficlog,"\n");        else  if(iout=sscanf(strb,"%s.",dummy) != 0){
       fprintf(ficparo,"\n");          month=99;
     }          year=9999;
     for(i=1; i <=npar; i++)        }else{
       for(j=i+1;j<=npar;j++)          printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
         matcov[i][j]=matcov[j][i];          fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);fflush(ficlog);
              return 1;
     if(mle==1)        }
       printf("\n");        anint[j][i]= (double) year; 
     fprintf(ficlog,"\n");        mint[j][i]= (double)month; 
            strcpy(line,stra);
     fflush(ficlog);      } /* ENd Waves */
          
     /*-------- Rewriting parameter file ----------*/      cutv(stra, strb,line,' '); 
     strcpy(rfileres,"r");    /* "Rparameterfile */      if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
     strcat(rfileres,optionfilefiname);    /* Parameter file first name*/      }
     strcat(rfileres,".");    /* */      else  if(iout=sscanf(strb,"%s.",dummy) != 0){
     strcat(rfileres,optionfilext);    /* Other files have txt extension */        month=99;
     if((ficres =fopen(rfileres,"w"))==NULL) {        year=9999;
       printf("Problem writing new parameter file: %s\n", fileres);goto end;      }else{
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;        printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
     }          fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
     fprintf(ficres,"#%s\n",version);          return 1;
   }    /* End of mle != -3 */      }
       andc[i]=(double) year; 
   /*-------- data file ----------*/      moisdc[i]=(double) month; 
   if((fic=fopen(datafile,"r"))==NULL)    {      strcpy(line,stra);
     printf("Problem while opening datafile: %s\n", datafile);goto end;      
     fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);goto end;      cutv(stra, strb,line,' '); 
   }      if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
   n= lastobs;      else  if(iout=sscanf(strb,"%s.", dummy) != 0){
   severity = vector(1,maxwav);        month=99;
   outcome=imatrix(1,maxwav+1,1,n);        year=9999;
   num=lvector(1,n);      }else{
   moisnais=vector(1,n);        printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
   annais=vector(1,n);        fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
   moisdc=vector(1,n);          return 1;
   andc=vector(1,n);      }
   agedc=vector(1,n);      if (year==9999) {
   cod=ivector(1,n);        printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given.  Exiting.\n",strb, linei,i,line);
   weight=vector(1,n);        fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given. Exiting.\n",strb, linei,i,line);fflush(ficlog);
   for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */          return 1;
   mint=matrix(1,maxwav,1,n);  
   anint=matrix(1,maxwav,1,n);      }
   s=imatrix(1,maxwav+1,1,n);      annais[i]=(double)(year);
   tab=ivector(1,NCOVMAX);      moisnais[i]=(double)(month); 
   ncodemax=ivector(1,8);      strcpy(line,stra);
       
   i=1;      cutv(stra, strb,line,' '); 
   linei=0;      errno=0;
   while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {      dval=strtod(strb,&endptr); 
     linei=linei+1;      if( strb[0]=='\0' || (*endptr != '\0')){
     for(j=strlen(line); j>=0;j--){  /* Untabifies line */        printf("Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
       if(line[j] == '\t')        fprintf(ficlog,"Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         line[j] = ' ';        fflush(ficlog);
     }        return 1;
     for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){      }
       ;      weight[i]=dval; 
     };      strcpy(line,stra);
     line[j+1]=0;  /* Trims blanks at end of line */      
     if(line[0]=='#'){      for (j=ncovcol;j>=1;j--){
       fprintf(ficlog,"Comment line\n%s\n",line);        cutv(stra, strb,line,' '); 
       printf("Comment line\n%s\n",line);        if(strb[0]=='.') { /* Missing status */
       continue;          lval=-1;
     }        }else{
           errno=0;
     for (j=maxwav;j>=1;j--){          lval=strtol(strb,&endptr,10); 
       cutv(stra, strb,line,' ');          if( strb[0]=='\0' || (*endptr != '\0')){
       errno=0;            printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);
       lval=strtol(strb,&endptr,10);            fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);fflush(ficlog);
       /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/            return 1;
       if( strb[0]=='\0' || (*endptr != '\0')){          }
         printf("Error reading data around '%d' at line number %d %s for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);        }
         exit(1);        if(lval <-1 || lval >1){
       }          printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
       s[j][i]=lval;   Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
         for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
       strcpy(line,stra);   For example, for multinomial values like 1, 2 and 3,\n \
       cutv(stra, strb,line,' ');   build V1=0 V2=0 for the reference value (1),\n \
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){          V1=1 V2=0 for (2) \n \
       }   and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
       else  if(iout=sscanf(strb,"%s.") != 0){   output of IMaCh is often meaningless.\n \
         month=99;   Exiting.\n",lval,linei, i,line,j);
         year=9999;          fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
       }else{   Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);   for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
         exit(1);   For example, for multinomial values like 1, 2 and 3,\n \
       }   build V1=0 V2=0 for the reference value (1),\n \
       anint[j][i]= (double) year;          V1=1 V2=0 for (2) \n \
       mint[j][i]= (double)month;   and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
       strcpy(line,stra);   output of IMaCh is often meaningless.\n \
     } /* ENd Waves */   Exiting.\n",lval,linei, i,line,j);fflush(ficlog);
              return 1;
     cutv(stra, strb,line,' ');        }
     if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){        covar[j][i]=(double)(lval);
     }        strcpy(line,stra);
     else  if(iout=sscanf(strb,"%s.",dummy) != 0){      }  
       month=99;      lstra=strlen(stra);
       year=9999;       
     }else{      if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
       printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);        stratrunc = &(stra[lstra-9]);
       exit(1);        num[i]=atol(stratrunc);
     }      }
     andc[i]=(double) year;      else
     moisdc[i]=(double) month;        num[i]=atol(stra);
     strcpy(line,stra);      /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
            printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
     cutv(stra, strb,line,' ');      
     if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){      i=i+1;
     }    } /* End loop reading  data */
     else  if(iout=sscanf(strb,"%s.") != 0){  
       month=99;    *imax=i-1; /* Number of individuals */
       year=9999;    fclose(fic);
     }else{   
       printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line,j);    return (0);
       exit(1);    endread:
     }      printf("Exiting readdata: ");
     annais[i]=(double)(year);      fclose(fic);
     moisnais[i]=(double)(month);      return (1);
     strcpy(line,stra);  
      
     cutv(stra, strb,line,' ');  
     errno=0;  }
     dval=strtod(strb,&endptr);  void removespace(char *str) {
     if( strb[0]=='\0' || (*endptr != '\0')){    char *p1 = str, *p2 = str;
       printf("Error reading data around '%f' at line number %ld, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);    do
       exit(1);      while (*p2 == ' ')
     }        p2++;
     weight[i]=dval;    while (*p1++ = *p2++);
     strcpy(line,stra);  }
      
     for (j=ncovcol;j>=1;j--){  int decodemodel ( char model[], int lastobs) /**< This routine decode the model and returns:
       cutv(stra, strb,line,' ');     * Model  V1+V2+V3+V8+V7*V8+V5*V6+V8*age+V3*age
       errno=0;     * - cptcovt total number of covariates of the model nbocc(+)+1 = 8
       lval=strtol(strb,&endptr,10);     * - cptcovn or number of covariates k of the models excluding age*products =6
       if( strb[0]=='\0' || (*endptr != '\0')){     * - cptcovage number of covariates with age*products =2
         printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a covar (meaning 0 for the reference or 1).  Exiting.\n",lval, linei,i, line);     * - cptcovs number of simple covariates
         exit(1);     * - Tvar[k] is the id of the kth covariate Tvar[1]@12 {1, 2, 3, 8, 10, 11, 8, 3, 7, 8, 5, 6}, thus Tvar[5=V7*V8]=10
       }     *     which is a new column after the 9 (ncovcol) variables. 
       if(lval <-1 || lval >1){     * - if k is a product Vn*Vm covar[k][i] is filled with correct values for each individual
         printf("Error reading data around '%d' at line number %ld for individual %d, '%s'\n \     * - Tprod[l] gives the kth covariates of the product Vn*Vm l=1 to cptcovprod-cptcovage
  Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \     *    Tprod[1]@2 {5, 6}: position of first product V7*V8 is 5, and second V5*V6 is 6.
  for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \     * - Tvard[k]  p Tvard[1][1]@4 {7, 8, 5, 6} for V7*V8 and V5*V6 .
  For example, for multinomial values like 1, 2 and 3,\n \   */
  build V1=0 V2=0 for the reference value (1),\n \  {
         V1=1 V2=0 for (2) \n \    int i, j, k, ks;
  and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \    int i1, j1, k1, k2;
  output of IMaCh is often meaningless.\n \    char modelsav[80];
  Exiting.\n",lval,linei, i,line,j);    char stra[80], strb[80], strc[80], strd[80],stre[80];
         exit(1);  
       }    /*removespace(model);*/
       covar[j][i]=(double)(lval);    if (strlen(model) >1){ /* If there is at least 1 covariate */
       strcpy(line,stra);      j=0, j1=0, k1=0, k2=-1, ks=0, cptcovn=0;
     }      j=nbocc(model,'+'); /**< j=Number of '+' */
     lstra=strlen(stra);      j1=nbocc(model,'*'); /**< j1=Number of '*' */
          cptcovs=j+1-j1; /**<  Number of simple covariates V1+V2*age+V3 +V3*V4=> V1 + V3 =2  */
     if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */      cptcovt= j+1; /* Number of total covariates in the model V1 + V2*age+ V3 + V3*V4=> 4*/
       stratrunc = &(stra[lstra-9]);                    /* including age products which are counted in cptcovage.
       num[i]=atol(stratrunc);                    /* but the covariates which are products must be treated separately: ncovn=4- 2=2 (V1+V3). */
     }      cptcovprod=j1; /**< Number of products  V1*V2 +v3*age = 2 */
     else      cptcovprodnoage=0; /**< Number of covariate products without age: V3*V4 =1  */
       num[i]=atol(stra);      strcpy(modelsav,model); 
     /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){      if (strstr(model,"AGE") !=0){
       printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/        printf("Error. AGE must be in lower case 'age' model=%s ",model);
            fprintf(ficlog,"Error. AGE must be in lower case model=%s ",model);fflush(ficlog);
     i=i+1;        return 1;
   } /* End loop reading  data */      }
   fclose(fic);      if (strstr(model,"v") !=0){
   /* printf("ii=%d", ij);        printf("Error. 'v' must be in upper case 'V' model=%s ",model);
      scanf("%d",i);*/        fprintf(ficlog,"Error. 'v' must be in upper case model=%s ",model);fflush(ficlog);
   imx=i-1; /* Number of individuals */        return 1;
       }
   /* for (i=1; i<=imx; i++){      
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;      /*   Design
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;       *  V1   V2   V3   V4  V5  V6  V7  V8  V9 Weight
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;       *  <          ncovcol=8                >
     }*/       * Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8
    /*  for (i=1; i<=imx; i++){       *   k=  1    2      3       4     5       6      7        8
      if (s[4][i]==9)  s[4][i]=-1;       *  cptcovn number of covariates (not including constant and age ) = # of + plus 1 = 7+1=8
      printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/       *  covar[k,i], value of kth covariate if not including age for individual i:
         *       covar[1][i]= (V2), covar[4][i]=(V3), covar[8][i]=(V8)
   /* for (i=1; i<=imx; i++) */       *  Tvar[k] # of the kth covariate:  Tvar[1]=2  Tvar[4]=3 Tvar[8]=8
         *       if multiplied by age: V3*age Tvar[3=V3*age]=3 (V3) Tvar[7]=8 and 
    /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;       *  Tage[++cptcovage]=k
      else weight[i]=1;*/       *       if products, new covar are created after ncovcol with k1
        *  Tvar[k]=ncovcol+k1; # of the kth covariate product:  Tvar[5]=ncovcol+1=10  Tvar[6]=ncovcol+1=11
   /* Calculation of the number of parameters from char model */       *  Tprod[k1]=k; Tprod[1]=5 Tprod[2]= 6; gives the position of the k1th product
   Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */       *  Tvard[k1][1]=m Tvard[k1][2]=m; Tvard[1][1]=5 (V5) Tvard[1][2]=6 Tvard[2][1]=7 (V7) Tvard[2][2]=8
   Tprod=ivector(1,15);       *  Tvar[cptcovn+k2]=Tvard[k1][1];Tvar[cptcovn+k2+1]=Tvard[k1][2];
   Tvaraff=ivector(1,15);       *  Tvar[8+1]=5;Tvar[8+2]=6;Tvar[8+3]=7;Tvar[8+4]=8 inverted
   Tvard=imatrix(1,15,1,2);       *  V1   V2   V3   V4  V5  V6  V7  V8  V9  V10  V11
   Tage=ivector(1,15);             *  <          ncovcol=8                >
           *       Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8    d1   d1   d2  d2
   if (strlen(model) >1){ /* If there is at least 1 covariate */       *          k=  1    2      3       4     5       6      7        8    9   10   11  12
     j=0, j1=0, k1=1, k2=1;       *     Tvar[k]= 2    1      3       3    10      11      8        8    5    6    7   8
     j=nbocc(model,'+'); /* j=Number of '+' */       * p Tvar[1]@12={2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
     j1=nbocc(model,'*'); /* j1=Number of '*' */       * p Tprod[1]@2={                         6, 5}
     cptcovn=j+1;       *p Tvard[1][1]@4= {7, 8, 5, 6}
     cptcovprod=j1; /*Number of products */       * covar[k][i]= V2   V1      ?      V3    V5*V6?   V7*V8?  ?       V8   
           *  cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     strcpy(modelsav,model);       *How to reorganize?
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){       * Model V1 + V2 + V3 + V8 + V5*V6 + V7*V8 + V3*age + V8*age
       printf("Error. Non available option model=%s ",model);       * Tvars {2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
       fprintf(ficlog,"Error. Non available option model=%s ",model);       *       {2,   1,     4,      8,    5,      6,     3,       7}
       goto end;       * Struct []
     }       */
      
     /* This loop fills the array Tvar from the string 'model'.*/      /* This loop fills the array Tvar from the string 'model'.*/
       /* j is the number of + signs in the model V1+V2+V3 j=2 i=3 to 1 */
     for(i=(j+1); i>=1;i--){      /*   modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4  */
       cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */      /*  k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tage[cptcovage=1]=4 */
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */      /*  k=3 V4 Tvar[k=3]= 4 (from V4) */
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/      /*  k=2 V1 Tvar[k=2]= 1 (from V1) */
       /*scanf("%d",i);*/      /*  k=1 Tvar[1]=2 (from V2) */
       if (strchr(strb,'*')) {  /* Model includes a product */      /*  k=5 Tvar[5] */
         cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/      /* for (k=1; k<=cptcovn;k++) { */
         if (strcmp(strc,"age")==0) { /* Vn*age */      /*  cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]]; */
           cptcovprod--;      /*  } */
           cutv(strb,stre,strd,'V');      /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
           Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/      /*
           cptcovage++;       * Treating invertedly V2+V1+V3*age+V2*V4 is as if written V2*V4 +V3*age + V1 + V2 */
             Tage[cptcovage]=i;      for(k=cptcovt; k>=1;k--) /**< Number of covariates */
             /*printf("stre=%s ", stre);*/          Tvar[k]=0;
         }      cptcovage=0;
         else if (strcmp(strd,"age")==0) { /* or age*Vn */      for(k=1; k<=cptcovt;k++){ /* Loop on total covariates of the model */
           cptcovprod--;        cutl(stra,strb,modelsav,'+'); /* keeps in strb after the first '+' 
           cutv(strb,stre,strc,'V');                                       modelsav==V2+V1+V4+V3*age strb=V3*age stra=V2+V1+V4 */ 
           Tvar[i]=atoi(stre);        if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
           cptcovage++;        /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
           Tage[cptcovage]=i;        /*scanf("%d",i);*/
         }        if (strchr(strb,'*')) {  /**< Model includes a product V2+V1+V4+V3*age strb=V3*age */
         else {  /* Age is not in the model */          cutl(strc,strd,strb,'*'); /**< strd*strc  Vm*Vn: strb=V3*age(input) strc=age strd=V3 ; V3*V2 strc=V2, strd=V3 */
           cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/          if (strcmp(strc,"age")==0) { /**< Model includes age: Vn*age */
           Tvar[i]=ncovcol+k1;            /* covar is not filled and then is empty */
           cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */            cptcovprod--;
           Tprod[k1]=i;            cutl(stre,strb,strd,'V'); /* strd=V3(input): stre="3" */
           Tvard[k1][1]=atoi(strc); /* m*/            Tvar[k]=atoi(stre);  /* V2+V1+V4+V3*age Tvar[4]=3 ; V1+V2*age Tvar[2]=2 */
           Tvard[k1][2]=atoi(stre); /* n */            cptcovage++; /* Sums the number of covariates which include age as a product */
           Tvar[cptcovn+k2]=Tvard[k1][1];            Tage[cptcovage]=k;  /* Tage[1] = 4 */
           Tvar[cptcovn+k2+1]=Tvard[k1][2];            /*printf("stre=%s ", stre);*/
           for (k=1; k<=lastobs;k++)          } else if (strcmp(strd,"age")==0) { /* or age*Vn */
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];            cptcovprod--;
           k1++;            cutl(stre,strb,strc,'V');
           k2=k2+2;            Tvar[k]=atoi(stre);
         }            cptcovage++;
       }            Tage[cptcovage]=k;
       else { /* no more sum */          } else {  /* Age is not in the model product V2+V1+V1*V4+V3*age+V3*V2  strb=V3*V2*/
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/            /* loops on k1=1 (V3*V2) and k1=2 V4*V3 */
        /*  scanf("%d",i);*/            cptcovn++;
       cutv(strd,strc,strb,'V');            cptcovprodnoage++;k1++;
       Tvar[i]=atoi(strc);            cutl(stre,strb,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/
       }            Tvar[k]=ncovcol+k1; /* For model-covariate k tells which data-covariate to use but
       strcpy(modelsav,stra);                                      because this model-covariate is a construction we invent a new column
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);                                    ncovcol + k1
         scanf("%d",i);*/                                    If already ncovcol=4 and model=V2+V1+V1*V4+age*V3+V3*V2
     } /* end of loop + */                                    Tvar[3=V1*V4]=4+1 Tvar[5=V3*V2]=4 + 2= 6, etc */
   } /* end model */            cutl(strc,strb,strd,'V'); /* strd was Vm, strc is m */
              Tprod[k1]=k;  /* Tprod[1]=3(=V1*V4) for V2+V1+V1*V4+age*V3+V3*V2  */
   /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.            Tvard[k1][1] =atoi(strc); /* m 1 for V1*/
     If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/            Tvard[k1][2] =atoi(stre); /* n 4 for V4*/
             k2=k2+2;
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);            Tvar[cptcovt+k2]=Tvard[k1][1]; /* Tvar[(cptcovt=4+k2=1)=5]= 1 (V1) */
   printf("cptcovprod=%d ", cptcovprod);            Tvar[cptcovt+k2+1]=Tvard[k1][2];  /* Tvar[(cptcovt=4+(k2=1)+1)=6]= 4 (V4) */
   fprintf(ficlog,"cptcovprod=%d ", cptcovprod);            for (i=1; i<=lastobs;i++){
               /* Computes the new covariate which is a product of
   scanf("%d ",i);*/                 covar[n][i]* covar[m][i] and stores it at ncovol+k1 May not be defined */
               covar[ncovcol+k1][i]=covar[atoi(stre)][i]*covar[atoi(strc)][i];
     /*  if(mle==1){*/            }
   if (weightopt != 1) { /* Maximisation without weights*/          } /* End age is not in the model */
     for(i=1;i<=n;i++) weight[i]=1.0;        } /* End if model includes a product */
   }        else { /* no more sum */
     /*-calculation of age at interview from date of interview and age at death -*/          /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
   agev=matrix(1,maxwav,1,imx);         /*  scanf("%d",i);*/
           cutl(strd,strc,strb,'V');
   for (i=1; i<=imx; i++) {          ks++; /**< Number of simple covariates */
     for(m=2; (m<= maxwav); m++) {          cptcovn++;
       if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){          Tvar[k]=atoi(strd);
         anint[m][i]=9999;        }
         s[m][i]=-1;        strcpy(modelsav,stra);  /* modelsav=V2+V1+V4 stra=V2+V1+V4 */ 
       }        /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
       if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){          scanf("%d",i);*/
         nberr++;      } /* end of loop + */
         printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);    } /* end model */
         fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);    
         s[m][i]=-1;    /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       }      If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
       if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){  
         nberr++;    /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
         printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]);    printf("cptcovprod=%d ", cptcovprod);
         fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]);    fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
         s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */  
       }    scanf("%d ",i);*/
     }  
   }  
     return (0); /* with covar[new additional covariate if product] and Tage if age */ 
   for (i=1; i<=imx; i++)  {    endread:
     agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);      printf("Exiting decodemodel: ");
     for(m=firstpass; (m<= lastpass); m++){      return (1);
       if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){  }
         if (s[m][i] >= nlstate+1) {  
           if(agedc[i]>0)  calandcheckages(int imx, int maxwav, double *agemin, double *agemax, int *nberr, int *nbwarn )
             if((int)moisdc[i]!=99 && (int)andc[i]!=9999)  {
               agev[m][i]=agedc[i];    int i, m;
           /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/  
             else {    for (i=1; i<=imx; i++) {
               if ((int)andc[i]!=9999){      for(m=2; (m<= maxwav); m++) {
                 nbwarn++;        if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
                 printf("Warning negative age at death: %ld line:%d\n",num[i],i);          anint[m][i]=9999;
                 fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);          s[m][i]=-1;
                 agev[m][i]=-1;        }
               }        if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
             }          *nberr++;
         }          printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
         else if(s[m][i] !=9){ /* Standard case, age in fractional          fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
                                  years but with the precision of a month */          s[m][i]=-1;
           agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);        }
           if((int)mint[m][i]==99 || (int)anint[m][i]==9999)        if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
             agev[m][i]=1;          *nberr++;
           else if(agev[m][i] <agemin){          printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
             agemin=agev[m][i];          fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
             /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/          s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
           }        }
           else if(agev[m][i] >agemax){      }
             agemax=agev[m][i];    }
             /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/  
           }    for (i=1; i<=imx; i++)  {
           /*agev[m][i]=anint[m][i]-annais[i];*/      agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
           /*     agev[m][i] = age[i]+2*m;*/      for(m=firstpass; (m<= lastpass); m++){
         }        if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
         else { /* =9 */          if (s[m][i] >= nlstate+1) {
           agev[m][i]=1;            if(agedc[i]>0)
           s[m][i]=-1;              if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
         }                agev[m][i]=agedc[i];
       }            /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
       else /*= 0 Unknown */              else {
         agev[m][i]=1;                if ((int)andc[i]!=9999){
     }                  nbwarn++;
                      printf("Warning negative age at death: %ld line:%d\n",num[i],i);
   }                  fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
   for (i=1; i<=imx; i++)  {                  agev[m][i]=-1;
     for(m=firstpass; (m<=lastpass); m++){                }
       if (s[m][i] > (nlstate+ndeath)) {              }
         nberr++;          }
         printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);              else if(s[m][i] !=9){ /* Standard case, age in fractional
         fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);                                       years but with the precision of a month */
         goto end;            agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
       }            if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
     }              agev[m][i]=1;
   }            else if(agev[m][i] < *agemin){ 
               *agemin=agev[m][i];
   /*for (i=1; i<=imx; i++){              printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], *agemin);
   for (m=firstpass; (m<lastpass); m++){            }
      printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);            else if(agev[m][i] >*agemax){
 }              *agemax=agev[m][i];
               /* printf(" Max anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.2f\n",m,i,anint[m][i], i,annais[i], *agemax);*/
 }*/            }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
   printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);          }
   fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);          else { /* =9 */
             agev[m][i]=1;
   agegomp=(int)agemin;            s[m][i]=-1;
   free_vector(severity,1,maxwav);          }
   free_imatrix(outcome,1,maxwav+1,1,n);        }
   free_vector(moisnais,1,n);        else /*= 0 Unknown */
   free_vector(annais,1,n);          agev[m][i]=1;
   /* free_matrix(mint,1,maxwav,1,n);      }
      free_matrix(anint,1,maxwav,1,n);*/      
   free_vector(moisdc,1,n);    }
   free_vector(andc,1,n);    for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
            if (s[m][i] > (nlstate+ndeath)) {
   wav=ivector(1,imx);          *nberr++;
   dh=imatrix(1,lastpass-firstpass+1,1,imx);          printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
   bh=imatrix(1,lastpass-firstpass+1,1,imx);          fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
   mw=imatrix(1,lastpass-firstpass+1,1,imx);          return 1;
            }
   /* Concatenates waves */      }
   concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);    }
   
   /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */    /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
   Tcode=ivector(1,100);       printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);  }
   ncodemax[1]=1;  
   if (cptcovn > 0) tricode(Tvar,nbcode,imx);  }*/
        
   codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of  
                                  the estimations*/    printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax);
   h=0;    fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax); 
   m=pow(2,cptcoveff);  
      return (0);
   for(k=1;k<=cptcoveff; k++){    endread:
     for(i=1; i <=(m/pow(2,k));i++){      printf("Exiting calandcheckages: ");
       for(j=1; j <= ncodemax[k]; j++){      return (1);
         for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){  }
           h++;  
           if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;  
           /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/  /***********************************************/
         }  /**************** Main Program *****************/
       }  /***********************************************/
     }  
   }  int main(int argc, char *argv[])
   /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);  {
      codtab[1][2]=1;codtab[2][2]=2; */  #ifdef GSL
   /* for(i=1; i <=m ;i++){    const gsl_multimin_fminimizer_type *T;
      for(k=1; k <=cptcovn; k++){    size_t iteri = 0, it;
      printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);    int rval = GSL_CONTINUE;
      }    int status = GSL_SUCCESS;
      printf("\n");    double ssval;
      }  #endif
      scanf("%d",i);*/    int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
        int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
   /*------------ gnuplot -------------*/    int linei, month, year,iout;
   strcpy(optionfilegnuplot,optionfilefiname);    int jj, ll, li, lj, lk, imk;
   if(mle==-3)    int numlinepar=0; /* Current linenumber of parameter file */
     strcat(optionfilegnuplot,"-mort");    int itimes;
   strcat(optionfilegnuplot,".gp");    int NDIM=2;
     int vpopbased=0;
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {  
     printf("Problem with file %s",optionfilegnuplot);    char ca[32], cb[32], cc[32];
   }    /*  FILE *fichtm; *//* Html File */
   else{    /* FILE *ficgp;*/ /*Gnuplot File */
     fprintf(ficgp,"\n# %s\n", version);    struct stat info;
     fprintf(ficgp,"# %s\n", optionfilegnuplot);    double agedeb, agefin,hf;
     fprintf(ficgp,"set missing 'NaNq'\n");    double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   }  
   /*  fclose(ficgp);*/    double fret;
   /*--------- index.htm --------*/    double **xi,tmp,delta;
   
   strcpy(optionfilehtm,optionfilefiname); /* Main html file */    double dum; /* Dummy variable */
   if(mle==-3)    double ***p3mat;
     strcat(optionfilehtm,"-mort");    double ***mobaverage;
   strcat(optionfilehtm,".htm");    int *indx;
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {    char line[MAXLINE], linepar[MAXLINE];
     printf("Problem with %s \n",optionfilehtm), exit(0);    char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
   }    char pathr[MAXLINE], pathimach[MAXLINE]; 
     char **bp, *tok, *val; /* pathtot */
   strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */    int firstobs=1, lastobs=10;
   strcat(optionfilehtmcov,"-cov.htm");    int sdeb, sfin; /* Status at beginning and end */
   if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {    int c,  h , cpt,l;
     printf("Problem with %s \n",optionfilehtmcov), exit(0);    int ju,jl, mi;
   }    int i1,j1, jk,aa,bb, stepsize, ij;
   else{    int jnais,jdc,jint4,jint1,jint2,jint3,*tab; 
   fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \    int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
 <hr size=\"2\" color=\"#EC5E5E\"> \n\    int mobilav=0,popforecast=0;
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\    int hstepm, nhstepm;
           optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);    int agemortsup;
   }    float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
   fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \    double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
 <hr size=\"2\" color=\"#EC5E5E\"> \n\  
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\    double bage, fage, age, agelim, agebase;
 \n\    double ftolpl=FTOL;
 <hr  size=\"2\" color=\"#EC5E5E\">\    double **prlim;
  <ul><li><h4>Parameter files</h4>\n\    double ***param; /* Matrix of parameters */
  - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\    double  *p;
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\    double **matcov; /* Matrix of covariance */
  - Log file of the run: <a href=\"%s\">%s</a><br>\n\    double ***delti3; /* Scale */
  - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\    double *delti; /* Scale */
  - Date and time at start: %s</ul>\n",\    double ***eij, ***vareij;
           optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\    double **varpl; /* Variances of prevalence limits by age */
           optionfilefiname,optionfilext,optionfilefiname,optionfilext,\    double *epj, vepp;
           fileres,fileres,\    double kk1, kk2;
           filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);    double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
   fflush(fichtm);    double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4]="1234";
   strcpy(pathr,path);    int *dcwave;
   strcat(pathr,optionfilefiname);  
   chdir(optionfilefiname); /* Move to directory named optionfile */    char z[1]="c", occ;
    
   /* Calculates basic frequencies. Computes observed prevalence at single age    /*char  *strt;*/
      and prints on file fileres'p'. */    char strtend[80];
   freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);  
     long total_usecs;
   fprintf(fichtm,"\n");   
   fprintf(fichtm,"<br>Total number of observations=%d <br>\n\  /*   setlocale (LC_ALL, ""); */
 Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\  /*   bindtextdomain (PACKAGE, LOCALEDIR); */
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\  /*   textdomain (PACKAGE); */
           imx,agemin,agemax,jmin,jmax,jmean);  /*   setlocale (LC_CTYPE, ""); */
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  /*   setlocale (LC_MESSAGES, ""); */
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    rstart_time = time(NULL);  
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    /*  (void) gettimeofday(&start_time,&tzp);*/
        start_time = *localtime(&rstart_time);
        curr_time=start_time;
   /* For Powell, parameters are in a vector p[] starting at p[1]    /*tml = *localtime(&start_time.tm_sec);*/
      so we point p on param[1][1] so that p[1] maps on param[1][1][1] */    /* strcpy(strstart,asctime(&tml)); */
   p=param[1][1]; /* *(*(*(param +1)+1)+0) */    strcpy(strstart,asctime(&start_time));
   
   globpr=0; /* To get the number ipmx of contributions and the sum of weights*/  /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tm_sec = tp.tm_sec +86400; */
   if (mle==-3){  /*  tm = *localtime(&start_time.tm_sec); */
     ximort=matrix(1,NDIM,1,NDIM);  /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
     cens=ivector(1,n);  /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
     ageexmed=vector(1,n);  /*   tmg.tm_hour=tmg.tm_hour + 1; */
     agecens=vector(1,n);  /*   tp.tm_sec = mktime(&tmg); */
     dcwave=ivector(1,n);  /*   strt=asctime(&tmg); */
    /*   printf("Time(after) =%s",strstart);  */
     for (i=1; i<=imx; i++){  /*  (void) time (&time_value);
       dcwave[i]=-1;  *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
       for (m=firstpass; m<=lastpass; m++)  *  tm = *localtime(&time_value);
         if (s[m][i]>nlstate) {  *  strstart=asctime(&tm);
           dcwave[i]=m;  *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
           /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/  */
           break;  
         }    nberr=0; /* Number of errors and warnings */
     }    nbwarn=0;
     getcwd(pathcd, size);
     for (i=1; i<=imx; i++) {  
       if (wav[i]>0){    printf("\n%s\n%s",version,fullversion);
         ageexmed[i]=agev[mw[1][i]][i];    if(argc <=1){
         j=wav[i];      printf("\nEnter the parameter file name: ");
         agecens[i]=1.;      fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
         if (ageexmed[i]> 1 && wav[i] > 0){      if(pathr[i-1]=='\n')
           agecens[i]=agev[mw[j][i]][i];        pathr[i-1]='\0';
           cens[i]= 1;      i=strlen(pathr);
         }else if (ageexmed[i]< 1)      if(pathr[i-1]==' ') /* This may happen when dragging on oS/X! */
           cens[i]= -1;        pathr[i-1]='\0';
         if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)     for (tok = pathr; tok != NULL; ){
           cens[i]=0 ;        printf("Pathr |%s|\n",pathr);
       }        while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
       else cens[i]=-1;        printf("val= |%s| pathr=%s\n",val,pathr);
     }        strcpy (pathtot, val);
            if(pathr[0] == '\0') break; /* Dirty */
     for (i=1;i<=NDIM;i++) {      }
       for (j=1;j<=NDIM;j++)    }
         ximort[i][j]=(i == j ? 1.0 : 0.0);    else{
     }      strcpy(pathtot,argv[1]);
        }
     p[1]=0.0268; p[NDIM]=0.083;    /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*printf("%lf %lf", p[1], p[2]);*/    /*cygwin_split_path(pathtot,path,optionfile);
          printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
        /* cutv(path,optionfile,pathtot,'\\');*/
     printf("Powell\n");  fprintf(ficlog,"Powell\n");  
     strcpy(filerespow,"pow-mort");    /* Split argv[0], imach program to get pathimach */
     strcat(filerespow,fileres);    printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     if((ficrespow=fopen(filerespow,"w"))==NULL) {    split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
       printf("Problem with resultfile: %s\n", filerespow);    printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
       fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);   /*   strcpy(pathimach,argv[0]); */
     }    /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     fprintf(ficrespow,"# Powell\n# iter -2*LL");    split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     /*  for (i=1;i<=nlstate;i++)    printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
         for(j=1;j<=nlstate+ndeath;j++)    chdir(path); /* Can be a relative path */
         if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);    if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
     */      printf("Current directory %s!\n",pathcd);
     fprintf(ficrespow,"\n");    strcpy(command,"mkdir ");
        strcat(command,optionfilefiname);
     powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);    if((outcmd=system(command)) != 0){
     fclose(ficrespow);      printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
          /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
     hesscov(matcov, p, NDIM, delti, 1e-4, gompertz);      /* fclose(ficlog); */
   /*     exit(1); */
     for(i=1; i <=NDIM; i++)    }
       for(j=i+1;j<=NDIM;j++)  /*   if((imk=mkdir(optionfilefiname))<0){ */
         matcov[i][j]=matcov[j][i];  /*     perror("mkdir"); */
      /*   } */
     printf("\nCovariance matrix\n ");  
     for(i=1; i <=NDIM; i++) {    /*-------- arguments in the command line --------*/
       for(j=1;j<=NDIM;j++){  
         printf("%f ",matcov[i][j]);    /* Log file */
       }    strcat(filelog, optionfilefiname);
       printf("\n ");    strcat(filelog,".log");    /* */
     }    if((ficlog=fopen(filelog,"w"))==NULL)    {
          printf("Problem with logfile %s\n",filelog);
     printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);      goto end;
     for (i=1;i<=NDIM;i++)    }
       printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));    fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     lsurv=vector(1,AGESUP);    fprintf(ficlog,"\nEnter the parameter file name: \n");
     lpop=vector(1,AGESUP);    fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
     tpop=vector(1,AGESUP);   path=%s \n\
     lsurv[agegomp]=100000;   optionfile=%s\n\
       optionfilext=%s\n\
     for (k=agegomp;k<=AGESUP;k++) {   optionfilefiname='%s'\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
       agemortsup=k;  
       if (p[1]*exp(p[2]*(k-agegomp))>1) break;    printf("Local time (at start):%s",strstart);
     }    fprintf(ficlog,"Local time (at start): %s",strstart);
        fflush(ficlog);
     for (k=agegomp;k<agemortsup;k++)  /*   (void) gettimeofday(&curr_time,&tzp); */
       lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));  /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tm_sec-start_time.tm_sec,tmpout)); */
      
     for (k=agegomp;k<agemortsup;k++){    /* */
       lpop[k]=(lsurv[k]+lsurv[k+1])/2.;    strcpy(fileres,"r");
       sumlpop=sumlpop+lpop[k];    strcat(fileres, optionfilefiname);
     }    strcat(fileres,".txt");    /* Other files have txt extension */
      
     tpop[agegomp]=sumlpop;    /*---------arguments file --------*/
     for (k=agegomp;k<(agemortsup-3);k++){  
       /*  tpop[k+1]=2;*/    if((ficpar=fopen(optionfile,"r"))==NULL)    {
       tpop[k+1]=tpop[k]-lpop[k];      printf("Problem with optionfile '%s' with errno='%s'\n",optionfile,strerror(errno));
     }      fprintf(ficlog,"Problem with optionfile '%s' with errno='%s'\n",optionfile,strerror(errno));
          fflush(ficlog);
          /* goto end; */
     printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");      exit(70); 
     for (k=agegomp;k<(agemortsup-2);k++)    }
       printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);  
      
      
     replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */    strcpy(filereso,"o");
     printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);    strcat(filereso,fileres);
        if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
     printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \      printf("Problem with Output resultfile: %s\n", filereso);
                      stepm, weightopt,\      fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
                      model,imx,p,matcov,agemortsup);      fflush(ficlog);
          goto end;
     free_vector(lsurv,1,AGESUP);    }
     free_vector(lpop,1,AGESUP);  
     free_vector(tpop,1,AGESUP);    /* Reads comments: lines beginning with '#' */
   } /* Endof if mle==-3 */    numlinepar=0;
      while((c=getc(ficpar))=='#' && c!= EOF){
   else{ /* For mle >=1 */      ungetc(c,ficpar);
        fgets(line, MAXLINE, ficpar);
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */      numlinepar++;
     printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);      fputs(line,stdout);
     for (k=1; k<=npar;k++)      fputs(line,ficparo);
       printf(" %d %8.5f",k,p[k]);      fputs(line,ficlog);
     printf("\n");    }
     globpr=1; /* to print the contributions */    ungetc(c,ficpar);
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */  
     printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);    fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     for (k=1; k<=npar;k++)    numlinepar++;
       printf(" %d %8.5f",k,p[k]);    printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     printf("\n");    fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     if(mle>=1){ /* Could be 1 or 2 */    fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
       mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);    fflush(ficlog);
     }    while((c=getc(ficpar))=='#' && c!= EOF){
          ungetc(c,ficpar);
     /*--------- results files --------------*/      fgets(line, MAXLINE, ficpar);
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);      numlinepar++;
          fputs(line, stdout);
          //puts(line);
     fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");      fputs(line,ficparo);
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");      fputs(line,ficlog);
     fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    }
     for(i=1,jk=1; i <=nlstate; i++){    ungetc(c,ficpar);
       for(k=1; k <=(nlstate+ndeath); k++){  
         if (k != i) {     
           printf("%d%d ",i,k);    covar=matrix(0,NCOVMAX,1,n);  /**< used in readdata */
           fprintf(ficlog,"%d%d ",i,k);    cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement plus one, indepently of n in Vn*/
           fprintf(ficres,"%1d%1d ",i,k);    /* v1+v2+v3+v2*v4+v5*age makes cptcovn = 5
           for(j=1; j <=ncovmodel; j++){       v1+v2*age+v2*v3 makes cptcovn = 3
             printf("%lf ",p[jk]);    */
             fprintf(ficlog,"%lf ",p[jk]);    if (strlen(model)>1) 
             fprintf(ficres,"%lf ",p[jk]);      ncovmodel=2+nbocc(model,'+')+1; /*Number of variables including intercept and age = cptcovn + intercept + age : v1+v2+v3+v2*v4+v5*age makes 5+2=7*/
             jk++;    else
           }      ncovmodel=2;
           printf("\n");    nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
           fprintf(ficlog,"\n");    nforce= (nlstate+ndeath-1)*nlstate; /* Number of forces ij from state i to j */
           fprintf(ficres,"\n");    npar= nforce*ncovmodel; /* Number of parameters like aij*/
         }    if(npar >MAXPARM || nlstate >NLSTATEMAX || ndeath >NDEATHMAX || ncovmodel>NCOVMAX){
       }      printf("Too complex model for current IMaCh: npar=(nlstate+ndeath-1)*nlstate*ncovmodel=%d >= %d(MAXPARM) or nlstate=%d >= %d(NLSTATEMAX) or ndeath=%d >= %d(NDEATHMAX) or ncovmodel=(k+age+#of+signs)=%d(NCOVMAX) >= %d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
     }      fprintf(ficlog,"Too complex model for current IMaCh: %d >=%d(MAXPARM) or %d >=%d(NLSTATEMAX) or %d >=%d(NDEATHMAX) or %d(NCOVMAX) >=%d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
     if(mle!=0){      fflush(stdout);
       /* Computing hessian and covariance matrix */      fclose (ficlog);
       ftolhess=ftol; /* Usually correct */      goto end;
       hesscov(matcov, p, npar, delti, ftolhess, func);    }
     }    delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");    delti=delti3[1][1];
     printf("# Scales (for hessian or gradient estimation)\n");    /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");    if(mle==-1){ /* Print a wizard for help writing covariance matrix */
     for(i=1,jk=1; i <=nlstate; i++){      prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       for(j=1; j <=nlstate+ndeath; j++){      printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
         if (j!=i) {      fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
           fprintf(ficres,"%1d%1d",i,j);      free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
           printf("%1d%1d",i,j);      fclose (ficparo);
           fprintf(ficlog,"%1d%1d",i,j);      fclose (ficlog);
           for(k=1; k<=ncovmodel;k++){      goto end;
             printf(" %.5e",delti[jk]);      exit(0);
             fprintf(ficlog," %.5e",delti[jk]);    }
             fprintf(ficres," %.5e",delti[jk]);    else if(mle==-3) {
             jk++;      prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
           }      printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
           printf("\n");      fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
           fprintf(ficlog,"\n");      param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
           fprintf(ficres,"\n");      matcov=matrix(1,npar,1,npar);
         }    }
       }    else{
     }      /* Read guessed parameters */
          /* Reads comments: lines beginning with '#' */
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");      while((c=getc(ficpar))=='#' && c!= EOF){
     if(mle>=1)        ungetc(c,ficpar);
       printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");        fgets(line, MAXLINE, ficpar);
     fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");        numlinepar++;
     /* # 121 Var(a12)\n\ */        fputs(line,stdout);
     /* # 122 Cov(b12,a12) Var(b12)\n\ */        fputs(line,ficparo);
     /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */        fputs(line,ficlog);
     /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */      }
     /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */      ungetc(c,ficpar);
     /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */      
     /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */      param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */      for(i=1; i <=nlstate; i++){
            j=0;
            for(jj=1; jj <=nlstate+ndeath; jj++){
     /* Just to have a covariance matrix which will be more understandable          if(jj==i) continue;
        even is we still don't want to manage dictionary of variables          j++;
     */          fscanf(ficpar,"%1d%1d",&i1,&j1);
     for(itimes=1;itimes<=2;itimes++){          if ((i1 != i) && (j1 != j)){
       jj=0;            printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
       for(i=1; i <=nlstate; i++){  It might be a problem of design; if ncovcol and the model are correct\n \
         for(j=1; j <=nlstate+ndeath; j++){  run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
           if(j==i) continue;            exit(1);
           for(k=1; k<=ncovmodel;k++){          }
             jj++;          fprintf(ficparo,"%1d%1d",i1,j1);
             ca[0]= k+'a'-1;ca[1]='\0';          if(mle==1)
             if(itimes==1){            printf("%1d%1d",i,j);
               if(mle>=1)          fprintf(ficlog,"%1d%1d",i,j);
                 printf("#%1d%1d%d",i,j,k);          for(k=1; k<=ncovmodel;k++){
               fprintf(ficlog,"#%1d%1d%d",i,j,k);            fscanf(ficpar," %lf",&param[i][j][k]);
               fprintf(ficres,"#%1d%1d%d",i,j,k);            if(mle==1){
             }else{              printf(" %lf",param[i][j][k]);
               if(mle>=1)              fprintf(ficlog," %lf",param[i][j][k]);
                 printf("%1d%1d%d",i,j,k);            }
               fprintf(ficlog,"%1d%1d%d",i,j,k);            else
               fprintf(ficres,"%1d%1d%d",i,j,k);              fprintf(ficlog," %lf",param[i][j][k]);
             }            fprintf(ficparo," %lf",param[i][j][k]);
             ll=0;          }
             for(li=1;li <=nlstate; li++){          fscanf(ficpar,"\n");
               for(lj=1;lj <=nlstate+ndeath; lj++){          numlinepar++;
                 if(lj==li) continue;          if(mle==1)
                 for(lk=1;lk<=ncovmodel;lk++){            printf("\n");
                   ll++;          fprintf(ficlog,"\n");
                   if(ll<=jj){          fprintf(ficparo,"\n");
                     cb[0]= lk +'a'-1;cb[1]='\0';        }
                     if(ll<jj){      }  
                       if(itimes==1){      fflush(ficlog);
                         if(mle>=1)  
                           printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);      /* Reads scales values */
                         fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);      p=param[1][1];
                         fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);      
                       }else{      /* Reads comments: lines beginning with '#' */
                         if(mle>=1)      while((c=getc(ficpar))=='#' && c!= EOF){
                           printf(" %.5e",matcov[jj][ll]);        ungetc(c,ficpar);
                         fprintf(ficlog," %.5e",matcov[jj][ll]);        fgets(line, MAXLINE, ficpar);
                         fprintf(ficres," %.5e",matcov[jj][ll]);        numlinepar++;
                       }        fputs(line,stdout);
                     }else{        fputs(line,ficparo);
                       if(itimes==1){        fputs(line,ficlog);
                         if(mle>=1)      }
                           printf(" Var(%s%1d%1d)",ca,i,j);      ungetc(c,ficpar);
                         fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);  
                         fprintf(ficres," Var(%s%1d%1d)",ca,i,j);      for(i=1; i <=nlstate; i++){
                       }else{        for(j=1; j <=nlstate+ndeath-1; j++){
                         if(mle>=1)          fscanf(ficpar,"%1d%1d",&i1,&j1);
                           printf(" %.5e",matcov[jj][ll]);          if ((i1-i)*(j1-j)!=0){
                         fprintf(ficlog," %.5e",matcov[jj][ll]);            printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
                         fprintf(ficres," %.5e",matcov[jj][ll]);            exit(1);
                       }          }
                     }          printf("%1d%1d",i,j);
                   }          fprintf(ficparo,"%1d%1d",i1,j1);
                 } /* end lk */          fprintf(ficlog,"%1d%1d",i1,j1);
               } /* end lj */          for(k=1; k<=ncovmodel;k++){
             } /* end li */            fscanf(ficpar,"%le",&delti3[i][j][k]);
             if(mle>=1)            printf(" %le",delti3[i][j][k]);
               printf("\n");            fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog,"\n");            fprintf(ficlog," %le",delti3[i][j][k]);
             fprintf(ficres,"\n");          }
             numlinepar++;          fscanf(ficpar,"\n");
           } /* end k*/          numlinepar++;
         } /*end j */          printf("\n");
       } /* end i */          fprintf(ficparo,"\n");
     } /* end itimes */          fprintf(ficlog,"\n");
            }
     fflush(ficlog);      }
     fflush(ficres);      fflush(ficlog);
      
     while((c=getc(ficpar))=='#' && c!= EOF){      /* Reads covariance matrix */
       ungetc(c,ficpar);      delti=delti3[1][1];
       fgets(line, MAXLINE, ficpar);  
       puts(line);  
       fputs(line,ficparo);      /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     }    
     ungetc(c,ficpar);      /* Reads comments: lines beginning with '#' */
          while((c=getc(ficpar))=='#' && c!= EOF){
     estepm=0;        ungetc(c,ficpar);
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);        fgets(line, MAXLINE, ficpar);
     if (estepm==0 || estepm < stepm) estepm=stepm;        numlinepar++;
     if (fage <= 2) {        fputs(line,stdout);
       bage = ageminpar;        fputs(line,ficparo);
       fage = agemaxpar;        fputs(line,ficlog);
     }      }
          ungetc(c,ficpar);
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");    
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);      matcov=matrix(1,npar,1,npar);
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);      for(i=1; i <=npar; i++)
            for(j=1; j <=npar; j++) matcov[i][j]=0.;
     while((c=getc(ficpar))=='#' && c!= EOF){        
       ungetc(c,ficpar);      for(i=1; i <=npar; i++){
       fgets(line, MAXLINE, ficpar);        fscanf(ficpar,"%s",str);
       puts(line);        if(mle==1)
       fputs(line,ficparo);          printf("%s",str);
     }        fprintf(ficlog,"%s",str);
     ungetc(c,ficpar);        fprintf(ficparo,"%s",str);
            for(j=1; j <=i; j++){
     fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);          fscanf(ficpar," %le",&matcov[i][j]);
     fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);          if(mle==1){
     fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);            printf(" %.5le",matcov[i][j]);
     printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);          }
     fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);          fprintf(ficlog," %.5le",matcov[i][j]);
              fprintf(ficparo," %.5le",matcov[i][j]);
     while((c=getc(ficpar))=='#' && c!= EOF){        }
       ungetc(c,ficpar);        fscanf(ficpar,"\n");
       fgets(line, MAXLINE, ficpar);        numlinepar++;
       puts(line);        if(mle==1)
       fputs(line,ficparo);          printf("\n");
     }        fprintf(ficlog,"\n");
     ungetc(c,ficpar);        fprintf(ficparo,"\n");
          }
          for(i=1; i <=npar; i++)
     dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;        for(j=i+1;j<=npar;j++)
     dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;          matcov[i][j]=matcov[j][i];
          
     fscanf(ficpar,"pop_based=%d\n",&popbased);      if(mle==1)
     fprintf(ficparo,"pop_based=%d\n",popbased);          printf("\n");
     fprintf(ficres,"pop_based=%d\n",popbased);        fprintf(ficlog,"\n");
          
     while((c=getc(ficpar))=='#' && c!= EOF){      fflush(ficlog);
       ungetc(c,ficpar);      
       fgets(line, MAXLINE, ficpar);      /*-------- Rewriting parameter file ----------*/
       puts(line);      strcpy(rfileres,"r");    /* "Rparameterfile */
       fputs(line,ficparo);      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
     }      strcat(rfileres,".");    /* */
     ungetc(c,ficpar);      strcat(rfileres,optionfilext);    /* Other files have txt extension */
          if((ficres =fopen(rfileres,"w"))==NULL) {
     fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);        printf("Problem writing new parameter file: %s\n", fileres);goto end;
     fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);        fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
     printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);      }
     fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);      fprintf(ficres,"#%s\n",version);
     fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);    }    /* End of mle != -3 */
     /* day and month of proj2 are not used but only year anproj2.*/  
      
        n= lastobs;
        num=lvector(1,n);
     /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/    moisnais=vector(1,n);
     /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/    annais=vector(1,n);
        moisdc=vector(1,n);
     replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */    andc=vector(1,n);
     printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);    agedc=vector(1,n);
        cod=ivector(1,n);
     printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\    weight=vector(1,n);
                  model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\    for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
                  jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);    mint=matrix(1,maxwav,1,n);
          anint=matrix(1,maxwav,1,n);
    /*------------ free_vector  -------------*/    s=imatrix(1,maxwav+1,1,n); /* s[i][j] health state for wave i and individual j */ 
    /*  chdir(path); */    tab=ivector(1,NCOVMAX);
      ncodemax=ivector(1,NCOVMAX); /* Number of code per covariate; if O and 1 only, 2**ncov; V1+V2+V3+V4=>16 */
     free_ivector(wav,1,imx);  
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);    /* Reads data from file datafile */
     free_imatrix(bh,1,lastpass-firstpass+1,1,imx);    if (readdata(datafile, firstobs, lastobs, &imx)==1)
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);        goto end;
     free_lvector(num,1,n);  
     free_vector(agedc,1,n);    /* Calculation of the number of parameters from char model */
     /*free_matrix(covar,0,NCOVMAX,1,n);*/      /*    modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4 
     /*free_matrix(covar,1,NCOVMAX,1,n);*/          k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tag[cptcovage=1]=4
     fclose(ficparo);          k=3 V4 Tvar[k=3]= 4 (from V4)
     fclose(ficres);          k=2 V1 Tvar[k=2]= 1 (from V1)
           k=1 Tvar[1]=2 (from V2)
       */
     /*--------------- Prevalence limit  (period or stable prevalence) --------------*/    Tvar=ivector(1,NCOVMAX); /* Was 15 changed to NCOVMAX. */
      /*  V2+V1+V4+age*V3 is a model with 4 covariates (3 plus signs). 
     strcpy(filerespl,"pl");        For each model-covariate stores the data-covariate id. Tvar[1]=2, Tvar[2]=1, Tvar[3]=4, 
     strcat(filerespl,fileres);        Tvar[4=age*V3] is 3 and 'age' is recorded in Tage.
     if((ficrespl=fopen(filerespl,"w"))==NULL) {    */
       printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;    /* For model-covariate k tells which data-covariate to use but
       fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;      because this model-covariate is a construction we invent a new column
     }      ncovcol + k1
     printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);      If already ncovcol=4 and model=V2+V1+V1*V4+age*V3
     fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);      Tvar[3=V1*V4]=4+1 etc */
     pstamp(ficrespl);    Tprod=ivector(1,NCOVMAX); /* Gives the position of a product */
     fprintf(ficrespl,"# Period (stable) prevalence \n");    /* Tprod[k1=1]=3(=V1*V4) for V2+V1+V1*V4+age*V3
     fprintf(ficrespl,"#Age ");       if  V2+V1+V1*V4+age*V3+V3*V2   TProd[k1=2]=5 (V3*V2)
     for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);    */
     fprintf(ficrespl,"\n");    Tvaraff=ivector(1,NCOVMAX); /* Unclear */
      Tvard=imatrix(1,NCOVMAX,1,2); /* n=Tvard[k1][1]  and m=Tvard[k1][2] gives the couple n,m of the k1 th product Vn*Vm
     prlim=matrix(1,nlstate,1,nlstate);                              * For V3*V2 (in V2+V1+V1*V4+age*V3+V3*V2), V3*V2 position is 2nd. 
                               * Tvard[k1=2][1]=3 (V3) Tvard[k1=2][2]=2(V2) */
     agebase=ageminpar;    Tage=ivector(1,NCOVMAX); /* Gives the covariate id of covariates associated with age: V2 + V1 + age*V4 + V3*age
     agelim=agemaxpar;                           4 covariates (3 plus signs)
     ftolpl=1.e-10;                           Tage[1=V3*age]= 4; Tage[2=age*V4] = 3
     i1=cptcoveff;                        */  
     if (cptcovn < 1){i1=1;}  
     if(decodemodel(model, lastobs) == 1)
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){      goto end;
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  
         k=k+1;    if((double)(lastobs-imx)/(double)imx > 1.10){
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/      nbwarn++;
         fprintf(ficrespl,"\n#******");      printf("Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
         printf("\n#******");      fprintf(ficlog,"Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
         fprintf(ficlog,"\n#******");    }
         for(j=1;j<=cptcoveff;j++) {      /*  if(mle==1){*/
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    if (weightopt != 1) { /* Maximisation without weights. We can have weights different from 1 but want no weight*/
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      for(i=1;i<=imx;i++) weight[i]=1.0; /* changed to imx */
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    }
         }  
         fprintf(ficrespl,"******\n");      /*-calculation of age at interview from date of interview and age at death -*/
         printf("******\n");    agev=matrix(1,maxwav,1,imx);
         fprintf(ficlog,"******\n");  
            if(calandcheckages(imx, maxwav, &agemin, &agemax, &nberr, &nbwarn) == 1)
         for (age=agebase; age<=agelim; age++){      goto end;
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);  
           fprintf(ficrespl,"%.0f ",age );  
           for(j=1;j<=cptcoveff;j++)    agegomp=(int)agemin;
             fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    free_vector(moisnais,1,n);
           for(i=1; i<=nlstate;i++)    free_vector(annais,1,n);
             fprintf(ficrespl," %.5f", prlim[i][i]);    /* free_matrix(mint,1,maxwav,1,n);
           fprintf(ficrespl,"\n");       free_matrix(anint,1,maxwav,1,n);*/
         }    free_vector(moisdc,1,n);
       }    free_vector(andc,1,n);
     }    /* */
     fclose(ficrespl);    
     wav=ivector(1,imx);
     /*------------- h Pij x at various ages ------------*/    dh=imatrix(1,lastpass-firstpass+1,1,imx);
      bh=imatrix(1,lastpass-firstpass+1,1,imx);
     strcpy(filerespij,"pij");  strcat(filerespij,fileres);    mw=imatrix(1,lastpass-firstpass+1,1,imx);
     if((ficrespij=fopen(filerespij,"w"))==NULL) {     
       printf("Problem with Pij resultfile: %s\n", filerespij);goto end;    /* Concatenates waves */
       fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;    concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
     }    /* */
     printf("Computing pij: result on file '%s' \n", filerespij);   
     fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);    /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
    
     stepsize=(int) (stepm+YEARM-1)/YEARM;    nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     /*if (stepm<=24) stepsize=2;*/    ncodemax[1]=1;
     Ndum =ivector(-1,NCOVMAX);  
     agelim=AGESUP;    if (ncovmodel > 2)
     hstepm=stepsize*YEARM; /* Every year of age */      tricode(Tvar,nbcode,imx, Ndum); /**< Fills nbcode[Tvar[j]][l]; */
     hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */  
     codtab=imatrix(1,100,1,10); /* codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) */
     /* hstepm=1;   aff par mois*/    /*printf(" codtab[1,1],codtab[100,10]=%d,%d\n", codtab[1][1],codtab[100][10]);*/
     pstamp(ficrespij);    h=0;
     fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");  
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){  
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    /*if (cptcovn > 0) */
         k=k+1;        
         fprintf(ficrespij,"\n#****** ");   
         for(j=1;j<=cptcoveff;j++)    m=pow(2,cptcoveff);
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);   
         fprintf(ficrespij,"******\n");    for(k=1;k<=cptcoveff; k++){ /* scans any effective covariate */
              for(i=1; i <=pow(2,cptcoveff-k);i++){ /* i=1 to 8/1=8; i=1 to 8/2=4; i=1 to 8/8=1 */ 
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */        for(j=1; j <= ncodemax[k]; j++){ /* For each modality of this covariate ncodemax=2*/
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */          for(cpt=1; cpt <=pow(2,k-1); cpt++){  /* cpt=1 to 8/2**(3+1-1 or 3+1-3) =1 or 4 */ 
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */            h++;
             if (h>m) 
           /*      nhstepm=nhstepm*YEARM; aff par mois*/              h=1;
             /**< codtab(h,k)  k   = codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) + 1
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);             *     h     1     2     3     4
           oldm=oldms;savm=savms;             *______________________________  
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);               *     1 i=1 1 i=1 1 i=1 1 i=1 1
           fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");             *     2     2     1     1     1
           for(i=1; i<=nlstate;i++)             *     3 i=2 1     2     1     1
             for(j=1; j<=nlstate+ndeath;j++)             *     4     2     2     1     1
               fprintf(ficrespij," %1d-%1d",i,j);             *     5 i=3 1 i=2 1     2     1
           fprintf(ficrespij,"\n");             *     6     2     1     2     1
           for (h=0; h<=nhstepm; h++){             *     7 i=4 1     2     2     1
             fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );             *     8     2     2     2     1
             for(i=1; i<=nlstate;i++)             *     9 i=5 1 i=3 1 i=2 1     1
               for(j=1; j<=nlstate+ndeath;j++)             *    10     2     1     1     1
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);             *    11 i=6 1     2     1     1
             fprintf(ficrespij,"\n");             *    12     2     2     1     1
           }             *    13 i=7 1 i=4 1     2     1    
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);             *    14     2     1     2     1
           fprintf(ficrespij,"\n");             *    15 i=8 1     2     2     1
         }             *    16     2     2     2     1
       }             */
     }            codtab[h][k]=j;
             /*codtab[h][Tvar[k]]=j;*/
     varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);            printf("h=%d k=%d j=%d codtab[h][k]=%d Tvar[k]=%d codtab[h][Tvar[k]]=%d \n",h, k,j,codtab[h][k],Tvar[k],codtab[h][Tvar[k]]);
           } 
     fclose(ficrespij);        }
       }
     probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);    } 
     for(i=1;i<=AGESUP;i++)    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
       for(j=1;j<=NCOVMAX;j++)       codtab[1][2]=1;codtab[2][2]=2; */
         for(k=1;k<=NCOVMAX;k++)    /* for(i=1; i <=m ;i++){ 
           probs[i][j][k]=0.;       for(k=1; k <=cptcovn; k++){
          printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
     /*---------- Forecasting ------------------*/       }
     /*if((stepm == 1) && (strcmp(model,".")==0)){*/       printf("\n");
     if(prevfcast==1){       }
       /*    if(stepm ==1){*/       scanf("%d",i);*/
       prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);  
       /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/   free_ivector(Ndum,-1,NCOVMAX);
       /*      }  */  
       /*      else{ */  
       /*        erreur=108; */      
       /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */    /*------------ gnuplot -------------*/
       /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */    strcpy(optionfilegnuplot,optionfilefiname);
       /*      } */    if(mle==-3)
     }      strcat(optionfilegnuplot,"-mort");
      strcat(optionfilegnuplot,".gp");
   
     /*---------- Health expectancies and variances ------------*/    if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     strcpy(filerest,"t");    }
     strcat(filerest,fileres);    else{
     if((ficrest=fopen(filerest,"w"))==NULL) {      fprintf(ficgp,"\n# %s\n", version); 
       printf("Problem with total LE resultfile: %s\n", filerest);goto end;      fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;      //fprintf(ficgp,"set missing 'NaNq'\n");
     }      fprintf(ficgp,"set datafile missing 'NaNq'\n");
     printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest);    }
     fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest);    /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(filerese,"e");    strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     strcat(filerese,fileres);    if(mle==-3)
     if((ficreseij=fopen(filerese,"w"))==NULL) {      strcat(optionfilehtm,"-mort");
       printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);    strcat(optionfilehtm,".htm");
       fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);    if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
     }      printf("Problem with %s \n",optionfilehtm);
     printf("Computing Health Expectancies: result on file '%s' \n", filerese);      exit(0);
     fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);    }
   
     strcpy(fileresstde,"stde");    strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(fileresstde,fileres);    strcat(optionfilehtmcov,"-cov.htm");
     if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {    if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);      printf("Problem with %s \n",optionfilehtmcov), exit(0);
       fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);    }
     }    else{
     printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);    fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
     fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);  <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
     strcpy(filerescve,"cve");            optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     strcat(filerescve,fileres);    }
     if((ficrescveij=fopen(filerescve,"w"))==NULL) {  
       printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);    fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
       fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);  <hr size=\"2\" color=\"#EC5E5E\"> \n\
     }  Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
     printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);  \n\
     fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);  <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
     strcpy(fileresv,"v");   - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
     strcat(fileresv,fileres);   - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
     if((ficresvij=fopen(fileresv,"w"))==NULL) {   - Log file of the run: <a href=\"%s\">%s</a><br>\n\
       printf("Problem with variance resultfile: %s\n", fileresv);exit(0);   - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
       fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);   - Date and time at start: %s</ul>\n",\
     }            optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
     printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);            optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
     fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);            fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */    fflush(fichtm);
     prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);  
     /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\    strcpy(pathr,path);
         ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);    strcat(pathr,optionfilefiname);
     */    chdir(optionfilefiname); /* Move to directory named optionfile */
     
     if (mobilav!=0) {    /* Calculates basic frequencies. Computes observed prevalence at single age
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);       and prints on file fileres'p'. */
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){    freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);  
         printf(" Error in movingaverage mobilav=%d\n",mobilav);    fprintf(fichtm,"\n");
       }    fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
     }  Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){            imx,agemin,agemax,jmin,jmax,jmean);
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
         k=k+1;      oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
         fprintf(ficrest,"\n#****** ");      newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
         for(j=1;j<=cptcoveff;j++)      savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
           fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
         fprintf(ficrest,"******\n");      
      
         fprintf(ficreseij,"\n#****** ");    /* For Powell, parameters are in a vector p[] starting at p[1]
         fprintf(ficresstdeij,"\n#****** ");       so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
         fprintf(ficrescveij,"\n#****** ");    p=param[1][1]; /* *(*(*(param +1)+1)+0) */
         for(j=1;j<=cptcoveff;j++) {  
           fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
           fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
           fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    if (mle==-3){
         }      ximort=matrix(1,NDIM,1,NDIM); 
         fprintf(ficreseij,"******\n");  /*     ximort=gsl_matrix_alloc(1,NDIM,1,NDIM); */
         fprintf(ficresstdeij,"******\n");      cens=ivector(1,n);
         fprintf(ficrescveij,"******\n");      ageexmed=vector(1,n);
       agecens=vector(1,n);
         fprintf(ficresvij,"\n#****** ");      dcwave=ivector(1,n);
         for(j=1;j<=cptcoveff;j++)   
           fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      for (i=1; i<=imx; i++){
         fprintf(ficresvij,"******\n");        dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
         eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);          if (s[m][i]>nlstate) {
         oldm=oldms;savm=savms;            dcwave[i]=m;
         evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);              /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
         cvevsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);              break;
            }
         vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);      }
         oldm=oldms;savm=savms;  
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav, strstart);      for (i=1; i<=imx; i++) {
         if(popbased==1){        if (wav[i]>0){
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav, strstart);          ageexmed[i]=agev[mw[1][i]][i];
         }          j=wav[i];
           agecens[i]=1.; 
         pstamp(ficrest);  
         fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n# Age ( e.. (std) ");          if (ageexmed[i]> 1 && wav[i] > 0){
         for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);            agecens[i]=agev[mw[j][i]][i];
         fprintf(ficrest,"\n");            cens[i]= 1;
           }else if (ageexmed[i]< 1) 
         epj=vector(1,nlstate+1);            cens[i]= -1;
         for(age=bage; age <=fage ;age++){          if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);            cens[i]=0 ;
           if (popbased==1) {        }
             if(mobilav ==0){        else cens[i]=-1;
               for(i=1; i<=nlstate;i++)      }
                 prlim[i][i]=probs[(int)age][i][k];      
             }else{ /* mobilav */      for (i=1;i<=NDIM;i++) {
               for(i=1; i<=nlstate;i++)        for (j=1;j<=NDIM;j++)
                 prlim[i][i]=mobaverage[(int)age][i][k];          ximort[i][j]=(i == j ? 1.0 : 0.0);
             }      }
           }      
              /*p[1]=0.0268; p[NDIM]=0.083;*/
           fprintf(ficrest," %4.0f",age);      /*printf("%lf %lf", p[1], p[2]);*/
           for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){      
             for(i=1, epj[j]=0.;i <=nlstate;i++) {      
               epj[j] += prlim[i][i]*eij[i][j][(int)age];  #ifdef GSL
               /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/      printf("GSL optimization\n");  fprintf(ficlog,"Powell\n");
             }  #elsedef
             epj[nlstate+1] +=epj[j];      printf("Powell\n");  fprintf(ficlog,"Powell\n");
           }  #endif
       strcpy(filerespow,"pow-mort"); 
           for(i=1, vepp=0.;i <=nlstate;i++)      strcat(filerespow,fileres);
             for(j=1;j <=nlstate;j++)      if((ficrespow=fopen(filerespow,"w"))==NULL) {
               vepp += vareij[i][j][(int)age];        printf("Problem with resultfile: %s\n", filerespow);
           fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));        fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
           for(j=1;j <=nlstate;j++){      }
             fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));  #ifdef GSL
           }      fprintf(ficrespow,"# GSL optimization\n# iter -2*LL");
           fprintf(ficrest,"\n");  #elsedef
         }      fprintf(ficrespow,"# Powell\n# iter -2*LL");
         free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);  #endif
         free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);      /*  for (i=1;i<=nlstate;i++)
         free_vector(epj,1,nlstate+1);          for(j=1;j<=nlstate+ndeath;j++)
       }          if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
     }      */
     free_vector(weight,1,n);      fprintf(ficrespow,"\n");
     free_imatrix(Tvard,1,15,1,2);  #ifdef GSL
     free_imatrix(s,1,maxwav+1,1,n);      /* gsl starts here */ 
     free_matrix(anint,1,maxwav,1,n);      T = gsl_multimin_fminimizer_nmsimplex;
     free_matrix(mint,1,maxwav,1,n);      gsl_multimin_fminimizer *sfm = NULL;
     free_ivector(cod,1,n);      gsl_vector *ss, *x;
     free_ivector(tab,1,NCOVMAX);      gsl_multimin_function minex_func;
     fclose(ficreseij);  
     fclose(ficresstdeij);      /* Initial vertex size vector */
     fclose(ficrescveij);      ss = gsl_vector_alloc (NDIM);
     fclose(ficresvij);      
     fclose(ficrest);      if (ss == NULL){
     fclose(ficpar);        GSL_ERROR_VAL ("failed to allocate space for ss", GSL_ENOMEM, 0);
        }
     /*------- Variance of period (stable) prevalence------*/        /* Set all step sizes to 1 */
       gsl_vector_set_all (ss, 0.001);
     strcpy(fileresvpl,"vpl");  
     strcat(fileresvpl,fileres);      /* Starting point */
     if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {      
       printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);      x = gsl_vector_alloc (NDIM);
       exit(0);      
     }      if (x == NULL){
     printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);        gsl_vector_free(ss);
         GSL_ERROR_VAL ("failed to allocate space for x", GSL_ENOMEM, 0);
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){      }
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    
         k=k+1;      /* Initialize method and iterate */
         fprintf(ficresvpl,"\n#****** ");      /*     p[1]=0.0268; p[NDIM]=0.083; */
         for(j=1;j<=cptcoveff;j++)  /*     gsl_vector_set(x, 0, 0.0268); */
           fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  /*     gsl_vector_set(x, 1, 0.083); */
         fprintf(ficresvpl,"******\n");      gsl_vector_set(x, 0, p[1]);
            gsl_vector_set(x, 1, p[2]);
         varpl=matrix(1,nlstate,(int) bage, (int) fage);  
         oldm=oldms;savm=savms;      minex_func.f = &gompertz_f;
         varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);      minex_func.n = NDIM;
         free_matrix(varpl,1,nlstate,(int) bage, (int)fage);      minex_func.params = (void *)&p; /* ??? */
       }      
     }      sfm = gsl_multimin_fminimizer_alloc (T, NDIM);
       gsl_multimin_fminimizer_set (sfm, &minex_func, x, ss);
     fclose(ficresvpl);      
       printf("Iterations beginning .....\n\n");
     /*---------- End : free ----------------*/      printf("Iter. #    Intercept       Slope     -Log Likelihood     Simplex size\n");
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
     free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);      iteri=0;
       while (rval == GSL_CONTINUE){
   }  /* mle==-3 arrives here for freeing */        iteri++;
   free_matrix(prlim,1,nlstate,1,nlstate);        status = gsl_multimin_fminimizer_iterate(sfm);
     free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);        
     free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);        if (status) printf("error: %s\n", gsl_strerror (status));
     free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);        fflush(0);
     free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);        
     free_matrix(covar,0,NCOVMAX,1,n);        if (status) 
     free_matrix(matcov,1,npar,1,npar);          break;
     /*free_vector(delti,1,npar);*/        
     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);        rval = gsl_multimin_test_size (gsl_multimin_fminimizer_size (sfm), 1e-6);
     free_matrix(agev,1,maxwav,1,imx);        ssval = gsl_multimin_fminimizer_size (sfm);
     free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);        
         if (rval == GSL_SUCCESS)
     free_ivector(ncodemax,1,8);          printf ("converged to a local maximum at\n");
     free_ivector(Tvar,1,15);        
     free_ivector(Tprod,1,15);        printf("%5d ", iteri);
     free_ivector(Tvaraff,1,15);        for (it = 0; it < NDIM; it++){
     free_ivector(Tage,1,15);          printf ("%10.5f ", gsl_vector_get (sfm->x, it));
     free_ivector(Tcode,1,100);        }
         printf("f() = %-10.5f ssize = %.7f\n", sfm->fval, ssval);
     free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);      }
     free_imatrix(codtab,1,100,1,10);      
   fflush(fichtm);      printf("\n\n Please note: Program should be run many times with varying starting points to detemine global maximum\n\n");
   fflush(ficgp);      
        gsl_vector_free(x); /* initial values */
       gsl_vector_free(ss); /* inital step size */
   if((nberr >0) || (nbwarn>0)){      for (it=0; it<NDIM; it++){
     printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);        p[it+1]=gsl_vector_get(sfm->x,it);
     fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);        fprintf(ficrespow," %.12lf", p[it]);
   }else{      }
     printf("End of Imach\n");      gsl_multimin_fminimizer_free (sfm); /* p *(sfm.x.data) et p *(sfm.x.data+1)  */
     fprintf(ficlog,"End of Imach\n");  #endif
   }  #ifdef POWELL
   printf("See log file on %s\n",filelog);       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */  #endif  
   (void) gettimeofday(&end_time,&tzp);      fclose(ficrespow);
   tm = *localtime(&end_time.tv_sec);      
   tmg = *gmtime(&end_time.tv_sec);      hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   strcpy(strtend,asctime(&tm));  
   printf("Local time at start %s\nLocal time at end   %s",strstart, strtend);      for(i=1; i <=NDIM; i++)
   fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend);        for(j=i+1;j<=NDIM;j++)
   printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));          matcov[i][j]=matcov[j][i];
       
   printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);      printf("\nCovariance matrix\n ");
   fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));      for(i=1; i <=NDIM; i++) {
   fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);        for(j=1;j<=NDIM;j++){ 
   /*  printf("Total time was %d uSec.\n", total_usecs);*/          printf("%f ",matcov[i][j]);
 /*   if(fileappend(fichtm,optionfilehtm)){ */        }
   fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);        printf("\n ");
   fclose(fichtm);      }
   fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);      
   fclose(fichtmcov);      printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
   fclose(ficgp);      for (i=1;i<=NDIM;i++) 
   fclose(ficlog);        printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   /*------ End -----------*/  
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
    printf("Before Current directory %s!\n",pathcd);      tpop=vector(1,AGESUP);
    if(chdir(pathcd) != 0)      lsurv[agegomp]=100000;
     printf("Can't move to directory %s!\n",path);      
   if(getcwd(pathcd,MAXLINE) > 0)      for (k=agegomp;k<=AGESUP;k++) {
     printf("Current directory %s!\n",pathcd);        agemortsup=k;
   /*strcat(plotcmd,CHARSEPARATOR);*/        if (p[1]*exp(p[2]*(k-agegomp))>1) break;
   sprintf(plotcmd,"gnuplot");      }
 #ifndef UNIX      
   sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);      for (k=agegomp;k<agemortsup;k++)
 #endif        lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
   if(!stat(plotcmd,&info)){      
     printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);      for (k=agegomp;k<agemortsup;k++){
     if(!stat(getenv("GNUPLOTBIN"),&info)){        lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
       printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);        sumlpop=sumlpop+lpop[k];
     }else      }
       strcpy(pplotcmd,plotcmd);      
 #ifdef UNIX      tpop[agegomp]=sumlpop;
     strcpy(plotcmd,GNUPLOTPROGRAM);      for (k=agegomp;k<(agemortsup-3);k++){
     if(!stat(plotcmd,&info)){        /*  tpop[k+1]=2;*/
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);        tpop[k+1]=tpop[k]-lpop[k];
     }else      }
       strcpy(pplotcmd,plotcmd);      
 #endif      
   }else      printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
     strcpy(pplotcmd,plotcmd);      for (k=agegomp;k<(agemortsup-2);k++) 
          printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);      
   printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);      
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
   if((outcmd=system(plotcmd)) != 0){      printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
     printf("\n Problem with gnuplot\n");      
   }      printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
   printf(" Wait...");                       stepm, weightopt,\
   while (z[0] != 'q') {                       model,imx,p,matcov,agemortsup);
     /* chdir(path); */      
     printf("\nType e to edit output files, g to graph again and q for exiting: ");      free_vector(lsurv,1,AGESUP);
     scanf("%s",z);      free_vector(lpop,1,AGESUP);
 /*     if (z[0] == 'c') system("./imach"); */      free_vector(tpop,1,AGESUP);
     if (z[0] == 'e') {  #ifdef GSL
       printf("Starting browser with: %s",optionfilehtm);fflush(stdout);      free_ivector(cens,1,n);
       system(optionfilehtm);      free_vector(agecens,1,n);
     }      free_ivector(dcwave,1,n);
     else if (z[0] == 'g') system(plotcmd);      free_matrix(ximort,1,NDIM,1,NDIM);
     else if (z[0] == 'q') exit(0);  #endif
   }    } /* Endof if mle==-3 */
   end:    
   while (z[0] != 'q') {    else{ /* For mle >=1 */
     printf("\nType  q for exiting: ");      globpr=0;/* debug */
     scanf("%s",z);      likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
   }      printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
 }      for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%lf ",p[jk]);
               fprintf(ficlog,"%lf ",p[jk]);
               fprintf(ficres,"%lf ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
        /* freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint); */
       /* ,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2); */
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
   #include "prevlim.h"  /* Use ficrespl, ficlog */
       fclose(ficrespl);
   
   #ifdef FREEEXIT2
   #include "freeexit2.h"
   #endif
   
       /*------------- h Pij x at various ages ------------*/
   #include "hpijx.h"
       fclose(ficrespij);
   
     /*-------------- Variance of one-step probabilities---*/
       k=1;
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
   
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
   
       /*---------- Health expectancies, no variances ------------*/
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
         
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         /*}*/
       }
       fclose(ficreseij);
   
   
       /*---------- Health expectancies and variances ------------*/
   
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
   
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
           /*
            */
           /* goto endfree; */
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           pstamp(ficrest);
   
   
           for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
             oldm=oldms;savm=savms; /* Segmentation fault */
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart);
             fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n#  (weighted average of eij where weights are ");
             if(vpopbased==1)
               fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav);
             else
               fprintf(ficrest,"the age specific period (stable) prevalences in each health state \n");
             fprintf(ficrest,"# Age e.. (std) ");
             for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
             fprintf(ficrest,"\n");
   
             epj=vector(1,nlstate+1);
             for(age=bage; age <=fage ;age++){
               prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
               if (vpopbased==1) {
                 if(mobilav ==0){
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=probs[(int)age][i][k];
                 }else{ /* mobilav */ 
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=mobaverage[(int)age][i][k];
                 }
               }
           
               fprintf(ficrest," %4.0f",age);
               for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
                 for(i=1, epj[j]=0.;i <=nlstate;i++) {
                   epj[j] += prlim[i][i]*eij[i][j][(int)age];
                   /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
                 }
                 epj[nlstate+1] +=epj[j];
               }
   
               for(i=1, vepp=0.;i <=nlstate;i++)
                 for(j=1;j <=nlstate;j++)
                   vepp += vareij[i][j][(int)age];
               fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
               for(j=1;j <=nlstate;j++){
                 fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
               }
               fprintf(ficrest,"\n");
             }
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         /*}*/
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,NCOVMAX,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         /*}*/
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
     }  /* mle==-3 arrives here for freeing */
    endfree:
       free_matrix(prlim,1,nlstate,1,nlstate); /*here or after loop ? */
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,NCOVMAX);
       free_ivector(Tvar,1,NCOVMAX);
       free_ivector(Tprod,1,NCOVMAX);
       free_ivector(Tvaraff,1,NCOVMAX);
       free_ivector(Tage,1,NCOVMAX);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     /*(void) gettimeofday(&end_time,&tzp);*/
     rend_time = time(NULL);  
     end_time = *localtime(&rend_time);
     /* tml = *localtime(&end_time.tm_sec); */
     strcpy(strtend,asctime(&end_time));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout));
   
     printf("Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time));
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout));
     fprintf(ficlog,"Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time));
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifdef _WIN32
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error or gnuplot program not found: '%s'\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error or gnuplot program not found: '%s' Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef __unix
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: '%s'\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: '%s'\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("gnuplot command might not be in your path: '%s', err=%d\n", plotcmd, outcmd);
       printf("\n Trying if gnuplot resides on the same directory that IMaCh\n");
       sprintf(plotcmd,"%sgnuplot %s", pathimach, optionfilegnuplot);
       if((outcmd=system(plotcmd)) != 0)
         printf("\n Still a problem with gnuplot command %s, err=%d\n", plotcmd, outcmd);
     }
     printf(" Successful, please wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit results with your browser, g to graph again and q for exit: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
   #ifdef __APPLE__
         sprintf(pplotcmd, "open %s", optionfilehtm);
   #elif __linux
         sprintf(pplotcmd, "xdg-open %s", optionfilehtm);
   #else
         sprintf(pplotcmd, "%s", optionfilehtm);
   #endif
         printf("Starting browser with: %s",pplotcmd);fflush(stdout);
         system(pplotcmd);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }

Removed from v.1.125  
changed lines
  Added in v.1.160


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>