Diff for /imach/src/imach.c between versions 1.19 and 1.110

version 1.19, 2002/02/20 17:19:10 version 1.110, 2006/01/25 00:51:50
Line 1 Line 1
      /* $Id$
 /*********************** Imach **************************************            $State$
   This program computes Healthy Life Expectancies from cross-longitudinal    $Log$
   data. Cross-longitudinal consist in a first survey ("cross") where    Revision 1.110  2006/01/25 00:51:50  brouard
   individuals from different ages are interviewed on their health status    (Module): Lots of cleaning and bugs added (Gompertz)
   or degree of  disability. At least a second wave of interviews  
   ("longitudinal") should  measure each new individual health status.    Revision 1.109  2006/01/24 19:37:15  brouard
   Health expectancies are computed from the transistions observed between    (Module): Comments (lines starting with a #) are allowed in data.
   waves and are computed for each degree of severity of disability (number  
   of life states). More degrees you consider, more time is necessary to    Revision 1.108  2006/01/19 18:05:42  lievre
   reach the Maximum Likelihood of the parameters involved in the model.    Gnuplot problem appeared...
   The simplest model is the multinomial logistic model where pij is    To be fixed
   the probabibility to be observed in state j at the second wave conditional  
   to be observed in state i at the first wave. Therefore the model is:    Revision 1.107  2006/01/19 16:20:37  brouard
   log(pij/pii)= aij + bij*age+ cij*sex + etc , where 'age' is age and 'sex'    Test existence of gnuplot in imach path
   is a covariate. If you want to have a more complex model than "constant and  
   age", you should modify the program where the markup    Revision 1.106  2006/01/19 13:24:36  brouard
     *Covariates have to be included here again* invites you to do it.    Some cleaning and links added in html output
   More covariates you add, less is the speed of the convergence.  
     Revision 1.105  2006/01/05 20:23:19  lievre
   The advantage that this computer programme claims, comes from that if the    *** empty log message ***
   delay between waves is not identical for each individual, or if some  
   individual missed an interview, the information is not rounded or lost, but    Revision 1.104  2005/09/30 16:11:43  lievre
   taken into account using an interpolation or extrapolation.    (Module): sump fixed, loop imx fixed, and simplifications.
   hPijx is the probability to be    (Module): If the status is missing at the last wave but we know
   observed in state i at age x+h conditional to the observed state i at age    that the person is alive, then we can code his/her status as -2
   x. The delay 'h' can be split into an exact number (nh*stepm) of    (instead of missing=-1 in earlier versions) and his/her
   unobserved intermediate  states. This elementary transition (by month or    contributions to the likelihood is 1 - Prob of dying from last
   quarter trimester, semester or year) is model as a multinomial logistic.    health status (= 1-p13= p11+p12 in the easiest case of somebody in
   The hPx matrix is simply the matrix product of nh*stepm elementary matrices    the healthy state at last known wave). Version is 0.98
   and the contribution of each individual to the likelihood is simply hPijx.  
     Revision 1.103  2005/09/30 15:54:49  lievre
   Also this programme outputs the covariance matrix of the parameters but also    (Module): sump fixed, loop imx fixed, and simplifications.
   of the life expectancies. It also computes the prevalence limits.  
      Revision 1.102  2004/09/15 17:31:30  brouard
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    Add the possibility to read data file including tab characters.
            Institut national d'études démographiques, Paris.  
   This software have been partly granted by Euro-REVES, a concerted action    Revision 1.101  2004/09/15 10:38:38  brouard
   from the European Union.    Fix on curr_time
   It is copyrighted identically to a GNU software product, ie programme and  
   software can be distributed freely for non commercial use. Latest version    Revision 1.100  2004/07/12 18:29:06  brouard
   can be accessed at http://euroreves.ined.fr/imach .    Add version for Mac OS X. Just define UNIX in Makefile
   **********************************************************************/  
      Revision 1.99  2004/06/05 08:57:40  brouard
 #include <math.h>    *** empty log message ***
 #include <stdio.h>  
 #include <stdlib.h>    Revision 1.98  2004/05/16 15:05:56  brouard
 #include <unistd.h>    New version 0.97 . First attempt to estimate force of mortality
     directly from the data i.e. without the need of knowing the health
 #define MAXLINE 256    state at each age, but using a Gompertz model: log u =a + b*age .
 #define FILENAMELENGTH 80    This is the basic analysis of mortality and should be done before any
 /*#define DEBUG*/    other analysis, in order to test if the mortality estimated from the
 #define windows    cross-longitudinal survey is different from the mortality estimated
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    from other sources like vital statistic data.
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */  
     The same imach parameter file can be used but the option for mle should be -3.
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */  
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    Agnès, who wrote this part of the code, tried to keep most of the
     former routines in order to include the new code within the former code.
 #define NINTERVMAX 8  
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    The output is very simple: only an estimate of the intercept and of
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    the slope with 95% confident intervals.
 #define NCOVMAX 8 /* Maximum number of covariates */  
 #define MAXN 20000    Current limitations:
 #define YEARM 12. /* Number of months per year */    A) Even if you enter covariates, i.e. with the
 #define AGESUP 130    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
 #define AGEBASE 40    B) There is no computation of Life Expectancy nor Life Table.
   
     Revision 1.97  2004/02/20 13:25:42  lievre
 int nvar;    Version 0.96d. Population forecasting command line is (temporarily)
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    suppressed.
 int npar=NPARMAX;  
 int nlstate=2; /* Number of live states */    Revision 1.96  2003/07/15 15:38:55  brouard
 int ndeath=1; /* Number of dead states */    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
 int ncovmodel, ncov;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    rewritten within the same printf. Workaround: many printfs.
 int popbased=0;  
     Revision 1.95  2003/07/08 07:54:34  brouard
 int *wav; /* Number of waves for this individuual 0 is possible */    * imach.c (Repository):
 int maxwav; /* Maxim number of waves */    (Repository): Using imachwizard code to output a more meaningful covariance
 int jmin, jmax; /* min, max spacing between 2 waves */    matrix (cov(a12,c31) instead of numbers.
 int mle, weightopt;  
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    Revision 1.94  2003/06/27 13:00:02  brouard
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    Just cleaning
 double jmean; /* Mean space between 2 waves */  
 double **oldm, **newm, **savm; /* Working pointers to matrices */    Revision 1.93  2003/06/25 16:33:55  brouard
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    (Module): On windows (cygwin) function asctime_r doesn't
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf;    exist so I changed back to asctime which exists.
 FILE *ficgp, *fichtm,*ficresprob,*ficpop;    (Module): Version 0.96b
 FILE *ficreseij;  
   char filerese[FILENAMELENGTH];    Revision 1.92  2003/06/25 16:30:45  brouard
  FILE  *ficresvij;    (Module): On windows (cygwin) function asctime_r doesn't
   char fileresv[FILENAMELENGTH];    exist so I changed back to asctime which exists.
  FILE  *ficresvpl;  
   char fileresvpl[FILENAMELENGTH];    Revision 1.91  2003/06/25 15:30:29  brouard
     * imach.c (Repository): Duplicated warning errors corrected.
 #define NR_END 1    (Repository): Elapsed time after each iteration is now output. It
 #define FREE_ARG char*    helps to forecast when convergence will be reached. Elapsed time
 #define FTOL 1.0e-10    is stamped in powell.  We created a new html file for the graphs
     concerning matrix of covariance. It has extension -cov.htm.
 #define NRANSI  
 #define ITMAX 200    Revision 1.90  2003/06/24 12:34:15  brouard
     (Module): Some bugs corrected for windows. Also, when
 #define TOL 2.0e-4    mle=-1 a template is output in file "or"mypar.txt with the design
     of the covariance matrix to be input.
 #define CGOLD 0.3819660  
 #define ZEPS 1.0e-10    Revision 1.89  2003/06/24 12:30:52  brouard
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    (Module): Some bugs corrected for windows. Also, when
     mle=-1 a template is output in file "or"mypar.txt with the design
 #define GOLD 1.618034    of the covariance matrix to be input.
 #define GLIMIT 100.0  
 #define TINY 1.0e-20    Revision 1.88  2003/06/23 17:54:56  brouard
     * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
 static double maxarg1,maxarg2;  
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    Revision 1.87  2003/06/18 12:26:01  brouard
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    Version 0.96
    
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    Revision 1.86  2003/06/17 20:04:08  brouard
 #define rint(a) floor(a+0.5)    (Module): Change position of html and gnuplot routines and added
     routine fileappend.
 static double sqrarg;  
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    Revision 1.85  2003/06/17 13:12:43  brouard
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    * imach.c (Repository): Check when date of death was earlier that
     current date of interview. It may happen when the death was just
 int imx;    prior to the death. In this case, dh was negative and likelihood
 int stepm;    was wrong (infinity). We still send an "Error" but patch by
 /* Stepm, step in month: minimum step interpolation*/    assuming that the date of death was just one stepm after the
     interview.
 int m,nb;    (Repository): Because some people have very long ID (first column)
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    we changed int to long in num[] and we added a new lvector for
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    memory allocation. But we also truncated to 8 characters (left
 double **pmmij, ***probs, ***mobaverage;    truncation)
 double dateintmean=0;    (Repository): No more line truncation errors.
   
 double *weight;    Revision 1.84  2003/06/13 21:44:43  brouard
 int **s; /* Status */    * imach.c (Repository): Replace "freqsummary" at a correct
 double *agedc, **covar, idx;    place. It differs from routine "prevalence" which may be called
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    many times. Probs is memory consuming and must be used with
     parcimony.
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
 double ftolhess; /* Tolerance for computing hessian */  
     Revision 1.83  2003/06/10 13:39:11  lievre
 /**************** split *************************/    *** empty log message ***
 static  int split( char *path, char *dirc, char *name )  
 {    Revision 1.82  2003/06/05 15:57:20  brouard
    char *s;                             /* pointer */    Add log in  imach.c and  fullversion number is now printed.
    int  l1, l2;                         /* length counters */  
   */
    l1 = strlen( path );                 /* length of path */  /*
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );     Interpolated Markov Chain
    s = strrchr( path, '\\' );           /* find last / */  
    if ( s == NULL ) {                   /* no directory, so use current */    Short summary of the programme:
 #if     defined(__bsd__)                /* get current working directory */    
       extern char       *getwd( );    This program computes Healthy Life Expectancies from
     cross-longitudinal data. Cross-longitudinal data consist in: -1- a
       if ( getwd( dirc ) == NULL ) {    first survey ("cross") where individuals from different ages are
 #else    interviewed on their health status or degree of disability (in the
       extern char       *getcwd( );    case of a health survey which is our main interest) -2- at least a
     second wave of interviews ("longitudinal") which measure each change
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    (if any) in individual health status.  Health expectancies are
 #endif    computed from the time spent in each health state according to a
          return( GLOCK_ERROR_GETCWD );    model. More health states you consider, more time is necessary to reach the
       }    Maximum Likelihood of the parameters involved in the model.  The
       strcpy( name, path );             /* we've got it */    simplest model is the multinomial logistic model where pij is the
    } else {                             /* strip direcotry from path */    probability to be observed in state j at the second wave
       s++;                              /* after this, the filename */    conditional to be observed in state i at the first wave. Therefore
       l2 = strlen( s );                 /* length of filename */    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    'age' is age and 'sex' is a covariate. If you want to have a more
       strcpy( name, s );                /* save file name */    complex model than "constant and age", you should modify the program
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    where the markup *Covariates have to be included here again* invites
       dirc[l1-l2] = 0;                  /* add zero */    you to do it.  More covariates you add, slower the
    }    convergence.
    l1 = strlen( dirc );                 /* length of directory */  
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    The advantage of this computer programme, compared to a simple
    return( 0 );                         /* we're done */    multinomial logistic model, is clear when the delay between waves is not
 }    identical for each individual. Also, if a individual missed an
     intermediate interview, the information is lost, but taken into
     account using an interpolation or extrapolation.  
 /******************************************/  
     hPijx is the probability to be observed in state i at age x+h
 void replace(char *s, char*t)    conditional to the observed state i at age x. The delay 'h' can be
 {    split into an exact number (nh*stepm) of unobserved intermediate
   int i;    states. This elementary transition (by month, quarter,
   int lg=20;    semester or year) is modelled as a multinomial logistic.  The hPx
   i=0;    matrix is simply the matrix product of nh*stepm elementary matrices
   lg=strlen(t);    and the contribution of each individual to the likelihood is simply
   for(i=0; i<= lg; i++) {    hPijx.
     (s[i] = t[i]);  
     if (t[i]== '\\') s[i]='/';    Also this programme outputs the covariance matrix of the parameters but also
   }    of the life expectancies. It also computes the stable prevalence. 
 }    
     Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
 int nbocc(char *s, char occ)             Institut national d'études démographiques, Paris.
 {    This software have been partly granted by Euro-REVES, a concerted action
   int i,j=0;    from the European Union.
   int lg=20;    It is copyrighted identically to a GNU software product, ie programme and
   i=0;    software can be distributed freely for non commercial use. Latest version
   lg=strlen(s);    can be accessed at http://euroreves.ined.fr/imach .
   for(i=0; i<= lg; i++) {  
   if  (s[i] == occ ) j++;    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
   }    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
   return j;    
 }    **********************************************************************/
   /*
 void cutv(char *u,char *v, char*t, char occ)    main
 {    read parameterfile
   int i,lg,j,p=0;    read datafile
   i=0;    concatwav
   for(j=0; j<=strlen(t)-1; j++) {    freqsummary
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;    if (mle >= 1)
   }      mlikeli
     print results files
   lg=strlen(t);    if mle==1 
   for(j=0; j<p; j++) {       computes hessian
     (u[j] = t[j]);    read end of parameter file: agemin, agemax, bage, fage, estepm
   }        begin-prev-date,...
      u[p]='\0';    open gnuplot file
     open html file
    for(j=0; j<= lg; j++) {    stable prevalence
     if (j>=(p+1))(v[j-p-1] = t[j]);     for age prevalim()
   }    h Pij x
 }    variance of p varprob
     forecasting if prevfcast==1 prevforecast call prevalence()
 /********************** nrerror ********************/    health expectancies
     Variance-covariance of DFLE
 void nrerror(char error_text[])    prevalence()
 {     movingaverage()
   fprintf(stderr,"ERREUR ...\n");    varevsij() 
   fprintf(stderr,"%s\n",error_text);    if popbased==1 varevsij(,popbased)
   exit(1);    total life expectancies
 }    Variance of stable prevalence
 /*********************** vector *******************/   end
 double *vector(int nl, int nh)  */
 {  
   double *v;  
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  
   if (!v) nrerror("allocation failure in vector");   
   return v-nl+NR_END;  #include <math.h>
 }  #include <stdio.h>
   #include <stdlib.h>
 /************************ free vector ******************/  #include <string.h>
 void free_vector(double*v, int nl, int nh)  #include <unistd.h>
 {  
   free((FREE_ARG)(v+nl-NR_END));  #include <limits.h>
 }  #include <sys/types.h>
   #include <sys/stat.h>
 /************************ivector *******************************/  #include <errno.h>
 int *ivector(long nl,long nh)  extern int errno;
 {  
   int *v;  /* #include <sys/time.h> */
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  #include <time.h>
   if (!v) nrerror("allocation failure in ivector");  #include "timeval.h"
   return v-nl+NR_END;  
 }  /* #include <libintl.h> */
   /* #define _(String) gettext (String) */
 /******************free ivector **************************/  
 void free_ivector(int *v, long nl, long nh)  #define MAXLINE 256
 {  
   free((FREE_ARG)(v+nl-NR_END));  #define GNUPLOTPROGRAM "gnuplot"
 }  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
   #define FILENAMELENGTH 132
 /******************* imatrix *******************************/  
 int **imatrix(long nrl, long nrh, long ncl, long nch)  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
 {  
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
   int **m;  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
    
   /* allocate pointers to rows */  #define NINTERVMAX 8
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
   if (!m) nrerror("allocation failure 1 in matrix()");  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
   m += NR_END;  #define NCOVMAX 8 /* Maximum number of covariates */
   m -= nrl;  #define MAXN 20000
    #define YEARM 12. /* Number of months per year */
    #define AGESUP 130
   /* allocate rows and set pointers to them */  #define AGEBASE 40
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  #ifdef UNIX
   m[nrl] += NR_END;  #define DIRSEPARATOR '/'
   m[nrl] -= ncl;  #define CHARSEPARATOR "/"
    #define ODIRSEPARATOR '\\'
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  #else
    #define DIRSEPARATOR '\\'
   /* return pointer to array of pointers to rows */  #define CHARSEPARATOR "\\"
   return m;  #define ODIRSEPARATOR '/'
 }  #endif
   
 /****************** free_imatrix *************************/  /* $Id$ */
 void free_imatrix(m,nrl,nrh,ncl,nch)  /* $State$ */
       int **m;  
       long nch,ncl,nrh,nrl;  char version[]="Imach version 0.98a, January 2006, INED-EUROREVES ";
      /* free an int matrix allocated by imatrix() */  char fullversion[]="$Revision$ $Date$"; 
 {  int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  int nvar;
   free((FREE_ARG) (m+nrl-NR_END));  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
 }  int npar=NPARMAX;
   int nlstate=2; /* Number of live states */
 /******************* matrix *******************************/  int ndeath=1; /* Number of dead states */
 double **matrix(long nrl, long nrh, long ncl, long nch)  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
 {  int popbased=0;
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  
   double **m;  int *wav; /* Number of waves for this individuual 0 is possible */
   int maxwav; /* Maxim number of waves */
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  int jmin, jmax; /* min, max spacing between 2 waves */
   if (!m) nrerror("allocation failure 1 in matrix()");  int ijmin, ijmax; /* Individuals having jmin and jmax */ 
   m += NR_END;  int gipmx, gsw; /* Global variables on the number of contributions 
   m -= nrl;                     to the likelihood and the sum of weights (done by funcone)*/
   int mle, weightopt;
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
   m[nrl] += NR_END;  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
   m[nrl] -= ncl;             * wave mi and wave mi+1 is not an exact multiple of stepm. */
   double jmean; /* Mean space between 2 waves */
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  double **oldm, **newm, **savm; /* Working pointers to matrices */
   return m;  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
 }  FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
   FILE *ficlog, *ficrespow;
 /*************************free matrix ************************/  int globpr; /* Global variable for printing or not */
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  double fretone; /* Only one call to likelihood */
 {  long ipmx; /* Number of contributions */
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  double sw; /* Sum of weights */
   free((FREE_ARG)(m+nrl-NR_END));  char filerespow[FILENAMELENGTH];
 }  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
   FILE *ficresilk;
 /******************* ma3x *******************************/  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  FILE *ficresprobmorprev;
 {  FILE *fichtm, *fichtmcov; /* Html File */
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  FILE *ficreseij;
   double ***m;  char filerese[FILENAMELENGTH];
   FILE  *ficresvij;
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  char fileresv[FILENAMELENGTH];
   if (!m) nrerror("allocation failure 1 in matrix()");  FILE  *ficresvpl;
   m += NR_END;  char fileresvpl[FILENAMELENGTH];
   m -= nrl;  char title[MAXLINE];
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
   m[nrl] += NR_END;  char command[FILENAMELENGTH];
   m[nrl] -= ncl;  int  outcmd=0;
   
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
   
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  char filelog[FILENAMELENGTH]; /* Log file */
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  char filerest[FILENAMELENGTH];
   m[nrl][ncl] += NR_END;  char fileregp[FILENAMELENGTH];
   m[nrl][ncl] -= nll;  char popfile[FILENAMELENGTH];
   for (j=ncl+1; j<=nch; j++)  
     m[nrl][j]=m[nrl][j-1]+nlay;  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
    
   for (i=nrl+1; i<=nrh; i++) {  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  struct timezone tzp;
     for (j=ncl+1; j<=nch; j++)  extern int gettimeofday();
       m[i][j]=m[i][j-1]+nlay;  struct tm tmg, tm, tmf, *gmtime(), *localtime();
   }  long time_value;
   return m;  extern long time();
 }  char strcurr[80], strfor[80];
   
 /*************************free ma3x ************************/  char *endptr;
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  long lval;
 {  
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  #define NR_END 1
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  #define FREE_ARG char*
   free((FREE_ARG)(m+nrl-NR_END));  #define FTOL 1.0e-10
 }  
   #define NRANSI 
 /***************** f1dim *************************/  #define ITMAX 200 
 extern int ncom;  
 extern double *pcom,*xicom;  #define TOL 2.0e-4 
 extern double (*nrfunc)(double []);  
    #define CGOLD 0.3819660 
 double f1dim(double x)  #define ZEPS 1.0e-10 
 {  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
   int j;  
   double f;  #define GOLD 1.618034 
   double *xt;  #define GLIMIT 100.0 
    #define TINY 1.0e-20 
   xt=vector(1,ncom);  
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  static double maxarg1,maxarg2;
   f=(*nrfunc)(xt);  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
   free_vector(xt,1,ncom);  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
   return f;    
 }  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
   #define rint(a) floor(a+0.5)
 /*****************brent *************************/  
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  static double sqrarg;
 {  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   int iter;  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
   double a,b,d,etemp;  int agegomp= AGEGOMP;
   double fu,fv,fw,fx;  
   double ftemp;  int imx; 
   double p,q,r,tol1,tol2,u,v,w,x,xm;  int stepm=1;
   double e=0.0;  /* Stepm, step in month: minimum step interpolation*/
    
   a=(ax < cx ? ax : cx);  int estepm;
   b=(ax > cx ? ax : cx);  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
   x=w=v=bx;  
   fw=fv=fx=(*f)(x);  int m,nb;
   for (iter=1;iter<=ITMAX;iter++) {  long *num;
     xm=0.5*(a+b);  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  double **pmmij, ***probs;
     printf(".");fflush(stdout);  double *ageexmed,*agecens;
 #ifdef DEBUG  double dateintmean=0;
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  double *weight;
 #endif  int **s; /* Status */
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  double *agedc, **covar, idx;
       *xmin=x;  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
       return fx;  double *lsurv, *lpop, *tpop;
     }  
     ftemp=fu;  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
     if (fabs(e) > tol1) {  double ftolhess; /* Tolerance for computing hessian */
       r=(x-w)*(fx-fv);  
       q=(x-v)*(fx-fw);  /**************** split *************************/
       p=(x-v)*q-(x-w)*r;  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
       q=2.0*(q-r);  {
       if (q > 0.0) p = -p;    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
       q=fabs(q);       the name of the file (name), its extension only (ext) and its first part of the name (finame)
       etemp=e;    */ 
       e=d;    char  *ss;                            /* pointer */
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))    int   l1, l2;                         /* length counters */
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  
       else {    l1 = strlen(path );                   /* length of path */
         d=p/q;    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
         u=x+d;    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
         if (u-a < tol2 || b-u < tol2)    if ( ss == NULL ) {                   /* no directory, so determine current directory */
           d=SIGN(tol1,xm-x);      strcpy( name, path );               /* we got the fullname name because no directory */
       }      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
     } else {        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
       d=CGOLD*(e=(x >= xm ? a-x : b-x));      /* get current working directory */
     }      /*    extern  char* getcwd ( char *buf , int len);*/
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
     fu=(*f)(u);        return( GLOCK_ERROR_GETCWD );
     if (fu <= fx) {      }
       if (u >= x) a=x; else b=x;      /* got dirc from getcwd*/
       SHFT(v,w,x,u)      printf(" DIRC = %s \n",dirc);
         SHFT(fv,fw,fx,fu)    } else {                              /* strip direcotry from path */
         } else {      ss++;                               /* after this, the filename */
           if (u < x) a=u; else b=u;      l2 = strlen( ss );                  /* length of filename */
           if (fu <= fw || w == x) {      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
             v=w;      strcpy( name, ss );         /* save file name */
             w=u;      strncpy( dirc, path, l1 - l2 );     /* now the directory */
             fv=fw;      dirc[l1-l2] = 0;                    /* add zero */
             fw=fu;      printf(" DIRC2 = %s \n",dirc);
           } else if (fu <= fv || v == x || v == w) {    }
             v=u;    /* We add a separator at the end of dirc if not exists */
             fv=fu;    l1 = strlen( dirc );                  /* length of directory */
           }    if( dirc[l1-1] != DIRSEPARATOR ){
         }      dirc[l1] =  DIRSEPARATOR;
   }      dirc[l1+1] = 0; 
   nrerror("Too many iterations in brent");      printf(" DIRC3 = %s \n",dirc);
   *xmin=x;    }
   return fx;    ss = strrchr( name, '.' );            /* find last / */
 }    if (ss >0){
       ss++;
 /****************** mnbrak ***********************/      strcpy(ext,ss);                     /* save extension */
       l1= strlen( name);
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,      l2= strlen(ss)+1;
             double (*func)(double))      strncpy( finame, name, l1-l2);
 {      finame[l1-l2]= 0;
   double ulim,u,r,q, dum;    }
   double fu;  
      return( 0 );                          /* we're done */
   *fa=(*func)(*ax);  }
   *fb=(*func)(*bx);  
   if (*fb > *fa) {  
     SHFT(dum,*ax,*bx,dum)  /******************************************/
       SHFT(dum,*fb,*fa,dum)  
       }  void replace_back_to_slash(char *s, char*t)
   *cx=(*bx)+GOLD*(*bx-*ax);  {
   *fc=(*func)(*cx);    int i;
   while (*fb > *fc) {    int lg=0;
     r=(*bx-*ax)*(*fb-*fc);    i=0;
     q=(*bx-*cx)*(*fb-*fa);    lg=strlen(t);
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/    for(i=0; i<= lg; i++) {
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));      (s[i] = t[i]);
     ulim=(*bx)+GLIMIT*(*cx-*bx);      if (t[i]== '\\') s[i]='/';
     if ((*bx-u)*(u-*cx) > 0.0) {    }
       fu=(*func)(u);  }
     } else if ((*cx-u)*(u-ulim) > 0.0) {  
       fu=(*func)(u);  int nbocc(char *s, char occ)
       if (fu < *fc) {  {
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))    int i,j=0;
           SHFT(*fb,*fc,fu,(*func)(u))    int lg=20;
           }    i=0;
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {    lg=strlen(s);
       u=ulim;    for(i=0; i<= lg; i++) {
       fu=(*func)(u);    if  (s[i] == occ ) j++;
     } else {    }
       u=(*cx)+GOLD*(*cx-*bx);    return j;
       fu=(*func)(u);  }
     }  
     SHFT(*ax,*bx,*cx,u)  void cutv(char *u,char *v, char*t, char occ)
       SHFT(*fa,*fb,*fc,fu)  {
       }    /* cuts string t into u and v where u ends before first occurence of char 'occ' 
 }       and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
        gives u="abcedf" and v="ghi2j" */
 /*************** linmin ************************/    int i,lg,j,p=0;
     i=0;
 int ncom;    for(j=0; j<=strlen(t)-1; j++) {
 double *pcom,*xicom;      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
 double (*nrfunc)(double []);    }
    
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))    lg=strlen(t);
 {    for(j=0; j<p; j++) {
   double brent(double ax, double bx, double cx,      (u[j] = t[j]);
                double (*f)(double), double tol, double *xmin);    }
   double f1dim(double x);       u[p]='\0';
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,  
               double *fc, double (*func)(double));     for(j=0; j<= lg; j++) {
   int j;      if (j>=(p+1))(v[j-p-1] = t[j]);
   double xx,xmin,bx,ax;    }
   double fx,fb,fa;  }
    
   ncom=n;  /********************** nrerror ********************/
   pcom=vector(1,n);  
   xicom=vector(1,n);  void nrerror(char error_text[])
   nrfunc=func;  {
   for (j=1;j<=n;j++) {    fprintf(stderr,"ERREUR ...\n");
     pcom[j]=p[j];    fprintf(stderr,"%s\n",error_text);
     xicom[j]=xi[j];    exit(EXIT_FAILURE);
   }  }
   ax=0.0;  /*********************** vector *******************/
   xx=1.0;  double *vector(int nl, int nh)
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  {
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);    double *v;
 #ifdef DEBUG    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    if (!v) nrerror("allocation failure in vector");
 #endif    return v-nl+NR_END;
   for (j=1;j<=n;j++) {  }
     xi[j] *= xmin;  
     p[j] += xi[j];  /************************ free vector ******************/
   }  void free_vector(double*v, int nl, int nh)
   free_vector(xicom,1,n);  {
   free_vector(pcom,1,n);    free((FREE_ARG)(v+nl-NR_END));
 }  }
   
 /*************** powell ************************/  /************************ivector *******************************/
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,  int *ivector(long nl,long nh)
             double (*func)(double []))  {
 {    int *v;
   void linmin(double p[], double xi[], int n, double *fret,    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
               double (*func)(double []));    if (!v) nrerror("allocation failure in ivector");
   int i,ibig,j;    return v-nl+NR_END;
   double del,t,*pt,*ptt,*xit;  }
   double fp,fptt;  
   double *xits;  /******************free ivector **************************/
   pt=vector(1,n);  void free_ivector(int *v, long nl, long nh)
   ptt=vector(1,n);  {
   xit=vector(1,n);    free((FREE_ARG)(v+nl-NR_END));
   xits=vector(1,n);  }
   *fret=(*func)(p);  
   for (j=1;j<=n;j++) pt[j]=p[j];  /************************lvector *******************************/
   for (*iter=1;;++(*iter)) {  long *lvector(long nl,long nh)
     fp=(*fret);  {
     ibig=0;    long *v;
     del=0.0;    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);    if (!v) nrerror("allocation failure in ivector");
     for (i=1;i<=n;i++)    return v-nl+NR_END;
       printf(" %d %.12f",i, p[i]);  }
     printf("\n");  
     for (i=1;i<=n;i++) {  /******************free lvector **************************/
       for (j=1;j<=n;j++) xit[j]=xi[j][i];  void free_lvector(long *v, long nl, long nh)
       fptt=(*fret);  {
 #ifdef DEBUG    free((FREE_ARG)(v+nl-NR_END));
       printf("fret=%lf \n",*fret);  }
 #endif  
       printf("%d",i);fflush(stdout);  /******************* imatrix *******************************/
       linmin(p,xit,n,fret,func);  int **imatrix(long nrl, long nrh, long ncl, long nch) 
       if (fabs(fptt-(*fret)) > del) {       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
         del=fabs(fptt-(*fret));  { 
         ibig=i;    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
       }    int **m; 
 #ifdef DEBUG    
       printf("%d %.12e",i,(*fret));    /* allocate pointers to rows */ 
       for (j=1;j<=n;j++) {    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);    if (!m) nrerror("allocation failure 1 in matrix()"); 
         printf(" x(%d)=%.12e",j,xit[j]);    m += NR_END; 
       }    m -= nrl; 
       for(j=1;j<=n;j++)    
         printf(" p=%.12e",p[j]);    
       printf("\n");    /* allocate rows and set pointers to them */ 
 #endif    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
     }    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {    m[nrl] += NR_END; 
 #ifdef DEBUG    m[nrl] -= ncl; 
       int k[2],l;    
       k[0]=1;    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
       k[1]=-1;    
       printf("Max: %.12e",(*func)(p));    /* return pointer to array of pointers to rows */ 
       for (j=1;j<=n;j++)    return m; 
         printf(" %.12e",p[j]);  } 
       printf("\n");  
       for(l=0;l<=1;l++) {  /****************** free_imatrix *************************/
         for (j=1;j<=n;j++) {  void free_imatrix(m,nrl,nrh,ncl,nch)
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];        int **m;
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);        long nch,ncl,nrh,nrl; 
         }       /* free an int matrix allocated by imatrix() */ 
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  { 
       }    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
 #endif    free((FREE_ARG) (m+nrl-NR_END)); 
   } 
   
       free_vector(xit,1,n);  /******************* matrix *******************************/
       free_vector(xits,1,n);  double **matrix(long nrl, long nrh, long ncl, long nch)
       free_vector(ptt,1,n);  {
       free_vector(pt,1,n);    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
       return;    double **m;
     }  
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     for (j=1;j<=n;j++) {    if (!m) nrerror("allocation failure 1 in matrix()");
       ptt[j]=2.0*p[j]-pt[j];    m += NR_END;
       xit[j]=p[j]-pt[j];    m -= nrl;
       pt[j]=p[j];  
     }    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     fptt=(*func)(ptt);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     if (fptt < fp) {    m[nrl] += NR_END;
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);    m[nrl] -= ncl;
       if (t < 0.0) {  
         linmin(p,xit,n,fret,func);    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
         for (j=1;j<=n;j++) {    return m;
           xi[j][ibig]=xi[j][n];    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
           xi[j][n]=xit[j];     */
         }  }
 #ifdef DEBUG  
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  /*************************free matrix ************************/
         for(j=1;j<=n;j++)  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
           printf(" %.12e",xit[j]);  {
         printf("\n");    free((FREE_ARG)(m[nrl]+ncl-NR_END));
 #endif    free((FREE_ARG)(m+nrl-NR_END));
       }  }
     }  
   }  /******************* ma3x *******************************/
 }  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
   {
 /**** Prevalence limit ****************/    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
     double ***m;
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)  
 {    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit    if (!m) nrerror("allocation failure 1 in matrix()");
      matrix by transitions matrix until convergence is reached */    m += NR_END;
     m -= nrl;
   int i, ii,j,k;  
   double min, max, maxmin, maxmax,sumnew=0.;    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   double **matprod2();    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   double **out, cov[NCOVMAX], **pmij();    m[nrl] += NR_END;
   double **newm;    m[nrl] -= ncl;
   double agefin, delaymax=50 ; /* Max number of years to converge */  
     for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   for (ii=1;ii<=nlstate+ndeath;ii++)  
     for (j=1;j<=nlstate+ndeath;j++){    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
     }    m[nrl][ncl] += NR_END;
     m[nrl][ncl] -= nll;
    cov[1]=1.;    for (j=ncl+1; j<=nch; j++) 
        m[nrl][j]=m[nrl][j-1]+nlay;
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */    
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){    for (i=nrl+1; i<=nrh; i++) {
     newm=savm;      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
     /* Covariates have to be included here again */      for (j=ncl+1; j<=nch; j++) 
      cov[2]=agefin;        m[i][j]=m[i][j-1]+nlay;
      }
       for (k=1; k<=cptcovn;k++) {    return m; 
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
         /*printf("ij=%d Tvar[k]=%d nbcode=%d cov=%lf\n",ij, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k]);*/             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
       }    */
       for (k=1; k<=cptcovage;k++)  }
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  
       for (k=1; k<=cptcovprod;k++)  /*************************free ma3x ************************/
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
   {
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/    free((FREE_ARG)(m[nrl]+ncl-NR_END));
     free((FREE_ARG)(m+nrl-NR_END));
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);  }
   
     savm=oldm;  /*************** function subdirf ***********/
     oldm=newm;  char *subdirf(char fileres[])
     maxmax=0.;  {
     for(j=1;j<=nlstate;j++){    /* Caution optionfilefiname is hidden */
       min=1.;    strcpy(tmpout,optionfilefiname);
       max=0.;    strcat(tmpout,"/"); /* Add to the right */
       for(i=1; i<=nlstate; i++) {    strcat(tmpout,fileres);
         sumnew=0;    return tmpout;
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];  }
         prlim[i][j]= newm[i][j]/(1-sumnew);  
         max=FMAX(max,prlim[i][j]);  /*************** function subdirf2 ***********/
         min=FMIN(min,prlim[i][j]);  char *subdirf2(char fileres[], char *preop)
       }  {
       maxmin=max-min;    
       maxmax=FMAX(maxmax,maxmin);    /* Caution optionfilefiname is hidden */
     }    strcpy(tmpout,optionfilefiname);
     if(maxmax < ftolpl){    strcat(tmpout,"/");
       return prlim;    strcat(tmpout,preop);
     }    strcat(tmpout,fileres);
   }    return tmpout;
 }  }
   
 /*************** transition probabilities ***************/  /*************** function subdirf3 ***********/
   char *subdirf3(char fileres[], char *preop, char *preop2)
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )  {
 {    
   double s1, s2;    /* Caution optionfilefiname is hidden */
   /*double t34;*/    strcpy(tmpout,optionfilefiname);
   int i,j,j1, nc, ii, jj;    strcat(tmpout,"/");
     strcat(tmpout,preop);
     for(i=1; i<= nlstate; i++){    strcat(tmpout,preop2);
     for(j=1; j<i;j++){    strcat(tmpout,fileres);
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    return tmpout;
         /*s2 += param[i][j][nc]*cov[nc];*/  }
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/  /***************** f1dim *************************/
       }  extern int ncom; 
       ps[i][j]=s2;  extern double *pcom,*xicom;
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/  extern double (*nrfunc)(double []); 
     }   
     for(j=i+1; j<=nlstate+ndeath;j++){  double f1dim(double x) 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  { 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    int j; 
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/    double f;
       }    double *xt; 
       ps[i][j]=(s2);   
     }    xt=vector(1,ncom); 
   }    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
     /*ps[3][2]=1;*/    f=(*nrfunc)(xt); 
     free_vector(xt,1,ncom); 
   for(i=1; i<= nlstate; i++){    return f; 
      s1=0;  } 
     for(j=1; j<i; j++)  
       s1+=exp(ps[i][j]);  /*****************brent *************************/
     for(j=i+1; j<=nlstate+ndeath; j++)  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
       s1+=exp(ps[i][j]);  { 
     ps[i][i]=1./(s1+1.);    int iter; 
     for(j=1; j<i; j++)    double a,b,d,etemp;
       ps[i][j]= exp(ps[i][j])*ps[i][i];    double fu,fv,fw,fx;
     for(j=i+1; j<=nlstate+ndeath; j++)    double ftemp;
       ps[i][j]= exp(ps[i][j])*ps[i][i];    double p,q,r,tol1,tol2,u,v,w,x,xm; 
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */    double e=0.0; 
   } /* end i */   
     a=(ax < cx ? ax : cx); 
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){    b=(ax > cx ? ax : cx); 
     for(jj=1; jj<= nlstate+ndeath; jj++){    x=w=v=bx; 
       ps[ii][jj]=0;    fw=fv=fx=(*f)(x); 
       ps[ii][ii]=1;    for (iter=1;iter<=ITMAX;iter++) { 
     }      xm=0.5*(a+b); 
   }      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
       /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
       printf(".");fflush(stdout);
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){      fprintf(ficlog,".");fflush(ficlog);
     for(jj=1; jj<= nlstate+ndeath; jj++){  #ifdef DEBUG
      printf("%lf ",ps[ii][jj]);      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
    }      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
     printf("\n ");      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
     }  #endif
     printf("\n ");printf("%lf ",cov[2]);*/      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
 /*        *xmin=x; 
   for(i=1; i<= npar; i++) printf("%f ",x[i]);        return fx; 
   goto end;*/      } 
     return ps;      ftemp=fu;
 }      if (fabs(e) > tol1) { 
         r=(x-w)*(fx-fv); 
 /**************** Product of 2 matrices ******************/        q=(x-v)*(fx-fw); 
         p=(x-v)*q-(x-w)*r; 
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)        q=2.0*(q-r); 
 {        if (q > 0.0) p = -p; 
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times        q=fabs(q); 
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */        etemp=e; 
   /* in, b, out are matrice of pointers which should have been initialized        e=d; 
      before: only the contents of out is modified. The function returns        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
      a pointer to pointers identical to out */          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
   long i, j, k;        else { 
   for(i=nrl; i<= nrh; i++)          d=p/q; 
     for(k=ncolol; k<=ncoloh; k++)          u=x+d; 
       for(j=ncl,out[i][k]=0.; j<=nch; j++)          if (u-a < tol2 || b-u < tol2) 
         out[i][k] +=in[i][j]*b[j][k];            d=SIGN(tol1,xm-x); 
         } 
   return out;      } else { 
 }        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
       } 
       u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
 /************* Higher Matrix Product ***************/      fu=(*f)(u); 
       if (fu <= fx) { 
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )        if (u >= x) a=x; else b=x; 
 {        SHFT(v,w,x,u) 
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month          SHFT(fv,fw,fx,fu) 
      duration (i.e. until          } else { 
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.            if (u < x) a=u; else b=u; 
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step            if (fu <= fw || w == x) { 
      (typically every 2 years instead of every month which is too big).              v=w; 
      Model is determined by parameters x and covariates have to be              w=u; 
      included manually here.              fv=fw; 
               fw=fu; 
      */            } else if (fu <= fv || v == x || v == w) { 
               v=u; 
   int i, j, d, h, k;              fv=fu; 
   double **out, cov[NCOVMAX];            } 
   double **newm;          } 
     } 
   /* Hstepm could be zero and should return the unit matrix */    nrerror("Too many iterations in brent"); 
   for (i=1;i<=nlstate+ndeath;i++)    *xmin=x; 
     for (j=1;j<=nlstate+ndeath;j++){    return fx; 
       oldm[i][j]=(i==j ? 1.0 : 0.0);  } 
       po[i][j][0]=(i==j ? 1.0 : 0.0);  
     }  /****************** mnbrak ***********************/
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */  
   for(h=1; h <=nhstepm; h++){  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
     for(d=1; d <=hstepm; d++){              double (*func)(double)) 
       newm=savm;  { 
       /* Covariates have to be included here again */    double ulim,u,r,q, dum;
       cov[1]=1.;    double fu; 
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;   
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    *fa=(*func)(*ax); 
       for (k=1; k<=cptcovage;k++)    *fb=(*func)(*bx); 
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    if (*fb > *fa) { 
       for (k=1; k<=cptcovprod;k++)      SHFT(dum,*ax,*bx,dum) 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];        SHFT(dum,*fb,*fa,dum) 
         } 
     *cx=(*bx)+GOLD*(*bx-*ax); 
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/    *fc=(*func)(*cx); 
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/    while (*fb > *fc) { 
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,      r=(*bx-*ax)*(*fb-*fc); 
                    pmij(pmmij,cov,ncovmodel,x,nlstate));      q=(*bx-*cx)*(*fb-*fa); 
       savm=oldm;      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
       oldm=newm;        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
     }      ulim=(*bx)+GLIMIT*(*cx-*bx); 
     for(i=1; i<=nlstate+ndeath; i++)      if ((*bx-u)*(u-*cx) > 0.0) { 
       for(j=1;j<=nlstate+ndeath;j++) {        fu=(*func)(u); 
         po[i][j][h]=newm[i][j];      } else if ((*cx-u)*(u-ulim) > 0.0) { 
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);        fu=(*func)(u); 
          */        if (fu < *fc) { 
       }          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
   } /* end h */            SHFT(*fb,*fc,fu,(*func)(u)) 
   return po;            } 
 }      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
         u=ulim; 
         fu=(*func)(u); 
 /*************** log-likelihood *************/      } else { 
 double func( double *x)        u=(*cx)+GOLD*(*cx-*bx); 
 {        fu=(*func)(u); 
   int i, ii, j, k, mi, d, kk;      } 
   double l, ll[NLSTATEMAX], cov[NCOVMAX];      SHFT(*ax,*bx,*cx,u) 
   double **out;        SHFT(*fa,*fb,*fc,fu) 
   double sw; /* Sum of weights */        } 
   double lli; /* Individual log likelihood */  } 
   long ipmx;  
   /*extern weight */  /*************** linmin ************************/
   /* We are differentiating ll according to initial status */  
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/  int ncom; 
   /*for(i=1;i<imx;i++)  double *pcom,*xicom;
     printf(" %d\n",s[4][i]);  double (*nrfunc)(double []); 
   */   
   cov[1]=1.;  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
   { 
   for(k=1; k<=nlstate; k++) ll[k]=0.;    double brent(double ax, double bx, double cx, 
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){                 double (*f)(double), double tol, double *xmin); 
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];    double f1dim(double x); 
     for(mi=1; mi<= wav[i]-1; mi++){    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
       for (ii=1;ii<=nlstate+ndeath;ii++)                double *fc, double (*func)(double)); 
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);    int j; 
       for(d=0; d<dh[mi][i]; d++){    double xx,xmin,bx,ax; 
         newm=savm;    double fx,fb,fa;
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;   
         for (kk=1; kk<=cptcovage;kk++) {    ncom=n; 
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];    pcom=vector(1,n); 
         }    xicom=vector(1,n); 
            nrfunc=func; 
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,    for (j=1;j<=n;j++) { 
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));      pcom[j]=p[j]; 
         savm=oldm;      xicom[j]=xi[j]; 
         oldm=newm;    } 
            ax=0.0; 
            xx=1.0; 
       } /* end mult */    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
          *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);  #ifdef DEBUG
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
       ipmx +=1;    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
       sw += weight[i];  #endif
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;    for (j=1;j<=n;j++) { 
     } /* end of wave */      xi[j] *= xmin; 
   } /* end of individual */      p[j] += xi[j]; 
     } 
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];    free_vector(xicom,1,n); 
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */    free_vector(pcom,1,n); 
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */  } 
   return -l;  
 }  char *asc_diff_time(long time_sec, char ascdiff[])
   {
     long sec_left, days, hours, minutes;
 /*********** Maximum Likelihood Estimation ***************/    days = (time_sec) / (60*60*24);
     sec_left = (time_sec) % (60*60*24);
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))    hours = (sec_left) / (60*60) ;
 {    sec_left = (sec_left) %(60*60);
   int i,j, iter;    minutes = (sec_left) /60;
   double **xi,*delti;    sec_left = (sec_left) % (60);
   double fret;    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
   xi=matrix(1,npar,1,npar);    return ascdiff;
   for (i=1;i<=npar;i++)  }
     for (j=1;j<=npar;j++)  
       xi[i][j]=(i==j ? 1.0 : 0.0);  /*************** powell ************************/
   printf("Powell\n");  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
   powell(p,xi,npar,ftol,&iter,&fret,func);              double (*func)(double [])) 
   { 
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));    void linmin(double p[], double xi[], int n, double *fret, 
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f ",iter,func(p));                double (*func)(double [])); 
     int i,ibig,j; 
 }    double del,t,*pt,*ptt,*xit;
     double fp,fptt;
 /**** Computes Hessian and covariance matrix ***/    double *xits;
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))    int niterf, itmp;
 {  
   double  **a,**y,*x,pd;    pt=vector(1,n); 
   double **hess;    ptt=vector(1,n); 
   int i, j,jk;    xit=vector(1,n); 
   int *indx;    xits=vector(1,n); 
     *fret=(*func)(p); 
   double hessii(double p[], double delta, int theta, double delti[]);    for (j=1;j<=n;j++) pt[j]=p[j]; 
   double hessij(double p[], double delti[], int i, int j);    for (*iter=1;;++(*iter)) { 
   void lubksb(double **a, int npar, int *indx, double b[]) ;      fp=(*fret); 
   void ludcmp(double **a, int npar, int *indx, double *d) ;      ibig=0; 
       del=0.0; 
   hess=matrix(1,npar,1,npar);      last_time=curr_time;
       (void) gettimeofday(&curr_time,&tzp);
   printf("\nCalculation of the hessian matrix. Wait...\n");      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
   for (i=1;i<=npar;i++){      /*    fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);
     printf("%d",i);fflush(stdout);      fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);
     hess[i][i]=hessii(p,ftolhess,i,delti);      */
     /*printf(" %f ",p[i]);*/     for (i=1;i<=n;i++) {
     /*printf(" %lf ",hess[i][i]);*/        printf(" %d %.12f",i, p[i]);
   }        fprintf(ficlog," %d %.12lf",i, p[i]);
          fprintf(ficrespow," %.12lf", p[i]);
   for (i=1;i<=npar;i++) {      }
     for (j=1;j<=npar;j++)  {      printf("\n");
       if (j>i) {      fprintf(ficlog,"\n");
         printf(".%d%d",i,j);fflush(stdout);      fprintf(ficrespow,"\n");fflush(ficrespow);
         hess[i][j]=hessij(p,delti,i,j);      if(*iter <=3){
         hess[j][i]=hess[i][j];            tm = *localtime(&curr_time.tv_sec);
         /*printf(" %lf ",hess[i][j]);*/        strcpy(strcurr,asctime(&tm));
       }  /*       asctime_r(&tm,strcurr); */
     }        forecast_time=curr_time; 
   }        itmp = strlen(strcurr);
   printf("\n");        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
           strcurr[itmp-1]='\0';
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
          fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
   a=matrix(1,npar,1,npar);        for(niterf=10;niterf<=30;niterf+=10){
   y=matrix(1,npar,1,npar);          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
   x=vector(1,npar);          tmf = *localtime(&forecast_time.tv_sec);
   indx=ivector(1,npar);  /*      asctime_r(&tmf,strfor); */
   for (i=1;i<=npar;i++)          strcpy(strfor,asctime(&tmf));
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];          itmp = strlen(strfor);
   ludcmp(a,npar,indx,&pd);          if(strfor[itmp-1]=='\n')
           strfor[itmp-1]='\0';
   for (j=1;j<=npar;j++) {          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
     for (i=1;i<=npar;i++) x[i]=0;          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
     x[j]=1;        }
     lubksb(a,npar,indx,x);      }
     for (i=1;i<=npar;i++){      for (i=1;i<=n;i++) { 
       matcov[i][j]=x[i];        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
     }        fptt=(*fret); 
   }  #ifdef DEBUG
         printf("fret=%lf \n",*fret);
   printf("\n#Hessian matrix#\n");        fprintf(ficlog,"fret=%lf \n",*fret);
   for (i=1;i<=npar;i++) {  #endif
     for (j=1;j<=npar;j++) {        printf("%d",i);fflush(stdout);
       printf("%.3e ",hess[i][j]);        fprintf(ficlog,"%d",i);fflush(ficlog);
     }        linmin(p,xit,n,fret,func); 
     printf("\n");        if (fabs(fptt-(*fret)) > del) { 
   }          del=fabs(fptt-(*fret)); 
           ibig=i; 
   /* Recompute Inverse */        } 
   for (i=1;i<=npar;i++)  #ifdef DEBUG
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];        printf("%d %.12e",i,(*fret));
   ludcmp(a,npar,indx,&pd);        fprintf(ficlog,"%d %.12e",i,(*fret));
         for (j=1;j<=n;j++) {
   /*  printf("\n#Hessian matrix recomputed#\n");          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
           printf(" x(%d)=%.12e",j,xit[j]);
   for (j=1;j<=npar;j++) {          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
     for (i=1;i<=npar;i++) x[i]=0;        }
     x[j]=1;        for(j=1;j<=n;j++) {
     lubksb(a,npar,indx,x);          printf(" p=%.12e",p[j]);
     for (i=1;i<=npar;i++){          fprintf(ficlog," p=%.12e",p[j]);
       y[i][j]=x[i];        }
       printf("%.3e ",y[i][j]);        printf("\n");
     }        fprintf(ficlog,"\n");
     printf("\n");  #endif
   }      } 
   */      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
   #ifdef DEBUG
   free_matrix(a,1,npar,1,npar);        int k[2],l;
   free_matrix(y,1,npar,1,npar);        k[0]=1;
   free_vector(x,1,npar);        k[1]=-1;
   free_ivector(indx,1,npar);        printf("Max: %.12e",(*func)(p));
   free_matrix(hess,1,npar,1,npar);        fprintf(ficlog,"Max: %.12e",(*func)(p));
         for (j=1;j<=n;j++) {
           printf(" %.12e",p[j]);
 }          fprintf(ficlog," %.12e",p[j]);
         }
 /*************** hessian matrix ****************/        printf("\n");
 double hessii( double x[], double delta, int theta, double delti[])        fprintf(ficlog,"\n");
 {        for(l=0;l<=1;l++) {
   int i;          for (j=1;j<=n;j++) {
   int l=1, lmax=20;            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
   double k1,k2;            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   double p2[NPARMAX+1];            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   double res;          }
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   double fx;          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   int k=0,kmax=10;        }
   double l1;  #endif
   
   fx=func(x);  
   for (i=1;i<=npar;i++) p2[i]=x[i];        free_vector(xit,1,n); 
   for(l=0 ; l <=lmax; l++){        free_vector(xits,1,n); 
     l1=pow(10,l);        free_vector(ptt,1,n); 
     delts=delt;        free_vector(pt,1,n); 
     for(k=1 ; k <kmax; k=k+1){        return; 
       delt = delta*(l1*k);      } 
       p2[theta]=x[theta] +delt;      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
       k1=func(p2)-fx;      for (j=1;j<=n;j++) { 
       p2[theta]=x[theta]-delt;        ptt[j]=2.0*p[j]-pt[j]; 
       k2=func(p2)-fx;        xit[j]=p[j]-pt[j]; 
       /*res= (k1-2.0*fx+k2)/delt/delt; */        pt[j]=p[j]; 
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */      } 
            fptt=(*func)(ptt); 
 #ifdef DEBUG      if (fptt < fp) { 
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
 #endif        if (t < 0.0) { 
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */          linmin(p,xit,n,fret,func); 
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){          for (j=1;j<=n;j++) { 
         k=kmax;            xi[j][ibig]=xi[j][n]; 
       }            xi[j][n]=xit[j]; 
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */          }
         k=kmax; l=lmax*10.;  #ifdef DEBUG
       }          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
         delts=delt;          for(j=1;j<=n;j++){
       }            printf(" %.12e",xit[j]);
     }            fprintf(ficlog," %.12e",xit[j]);
   }          }
   delti[theta]=delts;          printf("\n");
   return res;          fprintf(ficlog,"\n");
    #endif
 }        }
       } 
 double hessij( double x[], double delti[], int thetai,int thetaj)    } 
 {  } 
   int i;  
   int l=1, l1, lmax=20;  /**** Prevalence limit (stable prevalence)  ****************/
   double k1,k2,k3,k4,res,fx;  
   double p2[NPARMAX+1];  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
   int k;  {
     /* Computes the prevalence limit in each live state at age x by left multiplying the unit
   fx=func(x);       matrix by transitions matrix until convergence is reached */
   for (k=1; k<=2; k++) {  
     for (i=1;i<=npar;i++) p2[i]=x[i];    int i, ii,j,k;
     p2[thetai]=x[thetai]+delti[thetai]/k;    double min, max, maxmin, maxmax,sumnew=0.;
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;    double **matprod2();
     k1=func(p2)-fx;    double **out, cov[NCOVMAX], **pmij();
      double **newm;
     p2[thetai]=x[thetai]+delti[thetai]/k;    double agefin, delaymax=50 ; /* Max number of years to converge */
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;  
     k2=func(p2)-fx;    for (ii=1;ii<=nlstate+ndeath;ii++)
        for (j=1;j<=nlstate+ndeath;j++){
     p2[thetai]=x[thetai]-delti[thetai]/k;        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;      }
     k3=func(p2)-fx;  
       cov[1]=1.;
     p2[thetai]=x[thetai]-delti[thetai]/k;   
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     k4=func(p2)-fx;    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */      newm=savm;
 #ifdef DEBUG      /* Covariates have to be included here again */
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);       cov[2]=agefin;
 #endif    
   }        for (k=1; k<=cptcovn;k++) {
   return res;          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
 }          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
         }
 /************** Inverse of matrix **************/        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
 void ludcmp(double **a, int n, int *indx, double *d)        for (k=1; k<=cptcovprod;k++)
 {          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   int i,imax,j,k;  
   double big,dum,sum,temp;        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
   double *vv;        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
          /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
   vv=vector(1,n);      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
   *d=1.0;  
   for (i=1;i<=n;i++) {      savm=oldm;
     big=0.0;      oldm=newm;
     for (j=1;j<=n;j++)      maxmax=0.;
       if ((temp=fabs(a[i][j])) > big) big=temp;      for(j=1;j<=nlstate;j++){
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");        min=1.;
     vv[i]=1.0/big;        max=0.;
   }        for(i=1; i<=nlstate; i++) {
   for (j=1;j<=n;j++) {          sumnew=0;
     for (i=1;i<j;i++) {          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
       sum=a[i][j];          prlim[i][j]= newm[i][j]/(1-sumnew);
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];          max=FMAX(max,prlim[i][j]);
       a[i][j]=sum;          min=FMIN(min,prlim[i][j]);
     }        }
     big=0.0;        maxmin=max-min;
     for (i=j;i<=n;i++) {        maxmax=FMAX(maxmax,maxmin);
       sum=a[i][j];      }
       for (k=1;k<j;k++)      if(maxmax < ftolpl){
         sum -= a[i][k]*a[k][j];        return prlim;
       a[i][j]=sum;      }
       if ( (dum=vv[i]*fabs(sum)) >= big) {    }
         big=dum;  }
         imax=i;  
       }  /*************** transition probabilities ***************/ 
     }  
     if (j != imax) {  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
       for (k=1;k<=n;k++) {  {
         dum=a[imax][k];    double s1, s2;
         a[imax][k]=a[j][k];    /*double t34;*/
         a[j][k]=dum;    int i,j,j1, nc, ii, jj;
       }  
       *d = -(*d);      for(i=1; i<= nlstate; i++){
       vv[imax]=vv[j];        for(j=1; j<i;j++){
     }          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
     indx[j]=imax;            /*s2 += param[i][j][nc]*cov[nc];*/
     if (a[j][j] == 0.0) a[j][j]=TINY;            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
     if (j != n) {  /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
       dum=1.0/(a[j][j]);          }
       for (i=j+1;i<=n;i++) a[i][j] *= dum;          ps[i][j]=s2;
     }  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
   }        }
   free_vector(vv,1,n);  /* Doesn't work */        for(j=i+1; j<=nlstate+ndeath;j++){
 ;          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
 }            s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
   /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
 void lubksb(double **a, int n, int *indx, double b[])          }
 {          ps[i][j]=s2;
   int i,ii=0,ip,j;        }
   double sum;      }
        /*ps[3][2]=1;*/
   for (i=1;i<=n;i++) {      
     ip=indx[i];      for(i=1; i<= nlstate; i++){
     sum=b[ip];        s1=0;
     b[ip]=b[i];        for(j=1; j<i; j++)
     if (ii)          s1+=exp(ps[i][j]);
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];        for(j=i+1; j<=nlstate+ndeath; j++)
     else if (sum) ii=i;          s1+=exp(ps[i][j]);
     b[i]=sum;        ps[i][i]=1./(s1+1.);
   }        for(j=1; j<i; j++)
   for (i=n;i>=1;i--) {          ps[i][j]= exp(ps[i][j])*ps[i][i];
     sum=b[i];        for(j=i+1; j<=nlstate+ndeath; j++)
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];          ps[i][j]= exp(ps[i][j])*ps[i][i];
     b[i]=sum/a[i][i];        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
   }      } /* end i */
 }      
       for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
 /************ Frequencies ********************/        for(jj=1; jj<= nlstate+ndeath; jj++){
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2)          ps[ii][jj]=0;
 {  /* Some frequencies */          ps[ii][ii]=1;
          }
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;      }
   double ***freq; /* Frequencies */      
   double *pp;  
   double pos, k2, dateintsum=0,k2cpt=0;  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
   FILE *ficresp;  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
   char fileresp[FILENAMELENGTH];  /*         printf("ddd %lf ",ps[ii][jj]); */
   /*       } */
   pp=vector(1,nlstate);  /*       printf("\n "); */
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);  /*        } */
   strcpy(fileresp,"p");  /*        printf("\n ");printf("%lf ",cov[2]); */
   strcat(fileresp,fileres);         /*
   if((ficresp=fopen(fileresp,"w"))==NULL) {        for(i=1; i<= npar; i++) printf("%f ",x[i]);
     printf("Problem with prevalence resultfile: %s\n", fileresp);        goto end;*/
     exit(0);      return ps;
   }  }
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);  
   j1=0;  /**************** Product of 2 matrices ******************/
   
   j=cptcoveff;  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
   if (cptcovn<1) {j=1;ncodemax[1]=1;}  {
     /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
   for(k1=1; k1<=j;k1++){       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
    for(i1=1; i1<=ncodemax[k1];i1++){    /* in, b, out are matrice of pointers which should have been initialized 
        j1++;       before: only the contents of out is modified. The function returns
        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);       a pointer to pointers identical to out */
          scanf("%d", i);*/    long i, j, k;
         for (i=-1; i<=nlstate+ndeath; i++)      for(i=nrl; i<= nrh; i++)
          for (jk=-1; jk<=nlstate+ndeath; jk++)        for(k=ncolol; k<=ncoloh; k++)
            for(m=agemin; m <= agemax+3; m++)        for(j=ncl,out[i][k]=0.; j<=nch; j++)
              freq[i][jk][m]=0;          out[i][k] +=in[i][j]*b[j][k];
   
         dateintsum=0;    return out;
         k2cpt=0;  }
        for (i=1; i<=imx; i++) {  
          bool=1;  
          if  (cptcovn>0) {  /************* Higher Matrix Product ***************/
            for (z1=1; z1<=cptcoveff; z1++)  
              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
                bool=0;  {
          }    /* Computes the transition matrix starting at age 'age' over 
          if (bool==1) {       'nhstepm*hstepm*stepm' months (i.e. until
            for(m=firstpass; m<=lastpass; m++){       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
              k2=anint[m][i]+(mint[m][i]/12.);       nhstepm*hstepm matrices. 
              if ((k2>=dateprev1) && (k2<=dateprev2)) {       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
                if(agev[m][i]==0) agev[m][i]=agemax+1;       (typically every 2 years instead of every month which is too big 
                if(agev[m][i]==1) agev[m][i]=agemax+2;       for the memory).
                freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];       Model is determined by parameters x and covariates have to be 
                freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];       included manually here. 
                if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {  
                  dateintsum=dateintsum+k2;       */
                  k2cpt++;  
                }    int i, j, d, h, k;
     double **out, cov[NCOVMAX];
              }    double **newm;
            }  
          }    /* Hstepm could be zero and should return the unit matrix */
        }    for (i=1;i<=nlstate+ndeath;i++)
         if  (cptcovn>0) {      for (j=1;j<=nlstate+ndeath;j++){
          fprintf(ficresp, "\n#********** Variable ");        oldm[i][j]=(i==j ? 1.0 : 0.0);
          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        po[i][j][0]=(i==j ? 1.0 : 0.0);
        fprintf(ficresp, "**********\n#");      }
         }    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
        for(i=1; i<=nlstate;i++)    for(h=1; h <=nhstepm; h++){
          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);      for(d=1; d <=hstepm; d++){
        fprintf(ficresp, "\n");        newm=savm;
                /* Covariates have to be included here again */
   for(i=(int)agemin; i <= (int)agemax+3; i++){        cov[1]=1.;
     if(i==(int)agemax+3)        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
       printf("Total");        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
     else        for (k=1; k<=cptcovage;k++)
       printf("Age %d", i);          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
     for(jk=1; jk <=nlstate ; jk++){        for (k=1; k<=cptcovprod;k++)
       for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
         pp[jk] += freq[jk][m][i];  
     }  
     for(jk=1; jk <=nlstate ; jk++){        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
       for(m=-1, pos=0; m <=0 ; m++)        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
         pos += freq[jk][m][i];        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
       if(pp[jk]>=1.e-10)                     pmij(pmmij,cov,ncovmodel,x,nlstate));
         printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);        savm=oldm;
       else        oldm=newm;
         printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);      }
     }      for(i=1; i<=nlstate+ndeath; i++)
         for(j=1;j<=nlstate+ndeath;j++) {
      for(jk=1; jk <=nlstate ; jk++){          po[i][j][h]=newm[i][j];
       for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
         pp[jk] += freq[jk][m][i];           */
      }        }
     } /* end h */
     for(jk=1,pos=0; jk <=nlstate ; jk++)    return po;
       pos += pp[jk];  }
     for(jk=1; jk <=nlstate ; jk++){  
       if(pos>=1.e-5)  
         printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);  /*************** log-likelihood *************/
       else  double func( double *x)
         printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);  {
       if( i <= (int) agemax){    int i, ii, j, k, mi, d, kk;
         if(pos>=1.e-5){    double l, ll[NLSTATEMAX], cov[NCOVMAX];
           fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);    double **out;
           probs[i][jk][j1]= pp[jk]/pos;    double sw; /* Sum of weights */
           /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/    double lli; /* Individual log likelihood */
         }    int s1, s2;
       else    double bbh, survp;
           fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);    long ipmx;
       }    /*extern weight */
     }    /* We are differentiating ll according to initial status */
     for(jk=-1; jk <=nlstate+ndeath; jk++)    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
       for(m=-1; m <=nlstate+ndeath; m++)    /*for(i=1;i<imx;i++) 
         if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);      printf(" %d\n",s[4][i]);
     if(i <= (int) agemax)    */
       fprintf(ficresp,"\n");    cov[1]=1.;
     printf("\n");  
     }    for(k=1; k<=nlstate; k++) ll[k]=0.;
     }  
  }    if(mle==1){
   dateintmean=dateintsum/k2cpt;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
          for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   fclose(ficresp);        for(mi=1; mi<= wav[i]-1; mi++){
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);          for (ii=1;ii<=nlstate+ndeath;ii++)
   free_vector(pp,1,nlstate);            for (j=1;j<=nlstate+ndeath;j++){
               oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   /* End of Freq */              savm[ii][j]=(ii==j ? 1.0 : 0.0);
 }            }
           for(d=0; d<dh[mi][i]; d++){
 /************ Prevalence ********************/            newm=savm;
 void prevalence(int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 {  /* Some frequencies */            for (kk=1; kk<=cptcovage;kk++) {
                cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;            }
   double ***freq; /* Frequencies */            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   double *pp;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   double pos, k2;            savm=oldm;
             oldm=newm;
   pp=vector(1,nlstate);          } /* end mult */
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);        
            /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);          /* But now since version 0.9 we anticipate for bias at large stepm.
   j1=0;           * If stepm is larger than one month (smallest stepm) and if the exact delay 
             * (in months) between two waves is not a multiple of stepm, we rounded to 
   j=cptcoveff;           * the nearest (and in case of equal distance, to the lowest) interval but now
   if (cptcovn<1) {j=1;ncodemax[1]=1;}           * we keep into memory the bias bh[mi][i] and also the previous matrix product
             * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
  for(k1=1; k1<=j;k1++){           * probability in order to take into account the bias as a fraction of the way
     for(i1=1; i1<=ncodemax[k1];i1++){           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
       j1++;           * -stepm/2 to stepm/2 .
             * For stepm=1 the results are the same as for previous versions of Imach.
       for (i=-1; i<=nlstate+ndeath; i++)             * For stepm > 1 the results are less biased than in previous versions. 
         for (jk=-1; jk<=nlstate+ndeath; jk++)             */
           for(m=agemin; m <= agemax+3; m++)          s1=s[mw[mi][i]][i];
             freq[i][jk][m]=0;          s2=s[mw[mi+1][i]][i];
                bbh=(double)bh[mi][i]/(double)stepm; 
       for (i=1; i<=imx; i++) {          /* bias bh is positive if real duration
         bool=1;           * is higher than the multiple of stepm and negative otherwise.
         if  (cptcovn>0) {           */
           for (z1=1; z1<=cptcoveff; z1++)          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])          if( s2 > nlstate){ 
               bool=0;            /* i.e. if s2 is a death state and if the date of death is known 
         }               then the contribution to the likelihood is the probability to 
         if (bool==1) {               die between last step unit time and current  step unit time, 
           for(m=firstpass; m<=lastpass; m++){               which is also equal to probability to die before dh 
             k2=anint[m][i]+(mint[m][i]/12.);               minus probability to die before dh-stepm . 
             if ((k2>=dateprev1) && (k2<=dateprev2)) {               In version up to 0.92 likelihood was computed
               if(agev[m][i]==0) agev[m][i]=agemax+1;          as if date of death was unknown. Death was treated as any other
               if(agev[m][i]==1) agev[m][i]=agemax+2;          health state: the date of the interview describes the actual state
               freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-1/12.)] += weight[i];          and not the date of a change in health state. The former idea was
               freq[s[m][i]][s[m+1][i]][(int)(agemax+3+1)] += weight[i];            to consider that at each interview the state was recorded
             }          (healthy, disable or death) and IMaCh was corrected; but when we
           }          introduced the exact date of death then we should have modified
         }          the contribution of an exact death to the likelihood. This new
       }          contribution is smaller and very dependent of the step unit
                stepm. It is no more the probability to die between last interview
         for(i=(int)agemin; i <= (int)agemax+3; i++){          and month of death but the probability to survive from last
           for(jk=1; jk <=nlstate ; jk++){          interview up to one month before death multiplied by the
             for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)          probability to die within a month. Thanks to Chris
               pp[jk] += freq[jk][m][i];          Jackson for correcting this bug.  Former versions increased
           }          mortality artificially. The bad side is that we add another loop
           for(jk=1; jk <=nlstate ; jk++){          which slows down the processing. The difference can be up to 10%
             for(m=-1, pos=0; m <=0 ; m++)          lower mortality.
             pos += freq[jk][m][i];            */
         }            lli=log(out[s1][s2] - savm[s1][s2]);
          
          for(jk=1; jk <=nlstate ; jk++){  
            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)          } else if  (s2==-2) {
              pp[jk] += freq[jk][m][i];            for (j=1,survp=0. ; j<=nlstate; j++) 
          }              survp += out[s1][j];
                      lli= survp;
          for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];          }
           
          for(jk=1; jk <=nlstate ; jk++){                    else if  (s2==-4) {
            if( i <= (int) agemax){            for (j=3,survp=0. ; j<=nlstate; j++) 
              if(pos>=1.e-5){              survp += out[s1][j];
                probs[i][jk][j1]= pp[jk]/pos;            lli= survp;
              }          }
            }          
          }          else if  (s2==-5) {
                      for (j=1,survp=0. ; j<=2; j++) 
         }              survp += out[s1][j];
     }            lli= survp;
   }          }
    
    
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);          else{
   free_vector(pp,1,nlstate);            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
              /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
 }  /* End of Freq */          } 
           /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
 /************* Waves Concatenation ***************/          /*if(lli ==000.0)*/
           /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)          ipmx +=1;
 {          sw += weight[i];
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
      Death is a valid wave (if date is known).        } /* end of wave */
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i      } /* end of individual */
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]    }  else if(mle==2){
      and mw[mi+1][i]. dh depends on stepm.      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
      */        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(mi=1; mi<= wav[i]-1; mi++){
   int i, mi, m;          for (ii=1;ii<=nlstate+ndeath;ii++)
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;            for (j=1;j<=nlstate+ndeath;j++){
      double sum=0., jmean=0.;*/              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               savm[ii][j]=(ii==j ? 1.0 : 0.0);
   int j, k=0,jk, ju, jl;            }
   double sum=0.;          for(d=0; d<=dh[mi][i]; d++){
   jmin=1e+5;            newm=savm;
   jmax=-1;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   jmean=0.;            for (kk=1; kk<=cptcovage;kk++) {
   for(i=1; i<=imx; i++){              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     mi=0;            }
     m=firstpass;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     while(s[m][i] <= nlstate){                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       if(s[m][i]>=1)            savm=oldm;
         mw[++mi][i]=m;            oldm=newm;
       if(m >=lastpass)          } /* end mult */
         break;        
       else          s1=s[mw[mi][i]][i];
         m++;          s2=s[mw[mi+1][i]][i];
     }/* end while */          bbh=(double)bh[mi][i]/(double)stepm; 
     if (s[m][i] > nlstate){          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
       mi++;     /* Death is another wave */          ipmx +=1;
       /* if(mi==0)  never been interviewed correctly before death */          sw += weight[i];
          /* Only death is a correct wave */          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       mw[mi][i]=m;        } /* end of wave */
     }      } /* end of individual */
     }  else if(mle==3){  /* exponential inter-extrapolation */
     wav[i]=mi;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     if(mi==0)        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);        for(mi=1; mi<= wav[i]-1; mi++){
   }          for (ii=1;ii<=nlstate+ndeath;ii++)
             for (j=1;j<=nlstate+ndeath;j++){
   for(i=1; i<=imx; i++){              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     for(mi=1; mi<wav[i];mi++){              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       if (stepm <=0)            }
         dh[mi][i]=1;          for(d=0; d<dh[mi][i]; d++){
       else{            newm=savm;
         if (s[mw[mi+1][i]][i] > nlstate) {            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           if (agedc[i] < 2*AGESUP) {            for (kk=1; kk<=cptcovage;kk++) {
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           if(j==0) j=1;  /* Survives at least one month after exam */            }
           k=k+1;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
           if (j >= jmax) jmax=j;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           if (j <= jmin) jmin=j;            savm=oldm;
           sum=sum+j;            oldm=newm;
           /* if (j<10) printf("j=%d num=%d ",j,i); */          } /* end mult */
           }        
         }          s1=s[mw[mi][i]][i];
         else{          s2=s[mw[mi+1][i]][i];
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));          bbh=(double)bh[mi][i]/(double)stepm; 
           k=k+1;          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
           if (j >= jmax) jmax=j;          ipmx +=1;
           else if (j <= jmin)jmin=j;          sw += weight[i];
           /*   if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           sum=sum+j;        } /* end of wave */
         }      } /* end of individual */
         jk= j/stepm;    }else if (mle==4){  /* ml=4 no inter-extrapolation */
         jl= j -jk*stepm;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         ju= j -(jk+1)*stepm;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         if(jl <= -ju)        for(mi=1; mi<= wav[i]-1; mi++){
           dh[mi][i]=jk;          for (ii=1;ii<=nlstate+ndeath;ii++)
         else            for (j=1;j<=nlstate+ndeath;j++){
           dh[mi][i]=jk+1;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         if(dh[mi][i]==0)              savm[ii][j]=(ii==j ? 1.0 : 0.0);
           dh[mi][i]=1; /* At least one step */            }
       }          for(d=0; d<dh[mi][i]; d++){
     }            newm=savm;
   }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   jmean=sum/k;            for (kk=1; kk<=cptcovage;kk++) {
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
  }            }
 /*********** Tricode ****************************/          
 void tricode(int *Tvar, int **nbcode, int imx)            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 {                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   int Ndum[20],ij=1, k, j, i;            savm=oldm;
   int cptcode=0;            oldm=newm;
   cptcoveff=0;          } /* end mult */
          
   for (k=0; k<19; k++) Ndum[k]=0;          s1=s[mw[mi][i]][i];
   for (k=1; k<=7; k++) ncodemax[k]=0;          s2=s[mw[mi+1][i]][i];
           if( s2 > nlstate){ 
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {            lli=log(out[s1][s2] - savm[s1][s2]);
     for (i=1; i<=imx; i++) {          }else{
       ij=(int)(covar[Tvar[j]][i]);            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
       Ndum[ij]++;          }
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/          ipmx +=1;
       if (ij > cptcode) cptcode=ij;          sw += weight[i];
     }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
     for (i=0; i<=cptcode; i++) {        } /* end of wave */
       if(Ndum[i]!=0) ncodemax[j]++;      } /* end of individual */
     }    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
     ij=1;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(mi=1; mi<= wav[i]-1; mi++){
     for (i=1; i<=ncodemax[j]; i++) {          for (ii=1;ii<=nlstate+ndeath;ii++)
       for (k=0; k<=19; k++) {            for (j=1;j<=nlstate+ndeath;j++){
         if (Ndum[k] != 0) {              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           nbcode[Tvar[j]][ij]=k;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
           ij++;            }
         }          for(d=0; d<dh[mi][i]; d++){
         if (ij > ncodemax[j]) break;            newm=savm;
       }              cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     }            for (kk=1; kk<=cptcovage;kk++) {
   }                cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             }
  for (k=0; k<19; k++) Ndum[k]=0;          
             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
  for (i=1; i<=ncovmodel-2; i++) {                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       ij=Tvar[i];            savm=oldm;
       Ndum[ij]++;            oldm=newm;
     }          } /* end mult */
         
  ij=1;          s1=s[mw[mi][i]][i];
  for (i=1; i<=10; i++) {          s2=s[mw[mi+1][i]][i];
    if((Ndum[i]!=0) && (i<=ncov)){          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
      Tvaraff[ij]=i;          ipmx +=1;
      ij++;          sw += weight[i];
    }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
  }          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
          } /* end of wave */
     cptcoveff=ij-1;      } /* end of individual */
 }    } /* End of if */
     for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
 /*********** Health Expectancies ****************/    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
     l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij)    return -l;
 {  }
   /* Health expectancies */  
   int i, j, nhstepm, hstepm, h;  /*************** log-likelihood *************/
   double age, agelim,hf;  double funcone( double *x)
   double ***p3mat;  {
      /* Same as likeli but slower because of a lot of printf and if */
   fprintf(ficreseij,"# Health expectancies\n");    int i, ii, j, k, mi, d, kk;
   fprintf(ficreseij,"# Age");    double l, ll[NLSTATEMAX], cov[NCOVMAX];
   for(i=1; i<=nlstate;i++)    double **out;
     for(j=1; j<=nlstate;j++)    double lli; /* Individual log likelihood */
       fprintf(ficreseij," %1d-%1d",i,j);    double llt;
   fprintf(ficreseij,"\n");    int s1, s2;
     double bbh, survp;
   hstepm=1*YEARM; /*  Every j years of age (in month) */    /*extern weight */
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */    /* We are differentiating ll according to initial status */
     /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   agelim=AGESUP;    /*for(i=1;i<imx;i++) 
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */      printf(" %d\n",s[4][i]);
     /* nhstepm age range expressed in number of stepm */    */
     nhstepm=(int) rint((agelim-age)*YEARM/stepm);    cov[1]=1.;
     /* Typically if 20 years = 20*12/6=40 stepm */  
     if (stepm >= YEARM) hstepm=1;    for(k=1; k<=nlstate; k++) ll[k]=0.;
     nhstepm = nhstepm/hstepm;/* Expressed in hstepm, typically 40/4=10 */  
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     /* Computed by stepm unit matrices, product of hstepm matrices, stored      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */      for(mi=1; mi<= wav[i]-1; mi++){
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);          for (ii=1;ii<=nlstate+ndeath;ii++)
           for (j=1;j<=nlstate+ndeath;j++){
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     for(i=1; i<=nlstate;i++)            savm[ii][j]=(ii==j ? 1.0 : 0.0);
       for(j=1; j<=nlstate;j++)          }
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm; h++){        for(d=0; d<dh[mi][i]; d++){
           eij[i][j][(int)age] +=p3mat[i][j][h];          newm=savm;
         }          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
              for (kk=1; kk<=cptcovage;kk++) {
     hf=1;            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     if (stepm >= YEARM) hf=stepm/YEARM;          }
     fprintf(ficreseij,"%.0f",age );          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     for(i=1; i<=nlstate;i++)                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       for(j=1; j<=nlstate;j++){          savm=oldm;
         fprintf(ficreseij," %.4f", hf*eij[i][j][(int)age]);          oldm=newm;
       }        } /* end mult */
     fprintf(ficreseij,"\n");        
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        s1=s[mw[mi][i]][i];
   }        s2=s[mw[mi+1][i]][i];
 }        bbh=(double)bh[mi][i]/(double)stepm; 
         /* bias is positive if real duration
 /************ Variance ******************/         * is higher than the multiple of stepm and negative otherwise.
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)         */
 {        if( s2 > nlstate && (mle <5) ){  /* Jackson */
   /* Variance of health expectancies */          lli=log(out[s1][s2] - savm[s1][s2]);
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/        } else if (mle==1){
   double **newm;          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   double **dnewm,**doldm;        } else if(mle==2){
   int i, j, nhstepm, hstepm, h;          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
   int k, cptcode;        } else if(mle==3){  /* exponential inter-extrapolation */
   double *xp;          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   double **gp, **gm;        } else if (mle==4){  /* mle=4 no inter-extrapolation */
   double ***gradg, ***trgradg;          lli=log(out[s1][s2]); /* Original formula */
   double ***p3mat;        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
   double age,agelim;          lli=log(out[s1][s2]); /* Original formula */
   int theta;        } /* End of if */
         ipmx +=1;
    fprintf(ficresvij,"# Covariances of life expectancies\n");        sw += weight[i];
   fprintf(ficresvij,"# Age");        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   for(i=1; i<=nlstate;i++)  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
     for(j=1; j<=nlstate;j++)        if(globpr){
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);          fprintf(ficresilk,"%9d %6d %1d %1d %1d %1d %3d %10.6f %6.4f\
   fprintf(ficresvij,"\n");   %10.6f %10.6f %10.6f ", \
                   num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
   xp=vector(1,npar);                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
   dnewm=matrix(1,nlstate,1,npar);          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
   doldm=matrix(1,nlstate,1,nlstate);            llt +=ll[k]*gipmx/gsw;
              fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
   hstepm=1*YEARM; /* Every year of age */          }
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */          fprintf(ficresilk," %10.6f\n", -llt);
   agelim = AGESUP;        }
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */      } /* end of wave */
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    } /* end of individual */
     if (stepm >= YEARM) hstepm=1;    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);    if(globpr==0){ /* First time we count the contributions and weights */
     gp=matrix(0,nhstepm,1,nlstate);      gipmx=ipmx;
     gm=matrix(0,nhstepm,1,nlstate);      gsw=sw;
     }
     for(theta=1; theta <=npar; theta++){    return -l;
       for(i=1; i<=npar; i++){ /* Computes gradient */  }
         xp[i] = x[i] + (i==theta ?delti[theta]:0);  
       }  
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);    /*************** function likelione ***********/
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
   {
       if (popbased==1) {    /* This routine should help understanding what is done with 
         for(i=1; i<=nlstate;i++)       the selection of individuals/waves and
           prlim[i][i]=probs[(int)age][i][ij];       to check the exact contribution to the likelihood.
       }       Plotting could be done.
           */
       for(j=1; j<= nlstate; j++){    int k;
         for(h=0; h<=nhstepm; h++){  
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)    if(*globpri !=0){ /* Just counts and sums, no printings */
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];      strcpy(fileresilk,"ilk"); 
         }      strcat(fileresilk,fileres);
       }      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
            printf("Problem with resultfile: %s\n", fileresilk);
       for(i=1; i<=npar; i++) /* Computes gradient */        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
         xp[i] = x[i] - (i==theta ?delti[theta]:0);      }
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
       /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
       if (popbased==1) {      for(k=1; k<=nlstate; k++) 
         for(i=1; i<=nlstate;i++)        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
           prlim[i][i]=probs[(int)age][i][ij];      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
       }    }
   
       for(j=1; j<= nlstate; j++){    *fretone=(*funcone)(p);
         for(h=0; h<=nhstepm; h++){    if(*globpri !=0){
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)      fclose(ficresilk);
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
         }      fflush(fichtm); 
       }    } 
     return;
       for(j=1; j<= nlstate; j++)  }
         for(h=0; h<=nhstepm; h++){  
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];  
         }  /*********** Maximum Likelihood Estimation ***************/
     } /* End theta */  
   void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);  {
     int i,j, iter;
     for(h=0; h<=nhstepm; h++)    double **xi;
       for(j=1; j<=nlstate;j++)    double fret;
         for(theta=1; theta <=npar; theta++)    double fretone; /* Only one call to likelihood */
           trgradg[h][j][theta]=gradg[h][theta][j];    /*  char filerespow[FILENAMELENGTH];*/
     xi=matrix(1,npar,1,npar);
     for(i=1;i<=nlstate;i++)    for (i=1;i<=npar;i++)
       for(j=1;j<=nlstate;j++)      for (j=1;j<=npar;j++)
         vareij[i][j][(int)age] =0.;        xi[i][j]=(i==j ? 1.0 : 0.0);
     for(h=0;h<=nhstepm;h++){    printf("Powell\n");  fprintf(ficlog,"Powell\n");
       for(k=0;k<=nhstepm;k++){    strcpy(filerespow,"pow"); 
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);    strcat(filerespow,fileres);
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);    if((ficrespow=fopen(filerespow,"w"))==NULL) {
         for(i=1;i<=nlstate;i++)      printf("Problem with resultfile: %s\n", filerespow);
           for(j=1;j<=nlstate;j++)      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
             vareij[i][j][(int)age] += doldm[i][j];    }
       }    fprintf(ficrespow,"# Powell\n# iter -2*LL");
     }    for (i=1;i<=nlstate;i++)
     h=1;      for(j=1;j<=nlstate+ndeath;j++)
     if (stepm >= YEARM) h=stepm/YEARM;        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
     fprintf(ficresvij,"%.0f ",age );    fprintf(ficrespow,"\n");
     for(i=1; i<=nlstate;i++)  
       for(j=1; j<=nlstate;j++){    powell(p,xi,npar,ftol,&iter,&fret,func);
         fprintf(ficresvij," %.4f", h*vareij[i][j][(int)age]);  
       }    fclose(ficrespow);
     fprintf(ficresvij,"\n");    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
     free_matrix(gp,0,nhstepm,1,nlstate);    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
     free_matrix(gm,0,nhstepm,1,nlstate);    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);  
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);  }
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
   } /* End age */  /**** Computes Hessian and covariance matrix ***/
    void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
   free_vector(xp,1,npar);  {
   free_matrix(doldm,1,nlstate,1,npar);    double  **a,**y,*x,pd;
   free_matrix(dnewm,1,nlstate,1,nlstate);    double **hess;
     int i, j,jk;
 }    int *indx;
   
 /************ Variance of prevlim ******************/    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
 {    void lubksb(double **a, int npar, int *indx, double b[]) ;
   /* Variance of prevalence limit */    void ludcmp(double **a, int npar, int *indx, double *d) ;
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    double gompertz(double p[]);
   double **newm;    hess=matrix(1,npar,1,npar);
   double **dnewm,**doldm;  
   int i, j, nhstepm, hstepm;    printf("\nCalculation of the hessian matrix. Wait...\n");
   int k, cptcode;    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
   double *xp;    for (i=1;i<=npar;i++){
   double *gp, *gm;      printf("%d",i);fflush(stdout);
   double **gradg, **trgradg;      fprintf(ficlog,"%d",i);fflush(ficlog);
   double age,agelim;     
   int theta;       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
          
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");      /*  printf(" %f ",p[i]);
   fprintf(ficresvpl,"# Age");          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
   for(i=1; i<=nlstate;i++)    }
       fprintf(ficresvpl," %1d-%1d",i,i);    
   fprintf(ficresvpl,"\n");    for (i=1;i<=npar;i++) {
       for (j=1;j<=npar;j++)  {
   xp=vector(1,npar);        if (j>i) { 
   dnewm=matrix(1,nlstate,1,npar);          printf(".%d%d",i,j);fflush(stdout);
   doldm=matrix(1,nlstate,1,nlstate);          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
            hess[i][j]=hessij(p,delti,i,j,func,npar);
   hstepm=1*YEARM; /* Every year of age */          
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */          hess[j][i]=hess[i][j];    
   agelim = AGESUP;          /*printf(" %lf ",hess[i][j]);*/
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */        }
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */      }
     if (stepm >= YEARM) hstepm=1;    }
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    printf("\n");
     gradg=matrix(1,npar,1,nlstate);    fprintf(ficlog,"\n");
     gp=vector(1,nlstate);  
     gm=vector(1,nlstate);    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
     fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
     for(theta=1; theta <=npar; theta++){    
       for(i=1; i<=npar; i++){ /* Computes gradient */    a=matrix(1,npar,1,npar);
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    y=matrix(1,npar,1,npar);
       }    x=vector(1,npar);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    indx=ivector(1,npar);
       for(i=1;i<=nlstate;i++)    for (i=1;i<=npar;i++)
         gp[i] = prlim[i][i];      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
        ludcmp(a,npar,indx,&pd);
       for(i=1; i<=npar; i++) /* Computes gradient */  
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    for (j=1;j<=npar;j++) {
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      for (i=1;i<=npar;i++) x[i]=0;
       for(i=1;i<=nlstate;i++)      x[j]=1;
         gm[i] = prlim[i][i];      lubksb(a,npar,indx,x);
       for (i=1;i<=npar;i++){ 
       for(i=1;i<=nlstate;i++)        matcov[i][j]=x[i];
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];      }
     } /* End theta */    }
   
     trgradg =matrix(1,nlstate,1,npar);    printf("\n#Hessian matrix#\n");
     fprintf(ficlog,"\n#Hessian matrix#\n");
     for(j=1; j<=nlstate;j++)    for (i=1;i<=npar;i++) { 
       for(theta=1; theta <=npar; theta++)      for (j=1;j<=npar;j++) { 
         trgradg[j][theta]=gradg[theta][j];        printf("%.3e ",hess[i][j]);
         fprintf(ficlog,"%.3e ",hess[i][j]);
     for(i=1;i<=nlstate;i++)      }
       varpl[i][(int)age] =0.;      printf("\n");
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);      fprintf(ficlog,"\n");
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);    }
     for(i=1;i<=nlstate;i++)  
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */    /* Recompute Inverse */
     for (i=1;i<=npar;i++)
     fprintf(ficresvpl,"%.0f ",age );      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
     for(i=1; i<=nlstate;i++)    ludcmp(a,npar,indx,&pd);
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));  
     fprintf(ficresvpl,"\n");    /*  printf("\n#Hessian matrix recomputed#\n");
     free_vector(gp,1,nlstate);  
     free_vector(gm,1,nlstate);    for (j=1;j<=npar;j++) {
     free_matrix(gradg,1,npar,1,nlstate);      for (i=1;i<=npar;i++) x[i]=0;
     free_matrix(trgradg,1,nlstate,1,npar);      x[j]=1;
   } /* End age */      lubksb(a,npar,indx,x);
       for (i=1;i<=npar;i++){ 
   free_vector(xp,1,npar);        y[i][j]=x[i];
   free_matrix(doldm,1,nlstate,1,npar);        printf("%.3e ",y[i][j]);
   free_matrix(dnewm,1,nlstate,1,nlstate);        fprintf(ficlog,"%.3e ",y[i][j]);
       }
 }      printf("\n");
       fprintf(ficlog,"\n");
 /************ Variance of one-step probabilities  ******************/    }
 void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij)    */
 {  
   int i, j;    free_matrix(a,1,npar,1,npar);
   int k=0, cptcode;    free_matrix(y,1,npar,1,npar);
   double **dnewm,**doldm;    free_vector(x,1,npar);
   double *xp;    free_ivector(indx,1,npar);
   double *gp, *gm;    free_matrix(hess,1,npar,1,npar);
   double **gradg, **trgradg;  
   double age,agelim, cov[NCOVMAX];  
   int theta;  }
   char fileresprob[FILENAMELENGTH];  
   /*************** hessian matrix ****************/
   strcpy(fileresprob,"prob");  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
   strcat(fileresprob,fileres);  {
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {    int i;
     printf("Problem with resultfile: %s\n", fileresprob);    int l=1, lmax=20;
   }    double k1,k2;
   printf("Computing variance of one-step probabilities: result on file '%s' \n",fileresprob);    double p2[NPARMAX+1];
      double res;
     double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
   xp=vector(1,npar);    double fx;
   dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    int k=0,kmax=10;
   doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));    double l1;
    
   cov[1]=1;    fx=func(x);
   for (age=bage; age<=fage; age ++){    for (i=1;i<=npar;i++) p2[i]=x[i];
     cov[2]=age;    for(l=0 ; l <=lmax; l++){
     gradg=matrix(1,npar,1,9);      l1=pow(10,l);
     trgradg=matrix(1,9,1,npar);      delts=delt;
     gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));      for(k=1 ; k <kmax; k=k+1){
     gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));        delt = delta*(l1*k);
            p2[theta]=x[theta] +delt;
     for(theta=1; theta <=npar; theta++){        k1=func(p2)-fx;
       for(i=1; i<=npar; i++)        p2[theta]=x[theta]-delt;
         xp[i] = x[i] + (i==theta ?delti[theta]:0);        k2=func(p2)-fx;
              /*res= (k1-2.0*fx+k2)/delt/delt; */
       pmij(pmmij,cov,ncovmodel,xp,nlstate);        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
            
       k=0;  #ifdef DEBUG
       for(i=1; i<= (nlstate+ndeath); i++){        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
         for(j=1; j<=(nlstate+ndeath);j++){        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
            k=k+1;  #endif
           gp[k]=pmmij[i][j];        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
         }        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
       }          k=kmax;
         }
       for(i=1; i<=npar; i++)        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
         xp[i] = x[i] - (i==theta ?delti[theta]:0);          k=kmax; l=lmax*10.;
            }
         else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
       pmij(pmmij,cov,ncovmodel,xp,nlstate);          delts=delt;
       k=0;        }
       for(i=1; i<=(nlstate+ndeath); i++){      }
         for(j=1; j<=(nlstate+ndeath);j++){    }
           k=k+1;    delti[theta]=delts;
           gm[k]=pmmij[i][j];    return res; 
         }    
       }  }
        
        for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
            gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];    {
     }    int i;
     int l=1, l1, lmax=20;
      for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)    double k1,k2,k3,k4,res,fx;
       for(theta=1; theta <=npar; theta++)    double p2[NPARMAX+1];
       trgradg[j][theta]=gradg[theta][j];    int k;
    
      matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);    fx=func(x);
      matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);    for (k=1; k<=2; k++) {
       for (i=1;i<=npar;i++) p2[i]=x[i];
      pmij(pmmij,cov,ncovmodel,x,nlstate);      p2[thetai]=x[thetai]+delti[thetai]/k;
       p2[thetaj]=x[thetaj]+delti[thetaj]/k;
      k=0;      k1=func(p2)-fx;
      for(i=1; i<=(nlstate+ndeath); i++){    
        for(j=1; j<=(nlstate+ndeath);j++){      p2[thetai]=x[thetai]+delti[thetai]/k;
          k=k+1;      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
          gm[k]=pmmij[i][j];      k2=func(p2)-fx;
         }    
      }      p2[thetai]=x[thetai]-delti[thetai]/k;
            p2[thetaj]=x[thetaj]+delti[thetaj]/k;
      /*printf("\n%d ",(int)age);      k3=func(p2)-fx;
      for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){    
              p2[thetai]=x[thetai]-delti[thetai]/k;
       p2[thetaj]=x[thetaj]-delti[thetaj]/k;
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));      k4=func(p2)-fx;
      }*/      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
   #ifdef DEBUG
   fprintf(ficresprob,"\n%d ",(int)age);      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
       fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){  #endif
     if (i== 2) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);    }
 if (i== 4) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);    return res;
   }  }
   
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));  /************** Inverse of matrix **************/
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));  void ludcmp(double **a, int n, int *indx, double *d) 
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);  { 
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    int i,imax,j,k; 
 }    double big,dum,sum,temp; 
  free_vector(xp,1,npar);    double *vv; 
 fclose(ficresprob);   
  exit(0);    vv=vector(1,n); 
 }    *d=1.0; 
     for (i=1;i<=n;i++) { 
 /***********************************************/      big=0.0; 
 /**************** Main Program *****************/      for (j=1;j<=n;j++) 
 /***********************************************/        if ((temp=fabs(a[i][j])) > big) big=temp; 
       if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
 /*int main(int argc, char *argv[])*/      vv[i]=1.0/big; 
 int main()    } 
 {    for (j=1;j<=n;j++) { 
       for (i=1;i<j;i++) { 
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;        sum=a[i][j]; 
   double agedeb, agefin,hf;        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
   double agemin=1.e20, agemax=-1.e20;        a[i][j]=sum; 
       } 
   double fret;      big=0.0; 
   double **xi,tmp,delta;      for (i=j;i<=n;i++) { 
         sum=a[i][j]; 
   double dum; /* Dummy variable */        for (k=1;k<j;k++) 
   double ***p3mat;          sum -= a[i][k]*a[k][j]; 
   int *indx;        a[i][j]=sum; 
   char line[MAXLINE], linepar[MAXLINE];        if ( (dum=vv[i]*fabs(sum)) >= big) { 
   char title[MAXLINE];          big=dum; 
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];          imax=i; 
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], fileresf[FILENAMELENGTH];        } 
   char filerest[FILENAMELENGTH];      } 
   char fileregp[FILENAMELENGTH];      if (j != imax) { 
   char popfile[FILENAMELENGTH];        for (k=1;k<=n;k++) { 
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];          dum=a[imax][k]; 
   int firstobs=1, lastobs=10;          a[imax][k]=a[j][k]; 
   int sdeb, sfin; /* Status at beginning and end */          a[j][k]=dum; 
   int c,  h , cpt,l;        } 
   int ju,jl, mi;        *d = -(*d); 
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;        vv[imax]=vv[j]; 
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;      } 
   int mobilav=0,popforecast=0;      indx[j]=imax; 
   int hstepm, nhstepm;      if (a[j][j] == 0.0) a[j][j]=TINY; 
   int *popage;/*boolprev=0 if date and zero if wave*/      if (j != n) { 
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2;        dum=1.0/(a[j][j]); 
         for (i=j+1;i<=n;i++) a[i][j] *= dum; 
   double bage, fage, age, agelim, agebase;      } 
   double ftolpl=FTOL;    } 
   double **prlim;    free_vector(vv,1,n);  /* Doesn't work */
   double *severity;  ;
   double ***param; /* Matrix of parameters */  } 
   double  *p;  
   double **matcov; /* Matrix of covariance */  void lubksb(double **a, int n, int *indx, double b[]) 
   double ***delti3; /* Scale */  { 
   double *delti; /* Scale */    int i,ii=0,ip,j; 
   double ***eij, ***vareij;    double sum; 
   double **varpl; /* Variances of prevalence limits by age */   
   double *epj, vepp;    for (i=1;i<=n;i++) { 
   double kk1, kk2;      ip=indx[i]; 
   double *popeffectif,*popcount;      sum=b[ip]; 
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,jprojmean,mprojmean,anprojmean, calagedate;      b[ip]=b[i]; 
   double yp,yp1,yp2;      if (ii) 
         for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
   char version[80]="Imach version 64b, May 2001, INED-EUROREVES ";      else if (sum) ii=i; 
   char *alph[]={"a","a","b","c","d","e"}, str[4];      b[i]=sum; 
     } 
     for (i=n;i>=1;i--) { 
   char z[1]="c", occ;      sum=b[i]; 
 #include <sys/time.h>      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
 #include <time.h>      b[i]=sum/a[i][i]; 
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];    } 
    } 
   /* long total_usecs;  
   struct timeval start_time, end_time;  /************ Frequencies ********************/
    void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */  {  /* Some frequencies */
     
     int i, m, jk, k1,i1, j1, bool, z1,z2,j;
   printf("\nIMACH, Version 0.7");    int first;
   printf("\nEnter the parameter file name: ");    double ***freq; /* Frequencies */
     double *pp, **prop;
 #ifdef windows    double pos,posprop, k2, dateintsum=0,k2cpt=0;
   scanf("%s",pathtot);    FILE *ficresp;
   getcwd(pathcd, size);    char fileresp[FILENAMELENGTH];
   /*cygwin_split_path(pathtot,path,optionfile);    
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/    pp=vector(1,nlstate);
   /* cutv(path,optionfile,pathtot,'\\');*/    prop=matrix(1,nlstate,iagemin,iagemax+3);
     strcpy(fileresp,"p");
 split(pathtot, path,optionfile);    strcat(fileresp,fileres);
   chdir(path);    if((ficresp=fopen(fileresp,"w"))==NULL) {
   replace(pathc,path);      printf("Problem with prevalence resultfile: %s\n", fileresp);
 #endif      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
 #ifdef unix      exit(0);
   scanf("%s",optionfile);    }
 #endif    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
     j1=0;
 /*-------- arguments in the command line --------*/    
     j=cptcoveff;
   strcpy(fileres,"r");    if (cptcovn<1) {j=1;ncodemax[1]=1;}
   strcat(fileres, optionfile);  
     first=1;
   /*---------arguments file --------*/  
     for(k1=1; k1<=j;k1++){
   if((ficpar=fopen(optionfile,"r"))==NULL)    {      for(i1=1; i1<=ncodemax[k1];i1++){
     printf("Problem with optionfile %s\n",optionfile);        j1++;
     goto end;        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
   }          scanf("%d", i);*/
         for (i=-5; i<=nlstate+ndeath; i++)  
   strcpy(filereso,"o");          for (jk=-5; jk<=nlstate+ndeath; jk++)  
   strcat(filereso,fileres);            for(m=iagemin; m <= iagemax+3; m++)
   if((ficparo=fopen(filereso,"w"))==NULL) {              freq[i][jk][m]=0;
     printf("Problem with Output resultfile: %s\n", filereso);goto end;  
   }      for (i=1; i<=nlstate; i++)  
         for(m=iagemin; m <= iagemax+3; m++)
   /* Reads comments: lines beginning with '#' */          prop[i][m]=0;
   while((c=getc(ficpar))=='#' && c!= EOF){        
     ungetc(c,ficpar);        dateintsum=0;
     fgets(line, MAXLINE, ficpar);        k2cpt=0;
     puts(line);        for (i=1; i<=imx; i++) {
     fputs(line,ficparo);          bool=1;
   }          if  (cptcovn>0) {
   ungetc(c,ficpar);            for (z1=1; z1<=cptcoveff; z1++) 
               if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncov, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);                bool=0;
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate,ndeath, maxwav, mle, weightopt,model);          }
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncov,nlstate,ndeath,maxwav, mle, weightopt,model);          if (bool==1){
 while((c=getc(ficpar))=='#' && c!= EOF){            for(m=firstpass; m<=lastpass; m++){
     ungetc(c,ficpar);              k2=anint[m][i]+(mint[m][i]/12.);
     fgets(line, MAXLINE, ficpar);              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
     puts(line);                if(agev[m][i]==0) agev[m][i]=iagemax+1;
     fputs(line,ficparo);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
   }                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
   ungetc(c,ficpar);                if (m<lastpass) {
                    freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
                      freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
   covar=matrix(0,NCOVMAX,1,n);                }
   cptcovn=0;                
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
                   dateintsum=dateintsum+k2;
   ncovmodel=2+cptcovn;                  k2cpt++;
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */                }
                  /*}*/
   /* Read guess parameters */            }
   /* Reads comments: lines beginning with '#' */          }
   while((c=getc(ficpar))=='#' && c!= EOF){        }
     ungetc(c,ficpar);         
     fgets(line, MAXLINE, ficpar);        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
     puts(line);  fprintf(ficresp, "#Local time at start: %s", strstart);
     fputs(line,ficparo);        if  (cptcovn>0) {
   }          fprintf(ficresp, "\n#********** Variable "); 
   ungetc(c,ficpar);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
            fprintf(ficresp, "**********\n#");
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);        }
     for(i=1; i <=nlstate; i++)        for(i=1; i<=nlstate;i++) 
     for(j=1; j <=nlstate+ndeath-1; j++){          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
       fscanf(ficpar,"%1d%1d",&i1,&j1);        fprintf(ficresp, "\n");
       fprintf(ficparo,"%1d%1d",i1,j1);        
       printf("%1d%1d",i,j);        for(i=iagemin; i <= iagemax+3; i++){
       for(k=1; k<=ncovmodel;k++){          if(i==iagemax+3){
         fscanf(ficpar," %lf",&param[i][j][k]);            fprintf(ficlog,"Total");
         printf(" %lf",param[i][j][k]);          }else{
         fprintf(ficparo," %lf",param[i][j][k]);            if(first==1){
       }              first=0;
       fscanf(ficpar,"\n");              printf("See log file for details...\n");
       printf("\n");            }
       fprintf(ficparo,"\n");            fprintf(ficlog,"Age %d", i);
     }          }
            for(jk=1; jk <=nlstate ; jk++){
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
               pp[jk] += freq[jk][m][i]; 
   p=param[1][1];          }
            for(jk=1; jk <=nlstate ; jk++){
   /* Reads comments: lines beginning with '#' */            for(m=-1, pos=0; m <=0 ; m++)
   while((c=getc(ficpar))=='#' && c!= EOF){              pos += freq[jk][m][i];
     ungetc(c,ficpar);            if(pp[jk]>=1.e-10){
     fgets(line, MAXLINE, ficpar);              if(first==1){
     puts(line);              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
     fputs(line,ficparo);              }
   }              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
   ungetc(c,ficpar);            }else{
               if(first==1)
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
   for(i=1; i <=nlstate; i++){            }
     for(j=1; j <=nlstate+ndeath-1; j++){          }
       fscanf(ficpar,"%1d%1d",&i1,&j1);  
       printf("%1d%1d",i,j);          for(jk=1; jk <=nlstate ; jk++){
       fprintf(ficparo,"%1d%1d",i1,j1);            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
       for(k=1; k<=ncovmodel;k++){              pp[jk] += freq[jk][m][i];
         fscanf(ficpar,"%le",&delti3[i][j][k]);          }       
         printf(" %le",delti3[i][j][k]);          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
         fprintf(ficparo," %le",delti3[i][j][k]);            pos += pp[jk];
       }            posprop += prop[jk][i];
       fscanf(ficpar,"\n");          }
       printf("\n");          for(jk=1; jk <=nlstate ; jk++){
       fprintf(ficparo,"\n");            if(pos>=1.e-5){
     }              if(first==1)
   }                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   delti=delti3[1][1];              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
              }else{
   /* Reads comments: lines beginning with '#' */              if(first==1)
   while((c=getc(ficpar))=='#' && c!= EOF){                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
     ungetc(c,ficpar);              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
     fgets(line, MAXLINE, ficpar);            }
     puts(line);            if( i <= iagemax){
     fputs(line,ficparo);              if(pos>=1.e-5){
   }                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
   ungetc(c,ficpar);                /*probs[i][jk][j1]= pp[jk]/pos;*/
                  /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
   matcov=matrix(1,npar,1,npar);              }
   for(i=1; i <=npar; i++){              else
     fscanf(ficpar,"%s",&str);                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
     printf("%s",str);            }
     fprintf(ficparo,"%s",str);          }
     for(j=1; j <=i; j++){          
       fscanf(ficpar," %le",&matcov[i][j]);          for(jk=-1; jk <=nlstate+ndeath; jk++)
       printf(" %.5le",matcov[i][j]);            for(m=-1; m <=nlstate+ndeath; m++)
       fprintf(ficparo," %.5le",matcov[i][j]);              if(freq[jk][m][i] !=0 ) {
     }              if(first==1)
     fscanf(ficpar,"\n");                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
     printf("\n");                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
     fprintf(ficparo,"\n");              }
   }          if(i <= iagemax)
   for(i=1; i <=npar; i++)            fprintf(ficresp,"\n");
     for(j=i+1;j<=npar;j++)          if(first==1)
       matcov[i][j]=matcov[j][i];            printf("Others in log...\n");
              fprintf(ficlog,"\n");
   printf("\n");        }
       }
     }
     /*-------- data file ----------*/    dateintmean=dateintsum/k2cpt; 
     if((ficres =fopen(fileres,"w"))==NULL) {   
       printf("Problem with resultfile: %s\n", fileres);goto end;    fclose(ficresp);
     }    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
     fprintf(ficres,"#%s\n",version);    free_vector(pp,1,nlstate);
        free_matrix(prop,1,nlstate,iagemin, iagemax+3);
     if((fic=fopen(datafile,"r"))==NULL)    {    /* End of Freq */
       printf("Problem with datafile: %s\n", datafile);goto end;  }
     }  
   /************ Prevalence ********************/
     n= lastobs;  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
     severity = vector(1,maxwav);  {  
     outcome=imatrix(1,maxwav+1,1,n);    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
     num=ivector(1,n);       in each health status at the date of interview (if between dateprev1 and dateprev2).
     moisnais=vector(1,n);       We still use firstpass and lastpass as another selection.
     annais=vector(1,n);    */
     moisdc=vector(1,n);   
     andc=vector(1,n);    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
     agedc=vector(1,n);    double ***freq; /* Frequencies */
     cod=ivector(1,n);    double *pp, **prop;
     weight=vector(1,n);    double pos,posprop; 
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */    double  y2; /* in fractional years */
     mint=matrix(1,maxwav,1,n);    int iagemin, iagemax;
     anint=matrix(1,maxwav,1,n);  
     s=imatrix(1,maxwav+1,1,n);    iagemin= (int) agemin;
     adl=imatrix(1,maxwav+1,1,n);        iagemax= (int) agemax;
     tab=ivector(1,NCOVMAX);    /*pp=vector(1,nlstate);*/
     ncodemax=ivector(1,8);    prop=matrix(1,nlstate,iagemin,iagemax+3); 
     /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
     i=1;    j1=0;
     while (fgets(line, MAXLINE, fic) != NULL)    {    
       if ((i >= firstobs) && (i <=lastobs)) {    j=cptcoveff;
            if (cptcovn<1) {j=1;ncodemax[1]=1;}
         for (j=maxwav;j>=1;j--){    
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);    for(k1=1; k1<=j;k1++){
           strcpy(line,stra);      for(i1=1; i1<=ncodemax[k1];i1++){
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);        j1++;
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);        
         }        for (i=1; i<=nlstate; i++)  
                  for(m=iagemin; m <= iagemax+3; m++)
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);            prop[i][m]=0.0;
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);       
         for (i=1; i<=imx; i++) { /* Each individual */
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);          bool=1;
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);          if  (cptcovn>0) {
             for (z1=1; z1<=cptcoveff; z1++) 
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
         for (j=ncov;j>=1;j--){                bool=0;
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);          } 
         }          if (bool==1) { 
         num[i]=atol(stra);            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
                      y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/                if(agev[m][i]==0) agev[m][i]=iagemax+1;
                 if(agev[m][i]==1) agev[m][i]=iagemax+2;
         i=i+1;                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
       }                if (s[m][i]>0 && s[m][i]<=nlstate) { 
     }                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
     /* printf("ii=%d", ij);                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
        scanf("%d",i);*/                  prop[s[m][i]][iagemax+3] += weight[i]; 
   imx=i-1; /* Number of individuals */                } 
               }
   /* for (i=1; i<=imx; i++){            } /* end selection of waves */
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;          }
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;        }
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;        for(i=iagemin; i <= iagemax+3; i++){  
     }          
           for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
     for (i=1; i<=imx; i++)            posprop += prop[jk][i]; 
     if (covar[1][i]==0) printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));*/          } 
   
   /* Calculation of the number of parameter from char model*/          for(jk=1; jk <=nlstate ; jk++){     
   Tvar=ivector(1,15);            if( i <=  iagemax){ 
   Tprod=ivector(1,15);              if(posprop>=1.e-5){ 
   Tvaraff=ivector(1,15);                probs[i][jk][j1]= prop[jk][i]/posprop;
   Tvard=imatrix(1,15,1,2);              } 
   Tage=ivector(1,15);                  } 
              }/* end jk */ 
   if (strlen(model) >1){        }/* end i */ 
     j=0, j1=0, k1=1, k2=1;      } /* end i1 */
     j=nbocc(model,'+');    } /* end k1 */
     j1=nbocc(model,'*');    
     cptcovn=j+1;    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
     cptcovprod=j1;    /*free_vector(pp,1,nlstate);*/
        free_matrix(prop,1,nlstate, iagemin,iagemax+3);
      }  /* End of prevalence */
     strcpy(modelsav,model);  
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){  /************* Waves Concatenation ***************/
       printf("Error. Non available option model=%s ",model);  
       goto end;  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
     }  {
        /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
     for(i=(j+1); i>=1;i--){       Death is a valid wave (if date is known).
       cutv(stra,strb,modelsav,'+');       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/       and mw[mi+1][i]. dh depends on stepm.
       /*scanf("%d",i);*/       */
       if (strchr(strb,'*')) {  
         cutv(strd,strc,strb,'*');    int i, mi, m;
         if (strcmp(strc,"age")==0) {    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
           cptcovprod--;       double sum=0., jmean=0.;*/
           cutv(strb,stre,strd,'V');    int first;
           Tvar[i]=atoi(stre);    int j, k=0,jk, ju, jl;
           cptcovage++;    double sum=0.;
             Tage[cptcovage]=i;    first=0;
             /*printf("stre=%s ", stre);*/    jmin=1e+5;
         }    jmax=-1;
         else if (strcmp(strd,"age")==0) {    jmean=0.;
           cptcovprod--;    for(i=1; i<=imx; i++){
           cutv(strb,stre,strc,'V');      mi=0;
           Tvar[i]=atoi(stre);      m=firstpass;
           cptcovage++;      while(s[m][i] <= nlstate){
           Tage[cptcovage]=i;        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
         }          mw[++mi][i]=m;
         else {        if(m >=lastpass)
           cutv(strb,stre,strc,'V');          break;
           Tvar[i]=ncov+k1;        else
           cutv(strb,strc,strd,'V');          m++;
           Tprod[k1]=i;      }/* end while */
           Tvard[k1][1]=atoi(strc);      if (s[m][i] > nlstate){
           Tvard[k1][2]=atoi(stre);        mi++;     /* Death is another wave */
           Tvar[cptcovn+k2]=Tvard[k1][1];        /* if(mi==0)  never been interviewed correctly before death */
           Tvar[cptcovn+k2+1]=Tvard[k1][2];           /* Only death is a correct wave */
           for (k=1; k<=lastobs;k++)        mw[mi][i]=m;
             covar[ncov+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];      }
           k1++;  
           k2=k2+2;      wav[i]=mi;
         }      if(mi==0){
       }        nbwarn++;
       else {        if(first==0){
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/          printf("Warning! None valid information for:%ld line=%d (skipped) and may be others, see log file\n",num[i],i);
        /*  scanf("%d",i);*/          first=1;
       cutv(strd,strc,strb,'V');        }
       Tvar[i]=atoi(strc);        if(first==1){
       }          fprintf(ficlog,"Warning! None valid information for:%ld line=%d (skipped)\n",num[i],i);
       strcpy(modelsav,stra);          }
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);      } /* end mi==0 */
         scanf("%d",i);*/    } /* End individuals */
     }  
 }    for(i=1; i<=imx; i++){
        for(mi=1; mi<wav[i];mi++){
   /*printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);        if (stepm <=0)
   printf("cptcovprod=%d ", cptcovprod);          dh[mi][i]=1;
   scanf("%d ",i);*/        else{
     fclose(fic);          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
             if (agedc[i] < 2*AGESUP) {
     /*  if(mle==1){*/              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
     if (weightopt != 1) { /* Maximisation without weights*/              if(j==0) j=1;  /* Survives at least one month after exam */
       for(i=1;i<=n;i++) weight[i]=1.0;              else if(j<0){
     }                nberr++;
     /*-calculation of age at interview from date of interview and age at death -*/                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     agev=matrix(1,maxwav,1,imx);                j=1; /* Temporary Dangerous patch */
                 printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
    for (i=1; i<=imx; i++)                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
      for(m=2; (m<= maxwav); m++)                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){              }
          anint[m][i]=9999;              k=k+1;
          s[m][i]=-1;              if (j >= jmax){
        }                jmax=j;
                    ijmax=i;
     for (i=1; i<=imx; i++)  {              }
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);              if (j <= jmin){
       for(m=1; (m<= maxwav); m++){                jmin=j;
         if(s[m][i] >0){                ijmin=i;
           if (s[m][i] == nlstate+1) {              }
             if(agedc[i]>0)              sum=sum+j;
               if(moisdc[i]!=99 && andc[i]!=9999)              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
               agev[m][i]=agedc[i];              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
             else {            }
               if (andc[i]!=9999){          }
               printf("Warning negative age at death: %d line:%d\n",num[i],i);          else{
               agev[m][i]=-1;            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
               }  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
             }  
           }            k=k+1;
           else if(s[m][i] !=9){ /* Should no more exist */            if (j >= jmax) {
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);              jmax=j;
             if(mint[m][i]==99 || anint[m][i]==9999)              ijmax=i;
               agev[m][i]=1;            }
             else if(agev[m][i] <agemin){            else if (j <= jmin){
               agemin=agev[m][i];              jmin=j;
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/              ijmin=i;
             }            }
             else if(agev[m][i] >agemax){            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
               agemax=agev[m][i];            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/            if(j<0){
             }              nberr++;
             /*agev[m][i]=anint[m][i]-annais[i];*/              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
             /*   agev[m][i] = age[i]+2*m;*/              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
           }            }
           else { /* =9 */            sum=sum+j;
             agev[m][i]=1;          }
             s[m][i]=-1;          jk= j/stepm;
           }          jl= j -jk*stepm;
         }          ju= j -(jk+1)*stepm;
         else /*= 0 Unknown */          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
           agev[m][i]=1;            if(jl==0){
       }              dh[mi][i]=jk;
                  bh[mi][i]=0;
     }            }else{ /* We want a negative bias in order to only have interpolation ie
     for (i=1; i<=imx; i++)  {                    * at the price of an extra matrix product in likelihood */
       for(m=1; (m<= maxwav); m++){              dh[mi][i]=jk+1;
         if (s[m][i] > (nlstate+ndeath)) {              bh[mi][i]=ju;
           printf("Error: Wrong value in nlstate or ndeath\n");              }
           goto end;          }else{
         }            if(jl <= -ju){
       }              dh[mi][i]=jk;
     }              bh[mi][i]=jl;       /* bias is positive if real duration
                                    * is higher than the multiple of stepm and negative otherwise.
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);                                   */
             }
     free_vector(severity,1,maxwav);            else{
     free_imatrix(outcome,1,maxwav+1,1,n);              dh[mi][i]=jk+1;
     free_vector(moisnais,1,n);              bh[mi][i]=ju;
     free_vector(annais,1,n);            }
     /* free_matrix(mint,1,maxwav,1,n);            if(dh[mi][i]==0){
        free_matrix(anint,1,maxwav,1,n);*/              dh[mi][i]=1; /* At least one step */
     free_vector(moisdc,1,n);              bh[mi][i]=ju; /* At least one step */
     free_vector(andc,1,n);              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
             }
              } /* end if mle */
     wav=ivector(1,imx);        }
     dh=imatrix(1,lastpass-firstpass+1,1,imx);      } /* end wave */
     mw=imatrix(1,lastpass-firstpass+1,1,imx);    }
        jmean=sum/k;
     /* Concatenates waves */    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
    }
   
       Tcode=ivector(1,100);  /*********** Tricode ****************************/
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);  void tricode(int *Tvar, int **nbcode, int imx)
       ncodemax[1]=1;  {
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);    
          int Ndum[20],ij=1, k, j, i, maxncov=19;
    codtab=imatrix(1,100,1,10);    int cptcode=0;
    h=0;    cptcoveff=0; 
    m=pow(2,cptcoveff);   
      for (k=0; k<maxncov; k++) Ndum[k]=0;
    for(k=1;k<=cptcoveff; k++){    for (k=1; k<=7; k++) ncodemax[k]=0;
      for(i=1; i <=(m/pow(2,k));i++){  
        for(j=1; j <= ncodemax[k]; j++){    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
            h++;                                 modality*/ 
            if (h>m) h=1;codtab[h][k]=j;        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
          }        Ndum[ij]++; /*store the modality */
        }        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
      }        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
    }                                         Tvar[j]. If V=sex and male is 0 and 
                                             female is 1, then  cptcode=1.*/
    /* Calculates basic frequencies. Computes observed prevalence at single age      }
        and prints on file fileres'p'. */  
       for (i=0; i<=cptcode; i++) {
            if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
          }
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      ij=1; 
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      for (i=1; i<=ncodemax[j]; i++) {
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        for (k=0; k<= maxncov; k++) {
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */          if (Ndum[k] != 0) {
                  nbcode[Tvar[j]][ij]=k; 
     /* For Powell, parameters are in a vector p[] starting at p[1]            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */            
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */            ij++;
           }
     if(mle==1){          if (ij > ncodemax[j]) break; 
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);        }  
     }      } 
        }  
     /*--------- results files --------------*/  
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate, ndeath, maxwav, mle,weightopt,model);   for (k=0; k< maxncov; k++) Ndum[k]=0;
    
    for (i=1; i<=ncovmodel-2; i++) { 
    jk=1;     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
    fprintf(ficres,"# Parameters\n");     ij=Tvar[i];
    printf("# Parameters\n");     Ndum[ij]++;
    for(i=1,jk=1; i <=nlstate; i++){   }
      for(k=1; k <=(nlstate+ndeath); k++){  
        if (k != i)   ij=1;
          {   for (i=1; i<= maxncov; i++) {
            printf("%d%d ",i,k);     if((Ndum[i]!=0) && (i<=ncovcol)){
            fprintf(ficres,"%1d%1d ",i,k);       Tvaraff[ij]=i; /*For printing */
            for(j=1; j <=ncovmodel; j++){       ij++;
              printf("%f ",p[jk]);     }
              fprintf(ficres,"%f ",p[jk]);   }
              jk++;   
            }   cptcoveff=ij-1; /*Number of simple covariates*/
            printf("\n");  }
            fprintf(ficres,"\n");  
          }  /*********** Health Expectancies ****************/
      }  
    }  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov,char strstart[] )
  if(mle==1){  
     /* Computing hessian and covariance matrix */  {
     ftolhess=ftol; /* Usually correct */    /* Health expectancies */
     hesscov(matcov, p, npar, delti, ftolhess, func);    int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
  }    double age, agelim, hf;
     fprintf(ficres,"# Scales\n");    double ***p3mat,***varhe;
     printf("# Scales\n");    double **dnewm,**doldm;
      for(i=1,jk=1; i <=nlstate; i++){    double *xp;
       for(j=1; j <=nlstate+ndeath; j++){    double **gp, **gm;
         if (j!=i) {    double ***gradg, ***trgradg;
           fprintf(ficres,"%1d%1d",i,j);    int theta;
           printf("%1d%1d",i,j);  
           for(k=1; k<=ncovmodel;k++){    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
             printf(" %.5e",delti[jk]);    xp=vector(1,npar);
             fprintf(ficres," %.5e",delti[jk]);    dnewm=matrix(1,nlstate*nlstate,1,npar);
             jk++;    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
           }    
           printf("\n");    fprintf(ficreseij,"# Local time at start: %s", strstart);
           fprintf(ficres,"\n");    fprintf(ficreseij,"# Health expectancies\n");
         }    fprintf(ficreseij,"# Age");
       }    for(i=1; i<=nlstate;i++)
      }      for(j=1; j<=nlstate;j++)
            fprintf(ficreseij," %1d-%1d (SE)",i,j);
     k=1;    fprintf(ficreseij,"\n");
     fprintf(ficres,"# Covariance\n");  
     printf("# Covariance\n");    if(estepm < stepm){
     for(i=1;i<=npar;i++){      printf ("Problem %d lower than %d\n",estepm, stepm);
       /*  if (k>nlstate) k=1;    }
       i1=(i-1)/(ncovmodel*nlstate)+1;    else  hstepm=estepm;   
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);    /* We compute the life expectancy from trapezoids spaced every estepm months
       printf("%s%d%d",alph[k],i1,tab[i]);*/     * This is mainly to measure the difference between two models: for example
       fprintf(ficres,"%3d",i);     * if stepm=24 months pijx are given only every 2 years and by summing them
       printf("%3d",i);     * we are calculating an estimate of the Life Expectancy assuming a linear 
       for(j=1; j<=i;j++){     * progression in between and thus overestimating or underestimating according
         fprintf(ficres," %.5e",matcov[i][j]);     * to the curvature of the survival function. If, for the same date, we 
         printf(" %.5e",matcov[i][j]);     * estimate the model with stepm=1 month, we can keep estepm to 24 months
       }     * to compare the new estimate of Life expectancy with the same linear 
       fprintf(ficres,"\n");     * hypothesis. A more precise result, taking into account a more precise
       printf("\n");     * curvature will be obtained if estepm is as small as stepm. */
       k++;  
     }    /* For example we decided to compute the life expectancy with the smallest unit */
        /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
     while((c=getc(ficpar))=='#' && c!= EOF){       nhstepm is the number of hstepm from age to agelim 
       ungetc(c,ficpar);       nstepm is the number of stepm from age to agelin. 
       fgets(line, MAXLINE, ficpar);       Look at hpijx to understand the reason of that which relies in memory size
       puts(line);       and note for a fixed period like estepm months */
       fputs(line,ficparo);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
     }       survival function given by stepm (the optimization length). Unfortunately it
     ungetc(c,ficpar);       means that if the survival funtion is printed only each two years of age and if
         you sum them up and add 1 year (area under the trapezoids) you won't get the same 
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);       results. So we changed our mind and took the option of the best precision.
        */
     if (fage <= 2) {    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
       bage = agemin;  
       fage = agemax;    agelim=AGESUP;
     }    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       /* nhstepm age range expressed in number of stepm */
     fprintf(ficres,"# agemin agemax for life expectancy.\n");      nstepm=(int) rint((agelim-age)*YEARM/stepm); 
       /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);      /* if (stepm >= YEARM) hstepm=1;*/
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
        p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     while((c=getc(ficpar))=='#' && c!= EOF){      gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
     ungetc(c,ficpar);      gp=matrix(0,nhstepm,1,nlstate*nlstate);
     fgets(line, MAXLINE, ficpar);      gm=matrix(0,nhstepm,1,nlstate*nlstate);
     puts(line);  
     fputs(line,ficparo);      /* Computed by stepm unit matrices, product of hstepm matrices, stored
   }         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
   ungetc(c,ficpar);      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
     
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mob_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);  
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mob_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mob_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);  
            /* Computing  Variances of health expectancies */
   while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);       for(theta=1; theta <=npar; theta++){
     fgets(line, MAXLINE, ficpar);        for(i=1; i<=npar; i++){ 
     puts(line);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
     fputs(line,ficparo);        }
   }        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   ungetc(c,ficpar);    
          cptj=0;
         for(j=1; j<= nlstate; j++){
    dateprev1=anprev1+mprev1/12.+jprev1/365.;          for(i=1; i<=nlstate; i++){
    dateprev2=anprev2+mprev2/12.+jprev2/365.;            cptj=cptj+1;
             for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
   fscanf(ficpar,"pop_based=%d\n",&popbased);              gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
    fprintf(ficparo,"pop_based=%d\n",popbased);              }
    fprintf(ficres,"pop_based=%d\n",popbased);            }
         }
   while((c=getc(ficpar))=='#' && c!= EOF){       
     ungetc(c,ficpar);       
     fgets(line, MAXLINE, ficpar);        for(i=1; i<=npar; i++) 
     puts(line);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
     fputs(line,ficparo);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   }        
   ungetc(c,ficpar);        cptj=0;
   fscanf(ficpar,"popforecast=%d popfile=%s starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf\n",&popforecast,popfile,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2);        for(j=1; j<= nlstate; j++){
 fprintf(ficparo,"popforecast=%d popfile=%s starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf\n",popforecast,popfile,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2);          for(i=1;i<=nlstate;i++){
 fprintf(ficres,"popforecast=%d popfile=%s starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf\n",popforecast,popfile,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2);            cptj=cptj+1;
             for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2);  
               gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
  /*------------ gnuplot -------------*/            }
 chdir(pathcd);          }
   if((ficgp=fopen("graph.plt","w"))==NULL) {        }
     printf("Problem with file graph.gp");goto end;        for(j=1; j<= nlstate*nlstate; j++)
   }          for(h=0; h<=nhstepm-1; h++){
 #ifdef windows            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
   fprintf(ficgp,"cd \"%s\" \n",pathc);          }
 #endif       } 
 m=pow(2,cptcoveff);     
    /* End theta */
  /* 1eme*/  
   for (cpt=1; cpt<= nlstate ; cpt ++) {       trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
    for (k1=1; k1<= m ; k1 ++) {  
        for(h=0; h<=nhstepm-1; h++)
 #ifdef windows        for(j=1; j<=nlstate*nlstate;j++)
     fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",agemin,fage,fileres,k1-1,k1-1);          for(theta=1; theta <=npar; theta++)
 #endif            trgradg[h][j][theta]=gradg[h][theta][j];
 #ifdef unix       
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",agemin,fage,fileres);  
 #endif       for(i=1;i<=nlstate*nlstate;i++)
         for(j=1;j<=nlstate*nlstate;j++)
 for (i=1; i<= nlstate ; i ++) {          varhe[i][j][(int)age] =0.;
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");  
   else fprintf(ficgp," \%%*lf (\%%*lf)");       printf("%d|",(int)age);fflush(stdout);
 }       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);       for(h=0;h<=nhstepm-1;h++){
     for (i=1; i<= nlstate ; i ++) {        for(k=0;k<=nhstepm-1;k++){
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
   else fprintf(ficgp," \%%*lf (\%%*lf)");          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
 }          for(i=1;i<=nlstate*nlstate;i++)
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);            for(j=1;j<=nlstate*nlstate;j++)
      for (i=1; i<= nlstate ; i ++) {              varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");        }
   else fprintf(ficgp," \%%*lf (\%%*lf)");      }
 }        /* Computing expectancies */
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));      for(i=1; i<=nlstate;i++)
 #ifdef unix        for(j=1; j<=nlstate;j++)
 fprintf(ficgp,"\nset ter gif small size 400,300");          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
 #endif            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);            
    }  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   }  
   /*2 eme*/          }
   
   for (k1=1; k1<= m ; k1 ++) {      fprintf(ficreseij,"%3.0f",age );
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",agemin,fage);      cptj=0;
          for(i=1; i<=nlstate;i++)
     for (i=1; i<= nlstate+1 ; i ++) {        for(j=1; j<=nlstate;j++){
       k=2*i;          cptj++;
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);          fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
       for (j=1; j<= nlstate+1 ; j ++) {        }
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");      fprintf(ficreseij,"\n");
   else fprintf(ficgp," \%%*lf (\%%*lf)");     
 }        free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");      free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);      free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
       for (j=1; j<= nlstate+1 ; j ++) {      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    }
         else fprintf(ficgp," \%%*lf (\%%*lf)");    printf("\n");
 }      fprintf(ficlog,"\n");
       fprintf(ficgp,"\" t\"\" w l 0,");  
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);    free_vector(xp,1,npar);
       for (j=1; j<= nlstate+1 ; j ++) {    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
   else fprintf(ficgp," \%%*lf (\%%*lf)");    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
 }    }
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");  
       else fprintf(ficgp,"\" t\"\" w l 0,");  /************ Variance ******************/
     }  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);  {
   }    /* Variance of health expectancies */
      /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
   /*3eme*/    /* double **newm;*/
     double **dnewm,**doldm;
   for (k1=1; k1<= m ; k1 ++) {    double **dnewmp,**doldmp;
     for (cpt=1; cpt<= nlstate ; cpt ++) {    int i, j, nhstepm, hstepm, h, nstepm ;
       k=2+nlstate*(cpt-1);    int k, cptcode;
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",agemin,fage,fileres,k1-1,k1-1,k,cpt);    double *xp;
       for (i=1; i< nlstate ; i ++) {    double **gp, **gm;  /* for var eij */
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+i,cpt,i+1);    double ***gradg, ***trgradg; /*for var eij */
       }    double **gradgp, **trgradgp; /* for var p point j */
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);    double *gpp, *gmp; /* for var p point j */
     }    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
   }    double ***p3mat;
      double age,agelim, hf;
   /* CV preval stat */    double ***mobaverage;
   for (k1=1; k1<= m ; k1 ++) {    int theta;
     for (cpt=1; cpt<nlstate ; cpt ++) {    char digit[4];
       k=3;    char digitp[25];
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",agemin,agemax,fileres,k1,k+cpt+1,k+1);  
       for (i=1; i< nlstate ; i ++)    char fileresprobmorprev[FILENAMELENGTH];
         fprintf(ficgp,"+$%d",k+i+1);  
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);    if(popbased==1){
            if(mobilav!=0)
       l=3+(nlstate+ndeath)*cpt;        strcpy(digitp,"-populbased-mobilav-");
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);      else strcpy(digitp,"-populbased-nomobil-");
       for (i=1; i< nlstate ; i ++) {    }
         l=3+(nlstate+ndeath)*cpt;    else 
         fprintf(ficgp,"+$%d",l+i+1);      strcpy(digitp,"-stablbased-");
       }  
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);      if (mobilav!=0) {
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     }      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
   }          fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
   /* proba elementaires */      }
    for(i=1,jk=1; i <=nlstate; i++){    }
     for(k=1; k <=(nlstate+ndeath); k++){  
       if (k != i) {    strcpy(fileresprobmorprev,"prmorprev"); 
         for(j=1; j <=ncovmodel; j++){    sprintf(digit,"%-d",ij);
           /*fprintf(ficgp,"%s%1d%1d=%f ",alph[j],i,k,p[jk]);*/    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
           /*fprintf(ficgp,"%s",alph[1]);*/    strcat(fileresprobmorprev,digit); /* Tvar to be done */
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
           jk++;    strcat(fileresprobmorprev,fileres);
           fprintf(ficgp,"\n");    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
         }      printf("Problem with resultfile: %s\n", fileresprobmorprev);
       }      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
     }    }
     }    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
    
   for(jk=1; jk <=m; jk++) {    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",agemin,agemax);    fprintf(ficresprobmorprev, "#Local time at start: %s", strstart);
    i=1;    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
    for(k2=1; k2<=nlstate; k2++) {    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
      k3=i;    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
      for(k=1; k<=(nlstate+ndeath); k++) {      fprintf(ficresprobmorprev," p.%-d SE",j);
        if (k != k2){      for(i=1; i<=nlstate;i++)
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
 ij=1;    }  
         for(j=3; j <=ncovmodel; j++) {    fprintf(ficresprobmorprev,"\n");
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {    fprintf(ficgp,"\n# Routine varevsij");
             fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
             ij++;    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
           }    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
           else  /*   } */
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
         }   fprintf(ficresvij, "#Local time at start: %s", strstart);
           fprintf(ficgp,")/(1");    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
            fprintf(ficresvij,"# Age");
         for(k1=1; k1 <=nlstate; k1++){      for(i=1; i<=nlstate;i++)
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);      for(j=1; j<=nlstate;j++)
 ij=1;        fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
           for(j=3; j <=ncovmodel; j++){    fprintf(ficresvij,"\n");
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {  
             fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);    xp=vector(1,npar);
             ij++;    dnewm=matrix(1,nlstate,1,npar);
           }    doldm=matrix(1,nlstate,1,nlstate);
           else    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
           }  
           fprintf(ficgp,")");    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
         }    gpp=vector(nlstate+1,nlstate+ndeath);
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);    gmp=vector(nlstate+1,nlstate+ndeath);
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
         i=i+ncovmodel;    
        }    if(estepm < stepm){
      }      printf ("Problem %d lower than %d\n",estepm, stepm);
    }    }
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);    else  hstepm=estepm;   
   }    /* For example we decided to compute the life expectancy with the smallest unit */
        /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   fclose(ficgp);       nhstepm is the number of hstepm from age to agelim 
           nstepm is the number of stepm from age to agelin. 
 chdir(path);       Look at hpijx to understand the reason of that which relies in memory size
           and note for a fixed period like k years */
     free_ivector(wav,1,imx);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);       survival function given by stepm (the optimization length). Unfortunately it
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);         means that if the survival funtion is printed every two years of age and if
     free_ivector(num,1,n);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
     free_vector(agedc,1,n);       results. So we changed our mind and took the option of the best precision.
     /*free_matrix(covar,1,NCOVMAX,1,n);*/    */
     fclose(ficparo);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     fclose(ficres);    agelim = AGESUP;
     /*  }*/    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
          nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
    /*________fin mle=1_________*/      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
          p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
        gp=matrix(0,nhstepm,1,nlstate);
     /* No more information from the sample is required now */      gm=matrix(0,nhstepm,1,nlstate);
   /* Reads comments: lines beginning with '#' */  
   while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);      for(theta=1; theta <=npar; theta++){
     fgets(line, MAXLINE, ficpar);        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
     puts(line);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
     fputs(line,ficparo);        }
   }        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   ungetc(c,ficpar);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
    
   fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);        if (popbased==1) {
   printf("agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax, bage, fage);          if(mobilav ==0){
   fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);            for(i=1; i<=nlstate;i++)
 /*--------- index.htm --------*/              prlim[i][i]=probs[(int)age][i][ij];
           }else{ /* mobilav */ 
   strcpy(optionfilehtm,optionfile);            for(i=1; i<=nlstate;i++)
   strcat(optionfilehtm,".htm");              prlim[i][i]=mobaverage[(int)age][i][ij];
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {          }
     printf("Problem with %s \n",optionfilehtm);goto end;        }
   }    
         for(j=1; j<= nlstate; j++){
  fprintf(fichtm,"<body><ul> <font size=\"6\">Imach, Version 0.7 </font> <hr size=\"2\" color=\"#EC5E5E\">          for(h=0; h<=nhstepm; h++){
 Titre=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
 Total number of observations=%d <br>              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>          }
 <hr  size=\"2\" color=\"#EC5E5E\">        }
 <li>Outputs files<br><br>\n        /* This for computing probability of death (h=1 means
         - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n           computed over hstepm matrices product = hstepm*stepm months) 
 - Estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>           as a weighted average of prlim.
         - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>        */
         - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>        for(j=nlstate+1;j<=nlstate+ndeath;j++){
         - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>          for(i=1,gpp[j]=0.; i<= nlstate; i++)
         - Life expectancies by age and initial health status: <a href=\"e%s\">e%s</a> <br>            gpp[j] += prlim[i][i]*p3mat[i][j][1];
         - Variances of life expectancies by age and initial health status: <a href=\"v%s\">v%s</a><br>        }    
         - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>        /* end probability of death */
         - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br>  
         - Prevalences and population forecasting: <a href=\"f%s\">f%s</a> <br>        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
 <br>",title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
  fprintf(fichtm," <li>Graphs</li><p>");        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
    
  m=cptcoveff;        if (popbased==1) {
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}          if(mobilav ==0){
             for(i=1; i<=nlstate;i++)
  j1=0;              prlim[i][i]=probs[(int)age][i][ij];
  for(k1=1; k1<=m;k1++){          }else{ /* mobilav */ 
    for(i1=1; i1<=ncodemax[k1];i1++){            for(i=1; i<=nlstate;i++)
        j1++;              prlim[i][i]=mobaverage[(int)age][i][ij];
        if (cptcovn > 0) {          }
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");        }
          for (cpt=1; cpt<=cptcoveff;cpt++)  
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[j1][cpt]]);        for(j=1; j<= nlstate; j++){
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");          for(h=0; h<=nhstepm; h++){
        }            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);              }
        for(cpt=1; cpt<nlstate;cpt++){        }
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>        /* This for computing probability of death (h=1 means
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);           computed over hstepm matrices product = hstepm*stepm months) 
        }           as a weighted average of prlim.
     for(cpt=1; cpt<=nlstate;cpt++) {        */
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident        for(j=nlstate+1;j<=nlstate+ndeath;j++){
 interval) in state (%d): v%s%d%d.gif <br>          for(i=1,gmp[j]=0.; i<= nlstate; i++)
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);             gmp[j] += prlim[i][i]*p3mat[i][j][1];
      }        }    
      for(cpt=1; cpt<=nlstate;cpt++) {        /* end probability of death */
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>  
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);        for(j=1; j<= nlstate; j++) /* vareij */
      }          for(h=0; h<=nhstepm; h++){
      fprintf(fichtm,"\n<br>- Total life expectancy by age and            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
 health expectancies in states (1) and (2): e%s%d.gif<br>          }
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);  
 fprintf(fichtm,"\n</body>");        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
    }          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
  }        }
 fclose(fichtm);  
       } /* End theta */
   /*--------------- Prevalence limit --------------*/  
        trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
   strcpy(filerespl,"pl");  
   strcat(filerespl,fileres);      for(h=0; h<=nhstepm; h++) /* veij */
   if((ficrespl=fopen(filerespl,"w"))==NULL) {        for(j=1; j<=nlstate;j++)
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;          for(theta=1; theta <=npar; theta++)
   }            trgradg[h][j][theta]=gradg[h][theta][j];
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);  
   fprintf(ficrespl,"#Prevalence limit\n");      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
   fprintf(ficrespl,"#Age ");        for(theta=1; theta <=npar; theta++)
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);          trgradgp[j][theta]=gradgp[theta][j];
   fprintf(ficrespl,"\n");    
    
   prlim=matrix(1,nlstate,1,nlstate);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      for(i=1;i<=nlstate;i++)
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        for(j=1;j<=nlstate;j++)
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          vareij[i][j][(int)age] =0.;
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */      for(h=0;h<=nhstepm;h++){
   k=0;        for(k=0;k<=nhstepm;k++){
   agebase=agemin;          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
   agelim=agemax;          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
   ftolpl=1.e-10;          for(i=1;i<=nlstate;i++)
   i1=cptcoveff;            for(j=1;j<=nlstate;j++)
   if (cptcovn < 1){i1=1;}              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
         }
   for(cptcov=1;cptcov<=i1;cptcov++){      }
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    
         k=k+1;      /* pptj */
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
         fprintf(ficrespl,"\n#******");      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
         for(j=1;j<=cptcoveff;j++)      for(j=nlstate+1;j<=nlstate+ndeath;j++)
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        for(i=nlstate+1;i<=nlstate+ndeath;i++)
         fprintf(ficrespl,"******\n");          varppt[j][i]=doldmp[j][i];
              /* end ppptj */
         for (age=agebase; age<=agelim; age++){      /*  x centered again */
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
           fprintf(ficrespl,"%.0f",age );      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
           for(i=1; i<=nlstate;i++)   
           fprintf(ficrespl," %.5f", prlim[i][i]);      if (popbased==1) {
           fprintf(ficrespl,"\n");        if(mobilav ==0){
         }          for(i=1; i<=nlstate;i++)
       }            prlim[i][i]=probs[(int)age][i][ij];
     }        }else{ /* mobilav */ 
   fclose(ficrespl);          for(i=1; i<=nlstate;i++)
             prlim[i][i]=mobaverage[(int)age][i][ij];
   /*------------- h Pij x at various ages ------------*/        }
        }
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);               
   if((ficrespij=fopen(filerespij,"w"))==NULL) {      /* This for computing probability of death (h=1 means
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
   }         as a weighted average of prlim.
   printf("Computing pij: result on file '%s' \n", filerespij);      */
        for(j=nlstate+1;j<=nlstate+ndeath;j++){
   stepsize=(int) (stepm+YEARM-1)/YEARM;        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
   /*if (stepm<=24) stepsize=2;*/          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
       }    
   agelim=AGESUP;      /* end probability of death */
   hstepm=stepsize*YEARM; /* Every year of age */  
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
        for(j=nlstate+1; j<=(nlstate+ndeath);j++){
   k=0;        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
   for(cptcov=1;cptcov<=i1;cptcov++){        for(i=1; i<=nlstate;i++){
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
       k=k+1;        }
         fprintf(ficrespij,"\n#****** ");      } 
         for(j=1;j<=cptcoveff;j++)      fprintf(ficresprobmorprev,"\n");
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
         fprintf(ficrespij,"******\n");      fprintf(ficresvij,"%.0f ",age );
              for(i=1; i<=nlstate;i++)
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */        for(j=1; j<=nlstate;j++){
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */        }
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      fprintf(ficresvij,"\n");
           oldm=oldms;savm=savms;      free_matrix(gp,0,nhstepm,1,nlstate);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        free_matrix(gm,0,nhstepm,1,nlstate);
           fprintf(ficrespij,"# Age");      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
           for(i=1; i<=nlstate;i++)      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
             for(j=1; j<=nlstate+ndeath;j++)      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
               fprintf(ficrespij," %1d-%1d",i,j);    } /* End age */
           fprintf(ficrespij,"\n");    free_vector(gpp,nlstate+1,nlstate+ndeath);
           for (h=0; h<=nhstepm; h++){    free_vector(gmp,nlstate+1,nlstate+ndeath);
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
             for(i=1; i<=nlstate;i++)    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
               for(j=1; j<=nlstate+ndeath;j++)    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
             fprintf(ficrespij,"\n");    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
           }  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
           fprintf(ficrespij,"\n");  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
         }    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
     }    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
   }    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
   /* varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k);*/    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
     /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
   fclose(ficrespij);  */
   /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
   /*---------- Forecasting ------------------*/    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;  
     free_vector(xp,1,npar);
   prevalence(agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    free_matrix(doldm,1,nlstate,1,nlstate);
     free_matrix(dnewm,1,nlstate,1,npar);
     free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   strcpy(fileresf,"f");    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
   strcat(fileresf,fileres);    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   if((ficresf=fopen(fileresf,"w"))==NULL) {    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     printf("Problem with forecast resultfile: %s\n", fileresf);goto end;    fclose(ficresprobmorprev);
   }    fflush(ficgp);
   printf("Computing forecasting: result on file '%s' \n", fileresf);    fflush(fichtm); 
   }  /* end varevsij */
   free_matrix(mint,1,maxwav,1,n);  
   free_matrix(anint,1,maxwav,1,n);  /************ Variance of prevlim ******************/
   free_matrix(agev,1,maxwav,1,imx);  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
   /* Mobile average */  {
     /* Variance of prevalence limit */
   if (cptcoveff==0) ncodemax[cptcoveff]=1;    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
     double **newm;
   if (mobilav==1) {    double **dnewm,**doldm;
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    int i, j, nhstepm, hstepm;
     for (agedeb=bage+3; agedeb<=fage-2; agedeb++)    int k, cptcode;
       for (i=1; i<=nlstate;i++)    double *xp;
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)    double *gp, *gm;
           mobaverage[(int)agedeb][i][cptcod]=0.;    double **gradg, **trgradg;
        double age,agelim;
     for (agedeb=bage+4; agedeb<=fage; agedeb++){    int theta;
       for (i=1; i<=nlstate;i++){    fprintf(ficresvpl, "#Local time at start: %s", strstart); 
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
           for (cpt=0;cpt<=4;cpt++){    fprintf(ficresvpl,"# Age");
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];    for(i=1; i<=nlstate;i++)
           }        fprintf(ficresvpl," %1d-%1d",i,i);
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;    fprintf(ficresvpl,"\n");
         }  
       }    xp=vector(1,npar);
     }      dnewm=matrix(1,nlstate,1,npar);
   }    doldm=matrix(1,nlstate,1,nlstate);
     
   stepsize=(int) (stepm+YEARM-1)/YEARM;    hstepm=1*YEARM; /* Every year of age */
   if (stepm<=12) stepsize=1;    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
     agelim = AGESUP;
   agelim=AGESUP;    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   /*hstepm=stepsize*YEARM; *//* Every year of age */      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
   hstepm=1;      if (stepm >= YEARM) hstepm=1;
   hstepm=hstepm/stepm; /* Typically 2 years, = 2 years/6 months = 4 */      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   yp1=modf(dateintmean,&yp);      gradg=matrix(1,npar,1,nlstate);
   anprojmean=yp;      gp=vector(1,nlstate);
   yp2=modf((yp1*12),&yp);      gm=vector(1,nlstate);
   mprojmean=yp;  
   yp1=modf((yp2*30.5),&yp);      for(theta=1; theta <=npar; theta++){
   jprojmean=yp;        for(i=1; i<=npar; i++){ /* Computes gradient */
   fprintf(ficresf,"Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
   if (popforecast==1) {        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     if((ficpop=fopen(popfile,"r"))==NULL)    {        for(i=1;i<=nlstate;i++)
       printf("Problem with population file : %s\n",popfile);goto end;          gp[i] = prlim[i][i];
     }      
     popage=ivector(0,AGESUP);        for(i=1; i<=npar; i++) /* Computes gradient */
     popeffectif=vector(0,AGESUP);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
     popcount=vector(0,AGESUP);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
     i=1;            gm[i] = prlim[i][i];
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF)  
       {        for(i=1;i<=nlstate;i++)
         i=i+1;          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
       }      } /* End theta */
     imx=i;  
          trgradg =matrix(1,nlstate,1,npar);
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];  
   }      for(j=1; j<=nlstate;j++)
         for(theta=1; theta <=npar; theta++)
   for(cptcov=1;cptcov<=i1;cptcov++){          trgradg[j][theta]=gradg[theta][j];
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){  
       k=k+1;      for(i=1;i<=nlstate;i++)
       fprintf(ficresf,"\n#******");        varpl[i][(int)age] =0.;
       for(j=1;j<=cptcoveff;j++) {      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
       }      for(i=1;i<=nlstate;i++)
       fprintf(ficresf,"******\n");        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
       fprintf(ficresf,"# StartingAge FinalAge");  
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);      fprintf(ficresvpl,"%.0f ",age );
       if (popforecast==1)  fprintf(ficresf," [Population]");      for(i=1; i<=nlstate;i++)
          fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
       for (cpt=0; cpt<=1;cpt++) {      fprintf(ficresvpl,"\n");
         fprintf(ficresf,"\n");      free_vector(gp,1,nlstate);
   fprintf(ficresf,"\nForecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);        free_vector(gm,1,nlstate);
       for (agedeb=(fage-(1/12.)); agedeb>=(bage-(1/12.)); agedeb--){ /* If stepm=6 months */      free_matrix(gradg,1,npar,1,nlstate);
         nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);      free_matrix(trgradg,1,nlstate,1,npar);
         nhstepm = nhstepm/hstepm;    } /* End age */
         /*printf("agedeb=%.lf stepm=%d hstepm=%d nhstepm=%d \n",agedeb,stepm,hstepm,nhstepm);*/  
     free_vector(xp,1,npar);
         p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    free_matrix(doldm,1,nlstate,1,npar);
         oldm=oldms;savm=savms;    free_matrix(dnewm,1,nlstate,1,nlstate);
         hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);    
                  }
         for (h=0; h<=nhstepm; h++){  
           if (h==(int) (calagedate+12*cpt)) {  /************ Variance of one-step probabilities  ******************/
             fprintf(ficresf,"h=%d ", h);  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
             fprintf(ficresf,"\n %f %f ",agedeb,agedeb+h*hstepm/YEARM*stepm);  {
           }    int i, j=0,  i1, k1, l1, t, tj;
           for(j=1; j<=nlstate+ndeath;j++) {    int k2, l2, j1,  z1;
             kk1=0.;kk2=0;    int k=0,l, cptcode;
             for(i=1; i<=nlstate;i++) {            int first=1, first1;
               if (mobilav==1)    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
                 kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb][i][cptcod];    double **dnewm,**doldm;
               else {    double *xp;
                 kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];    double *gp, *gm;
                 /*  fprintf(ficresf," p3=%.3f p=%.3f ", p3mat[i][j][h],probs[(int)(agedeb)+1][i][cptcod]);*/    double **gradg, **trgradg;
               }    double **mu;
     double age,agelim, cov[NCOVMAX];
               if (popforecast==1) kk2=kk1*popeffectif[(int)agedeb];    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
             }    int theta;
              char fileresprob[FILENAMELENGTH];
             if (h==(int)(calagedate+12*cpt)){    char fileresprobcov[FILENAMELENGTH];
               fprintf(ficresf," %.3f", kk1);    char fileresprobcor[FILENAMELENGTH];
                
               if (popforecast==1) fprintf(ficresf," [%.f]", kk2);    double ***varpij;
             }  
           }    strcpy(fileresprob,"prob"); 
         }    strcat(fileresprob,fileres);
         free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
       }      printf("Problem with resultfile: %s\n", fileresprob);
       }      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     }    }
   }    strcpy(fileresprobcov,"probcov"); 
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    strcat(fileresprobcov,fileres);
   if (popforecast==1) {    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
     free_ivector(popage,0,AGESUP);      printf("Problem with resultfile: %s\n", fileresprobcov);
     free_vector(popeffectif,0,AGESUP);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     free_vector(popcount,0,AGESUP);    }
   }    strcpy(fileresprobcor,"probcor"); 
   free_imatrix(s,1,maxwav+1,1,n);    strcat(fileresprobcor,fileres);
   free_vector(weight,1,n);    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
   fclose(ficresf);      printf("Problem with resultfile: %s\n", fileresprobcor);
   /*---------- Health expectancies and variances ------------*/      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     }
   strcpy(filerest,"t");    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
   strcat(filerest,fileres);    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
   if((ficrest=fopen(filerest,"w"))==NULL) {    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
   }    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
   printf("Computing Total LEs with variances: file '%s' \n", filerest);    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     fprintf(ficresprob, "#Local time at start: %s", strstart);
     fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
   strcpy(filerese,"e");    fprintf(ficresprob,"# Age");
   strcat(filerese,fileres);    fprintf(ficresprobcov, "#Local time at start: %s", strstart);
   if((ficreseij=fopen(filerese,"w"))==NULL) {    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);    fprintf(ficresprobcov,"# Age");
   }    fprintf(ficresprobcor, "#Local time at start: %s", strstart);
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
     fprintf(ficresprobcov,"# Age");
  strcpy(fileresv,"v");  
   strcat(fileresv,fileres);  
   if((ficresvij=fopen(fileresv,"w"))==NULL) {    for(i=1; i<=nlstate;i++)
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);      for(j=1; j<=(nlstate+ndeath);j++){
   }        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);        fprintf(ficresprobcov," p%1d-%1d ",i,j);
         fprintf(ficresprobcor," p%1d-%1d ",i,j);
   k=0;      }  
   for(cptcov=1;cptcov<=i1;cptcov++){   /* fprintf(ficresprob,"\n");
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    fprintf(ficresprobcov,"\n");
       k=k+1;    fprintf(ficresprobcor,"\n");
       fprintf(ficrest,"\n#****** ");   */
       for(j=1;j<=cptcoveff;j++)   xp=vector(1,npar);
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
       fprintf(ficrest,"******\n");    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
       fprintf(ficreseij,"\n#****** ");    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
       for(j=1;j<=cptcoveff;j++)    first=1;
         fprintf(ficreseij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);    fprintf(ficgp,"\n# Routine varprob");
       fprintf(ficreseij,"******\n");    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
     fprintf(fichtm,"\n");
       fprintf(ficresvij,"\n#****** ");  
       for(j=1;j<=cptcoveff;j++)    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
         fprintf(ficresvij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);    fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
       fprintf(ficresvij,"******\n");    file %s<br>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);  and drawn. It helps understanding how is the covariance between two incidences.\
       oldm=oldms;savm=savms;   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k);      fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
       oldm=oldms;savm=savms;  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
       varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);  standard deviations wide on each axis. <br>\
         Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
       fprintf(ficrest,"\n");  
            cov[1]=1;
       hf=1;    tj=cptcoveff;
       if (stepm >= YEARM) hf=stepm/YEARM;    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
       epj=vector(1,nlstate+1);    j1=0;
       for(age=bage; age <=fage ;age++){    for(t=1; t<=tj;t++){
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);      for(i1=1; i1<=ncodemax[t];i1++){ 
         if (popbased==1) {        j1++;
           for(i=1; i<=nlstate;i++)        if  (cptcovn>0) {
             prlim[i][i]=probs[(int)age][i][k];          fprintf(ficresprob, "\n#********** Variable "); 
         }          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
                  fprintf(ficresprob, "**********\n#\n");
         fprintf(ficrest," %.0f",age);          fprintf(ficresprobcov, "\n#********** Variable "); 
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           for(i=1, epj[j]=0.;i <=nlstate;i++) {          fprintf(ficresprobcov, "**********\n#\n");
             epj[j] += prlim[i][i]*hf*eij[i][j][(int)age];          
           }          fprintf(ficgp, "\n#********** Variable "); 
           epj[nlstate+1] +=epj[j];          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
         }          fprintf(ficgp, "**********\n#\n");
         for(i=1, vepp=0.;i <=nlstate;i++)          
           for(j=1;j <=nlstate;j++)          
             vepp += vareij[i][j][(int)age];          fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
         fprintf(ficrest," %.2f (%.2f)", epj[nlstate+1],hf*sqrt(vepp));          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
         for(j=1;j <=nlstate;j++){          fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
           fprintf(ficrest," %.2f (%.2f)", epj[j],hf*sqrt(vareij[j][j][(int)age]));          
         }          fprintf(ficresprobcor, "\n#********** Variable ");    
         fprintf(ficrest,"\n");          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       }          fprintf(ficresprobcor, "**********\n#");    
     }        }
   }        
                for (age=bage; age<=fage; age ++){ 
                  cov[2]=age;
           for (k=1; k<=cptcovn;k++) {
             cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
  fclose(ficreseij);          }
  fclose(ficresvij);          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   fclose(ficrest);          for (k=1; k<=cptcovprod;k++)
   fclose(ficpar);            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   free_vector(epj,1,nlstate+1);          
   /*  scanf("%d ",i); */          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
           trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
   /*------- Variance limit prevalence------*/            gp=vector(1,(nlstate)*(nlstate+ndeath));
           gm=vector(1,(nlstate)*(nlstate+ndeath));
 strcpy(fileresvpl,"vpl");      
   strcat(fileresvpl,fileres);          for(theta=1; theta <=npar; theta++){
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {            for(i=1; i<=npar; i++)
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
     exit(0);            
   }            pmij(pmmij,cov,ncovmodel,xp,nlstate);
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);            
             k=0;
  k=0;            for(i=1; i<= (nlstate); i++){
  for(cptcov=1;cptcov<=i1;cptcov++){              for(j=1; j<=(nlstate+ndeath);j++){
    for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){                k=k+1;
      k=k+1;                gp[k]=pmmij[i][j];
      fprintf(ficresvpl,"\n#****** ");              }
      for(j=1;j<=cptcoveff;j++)            }
        fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            
      fprintf(ficresvpl,"******\n");            for(i=1; i<=npar; i++)
                    xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
      varpl=matrix(1,nlstate,(int) bage, (int) fage);      
      oldm=oldms;savm=savms;            pmij(pmmij,cov,ncovmodel,xp,nlstate);
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);            k=0;
    }            for(i=1; i<=(nlstate); i++){
  }              for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
   fclose(ficresvpl);                gm[k]=pmmij[i][j];
               }
   /*---------- End : free ----------------*/            }
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);       
              for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);          }
    
            for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);            for(theta=1; theta <=npar; theta++)
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);              trgradg[j][theta]=gradg[theta][j];
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);          
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
            matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
   free_matrix(matcov,1,npar,1,npar);          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
   free_vector(delti,1,npar);          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
            free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   
   printf("End of Imach\n");          pmij(pmmij,cov,ncovmodel,x,nlstate);
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */          
            k=0;
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/          for(i=1; i<=(nlstate); i++){
   /*printf("Total time was %d uSec.\n", total_usecs);*/            for(j=1; j<=(nlstate+ndeath);j++){
   /*------ End -----------*/              k=k+1;
               mu[k][(int) age]=pmmij[i][j];
             }
  end:          }
 #ifdef windows          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
  chdir(pathcd);            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
 #endif              varpij[i][j][(int)age] = doldm[i][j];
    
  system("..\\gp37mgw\\wgnuplot graph.plt");          /*printf("\n%d ",(int)age);
             for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
 #ifdef windows            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
   while (z[0] != 'q') {            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
     chdir(pathcd);            }*/
     printf("\nType e to edit output files, c to start again, and q for exiting: ");  
     scanf("%s",z);          fprintf(ficresprob,"\n%d ",(int)age);
     if (z[0] == 'c') system("./imach");          fprintf(ficresprobcov,"\n%d ",(int)age);
     else if (z[0] == 'e') {          fprintf(ficresprobcor,"\n%d ",(int)age);
       chdir(path);  
       system(optionfilehtm);          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
     }            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
     else if (z[0] == 'q') exit(0);          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
   }            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
 #endif            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
 }          }
           i=0;
           for (k=1; k<=(nlstate);k++){
             for (l=1; l<=(nlstate+ndeath);l++){ 
               i=i++;
               fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
               fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
               for (j=1; j<=i;j++){
                 fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                 fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
               }
             }
           }/* end of loop for state */
         } /* end of loop for age */
   
         /* Confidence intervalle of pij  */
         /*
           fprintf(ficgp,"\nset noparametric;unset label");
           fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
           fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
           fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
           fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
         */
   
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
         first1=1;
         for (k2=1; k2<=(nlstate);k2++){
           for (l2=1; l2<=(nlstate+ndeath);l2++){ 
             if(l2==k2) continue;
             j=(k2-1)*(nlstate+ndeath)+l2;
             for (k1=1; k1<=(nlstate);k1++){
               for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                 if(l1==k1) continue;
                 i=(k1-1)*(nlstate+ndeath)+l1;
                 if(i<=j) continue;
                 for (age=bage; age<=fage; age ++){ 
                   if ((int)age %5==0){
                     v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                     v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     mu1=mu[i][(int) age]/stepm*YEARM ;
                     mu2=mu[j][(int) age]/stepm*YEARM;
                     c12=cv12/sqrt(v1*v2);
                     /* Computing eigen value of matrix of covariance */
                     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     /* Eigen vectors */
                     v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                     /*v21=sqrt(1.-v11*v11); *//* error */
                     v21=(lc1-v1)/cv12*v11;
                     v12=-v21;
                     v22=v11;
                     tnalp=v21/v11;
                     if(first1==1){
                       first1=0;
                       printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     }
                     fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     /*printf(fignu*/
                     /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                     /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                     if(first==1){
                       first=0;
                       fprintf(ficgp,"\nset parametric;unset label");
                       fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                       fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
                       fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
    :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }else{
                       first=0;
                       fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }/* if first */
                   } /* age mod 5 */
                 } /* end loop age */
                 fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                 first=1;
               } /*l12 */
             } /* k12 */
           } /*l1 */
         }/* k1 */
       } /* loop covariates */
     }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_vector(xp,1,npar);
     fclose(ficresprob);
     fclose(ficresprobcov);
     fclose(ficresprobcor);
     fflush(ficgp);
     fflush(fichtmcov);
   }
   
   
   /******************* Printing html file ***********/
   void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int estepm ,\
                     double jprev1, double mprev1,double anprev1, \
                     double jprev2, double mprev2,double anprev2){
     int jj1, k1, i1, cpt;
   
      fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
      <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   </ul>");
      fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
      fprintf(fichtm,"\
    - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
              stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
      fprintf(fichtm,"\
    - Stable prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
      fprintf(fichtm,"\
    - Life expectancies by age and initial health status (estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
   
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        /* Pij */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: %s%d1.png<br> \
   <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
        /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: %s%d2.png<br> \
   <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
          /* Stable prevalence in each health state */
          for(cpt=1; cpt<nlstate;cpt++){
            fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \
   <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
          }
        for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): %s%d%d.png <br> \
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
        }
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   
   
    fprintf(fichtm,"\
   \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
   
    fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
    fprintf(fichtm,"\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   
    fprintf(fichtm,"\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
    fprintf(fichtm,"\
    - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
            estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
    fprintf(fichtm,"\
    - Health expectancies with their variances (no covariance): <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"t"),subdirf2(fileres,"t"));
    fprintf(fichtm,"\
    - Standard deviation of stable prevalences: <a href=\"%s\">%s</a> <br>\n",\
            subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    fflush(fichtm);
    fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2): %s%d.png<br>\
   <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
    fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
     m=pow(2,cptcoveff);
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
    /* 1eme*/
     for (cpt=1; cpt<= nlstate ; cpt ++) {
      for (k1=1; k1<= m ; k1 ++) {
        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }
        fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l 0,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
         else fprintf(ficgp,"\" t\"\" w l 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         k=2+nlstate*(2*cpt-2);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);
           
         } 
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<=nlstate ; cpt ++) {
         k=3;
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small\nset size 0.65,0.65\n\
   unset log y\n\
   plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
         
         for (i=1; i< nlstate ; i ++)
           fprintf(ficgp,"+$%d",k+i+1);
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         
         l=3+(nlstate+ndeath)*cpt;
         fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
         for (i=1; i< nlstate ; i ++) {
           l=3+(nlstate+ndeath)*cpt;
           fprintf(ficgp,"+$%d",l+i+1);
         }
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       } 
     }  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
   
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;
                for(j=3; j <=ncovmodel; j++) {
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                    ij++;
                  }
                  else
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                      ij++;
                    }
                    else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small\n set log y\n"); 
     fprintf(ficgp, "set size 0.65,0.65\n");
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int linei, month, year,iout;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
   
     char ca[32], cb[32], cc[32];
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char strstart[80], *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       scanf("%s",pathtot);
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem with datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs)))    {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
           if(line[j] == '\t')
             line[j] = ' ';
         }
         for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
           ;
         };
         line[j+1]=0;  /* Trims blanks at end of line */
         if(line[0]=='#'){
           fprintf(ficlog,"Comment line\n%s\n",line);
           printf("Comment line\n%s\n",line);
           continue;
         }
         for (j=maxwav;j>=1;j--){
           cutv(stra, strb,line,' '); 
           errno=0;
           lval=strtol(strb,&endptr,10); 
           /*      if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%d' at line number %d %s for individual %d\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n",lval, i,line,linei,j,maxwav);
             exit(1);
           }
           s[j][i]=lval;
   
           strcpy(line,stra);
           cutv(stra, strb,line,' ');
           if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
           }
           else  if(iout=sscanf(strb,".") != 0){
             month=99;
             year=9999;
           }else{
             printf("Error reading data around '%s'.at line number %ld %s for individual %d\nShould be a year of exam at wave %d.  Exiting.\n",strb, i,line,linei,j);
             exit(1);
           }
           anint[j][i]= (double) year; 
           mint[j][i]= (double)month; 
           strcpy(line,stra);
         } /* ENd Waves */
           
         cutv(stra, strb,line,' '); 
         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }
         else  if(iout=sscanf(strb,".") != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s'.at line number %ld %s for individual %d\nShould be a year of exam at wave %d.  Exiting.\n",strb, i,line,linei,j);
           exit(1);
         }
         andc[i]=(double) year; 
         moisdc[i]=(double) month; 
         strcpy(line,stra);
   
         cutv(stra, strb,line,' '); 
         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }
         else  if(iout=sscanf(strb,".") != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s'.at line number %ld %s for individual %d\nShould be a year of exam at wave %d.  Exiting.\n",strb, i,line,linei,j);
           exit(1);
         }
         annais[i]=(double)(year);
         moisnais[i]=(double)(month); 
         strcpy(line,stra);
   
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %ld %s for individual %d\nShould be a weight.  Exiting.\n",lval, i,line,linei);
           exit(1);
         }
         weight[i]=(double)(lval); 
         strcpy(line,stra);
   
         for (j=ncovcol;j>=1;j--){
           cutv(stra, strb,line,' '); 
           errno=0;
           lval=strtol(strb,&endptr,10); 
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%d' at line number %ld %s for individual %d\nShould be a covar (meaning 0 for the reference or 1).  Exiting.\n",lval, i,line,linei);
             exit(1);
           }
           if(lval <-1 || lval >1){
             printf("Error reading data around '%d' at line number %ld %s for individual %d\nShould be a value of the %d covar (meaning 0 for the reference or 1. IMaCh does not build design variables, do it your self).  Exiting.\n",lval,i,line,linei,j);
             exit(1);
           }
           covar[j][i]=(double)(lval);
           strcpy(line,stra);
         } 
         lstra=strlen(stra);
   
         if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
           stratrunc = &(stra[lstra-9]);
           num[i]=atol(stratrunc);
         }
         else
           num[i]=atol(stra);
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
           printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
   
         i=i+1;
     } /* End loop reading  data */
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
     /* for (i=1; i<=imx; i++) */
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameters from char model */
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);
     fclose(fic);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     agegomp=(int)agemin;
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<body>\n<title>IMaCh Cov %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       p[1]=0.1; p[NDIM]=0.1;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
       
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
     
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing stable prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
       fprintf(ficrespl, "#Local time at start: %s", strstart);
       fprintf(ficrespl,"#Stable prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       fprintf(ficrespij, "#Local time at start: %s", strstart);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /*---------- Health expectancies and variances ------------*/
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total LEs with variances: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficreseij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav, strstart);
           if(popbased==1){
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav, strstart);
           }
   
           fprintf(ficrest, "#Local time at start: %s", strstart);
           fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
           for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
           fprintf(ficrest,"\n");
   
           epj=vector(1,nlstate+1);
           for(age=bage; age <=fage ;age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             if (popbased==1) {
               if(mobilav ==0){
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=probs[(int)age][i][k];
               }else{ /* mobilav */ 
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=mobaverage[(int)age][i][k];
               }
             }
           
             fprintf(ficrest," %4.0f",age);
             for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
               for(i=1, epj[j]=0.;i <=nlstate;i++) {
                 epj[j] += prlim[i][i]*eij[i][j][(int)age];
                 /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
               }
               epj[nlstate+1] +=epj[j];
             }
   
             for(i=1, vepp=0.;i <=nlstate;i++)
               for(j=1;j <=nlstate;j++)
                 vepp += vareij[i][j][(int)age];
             fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
             for(j=1;j <=nlstate;j++){
               fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
             }
             fprintf(ficrest,"\n");
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficreseij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of stable prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
     
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
       free_ivector(Tcode,1,100);
   
   
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);
     fclose(fichtm);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
     chdir(path);
   #ifndef UNIX
     /*  strcpy(plotcmd,"\""); */
   #endif
     strcpy(plotcmd,pathimach);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     strcat(plotcmd,GNUPLOTPROGRAM);
   #ifndef UNIX
     strcat(plotcmd,".exe");
     /*  strcat(plotcmd,"\"");*/
   #endif
     if(stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
     }
   
   #ifndef UNIX
     strcpy(plotcmd,"\"");
   #endif
     strcat(plotcmd,pathimach);
     strcat(plotcmd,GNUPLOTPROGRAM);
   #ifndef UNIX
     strcat(plotcmd,".exe");
     strcat(plotcmd,"\"");
   #endif
     strcat(plotcmd," ");
     strcat(plotcmd,optionfilegnuplot);
     printf("Starting graphs with: %s",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.19  
changed lines
  Added in v.1.110


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>