Diff for /imach/src/imach.c between versions 1.19 and 1.120

version 1.19, 2002/02/20 17:19:10 version 1.120, 2006/03/16 15:10:38
Line 1 Line 1
      /* $Id$
 /*********************** Imach **************************************            $State$
   This program computes Healthy Life Expectancies from cross-longitudinal    $Log$
   data. Cross-longitudinal consist in a first survey ("cross") where    Revision 1.120  2006/03/16 15:10:38  lievre
   individuals from different ages are interviewed on their health status    (Module): refinements in the computation of lli if
   or degree of  disability. At least a second wave of interviews    status=-2 in order to have more reliable computation if stepm is
   ("longitudinal") should  measure each new individual health status.    not 1 month. Version 0.98f
   Health expectancies are computed from the transistions observed between  
   waves and are computed for each degree of severity of disability (number    Revision 1.119  2006/03/15 17:42:26  brouard
   of life states). More degrees you consider, more time is necessary to    (Module): Bug if status = -2, the loglikelihood was
   reach the Maximum Likelihood of the parameters involved in the model.    computed as likelihood omitting the logarithm. Version O.98e
   The simplest model is the multinomial logistic model where pij is  
   the probabibility to be observed in state j at the second wave conditional    Revision 1.118  2006/03/14 18:20:07  brouard
   to be observed in state i at the first wave. Therefore the model is:    (Module): varevsij Comments added explaining the second
   log(pij/pii)= aij + bij*age+ cij*sex + etc , where 'age' is age and 'sex'    table of variances if popbased=1 .
   is a covariate. If you want to have a more complex model than "constant and    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   age", you should modify the program where the markup    (Module): Function pstamp added
     *Covariates have to be included here again* invites you to do it.    (Module): Version 0.98d
   More covariates you add, less is the speed of the convergence.  
     Revision 1.117  2006/03/14 17:16:22  brouard
   The advantage that this computer programme claims, comes from that if the    (Module): varevsij Comments added explaining the second
   delay between waves is not identical for each individual, or if some    table of variances if popbased=1 .
   individual missed an interview, the information is not rounded or lost, but    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   taken into account using an interpolation or extrapolation.    (Module): Function pstamp added
   hPijx is the probability to be    (Module): Version 0.98d
   observed in state i at age x+h conditional to the observed state i at age  
   x. The delay 'h' can be split into an exact number (nh*stepm) of    Revision 1.116  2006/03/06 10:29:27  brouard
   unobserved intermediate  states. This elementary transition (by month or    (Module): Variance-covariance wrong links and
   quarter trimester, semester or year) is model as a multinomial logistic.    varian-covariance of ej. is needed (Saito).
   The hPx matrix is simply the matrix product of nh*stepm elementary matrices  
   and the contribution of each individual to the likelihood is simply hPijx.    Revision 1.115  2006/02/27 12:17:45  brouard
     (Module): One freematrix added in mlikeli! 0.98c
   Also this programme outputs the covariance matrix of the parameters but also  
   of the life expectancies. It also computes the prevalence limits.    Revision 1.114  2006/02/26 12:57:58  brouard
      (Module): Some improvements in processing parameter
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    filename with strsep.
            Institut national d'études démographiques, Paris.  
   This software have been partly granted by Euro-REVES, a concerted action    Revision 1.113  2006/02/24 14:20:24  brouard
   from the European Union.    (Module): Memory leaks checks with valgrind and:
   It is copyrighted identically to a GNU software product, ie programme and    datafile was not closed, some imatrix were not freed and on matrix
   software can be distributed freely for non commercial use. Latest version    allocation too.
   can be accessed at http://euroreves.ined.fr/imach .  
   **********************************************************************/    Revision 1.112  2006/01/30 09:55:26  brouard
      (Module): Back to gnuplot.exe instead of wgnuplot.exe
 #include <math.h>  
 #include <stdio.h>    Revision 1.111  2006/01/25 20:38:18  brouard
 #include <stdlib.h>    (Module): Lots of cleaning and bugs added (Gompertz)
 #include <unistd.h>    (Module): Comments can be added in data file. Missing date values
     can be a simple dot '.'.
 #define MAXLINE 256  
 #define FILENAMELENGTH 80    Revision 1.110  2006/01/25 00:51:50  brouard
 /*#define DEBUG*/    (Module): Lots of cleaning and bugs added (Gompertz)
 #define windows  
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    Revision 1.109  2006/01/24 19:37:15  brouard
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    (Module): Comments (lines starting with a #) are allowed in data.
   
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    Revision 1.108  2006/01/19 18:05:42  lievre
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    Gnuplot problem appeared...
     To be fixed
 #define NINTERVMAX 8  
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    Revision 1.107  2006/01/19 16:20:37  brouard
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    Test existence of gnuplot in imach path
 #define NCOVMAX 8 /* Maximum number of covariates */  
 #define MAXN 20000    Revision 1.106  2006/01/19 13:24:36  brouard
 #define YEARM 12. /* Number of months per year */    Some cleaning and links added in html output
 #define AGESUP 130  
 #define AGEBASE 40    Revision 1.105  2006/01/05 20:23:19  lievre
     *** empty log message ***
   
 int nvar;    Revision 1.104  2005/09/30 16:11:43  lievre
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    (Module): sump fixed, loop imx fixed, and simplifications.
 int npar=NPARMAX;    (Module): If the status is missing at the last wave but we know
 int nlstate=2; /* Number of live states */    that the person is alive, then we can code his/her status as -2
 int ndeath=1; /* Number of dead states */    (instead of missing=-1 in earlier versions) and his/her
 int ncovmodel, ncov;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    contributions to the likelihood is 1 - Prob of dying from last
 int popbased=0;    health status (= 1-p13= p11+p12 in the easiest case of somebody in
     the healthy state at last known wave). Version is 0.98
 int *wav; /* Number of waves for this individuual 0 is possible */  
 int maxwav; /* Maxim number of waves */    Revision 1.103  2005/09/30 15:54:49  lievre
 int jmin, jmax; /* min, max spacing between 2 waves */    (Module): sump fixed, loop imx fixed, and simplifications.
 int mle, weightopt;  
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    Revision 1.102  2004/09/15 17:31:30  brouard
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    Add the possibility to read data file including tab characters.
 double jmean; /* Mean space between 2 waves */  
 double **oldm, **newm, **savm; /* Working pointers to matrices */    Revision 1.101  2004/09/15 10:38:38  brouard
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    Fix on curr_time
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf;  
 FILE *ficgp, *fichtm,*ficresprob,*ficpop;    Revision 1.100  2004/07/12 18:29:06  brouard
 FILE *ficreseij;    Add version for Mac OS X. Just define UNIX in Makefile
   char filerese[FILENAMELENGTH];  
  FILE  *ficresvij;    Revision 1.99  2004/06/05 08:57:40  brouard
   char fileresv[FILENAMELENGTH];    *** empty log message ***
  FILE  *ficresvpl;  
   char fileresvpl[FILENAMELENGTH];    Revision 1.98  2004/05/16 15:05:56  brouard
     New version 0.97 . First attempt to estimate force of mortality
 #define NR_END 1    directly from the data i.e. without the need of knowing the health
 #define FREE_ARG char*    state at each age, but using a Gompertz model: log u =a + b*age .
 #define FTOL 1.0e-10    This is the basic analysis of mortality and should be done before any
     other analysis, in order to test if the mortality estimated from the
 #define NRANSI    cross-longitudinal survey is different from the mortality estimated
 #define ITMAX 200    from other sources like vital statistic data.
   
 #define TOL 2.0e-4    The same imach parameter file can be used but the option for mle should be -3.
   
 #define CGOLD 0.3819660    Agnès, who wrote this part of the code, tried to keep most of the
 #define ZEPS 1.0e-10    former routines in order to include the new code within the former code.
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);  
     The output is very simple: only an estimate of the intercept and of
 #define GOLD 1.618034    the slope with 95% confident intervals.
 #define GLIMIT 100.0  
 #define TINY 1.0e-20    Current limitations:
     A) Even if you enter covariates, i.e. with the
 static double maxarg1,maxarg2;    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    B) There is no computation of Life Expectancy nor Life Table.
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))  
      Revision 1.97  2004/02/20 13:25:42  lievre
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    Version 0.96d. Population forecasting command line is (temporarily)
 #define rint(a) floor(a+0.5)    suppressed.
   
 static double sqrarg;    Revision 1.96  2003/07/15 15:38:55  brouard
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    rewritten within the same printf. Workaround: many printfs.
   
 int imx;    Revision 1.95  2003/07/08 07:54:34  brouard
 int stepm;    * imach.c (Repository):
 /* Stepm, step in month: minimum step interpolation*/    (Repository): Using imachwizard code to output a more meaningful covariance
     matrix (cov(a12,c31) instead of numbers.
 int m,nb;  
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    Revision 1.94  2003/06/27 13:00:02  brouard
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    Just cleaning
 double **pmmij, ***probs, ***mobaverage;  
 double dateintmean=0;    Revision 1.93  2003/06/25 16:33:55  brouard
     (Module): On windows (cygwin) function asctime_r doesn't
 double *weight;    exist so I changed back to asctime which exists.
 int **s; /* Status */    (Module): Version 0.96b
 double *agedc, **covar, idx;  
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    Revision 1.92  2003/06/25 16:30:45  brouard
     (Module): On windows (cygwin) function asctime_r doesn't
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    exist so I changed back to asctime which exists.
 double ftolhess; /* Tolerance for computing hessian */  
     Revision 1.91  2003/06/25 15:30:29  brouard
 /**************** split *************************/    * imach.c (Repository): Duplicated warning errors corrected.
 static  int split( char *path, char *dirc, char *name )    (Repository): Elapsed time after each iteration is now output. It
 {    helps to forecast when convergence will be reached. Elapsed time
    char *s;                             /* pointer */    is stamped in powell.  We created a new html file for the graphs
    int  l1, l2;                         /* length counters */    concerning matrix of covariance. It has extension -cov.htm.
   
    l1 = strlen( path );                 /* length of path */    Revision 1.90  2003/06/24 12:34:15  brouard
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    (Module): Some bugs corrected for windows. Also, when
    s = strrchr( path, '\\' );           /* find last / */    mle=-1 a template is output in file "or"mypar.txt with the design
    if ( s == NULL ) {                   /* no directory, so use current */    of the covariance matrix to be input.
 #if     defined(__bsd__)                /* get current working directory */  
       extern char       *getwd( );    Revision 1.89  2003/06/24 12:30:52  brouard
     (Module): Some bugs corrected for windows. Also, when
       if ( getwd( dirc ) == NULL ) {    mle=-1 a template is output in file "or"mypar.txt with the design
 #else    of the covariance matrix to be input.
       extern char       *getcwd( );  
     Revision 1.88  2003/06/23 17:54:56  brouard
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
 #endif  
          return( GLOCK_ERROR_GETCWD );    Revision 1.87  2003/06/18 12:26:01  brouard
       }    Version 0.96
       strcpy( name, path );             /* we've got it */  
    } else {                             /* strip direcotry from path */    Revision 1.86  2003/06/17 20:04:08  brouard
       s++;                              /* after this, the filename */    (Module): Change position of html and gnuplot routines and added
       l2 = strlen( s );                 /* length of filename */    routine fileappend.
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );  
       strcpy( name, s );                /* save file name */    Revision 1.85  2003/06/17 13:12:43  brouard
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    * imach.c (Repository): Check when date of death was earlier that
       dirc[l1-l2] = 0;                  /* add zero */    current date of interview. It may happen when the death was just
    }    prior to the death. In this case, dh was negative and likelihood
    l1 = strlen( dirc );                 /* length of directory */    was wrong (infinity). We still send an "Error" but patch by
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    assuming that the date of death was just one stepm after the
    return( 0 );                         /* we're done */    interview.
 }    (Repository): Because some people have very long ID (first column)
     we changed int to long in num[] and we added a new lvector for
     memory allocation. But we also truncated to 8 characters (left
 /******************************************/    truncation)
     (Repository): No more line truncation errors.
 void replace(char *s, char*t)  
 {    Revision 1.84  2003/06/13 21:44:43  brouard
   int i;    * imach.c (Repository): Replace "freqsummary" at a correct
   int lg=20;    place. It differs from routine "prevalence" which may be called
   i=0;    many times. Probs is memory consuming and must be used with
   lg=strlen(t);    parcimony.
   for(i=0; i<= lg; i++) {    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
     (s[i] = t[i]);  
     if (t[i]== '\\') s[i]='/';    Revision 1.83  2003/06/10 13:39:11  lievre
   }    *** empty log message ***
 }  
     Revision 1.82  2003/06/05 15:57:20  brouard
 int nbocc(char *s, char occ)    Add log in  imach.c and  fullversion number is now printed.
 {  
   int i,j=0;  */
   int lg=20;  /*
   i=0;     Interpolated Markov Chain
   lg=strlen(s);  
   for(i=0; i<= lg; i++) {    Short summary of the programme:
   if  (s[i] == occ ) j++;    
   }    This program computes Healthy Life Expectancies from
   return j;    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
 }    first survey ("cross") where individuals from different ages are
     interviewed on their health status or degree of disability (in the
 void cutv(char *u,char *v, char*t, char occ)    case of a health survey which is our main interest) -2- at least a
 {    second wave of interviews ("longitudinal") which measure each change
   int i,lg,j,p=0;    (if any) in individual health status.  Health expectancies are
   i=0;    computed from the time spent in each health state according to a
   for(j=0; j<=strlen(t)-1; j++) {    model. More health states you consider, more time is necessary to reach the
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;    Maximum Likelihood of the parameters involved in the model.  The
   }    simplest model is the multinomial logistic model where pij is the
     probability to be observed in state j at the second wave
   lg=strlen(t);    conditional to be observed in state i at the first wave. Therefore
   for(j=0; j<p; j++) {    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
     (u[j] = t[j]);    'age' is age and 'sex' is a covariate. If you want to have a more
   }    complex model than "constant and age", you should modify the program
      u[p]='\0';    where the markup *Covariates have to be included here again* invites
     you to do it.  More covariates you add, slower the
    for(j=0; j<= lg; j++) {    convergence.
     if (j>=(p+1))(v[j-p-1] = t[j]);  
   }    The advantage of this computer programme, compared to a simple
 }    multinomial logistic model, is clear when the delay between waves is not
     identical for each individual. Also, if a individual missed an
 /********************** nrerror ********************/    intermediate interview, the information is lost, but taken into
     account using an interpolation or extrapolation.  
 void nrerror(char error_text[])  
 {    hPijx is the probability to be observed in state i at age x+h
   fprintf(stderr,"ERREUR ...\n");    conditional to the observed state i at age x. The delay 'h' can be
   fprintf(stderr,"%s\n",error_text);    split into an exact number (nh*stepm) of unobserved intermediate
   exit(1);    states. This elementary transition (by month, quarter,
 }    semester or year) is modelled as a multinomial logistic.  The hPx
 /*********************** vector *******************/    matrix is simply the matrix product of nh*stepm elementary matrices
 double *vector(int nl, int nh)    and the contribution of each individual to the likelihood is simply
 {    hPijx.
   double *v;  
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));    Also this programme outputs the covariance matrix of the parameters but also
   if (!v) nrerror("allocation failure in vector");    of the life expectancies. It also computes the period (stable) prevalence. 
   return v-nl+NR_END;    
 }    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
              Institut national d'études démographiques, Paris.
 /************************ free vector ******************/    This software have been partly granted by Euro-REVES, a concerted action
 void free_vector(double*v, int nl, int nh)    from the European Union.
 {    It is copyrighted identically to a GNU software product, ie programme and
   free((FREE_ARG)(v+nl-NR_END));    software can be distributed freely for non commercial use. Latest version
 }    can be accessed at http://euroreves.ined.fr/imach .
   
 /************************ivector *******************************/    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
 int *ivector(long nl,long nh)    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
 {    
   int *v;    **********************************************************************/
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  /*
   if (!v) nrerror("allocation failure in ivector");    main
   return v-nl+NR_END;    read parameterfile
 }    read datafile
     concatwav
 /******************free ivector **************************/    freqsummary
 void free_ivector(int *v, long nl, long nh)    if (mle >= 1)
 {      mlikeli
   free((FREE_ARG)(v+nl-NR_END));    print results files
 }    if mle==1 
        computes hessian
 /******************* imatrix *******************************/    read end of parameter file: agemin, agemax, bage, fage, estepm
 int **imatrix(long nrl, long nrh, long ncl, long nch)        begin-prev-date,...
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */    open gnuplot file
 {    open html file
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;    period (stable) prevalence
   int **m;     for age prevalim()
      h Pij x
   /* allocate pointers to rows */    variance of p varprob
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));    forecasting if prevfcast==1 prevforecast call prevalence()
   if (!m) nrerror("allocation failure 1 in matrix()");    health expectancies
   m += NR_END;    Variance-covariance of DFLE
   m -= nrl;    prevalence()
       movingaverage()
      varevsij() 
   /* allocate rows and set pointers to them */    if popbased==1 varevsij(,popbased)
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));    total life expectancies
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    Variance of period (stable) prevalence
   m[nrl] += NR_END;   end
   m[nrl] -= ncl;  */
    
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  
    
   /* return pointer to array of pointers to rows */   
   return m;  #include <math.h>
 }  #include <stdio.h>
   #include <stdlib.h>
 /****************** free_imatrix *************************/  #include <string.h>
 void free_imatrix(m,nrl,nrh,ncl,nch)  #include <unistd.h>
       int **m;  
       long nch,ncl,nrh,nrl;  #include <limits.h>
      /* free an int matrix allocated by imatrix() */  #include <sys/types.h>
 {  #include <sys/stat.h>
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  #include <errno.h>
   free((FREE_ARG) (m+nrl-NR_END));  extern int errno;
 }  
   /* #include <sys/time.h> */
 /******************* matrix *******************************/  #include <time.h>
 double **matrix(long nrl, long nrh, long ncl, long nch)  #include "timeval.h"
 {  
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  /* #include <libintl.h> */
   double **m;  /* #define _(String) gettext (String) */
   
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  #define MAXLINE 256
   if (!m) nrerror("allocation failure 1 in matrix()");  
   m += NR_END;  #define GNUPLOTPROGRAM "gnuplot"
   m -= nrl;  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
   #define FILENAMELENGTH 132
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
   m[nrl] += NR_END;  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
   m[nrl] -= ncl;  
   #define MAXPARM 30 /* Maximum number of parameters for the optimization */
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
   return m;  
 }  #define NINTERVMAX 8
   #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
 /*************************free matrix ************************/  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  #define NCOVMAX 8 /* Maximum number of covariates */
 {  #define MAXN 20000
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  #define YEARM 12. /* Number of months per year */
   free((FREE_ARG)(m+nrl-NR_END));  #define AGESUP 130
 }  #define AGEBASE 40
   #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
 /******************* ma3x *******************************/  #ifdef UNIX
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  #define DIRSEPARATOR '/'
 {  #define CHARSEPARATOR "/"
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  #define ODIRSEPARATOR '\\'
   double ***m;  #else
   #define DIRSEPARATOR '\\'
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  #define CHARSEPARATOR "\\"
   if (!m) nrerror("allocation failure 1 in matrix()");  #define ODIRSEPARATOR '/'
   m += NR_END;  #endif
   m -= nrl;  
   /* $Id$ */
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  /* $State$ */
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  
   m[nrl] += NR_END;  char version[]="Imach version 0.98f, March 2006, INED-EUROREVES-Institut de longevite ";
   m[nrl] -= ncl;  char fullversion[]="$Revision$ $Date$"; 
   char strstart[80];
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
   int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  int nvar;
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
   m[nrl][ncl] += NR_END;  int npar=NPARMAX;
   m[nrl][ncl] -= nll;  int nlstate=2; /* Number of live states */
   for (j=ncl+1; j<=nch; j++)  int ndeath=1; /* Number of dead states */
     m[nrl][j]=m[nrl][j-1]+nlay;  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
    int popbased=0;
   for (i=nrl+1; i<=nrh; i++) {  
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  int *wav; /* Number of waves for this individuual 0 is possible */
     for (j=ncl+1; j<=nch; j++)  int maxwav; /* Maxim number of waves */
       m[i][j]=m[i][j-1]+nlay;  int jmin, jmax; /* min, max spacing between 2 waves */
   }  int ijmin, ijmax; /* Individuals having jmin and jmax */ 
   return m;  int gipmx, gsw; /* Global variables on the number of contributions 
 }                     to the likelihood and the sum of weights (done by funcone)*/
   int mle, weightopt;
 /*************************free ma3x ************************/  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
 {  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));             * wave mi and wave mi+1 is not an exact multiple of stepm. */
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  double jmean; /* Mean space between 2 waves */
   free((FREE_ARG)(m+nrl-NR_END));  double **oldm, **newm, **savm; /* Working pointers to matrices */
 }  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
   FILE *fic,*ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
 /***************** f1dim *************************/  FILE *ficlog, *ficrespow;
 extern int ncom;  int globpr; /* Global variable for printing or not */
 extern double *pcom,*xicom;  double fretone; /* Only one call to likelihood */
 extern double (*nrfunc)(double []);  long ipmx; /* Number of contributions */
    double sw; /* Sum of weights */
 double f1dim(double x)  char filerespow[FILENAMELENGTH];
 {  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
   int j;  FILE *ficresilk;
   double f;  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
   double *xt;  FILE *ficresprobmorprev;
    FILE *fichtm, *fichtmcov; /* Html File */
   xt=vector(1,ncom);  FILE *ficreseij;
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  char filerese[FILENAMELENGTH];
   f=(*nrfunc)(xt);  FILE *ficresstdeij;
   free_vector(xt,1,ncom);  char fileresstde[FILENAMELENGTH];
   return f;  FILE *ficrescveij;
 }  char filerescve[FILENAMELENGTH];
   FILE  *ficresvij;
 /*****************brent *************************/  char fileresv[FILENAMELENGTH];
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  FILE  *ficresvpl;
 {  char fileresvpl[FILENAMELENGTH];
   int iter;  char title[MAXLINE];
   double a,b,d,etemp;  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
   double fu,fv,fw,fx;  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
   double ftemp;  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
   double p,q,r,tol1,tol2,u,v,w,x,xm;  char command[FILENAMELENGTH];
   double e=0.0;  int  outcmd=0;
    
   a=(ax < cx ? ax : cx);  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
   b=(ax > cx ? ax : cx);  
   x=w=v=bx;  char filelog[FILENAMELENGTH]; /* Log file */
   fw=fv=fx=(*f)(x);  char filerest[FILENAMELENGTH];
   for (iter=1;iter<=ITMAX;iter++) {  char fileregp[FILENAMELENGTH];
     xm=0.5*(a+b);  char popfile[FILENAMELENGTH];
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
     printf(".");fflush(stdout);  
 #ifdef DEBUG  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  struct timezone tzp;
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  extern int gettimeofday();
 #endif  struct tm tmg, tm, tmf, *gmtime(), *localtime();
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  long time_value;
       *xmin=x;  extern long time();
       return fx;  char strcurr[80], strfor[80];
     }  
     ftemp=fu;  char *endptr;
     if (fabs(e) > tol1) {  long lval;
       r=(x-w)*(fx-fv);  
       q=(x-v)*(fx-fw);  #define NR_END 1
       p=(x-v)*q-(x-w)*r;  #define FREE_ARG char*
       q=2.0*(q-r);  #define FTOL 1.0e-10
       if (q > 0.0) p = -p;  
       q=fabs(q);  #define NRANSI 
       etemp=e;  #define ITMAX 200 
       e=d;  
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  #define TOL 2.0e-4 
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  
       else {  #define CGOLD 0.3819660 
         d=p/q;  #define ZEPS 1.0e-10 
         u=x+d;  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
         if (u-a < tol2 || b-u < tol2)  
           d=SIGN(tol1,xm-x);  #define GOLD 1.618034 
       }  #define GLIMIT 100.0 
     } else {  #define TINY 1.0e-20 
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  
     }  static double maxarg1,maxarg2;
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
     fu=(*f)(u);  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
     if (fu <= fx) {    
       if (u >= x) a=x; else b=x;  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
       SHFT(v,w,x,u)  #define rint(a) floor(a+0.5)
         SHFT(fv,fw,fx,fu)  
         } else {  static double sqrarg;
           if (u < x) a=u; else b=u;  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
           if (fu <= fw || w == x) {  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
             v=w;  int agegomp= AGEGOMP;
             w=u;  
             fv=fw;  int imx; 
             fw=fu;  int stepm=1;
           } else if (fu <= fv || v == x || v == w) {  /* Stepm, step in month: minimum step interpolation*/
             v=u;  
             fv=fu;  int estepm;
           }  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
         }  
   }  int m,nb;
   nrerror("Too many iterations in brent");  long *num;
   *xmin=x;  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
   return fx;  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
 }  double **pmmij, ***probs;
   double *ageexmed,*agecens;
 /****************** mnbrak ***********************/  double dateintmean=0;
   
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  double *weight;
             double (*func)(double))  int **s; /* Status */
 {  double *agedc, **covar, idx;
   double ulim,u,r,q, dum;  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
   double fu;  double *lsurv, *lpop, *tpop;
    
   *fa=(*func)(*ax);  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
   *fb=(*func)(*bx);  double ftolhess; /* Tolerance for computing hessian */
   if (*fb > *fa) {  
     SHFT(dum,*ax,*bx,dum)  /**************** split *************************/
       SHFT(dum,*fb,*fa,dum)  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
       }  {
   *cx=(*bx)+GOLD*(*bx-*ax);    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
   *fc=(*func)(*cx);       the name of the file (name), its extension only (ext) and its first part of the name (finame)
   while (*fb > *fc) {    */ 
     r=(*bx-*ax)*(*fb-*fc);    char  *ss;                            /* pointer */
     q=(*bx-*cx)*(*fb-*fa);    int   l1, l2;                         /* length counters */
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/  
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));    l1 = strlen(path );                   /* length of path */
     ulim=(*bx)+GLIMIT*(*cx-*bx);    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
     if ((*bx-u)*(u-*cx) > 0.0) {    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
       fu=(*func)(u);    if ( ss == NULL ) {                   /* no directory, so determine current directory */
     } else if ((*cx-u)*(u-ulim) > 0.0) {      strcpy( name, path );               /* we got the fullname name because no directory */
       fu=(*func)(u);      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
       if (fu < *fc) {        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))      /* get current working directory */
           SHFT(*fb,*fc,fu,(*func)(u))      /*    extern  char* getcwd ( char *buf , int len);*/
           }      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {        return( GLOCK_ERROR_GETCWD );
       u=ulim;      }
       fu=(*func)(u);      /* got dirc from getcwd*/
     } else {      printf(" DIRC = %s \n",dirc);
       u=(*cx)+GOLD*(*cx-*bx);    } else {                              /* strip direcotry from path */
       fu=(*func)(u);      ss++;                               /* after this, the filename */
     }      l2 = strlen( ss );                  /* length of filename */
     SHFT(*ax,*bx,*cx,u)      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
       SHFT(*fa,*fb,*fc,fu)      strcpy( name, ss );         /* save file name */
       }      strncpy( dirc, path, l1 - l2 );     /* now the directory */
 }      dirc[l1-l2] = 0;                    /* add zero */
       printf(" DIRC2 = %s \n",dirc);
 /*************** linmin ************************/    }
     /* We add a separator at the end of dirc if not exists */
 int ncom;    l1 = strlen( dirc );                  /* length of directory */
 double *pcom,*xicom;    if( dirc[l1-1] != DIRSEPARATOR ){
 double (*nrfunc)(double []);      dirc[l1] =  DIRSEPARATOR;
        dirc[l1+1] = 0; 
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))      printf(" DIRC3 = %s \n",dirc);
 {    }
   double brent(double ax, double bx, double cx,    ss = strrchr( name, '.' );            /* find last / */
                double (*f)(double), double tol, double *xmin);    if (ss >0){
   double f1dim(double x);      ss++;
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,      strcpy(ext,ss);                     /* save extension */
               double *fc, double (*func)(double));      l1= strlen( name);
   int j;      l2= strlen(ss)+1;
   double xx,xmin,bx,ax;      strncpy( finame, name, l1-l2);
   double fx,fb,fa;      finame[l1-l2]= 0;
      }
   ncom=n;  
   pcom=vector(1,n);    return( 0 );                          /* we're done */
   xicom=vector(1,n);  }
   nrfunc=func;  
   for (j=1;j<=n;j++) {  
     pcom[j]=p[j];  /******************************************/
     xicom[j]=xi[j];  
   }  void replace_back_to_slash(char *s, char*t)
   ax=0.0;  {
   xx=1.0;    int i;
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);    int lg=0;
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);    i=0;
 #ifdef DEBUG    lg=strlen(t);
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    for(i=0; i<= lg; i++) {
 #endif      (s[i] = t[i]);
   for (j=1;j<=n;j++) {      if (t[i]== '\\') s[i]='/';
     xi[j] *= xmin;    }
     p[j] += xi[j];  }
   }  
   free_vector(xicom,1,n);  int nbocc(char *s, char occ)
   free_vector(pcom,1,n);  {
 }    int i,j=0;
     int lg=20;
 /*************** powell ************************/    i=0;
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,    lg=strlen(s);
             double (*func)(double []))    for(i=0; i<= lg; i++) {
 {    if  (s[i] == occ ) j++;
   void linmin(double p[], double xi[], int n, double *fret,    }
               double (*func)(double []));    return j;
   int i,ibig,j;  }
   double del,t,*pt,*ptt,*xit;  
   double fp,fptt;  void cutv(char *u,char *v, char*t, char occ)
   double *xits;  {
   pt=vector(1,n);    /* cuts string t into u and v where u ends before first occurence of char 'occ' 
   ptt=vector(1,n);       and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
   xit=vector(1,n);       gives u="abcedf" and v="ghi2j" */
   xits=vector(1,n);    int i,lg,j,p=0;
   *fret=(*func)(p);    i=0;
   for (j=1;j<=n;j++) pt[j]=p[j];    for(j=0; j<=strlen(t)-1; j++) {
   for (*iter=1;;++(*iter)) {      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
     fp=(*fret);    }
     ibig=0;  
     del=0.0;    lg=strlen(t);
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);    for(j=0; j<p; j++) {
     for (i=1;i<=n;i++)      (u[j] = t[j]);
       printf(" %d %.12f",i, p[i]);    }
     printf("\n");       u[p]='\0';
     for (i=1;i<=n;i++) {  
       for (j=1;j<=n;j++) xit[j]=xi[j][i];     for(j=0; j<= lg; j++) {
       fptt=(*fret);      if (j>=(p+1))(v[j-p-1] = t[j]);
 #ifdef DEBUG    }
       printf("fret=%lf \n",*fret);  }
 #endif  
       printf("%d",i);fflush(stdout);  /********************** nrerror ********************/
       linmin(p,xit,n,fret,func);  
       if (fabs(fptt-(*fret)) > del) {  void nrerror(char error_text[])
         del=fabs(fptt-(*fret));  {
         ibig=i;    fprintf(stderr,"ERREUR ...\n");
       }    fprintf(stderr,"%s\n",error_text);
 #ifdef DEBUG    exit(EXIT_FAILURE);
       printf("%d %.12e",i,(*fret));  }
       for (j=1;j<=n;j++) {  /*********************** vector *******************/
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);  double *vector(int nl, int nh)
         printf(" x(%d)=%.12e",j,xit[j]);  {
       }    double *v;
       for(j=1;j<=n;j++)    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
         printf(" p=%.12e",p[j]);    if (!v) nrerror("allocation failure in vector");
       printf("\n");    return v-nl+NR_END;
 #endif  }
     }  
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {  /************************ free vector ******************/
 #ifdef DEBUG  void free_vector(double*v, int nl, int nh)
       int k[2],l;  {
       k[0]=1;    free((FREE_ARG)(v+nl-NR_END));
       k[1]=-1;  }
       printf("Max: %.12e",(*func)(p));  
       for (j=1;j<=n;j++)  /************************ivector *******************************/
         printf(" %.12e",p[j]);  int *ivector(long nl,long nh)
       printf("\n");  {
       for(l=0;l<=1;l++) {    int *v;
         for (j=1;j<=n;j++) {    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];    if (!v) nrerror("allocation failure in ivector");
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);    return v-nl+NR_END;
         }  }
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  
       }  /******************free ivector **************************/
 #endif  void free_ivector(int *v, long nl, long nh)
   {
     free((FREE_ARG)(v+nl-NR_END));
       free_vector(xit,1,n);  }
       free_vector(xits,1,n);  
       free_vector(ptt,1,n);  /************************lvector *******************************/
       free_vector(pt,1,n);  long *lvector(long nl,long nh)
       return;  {
     }    long *v;
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
     for (j=1;j<=n;j++) {    if (!v) nrerror("allocation failure in ivector");
       ptt[j]=2.0*p[j]-pt[j];    return v-nl+NR_END;
       xit[j]=p[j]-pt[j];  }
       pt[j]=p[j];  
     }  /******************free lvector **************************/
     fptt=(*func)(ptt);  void free_lvector(long *v, long nl, long nh)
     if (fptt < fp) {  {
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);    free((FREE_ARG)(v+nl-NR_END));
       if (t < 0.0) {  }
         linmin(p,xit,n,fret,func);  
         for (j=1;j<=n;j++) {  /******************* imatrix *******************************/
           xi[j][ibig]=xi[j][n];  int **imatrix(long nrl, long nrh, long ncl, long nch) 
           xi[j][n]=xit[j];       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
         }  { 
 #ifdef DEBUG    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);    int **m; 
         for(j=1;j<=n;j++)    
           printf(" %.12e",xit[j]);    /* allocate pointers to rows */ 
         printf("\n");    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
 #endif    if (!m) nrerror("allocation failure 1 in matrix()"); 
       }    m += NR_END; 
     }    m -= nrl; 
   }    
 }    
     /* allocate rows and set pointers to them */ 
 /**** Prevalence limit ****************/    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
     if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)    m[nrl] += NR_END; 
 {    m[nrl] -= ncl; 
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit    
      matrix by transitions matrix until convergence is reached */    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
     
   int i, ii,j,k;    /* return pointer to array of pointers to rows */ 
   double min, max, maxmin, maxmax,sumnew=0.;    return m; 
   double **matprod2();  } 
   double **out, cov[NCOVMAX], **pmij();  
   double **newm;  /****************** free_imatrix *************************/
   double agefin, delaymax=50 ; /* Max number of years to converge */  void free_imatrix(m,nrl,nrh,ncl,nch)
         int **m;
   for (ii=1;ii<=nlstate+ndeath;ii++)        long nch,ncl,nrh,nrl; 
     for (j=1;j<=nlstate+ndeath;j++){       /* free an int matrix allocated by imatrix() */ 
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);  { 
     }    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
     free((FREE_ARG) (m+nrl-NR_END)); 
    cov[1]=1.;  } 
    
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */  /******************* matrix *******************************/
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){  double **matrix(long nrl, long nrh, long ncl, long nch)
     newm=savm;  {
     /* Covariates have to be included here again */    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
      cov[2]=agefin;    double **m;
    
       for (k=1; k<=cptcovn;k++) {    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    if (!m) nrerror("allocation failure 1 in matrix()");
         /*printf("ij=%d Tvar[k]=%d nbcode=%d cov=%lf\n",ij, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k]);*/    m += NR_END;
       }    m -= nrl;
       for (k=1; k<=cptcovage;k++)  
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
       for (k=1; k<=cptcovprod;k++)    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    m[nrl] += NR_END;
     m[nrl] -= ncl;
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/  
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
     return m;
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
      */
     savm=oldm;  }
     oldm=newm;  
     maxmax=0.;  /*************************free matrix ************************/
     for(j=1;j<=nlstate;j++){  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
       min=1.;  {
       max=0.;    free((FREE_ARG)(m[nrl]+ncl-NR_END));
       for(i=1; i<=nlstate; i++) {    free((FREE_ARG)(m+nrl-NR_END));
         sumnew=0;  }
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];  
         prlim[i][j]= newm[i][j]/(1-sumnew);  /******************* ma3x *******************************/
         max=FMAX(max,prlim[i][j]);  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
         min=FMIN(min,prlim[i][j]);  {
       }    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
       maxmin=max-min;    double ***m;
       maxmax=FMAX(maxmax,maxmin);  
     }    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     if(maxmax < ftolpl){    if (!m) nrerror("allocation failure 1 in matrix()");
       return prlim;    m += NR_END;
     }    m -= nrl;
   }  
 }    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
 /*************** transition probabilities ***************/    m[nrl] += NR_END;
     m[nrl] -= ncl;
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )  
 {    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   double s1, s2;  
   /*double t34;*/    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
   int i,j,j1, nc, ii, jj;    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
     m[nrl][ncl] += NR_END;
     for(i=1; i<= nlstate; i++){    m[nrl][ncl] -= nll;
     for(j=1; j<i;j++){    for (j=ncl+1; j<=nch; j++) 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){      m[nrl][j]=m[nrl][j-1]+nlay;
         /*s2 += param[i][j][nc]*cov[nc];*/    
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    for (i=nrl+1; i<=nrh; i++) {
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
       }      for (j=ncl+1; j<=nch; j++) 
       ps[i][j]=s2;        m[i][j]=m[i][j-1]+nlay;
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/    }
     }    return m; 
     for(j=i+1; j<=nlstate+ndeath;j++){    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    */
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/  }
       }  
       ps[i][j]=(s2);  /*************************free ma3x ************************/
     }  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
   }  {
     /*ps[3][2]=1;*/    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
     free((FREE_ARG)(m[nrl]+ncl-NR_END));
   for(i=1; i<= nlstate; i++){    free((FREE_ARG)(m+nrl-NR_END));
      s1=0;  }
     for(j=1; j<i; j++)  
       s1+=exp(ps[i][j]);  /*************** function subdirf ***********/
     for(j=i+1; j<=nlstate+ndeath; j++)  char *subdirf(char fileres[])
       s1+=exp(ps[i][j]);  {
     ps[i][i]=1./(s1+1.);    /* Caution optionfilefiname is hidden */
     for(j=1; j<i; j++)    strcpy(tmpout,optionfilefiname);
       ps[i][j]= exp(ps[i][j])*ps[i][i];    strcat(tmpout,"/"); /* Add to the right */
     for(j=i+1; j<=nlstate+ndeath; j++)    strcat(tmpout,fileres);
       ps[i][j]= exp(ps[i][j])*ps[i][i];    return tmpout;
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */  }
   } /* end i */  
   /*************** function subdirf2 ***********/
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){  char *subdirf2(char fileres[], char *preop)
     for(jj=1; jj<= nlstate+ndeath; jj++){  {
       ps[ii][jj]=0;    
       ps[ii][ii]=1;    /* Caution optionfilefiname is hidden */
     }    strcpy(tmpout,optionfilefiname);
   }    strcat(tmpout,"/");
     strcat(tmpout,preop);
     strcat(tmpout,fileres);
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){    return tmpout;
     for(jj=1; jj<= nlstate+ndeath; jj++){  }
      printf("%lf ",ps[ii][jj]);  
    }  /*************** function subdirf3 ***********/
     printf("\n ");  char *subdirf3(char fileres[], char *preop, char *preop2)
     }  {
     printf("\n ");printf("%lf ",cov[2]);*/    
 /*    /* Caution optionfilefiname is hidden */
   for(i=1; i<= npar; i++) printf("%f ",x[i]);    strcpy(tmpout,optionfilefiname);
   goto end;*/    strcat(tmpout,"/");
     return ps;    strcat(tmpout,preop);
 }    strcat(tmpout,preop2);
     strcat(tmpout,fileres);
 /**************** Product of 2 matrices ******************/    return tmpout;
   }
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)  
 {  /***************** f1dim *************************/
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times  extern int ncom; 
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */  extern double *pcom,*xicom;
   /* in, b, out are matrice of pointers which should have been initialized  extern double (*nrfunc)(double []); 
      before: only the contents of out is modified. The function returns   
      a pointer to pointers identical to out */  double f1dim(double x) 
   long i, j, k;  { 
   for(i=nrl; i<= nrh; i++)    int j; 
     for(k=ncolol; k<=ncoloh; k++)    double f;
       for(j=ncl,out[i][k]=0.; j<=nch; j++)    double *xt; 
         out[i][k] +=in[i][j]*b[j][k];   
     xt=vector(1,ncom); 
   return out;    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
 }    f=(*nrfunc)(xt); 
     free_vector(xt,1,ncom); 
     return f; 
 /************* Higher Matrix Product ***************/  } 
   
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )  /*****************brent *************************/
 {  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month  { 
      duration (i.e. until    int iter; 
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.    double a,b,d,etemp;
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step    double fu,fv,fw,fx;
      (typically every 2 years instead of every month which is too big).    double ftemp;
      Model is determined by parameters x and covariates have to be    double p,q,r,tol1,tol2,u,v,w,x,xm; 
      included manually here.    double e=0.0; 
    
      */    a=(ax < cx ? ax : cx); 
     b=(ax > cx ? ax : cx); 
   int i, j, d, h, k;    x=w=v=bx; 
   double **out, cov[NCOVMAX];    fw=fv=fx=(*f)(x); 
   double **newm;    for (iter=1;iter<=ITMAX;iter++) { 
       xm=0.5*(a+b); 
   /* Hstepm could be zero and should return the unit matrix */      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
   for (i=1;i<=nlstate+ndeath;i++)      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
     for (j=1;j<=nlstate+ndeath;j++){      printf(".");fflush(stdout);
       oldm[i][j]=(i==j ? 1.0 : 0.0);      fprintf(ficlog,".");fflush(ficlog);
       po[i][j][0]=(i==j ? 1.0 : 0.0);  #ifdef DEBUG
     }      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   for(h=1; h <=nhstepm; h++){      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
     for(d=1; d <=hstepm; d++){  #endif
       newm=savm;      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
       /* Covariates have to be included here again */        *xmin=x; 
       cov[1]=1.;        return fx; 
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;      } 
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];      ftemp=fu;
       for (k=1; k<=cptcovage;k++)      if (fabs(e) > tol1) { 
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];        r=(x-w)*(fx-fv); 
       for (k=1; k<=cptcovprod;k++)        q=(x-v)*(fx-fw); 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];        p=(x-v)*q-(x-w)*r; 
         q=2.0*(q-r); 
         if (q > 0.0) p = -p; 
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/        q=fabs(q); 
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/        etemp=e; 
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,        e=d; 
                    pmij(pmmij,cov,ncovmodel,x,nlstate));        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
       savm=oldm;          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
       oldm=newm;        else { 
     }          d=p/q; 
     for(i=1; i<=nlstate+ndeath; i++)          u=x+d; 
       for(j=1;j<=nlstate+ndeath;j++) {          if (u-a < tol2 || b-u < tol2) 
         po[i][j][h]=newm[i][j];            d=SIGN(tol1,xm-x); 
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);        } 
          */      } else { 
       }        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
   } /* end h */      } 
   return po;      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
 }      fu=(*f)(u); 
       if (fu <= fx) { 
         if (u >= x) a=x; else b=x; 
 /*************** log-likelihood *************/        SHFT(v,w,x,u) 
 double func( double *x)          SHFT(fv,fw,fx,fu) 
 {          } else { 
   int i, ii, j, k, mi, d, kk;            if (u < x) a=u; else b=u; 
   double l, ll[NLSTATEMAX], cov[NCOVMAX];            if (fu <= fw || w == x) { 
   double **out;              v=w; 
   double sw; /* Sum of weights */              w=u; 
   double lli; /* Individual log likelihood */              fv=fw; 
   long ipmx;              fw=fu; 
   /*extern weight */            } else if (fu <= fv || v == x || v == w) { 
   /* We are differentiating ll according to initial status */              v=u; 
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/              fv=fu; 
   /*for(i=1;i<imx;i++)            } 
     printf(" %d\n",s[4][i]);          } 
   */    } 
   cov[1]=1.;    nrerror("Too many iterations in brent"); 
     *xmin=x; 
   for(k=1; k<=nlstate; k++) ll[k]=0.;    return fx; 
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){  } 
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];  
     for(mi=1; mi<= wav[i]-1; mi++){  /****************** mnbrak ***********************/
       for (ii=1;ii<=nlstate+ndeath;ii++)  
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
       for(d=0; d<dh[mi][i]; d++){              double (*func)(double)) 
         newm=savm;  { 
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;    double ulim,u,r,q, dum;
         for (kk=1; kk<=cptcovage;kk++) {    double fu; 
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];   
         }    *fa=(*func)(*ax); 
            *fb=(*func)(*bx); 
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,    if (*fb > *fa) { 
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));      SHFT(dum,*ax,*bx,dum) 
         savm=oldm;        SHFT(dum,*fb,*fa,dum) 
         oldm=newm;        } 
            *cx=(*bx)+GOLD*(*bx-*ax); 
            *fc=(*func)(*cx); 
       } /* end mult */    while (*fb > *fc) { 
            r=(*bx-*ax)*(*fb-*fc); 
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);      q=(*bx-*cx)*(*fb-*fa); 
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
       ipmx +=1;        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
       sw += weight[i];      ulim=(*bx)+GLIMIT*(*cx-*bx); 
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;      if ((*bx-u)*(u-*cx) > 0.0) { 
     } /* end of wave */        fu=(*func)(u); 
   } /* end of individual */      } else if ((*cx-u)*(u-ulim) > 0.0) { 
         fu=(*func)(u); 
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];        if (fu < *fc) { 
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */            SHFT(*fb,*fc,fu,(*func)(u)) 
   return -l;            } 
 }      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
         u=ulim; 
         fu=(*func)(u); 
 /*********** Maximum Likelihood Estimation ***************/      } else { 
         u=(*cx)+GOLD*(*cx-*bx); 
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))        fu=(*func)(u); 
 {      } 
   int i,j, iter;      SHFT(*ax,*bx,*cx,u) 
   double **xi,*delti;        SHFT(*fa,*fb,*fc,fu) 
   double fret;        } 
   xi=matrix(1,npar,1,npar);  } 
   for (i=1;i<=npar;i++)  
     for (j=1;j<=npar;j++)  /*************** linmin ************************/
       xi[i][j]=(i==j ? 1.0 : 0.0);  
   printf("Powell\n");  int ncom; 
   powell(p,xi,npar,ftol,&iter,&fret,func);  double *pcom,*xicom;
   double (*nrfunc)(double []); 
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));   
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f ",iter,func(p));  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
   { 
 }    double brent(double ax, double bx, double cx, 
                  double (*f)(double), double tol, double *xmin); 
 /**** Computes Hessian and covariance matrix ***/    double f1dim(double x); 
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
 {                double *fc, double (*func)(double)); 
   double  **a,**y,*x,pd;    int j; 
   double **hess;    double xx,xmin,bx,ax; 
   int i, j,jk;    double fx,fb,fa;
   int *indx;   
     ncom=n; 
   double hessii(double p[], double delta, int theta, double delti[]);    pcom=vector(1,n); 
   double hessij(double p[], double delti[], int i, int j);    xicom=vector(1,n); 
   void lubksb(double **a, int npar, int *indx, double b[]) ;    nrfunc=func; 
   void ludcmp(double **a, int npar, int *indx, double *d) ;    for (j=1;j<=n;j++) { 
       pcom[j]=p[j]; 
   hess=matrix(1,npar,1,npar);      xicom[j]=xi[j]; 
     } 
   printf("\nCalculation of the hessian matrix. Wait...\n");    ax=0.0; 
   for (i=1;i<=npar;i++){    xx=1.0; 
     printf("%d",i);fflush(stdout);    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
     hess[i][i]=hessii(p,ftolhess,i,delti);    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
     /*printf(" %f ",p[i]);*/  #ifdef DEBUG
     /*printf(" %lf ",hess[i][i]);*/    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   }    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
    #endif
   for (i=1;i<=npar;i++) {    for (j=1;j<=n;j++) { 
     for (j=1;j<=npar;j++)  {      xi[j] *= xmin; 
       if (j>i) {      p[j] += xi[j]; 
         printf(".%d%d",i,j);fflush(stdout);    } 
         hess[i][j]=hessij(p,delti,i,j);    free_vector(xicom,1,n); 
         hess[j][i]=hess[i][j];        free_vector(pcom,1,n); 
         /*printf(" %lf ",hess[i][j]);*/  } 
       }  
     }  char *asc_diff_time(long time_sec, char ascdiff[])
   }  {
   printf("\n");    long sec_left, days, hours, minutes;
     days = (time_sec) / (60*60*24);
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");    sec_left = (time_sec) % (60*60*24);
      hours = (sec_left) / (60*60) ;
   a=matrix(1,npar,1,npar);    sec_left = (sec_left) %(60*60);
   y=matrix(1,npar,1,npar);    minutes = (sec_left) /60;
   x=vector(1,npar);    sec_left = (sec_left) % (60);
   indx=ivector(1,npar);    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
   for (i=1;i<=npar;i++)    return ascdiff;
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];  }
   ludcmp(a,npar,indx,&pd);  
   /*************** powell ************************/
   for (j=1;j<=npar;j++) {  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
     for (i=1;i<=npar;i++) x[i]=0;              double (*func)(double [])) 
     x[j]=1;  { 
     lubksb(a,npar,indx,x);    void linmin(double p[], double xi[], int n, double *fret, 
     for (i=1;i<=npar;i++){                double (*func)(double [])); 
       matcov[i][j]=x[i];    int i,ibig,j; 
     }    double del,t,*pt,*ptt,*xit;
   }    double fp,fptt;
     double *xits;
   printf("\n#Hessian matrix#\n");    int niterf, itmp;
   for (i=1;i<=npar;i++) {  
     for (j=1;j<=npar;j++) {    pt=vector(1,n); 
       printf("%.3e ",hess[i][j]);    ptt=vector(1,n); 
     }    xit=vector(1,n); 
     printf("\n");    xits=vector(1,n); 
   }    *fret=(*func)(p); 
     for (j=1;j<=n;j++) pt[j]=p[j]; 
   /* Recompute Inverse */    for (*iter=1;;++(*iter)) { 
   for (i=1;i<=npar;i++)      fp=(*fret); 
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];      ibig=0; 
   ludcmp(a,npar,indx,&pd);      del=0.0; 
       last_time=curr_time;
   /*  printf("\n#Hessian matrix recomputed#\n");      (void) gettimeofday(&curr_time,&tzp);
       printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
   for (j=1;j<=npar;j++) {      /*    fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);
     for (i=1;i<=npar;i++) x[i]=0;      fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);
     x[j]=1;      */
     lubksb(a,npar,indx,x);     for (i=1;i<=n;i++) {
     for (i=1;i<=npar;i++){        printf(" %d %.12f",i, p[i]);
       y[i][j]=x[i];        fprintf(ficlog," %d %.12lf",i, p[i]);
       printf("%.3e ",y[i][j]);        fprintf(ficrespow," %.12lf", p[i]);
     }      }
     printf("\n");      printf("\n");
   }      fprintf(ficlog,"\n");
   */      fprintf(ficrespow,"\n");fflush(ficrespow);
       if(*iter <=3){
   free_matrix(a,1,npar,1,npar);        tm = *localtime(&curr_time.tv_sec);
   free_matrix(y,1,npar,1,npar);        strcpy(strcurr,asctime(&tm));
   free_vector(x,1,npar);  /*       asctime_r(&tm,strcurr); */
   free_ivector(indx,1,npar);        forecast_time=curr_time; 
   free_matrix(hess,1,npar,1,npar);        itmp = strlen(strcurr);
         if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
           strcurr[itmp-1]='\0';
 }        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
         fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
 /*************** hessian matrix ****************/        for(niterf=10;niterf<=30;niterf+=10){
 double hessii( double x[], double delta, int theta, double delti[])          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
 {          tmf = *localtime(&forecast_time.tv_sec);
   int i;  /*      asctime_r(&tmf,strfor); */
   int l=1, lmax=20;          strcpy(strfor,asctime(&tmf));
   double k1,k2;          itmp = strlen(strfor);
   double p2[NPARMAX+1];          if(strfor[itmp-1]=='\n')
   double res;          strfor[itmp-1]='\0';
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
   double fx;          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
   int k=0,kmax=10;        }
   double l1;      }
       for (i=1;i<=n;i++) { 
   fx=func(x);        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
   for (i=1;i<=npar;i++) p2[i]=x[i];        fptt=(*fret); 
   for(l=0 ; l <=lmax; l++){  #ifdef DEBUG
     l1=pow(10,l);        printf("fret=%lf \n",*fret);
     delts=delt;        fprintf(ficlog,"fret=%lf \n",*fret);
     for(k=1 ; k <kmax; k=k+1){  #endif
       delt = delta*(l1*k);        printf("%d",i);fflush(stdout);
       p2[theta]=x[theta] +delt;        fprintf(ficlog,"%d",i);fflush(ficlog);
       k1=func(p2)-fx;        linmin(p,xit,n,fret,func); 
       p2[theta]=x[theta]-delt;        if (fabs(fptt-(*fret)) > del) { 
       k2=func(p2)-fx;          del=fabs(fptt-(*fret)); 
       /*res= (k1-2.0*fx+k2)/delt/delt; */          ibig=i; 
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */        } 
        #ifdef DEBUG
 #ifdef DEBUG        printf("%d %.12e",i,(*fret));
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);        fprintf(ficlog,"%d %.12e",i,(*fret));
 #endif        for (j=1;j<=n;j++) {
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){          printf(" x(%d)=%.12e",j,xit[j]);
         k=kmax;          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
       }        }
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */        for(j=1;j<=n;j++) {
         k=kmax; l=lmax*10.;          printf(" p=%.12e",p[j]);
       }          fprintf(ficlog," p=%.12e",p[j]);
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){        }
         delts=delt;        printf("\n");
       }        fprintf(ficlog,"\n");
     }  #endif
   }      } 
   delti[theta]=delts;      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
   return res;  #ifdef DEBUG
          int k[2],l;
 }        k[0]=1;
         k[1]=-1;
 double hessij( double x[], double delti[], int thetai,int thetaj)        printf("Max: %.12e",(*func)(p));
 {        fprintf(ficlog,"Max: %.12e",(*func)(p));
   int i;        for (j=1;j<=n;j++) {
   int l=1, l1, lmax=20;          printf(" %.12e",p[j]);
   double k1,k2,k3,k4,res,fx;          fprintf(ficlog," %.12e",p[j]);
   double p2[NPARMAX+1];        }
   int k;        printf("\n");
         fprintf(ficlog,"\n");
   fx=func(x);        for(l=0;l<=1;l++) {
   for (k=1; k<=2; k++) {          for (j=1;j<=n;j++) {
     for (i=1;i<=npar;i++) p2[i]=x[i];            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
     p2[thetai]=x[thetai]+delti[thetai]/k;            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
     k1=func(p2)-fx;          }
            printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
     p2[thetai]=x[thetai]+delti[thetai]/k;          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;        }
     k2=func(p2)-fx;  #endif
    
     p2[thetai]=x[thetai]-delti[thetai]/k;  
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;        free_vector(xit,1,n); 
     k3=func(p2)-fx;        free_vector(xits,1,n); 
          free_vector(ptt,1,n); 
     p2[thetai]=x[thetai]-delti[thetai]/k;        free_vector(pt,1,n); 
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;        return; 
     k4=func(p2)-fx;      } 
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
 #ifdef DEBUG      for (j=1;j<=n;j++) { 
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);        ptt[j]=2.0*p[j]-pt[j]; 
 #endif        xit[j]=p[j]-pt[j]; 
   }        pt[j]=p[j]; 
   return res;      } 
 }      fptt=(*func)(ptt); 
       if (fptt < fp) { 
 /************** Inverse of matrix **************/        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
 void ludcmp(double **a, int n, int *indx, double *d)        if (t < 0.0) { 
 {          linmin(p,xit,n,fret,func); 
   int i,imax,j,k;          for (j=1;j<=n;j++) { 
   double big,dum,sum,temp;            xi[j][ibig]=xi[j][n]; 
   double *vv;            xi[j][n]=xit[j]; 
            }
   vv=vector(1,n);  #ifdef DEBUG
   *d=1.0;          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   for (i=1;i<=n;i++) {          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
     big=0.0;          for(j=1;j<=n;j++){
     for (j=1;j<=n;j++)            printf(" %.12e",xit[j]);
       if ((temp=fabs(a[i][j])) > big) big=temp;            fprintf(ficlog," %.12e",xit[j]);
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");          }
     vv[i]=1.0/big;          printf("\n");
   }          fprintf(ficlog,"\n");
   for (j=1;j<=n;j++) {  #endif
     for (i=1;i<j;i++) {        }
       sum=a[i][j];      } 
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];    } 
       a[i][j]=sum;  } 
     }  
     big=0.0;  /**** Prevalence limit (stable or period prevalence)  ****************/
     for (i=j;i<=n;i++) {  
       sum=a[i][j];  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
       for (k=1;k<j;k++)  {
         sum -= a[i][k]*a[k][j];    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
       a[i][j]=sum;       matrix by transitions matrix until convergence is reached */
       if ( (dum=vv[i]*fabs(sum)) >= big) {  
         big=dum;    int i, ii,j,k;
         imax=i;    double min, max, maxmin, maxmax,sumnew=0.;
       }    double **matprod2();
     }    double **out, cov[NCOVMAX], **pmij();
     if (j != imax) {    double **newm;
       for (k=1;k<=n;k++) {    double agefin, delaymax=50 ; /* Max number of years to converge */
         dum=a[imax][k];  
         a[imax][k]=a[j][k];    for (ii=1;ii<=nlstate+ndeath;ii++)
         a[j][k]=dum;      for (j=1;j<=nlstate+ndeath;j++){
       }        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       *d = -(*d);      }
       vv[imax]=vv[j];  
     }     cov[1]=1.;
     indx[j]=imax;   
     if (a[j][j] == 0.0) a[j][j]=TINY;   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     if (j != n) {    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
       dum=1.0/(a[j][j]);      newm=savm;
       for (i=j+1;i<=n;i++) a[i][j] *= dum;      /* Covariates have to be included here again */
     }       cov[2]=agefin;
   }    
   free_vector(vv,1,n);  /* Doesn't work */        for (k=1; k<=cptcovn;k++) {
 ;          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
 }          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
         }
 void lubksb(double **a, int n, int *indx, double b[])        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
 {        for (k=1; k<=cptcovprod;k++)
   int i,ii=0,ip,j;          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   double sum;  
          /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
   for (i=1;i<=n;i++) {        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
     ip=indx[i];        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
     sum=b[ip];      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
     b[ip]=b[i];  
     if (ii)      savm=oldm;
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];      oldm=newm;
     else if (sum) ii=i;      maxmax=0.;
     b[i]=sum;      for(j=1;j<=nlstate;j++){
   }        min=1.;
   for (i=n;i>=1;i--) {        max=0.;
     sum=b[i];        for(i=1; i<=nlstate; i++) {
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];          sumnew=0;
     b[i]=sum/a[i][i];          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
   }          prlim[i][j]= newm[i][j]/(1-sumnew);
 }          max=FMAX(max,prlim[i][j]);
           min=FMIN(min,prlim[i][j]);
 /************ Frequencies ********************/        }
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2)        maxmin=max-min;
 {  /* Some frequencies */        maxmax=FMAX(maxmax,maxmin);
        }
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;      if(maxmax < ftolpl){
   double ***freq; /* Frequencies */        return prlim;
   double *pp;      }
   double pos, k2, dateintsum=0,k2cpt=0;    }
   FILE *ficresp;  }
   char fileresp[FILENAMELENGTH];  
   /*************** transition probabilities ***************/ 
   pp=vector(1,nlstate);  
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
   strcpy(fileresp,"p");  {
   strcat(fileresp,fileres);    double s1, s2;
   if((ficresp=fopen(fileresp,"w"))==NULL) {    /*double t34;*/
     printf("Problem with prevalence resultfile: %s\n", fileresp);    int i,j,j1, nc, ii, jj;
     exit(0);  
   }      for(i=1; i<= nlstate; i++){
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);        for(j=1; j<i;j++){
   j1=0;          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
             /*s2 += param[i][j][nc]*cov[nc];*/
   j=cptcoveff;            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
   if (cptcovn<1) {j=1;ncodemax[1]=1;}  /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
           }
   for(k1=1; k1<=j;k1++){          ps[i][j]=s2;
    for(i1=1; i1<=ncodemax[k1];i1++){  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
        j1++;        }
        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);        for(j=i+1; j<=nlstate+ndeath;j++){
          scanf("%d", i);*/          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
         for (i=-1; i<=nlstate+ndeath; i++)              s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
          for (jk=-1; jk<=nlstate+ndeath; jk++)    /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
            for(m=agemin; m <= agemax+3; m++)          }
              freq[i][jk][m]=0;          ps[i][j]=s2;
         }
         dateintsum=0;      }
         k2cpt=0;      /*ps[3][2]=1;*/
        for (i=1; i<=imx; i++) {      
          bool=1;      for(i=1; i<= nlstate; i++){
          if  (cptcovn>0) {        s1=0;
            for (z1=1; z1<=cptcoveff; z1++)        for(j=1; j<i; j++)
              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])          s1+=exp(ps[i][j]);
                bool=0;        for(j=i+1; j<=nlstate+ndeath; j++)
          }          s1+=exp(ps[i][j]);
          if (bool==1) {        ps[i][i]=1./(s1+1.);
            for(m=firstpass; m<=lastpass; m++){        for(j=1; j<i; j++)
              k2=anint[m][i]+(mint[m][i]/12.);          ps[i][j]= exp(ps[i][j])*ps[i][i];
              if ((k2>=dateprev1) && (k2<=dateprev2)) {        for(j=i+1; j<=nlstate+ndeath; j++)
                if(agev[m][i]==0) agev[m][i]=agemax+1;          ps[i][j]= exp(ps[i][j])*ps[i][i];
                if(agev[m][i]==1) agev[m][i]=agemax+2;        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
                freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];      } /* end i */
                freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];      
                if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
                  dateintsum=dateintsum+k2;        for(jj=1; jj<= nlstate+ndeath; jj++){
                  k2cpt++;          ps[ii][jj]=0;
                }          ps[ii][ii]=1;
         }
              }      }
            }      
          }  
        }  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
         if  (cptcovn>0) {  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
          fprintf(ficresp, "\n#********** Variable ");  /*         printf("ddd %lf ",ps[ii][jj]); */
          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);  /*       } */
        fprintf(ficresp, "**********\n#");  /*       printf("\n "); */
         }  /*        } */
        for(i=1; i<=nlstate;i++)  /*        printf("\n ");printf("%lf ",cov[2]); */
          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);         /*
        fprintf(ficresp, "\n");        for(i=1; i<= npar; i++) printf("%f ",x[i]);
                goto end;*/
   for(i=(int)agemin; i <= (int)agemax+3; i++){      return ps;
     if(i==(int)agemax+3)  }
       printf("Total");  
     else  /**************** Product of 2 matrices ******************/
       printf("Age %d", i);  
     for(jk=1; jk <=nlstate ; jk++){  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
       for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)  {
         pp[jk] += freq[jk][m][i];    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
     }       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
     for(jk=1; jk <=nlstate ; jk++){    /* in, b, out are matrice of pointers which should have been initialized 
       for(m=-1, pos=0; m <=0 ; m++)       before: only the contents of out is modified. The function returns
         pos += freq[jk][m][i];       a pointer to pointers identical to out */
       if(pp[jk]>=1.e-10)    long i, j, k;
         printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);    for(i=nrl; i<= nrh; i++)
       else      for(k=ncolol; k<=ncoloh; k++)
         printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);        for(j=ncl,out[i][k]=0.; j<=nch; j++)
     }          out[i][k] +=in[i][j]*b[j][k];
   
      for(jk=1; jk <=nlstate ; jk++){    return out;
       for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)  }
         pp[jk] += freq[jk][m][i];  
      }  
   /************* Higher Matrix Product ***************/
     for(jk=1,pos=0; jk <=nlstate ; jk++)  
       pos += pp[jk];  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
     for(jk=1; jk <=nlstate ; jk++){  {
       if(pos>=1.e-5)    /* Computes the transition matrix starting at age 'age' over 
         printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);       'nhstepm*hstepm*stepm' months (i.e. until
       else       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
         printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);       nhstepm*hstepm matrices. 
       if( i <= (int) agemax){       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
         if(pos>=1.e-5){       (typically every 2 years instead of every month which is too big 
           fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);       for the memory).
           probs[i][jk][j1]= pp[jk]/pos;       Model is determined by parameters x and covariates have to be 
           /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/       included manually here. 
         }  
       else       */
           fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);  
       }    int i, j, d, h, k;
     }    double **out, cov[NCOVMAX];
     for(jk=-1; jk <=nlstate+ndeath; jk++)    double **newm;
       for(m=-1; m <=nlstate+ndeath; m++)  
         if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);    /* Hstepm could be zero and should return the unit matrix */
     if(i <= (int) agemax)    for (i=1;i<=nlstate+ndeath;i++)
       fprintf(ficresp,"\n");      for (j=1;j<=nlstate+ndeath;j++){
     printf("\n");        oldm[i][j]=(i==j ? 1.0 : 0.0);
     }        po[i][j][0]=(i==j ? 1.0 : 0.0);
     }      }
  }    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   dateintmean=dateintsum/k2cpt;    for(h=1; h <=nhstepm; h++){
        for(d=1; d <=hstepm; d++){
   fclose(ficresp);        newm=savm;
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);        /* Covariates have to be included here again */
   free_vector(pp,1,nlstate);        cov[1]=1.;
         cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
   /* End of Freq */        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
 }        for (k=1; k<=cptcovage;k++)
           cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
 /************ Prevalence ********************/        for (k=1; k<=cptcovprod;k++)
 void prevalence(int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
 {  /* Some frequencies */  
    
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
   double ***freq; /* Frequencies */        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
   double *pp;        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
   double pos, k2;                     pmij(pmmij,cov,ncovmodel,x,nlstate));
         savm=oldm;
   pp=vector(1,nlstate);        oldm=newm;
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);      }
        for(i=1; i<=nlstate+ndeath; i++)
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);        for(j=1;j<=nlstate+ndeath;j++) {
   j1=0;          po[i][j][h]=newm[i][j];
            /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
   j=cptcoveff;           */
   if (cptcovn<1) {j=1;ncodemax[1]=1;}        }
      } /* end h */
  for(k1=1; k1<=j;k1++){    return po;
     for(i1=1; i1<=ncodemax[k1];i1++){  }
       j1++;  
    
       for (i=-1; i<=nlstate+ndeath; i++)    /*************** log-likelihood *************/
         for (jk=-1; jk<=nlstate+ndeath; jk++)    double func( double *x)
           for(m=agemin; m <= agemax+3; m++)  {
             freq[i][jk][m]=0;    int i, ii, j, k, mi, d, kk;
          double l, ll[NLSTATEMAX], cov[NCOVMAX];
       for (i=1; i<=imx; i++) {    double **out;
         bool=1;    double sw; /* Sum of weights */
         if  (cptcovn>0) {    double lli; /* Individual log likelihood */
           for (z1=1; z1<=cptcoveff; z1++)    int s1, s2;
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])    double bbh, survp;
               bool=0;    long ipmx;
         }    /*extern weight */
         if (bool==1) {    /* We are differentiating ll according to initial status */
           for(m=firstpass; m<=lastpass; m++){    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
             k2=anint[m][i]+(mint[m][i]/12.);    /*for(i=1;i<imx;i++) 
             if ((k2>=dateprev1) && (k2<=dateprev2)) {      printf(" %d\n",s[4][i]);
               if(agev[m][i]==0) agev[m][i]=agemax+1;    */
               if(agev[m][i]==1) agev[m][i]=agemax+2;    cov[1]=1.;
               freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-1/12.)] += weight[i];  
               freq[s[m][i]][s[m+1][i]][(int)(agemax+3+1)] += weight[i];      for(k=1; k<=nlstate; k++) ll[k]=0.;
             }  
           }    if(mle==1){
         }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
              for(mi=1; mi<= wav[i]-1; mi++){
         for(i=(int)agemin; i <= (int)agemax+3; i++){          for (ii=1;ii<=nlstate+ndeath;ii++)
           for(jk=1; jk <=nlstate ; jk++){            for (j=1;j<=nlstate+ndeath;j++){
             for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               pp[jk] += freq[jk][m][i];              savm[ii][j]=(ii==j ? 1.0 : 0.0);
           }            }
           for(jk=1; jk <=nlstate ; jk++){          for(d=0; d<dh[mi][i]; d++){
             for(m=-1, pos=0; m <=0 ; m++)            newm=savm;
             pos += freq[jk][m][i];            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         }            for (kk=1; kk<=cptcovage;kk++) {
                      cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
          for(jk=1; jk <=nlstate ; jk++){            }
            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
              pp[jk] += freq[jk][m][i];                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
          }            savm=oldm;
                      oldm=newm;
          for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];          } /* end mult */
         
          for(jk=1; jk <=nlstate ; jk++){                    /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
            if( i <= (int) agemax){          /* But now since version 0.9 we anticipate for bias at large stepm.
              if(pos>=1.e-5){           * If stepm is larger than one month (smallest stepm) and if the exact delay 
                probs[i][jk][j1]= pp[jk]/pos;           * (in months) between two waves is not a multiple of stepm, we rounded to 
              }           * the nearest (and in case of equal distance, to the lowest) interval but now
            }           * we keep into memory the bias bh[mi][i] and also the previous matrix product
          }           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
                     * probability in order to take into account the bias as a fraction of the way
         }           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
     }           * -stepm/2 to stepm/2 .
   }           * For stepm=1 the results are the same as for previous versions of Imach.
             * For stepm > 1 the results are less biased than in previous versions. 
             */
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);          s1=s[mw[mi][i]][i];
   free_vector(pp,1,nlstate);          s2=s[mw[mi+1][i]][i];
            bbh=(double)bh[mi][i]/(double)stepm; 
 }  /* End of Freq */          /* bias bh is positive if real duration
            * is higher than the multiple of stepm and negative otherwise.
 /************* Waves Concatenation ***************/           */
           /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)          if( s2 > nlstate){ 
 {            /* i.e. if s2 is a death state and if the date of death is known 
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.               then the contribution to the likelihood is the probability to 
      Death is a valid wave (if date is known).               die between last step unit time and current  step unit time, 
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i               which is also equal to probability to die before dh 
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]               minus probability to die before dh-stepm . 
      and mw[mi+1][i]. dh depends on stepm.               In version up to 0.92 likelihood was computed
      */          as if date of death was unknown. Death was treated as any other
           health state: the date of the interview describes the actual state
   int i, mi, m;          and not the date of a change in health state. The former idea was
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;          to consider that at each interview the state was recorded
      double sum=0., jmean=0.;*/          (healthy, disable or death) and IMaCh was corrected; but when we
           introduced the exact date of death then we should have modified
   int j, k=0,jk, ju, jl;          the contribution of an exact death to the likelihood. This new
   double sum=0.;          contribution is smaller and very dependent of the step unit
   jmin=1e+5;          stepm. It is no more the probability to die between last interview
   jmax=-1;          and month of death but the probability to survive from last
   jmean=0.;          interview up to one month before death multiplied by the
   for(i=1; i<=imx; i++){          probability to die within a month. Thanks to Chris
     mi=0;          Jackson for correcting this bug.  Former versions increased
     m=firstpass;          mortality artificially. The bad side is that we add another loop
     while(s[m][i] <= nlstate){          which slows down the processing. The difference can be up to 10%
       if(s[m][i]>=1)          lower mortality.
         mw[++mi][i]=m;            */
       if(m >=lastpass)            lli=log(out[s1][s2] - savm[s1][s2]);
         break;  
       else  
         m++;          } else if  (s2==-2) {
     }/* end while */            for (j=1,survp=0. ; j<=nlstate; j++) 
     if (s[m][i] > nlstate){              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
       mi++;     /* Death is another wave */            /*survp += out[s1][j]; */
       /* if(mi==0)  never been interviewed correctly before death */            lli= log(survp);
          /* Only death is a correct wave */          }
       mw[mi][i]=m;          
     }          else if  (s2==-4) { 
             for (j=3,survp=0. ; j<=nlstate; j++)  
     wav[i]=mi;              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
     if(mi==0)            lli= log(survp); 
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);          } 
   }  
           else if  (s2==-5) { 
   for(i=1; i<=imx; i++){            for (j=1,survp=0. ; j<=2; j++)  
     for(mi=1; mi<wav[i];mi++){              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
       if (stepm <=0)            lli= log(survp); 
         dh[mi][i]=1;          } 
       else{          
         if (s[mw[mi+1][i]][i] > nlstate) {          else{
           if (agedc[i] < 2*AGESUP) {            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
           if(j==0) j=1;  /* Survives at least one month after exam */          } 
           k=k+1;          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
           if (j >= jmax) jmax=j;          /*if(lli ==000.0)*/
           if (j <= jmin) jmin=j;          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
           sum=sum+j;          ipmx +=1;
           /* if (j<10) printf("j=%d num=%d ",j,i); */          sw += weight[i];
           }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         }        } /* end of wave */
         else{      } /* end of individual */
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));    }  else if(mle==2){
           k=k+1;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           if (j >= jmax) jmax=j;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
           else if (j <= jmin)jmin=j;        for(mi=1; mi<= wav[i]-1; mi++){
           /*   if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */          for (ii=1;ii<=nlstate+ndeath;ii++)
           sum=sum+j;            for (j=1;j<=nlstate+ndeath;j++){
         }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         jk= j/stepm;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         jl= j -jk*stepm;            }
         ju= j -(jk+1)*stepm;          for(d=0; d<=dh[mi][i]; d++){
         if(jl <= -ju)            newm=savm;
           dh[mi][i]=jk;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         else            for (kk=1; kk<=cptcovage;kk++) {
           dh[mi][i]=jk+1;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         if(dh[mi][i]==0)            }
           dh[mi][i]=1; /* At least one step */            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     }            savm=oldm;
   }            oldm=newm;
   jmean=sum/k;          } /* end mult */
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);        
  }          s1=s[mw[mi][i]][i];
 /*********** Tricode ****************************/          s2=s[mw[mi+1][i]][i];
 void tricode(int *Tvar, int **nbcode, int imx)          bbh=(double)bh[mi][i]/(double)stepm; 
 {          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
   int Ndum[20],ij=1, k, j, i;          ipmx +=1;
   int cptcode=0;          sw += weight[i];
   cptcoveff=0;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
          } /* end of wave */
   for (k=0; k<19; k++) Ndum[k]=0;      } /* end of individual */
   for (k=1; k<=7; k++) ncodemax[k]=0;    }  else if(mle==3){  /* exponential inter-extrapolation */
       for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     for (i=1; i<=imx; i++) {        for(mi=1; mi<= wav[i]-1; mi++){
       ij=(int)(covar[Tvar[j]][i]);          for (ii=1;ii<=nlstate+ndeath;ii++)
       Ndum[ij]++;            for (j=1;j<=nlstate+ndeath;j++){
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       if (ij > cptcode) cptcode=ij;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     }            }
           for(d=0; d<dh[mi][i]; d++){
     for (i=0; i<=cptcode; i++) {            newm=savm;
       if(Ndum[i]!=0) ncodemax[j]++;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     }            for (kk=1; kk<=cptcovage;kk++) {
     ij=1;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             }
             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     for (i=1; i<=ncodemax[j]; i++) {                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       for (k=0; k<=19; k++) {            savm=oldm;
         if (Ndum[k] != 0) {            oldm=newm;
           nbcode[Tvar[j]][ij]=k;          } /* end mult */
           ij++;        
         }          s1=s[mw[mi][i]][i];
         if (ij > ncodemax[j]) break;          s2=s[mw[mi+1][i]][i];
       }            bbh=(double)bh[mi][i]/(double)stepm; 
     }          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   }            ipmx +=1;
           sw += weight[i];
  for (k=0; k<19; k++) Ndum[k]=0;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         } /* end of wave */
  for (i=1; i<=ncovmodel-2; i++) {      } /* end of individual */
       ij=Tvar[i];    }else if (mle==4){  /* ml=4 no inter-extrapolation */
       Ndum[ij]++;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(mi=1; mi<= wav[i]-1; mi++){
  ij=1;          for (ii=1;ii<=nlstate+ndeath;ii++)
  for (i=1; i<=10; i++) {            for (j=1;j<=nlstate+ndeath;j++){
    if((Ndum[i]!=0) && (i<=ncov)){              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
      Tvaraff[ij]=i;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
      ij++;            }
    }          for(d=0; d<dh[mi][i]; d++){
  }            newm=savm;
              cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     cptcoveff=ij-1;            for (kk=1; kk<=cptcovage;kk++) {
 }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             }
 /*********** Health Expectancies ****************/          
             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij)                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 {            savm=oldm;
   /* Health expectancies */            oldm=newm;
   int i, j, nhstepm, hstepm, h;          } /* end mult */
   double age, agelim,hf;        
   double ***p3mat;          s1=s[mw[mi][i]][i];
            s2=s[mw[mi+1][i]][i];
   fprintf(ficreseij,"# Health expectancies\n");          if( s2 > nlstate){ 
   fprintf(ficreseij,"# Age");            lli=log(out[s1][s2] - savm[s1][s2]);
   for(i=1; i<=nlstate;i++)          }else{
     for(j=1; j<=nlstate;j++)            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
       fprintf(ficreseij," %1d-%1d",i,j);          }
   fprintf(ficreseij,"\n");          ipmx +=1;
           sw += weight[i];
   hstepm=1*YEARM; /*  Every j years of age (in month) */          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
         } /* end of wave */
   agelim=AGESUP;      } /* end of individual */
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
     /* nhstepm age range expressed in number of stepm */      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     nhstepm=(int) rint((agelim-age)*YEARM/stepm);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     /* Typically if 20 years = 20*12/6=40 stepm */        for(mi=1; mi<= wav[i]-1; mi++){
     if (stepm >= YEARM) hstepm=1;          for (ii=1;ii<=nlstate+ndeath;ii++)
     nhstepm = nhstepm/hstepm;/* Expressed in hstepm, typically 40/4=10 */            for (j=1;j<=nlstate+ndeath;j++){
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     /* Computed by stepm unit matrices, product of hstepm matrices, stored              savm[ii][j]=(ii==j ? 1.0 : 0.0);
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */            }
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);            for(d=0; d<dh[mi][i]; d++){
             newm=savm;
             cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     for(i=1; i<=nlstate;i++)            for (kk=1; kk<=cptcovage;kk++) {
       for(j=1; j<=nlstate;j++)              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm; h++){            }
           eij[i][j][(int)age] +=p3mat[i][j][h];          
         }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                             1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     hf=1;            savm=oldm;
     if (stepm >= YEARM) hf=stepm/YEARM;            oldm=newm;
     fprintf(ficreseij,"%.0f",age );          } /* end mult */
     for(i=1; i<=nlstate;i++)        
       for(j=1; j<=nlstate;j++){          s1=s[mw[mi][i]][i];
         fprintf(ficreseij," %.4f", hf*eij[i][j][(int)age]);          s2=s[mw[mi+1][i]][i];
       }          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
     fprintf(ficreseij,"\n");          ipmx +=1;
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          sw += weight[i];
   }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 }          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
         } /* end of wave */
 /************ Variance ******************/      } /* end of individual */
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)    } /* End of if */
 {    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   /* Variance of health expectancies */    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   double **newm;    return -l;
   double **dnewm,**doldm;  }
   int i, j, nhstepm, hstepm, h;  
   int k, cptcode;  /*************** log-likelihood *************/
   double *xp;  double funcone( double *x)
   double **gp, **gm;  {
   double ***gradg, ***trgradg;    /* Same as likeli but slower because of a lot of printf and if */
   double ***p3mat;    int i, ii, j, k, mi, d, kk;
   double age,agelim;    double l, ll[NLSTATEMAX], cov[NCOVMAX];
   int theta;    double **out;
     double lli; /* Individual log likelihood */
    fprintf(ficresvij,"# Covariances of life expectancies\n");    double llt;
   fprintf(ficresvij,"# Age");    int s1, s2;
   for(i=1; i<=nlstate;i++)    double bbh, survp;
     for(j=1; j<=nlstate;j++)    /*extern weight */
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);    /* We are differentiating ll according to initial status */
   fprintf(ficresvij,"\n");    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     /*for(i=1;i<imx;i++) 
   xp=vector(1,npar);      printf(" %d\n",s[4][i]);
   dnewm=matrix(1,nlstate,1,npar);    */
   doldm=matrix(1,nlstate,1,nlstate);    cov[1]=1.;
    
   hstepm=1*YEARM; /* Every year of age */    for(k=1; k<=nlstate; k++) ll[k]=0.;
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */  
   agelim = AGESUP;    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */      for(mi=1; mi<= wav[i]-1; mi++){
     if (stepm >= YEARM) hstepm=1;        for (ii=1;ii<=nlstate+ndeath;ii++)
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */          for (j=1;j<=nlstate+ndeath;j++){
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);            savm[ii][j]=(ii==j ? 1.0 : 0.0);
     gp=matrix(0,nhstepm,1,nlstate);          }
     gm=matrix(0,nhstepm,1,nlstate);        for(d=0; d<dh[mi][i]; d++){
           newm=savm;
     for(theta=1; theta <=npar; theta++){          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       for(i=1; i<=npar; i++){ /* Computes gradient */          for (kk=1; kk<=cptcovage;kk++) {
         xp[i] = x[i] + (i==theta ?delti[theta]:0);            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       }          }
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           savm=oldm;
       if (popbased==1) {          oldm=newm;
         for(i=1; i<=nlstate;i++)        } /* end mult */
           prlim[i][i]=probs[(int)age][i][ij];        
       }        s1=s[mw[mi][i]][i];
              s2=s[mw[mi+1][i]][i];
       for(j=1; j<= nlstate; j++){        bbh=(double)bh[mi][i]/(double)stepm; 
         for(h=0; h<=nhstepm; h++){        /* bias is positive if real duration
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)         * is higher than the multiple of stepm and negative otherwise.
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];         */
         }        if( s2 > nlstate && (mle <5) ){  /* Jackson */
       }          lli=log(out[s1][s2] - savm[s1][s2]);
            } else if  (s2==-2) {
       for(i=1; i<=npar; i++) /* Computes gradient */          for (j=1,survp=0. ; j<=nlstate; j++) 
         xp[i] = x[i] - (i==theta ?delti[theta]:0);            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            lli= log(survp);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        }else if (mle==1){
           lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
       if (popbased==1) {        } else if(mle==2){
         for(i=1; i<=nlstate;i++)          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
           prlim[i][i]=probs[(int)age][i][ij];        } else if(mle==3){  /* exponential inter-extrapolation */
       }          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
         } else if (mle==4){  /* mle=4 no inter-extrapolation */
       for(j=1; j<= nlstate; j++){          lli=log(out[s1][s2]); /* Original formula */
         for(h=0; h<=nhstepm; h++){        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)          lli=log(out[s1][s2]); /* Original formula */
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];        } /* End of if */
         }        ipmx +=1;
       }        sw += weight[i];
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       for(j=1; j<= nlstate; j++)  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
         for(h=0; h<=nhstepm; h++){        if(globpr){
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];          fprintf(ficresilk,"%9d %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
         }   %11.6f %11.6f %11.6f ", \
     } /* End theta */                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
                   2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
             llt +=ll[k]*gipmx/gsw;
     for(h=0; h<=nhstepm; h++)            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
       for(j=1; j<=nlstate;j++)          }
         for(theta=1; theta <=npar; theta++)          fprintf(ficresilk," %10.6f\n", -llt);
           trgradg[h][j][theta]=gradg[h][theta][j];        }
       } /* end of wave */
     for(i=1;i<=nlstate;i++)    } /* end of individual */
       for(j=1;j<=nlstate;j++)    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
         vareij[i][j][(int)age] =0.;    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
     for(h=0;h<=nhstepm;h++){    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
       for(k=0;k<=nhstepm;k++){    if(globpr==0){ /* First time we count the contributions and weights */
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);      gipmx=ipmx;
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);      gsw=sw;
         for(i=1;i<=nlstate;i++)    }
           for(j=1;j<=nlstate;j++)    return -l;
             vareij[i][j][(int)age] += doldm[i][j];  }
       }  
     }  
     h=1;  /*************** function likelione ***********/
     if (stepm >= YEARM) h=stepm/YEARM;  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
     fprintf(ficresvij,"%.0f ",age );  {
     for(i=1; i<=nlstate;i++)    /* This routine should help understanding what is done with 
       for(j=1; j<=nlstate;j++){       the selection of individuals/waves and
         fprintf(ficresvij," %.4f", h*vareij[i][j][(int)age]);       to check the exact contribution to the likelihood.
       }       Plotting could be done.
     fprintf(ficresvij,"\n");     */
     free_matrix(gp,0,nhstepm,1,nlstate);    int k;
     free_matrix(gm,0,nhstepm,1,nlstate);  
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);    if(*globpri !=0){ /* Just counts and sums, no printings */
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);      strcpy(fileresilk,"ilk"); 
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      strcat(fileresilk,fileres);
   } /* End age */      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
          printf("Problem with resultfile: %s\n", fileresilk);
   free_vector(xp,1,npar);        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
   free_matrix(doldm,1,nlstate,1,npar);      }
   free_matrix(dnewm,1,nlstate,1,nlstate);      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
       fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
 }      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
       for(k=1; k<=nlstate; k++) 
 /************ Variance of prevlim ******************/        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
 {    }
   /* Variance of prevalence limit */  
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    *fretone=(*funcone)(p);
   double **newm;    if(*globpri !=0){
   double **dnewm,**doldm;      fclose(ficresilk);
   int i, j, nhstepm, hstepm;      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
   int k, cptcode;      fflush(fichtm); 
   double *xp;    } 
   double *gp, *gm;    return;
   double **gradg, **trgradg;  }
   double age,agelim;  
   int theta;  
      /*********** Maximum Likelihood Estimation ***************/
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");  
   fprintf(ficresvpl,"# Age");  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
   for(i=1; i<=nlstate;i++)  {
       fprintf(ficresvpl," %1d-%1d",i,i);    int i,j, iter;
   fprintf(ficresvpl,"\n");    double **xi;
     double fret;
   xp=vector(1,npar);    double fretone; /* Only one call to likelihood */
   dnewm=matrix(1,nlstate,1,npar);    /*  char filerespow[FILENAMELENGTH];*/
   doldm=matrix(1,nlstate,1,nlstate);    xi=matrix(1,npar,1,npar);
      for (i=1;i<=npar;i++)
   hstepm=1*YEARM; /* Every year of age */      for (j=1;j<=npar;j++)
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */        xi[i][j]=(i==j ? 1.0 : 0.0);
   agelim = AGESUP;    printf("Powell\n");  fprintf(ficlog,"Powell\n");
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    strcpy(filerespow,"pow"); 
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    strcat(filerespow,fileres);
     if (stepm >= YEARM) hstepm=1;    if((ficrespow=fopen(filerespow,"w"))==NULL) {
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */      printf("Problem with resultfile: %s\n", filerespow);
     gradg=matrix(1,npar,1,nlstate);      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
     gp=vector(1,nlstate);    }
     gm=vector(1,nlstate);    fprintf(ficrespow,"# Powell\n# iter -2*LL");
     for (i=1;i<=nlstate;i++)
     for(theta=1; theta <=npar; theta++){      for(j=1;j<=nlstate+ndeath;j++)
       for(i=1; i<=npar; i++){ /* Computes gradient */        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    fprintf(ficrespow,"\n");
       }  
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    powell(p,xi,npar,ftol,&iter,&fret,func);
       for(i=1;i<=nlstate;i++)  
         gp[i] = prlim[i][i];    free_matrix(xi,1,npar,1,npar);
        fclose(ficrespow);
       for(i=1; i<=npar; i++) /* Computes gradient */    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
       for(i=1;i<=nlstate;i++)  
         gm[i] = prlim[i][i];  }
   
       for(i=1;i<=nlstate;i++)  /**** Computes Hessian and covariance matrix ***/
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
     } /* End theta */  {
     double  **a,**y,*x,pd;
     trgradg =matrix(1,nlstate,1,npar);    double **hess;
     int i, j,jk;
     for(j=1; j<=nlstate;j++)    int *indx;
       for(theta=1; theta <=npar; theta++)  
         trgradg[j][theta]=gradg[theta][j];    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
     double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
     for(i=1;i<=nlstate;i++)    void lubksb(double **a, int npar, int *indx, double b[]) ;
       varpl[i][(int)age] =0.;    void ludcmp(double **a, int npar, int *indx, double *d) ;
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);    double gompertz(double p[]);
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);    hess=matrix(1,npar,1,npar);
     for(i=1;i<=nlstate;i++)  
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */    printf("\nCalculation of the hessian matrix. Wait...\n");
     fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
     fprintf(ficresvpl,"%.0f ",age );    for (i=1;i<=npar;i++){
     for(i=1; i<=nlstate;i++)      printf("%d",i);fflush(stdout);
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));      fprintf(ficlog,"%d",i);fflush(ficlog);
     fprintf(ficresvpl,"\n");     
     free_vector(gp,1,nlstate);       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
     free_vector(gm,1,nlstate);      
     free_matrix(gradg,1,npar,1,nlstate);      /*  printf(" %f ",p[i]);
     free_matrix(trgradg,1,nlstate,1,npar);          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
   } /* End age */    }
     
   free_vector(xp,1,npar);    for (i=1;i<=npar;i++) {
   free_matrix(doldm,1,nlstate,1,npar);      for (j=1;j<=npar;j++)  {
   free_matrix(dnewm,1,nlstate,1,nlstate);        if (j>i) { 
           printf(".%d%d",i,j);fflush(stdout);
 }          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
           hess[i][j]=hessij(p,delti,i,j,func,npar);
 /************ Variance of one-step probabilities  ******************/          
 void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij)          hess[j][i]=hess[i][j];    
 {          /*printf(" %lf ",hess[i][j]);*/
   int i, j;        }
   int k=0, cptcode;      }
   double **dnewm,**doldm;    }
   double *xp;    printf("\n");
   double *gp, *gm;    fprintf(ficlog,"\n");
   double **gradg, **trgradg;  
   double age,agelim, cov[NCOVMAX];    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
   int theta;    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
   char fileresprob[FILENAMELENGTH];    
     a=matrix(1,npar,1,npar);
   strcpy(fileresprob,"prob");    y=matrix(1,npar,1,npar);
   strcat(fileresprob,fileres);    x=vector(1,npar);
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {    indx=ivector(1,npar);
     printf("Problem with resultfile: %s\n", fileresprob);    for (i=1;i<=npar;i++)
   }      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
   printf("Computing variance of one-step probabilities: result on file '%s' \n",fileresprob);    ludcmp(a,npar,indx,&pd);
    
     for (j=1;j<=npar;j++) {
   xp=vector(1,npar);      for (i=1;i<=npar;i++) x[i]=0;
   dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);      x[j]=1;
   doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));      lubksb(a,npar,indx,x);
        for (i=1;i<=npar;i++){ 
   cov[1]=1;        matcov[i][j]=x[i];
   for (age=bage; age<=fage; age ++){      }
     cov[2]=age;    }
     gradg=matrix(1,npar,1,9);  
     trgradg=matrix(1,9,1,npar);    printf("\n#Hessian matrix#\n");
     gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));    fprintf(ficlog,"\n#Hessian matrix#\n");
     gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));    for (i=1;i<=npar;i++) { 
          for (j=1;j<=npar;j++) { 
     for(theta=1; theta <=npar; theta++){        printf("%.3e ",hess[i][j]);
       for(i=1; i<=npar; i++)        fprintf(ficlog,"%.3e ",hess[i][j]);
         xp[i] = x[i] + (i==theta ?delti[theta]:0);      }
            printf("\n");
       pmij(pmmij,cov,ncovmodel,xp,nlstate);      fprintf(ficlog,"\n");
        }
       k=0;  
       for(i=1; i<= (nlstate+ndeath); i++){    /* Recompute Inverse */
         for(j=1; j<=(nlstate+ndeath);j++){    for (i=1;i<=npar;i++)
            k=k+1;      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
           gp[k]=pmmij[i][j];    ludcmp(a,npar,indx,&pd);
         }  
       }    /*  printf("\n#Hessian matrix recomputed#\n");
   
       for(i=1; i<=npar; i++)    for (j=1;j<=npar;j++) {
         xp[i] = x[i] - (i==theta ?delti[theta]:0);      for (i=1;i<=npar;i++) x[i]=0;
          x[j]=1;
       lubksb(a,npar,indx,x);
       pmij(pmmij,cov,ncovmodel,xp,nlstate);      for (i=1;i<=npar;i++){ 
       k=0;        y[i][j]=x[i];
       for(i=1; i<=(nlstate+ndeath); i++){        printf("%.3e ",y[i][j]);
         for(j=1; j<=(nlstate+ndeath);j++){        fprintf(ficlog,"%.3e ",y[i][j]);
           k=k+1;      }
           gm[k]=pmmij[i][j];      printf("\n");
         }      fprintf(ficlog,"\n");
       }    }
          */
        for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)  
            gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];      free_matrix(a,1,npar,1,npar);
     }    free_matrix(y,1,npar,1,npar);
     free_vector(x,1,npar);
      for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)    free_ivector(indx,1,npar);
       for(theta=1; theta <=npar; theta++)    free_matrix(hess,1,npar,1,npar);
       trgradg[j][theta]=gradg[theta][j];  
    
      matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);  }
      matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);  
   /*************** hessian matrix ****************/
      pmij(pmmij,cov,ncovmodel,x,nlstate);  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
   {
      k=0;    int i;
      for(i=1; i<=(nlstate+ndeath); i++){    int l=1, lmax=20;
        for(j=1; j<=(nlstate+ndeath);j++){    double k1,k2;
          k=k+1;    double p2[NPARMAX+1];
          gm[k]=pmmij[i][j];    double res;
         }    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
      }    double fx;
          int k=0,kmax=10;
      /*printf("\n%d ",(int)age);    double l1;
      for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){  
            fx=func(x);
     for (i=1;i<=npar;i++) p2[i]=x[i];
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));    for(l=0 ; l <=lmax; l++){
      }*/      l1=pow(10,l);
       delts=delt;
   fprintf(ficresprob,"\n%d ",(int)age);      for(k=1 ; k <kmax; k=k+1){
         delt = delta*(l1*k);
   for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){        p2[theta]=x[theta] +delt;
     if (i== 2) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);        k1=func(p2)-fx;
 if (i== 4) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);        p2[theta]=x[theta]-delt;
   }        k2=func(p2)-fx;
         /*res= (k1-2.0*fx+k2)/delt/delt; */
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));        
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);  #ifdef DEBUG
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
 }        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
  free_vector(xp,1,npar);  #endif
 fclose(ficresprob);        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
  exit(0);        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
 }          k=kmax;
         }
 /***********************************************/        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
 /**************** Main Program *****************/          k=kmax; l=lmax*10.;
 /***********************************************/        }
         else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
 /*int main(int argc, char *argv[])*/          delts=delt;
 int main()        }
 {      }
     }
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;    delti[theta]=delts;
   double agedeb, agefin,hf;    return res; 
   double agemin=1.e20, agemax=-1.e20;    
   }
   double fret;  
   double **xi,tmp,delta;  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
   {
   double dum; /* Dummy variable */    int i;
   double ***p3mat;    int l=1, l1, lmax=20;
   int *indx;    double k1,k2,k3,k4,res,fx;
   char line[MAXLINE], linepar[MAXLINE];    double p2[NPARMAX+1];
   char title[MAXLINE];    int k;
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];  
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], fileresf[FILENAMELENGTH];    fx=func(x);
   char filerest[FILENAMELENGTH];    for (k=1; k<=2; k++) {
   char fileregp[FILENAMELENGTH];      for (i=1;i<=npar;i++) p2[i]=x[i];
   char popfile[FILENAMELENGTH];      p2[thetai]=x[thetai]+delti[thetai]/k;
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   int firstobs=1, lastobs=10;      k1=func(p2)-fx;
   int sdeb, sfin; /* Status at beginning and end */    
   int c,  h , cpt,l;      p2[thetai]=x[thetai]+delti[thetai]/k;
   int ju,jl, mi;      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;      k2=func(p2)-fx;
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;    
   int mobilav=0,popforecast=0;      p2[thetai]=x[thetai]-delti[thetai]/k;
   int hstepm, nhstepm;      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   int *popage;/*boolprev=0 if date and zero if wave*/      k3=func(p2)-fx;
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2;    
       p2[thetai]=x[thetai]-delti[thetai]/k;
   double bage, fage, age, agelim, agebase;      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   double ftolpl=FTOL;      k4=func(p2)-fx;
   double **prlim;      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
   double *severity;  #ifdef DEBUG
   double ***param; /* Matrix of parameters */      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   double  *p;      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   double **matcov; /* Matrix of covariance */  #endif
   double ***delti3; /* Scale */    }
   double *delti; /* Scale */    return res;
   double ***eij, ***vareij;  }
   double **varpl; /* Variances of prevalence limits by age */  
   double *epj, vepp;  /************** Inverse of matrix **************/
   double kk1, kk2;  void ludcmp(double **a, int n, int *indx, double *d) 
   double *popeffectif,*popcount;  { 
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,jprojmean,mprojmean,anprojmean, calagedate;    int i,imax,j,k; 
   double yp,yp1,yp2;    double big,dum,sum,temp; 
     double *vv; 
   char version[80]="Imach version 64b, May 2001, INED-EUROREVES ";   
   char *alph[]={"a","a","b","c","d","e"}, str[4];    vv=vector(1,n); 
     *d=1.0; 
     for (i=1;i<=n;i++) { 
   char z[1]="c", occ;      big=0.0; 
 #include <sys/time.h>      for (j=1;j<=n;j++) 
 #include <time.h>        if ((temp=fabs(a[i][j])) > big) big=temp; 
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
        vv[i]=1.0/big; 
   /* long total_usecs;    } 
   struct timeval start_time, end_time;    for (j=1;j<=n;j++) { 
        for (i=1;i<j;i++) { 
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */        sum=a[i][j]; 
         for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
         a[i][j]=sum; 
   printf("\nIMACH, Version 0.7");      } 
   printf("\nEnter the parameter file name: ");      big=0.0; 
       for (i=j;i<=n;i++) { 
 #ifdef windows        sum=a[i][j]; 
   scanf("%s",pathtot);        for (k=1;k<j;k++) 
   getcwd(pathcd, size);          sum -= a[i][k]*a[k][j]; 
   /*cygwin_split_path(pathtot,path,optionfile);        a[i][j]=sum; 
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/        if ( (dum=vv[i]*fabs(sum)) >= big) { 
   /* cutv(path,optionfile,pathtot,'\\');*/          big=dum; 
           imax=i; 
 split(pathtot, path,optionfile);        } 
   chdir(path);      } 
   replace(pathc,path);      if (j != imax) { 
 #endif        for (k=1;k<=n;k++) { 
 #ifdef unix          dum=a[imax][k]; 
   scanf("%s",optionfile);          a[imax][k]=a[j][k]; 
 #endif          a[j][k]=dum; 
         } 
 /*-------- arguments in the command line --------*/        *d = -(*d); 
         vv[imax]=vv[j]; 
   strcpy(fileres,"r");      } 
   strcat(fileres, optionfile);      indx[j]=imax; 
       if (a[j][j] == 0.0) a[j][j]=TINY; 
   /*---------arguments file --------*/      if (j != n) { 
         dum=1.0/(a[j][j]); 
   if((ficpar=fopen(optionfile,"r"))==NULL)    {        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
     printf("Problem with optionfile %s\n",optionfile);      } 
     goto end;    } 
   }    free_vector(vv,1,n);  /* Doesn't work */
   ;
   strcpy(filereso,"o");  } 
   strcat(filereso,fileres);  
   if((ficparo=fopen(filereso,"w"))==NULL) {  void lubksb(double **a, int n, int *indx, double b[]) 
     printf("Problem with Output resultfile: %s\n", filereso);goto end;  { 
   }    int i,ii=0,ip,j; 
     double sum; 
   /* Reads comments: lines beginning with '#' */   
   while((c=getc(ficpar))=='#' && c!= EOF){    for (i=1;i<=n;i++) { 
     ungetc(c,ficpar);      ip=indx[i]; 
     fgets(line, MAXLINE, ficpar);      sum=b[ip]; 
     puts(line);      b[ip]=b[i]; 
     fputs(line,ficparo);      if (ii) 
   }        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
   ungetc(c,ficpar);      else if (sum) ii=i; 
       b[i]=sum; 
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncov, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);    } 
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate,ndeath, maxwav, mle, weightopt,model);    for (i=n;i>=1;i--) { 
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncov,nlstate,ndeath,maxwav, mle, weightopt,model);      sum=b[i]; 
 while((c=getc(ficpar))=='#' && c!= EOF){      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
     ungetc(c,ficpar);      b[i]=sum/a[i][i]; 
     fgets(line, MAXLINE, ficpar);    } 
     puts(line);  } 
     fputs(line,ficparo);  
   }  void pstamp(FILE *fichier)
   ungetc(c,ficpar);  {
      fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
      }
   covar=matrix(0,NCOVMAX,1,n);  
   cptcovn=0;  /************ Frequencies ********************/
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
   {  /* Some frequencies */
   ncovmodel=2+cptcovn;    
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
      int first;
   /* Read guess parameters */    double ***freq; /* Frequencies */
   /* Reads comments: lines beginning with '#' */    double *pp, **prop;
   while((c=getc(ficpar))=='#' && c!= EOF){    double pos,posprop, k2, dateintsum=0,k2cpt=0;
     ungetc(c,ficpar);    char fileresp[FILENAMELENGTH];
     fgets(line, MAXLINE, ficpar);    
     puts(line);    pp=vector(1,nlstate);
     fputs(line,ficparo);    prop=matrix(1,nlstate,iagemin,iagemax+3);
   }    strcpy(fileresp,"p");
   ungetc(c,ficpar);    strcat(fileresp,fileres);
      if((ficresp=fopen(fileresp,"w"))==NULL) {
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);      printf("Problem with prevalence resultfile: %s\n", fileresp);
     for(i=1; i <=nlstate; i++)      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
     for(j=1; j <=nlstate+ndeath-1; j++){      exit(0);
       fscanf(ficpar,"%1d%1d",&i1,&j1);    }
       fprintf(ficparo,"%1d%1d",i1,j1);    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
       printf("%1d%1d",i,j);    j1=0;
       for(k=1; k<=ncovmodel;k++){    
         fscanf(ficpar," %lf",&param[i][j][k]);    j=cptcoveff;
         printf(" %lf",param[i][j][k]);    if (cptcovn<1) {j=1;ncodemax[1]=1;}
         fprintf(ficparo," %lf",param[i][j][k]);  
       }    first=1;
       fscanf(ficpar,"\n");  
       printf("\n");    for(k1=1; k1<=j;k1++){
       fprintf(ficparo,"\n");      for(i1=1; i1<=ncodemax[k1];i1++){
     }        j1++;
          /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;          scanf("%d", i);*/
         for (i=-5; i<=nlstate+ndeath; i++)  
   p=param[1][1];          for (jk=-5; jk<=nlstate+ndeath; jk++)  
              for(m=iagemin; m <= iagemax+3; m++)
   /* Reads comments: lines beginning with '#' */              freq[i][jk][m]=0;
   while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);      for (i=1; i<=nlstate; i++)  
     fgets(line, MAXLINE, ficpar);        for(m=iagemin; m <= iagemax+3; m++)
     puts(line);          prop[i][m]=0;
     fputs(line,ficparo);        
   }        dateintsum=0;
   ungetc(c,ficpar);        k2cpt=0;
         for (i=1; i<=imx; i++) {
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);          bool=1;
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */          if  (cptcovn>0) {
   for(i=1; i <=nlstate; i++){            for (z1=1; z1<=cptcoveff; z1++) 
     for(j=1; j <=nlstate+ndeath-1; j++){              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
       fscanf(ficpar,"%1d%1d",&i1,&j1);                bool=0;
       printf("%1d%1d",i,j);          }
       fprintf(ficparo,"%1d%1d",i1,j1);          if (bool==1){
       for(k=1; k<=ncovmodel;k++){            for(m=firstpass; m<=lastpass; m++){
         fscanf(ficpar,"%le",&delti3[i][j][k]);              k2=anint[m][i]+(mint[m][i]/12.);
         printf(" %le",delti3[i][j][k]);              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
         fprintf(ficparo," %le",delti3[i][j][k]);                if(agev[m][i]==0) agev[m][i]=iagemax+1;
       }                if(agev[m][i]==1) agev[m][i]=iagemax+2;
       fscanf(ficpar,"\n");                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
       printf("\n");                if (m<lastpass) {
       fprintf(ficparo,"\n");                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
     }                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
   }                }
   delti=delti3[1][1];                
                  if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
   /* Reads comments: lines beginning with '#' */                  dateintsum=dateintsum+k2;
   while((c=getc(ficpar))=='#' && c!= EOF){                  k2cpt++;
     ungetc(c,ficpar);                }
     fgets(line, MAXLINE, ficpar);                /*}*/
     puts(line);            }
     fputs(line,ficparo);          }
   }        }
   ungetc(c,ficpar);         
          /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
   matcov=matrix(1,npar,1,npar);        pstamp(ficresp);
   for(i=1; i <=npar; i++){        if  (cptcovn>0) {
     fscanf(ficpar,"%s",&str);          fprintf(ficresp, "\n#********** Variable "); 
     printf("%s",str);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     fprintf(ficparo,"%s",str);          fprintf(ficresp, "**********\n#");
     for(j=1; j <=i; j++){        }
       fscanf(ficpar," %le",&matcov[i][j]);        for(i=1; i<=nlstate;i++) 
       printf(" %.5le",matcov[i][j]);          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
       fprintf(ficparo," %.5le",matcov[i][j]);        fprintf(ficresp, "\n");
     }        
     fscanf(ficpar,"\n");        for(i=iagemin; i <= iagemax+3; i++){
     printf("\n");          if(i==iagemax+3){
     fprintf(ficparo,"\n");            fprintf(ficlog,"Total");
   }          }else{
   for(i=1; i <=npar; i++)            if(first==1){
     for(j=i+1;j<=npar;j++)              first=0;
       matcov[i][j]=matcov[j][i];              printf("See log file for details...\n");
                }
   printf("\n");            fprintf(ficlog,"Age %d", i);
           }
           for(jk=1; jk <=nlstate ; jk++){
     /*-------- data file ----------*/            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
     if((ficres =fopen(fileres,"w"))==NULL) {              pp[jk] += freq[jk][m][i]; 
       printf("Problem with resultfile: %s\n", fileres);goto end;          }
     }          for(jk=1; jk <=nlstate ; jk++){
     fprintf(ficres,"#%s\n",version);            for(m=-1, pos=0; m <=0 ; m++)
                  pos += freq[jk][m][i];
     if((fic=fopen(datafile,"r"))==NULL)    {            if(pp[jk]>=1.e-10){
       printf("Problem with datafile: %s\n", datafile);goto end;              if(first==1){
     }              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
               }
     n= lastobs;              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
     severity = vector(1,maxwav);            }else{
     outcome=imatrix(1,maxwav+1,1,n);              if(first==1)
     num=ivector(1,n);                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
     moisnais=vector(1,n);              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
     annais=vector(1,n);            }
     moisdc=vector(1,n);          }
     andc=vector(1,n);  
     agedc=vector(1,n);          for(jk=1; jk <=nlstate ; jk++){
     cod=ivector(1,n);            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
     weight=vector(1,n);              pp[jk] += freq[jk][m][i];
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */          }       
     mint=matrix(1,maxwav,1,n);          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
     anint=matrix(1,maxwav,1,n);            pos += pp[jk];
     s=imatrix(1,maxwav+1,1,n);            posprop += prop[jk][i];
     adl=imatrix(1,maxwav+1,1,n);              }
     tab=ivector(1,NCOVMAX);          for(jk=1; jk <=nlstate ; jk++){
     ncodemax=ivector(1,8);            if(pos>=1.e-5){
               if(first==1)
     i=1;                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
     while (fgets(line, MAXLINE, fic) != NULL)    {              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
       if ((i >= firstobs) && (i <=lastobs)) {            }else{
                      if(first==1)
         for (j=maxwav;j>=1;j--){                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
           strcpy(line,stra);            }
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);            if( i <= iagemax){
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);              if(pos>=1.e-5){
         }                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
                        /*probs[i][jk][j1]= pp[jk]/pos;*/
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);              }
               else
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);            }
           }
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);          
         for (j=ncov;j>=1;j--){          for(jk=-1; jk <=nlstate+ndeath; jk++)
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);            for(m=-1; m <=nlstate+ndeath; m++)
         }              if(freq[jk][m][i] !=0 ) {
         num[i]=atol(stra);              if(first==1)
                        printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/              }
           if(i <= iagemax)
         i=i+1;            fprintf(ficresp,"\n");
       }          if(first==1)
     }            printf("Others in log...\n");
     /* printf("ii=%d", ij);          fprintf(ficlog,"\n");
        scanf("%d",i);*/        }
   imx=i-1; /* Number of individuals */      }
     }
   /* for (i=1; i<=imx; i++){    dateintmean=dateintsum/k2cpt; 
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;   
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;    fclose(ficresp);
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
     }    free_vector(pp,1,nlstate);
     free_matrix(prop,1,nlstate,iagemin, iagemax+3);
     for (i=1; i<=imx; i++)    /* End of Freq */
     if (covar[1][i]==0) printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));*/  }
   
   /* Calculation of the number of parameter from char model*/  /************ Prevalence ********************/
   Tvar=ivector(1,15);  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
   Tprod=ivector(1,15);  {  
   Tvaraff=ivector(1,15);    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
   Tvard=imatrix(1,15,1,2);       in each health status at the date of interview (if between dateprev1 and dateprev2).
   Tage=ivector(1,15);             We still use firstpass and lastpass as another selection.
        */
   if (strlen(model) >1){   
     j=0, j1=0, k1=1, k2=1;    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
     j=nbocc(model,'+');    double ***freq; /* Frequencies */
     j1=nbocc(model,'*');    double *pp, **prop;
     cptcovn=j+1;    double pos,posprop; 
     cptcovprod=j1;    double  y2; /* in fractional years */
        int iagemin, iagemax;
      
     strcpy(modelsav,model);    iagemin= (int) agemin;
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){    iagemax= (int) agemax;
       printf("Error. Non available option model=%s ",model);    /*pp=vector(1,nlstate);*/
       goto end;    prop=matrix(1,nlstate,iagemin,iagemax+3); 
     }    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
        j1=0;
     for(i=(j+1); i>=1;i--){    
       cutv(stra,strb,modelsav,'+');    j=cptcoveff;
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);    if (cptcovn<1) {j=1;ncodemax[1]=1;}
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/    
       /*scanf("%d",i);*/    for(k1=1; k1<=j;k1++){
       if (strchr(strb,'*')) {      for(i1=1; i1<=ncodemax[k1];i1++){
         cutv(strd,strc,strb,'*');        j1++;
         if (strcmp(strc,"age")==0) {        
           cptcovprod--;        for (i=1; i<=nlstate; i++)  
           cutv(strb,stre,strd,'V');          for(m=iagemin; m <= iagemax+3; m++)
           Tvar[i]=atoi(stre);            prop[i][m]=0.0;
           cptcovage++;       
             Tage[cptcovage]=i;        for (i=1; i<=imx; i++) { /* Each individual */
             /*printf("stre=%s ", stre);*/          bool=1;
         }          if  (cptcovn>0) {
         else if (strcmp(strd,"age")==0) {            for (z1=1; z1<=cptcoveff; z1++) 
           cptcovprod--;              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
           cutv(strb,stre,strc,'V');                bool=0;
           Tvar[i]=atoi(stre);          } 
           cptcovage++;          if (bool==1) { 
           Tage[cptcovage]=i;            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
         }              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
         else {              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
           cutv(strb,stre,strc,'V');                if(agev[m][i]==0) agev[m][i]=iagemax+1;
           Tvar[i]=ncov+k1;                if(agev[m][i]==1) agev[m][i]=iagemax+2;
           cutv(strb,strc,strd,'V');                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
           Tprod[k1]=i;                if (s[m][i]>0 && s[m][i]<=nlstate) { 
           Tvard[k1][1]=atoi(strc);                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
           Tvard[k1][2]=atoi(stre);                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
           Tvar[cptcovn+k2]=Tvard[k1][1];                  prop[s[m][i]][iagemax+3] += weight[i]; 
           Tvar[cptcovn+k2+1]=Tvard[k1][2];                } 
           for (k=1; k<=lastobs;k++)              }
             covar[ncov+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];            } /* end selection of waves */
           k1++;          }
           k2=k2+2;        }
         }        for(i=iagemin; i <= iagemax+3; i++){  
       }          
       else {          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/            posprop += prop[jk][i]; 
        /*  scanf("%d",i);*/          } 
       cutv(strd,strc,strb,'V');  
       Tvar[i]=atoi(strc);          for(jk=1; jk <=nlstate ; jk++){     
       }            if( i <=  iagemax){ 
       strcpy(modelsav,stra);                if(posprop>=1.e-5){ 
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);                probs[i][jk][j1]= prop[jk][i]/posprop;
         scanf("%d",i);*/              } 
     }            } 
 }          }/* end jk */ 
          }/* end i */ 
   /*printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);      } /* end i1 */
   printf("cptcovprod=%d ", cptcovprod);    } /* end k1 */
   scanf("%d ",i);*/    
     fclose(fic);    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
     /*free_vector(pp,1,nlstate);*/
     /*  if(mle==1){*/    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
     if (weightopt != 1) { /* Maximisation without weights*/  }  /* End of prevalence */
       for(i=1;i<=n;i++) weight[i]=1.0;  
     }  /************* Waves Concatenation ***************/
     /*-calculation of age at interview from date of interview and age at death -*/  
     agev=matrix(1,maxwav,1,imx);  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
   {
    for (i=1; i<=imx; i++)    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
      for(m=2; (m<= maxwav); m++)       Death is a valid wave (if date is known).
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
          anint[m][i]=9999;       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
          s[m][i]=-1;       and mw[mi+1][i]. dh depends on stepm.
        }       */
      
     for (i=1; i<=imx; i++)  {    int i, mi, m;
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
       for(m=1; (m<= maxwav); m++){       double sum=0., jmean=0.;*/
         if(s[m][i] >0){    int first;
           if (s[m][i] == nlstate+1) {    int j, k=0,jk, ju, jl;
             if(agedc[i]>0)    double sum=0.;
               if(moisdc[i]!=99 && andc[i]!=9999)    first=0;
               agev[m][i]=agedc[i];    jmin=1e+5;
             else {    jmax=-1;
               if (andc[i]!=9999){    jmean=0.;
               printf("Warning negative age at death: %d line:%d\n",num[i],i);    for(i=1; i<=imx; i++){
               agev[m][i]=-1;      mi=0;
               }      m=firstpass;
             }      while(s[m][i] <= nlstate){
           }        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
           else if(s[m][i] !=9){ /* Should no more exist */          mw[++mi][i]=m;
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);        if(m >=lastpass)
             if(mint[m][i]==99 || anint[m][i]==9999)          break;
               agev[m][i]=1;        else
             else if(agev[m][i] <agemin){          m++;
               agemin=agev[m][i];      }/* end while */
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/      if (s[m][i] > nlstate){
             }        mi++;     /* Death is another wave */
             else if(agev[m][i] >agemax){        /* if(mi==0)  never been interviewed correctly before death */
               agemax=agev[m][i];           /* Only death is a correct wave */
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/        mw[mi][i]=m;
             }      }
             /*agev[m][i]=anint[m][i]-annais[i];*/  
             /*   agev[m][i] = age[i]+2*m;*/      wav[i]=mi;
           }      if(mi==0){
           else { /* =9 */        nbwarn++;
             agev[m][i]=1;        if(first==0){
             s[m][i]=-1;          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
           }          first=1;
         }        }
         else /*= 0 Unknown */        if(first==1){
           agev[m][i]=1;          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
       }        }
          } /* end mi==0 */
     }    } /* End individuals */
     for (i=1; i<=imx; i++)  {  
       for(m=1; (m<= maxwav); m++){    for(i=1; i<=imx; i++){
         if (s[m][i] > (nlstate+ndeath)) {      for(mi=1; mi<wav[i];mi++){
           printf("Error: Wrong value in nlstate or ndeath\n");          if (stepm <=0)
           goto end;          dh[mi][i]=1;
         }        else{
       }          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
     }            if (agedc[i] < 2*AGESUP) {
               j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);              if(j==0) j=1;  /* Survives at least one month after exam */
               else if(j<0){
     free_vector(severity,1,maxwav);                nberr++;
     free_imatrix(outcome,1,maxwav+1,1,n);                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     free_vector(moisnais,1,n);                j=1; /* Temporary Dangerous patch */
     free_vector(annais,1,n);                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
     /* free_matrix(mint,1,maxwav,1,n);                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
        free_matrix(anint,1,maxwav,1,n);*/                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
     free_vector(moisdc,1,n);              }
     free_vector(andc,1,n);              k=k+1;
               if (j >= jmax){
                    jmax=j;
     wav=ivector(1,imx);                ijmax=i;
     dh=imatrix(1,lastpass-firstpass+1,1,imx);              }
     mw=imatrix(1,lastpass-firstpass+1,1,imx);              if (j <= jmin){
                    jmin=j;
     /* Concatenates waves */                ijmin=i;
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);              }
               sum=sum+j;
               /*if (j<0) printf("j=%d num=%d \n",j,i);*/
       Tcode=ivector(1,100);              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);            }
       ncodemax[1]=1;          }
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);          else{
                  j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
    codtab=imatrix(1,100,1,10);  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
    h=0;  
    m=pow(2,cptcoveff);            k=k+1;
              if (j >= jmax) {
    for(k=1;k<=cptcoveff; k++){              jmax=j;
      for(i=1; i <=(m/pow(2,k));i++){              ijmax=i;
        for(j=1; j <= ncodemax[k]; j++){            }
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){            else if (j <= jmin){
            h++;              jmin=j;
            if (h>m) h=1;codtab[h][k]=j;              ijmin=i;
          }            }
        }            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
      }            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
    }            if(j<0){
                  nberr++;
    /* Calculates basic frequencies. Computes observed prevalence at single age              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
        and prints on file fileres'p'. */              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
             }
                sum=sum+j;
              }
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          jk= j/stepm;
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          jl= j -jk*stepm;
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          ju= j -(jk+1)*stepm;
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */            if(jl==0){
                    dh[mi][i]=jk;
     /* For Powell, parameters are in a vector p[] starting at p[1]              bh[mi][i]=0;
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */            }else{ /* We want a negative bias in order to only have interpolation ie
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */                    * at the price of an extra matrix product in likelihood */
               dh[mi][i]=jk+1;
     if(mle==1){              bh[mi][i]=ju;
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);            }
     }          }else{
                if(jl <= -ju){
     /*--------- results files --------------*/              dh[mi][i]=jk;
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate, ndeath, maxwav, mle,weightopt,model);              bh[mi][i]=jl;       /* bias is positive if real duration
                                     * is higher than the multiple of stepm and negative otherwise.
                                    */
    jk=1;            }
    fprintf(ficres,"# Parameters\n");            else{
    printf("# Parameters\n");              dh[mi][i]=jk+1;
    for(i=1,jk=1; i <=nlstate; i++){              bh[mi][i]=ju;
      for(k=1; k <=(nlstate+ndeath); k++){            }
        if (k != i)            if(dh[mi][i]==0){
          {              dh[mi][i]=1; /* At least one step */
            printf("%d%d ",i,k);              bh[mi][i]=ju; /* At least one step */
            fprintf(ficres,"%1d%1d ",i,k);              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
            for(j=1; j <=ncovmodel; j++){            }
              printf("%f ",p[jk]);          } /* end if mle */
              fprintf(ficres,"%f ",p[jk]);        }
              jk++;      } /* end wave */
            }    }
            printf("\n");    jmean=sum/k;
            fprintf(ficres,"\n");    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
          }    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
      }   }
    }  
  if(mle==1){  /*********** Tricode ****************************/
     /* Computing hessian and covariance matrix */  void tricode(int *Tvar, int **nbcode, int imx)
     ftolhess=ftol; /* Usually correct */  {
     hesscov(matcov, p, npar, delti, ftolhess, func);    
  }    int Ndum[20],ij=1, k, j, i, maxncov=19;
     fprintf(ficres,"# Scales\n");    int cptcode=0;
     printf("# Scales\n");    cptcoveff=0; 
      for(i=1,jk=1; i <=nlstate; i++){   
       for(j=1; j <=nlstate+ndeath; j++){    for (k=0; k<maxncov; k++) Ndum[k]=0;
         if (j!=i) {    for (k=1; k<=7; k++) ncodemax[k]=0;
           fprintf(ficres,"%1d%1d",i,j);  
           printf("%1d%1d",i,j);    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
           for(k=1; k<=ncovmodel;k++){      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
             printf(" %.5e",delti[jk]);                                 modality*/ 
             fprintf(ficres," %.5e",delti[jk]);        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
             jk++;        Ndum[ij]++; /*store the modality */
           }        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
           printf("\n");        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
           fprintf(ficres,"\n");                                         Tvar[j]. If V=sex and male is 0 and 
         }                                         female is 1, then  cptcode=1.*/
       }      }
      }  
          for (i=0; i<=cptcode; i++) {
     k=1;        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
     fprintf(ficres,"# Covariance\n");      }
     printf("# Covariance\n");  
     for(i=1;i<=npar;i++){      ij=1; 
       /*  if (k>nlstate) k=1;      for (i=1; i<=ncodemax[j]; i++) {
       i1=(i-1)/(ncovmodel*nlstate)+1;        for (k=0; k<= maxncov; k++) {
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);          if (Ndum[k] != 0) {
       printf("%s%d%d",alph[k],i1,tab[i]);*/            nbcode[Tvar[j]][ij]=k; 
       fprintf(ficres,"%3d",i);            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
       printf("%3d",i);            
       for(j=1; j<=i;j++){            ij++;
         fprintf(ficres," %.5e",matcov[i][j]);          }
         printf(" %.5e",matcov[i][j]);          if (ij > ncodemax[j]) break; 
       }        }  
       fprintf(ficres,"\n");      } 
       printf("\n");    }  
       k++;  
     }   for (k=0; k< maxncov; k++) Ndum[k]=0;
      
     while((c=getc(ficpar))=='#' && c!= EOF){   for (i=1; i<=ncovmodel-2; i++) { 
       ungetc(c,ficpar);     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
       fgets(line, MAXLINE, ficpar);     ij=Tvar[i];
       puts(line);     Ndum[ij]++;
       fputs(line,ficparo);   }
     }  
     ungetc(c,ficpar);   ij=1;
     for (i=1; i<= maxncov; i++) {
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);     if((Ndum[i]!=0) && (i<=ncovcol)){
           Tvaraff[ij]=i; /*For printing */
     if (fage <= 2) {       ij++;
       bage = agemin;     }
       fage = agemax;   }
     }   
    cptcoveff=ij-1; /*Number of simple covariates*/
     fprintf(ficres,"# agemin agemax for life expectancy.\n");  }
   
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);  /*********** Health Expectancies ****************/
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);  
    void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
     while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);  {
     fgets(line, MAXLINE, ficpar);    /* Health expectancies, no variances */
     puts(line);    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;
     fputs(line,ficparo);    double age, agelim, hf;
   }    double ***p3mat;
   ungetc(c,ficpar);    double eip;
    
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mob_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);    pstamp(ficreseij);
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mob_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mob_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);    fprintf(ficreseij,"# Age");
          for(i=1; i<=nlstate;i++){
   while((c=getc(ficpar))=='#' && c!= EOF){      for(j=1; j<=nlstate;j++){
     ungetc(c,ficpar);        fprintf(ficreseij," e%1d%1d ",i,j);
     fgets(line, MAXLINE, ficpar);      }
     puts(line);      fprintf(ficreseij," e%1d. ",i);
     fputs(line,ficparo);    }
   }    fprintf(ficreseij,"\n");
   ungetc(c,ficpar);  
      
     if(estepm < stepm){
    dateprev1=anprev1+mprev1/12.+jprev1/365.;      printf ("Problem %d lower than %d\n",estepm, stepm);
    dateprev2=anprev2+mprev2/12.+jprev2/365.;    }
     else  hstepm=estepm;   
   fscanf(ficpar,"pop_based=%d\n",&popbased);    /* We compute the life expectancy from trapezoids spaced every estepm months
    fprintf(ficparo,"pop_based=%d\n",popbased);       * This is mainly to measure the difference between two models: for example
    fprintf(ficres,"pop_based=%d\n",popbased);       * if stepm=24 months pijx are given only every 2 years and by summing them
      * we are calculating an estimate of the Life Expectancy assuming a linear 
   while((c=getc(ficpar))=='#' && c!= EOF){     * progression in between and thus overestimating or underestimating according
     ungetc(c,ficpar);     * to the curvature of the survival function. If, for the same date, we 
     fgets(line, MAXLINE, ficpar);     * estimate the model with stepm=1 month, we can keep estepm to 24 months
     puts(line);     * to compare the new estimate of Life expectancy with the same linear 
     fputs(line,ficparo);     * hypothesis. A more precise result, taking into account a more precise
   }     * curvature will be obtained if estepm is as small as stepm. */
   ungetc(c,ficpar);  
   fscanf(ficpar,"popforecast=%d popfile=%s starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf\n",&popforecast,popfile,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2);    /* For example we decided to compute the life expectancy with the smallest unit */
 fprintf(ficparo,"popforecast=%d popfile=%s starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf\n",popforecast,popfile,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
 fprintf(ficres,"popforecast=%d popfile=%s starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf\n",popforecast,popfile,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2);       nhstepm is the number of hstepm from age to agelim 
        nstepm is the number of stepm from age to agelin. 
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2);       Look at hpijx to understand the reason of that which relies in memory size
        and note for a fixed period like estepm months */
  /*------------ gnuplot -------------*/    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
 chdir(pathcd);       survival function given by stepm (the optimization length). Unfortunately it
   if((ficgp=fopen("graph.plt","w"))==NULL) {       means that if the survival funtion is printed only each two years of age and if
     printf("Problem with file graph.gp");goto end;       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   }       results. So we changed our mind and took the option of the best precision.
 #ifdef windows    */
   fprintf(ficgp,"cd \"%s\" \n",pathc);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
 #endif  
 m=pow(2,cptcoveff);    agelim=AGESUP;
      /* nhstepm age range expressed in number of stepm */
  /* 1eme*/    nstepm=(int) rint((agelim-age)*YEARM/stepm); 
   for (cpt=1; cpt<= nlstate ; cpt ++) {    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
    for (k1=1; k1<= m ; k1 ++) {    /* if (stepm >= YEARM) hstepm=1;*/
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
 #ifdef windows    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",agemin,fage,fileres,k1-1,k1-1);  
 #endif    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
 #ifdef unix      /* Computed by stepm unit matrices, product of hstepm matrices, stored
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",agemin,fage,fileres);         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
 #endif      
       hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
 for (i=1; i<= nlstate ; i ++) {      
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   else fprintf(ficgp," \%%*lf (\%%*lf)");      
 }      printf("%d|",(int)age);fflush(stdout);
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
     for (i=1; i<= nlstate ; i ++) {      
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");      /* Computing expectancies */
   else fprintf(ficgp," \%%*lf (\%%*lf)");      for(i=1; i<=nlstate;i++)
 }        for(j=1; j<=nlstate;j++)
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
      for (i=1; i<= nlstate ; i ++) {            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");            
   else fprintf(ficgp," \%%*lf (\%%*lf)");            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
 }    
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));          }
 #ifdef unix  
 fprintf(ficgp,"\nset ter gif small size 400,300");      fprintf(ficreseij,"%3.0f",age );
 #endif      for(i=1; i<=nlstate;i++){
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);        eip=0;
    }        for(j=1; j<=nlstate;j++){
   }          eip +=eij[i][j][(int)age];
   /*2 eme*/          fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
         }
   for (k1=1; k1<= m ; k1 ++) {        fprintf(ficreseij,"%9.4f", eip );
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",agemin,fage);      }
          fprintf(ficreseij,"\n");
     for (i=1; i<= nlstate+1 ; i ++) {      
       k=2*i;    }
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);    free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       for (j=1; j<= nlstate+1 ; j ++) {    printf("\n");
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    fprintf(ficlog,"\n");
   else fprintf(ficgp," \%%*lf (\%%*lf)");    
 }    }
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");  
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);  void cvevsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);  
       for (j=1; j<= nlstate+1 ; j ++) {  {
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    /* Covariances of health expectancies eij and of total life expectancies according
         else fprintf(ficgp," \%%*lf (\%%*lf)");     to initial status i, ei. .
 }      */
       fprintf(ficgp,"\" t\"\" w l 0,");    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);    double age, agelim, hf;
       for (j=1; j<= nlstate+1 ; j ++) {    double ***p3matp, ***p3matm, ***varhe;
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    double **dnewm,**doldm;
   else fprintf(ficgp," \%%*lf (\%%*lf)");    double *xp, *xm;
 }      double **gp, **gm;
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");    double ***gradg, ***trgradg;
       else fprintf(ficgp,"\" t\"\" w l 0,");    int theta;
     }  
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);    double eip, vip;
   }  
      varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
   /*3eme*/    xp=vector(1,npar);
     xm=vector(1,npar);
   for (k1=1; k1<= m ; k1 ++) {    dnewm=matrix(1,nlstate*nlstate,1,npar);
     for (cpt=1; cpt<= nlstate ; cpt ++) {    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
       k=2+nlstate*(cpt-1);    
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",agemin,fage,fileres,k1-1,k1-1,k,cpt);    pstamp(ficresstdeij);
       for (i=1; i< nlstate ; i ++) {    fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+i,cpt,i+1);    fprintf(ficresstdeij,"# Age");
       }    for(i=1; i<=nlstate;i++){
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);      for(j=1; j<=nlstate;j++)
     }        fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
   }      fprintf(ficresstdeij," e%1d. ",i);
      }
   /* CV preval stat */    fprintf(ficresstdeij,"\n");
   for (k1=1; k1<= m ; k1 ++) {  
     for (cpt=1; cpt<nlstate ; cpt ++) {    pstamp(ficrescveij);
       k=3;    fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",agemin,agemax,fileres,k1,k+cpt+1,k+1);    fprintf(ficrescveij,"# Age");
       for (i=1; i< nlstate ; i ++)    for(i=1; i<=nlstate;i++)
         fprintf(ficgp,"+$%d",k+i+1);      for(j=1; j<=nlstate;j++){
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);        cptj= (j-1)*nlstate+i;
              for(i2=1; i2<=nlstate;i2++)
       l=3+(nlstate+ndeath)*cpt;          for(j2=1; j2<=nlstate;j2++){
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);            cptj2= (j2-1)*nlstate+i2;
       for (i=1; i< nlstate ; i ++) {            if(cptj2 <= cptj)
         l=3+(nlstate+ndeath)*cpt;              fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
         fprintf(ficgp,"+$%d",l+i+1);          }
       }      }
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);      fprintf(ficrescveij,"\n");
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);    
     }    if(estepm < stepm){
   }        printf ("Problem %d lower than %d\n",estepm, stepm);
     }
   /* proba elementaires */    else  hstepm=estepm;   
    for(i=1,jk=1; i <=nlstate; i++){    /* We compute the life expectancy from trapezoids spaced every estepm months
     for(k=1; k <=(nlstate+ndeath); k++){     * This is mainly to measure the difference between two models: for example
       if (k != i) {     * if stepm=24 months pijx are given only every 2 years and by summing them
         for(j=1; j <=ncovmodel; j++){     * we are calculating an estimate of the Life Expectancy assuming a linear 
           /*fprintf(ficgp,"%s%1d%1d=%f ",alph[j],i,k,p[jk]);*/     * progression in between and thus overestimating or underestimating according
           /*fprintf(ficgp,"%s",alph[1]);*/     * to the curvature of the survival function. If, for the same date, we 
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);     * estimate the model with stepm=1 month, we can keep estepm to 24 months
           jk++;     * to compare the new estimate of Life expectancy with the same linear 
           fprintf(ficgp,"\n");     * hypothesis. A more precise result, taking into account a more precise
         }     * curvature will be obtained if estepm is as small as stepm. */
       }  
     }    /* For example we decided to compute the life expectancy with the smallest unit */
     }    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
        nhstepm is the number of hstepm from age to agelim 
   for(jk=1; jk <=m; jk++) {       nstepm is the number of stepm from age to agelin. 
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",agemin,agemax);       Look at hpijx to understand the reason of that which relies in memory size
    i=1;       and note for a fixed period like estepm months */
    for(k2=1; k2<=nlstate; k2++) {    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
      k3=i;       survival function given by stepm (the optimization length). Unfortunately it
      for(k=1; k<=(nlstate+ndeath); k++) {       means that if the survival funtion is printed only each two years of age and if
        if (k != k2){       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);       results. So we changed our mind and took the option of the best precision.
 ij=1;    */
         for(j=3; j <=ncovmodel; j++) {    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {  
             fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);    /* If stepm=6 months */
             ij++;    /* nhstepm age range expressed in number of stepm */
           }    agelim=AGESUP;
           else    nstepm=(int) rint((agelim-age)*YEARM/stepm); 
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
         }    /* if (stepm >= YEARM) hstepm=1;*/
           fprintf(ficgp,")/(1");    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
            
         for(k1=1; k1 <=nlstate; k1++){      p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);    p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 ij=1;    gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
           for(j=3; j <=ncovmodel; j++){    trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {    gp=matrix(0,nhstepm,1,nlstate*nlstate);
             fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);    gm=matrix(0,nhstepm,1,nlstate*nlstate);
             ij++;  
           }    for (age=bage; age<=fage; age ++){ 
           else  
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);      /* Computed by stepm unit matrices, product of hstepm matrices, stored
           }         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
           fprintf(ficgp,")");   
         }      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);  
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");      /* Computing  Variances of health expectancies */
         i=i+ncovmodel;      /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
        }         decrease memory allocation */
      }      for(theta=1; theta <=npar; theta++){
    }        for(i=1; i<=npar; i++){ 
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
   }          xm[i] = x[i] - (i==theta ?delti[theta]:0);
            }
   fclose(ficgp);        hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
            hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
 chdir(path);    
            for(j=1; j<= nlstate; j++){
     free_ivector(wav,1,imx);          for(i=1; i<=nlstate; i++){
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);            for(h=0; h<=nhstepm-1; h++){
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);                gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
     free_ivector(num,1,n);              gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
     free_vector(agedc,1,n);            }
     /*free_matrix(covar,1,NCOVMAX,1,n);*/          }
     fclose(ficparo);        }
     fclose(ficres);       
     /*  }*/        for(ij=1; ij<= nlstate*nlstate; ij++)
              for(h=0; h<=nhstepm-1; h++){
    /*________fin mle=1_________*/            gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
              }
       }/* End theta */
        
     /* No more information from the sample is required now */      
   /* Reads comments: lines beginning with '#' */      for(h=0; h<=nhstepm-1; h++)
   while((c=getc(ficpar))=='#' && c!= EOF){        for(j=1; j<=nlstate*nlstate;j++)
     ungetc(c,ficpar);          for(theta=1; theta <=npar; theta++)
     fgets(line, MAXLINE, ficpar);            trgradg[h][j][theta]=gradg[h][theta][j];
     puts(line);      
     fputs(line,ficparo);  
   }       for(ij=1;ij<=nlstate*nlstate;ij++)
   ungetc(c,ficpar);        for(ji=1;ji<=nlstate*nlstate;ji++)
            varhe[ij][ji][(int)age] =0.;
   fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);  
   printf("agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax, bage, fage);       printf("%d|",(int)age);fflush(stdout);
   fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
 /*--------- index.htm --------*/       for(h=0;h<=nhstepm-1;h++){
         for(k=0;k<=nhstepm-1;k++){
   strcpy(optionfilehtm,optionfile);          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
   strcat(optionfilehtm,".htm");          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {          for(ij=1;ij<=nlstate*nlstate;ij++)
     printf("Problem with %s \n",optionfilehtm);goto end;            for(ji=1;ji<=nlstate*nlstate;ji++)
   }              varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
         }
  fprintf(fichtm,"<body><ul> <font size=\"6\">Imach, Version 0.7 </font> <hr size=\"2\" color=\"#EC5E5E\">      }
 Titre=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>      /* Computing expectancies */
 Total number of observations=%d <br>      hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>      for(i=1; i<=nlstate;i++)
 <hr  size=\"2\" color=\"#EC5E5E\">        for(j=1; j<=nlstate;j++)
 <li>Outputs files<br><br>\n          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
         - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n            eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
 - Estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>            
         - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
         - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>  
         - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>          }
         - Life expectancies by age and initial health status: <a href=\"e%s\">e%s</a> <br>  
         - Variances of life expectancies by age and initial health status: <a href=\"v%s\">v%s</a><br>      fprintf(ficresstdeij,"%3.0f",age );
         - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>      for(i=1; i<=nlstate;i++){
         - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br>        eip=0.;
         - Prevalences and population forecasting: <a href=\"f%s\">f%s</a> <br>        vip=0.;
 <br>",title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres);        for(j=1; j<=nlstate;j++){
           eip += eij[i][j][(int)age];
  fprintf(fichtm," <li>Graphs</li><p>");          for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
             vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
  m=cptcoveff;          fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}        }
         fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
  j1=0;      }
  for(k1=1; k1<=m;k1++){      fprintf(ficresstdeij,"\n");
    for(i1=1; i1<=ncodemax[k1];i1++){  
        j1++;      fprintf(ficrescveij,"%3.0f",age );
        if (cptcovn > 0) {      for(i=1; i<=nlstate;i++)
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");        for(j=1; j<=nlstate;j++){
          for (cpt=1; cpt<=cptcoveff;cpt++)          cptj= (j-1)*nlstate+i;
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[j1][cpt]]);          for(i2=1; i2<=nlstate;i2++)
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");            for(j2=1; j2<=nlstate;j2++){
        }              cptj2= (j2-1)*nlstate+i2;
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>              if(cptj2 <= cptj)
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);                    fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
        for(cpt=1; cpt<nlstate;cpt++){            }
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>        }
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);      fprintf(ficrescveij,"\n");
        }     
     for(cpt=1; cpt<=nlstate;cpt++) {    }
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident    free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
 interval) in state (%d): v%s%d%d.gif <br>    free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
      }    free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
      for(cpt=1; cpt<=nlstate;cpt++) {    free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>    free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);    printf("\n");
      }    fprintf(ficlog,"\n");
      fprintf(fichtm,"\n<br>- Total life expectancy by age and  
 health expectancies in states (1) and (2): e%s%d.gif<br>    free_vector(xm,1,npar);
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);    free_vector(xp,1,npar);
 fprintf(fichtm,"\n</body>");    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
    }    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
  }    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
 fclose(fichtm);  }
   
   /*--------------- Prevalence limit --------------*/  /************ Variance ******************/
    void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
   strcpy(filerespl,"pl");  {
   strcat(filerespl,fileres);    /* Variance of health expectancies */
   if((ficrespl=fopen(filerespl,"w"))==NULL) {    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;    /* double **newm;*/
   }    double **dnewm,**doldm;
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);    double **dnewmp,**doldmp;
   fprintf(ficrespl,"#Prevalence limit\n");    int i, j, nhstepm, hstepm, h, nstepm ;
   fprintf(ficrespl,"#Age ");    int k, cptcode;
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);    double *xp;
   fprintf(ficrespl,"\n");    double **gp, **gm;  /* for var eij */
      double ***gradg, ***trgradg; /*for var eij */
   prlim=matrix(1,nlstate,1,nlstate);    double **gradgp, **trgradgp; /* for var p point j */
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    double *gpp, *gmp; /* for var p point j */
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    double ***p3mat;
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    double age,agelim, hf;
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    double ***mobaverage;
   k=0;    int theta;
   agebase=agemin;    char digit[4];
   agelim=agemax;    char digitp[25];
   ftolpl=1.e-10;  
   i1=cptcoveff;    char fileresprobmorprev[FILENAMELENGTH];
   if (cptcovn < 1){i1=1;}  
     if(popbased==1){
   for(cptcov=1;cptcov<=i1;cptcov++){      if(mobilav!=0)
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        strcpy(digitp,"-populbased-mobilav-");
         k=k+1;      else strcpy(digitp,"-populbased-nomobil-");
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/    }
         fprintf(ficrespl,"\n#******");    else 
         for(j=1;j<=cptcoveff;j++)      strcpy(digitp,"-stablbased-");
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
         fprintf(ficrespl,"******\n");    if (mobilav!=0) {
              mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         for (age=agebase; age<=agelim; age++){      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           fprintf(ficrespl,"%.0f",age );        printf(" Error in movingaverage mobilav=%d\n",mobilav);
           for(i=1; i<=nlstate;i++)      }
           fprintf(ficrespl," %.5f", prlim[i][i]);    }
           fprintf(ficrespl,"\n");  
         }    strcpy(fileresprobmorprev,"prmorprev"); 
       }    sprintf(digit,"%-d",ij);
     }    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
   fclose(ficrespl);    strcat(fileresprobmorprev,digit); /* Tvar to be done */
     strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
   /*------------- h Pij x at various ages ------------*/    strcat(fileresprobmorprev,fileres);
      if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);      printf("Problem with resultfile: %s\n", fileresprobmorprev);
   if((ficrespij=fopen(filerespij,"w"))==NULL) {      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;    }
   }    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   printf("Computing pij: result on file '%s' \n", filerespij);   
      fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   stepsize=(int) (stepm+YEARM-1)/YEARM;    pstamp(ficresprobmorprev);
   /*if (stepm<=24) stepsize=2;*/    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
     fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
   agelim=AGESUP;    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
   hstepm=stepsize*YEARM; /* Every year of age */      fprintf(ficresprobmorprev," p.%-d SE",j);
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */      for(i=1; i<=nlstate;i++)
          fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
   k=0;    }  
   for(cptcov=1;cptcov<=i1;cptcov++){    fprintf(ficresprobmorprev,"\n");
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    fprintf(ficgp,"\n# Routine varevsij");
       k=k+1;    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
         fprintf(ficrespij,"\n#****** ");    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
         for(j=1;j<=cptcoveff;j++)    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  /*   } */
         fprintf(ficrespij,"******\n");    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
            pstamp(ficresvij);
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    if(popbased==1)
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */      fprintf(ficresvij,"the age specific prevalence observed in the population i.e cross-sectionally\n in each health state (popbased=1)");
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    else
           oldm=oldms;savm=savms;      fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      fprintf(ficresvij,"# Age");
           fprintf(ficrespij,"# Age");    for(i=1; i<=nlstate;i++)
           for(i=1; i<=nlstate;i++)      for(j=1; j<=nlstate;j++)
             for(j=1; j<=nlstate+ndeath;j++)        fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
               fprintf(ficrespij," %1d-%1d",i,j);    fprintf(ficresvij,"\n");
           fprintf(ficrespij,"\n");  
           for (h=0; h<=nhstepm; h++){    xp=vector(1,npar);
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );    dnewm=matrix(1,nlstate,1,npar);
             for(i=1; i<=nlstate;i++)    doldm=matrix(1,nlstate,1,nlstate);
               for(j=1; j<=nlstate+ndeath;j++)    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
             fprintf(ficrespij,"\n");  
           }    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    gpp=vector(nlstate+1,nlstate+ndeath);
           fprintf(ficrespij,"\n");    gmp=vector(nlstate+1,nlstate+ndeath);
         }    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     }    
   }    if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
   /* varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k);*/    }
     else  hstepm=estepm;   
   fclose(ficrespij);    /* For example we decided to compute the life expectancy with the smallest unit */
     /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   /*---------- Forecasting ------------------*/       nhstepm is the number of hstepm from age to agelim 
   calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;       nstepm is the number of stepm from age to agelin. 
        Look at hpijx to understand the reason of that which relies in memory size
   prevalence(agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);       and note for a fixed period like k years */
     /* We decided (b) to get a life expectancy respecting the most precise curvature of the
        survival function given by stepm (the optimization length). Unfortunately it
   strcpy(fileresf,"f");       means that if the survival funtion is printed every two years of age and if
   strcat(fileresf,fileres);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   if((ficresf=fopen(fileresf,"w"))==NULL) {       results. So we changed our mind and took the option of the best precision.
     printf("Problem with forecast resultfile: %s\n", fileresf);goto end;    */
   }    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   printf("Computing forecasting: result on file '%s' \n", fileresf);    agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   free_matrix(mint,1,maxwav,1,n);      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
   free_matrix(anint,1,maxwav,1,n);      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   free_matrix(agev,1,maxwav,1,imx);      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   /* Mobile average */      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
       gp=matrix(0,nhstepm,1,nlstate);
   if (cptcoveff==0) ncodemax[cptcoveff]=1;      gm=matrix(0,nhstepm,1,nlstate);
   
   if (mobilav==1) {  
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      for(theta=1; theta <=npar; theta++){
     for (agedeb=bage+3; agedeb<=fage-2; agedeb++)        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
       for (i=1; i<=nlstate;i++)          xp[i] = x[i] + (i==theta ?delti[theta]:0);
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)        }
           mobaverage[(int)agedeb][i][cptcod]=0.;        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
            prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     for (agedeb=bage+4; agedeb<=fage; agedeb++){  
       for (i=1; i<=nlstate;i++){        if (popbased==1) {
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){          if(mobilav ==0){
           for (cpt=0;cpt<=4;cpt++){            for(i=1; i<=nlstate;i++)
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];              prlim[i][i]=probs[(int)age][i][ij];
           }          }else{ /* mobilav */ 
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;            for(i=1; i<=nlstate;i++)
         }              prlim[i][i]=mobaverage[(int)age][i][ij];
       }          }
     }          }
   }    
         for(j=1; j<= nlstate; j++){
   stepsize=(int) (stepm+YEARM-1)/YEARM;          for(h=0; h<=nhstepm; h++){
   if (stepm<=12) stepsize=1;            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
               gp[h][j] += prlim[i][i]*p3mat[i][j][h];
   agelim=AGESUP;          }
   /*hstepm=stepsize*YEARM; *//* Every year of age */        }
   hstepm=1;        /* This for computing probability of death (h=1 means
   hstepm=hstepm/stepm; /* Typically 2 years, = 2 years/6 months = 4 */           computed over hstepm matrices product = hstepm*stepm months) 
   yp1=modf(dateintmean,&yp);           as a weighted average of prlim.
   anprojmean=yp;        */
   yp2=modf((yp1*12),&yp);        for(j=nlstate+1;j<=nlstate+ndeath;j++){
   mprojmean=yp;          for(i=1,gpp[j]=0.; i<= nlstate; i++)
   yp1=modf((yp2*30.5),&yp);            gpp[j] += prlim[i][i]*p3mat[i][j][1];
   jprojmean=yp;        }    
   fprintf(ficresf,"Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);        /* end probability of death */
   
   if (popforecast==1) {        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
     if((ficpop=fopen(popfile,"r"))==NULL)    {          xp[i] = x[i] - (i==theta ?delti[theta]:0);
       printf("Problem with population file : %s\n",popfile);goto end;        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
     }        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     popage=ivector(0,AGESUP);   
     popeffectif=vector(0,AGESUP);        if (popbased==1) {
     popcount=vector(0,AGESUP);          if(mobilav ==0){
             for(i=1; i<=nlstate;i++)
     i=1;                prlim[i][i]=probs[(int)age][i][ij];
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF)          }else{ /* mobilav */ 
       {            for(i=1; i<=nlstate;i++)
         i=i+1;              prlim[i][i]=mobaverage[(int)age][i][ij];
       }          }
     imx=i;        }
      
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];        for(j=1; j<= nlstate; j++){
   }          for(h=0; h<=nhstepm; h++){
             for(i=1, gm[h][j]=0.;i<=nlstate;i++)
   for(cptcov=1;cptcov<=i1;cptcov++){              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){          }
       k=k+1;        }
       fprintf(ficresf,"\n#******");        /* This for computing probability of death (h=1 means
       for(j=1;j<=cptcoveff;j++) {           computed over hstepm matrices product = hstepm*stepm months) 
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);           as a weighted average of prlim.
       }        */
       fprintf(ficresf,"******\n");        for(j=nlstate+1;j<=nlstate+ndeath;j++){
       fprintf(ficresf,"# StartingAge FinalAge");          for(i=1,gmp[j]=0.; i<= nlstate; i++)
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);           gmp[j] += prlim[i][i]*p3mat[i][j][1];
       if (popforecast==1)  fprintf(ficresf," [Population]");        }    
          /* end probability of death */
       for (cpt=0; cpt<=1;cpt++) {  
         fprintf(ficresf,"\n");        for(j=1; j<= nlstate; j++) /* vareij */
   fprintf(ficresf,"\nForecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);            for(h=0; h<=nhstepm; h++){
       for (agedeb=(fage-(1/12.)); agedeb>=(bage-(1/12.)); agedeb--){ /* If stepm=6 months */            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
         nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);          }
         nhstepm = nhstepm/hstepm;  
         /*printf("agedeb=%.lf stepm=%d hstepm=%d nhstepm=%d \n",agedeb,stepm,hstepm,nhstepm);*/        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
           gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
         p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        }
         oldm=oldms;savm=savms;  
         hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        } /* End theta */
                  
         for (h=0; h<=nhstepm; h++){      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
           if (h==(int) (calagedate+12*cpt)) {  
             fprintf(ficresf,"h=%d ", h);      for(h=0; h<=nhstepm; h++) /* veij */
             fprintf(ficresf,"\n %f %f ",agedeb,agedeb+h*hstepm/YEARM*stepm);        for(j=1; j<=nlstate;j++)
           }          for(theta=1; theta <=npar; theta++)
           for(j=1; j<=nlstate+ndeath;j++) {            trgradg[h][j][theta]=gradg[h][theta][j];
             kk1=0.;kk2=0;  
             for(i=1; i<=nlstate;i++) {              for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
               if (mobilav==1)        for(theta=1; theta <=npar; theta++)
                 kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb][i][cptcod];          trgradgp[j][theta]=gradgp[theta][j];
               else {    
                 kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];  
                 /*  fprintf(ficresf," p3=%.3f p=%.3f ", p3mat[i][j][h],probs[(int)(agedeb)+1][i][cptcod]);*/      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
               }      for(i=1;i<=nlstate;i++)
         for(j=1;j<=nlstate;j++)
               if (popforecast==1) kk2=kk1*popeffectif[(int)agedeb];          vareij[i][j][(int)age] =0.;
             }  
                for(h=0;h<=nhstepm;h++){
             if (h==(int)(calagedate+12*cpt)){        for(k=0;k<=nhstepm;k++){
               fprintf(ficresf," %.3f", kk1);          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
                        matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
               if (popforecast==1) fprintf(ficresf," [%.f]", kk2);          for(i=1;i<=nlstate;i++)
             }            for(j=1;j<=nlstate;j++)
           }              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
         }        }
         free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      }
       }    
       }      /* pptj */
     }      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
   }      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      for(j=nlstate+1;j<=nlstate+ndeath;j++)
   if (popforecast==1) {        for(i=nlstate+1;i<=nlstate+ndeath;i++)
     free_ivector(popage,0,AGESUP);          varppt[j][i]=doldmp[j][i];
     free_vector(popeffectif,0,AGESUP);      /* end ppptj */
     free_vector(popcount,0,AGESUP);      /*  x centered again */
   }      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
   free_imatrix(s,1,maxwav+1,1,n);      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
   free_vector(weight,1,n);   
   fclose(ficresf);      if (popbased==1) {
   /*---------- Health expectancies and variances ------------*/        if(mobilav ==0){
           for(i=1; i<=nlstate;i++)
   strcpy(filerest,"t");            prlim[i][i]=probs[(int)age][i][ij];
   strcat(filerest,fileres);        }else{ /* mobilav */ 
   if((ficrest=fopen(filerest,"w"))==NULL) {          for(i=1; i<=nlstate;i++)
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;            prlim[i][i]=mobaverage[(int)age][i][ij];
   }        }
   printf("Computing Total LEs with variances: file '%s' \n", filerest);      }
                
       /* This for computing probability of death (h=1 means
   strcpy(filerese,"e");         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
   strcat(filerese,fileres);         as a weighted average of prlim.
   if((ficreseij=fopen(filerese,"w"))==NULL) {      */
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);      for(j=nlstate+1;j<=nlstate+ndeath;j++){
   }        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
       }    
  strcpy(fileresv,"v");      /* end probability of death */
   strcat(fileresv,fileres);  
   if((ficresvij=fopen(fileresv,"w"))==NULL) {      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
   }        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);        for(i=1; i<=nlstate;i++){
           fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
   k=0;        }
   for(cptcov=1;cptcov<=i1;cptcov++){      } 
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      fprintf(ficresprobmorprev,"\n");
       k=k+1;  
       fprintf(ficrest,"\n#****** ");      fprintf(ficresvij,"%.0f ",age );
       for(j=1;j<=cptcoveff;j++)      for(i=1; i<=nlstate;i++)
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        for(j=1; j<=nlstate;j++){
       fprintf(ficrest,"******\n");          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
         }
       fprintf(ficreseij,"\n#****** ");      fprintf(ficresvij,"\n");
       for(j=1;j<=cptcoveff;j++)      free_matrix(gp,0,nhstepm,1,nlstate);
         fprintf(ficreseij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);      free_matrix(gm,0,nhstepm,1,nlstate);
       fprintf(ficreseij,"******\n");      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
       free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
       fprintf(ficresvij,"\n#****** ");      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       for(j=1;j<=cptcoveff;j++)    } /* End age */
         fprintf(ficresvij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);    free_vector(gpp,nlstate+1,nlstate+ndeath);
       fprintf(ficresvij,"******\n");    free_vector(gmp,nlstate+1,nlstate+ndeath);
     free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
       oldm=oldms;savm=savms;    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k);      /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
       oldm=oldms;savm=savms;  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
       varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
        /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
       fprintf(ficrest,"\n");    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
            fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
       hf=1;    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
       if (stepm >= YEARM) hf=stepm/YEARM;    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
       epj=vector(1,nlstate+1);  */
       for(age=bage; age <=fage ;age++){  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
         if (popbased==1) {  
           for(i=1; i<=nlstate;i++)    free_vector(xp,1,npar);
             prlim[i][i]=probs[(int)age][i][k];    free_matrix(doldm,1,nlstate,1,nlstate);
         }    free_matrix(dnewm,1,nlstate,1,npar);
            free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
         fprintf(ficrest," %.0f",age);    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
           for(i=1, epj[j]=0.;i <=nlstate;i++) {    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
             epj[j] += prlim[i][i]*hf*eij[i][j][(int)age];    fclose(ficresprobmorprev);
           }    fflush(ficgp);
           epj[nlstate+1] +=epj[j];    fflush(fichtm); 
         }  }  /* end varevsij */
         for(i=1, vepp=0.;i <=nlstate;i++)  
           for(j=1;j <=nlstate;j++)  /************ Variance of prevlim ******************/
             vepp += vareij[i][j][(int)age];  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
         fprintf(ficrest," %.2f (%.2f)", epj[nlstate+1],hf*sqrt(vepp));  {
         for(j=1;j <=nlstate;j++){    /* Variance of prevalence limit */
           fprintf(ficrest," %.2f (%.2f)", epj[j],hf*sqrt(vareij[j][j][(int)age]));    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
         }    double **newm;
         fprintf(ficrest,"\n");    double **dnewm,**doldm;
       }    int i, j, nhstepm, hstepm;
     }    int k, cptcode;
   }    double *xp;
            double *gp, *gm;
            double **gradg, **trgradg;
     double age,agelim;
     int theta;
  fclose(ficreseij);    
  fclose(ficresvij);    pstamp(ficresvpl);
   fclose(ficrest);    fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
   fclose(ficpar);    fprintf(ficresvpl,"# Age");
   free_vector(epj,1,nlstate+1);    for(i=1; i<=nlstate;i++)
   /*  scanf("%d ",i); */        fprintf(ficresvpl," %1d-%1d",i,i);
     fprintf(ficresvpl,"\n");
   /*------- Variance limit prevalence------*/    
     xp=vector(1,npar);
 strcpy(fileresvpl,"vpl");    dnewm=matrix(1,nlstate,1,npar);
   strcat(fileresvpl,fileres);    doldm=matrix(1,nlstate,1,nlstate);
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {    
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);    hstepm=1*YEARM; /* Every year of age */
     exit(0);    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
   }    agelim = AGESUP;
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
  k=0;      if (stepm >= YEARM) hstepm=1;
  for(cptcov=1;cptcov<=i1;cptcov++){      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
    for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      gradg=matrix(1,npar,1,nlstate);
      k=k+1;      gp=vector(1,nlstate);
      fprintf(ficresvpl,"\n#****** ");      gm=vector(1,nlstate);
      for(j=1;j<=cptcoveff;j++)  
        fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      for(theta=1; theta <=npar; theta++){
      fprintf(ficresvpl,"******\n");        for(i=1; i<=npar; i++){ /* Computes gradient */
                xp[i] = x[i] + (i==theta ?delti[theta]:0);
      varpl=matrix(1,nlstate,(int) bage, (int) fage);        }
      oldm=oldms;savm=savms;        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);        for(i=1;i<=nlstate;i++)
    }          gp[i] = prlim[i][i];
  }      
         for(i=1; i<=npar; i++) /* Computes gradient */
   fclose(ficresvpl);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   /*---------- End : free ----------------*/        for(i=1;i<=nlstate;i++)
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);          gm[i] = prlim[i][i];
    
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);        for(i=1;i<=nlstate;i++)
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
        } /* End theta */
    
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);      trgradg =matrix(1,nlstate,1,npar);
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);  
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);      for(j=1; j<=nlstate;j++)
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);        for(theta=1; theta <=npar; theta++)
            trgradg[j][theta]=gradg[theta][j];
   free_matrix(matcov,1,npar,1,npar);  
   free_vector(delti,1,npar);      for(i=1;i<=nlstate;i++)
          varpl[i][(int)age] =0.;
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
       matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
   printf("End of Imach\n");      for(i=1;i<=nlstate;i++)
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
    
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/      fprintf(ficresvpl,"%.0f ",age );
   /*printf("Total time was %d uSec.\n", total_usecs);*/      for(i=1; i<=nlstate;i++)
   /*------ End -----------*/        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
       fprintf(ficresvpl,"\n");
       free_vector(gp,1,nlstate);
  end:      free_vector(gm,1,nlstate);
 #ifdef windows      free_matrix(gradg,1,npar,1,nlstate);
  chdir(pathcd);      free_matrix(trgradg,1,nlstate,1,npar);
 #endif    } /* End age */
    
  system("..\\gp37mgw\\wgnuplot graph.plt");    free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,npar);
 #ifdef windows    free_matrix(dnewm,1,nlstate,1,nlstate);
   while (z[0] != 'q') {  
     chdir(pathcd);  }
     printf("\nType e to edit output files, c to start again, and q for exiting: ");  
     scanf("%s",z);  /************ Variance of one-step probabilities  ******************/
     if (z[0] == 'c') system("./imach");  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
     else if (z[0] == 'e') {  {
       chdir(path);    int i, j=0,  i1, k1, l1, t, tj;
       system(optionfilehtm);    int k2, l2, j1,  z1;
     }    int k=0,l, cptcode;
     else if (z[0] == 'q') exit(0);    int first=1, first1;
   }    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
 #endif    double **dnewm,**doldm;
 }    double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double **mu;
     double age,agelim, cov[NCOVMAX];
     double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     int theta;
     char fileresprob[FILENAMELENGTH];
     char fileresprobcov[FILENAMELENGTH];
     char fileresprobcor[FILENAMELENGTH];
   
     double ***varpij;
   
     strcpy(fileresprob,"prob"); 
     strcat(fileresprob,fileres);
     if((ficresprob=fopen(fileresprob,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprob);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     }
     strcpy(fileresprobcov,"probcov"); 
     strcat(fileresprobcov,fileres);
     if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcov);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     }
     strcpy(fileresprobcor,"probcor"); 
     strcat(fileresprobcor,fileres);
     if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcor);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     }
     printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     pstamp(ficresprob);
     fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     fprintf(ficresprob,"# Age");
     pstamp(ficresprobcov);
     fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
     fprintf(ficresprobcov,"# Age");
     pstamp(ficresprobcor);
     fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
     fprintf(ficresprobcor,"# Age");
   
   
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprob," p%1d-%1d (SE)",i,j);
         fprintf(ficresprobcov," p%1d-%1d ",i,j);
         fprintf(ficresprobcor," p%1d-%1d ",i,j);
       }  
    /* fprintf(ficresprob,"\n");
     fprintf(ficresprobcov,"\n");
     fprintf(ficresprobcor,"\n");
    */
    xp=vector(1,npar);
     dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
     varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     first=1;
     fprintf(ficgp,"\n# Routine varprob");
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
     fprintf(fichtm,"\n");
   
     fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
     file %s<br>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
   and drawn. It helps understanding how is the covariance between two incidences.\
    They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
     fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
   It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
   would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
   standard deviations wide on each axis. <br>\
    Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
    and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
   To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
   
     cov[1]=1;
     tj=cptcoveff;
     if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     j1=0;
     for(t=1; t<=tj;t++){
       for(i1=1; i1<=ncodemax[t];i1++){ 
         j1++;
         if  (cptcovn>0) {
           fprintf(ficresprob, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprob, "**********\n#\n");
           fprintf(ficresprobcov, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcov, "**********\n#\n");
           
           fprintf(ficgp, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficgp, "**********\n#\n");
           
           
           fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
           
           fprintf(ficresprobcor, "\n#********** Variable ");    
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcor, "**********\n#");    
         }
         
         for (age=bage; age<=fage; age ++){ 
           cov[2]=age;
           for (k=1; k<=cptcovn;k++) {
             cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
           }
           for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           for (k=1; k<=cptcovprod;k++)
             cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           
           gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
           trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
           gp=vector(1,(nlstate)*(nlstate+ndeath));
           gm=vector(1,(nlstate)*(nlstate+ndeath));
       
           for(theta=1; theta <=npar; theta++){
             for(i=1; i<=npar; i++)
               xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
             
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             
             k=0;
             for(i=1; i<= (nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gp[k]=pmmij[i][j];
               }
             }
             
             for(i=1; i<=npar; i++)
               xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
       
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             k=0;
             for(i=1; i<=(nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gm[k]=pmmij[i][j];
               }
             }
        
             for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
               gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
           }
   
           for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
             for(theta=1; theta <=npar; theta++)
               trgradg[j][theta]=gradg[theta][j];
           
           matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
           matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
           free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
           free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   
           pmij(pmmij,cov,ncovmodel,x,nlstate);
           
           k=0;
           for(i=1; i<=(nlstate); i++){
             for(j=1; j<=(nlstate+ndeath);j++){
               k=k+1;
               mu[k][(int) age]=pmmij[i][j];
             }
           }
           for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
             for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
               varpij[i][j][(int)age] = doldm[i][j];
   
           /*printf("\n%d ",(int)age);
             for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             }*/
   
           fprintf(ficresprob,"\n%d ",(int)age);
           fprintf(ficresprobcov,"\n%d ",(int)age);
           fprintf(ficresprobcor,"\n%d ",(int)age);
   
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
             fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
             fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
           }
           i=0;
           for (k=1; k<=(nlstate);k++){
             for (l=1; l<=(nlstate+ndeath);l++){ 
               i=i++;
               fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
               fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
               for (j=1; j<=i;j++){
                 fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                 fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
               }
             }
           }/* end of loop for state */
         } /* end of loop for age */
   
         /* Confidence intervalle of pij  */
         /*
           fprintf(ficgp,"\nset noparametric;unset label");
           fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
           fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
           fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
           fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
         */
   
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
         first1=1;
         for (k2=1; k2<=(nlstate);k2++){
           for (l2=1; l2<=(nlstate+ndeath);l2++){ 
             if(l2==k2) continue;
             j=(k2-1)*(nlstate+ndeath)+l2;
             for (k1=1; k1<=(nlstate);k1++){
               for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                 if(l1==k1) continue;
                 i=(k1-1)*(nlstate+ndeath)+l1;
                 if(i<=j) continue;
                 for (age=bage; age<=fage; age ++){ 
                   if ((int)age %5==0){
                     v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                     v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     mu1=mu[i][(int) age]/stepm*YEARM ;
                     mu2=mu[j][(int) age]/stepm*YEARM;
                     c12=cv12/sqrt(v1*v2);
                     /* Computing eigen value of matrix of covariance */
                     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     /* Eigen vectors */
                     v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                     /*v21=sqrt(1.-v11*v11); *//* error */
                     v21=(lc1-v1)/cv12*v11;
                     v12=-v21;
                     v22=v11;
                     tnalp=v21/v11;
                     if(first1==1){
                       first1=0;
                       printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     }
                     fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     /*printf(fignu*/
                     /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                     /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                     if(first==1){
                       first=0;
                       fprintf(ficgp,"\nset parametric;unset label");
                       fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                       fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
                       fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
    :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }else{
                       first=0;
                       fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }/* if first */
                   } /* age mod 5 */
                 } /* end loop age */
                 fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                 first=1;
               } /*l12 */
             } /* k12 */
           } /*l1 */
         }/* k1 */
       } /* loop covariates */
     }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
     free_vector(xp,1,npar);
     fclose(ficresprob);
     fclose(ficresprobcov);
     fclose(ficresprobcor);
     fflush(ficgp);
     fflush(fichtmcov);
   }
   
   
   /******************* Printing html file ***********/
   void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int estepm ,\
                     double jprev1, double mprev1,double anprev1, \
                     double jprev2, double mprev2,double anprev2){
     int jj1, k1, i1, cpt;
   
      fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
      <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   </ul>");
      fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
      fprintf(fichtm,"\
    - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
              stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
      fprintf(fichtm,"\
    - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
      fprintf(fichtm,"\
    - (a) Life expectancies by health status at initial age, (b) health expectancies by health status at initial age:  ei., eij (estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
   
   
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        /* Pij */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d1.png\">%s%d1.png</a><br> \
   <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
        /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d2.png\">%s%d2.png</a><br> \
   <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
          /* Period (stable) prevalence in each health state */
          for(cpt=1; cpt<nlstate;cpt++){
            fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d%d.png\">%s%d%d.png</a><br> \
   <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
          }
        for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
        }
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   
   
    fprintf(fichtm,"\
   \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
   
    fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
    fprintf(fichtm,"\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   
    fprintf(fichtm,"\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
    fprintf(fichtm,"\
    - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), eij are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences (i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
            estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
    fprintf(fichtm,"\
    - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"t"),subdirf2(fileres,"t"));
    fprintf(fichtm,"\
    - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
            subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    fflush(fichtm);
    fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2): %s%d.png<br>\
   <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
    fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
     m=pow(2,cptcoveff);
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
    /* 1eme*/
     for (cpt=1; cpt<= nlstate ; cpt ++) {
      for (k1=1; k1<= m ; k1 ++) {
        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }
        fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l 0,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
         else fprintf(ficgp,"\" t\"\" w l 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         /*       k=2+nlstate*(2*cpt-2); */
         k=2+(nlstate+1)*(cpt-1);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
           /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
           
         } 
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<=nlstate ; cpt ++) {
         k=3;
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small\nset size 0.65,0.65\n\
   unset log y\n\
   plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
         
         for (i=1; i< nlstate ; i ++)
           fprintf(ficgp,"+$%d",k+i+1);
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         
         l=3+(nlstate+ndeath)*cpt;
         fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
         for (i=1; i< nlstate ; i ++) {
           l=3+(nlstate+ndeath)*cpt;
           fprintf(ficgp,"+$%d",l+i+1);
         }
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       } 
     }  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
   
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;
                for(j=3; j <=ncovmodel; j++) {
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                    ij++;
                  }
                  else
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                      ij++;
                    }
                    else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small\n set log y\n"); 
     fprintf(ficgp, "set size 0.65,0.65\n");
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   
   
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int linei, month, year,iout;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
   
     char ca[32], cb[32], cc[32];
     char dummy[]="                         ";
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char **bp, *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char  *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Dirty */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path); /* Can be a relative path */
     if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
       printf("Current directory %s!\n",pathcd);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %d %s for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
           exit(1);
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }
         else  if(iout=sscanf(strb,"%s.") != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           exit(1);
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.",dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         exit(1);
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.") != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line,j);
         exit(1);
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       lval=strtol(strb,&endptr,10); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%d' at line number %ld %s for individual %d\nShould be a weight.  Exiting.\n",lval, i,line,linei);
         exit(1);
       }
       weight[i]=(double)(lval); 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a covar (meaning 0 for the reference or 1).  Exiting.\n",lval, linei,i, line);
           exit(1);
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a value of the %d covar (meaning 0 for the reference or 1. IMaCh does not build design variables, do it your self).  Exiting.\n",lval,linei, i,line,j);
           exit(1);
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       } 
       lstra=strlen(stra);
       
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
     fclose(fic);
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
     /* for (i=1; i<=imx; i++) */
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameters from char model */
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     agegomp=(int)agemin;
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<body>\n<title>IMaCh Cov %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       p[1]=0.0268; p[NDIM]=0.083;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
       
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
     
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       pstamp(ficrespl);
       fprintf(ficrespl,"# Period (stable) prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       pstamp(ficrespij);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /*---------- Health expectancies and variances ------------*/
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
   
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficreseij,"\n#****** ");
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
           cvevsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav, strstart);
           if(popbased==1){
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav, strstart);
           }
   
           pstamp(ficrest);
           fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n# Age ( e.. (std) ");
           for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
           fprintf(ficrest,"\n");
   
           epj=vector(1,nlstate+1);
           for(age=bage; age <=fage ;age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             if (popbased==1) {
               if(mobilav ==0){
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=probs[(int)age][i][k];
               }else{ /* mobilav */ 
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=mobaverage[(int)age][i][k];
               }
             }
           
             fprintf(ficrest," %4.0f",age);
             for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
               for(i=1, epj[j]=0.;i <=nlstate;i++) {
                 epj[j] += prlim[i][i]*eij[i][j][(int)age];
                 /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
               }
               epj[nlstate+1] +=epj[j];
             }
   
             for(i=1, vepp=0.;i <=nlstate;i++)
               for(j=1;j <=nlstate;j++)
                 vepp += vareij[i][j][(int)age];
             fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
             for(j=1;j <=nlstate;j++){
               fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
             }
             fprintf(ficrest,"\n");
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficreseij);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
     free_matrix(prlim,1,nlstate,1,nlstate);
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
       free_ivector(Tcode,1,100);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);
     fclose(fichtm);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.19  
changed lines
  Added in v.1.120


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>