Diff for /imach/src/imach.c between versions 1.125 and 1.201

version 1.125, 2006/04/04 15:20:31 version 1.201, 2015/09/15 17:34:58
Line 1 Line 1
 /* $Id$  /* $Id$
   $State$    $State$
   $Log$    $Log$
     Revision 1.201  2015/09/15 17:34:58  brouard
     Summary: 0.98r0
   
     - Some new graphs like suvival functions
     - Some bugs fixed like model=1+age+V2.
   
     Revision 1.200  2015/09/09 16:53:55  brouard
     Summary: Big bug thanks to Flavia
   
     Even model=1+age+V2. did not work anymore
   
     Revision 1.199  2015/09/07 14:09:23  brouard
     Summary: 0.98q6 changing default small png format for graph to vectorized svg.
   
     Revision 1.198  2015/09/03 07:14:39  brouard
     Summary: 0.98q5 Flavia
   
     Revision 1.197  2015/09/01 18:24:39  brouard
     *** empty log message ***
   
     Revision 1.196  2015/08/18 23:17:52  brouard
     Summary: 0.98q5
   
     Revision 1.195  2015/08/18 16:28:39  brouard
     Summary: Adding a hack for testing purpose
   
     After reading the title, ftol and model lines, if the comment line has
     a q, starting with #q, the answer at the end of the run is quit. It
     permits to run test files in batch with ctest. The former workaround was
     $ echo q | imach foo.imach
   
     Revision 1.194  2015/08/18 13:32:00  brouard
     Summary:  Adding error when the covariance matrix doesn't contain the exact number of lines required by the model line.
   
     Revision 1.193  2015/08/04 07:17:42  brouard
     Summary: 0.98q4
   
     Revision 1.192  2015/07/16 16:49:02  brouard
     Summary: Fixing some outputs
   
     Revision 1.191  2015/07/14 10:00:33  brouard
     Summary: Some fixes
   
     Revision 1.190  2015/05/05 08:51:13  brouard
     Summary: Adding digits in output parameters (7 digits instead of 6)
   
     Fix 1+age+.
   
     Revision 1.189  2015/04/30 14:45:16  brouard
     Summary: 0.98q2
   
     Revision 1.188  2015/04/30 08:27:53  brouard
     *** empty log message ***
   
     Revision 1.187  2015/04/29 09:11:15  brouard
     *** empty log message ***
   
     Revision 1.186  2015/04/23 12:01:52  brouard
     Summary: V1*age is working now, version 0.98q1
   
     Some codes had been disabled in order to simplify and Vn*age was
     working in the optimization phase, ie, giving correct MLE parameters,
     but, as usual, outputs were not correct and program core dumped.
   
     Revision 1.185  2015/03/11 13:26:42  brouard
     Summary: Inclusion of compile and links command line for Intel Compiler
   
     Revision 1.184  2015/03/11 11:52:39  brouard
     Summary: Back from Windows 8. Intel Compiler
   
     Revision 1.183  2015/03/10 20:34:32  brouard
     Summary: 0.98q0, trying with directest, mnbrak fixed
   
     We use directest instead of original Powell test; probably no
     incidence on the results, but better justifications;
     We fixed Numerical Recipes mnbrak routine which was wrong and gave
     wrong results.
   
     Revision 1.182  2015/02/12 08:19:57  brouard
     Summary: Trying to keep directest which seems simpler and more general
     Author: Nicolas Brouard
   
     Revision 1.181  2015/02/11 23:22:24  brouard
     Summary: Comments on Powell added
   
     Author:
   
     Revision 1.180  2015/02/11 17:33:45  brouard
     Summary: Finishing move from main to function (hpijx and prevalence_limit)
   
     Revision 1.179  2015/01/04 09:57:06  brouard
     Summary: back to OS/X
   
     Revision 1.178  2015/01/04 09:35:48  brouard
     *** empty log message ***
   
     Revision 1.177  2015/01/03 18:40:56  brouard
     Summary: Still testing ilc32 on OSX
   
     Revision 1.176  2015/01/03 16:45:04  brouard
     *** empty log message ***
   
     Revision 1.175  2015/01/03 16:33:42  brouard
     *** empty log message ***
   
     Revision 1.174  2015/01/03 16:15:49  brouard
     Summary: Still in cross-compilation
   
     Revision 1.173  2015/01/03 12:06:26  brouard
     Summary: trying to detect cross-compilation
   
     Revision 1.172  2014/12/27 12:07:47  brouard
     Summary: Back from Visual Studio and Intel, options for compiling for Windows XP
   
     Revision 1.171  2014/12/23 13:26:59  brouard
     Summary: Back from Visual C
   
     Still problem with utsname.h on Windows
   
     Revision 1.170  2014/12/23 11:17:12  brouard
     Summary: Cleaning some \%% back to %%
   
     The escape was mandatory for a specific compiler (which one?), but too many warnings.
   
     Revision 1.169  2014/12/22 23:08:31  brouard
     Summary: 0.98p
   
     Outputs some informations on compiler used, OS etc. Testing on different platforms.
   
     Revision 1.168  2014/12/22 15:17:42  brouard
     Summary: update
   
     Revision 1.167  2014/12/22 13:50:56  brouard
     Summary: Testing uname and compiler version and if compiled 32 or 64
   
     Testing on Linux 64
   
     Revision 1.166  2014/12/22 11:40:47  brouard
     *** empty log message ***
   
     Revision 1.165  2014/12/16 11:20:36  brouard
     Summary: After compiling on Visual C
   
     * imach.c (Module): Merging 1.61 to 1.162
   
     Revision 1.164  2014/12/16 10:52:11  brouard
     Summary: Merging with Visual C after suppressing some warnings for unused variables. Also fixing Saito's bug 0.98Xn
   
     * imach.c (Module): Merging 1.61 to 1.162
   
     Revision 1.163  2014/12/16 10:30:11  brouard
     * imach.c (Module): Merging 1.61 to 1.162
   
     Revision 1.162  2014/09/25 11:43:39  brouard
     Summary: temporary backup 0.99!
   
     Revision 1.1  2014/09/16 11:06:58  brouard
     Summary: With some code (wrong) for nlopt
   
     Author:
   
     Revision 1.161  2014/09/15 20:41:41  brouard
     Summary: Problem with macro SQR on Intel compiler
   
     Revision 1.160  2014/09/02 09:24:05  brouard
     *** empty log message ***
   
     Revision 1.159  2014/09/01 10:34:10  brouard
     Summary: WIN32
     Author: Brouard
   
     Revision 1.158  2014/08/27 17:11:51  brouard
     *** empty log message ***
   
     Revision 1.157  2014/08/27 16:26:55  brouard
     Summary: Preparing windows Visual studio version
     Author: Brouard
   
     In order to compile on Visual studio, time.h is now correct and time_t
     and tm struct should be used. difftime should be used but sometimes I
     just make the differences in raw time format (time(&now).
     Trying to suppress #ifdef LINUX
     Add xdg-open for __linux in order to open default browser.
   
     Revision 1.156  2014/08/25 20:10:10  brouard
     *** empty log message ***
   
     Revision 1.155  2014/08/25 18:32:34  brouard
     Summary: New compile, minor changes
     Author: Brouard
   
     Revision 1.154  2014/06/20 17:32:08  brouard
     Summary: Outputs now all graphs of convergence to period prevalence
   
     Revision 1.153  2014/06/20 16:45:46  brouard
     Summary: If 3 live state, convergence to period prevalence on same graph
     Author: Brouard
   
     Revision 1.152  2014/06/18 17:54:09  brouard
     Summary: open browser, use gnuplot on same dir than imach if not found in the path
   
     Revision 1.151  2014/06/18 16:43:30  brouard
     *** empty log message ***
   
     Revision 1.150  2014/06/18 16:42:35  brouard
     Summary: If gnuplot is not in the path try on same directory than imach binary (OSX)
     Author: brouard
   
     Revision 1.149  2014/06/18 15:51:14  brouard
     Summary: Some fixes in parameter files errors
     Author: Nicolas Brouard
   
     Revision 1.148  2014/06/17 17:38:48  brouard
     Summary: Nothing new
     Author: Brouard
   
     Just a new packaging for OS/X version 0.98nS
   
     Revision 1.147  2014/06/16 10:33:11  brouard
     *** empty log message ***
   
     Revision 1.146  2014/06/16 10:20:28  brouard
     Summary: Merge
     Author: Brouard
   
     Merge, before building revised version.
   
     Revision 1.145  2014/06/10 21:23:15  brouard
     Summary: Debugging with valgrind
     Author: Nicolas Brouard
   
     Lot of changes in order to output the results with some covariates
     After the Edimburgh REVES conference 2014, it seems mandatory to
     improve the code.
     No more memory valgrind error but a lot has to be done in order to
     continue the work of splitting the code into subroutines.
     Also, decodemodel has been improved. Tricode is still not
     optimal. nbcode should be improved. Documentation has been added in
     the source code.
   
     Revision 1.143  2014/01/26 09:45:38  brouard
     Summary: Version 0.98nR (to be improved, but gives same optimization results as 0.98k. Nice, promising
   
     * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
     (Module): Version 0.98nR Running ok, but output format still only works for three covariates.
   
     Revision 1.142  2014/01/26 03:57:36  brouard
     Summary: gnuplot changed plot w l 1 has to be changed to plot w l lt 2
   
     * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
   
     Revision 1.141  2014/01/26 02:42:01  brouard
     * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
   
     Revision 1.140  2011/09/02 10:37:54  brouard
     Summary: times.h is ok with mingw32 now.
   
     Revision 1.139  2010/06/14 07:50:17  brouard
     After the theft of my laptop, I probably lost some lines of codes which were not uploaded to the CVS tree.
     I remember having already fixed agemin agemax which are pointers now but not cvs saved.
   
     Revision 1.138  2010/04/30 18:19:40  brouard
     *** empty log message ***
   
     Revision 1.137  2010/04/29 18:11:38  brouard
     (Module): Checking covariates for more complex models
     than V1+V2. A lot of change to be done. Unstable.
   
     Revision 1.136  2010/04/26 20:30:53  brouard
     (Module): merging some libgsl code. Fixing computation
     of likelione (using inter/intrapolation if mle = 0) in order to
     get same likelihood as if mle=1.
     Some cleaning of code and comments added.
   
     Revision 1.135  2009/10/29 15:33:14  brouard
     (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
   
     Revision 1.134  2009/10/29 13:18:53  brouard
     (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
   
     Revision 1.133  2009/07/06 10:21:25  brouard
     just nforces
   
     Revision 1.132  2009/07/06 08:22:05  brouard
     Many tings
   
     Revision 1.131  2009/06/20 16:22:47  brouard
     Some dimensions resccaled
   
     Revision 1.130  2009/05/26 06:44:34  brouard
     (Module): Max Covariate is now set to 20 instead of 8. A
     lot of cleaning with variables initialized to 0. Trying to make
     V2+V3*age+V1+V4 strb=V3*age+V1+V4 working better.
   
     Revision 1.129  2007/08/31 13:49:27  lievre
     Modification of the way of exiting when the covariate is not binary in order to see on the window the error message before exiting
   
     Revision 1.128  2006/06/30 13:02:05  brouard
     (Module): Clarifications on computing e.j
   
     Revision 1.127  2006/04/28 18:11:50  brouard
     (Module): Yes the sum of survivors was wrong since
     imach-114 because nhstepm was no more computed in the age
     loop. Now we define nhstepma in the age loop.
     (Module): In order to speed up (in case of numerous covariates) we
     compute health expectancies (without variances) in a first step
     and then all the health expectancies with variances or standard
     deviation (needs data from the Hessian matrices) which slows the
     computation.
     In the future we should be able to stop the program is only health
     expectancies and graph are needed without standard deviations.
   
     Revision 1.126  2006/04/28 17:23:28  brouard
     (Module): Yes the sum of survivors was wrong since
     imach-114 because nhstepm was no more computed in the age
     loop. Now we define nhstepma in the age loop.
     Version 0.98h
   
   Revision 1.125  2006/04/04 15:20:31  lievre    Revision 1.125  2006/04/04 15:20:31  lievre
   Errors in calculation of health expectancies. Age was not initialized.    Errors in calculation of health expectancies. Age was not initialized.
   Forecasting file added.    Forecasting file added.
   
   Revision 1.124  2006/03/22 17:13:53  lievre    Revision 1.124  2006/03/22 17:13:53  lievre
   Parameters are printed with %lf instead of %f (more numbers after the comma).    Parameters are printed with %lf instead of %f (more numbers after the comma).
   The log-likelihood is printed in the log file    The log-likelihood is printed in the log file
   
   Revision 1.123  2006/03/20 10:52:43  brouard    Revision 1.123  2006/03/20 10:52:43  brouard
   * imach.c (Module): <title> changed, corresponds to .htm file    * imach.c (Module): <title> changed, corresponds to .htm file
   name. <head> headers where missing.    name. <head> headers where missing.
   
   * imach.c (Module): Weights can have a decimal point as for    * imach.c (Module): Weights can have a decimal point as for
   English (a comma might work with a correct LC_NUMERIC environment,    English (a comma might work with a correct LC_NUMERIC environment,
   otherwise the weight is truncated).    otherwise the weight is truncated).
   Modification of warning when the covariates values are not 0 or    Modification of warning when the covariates values are not 0 or
   1.    1.
   Version 0.98g    Version 0.98g
   
   Revision 1.122  2006/03/20 09:45:41  brouard    Revision 1.122  2006/03/20 09:45:41  brouard
   (Module): Weights can have a decimal point as for    (Module): Weights can have a decimal point as for
   English (a comma might work with a correct LC_NUMERIC environment,    English (a comma might work with a correct LC_NUMERIC environment,
   otherwise the weight is truncated).    otherwise the weight is truncated).
   Modification of warning when the covariates values are not 0 or    Modification of warning when the covariates values are not 0 or
   1.    1.
   Version 0.98g    Version 0.98g
   
   Revision 1.121  2006/03/16 17:45:01  lievre    Revision 1.121  2006/03/16 17:45:01  lievre
   * imach.c (Module): Comments concerning covariates added    * imach.c (Module): Comments concerning covariates added
   
   * imach.c (Module): refinements in the computation of lli if    * imach.c (Module): refinements in the computation of lli if
   status=-2 in order to have more reliable computation if stepm is    status=-2 in order to have more reliable computation if stepm is
   not 1 month. Version 0.98f    not 1 month. Version 0.98f
   
   Revision 1.120  2006/03/16 15:10:38  lievre    Revision 1.120  2006/03/16 15:10:38  lievre
   (Module): refinements in the computation of lli if    (Module): refinements in the computation of lli if
   status=-2 in order to have more reliable computation if stepm is    status=-2 in order to have more reliable computation if stepm is
   not 1 month. Version 0.98f    not 1 month. Version 0.98f
   
   Revision 1.119  2006/03/15 17:42:26  brouard    Revision 1.119  2006/03/15 17:42:26  brouard
   (Module): Bug if status = -2, the loglikelihood was    (Module): Bug if status = -2, the loglikelihood was
   computed as likelihood omitting the logarithm. Version O.98e    computed as likelihood omitting the logarithm. Version O.98e
   
   Revision 1.118  2006/03/14 18:20:07  brouard    Revision 1.118  2006/03/14 18:20:07  brouard
   (Module): varevsij Comments added explaining the second    (Module): varevsij Comments added explaining the second
   table of variances if popbased=1 .    table of variances if popbased=1 .
   (Module): Covariances of eij, ekl added, graphs fixed, new html link.    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   (Module): Function pstamp added    (Module): Function pstamp added
   (Module): Version 0.98d    (Module): Version 0.98d
   
   Revision 1.117  2006/03/14 17:16:22  brouard    Revision 1.117  2006/03/14 17:16:22  brouard
   (Module): varevsij Comments added explaining the second    (Module): varevsij Comments added explaining the second
   table of variances if popbased=1 .    table of variances if popbased=1 .
   (Module): Covariances of eij, ekl added, graphs fixed, new html link.    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   (Module): Function pstamp added    (Module): Function pstamp added
   (Module): Version 0.98d    (Module): Version 0.98d
   
   Revision 1.116  2006/03/06 10:29:27  brouard    Revision 1.116  2006/03/06 10:29:27  brouard
   (Module): Variance-covariance wrong links and    (Module): Variance-covariance wrong links and
   varian-covariance of ej. is needed (Saito).    varian-covariance of ej. is needed (Saito).
   
   Revision 1.115  2006/02/27 12:17:45  brouard    Revision 1.115  2006/02/27 12:17:45  brouard
   (Module): One freematrix added in mlikeli! 0.98c    (Module): One freematrix added in mlikeli! 0.98c
   
   Revision 1.114  2006/02/26 12:57:58  brouard    Revision 1.114  2006/02/26 12:57:58  brouard
   (Module): Some improvements in processing parameter    (Module): Some improvements in processing parameter
   filename with strsep.    filename with strsep.
   
   Revision 1.113  2006/02/24 14:20:24  brouard    Revision 1.113  2006/02/24 14:20:24  brouard
   (Module): Memory leaks checks with valgrind and:    (Module): Memory leaks checks with valgrind and:
   datafile was not closed, some imatrix were not freed and on matrix    datafile was not closed, some imatrix were not freed and on matrix
   allocation too.    allocation too.
   
   Revision 1.112  2006/01/30 09:55:26  brouard    Revision 1.112  2006/01/30 09:55:26  brouard
   (Module): Back to gnuplot.exe instead of wgnuplot.exe    (Module): Back to gnuplot.exe instead of wgnuplot.exe
   
   Revision 1.111  2006/01/25 20:38:18  brouard    Revision 1.111  2006/01/25 20:38:18  brouard
   (Module): Lots of cleaning and bugs added (Gompertz)    (Module): Lots of cleaning and bugs added (Gompertz)
   (Module): Comments can be added in data file. Missing date values    (Module): Comments can be added in data file. Missing date values
   can be a simple dot '.'.    can be a simple dot '.'.
   
   Revision 1.110  2006/01/25 00:51:50  brouard    Revision 1.110  2006/01/25 00:51:50  brouard
   (Module): Lots of cleaning and bugs added (Gompertz)    (Module): Lots of cleaning and bugs added (Gompertz)
   
   Revision 1.109  2006/01/24 19:37:15  brouard    Revision 1.109  2006/01/24 19:37:15  brouard
   (Module): Comments (lines starting with a #) are allowed in data.    (Module): Comments (lines starting with a #) are allowed in data.
   
   Revision 1.108  2006/01/19 18:05:42  lievre    Revision 1.108  2006/01/19 18:05:42  lievre
   Gnuplot problem appeared...    Gnuplot problem appeared...
   To be fixed    To be fixed
   
   Revision 1.107  2006/01/19 16:20:37  brouard    Revision 1.107  2006/01/19 16:20:37  brouard
   Test existence of gnuplot in imach path    Test existence of gnuplot in imach path
   
   Revision 1.106  2006/01/19 13:24:36  brouard    Revision 1.106  2006/01/19 13:24:36  brouard
   Some cleaning and links added in html output    Some cleaning and links added in html output
   
   Revision 1.105  2006/01/05 20:23:19  lievre    Revision 1.105  2006/01/05 20:23:19  lievre
   *** empty log message ***    *** empty log message ***
   
   Revision 1.104  2005/09/30 16:11:43  lievre    Revision 1.104  2005/09/30 16:11:43  lievre
   (Module): sump fixed, loop imx fixed, and simplifications.    (Module): sump fixed, loop imx fixed, and simplifications.
   (Module): If the status is missing at the last wave but we know    (Module): If the status is missing at the last wave but we know
   that the person is alive, then we can code his/her status as -2    that the person is alive, then we can code his/her status as -2
   (instead of missing=-1 in earlier versions) and his/her    (instead of missing=-1 in earlier versions) and his/her
   contributions to the likelihood is 1 - Prob of dying from last    contributions to the likelihood is 1 - Prob of dying from last
   health status (= 1-p13= p11+p12 in the easiest case of somebody in    health status (= 1-p13= p11+p12 in the easiest case of somebody in
   the healthy state at last known wave). Version is 0.98    the healthy state at last known wave). Version is 0.98
   
   Revision 1.103  2005/09/30 15:54:49  lievre    Revision 1.103  2005/09/30 15:54:49  lievre
   (Module): sump fixed, loop imx fixed, and simplifications.    (Module): sump fixed, loop imx fixed, and simplifications.
   
   Revision 1.102  2004/09/15 17:31:30  brouard    Revision 1.102  2004/09/15 17:31:30  brouard
   Add the possibility to read data file including tab characters.    Add the possibility to read data file including tab characters.
   
   Revision 1.101  2004/09/15 10:38:38  brouard    Revision 1.101  2004/09/15 10:38:38  brouard
   Fix on curr_time    Fix on curr_time
   
   Revision 1.100  2004/07/12 18:29:06  brouard    Revision 1.100  2004/07/12 18:29:06  brouard
   Add version for Mac OS X. Just define UNIX in Makefile    Add version for Mac OS X. Just define UNIX in Makefile
   
   Revision 1.99  2004/06/05 08:57:40  brouard    Revision 1.99  2004/06/05 08:57:40  brouard
   *** empty log message ***    *** empty log message ***
   
   Revision 1.98  2004/05/16 15:05:56  brouard    Revision 1.98  2004/05/16 15:05:56  brouard
   New version 0.97 . First attempt to estimate force of mortality    New version 0.97 . First attempt to estimate force of mortality
   directly from the data i.e. without the need of knowing the health    directly from the data i.e. without the need of knowing the health
   state at each age, but using a Gompertz model: log u =a + b*age .    state at each age, but using a Gompertz model: log u =a + b*age .
   This is the basic analysis of mortality and should be done before any    This is the basic analysis of mortality and should be done before any
   other analysis, in order to test if the mortality estimated from the    other analysis, in order to test if the mortality estimated from the
   cross-longitudinal survey is different from the mortality estimated    cross-longitudinal survey is different from the mortality estimated
   from other sources like vital statistic data.    from other sources like vital statistic data.
   
   The same imach parameter file can be used but the option for mle should be -3.    The same imach parameter file can be used but the option for mle should be -3.
   
   Agnès, who wrote this part of the code, tried to keep most of the    Agnès, who wrote this part of the code, tried to keep most of the
   former routines in order to include the new code within the former code.    former routines in order to include the new code within the former code.
   
   The output is very simple: only an estimate of the intercept and of    The output is very simple: only an estimate of the intercept and of
   the slope with 95% confident intervals.    the slope with 95% confident intervals.
   
   Current limitations:    Current limitations:
   A) Even if you enter covariates, i.e. with the    A) Even if you enter covariates, i.e. with the
   model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
   B) There is no computation of Life Expectancy nor Life Table.    B) There is no computation of Life Expectancy nor Life Table.
   
   Revision 1.97  2004/02/20 13:25:42  lievre    Revision 1.97  2004/02/20 13:25:42  lievre
   Version 0.96d. Population forecasting command line is (temporarily)    Version 0.96d. Population forecasting command line is (temporarily)
   suppressed.    suppressed.
   
   Revision 1.96  2003/07/15 15:38:55  brouard    Revision 1.96  2003/07/15 15:38:55  brouard
   * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
   rewritten within the same printf. Workaround: many printfs.    rewritten within the same printf. Workaround: many printfs.
   
   Revision 1.95  2003/07/08 07:54:34  brouard    Revision 1.95  2003/07/08 07:54:34  brouard
   * imach.c (Repository):    * imach.c (Repository):
   (Repository): Using imachwizard code to output a more meaningful covariance    (Repository): Using imachwizard code to output a more meaningful covariance
   matrix (cov(a12,c31) instead of numbers.    matrix (cov(a12,c31) instead of numbers.
   
   Revision 1.94  2003/06/27 13:00:02  brouard    Revision 1.94  2003/06/27 13:00:02  brouard
   Just cleaning    Just cleaning
   
   Revision 1.93  2003/06/25 16:33:55  brouard    Revision 1.93  2003/06/25 16:33:55  brouard
   (Module): On windows (cygwin) function asctime_r doesn't    (Module): On windows (cygwin) function asctime_r doesn't
   exist so I changed back to asctime which exists.    exist so I changed back to asctime which exists.
   (Module): Version 0.96b    (Module): Version 0.96b
   
   Revision 1.92  2003/06/25 16:30:45  brouard    Revision 1.92  2003/06/25 16:30:45  brouard
   (Module): On windows (cygwin) function asctime_r doesn't    (Module): On windows (cygwin) function asctime_r doesn't
   exist so I changed back to asctime which exists.    exist so I changed back to asctime which exists.
   
   Revision 1.91  2003/06/25 15:30:29  brouard    Revision 1.91  2003/06/25 15:30:29  brouard
   * imach.c (Repository): Duplicated warning errors corrected.    * imach.c (Repository): Duplicated warning errors corrected.
   (Repository): Elapsed time after each iteration is now output. It    (Repository): Elapsed time after each iteration is now output. It
   helps to forecast when convergence will be reached. Elapsed time    helps to forecast when convergence will be reached. Elapsed time
   is stamped in powell.  We created a new html file for the graphs    is stamped in powell.  We created a new html file for the graphs
   concerning matrix of covariance. It has extension -cov.htm.    concerning matrix of covariance. It has extension -cov.htm.
   
   Revision 1.90  2003/06/24 12:34:15  brouard    Revision 1.90  2003/06/24 12:34:15  brouard
   (Module): Some bugs corrected for windows. Also, when    (Module): Some bugs corrected for windows. Also, when
   mle=-1 a template is output in file "or"mypar.txt with the design    mle=-1 a template is output in file "or"mypar.txt with the design
   of the covariance matrix to be input.    of the covariance matrix to be input.
   
   Revision 1.89  2003/06/24 12:30:52  brouard    Revision 1.89  2003/06/24 12:30:52  brouard
   (Module): Some bugs corrected for windows. Also, when    (Module): Some bugs corrected for windows. Also, when
   mle=-1 a template is output in file "or"mypar.txt with the design    mle=-1 a template is output in file "or"mypar.txt with the design
   of the covariance matrix to be input.    of the covariance matrix to be input.
   
   Revision 1.88  2003/06/23 17:54:56  brouard    Revision 1.88  2003/06/23 17:54:56  brouard
   * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
   
   Revision 1.87  2003/06/18 12:26:01  brouard    Revision 1.87  2003/06/18 12:26:01  brouard
   Version 0.96    Version 0.96
   
   Revision 1.86  2003/06/17 20:04:08  brouard    Revision 1.86  2003/06/17 20:04:08  brouard
   (Module): Change position of html and gnuplot routines and added    (Module): Change position of html and gnuplot routines and added
   routine fileappend.    routine fileappend.
   
   Revision 1.85  2003/06/17 13:12:43  brouard    Revision 1.85  2003/06/17 13:12:43  brouard
   * imach.c (Repository): Check when date of death was earlier that    * imach.c (Repository): Check when date of death was earlier that
   current date of interview. It may happen when the death was just    current date of interview. It may happen when the death was just
   prior to the death. In this case, dh was negative and likelihood    prior to the death. In this case, dh was negative and likelihood
   was wrong (infinity). We still send an "Error" but patch by    was wrong (infinity). We still send an "Error" but patch by
   assuming that the date of death was just one stepm after the    assuming that the date of death was just one stepm after the
   interview.    interview.
   (Repository): Because some people have very long ID (first column)    (Repository): Because some people have very long ID (first column)
   we changed int to long in num[] and we added a new lvector for    we changed int to long in num[] and we added a new lvector for
   memory allocation. But we also truncated to 8 characters (left    memory allocation. But we also truncated to 8 characters (left
   truncation)    truncation)
   (Repository): No more line truncation errors.    (Repository): No more line truncation errors.
   
   Revision 1.84  2003/06/13 21:44:43  brouard    Revision 1.84  2003/06/13 21:44:43  brouard
   * imach.c (Repository): Replace "freqsummary" at a correct    * imach.c (Repository): Replace "freqsummary" at a correct
   place. It differs from routine "prevalence" which may be called    place. It differs from routine "prevalence" which may be called
   many times. Probs is memory consuming and must be used with    many times. Probs is memory consuming and must be used with
   parcimony.    parcimony.
   Version 0.95a3 (should output exactly the same maximization than 0.8a2)    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
   
   Revision 1.83  2003/06/10 13:39:11  lievre    Revision 1.83  2003/06/10 13:39:11  lievre
   *** empty log message ***    *** empty log message ***
   
   Revision 1.82  2003/06/05 15:57:20  brouard    Revision 1.82  2003/06/05 15:57:20  brouard
   Add log in  imach.c and  fullversion number is now printed.    Add log in  imach.c and  fullversion number is now printed.
   
 */  */
 /*  /*
    Interpolated Markov Chain     Interpolated Markov Chain
   
   Short summary of the programme:    Short summary of the programme:
      
   This program computes Healthy Life Expectancies from    This program computes Healthy Life Expectancies from
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
   first survey ("cross") where individuals from different ages are    first survey ("cross") where individuals from different ages are
   interviewed on their health status or degree of disability (in the    interviewed on their health status or degree of disability (in the
   case of a health survey which is our main interest) -2- at least a    case of a health survey which is our main interest) -2- at least a
   second wave of interviews ("longitudinal") which measure each change    second wave of interviews ("longitudinal") which measure each change
   (if any) in individual health status.  Health expectancies are    (if any) in individual health status.  Health expectancies are
   computed from the time spent in each health state according to a    computed from the time spent in each health state according to a
   model. More health states you consider, more time is necessary to reach the    model. More health states you consider, more time is necessary to reach the
   Maximum Likelihood of the parameters involved in the model.  The    Maximum Likelihood of the parameters involved in the model.  The
   simplest model is the multinomial logistic model where pij is the    simplest model is the multinomial logistic model where pij is the
   probability to be observed in state j at the second wave    probability to be observed in state j at the second wave
   conditional to be observed in state i at the first wave. Therefore    conditional to be observed in state i at the first wave. Therefore
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
   'age' is age and 'sex' is a covariate. If you want to have a more    'age' is age and 'sex' is a covariate. If you want to have a more
   complex model than "constant and age", you should modify the program    complex model than "constant and age", you should modify the program
   where the markup *Covariates have to be included here again* invites    where the markup *Covariates have to be included here again* invites
   you to do it.  More covariates you add, slower the    you to do it.  More covariates you add, slower the
   convergence.    convergence.
   
   The advantage of this computer programme, compared to a simple    The advantage of this computer programme, compared to a simple
   multinomial logistic model, is clear when the delay between waves is not    multinomial logistic model, is clear when the delay between waves is not
   identical for each individual. Also, if a individual missed an    identical for each individual. Also, if a individual missed an
   intermediate interview, the information is lost, but taken into    intermediate interview, the information is lost, but taken into
   account using an interpolation or extrapolation.      account using an interpolation or extrapolation.  
   
   hPijx is the probability to be observed in state i at age x+h    hPijx is the probability to be observed in state i at age x+h
   conditional to the observed state i at age x. The delay 'h' can be    conditional to the observed state i at age x. The delay 'h' can be
   split into an exact number (nh*stepm) of unobserved intermediate    split into an exact number (nh*stepm) of unobserved intermediate
   states. This elementary transition (by month, quarter,    states. This elementary transition (by month, quarter,
   semester or year) is modelled as a multinomial logistic.  The hPx    semester or year) is modelled as a multinomial logistic.  The hPx
   matrix is simply the matrix product of nh*stepm elementary matrices    matrix is simply the matrix product of nh*stepm elementary matrices
   and the contribution of each individual to the likelihood is simply    and the contribution of each individual to the likelihood is simply
   hPijx.    hPijx.
   
   Also this programme outputs the covariance matrix of the parameters but also    Also this programme outputs the covariance matrix of the parameters but also
   of the life expectancies. It also computes the period (stable) prevalence.    of the life expectancies. It also computes the period (stable) prevalence. 
      
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
            Institut national d'études démographiques, Paris.             Institut national d'études démographiques, Paris.
   This software have been partly granted by Euro-REVES, a concerted action    This software have been partly granted by Euro-REVES, a concerted action
   from the European Union.    from the European Union.
   It is copyrighted identically to a GNU software product, ie programme and    It is copyrighted identically to a GNU software product, ie programme and
   software can be distributed freely for non commercial use. Latest version    software can be distributed freely for non commercial use. Latest version
   can be accessed at http://euroreves.ined.fr/imach .    can be accessed at http://euroreves.ined.fr/imach .
   
   Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
   or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
      
   **********************************************************************/    **********************************************************************/
 /*  /*
   main    main
   read parameterfile    read parameterfile
   read datafile    read datafile
   concatwav    concatwav
   freqsummary    freqsummary
   if (mle >= 1)    if (mle >= 1)
     mlikeli      mlikeli
   print results files    print results files
   if mle==1    if mle==1 
      computes hessian       computes hessian
   read end of parameter file: agemin, agemax, bage, fage, estepm    read end of parameter file: agemin, agemax, bage, fage, estepm
       begin-prev-date,...        begin-prev-date,...
   open gnuplot file    open gnuplot file
   open html file    open html file
   period (stable) prevalence    period (stable) prevalence      | pl_nom    1-1 2-2 etc by covariate
    for age prevalim()     for age prevalim()             | #****** V1=0  V2=1  V3=1  V4=0 ******
   h Pij x                                    | 65 1 0 2 1 3 1 4 0  0.96326 0.03674
   variance of p varprob      freexexit2 possible for memory heap.
   forecasting if prevfcast==1 prevforecast call prevalence()  
   health expectancies    h Pij x                         | pij_nom  ficrestpij
   Variance-covariance of DFLE     # Cov Agex agex+h hpijx with i,j= 1-1 1-2     1-3     2-1     2-2     2-3
   prevalence()         1  85   85    1.00000             0.00000 0.00000 0.00000 1.00000 0.00000
    movingaverage()         1  85   86    0.68299             0.22291 0.09410 0.71093 0.00000 0.28907
   varevsij()  
   if popbased==1 varevsij(,popbased)         1  65   99    0.00364             0.00322 0.99314 0.00350 0.00310 0.99340
   total life expectancies         1  65  100    0.00214             0.00204 0.99581 0.00206 0.00196 0.99597
   Variance of period (stable) prevalence    variance of p one-step probabilities varprob  | prob_nom   ficresprob #One-step probabilities and stand. devi in ()
  end     Standard deviation of one-step probabilities | probcor_nom   ficresprobcor #One-step probabilities and correlation matrix
 */     Matrix of variance covariance of one-step probabilities |  probcov_nom ficresprobcov #One-step probabilities and covariance matrix
   
     forecasting if prevfcast==1 prevforecast call prevalence()
     health expectancies
      Variance-covariance of DFLE
 #include <math.h>    prevalence()
 #include <stdio.h>     movingaverage()
 #include <stdlib.h>    varevsij() 
 #include <string.h>    if popbased==1 varevsij(,popbased)
 #include <unistd.h>    total life expectancies
     Variance of period (stable) prevalence
 #include <limits.h>   end
 #include <sys/types.h>  */
 #include <sys/stat.h>  
 #include <errno.h>  /* #define DEBUG */
 extern int errno;  /* #define DEBUGBRENT */
   #define POWELL /* Instead of NLOPT */
 /* #include <sys/time.h> */  #define POWELLF1F3 /* Skip test */
 #include <time.h>  /* #define POWELLORIGINAL /\* Don't use Directest to decide new direction but original Powell test *\/ */
 #include "timeval.h"  /* #define MNBRAKORIGINAL /\* Don't use mnbrak fix *\/ */
   
 /* #include <libintl.h> */  #include <math.h>
 /* #define _(String) gettext (String) */  #include <stdio.h>
   #include <stdlib.h>
 #define MAXLINE 256  #include <string.h>
   
 #define GNUPLOTPROGRAM "gnuplot"  #ifdef _WIN32
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/  #include <io.h>
 #define FILENAMELENGTH 132  #include <windows.h>
   #include <tchar.h>
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */  #else
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */  #include <unistd.h>
   #endif
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */  
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */  #include <limits.h>
   #include <sys/types.h>
 #define NINTERVMAX 8  
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */  #if defined(__GNUC__)
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */  #include <sys/utsname.h> /* Doesn't work on Windows */
 #define NCOVMAX 8 /* Maximum number of covariates */  #endif
 #define MAXN 20000  
 #define YEARM 12. /* Number of months per year */  #include <sys/stat.h>
 #define AGESUP 130  #include <errno.h>
 #define AGEBASE 40  /* extern int errno; */
 #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */  
 #ifdef UNIX  /* #ifdef LINUX */
 #define DIRSEPARATOR '/'  /* #include <time.h> */
 #define CHARSEPARATOR "/"  /* #include "timeval.h" */
 #define ODIRSEPARATOR '\\'  /* #else */
 #else  /* #include <sys/time.h> */
 #define DIRSEPARATOR '\\'  /* #endif */
 #define CHARSEPARATOR "\\"  
 #define ODIRSEPARATOR '/'  #include <time.h>
 #endif  
   #ifdef GSL
 /* $Id$ */  #include <gsl/gsl_errno.h>
 /* $State$ */  #include <gsl/gsl_multimin.h>
   #endif
 char version[]="Imach version 0.98g, March 2006, INED-EUROREVES-Institut de longevite ";  
 char fullversion[]="$Revision$ $Date$";  
 char strstart[80];  #ifdef NLOPT
 char optionfilext[10], optionfilefiname[FILENAMELENGTH];  #include <nlopt.h>
 int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */  typedef struct {
 int nvar;    double (* function)(double [] );
 int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;  } myfunc_data ;
 int npar=NPARMAX;  #endif
 int nlstate=2; /* Number of live states */  
 int ndeath=1; /* Number of dead states */  /* #include <libintl.h> */
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */  /* #define _(String) gettext (String) */
 int popbased=0;  
   #define MAXLINE 1024 /* Was 256. Overflow with 312 with 2 states and 4 covariates. Should be ok */
 int *wav; /* Number of waves for this individuual 0 is possible */  
 int maxwav; /* Maxim number of waves */  #define GNUPLOTPROGRAM "gnuplot"
 int jmin, jmax; /* min, max spacing between 2 waves */  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
 int ijmin, ijmax; /* Individuals having jmin and jmax */  #define FILENAMELENGTH 132
 int gipmx, gsw; /* Global variables on the number of contributions  
                    to the likelihood and the sum of weights (done by funcone)*/  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
 int mle, weightopt;  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */  
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */  #define MAXPARM 128 /**< Maximum number of parameters for the optimization */
 int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between  #define NPARMAX 64 /**< (nlstate+ndeath-1)*nlstate*ncovmodel */
            * wave mi and wave mi+1 is not an exact multiple of stepm. */  
 double jmean; /* Mean space between 2 waves */  #define NINTERVMAX 8
 double **oldm, **newm, **savm; /* Working pointers to matrices */  #define NLSTATEMAX 8 /**< Maximum number of live states (for func) */
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */  #define NDEATHMAX 8 /**< Maximum number of dead states (for func) */
 FILE *fic,*ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;  #define NCOVMAX 20 /**< Maximum number of covariates, including generated covariates V1*V2 */
 FILE *ficlog, *ficrespow;  #define codtabm(h,k)  (1 & (h-1) >> (k-1))+1
 int globpr; /* Global variable for printing or not */  #define MAXN 20000
 double fretone; /* Only one call to likelihood */  #define YEARM 12. /**< Number of months per year */
 long ipmx; /* Number of contributions */  #define AGESUP 130
 double sw; /* Sum of weights */  #define AGEBASE 40
 char filerespow[FILENAMELENGTH];  #define AGEOVERFLOW 1.e20
 char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */  #define AGEGOMP 10 /**< Minimal age for Gompertz adjustment */
 FILE *ficresilk;  #ifdef _WIN32
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;  #define DIRSEPARATOR '\\'
 FILE *ficresprobmorprev;  #define CHARSEPARATOR "\\"
 FILE *fichtm, *fichtmcov; /* Html File */  #define ODIRSEPARATOR '/'
 FILE *ficreseij;  #else
 char filerese[FILENAMELENGTH];  #define DIRSEPARATOR '/'
 FILE *ficresstdeij;  #define CHARSEPARATOR "/"
 char fileresstde[FILENAMELENGTH];  #define ODIRSEPARATOR '\\'
 FILE *ficrescveij;  #endif
 char filerescve[FILENAMELENGTH];  
 FILE  *ficresvij;  /* $Id$ */
 char fileresv[FILENAMELENGTH];  /* $State$ */
 FILE  *ficresvpl;  #include "version.h"
 char fileresvpl[FILENAMELENGTH];  char version[]=__IMACH_VERSION__;
 char title[MAXLINE];  char copyright[]="September 2015,INED-EUROREVES-Institut de longevite-Japan Society for the Promotion of Science (Grant-in-Aid for Scientific Research 25293121), Intel Software 2015";
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];  char fullversion[]="$Revision$ $Date$"; 
 char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];  char strstart[80];
 char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH];  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
 char command[FILENAMELENGTH];  int erreur=0, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
 int  outcmd=0;  int nagesqr=0, nforce=0; /* nagesqr=1 if model is including age*age, number of forces */
   /* Number of covariates model=V2+V1+ V3*age+V2*V4 */
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];  int cptcovn=0; /**< cptcovn number of covariates added in the model (excepting constant and age and age*product) */
   int cptcovt=0; /**< cptcovt number of covariates added in the model (excepting constant and age) */
 char filelog[FILENAMELENGTH]; /* Log file */  int cptcovs=0; /**< cptcovs number of simple covariates V2+V1 =2 */
 char filerest[FILENAMELENGTH];  int cptcovage=0; /**< Number of covariates with age: V3*age only =1 */
 char fileregp[FILENAMELENGTH];  int cptcovprodnoage=0; /**< Number of covariate products without age */   
 char popfile[FILENAMELENGTH];  int cptcoveff=0; /* Total number of covariates to vary for printing results */
   int cptcov=0; /* Working variable */
 char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;  int npar=NPARMAX;
   int nlstate=2; /* Number of live states */
 struct timeval start_time, end_time, curr_time, last_time, forecast_time;  int ndeath=1; /* Number of dead states */
 struct timezone tzp;  int ncovmodel=0, ncovcol=0;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
 extern int gettimeofday();  int popbased=0;
 struct tm tmg, tm, tmf, *gmtime(), *localtime();  
 long time_value;  int *wav; /* Number of waves for this individuual 0 is possible */
 extern long time();  int maxwav=0; /* Maxim number of waves */
 char strcurr[80], strfor[80];  int jmin=0, jmax=0; /* min, max spacing between 2 waves */
   int ijmin=0, ijmax=0; /* Individuals having jmin and jmax */ 
 char *endptr;  int gipmx=0, gsw=0; /* Global variables on the number of contributions 
 long lval;                     to the likelihood and the sum of weights (done by funcone)*/
 double dval;  int mle=1, weightopt=0;
   int **mw; /* mw[mi][i] is number of the mi wave for this individual */
 #define NR_END 1  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
 #define FREE_ARG char*  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
 #define FTOL 1.0e-10             * wave mi and wave mi+1 is not an exact multiple of stepm. */
   int countcallfunc=0;  /* Count the number of calls to func */
 #define NRANSI  double jmean=1; /* Mean space between 2 waves */
 #define ITMAX 200  double **matprod2(); /* test */
   double **oldm, **newm, **savm; /* Working pointers to matrices */
 #define TOL 2.0e-4  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
   /*FILE *fic ; */ /* Used in readdata only */
 #define CGOLD 0.3819660  FILE *ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
 #define ZEPS 1.0e-10  FILE *ficlog, *ficrespow;
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);  int globpr=0; /* Global variable for printing or not */
   double fretone; /* Only one call to likelihood */
 #define GOLD 1.618034  long ipmx=0; /* Number of contributions */
 #define GLIMIT 100.0  double sw; /* Sum of weights */
 #define TINY 1.0e-20  char filerespow[FILENAMELENGTH];
   char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
 static double maxarg1,maxarg2;  FILE *ficresilk;
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))  FILE *ficresprobmorprev;
    FILE *fichtm, *fichtmcov; /* Html File */
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))  FILE *ficreseij;
 #define rint(a) floor(a+0.5)  char filerese[FILENAMELENGTH];
   FILE *ficresstdeij;
 static double sqrarg;  char fileresstde[FILENAMELENGTH];
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)  FILE *ficrescveij;
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}  char filerescve[FILENAMELENGTH];
 int agegomp= AGEGOMP;  FILE  *ficresvij;
   char fileresv[FILENAMELENGTH];
 int imx;  FILE  *ficresvpl;
 int stepm=1;  char fileresvpl[FILENAMELENGTH];
 /* Stepm, step in month: minimum step interpolation*/  char title[MAXLINE];
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
 int estepm;  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
   char command[FILENAMELENGTH];
 int m,nb;  int  outcmd=0;
 long *num;  
 int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;  char fileresu[FILENAMELENGTH]; /* Without r in front */
 double **pmmij, ***probs;  char filelog[FILENAMELENGTH]; /* Log file */
 double *ageexmed,*agecens;  char filerest[FILENAMELENGTH];
 double dateintmean=0;  char fileregp[FILENAMELENGTH];
   char popfile[FILENAMELENGTH];
 double *weight;  
 int **s; /* Status */  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
 double *agedc, **covar, idx;  
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;  /* struct timeval start_time, end_time, curr_time, last_time, forecast_time; */
 double *lsurv, *lpop, *tpop;  /* struct timezone tzp; */
   /* extern int gettimeofday(); */
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */  struct tm tml, *gmtime(), *localtime();
 double ftolhess; /* Tolerance for computing hessian */  
   extern time_t time();
 /**************** split *************************/  
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )  struct tm start_time, end_time, curr_time, last_time, forecast_time;
 {  time_t  rstart_time, rend_time, rcurr_time, rlast_time, rforecast_time; /* raw time */
   /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)  struct tm tm;
      the name of the file (name), its extension only (ext) and its first part of the name (finame)  
   */  char strcurr[80], strfor[80];
   char  *ss;                            /* pointer */  
   int   l1, l2;                         /* length counters */  char *endptr;
   long lval;
   l1 = strlen(path );                   /* length of path */  double dval;
   if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );  
   ss= strrchr( path, DIRSEPARATOR );            /* find last / */  #define NR_END 1
   if ( ss == NULL ) {                   /* no directory, so determine current directory */  #define FREE_ARG char*
     strcpy( name, path );               /* we got the fullname name because no directory */  #define FTOL 1.0e-10
     /*if(strrchr(path, ODIRSEPARATOR )==NULL)  
       printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/  #define NRANSI 
     /* get current working directory */  #define ITMAX 200 
     /*    extern  char* getcwd ( char *buf , int len);*/  
     if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {  #define TOL 2.0e-4 
       return( GLOCK_ERROR_GETCWD );  
     }  #define CGOLD 0.3819660 
     /* got dirc from getcwd*/  #define ZEPS 1.0e-10 
     printf(" DIRC = %s \n",dirc);  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
   } else {                              /* strip direcotry from path */  
     ss++;                               /* after this, the filename */  #define GOLD 1.618034 
     l2 = strlen( ss );                  /* length of filename */  #define GLIMIT 100.0 
     if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );  #define TINY 1.0e-20 
     strcpy( name, ss );         /* save file name */  
     strncpy( dirc, path, l1 - l2 );     /* now the directory */  static double maxarg1,maxarg2;
     dirc[l1-l2] = 0;                    /* add zero */  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
     printf(" DIRC2 = %s \n",dirc);  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
   }    
   /* We add a separator at the end of dirc if not exists */  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
   l1 = strlen( dirc );                  /* length of directory */  #define rint(a) floor(a+0.5)
   if( dirc[l1-1] != DIRSEPARATOR ){  /* http://www.thphys.uni-heidelberg.de/~robbers/cmbeasy/doc/html/myutils_8h-source.html */
     dirc[l1] =  DIRSEPARATOR;  #define mytinydouble 1.0e-16
     dirc[l1+1] = 0;  /* #define DEQUAL(a,b) (fabs((a)-(b))<mytinydouble) */
     printf(" DIRC3 = %s \n",dirc);  /* http://www.thphys.uni-heidelberg.de/~robbers/cmbeasy/doc/html/mynrutils_8h-source.html */
   }  /* static double dsqrarg; */
   ss = strrchr( name, '.' );            /* find last / */  /* #define DSQR(a) (DEQUAL((dsqrarg=(a)),0.0) ? 0.0 : dsqrarg*dsqrarg) */
   if (ss >0){  static double sqrarg;
     ss++;  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
     strcpy(ext,ss);                     /* save extension */  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
     l1= strlen( name);  int agegomp= AGEGOMP;
     l2= strlen(ss)+1;  
     strncpy( finame, name, l1-l2);  int imx; 
     finame[l1-l2]= 0;  int stepm=1;
   }  /* Stepm, step in month: minimum step interpolation*/
   
   return( 0 );                          /* we're done */  int estepm;
 }  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
   
   int m,nb;
 /******************************************/  long *num;
   int firstpass=0, lastpass=4,*cod, *cens;
 void replace_back_to_slash(char *s, char*t)  int *ncodemax;  /* ncodemax[j]= Number of modalities of the j th
 {                     covariate for which somebody answered excluding 
   int i;                     undefined. Usually 2: 0 and 1. */
   int lg=0;  int *ncodemaxwundef;  /* ncodemax[j]= Number of modalities of the j th
   i=0;                               covariate for which somebody answered including 
   lg=strlen(t);                               undefined. Usually 3: -1, 0 and 1. */
   for(i=0; i<= lg; i++) {  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
     (s[i] = t[i]);  double **pmmij, ***probs;
     if (t[i]== '\\') s[i]='/';  double *ageexmed,*agecens;
   }  double dateintmean=0;
 }  
   double *weight;
 int nbocc(char *s, char occ)  int **s; /* Status */
 {  double *agedc;
   int i,j=0;  double  **covar; /**< covar[j,i], value of jth covariate for individual i,
   int lg=20;                    * covar=matrix(0,NCOVMAX,1,n); 
   i=0;                    * cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*age; */
   lg=strlen(s);  double  idx; 
   for(i=0; i<= lg; i++) {  int **nbcode, *Tvar; /**< model=V2 => Tvar[1]= 2 */
   if  (s[i] == occ ) j++;  int *Tage;
   }  int *Ndum; /** Freq of modality (tricode */
   return j;  /* int **codtab;*/ /**< codtab=imatrix(1,100,1,10); */
 }  int **Tvard, *Tprod, cptcovprod, *Tvaraff;
   double *lsurv, *lpop, *tpop;
 void cutv(char *u,char *v, char*t, char occ)  
 {  double ftol=FTOL; /**< Tolerance for computing Max Likelihood */
   /* cuts string t into u and v where u ends before first occurence of char 'occ'  double ftolhess; /**< Tolerance for computing hessian */
      and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')  
      gives u="abcedf" and v="ghi2j" */  /**************** split *************************/
   int i,lg,j,p=0;  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   i=0;  {
   for(j=0; j<=strlen(t)-1; j++) {    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;       the name of the file (name), its extension only (ext) and its first part of the name (finame)
   }    */ 
     char  *ss;                            /* pointer */
   lg=strlen(t);    int   l1=0, l2=0;                             /* length counters */
   for(j=0; j<p; j++) {  
     (u[j] = t[j]);    l1 = strlen(path );                   /* length of path */
   }    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
      u[p]='\0';    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
     if ( ss == NULL ) {                   /* no directory, so determine current directory */
    for(j=0; j<= lg; j++) {      strcpy( name, path );               /* we got the fullname name because no directory */
     if (j>=(p+1))(v[j-p-1] = t[j]);      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
   }        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
 }      /* get current working directory */
       /*    extern  char* getcwd ( char *buf , int len);*/
 /********************** nrerror ********************/  #ifdef WIN32
       if (_getcwd( dirc, FILENAME_MAX ) == NULL ) {
 void nrerror(char error_text[])  #else
 {          if (getcwd(dirc, FILENAME_MAX) == NULL) {
   fprintf(stderr,"ERREUR ...\n");  #endif
   fprintf(stderr,"%s\n",error_text);        return( GLOCK_ERROR_GETCWD );
   exit(EXIT_FAILURE);      }
 }      /* got dirc from getcwd*/
 /*********************** vector *******************/      printf(" DIRC = %s \n",dirc);
 double *vector(int nl, int nh)    } else {                              /* strip direcotry from path */
 {      ss++;                               /* after this, the filename */
   double *v;      l2 = strlen( ss );                  /* length of filename */
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
   if (!v) nrerror("allocation failure in vector");      strcpy( name, ss );         /* save file name */
   return v-nl+NR_END;      strncpy( dirc, path, l1 - l2 );     /* now the directory */
 }      dirc[l1-l2] = '\0';                 /* add zero */
       printf(" DIRC2 = %s \n",dirc);
 /************************ free vector ******************/    }
 void free_vector(double*v, int nl, int nh)    /* We add a separator at the end of dirc if not exists */
 {    l1 = strlen( dirc );                  /* length of directory */
   free((FREE_ARG)(v+nl-NR_END));    if( dirc[l1-1] != DIRSEPARATOR ){
 }      dirc[l1] =  DIRSEPARATOR;
       dirc[l1+1] = 0; 
 /************************ivector *******************************/      printf(" DIRC3 = %s \n",dirc);
 int *ivector(long nl,long nh)    }
 {    ss = strrchr( name, '.' );            /* find last / */
   int *v;    if (ss >0){
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));      ss++;
   if (!v) nrerror("allocation failure in ivector");      strcpy(ext,ss);                     /* save extension */
   return v-nl+NR_END;      l1= strlen( name);
 }      l2= strlen(ss)+1;
       strncpy( finame, name, l1-l2);
 /******************free ivector **************************/      finame[l1-l2]= 0;
 void free_ivector(int *v, long nl, long nh)    }
 {  
   free((FREE_ARG)(v+nl-NR_END));    return( 0 );                          /* we're done */
 }  }
   
 /************************lvector *******************************/  
 long *lvector(long nl,long nh)  /******************************************/
 {  
   long *v;  void replace_back_to_slash(char *s, char*t)
   v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));  {
   if (!v) nrerror("allocation failure in ivector");    int i;
   return v-nl+NR_END;    int lg=0;
 }    i=0;
     lg=strlen(t);
 /******************free lvector **************************/    for(i=0; i<= lg; i++) {
 void free_lvector(long *v, long nl, long nh)      (s[i] = t[i]);
 {      if (t[i]== '\\') s[i]='/';
   free((FREE_ARG)(v+nl-NR_END));    }
 }  }
   
 /******************* imatrix *******************************/  char *trimbb(char *out, char *in)
 int **imatrix(long nrl, long nrh, long ncl, long nch)  { /* Trim multiple blanks in line but keeps first blanks if line starts with blanks */
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */    char *s;
 {    s=out;
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;    while (*in != '\0'){
   int **m;      while( *in == ' ' && *(in+1) == ' '){ /* && *(in+1) != '\0'){*/
          in++;
   /* allocate pointers to rows */      }
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));      *out++ = *in++;
   if (!m) nrerror("allocation failure 1 in matrix()");    }
   m += NR_END;    *out='\0';
   m -= nrl;    return s;
    }
    
   /* allocate rows and set pointers to them */  /* char *substrchaine(char *out, char *in, char *chain) */
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  /* { */
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  /*   /\* Substract chain 'chain' from 'in', return and output 'out' *\/ */
   m[nrl] += NR_END;  /*   char *s, *t; */
   m[nrl] -= ncl;  /*   t=in;s=out; */
    /*   while ((*in != *chain) && (*in != '\0')){ */
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  /*     *out++ = *in++; */
    /*   } */
   /* return pointer to array of pointers to rows */  
   return m;  /*   /\* *in matches *chain *\/ */
 }  /*   while ((*in++ == *chain++) && (*in != '\0')){ */
   /*     printf("*in = %c, *out= %c *chain= %c \n", *in, *out, *chain);  */
 /****************** free_imatrix *************************/  /*   } */
 void free_imatrix(m,nrl,nrh,ncl,nch)  /*   in--; chain--; */
       int **m;  /*   while ( (*in != '\0')){ */
       long nch,ncl,nrh,nrl;  /*     printf("Bef *in = %c, *out= %c *chain= %c \n", *in, *out, *chain);  */
      /* free an int matrix allocated by imatrix() */  /*     *out++ = *in++; */
 {  /*     printf("Aft *in = %c, *out= %c *chain= %c \n", *in, *out, *chain);  */
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  /*   } */
   free((FREE_ARG) (m+nrl-NR_END));  /*   *out='\0'; */
 }  /*   out=s; */
   /*   return out; */
 /******************* matrix *******************************/  /* } */
 double **matrix(long nrl, long nrh, long ncl, long nch)  char *substrchaine(char *out, char *in, char *chain)
 {  {
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;    /* Substract chain 'chain' from 'in', return and output 'out' */
   double **m;    /* in="V1+V1*age+age*age+V2", chain="age*age" */
   
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    char *strloc;
   if (!m) nrerror("allocation failure 1 in matrix()");  
   m += NR_END;    strcpy (out, in); 
   m -= nrl;    strloc = strstr(out, chain); /* strloc points to out at age*age+V2 */
     printf("Bef strloc=%s chain=%s out=%s \n", strloc, chain, out);
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    if(strloc != NULL){ 
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");      /* will affect out */ /* strloc+strlenc(chain)=+V2 */ /* Will also work in Unicode */
   m[nrl] += NR_END;      memmove(strloc,strloc+strlen(chain), strlen(strloc+strlen(chain))+1);
   m[nrl] -= ncl;      /* strcpy (strloc, strloc +strlen(chain));*/
     }
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    printf("Aft strloc=%s chain=%s in=%s out=%s \n", strloc, chain, in, out);
   return m;    return out;
   /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1])  }
    */  
 }  
   char *cutl(char *blocc, char *alocc, char *in, char occ)
 /*************************free matrix ************************/  {
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)    /* cuts string in into blocc and alocc where blocc ends before FIRST occurence of char 'occ' 
 {       and alocc starts after first occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
   free((FREE_ARG)(m[nrl]+ncl-NR_END));       gives blocc="abcdef" and alocc="ghi2j".
   free((FREE_ARG)(m+nrl-NR_END));       If occ is not found blocc is null and alocc is equal to in. Returns blocc
 }    */
     char *s, *t;
 /******************* ma3x *******************************/    t=in;s=in;
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)    while ((*in != occ) && (*in != '\0')){
 {      *alocc++ = *in++;
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;    }
   double ***m;    if( *in == occ){
       *(alocc)='\0';
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));      s=++in;
   if (!m) nrerror("allocation failure 1 in matrix()");    }
   m += NR_END;   
   m -= nrl;    if (s == t) {/* occ not found */
       *(alocc-(in-s))='\0';
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));      in=s;
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    }
   m[nrl] += NR_END;    while ( *in != '\0'){
   m[nrl] -= ncl;      *blocc++ = *in++;
     }
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  
     *blocc='\0';
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));    return t;
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  }
   m[nrl][ncl] += NR_END;  char *cutv(char *blocc, char *alocc, char *in, char occ)
   m[nrl][ncl] -= nll;  {
   for (j=ncl+1; j<=nch; j++)    /* cuts string in into blocc and alocc where blocc ends before LAST occurence of char 'occ' 
     m[nrl][j]=m[nrl][j-1]+nlay;       and alocc starts after last occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
         gives blocc="abcdef2ghi" and alocc="j".
   for (i=nrl+1; i<=nrh; i++) {       If occ is not found blocc is null and alocc is equal to in. Returns alocc
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;    */
     for (j=ncl+1; j<=nch; j++)    char *s, *t;
       m[i][j]=m[i][j-1]+nlay;    t=in;s=in;
   }    while (*in != '\0'){
   return m;      while( *in == occ){
   /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])        *blocc++ = *in++;
            &(m[i][j][k]) <=> *((*(m+i) + j)+k)        s=in;
   */      }
 }      *blocc++ = *in++;
     }
 /*************************free ma3x ************************/    if (s == t) /* occ not found */
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)      *(blocc-(in-s))='\0';
 {    else
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));      *(blocc-(in-s)-1)='\0';
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    in=s;
   free((FREE_ARG)(m+nrl-NR_END));    while ( *in != '\0'){
 }      *alocc++ = *in++;
     }
 /*************** function subdirf ***********/  
 char *subdirf(char fileres[])    *alocc='\0';
 {    return s;
   /* Caution optionfilefiname is hidden */  }
   strcpy(tmpout,optionfilefiname);  
   strcat(tmpout,"/"); /* Add to the right */  int nbocc(char *s, char occ)
   strcat(tmpout,fileres);  {
   return tmpout;    int i,j=0;
 }    int lg=20;
     i=0;
 /*************** function subdirf2 ***********/    lg=strlen(s);
 char *subdirf2(char fileres[], char *preop)    for(i=0; i<= lg; i++) {
 {    if  (s[i] == occ ) j++;
      }
   /* Caution optionfilefiname is hidden */    return j;
   strcpy(tmpout,optionfilefiname);  }
   strcat(tmpout,"/");  
   strcat(tmpout,preop);  /* void cutv(char *u,char *v, char*t, char occ) */
   strcat(tmpout,fileres);  /* { */
   return tmpout;  /*   /\* cuts string t into u and v where u ends before last occurence of char 'occ'  */
 }  /*      and v starts after last occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2') */
   /*      gives u="abcdef2ghi" and v="j" *\/ */
 /*************** function subdirf3 ***********/  /*   int i,lg,j,p=0; */
 char *subdirf3(char fileres[], char *preop, char *preop2)  /*   i=0; */
 {  /*   lg=strlen(t); */
    /*   for(j=0; j<=lg-1; j++) { */
   /* Caution optionfilefiname is hidden */  /*     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1; */
   strcpy(tmpout,optionfilefiname);  /*   } */
   strcat(tmpout,"/");  
   strcat(tmpout,preop);  /*   for(j=0; j<p; j++) { */
   strcat(tmpout,preop2);  /*     (u[j] = t[j]); */
   strcat(tmpout,fileres);  /*   } */
   return tmpout;  /*      u[p]='\0'; */
 }  
   /*    for(j=0; j<= lg; j++) { */
 /***************** f1dim *************************/  /*     if (j>=(p+1))(v[j-p-1] = t[j]); */
 extern int ncom;  /*   } */
 extern double *pcom,*xicom;  /* } */
 extern double (*nrfunc)(double []);  
    #ifdef _WIN32
 double f1dim(double x)  char * strsep(char **pp, const char *delim)
 {  {
   int j;    char *p, *q;
   double f;           
   double *xt;    if ((p = *pp) == NULL)
        return 0;
   xt=vector(1,ncom);    if ((q = strpbrk (p, delim)) != NULL)
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];    {
   f=(*nrfunc)(xt);      *pp = q + 1;
   free_vector(xt,1,ncom);      *q = '\0';
   return f;    }
 }    else
       *pp = 0;
 /*****************brent *************************/    return p;
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  }
 {  #endif
   int iter;  
   double a,b,d,etemp;  /********************** nrerror ********************/
   double fu,fv,fw,fx;  
   double ftemp;  void nrerror(char error_text[])
   double p,q,r,tol1,tol2,u,v,w,x,xm;  {
   double e=0.0;    fprintf(stderr,"ERREUR ...\n");
      fprintf(stderr,"%s\n",error_text);
   a=(ax < cx ? ax : cx);    exit(EXIT_FAILURE);
   b=(ax > cx ? ax : cx);  }
   x=w=v=bx;  /*********************** vector *******************/
   fw=fv=fx=(*f)(x);  double *vector(int nl, int nh)
   for (iter=1;iter<=ITMAX;iter++) {  {
     xm=0.5*(a+b);    double *v;
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/    if (!v) nrerror("allocation failure in vector");
     printf(".");fflush(stdout);    return v-nl+NR_END;
     fprintf(ficlog,".");fflush(ficlog);  }
 #ifdef DEBUG  
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  /************************ free vector ******************/
     fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  void free_vector(double*v, int nl, int nh)
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  {
 #endif    free((FREE_ARG)(v+nl-NR_END));
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  }
       *xmin=x;  
       return fx;  /************************ivector *******************************/
     }  int *ivector(long nl,long nh)
     ftemp=fu;  {
     if (fabs(e) > tol1) {    int *v;
       r=(x-w)*(fx-fv);    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
       q=(x-v)*(fx-fw);    if (!v) nrerror("allocation failure in ivector");
       p=(x-v)*q-(x-w)*r;    return v-nl+NR_END;
       q=2.0*(q-r);  }
       if (q > 0.0) p = -p;  
       q=fabs(q);  /******************free ivector **************************/
       etemp=e;  void free_ivector(int *v, long nl, long nh)
       e=d;  {
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))    free((FREE_ARG)(v+nl-NR_END));
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  }
       else {  
         d=p/q;  /************************lvector *******************************/
         u=x+d;  long *lvector(long nl,long nh)
         if (u-a < tol2 || b-u < tol2)  {
           d=SIGN(tol1,xm-x);    long *v;
       }    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
     } else {    if (!v) nrerror("allocation failure in ivector");
       d=CGOLD*(e=(x >= xm ? a-x : b-x));    return v-nl+NR_END;
     }  }
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  
     fu=(*f)(u);  /******************free lvector **************************/
     if (fu <= fx) {  void free_lvector(long *v, long nl, long nh)
       if (u >= x) a=x; else b=x;  {
       SHFT(v,w,x,u)    free((FREE_ARG)(v+nl-NR_END));
         SHFT(fv,fw,fx,fu)  }
         } else {  
           if (u < x) a=u; else b=u;  /******************* imatrix *******************************/
           if (fu <= fw || w == x) {  int **imatrix(long nrl, long nrh, long ncl, long nch) 
             v=w;       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
             w=u;  { 
             fv=fw;    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
             fw=fu;    int **m; 
           } else if (fu <= fv || v == x || v == w) {    
             v=u;    /* allocate pointers to rows */ 
             fv=fu;    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
           }    if (!m) nrerror("allocation failure 1 in matrix()"); 
         }    m += NR_END; 
   }    m -= nrl; 
   nrerror("Too many iterations in brent");    
   *xmin=x;    
   return fx;    /* allocate rows and set pointers to them */ 
 }    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
     if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
 /****************** mnbrak ***********************/    m[nrl] += NR_END; 
     m[nrl] -= ncl; 
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,    
             double (*func)(double))    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
 {    
   double ulim,u,r,q, dum;    /* return pointer to array of pointers to rows */ 
   double fu;    return m; 
    } 
   *fa=(*func)(*ax);  
   *fb=(*func)(*bx);  /****************** free_imatrix *************************/
   if (*fb > *fa) {  void free_imatrix(m,nrl,nrh,ncl,nch)
     SHFT(dum,*ax,*bx,dum)        int **m;
       SHFT(dum,*fb,*fa,dum)        long nch,ncl,nrh,nrl; 
       }       /* free an int matrix allocated by imatrix() */ 
   *cx=(*bx)+GOLD*(*bx-*ax);  { 
   *fc=(*func)(*cx);    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
   while (*fb > *fc) {    free((FREE_ARG) (m+nrl-NR_END)); 
     r=(*bx-*ax)*(*fb-*fc);  } 
     q=(*bx-*cx)*(*fb-*fa);  
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/  /******************* matrix *******************************/
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  double **matrix(long nrl, long nrh, long ncl, long nch)
     ulim=(*bx)+GLIMIT*(*cx-*bx);  {
     if ((*bx-u)*(u-*cx) > 0.0) {    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
       fu=(*func)(u);    double **m;
     } else if ((*cx-u)*(u-ulim) > 0.0) {  
       fu=(*func)(u);    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
       if (fu < *fc) {    if (!m) nrerror("allocation failure 1 in matrix()");
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))    m += NR_END;
           SHFT(*fb,*fc,fu,(*func)(u))    m -= nrl;
           }  
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
       u=ulim;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       fu=(*func)(u);    m[nrl] += NR_END;
     } else {    m[nrl] -= ncl;
       u=(*cx)+GOLD*(*cx-*bx);  
       fu=(*func)(u);    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
     }    return m;
     SHFT(*ax,*bx,*cx,u)    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) or &(m[1][0])
       SHFT(*fa,*fb,*fc,fu)  m[i] = address of ith row of the table. &(m[i]) is its value which is another adress
       }  that of m[i][0]. In order to get the value p m[i][0] but it is unitialized.
 }     */
   }
 /*************** linmin ************************/  
   /*************************free matrix ************************/
 int ncom;  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
 double *pcom,*xicom;  {
 double (*nrfunc)(double []);    free((FREE_ARG)(m[nrl]+ncl-NR_END));
      free((FREE_ARG)(m+nrl-NR_END));
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))  }
 {  
   double brent(double ax, double bx, double cx,  /******************* ma3x *******************************/
                double (*f)(double), double tol, double *xmin);  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
   double f1dim(double x);  {
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
               double *fc, double (*func)(double));    double ***m;
   int j;  
   double xx,xmin,bx,ax;    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   double fx,fb,fa;    if (!m) nrerror("allocation failure 1 in matrix()");
      m += NR_END;
   ncom=n;    m -= nrl;
   pcom=vector(1,n);  
   xicom=vector(1,n);    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   nrfunc=func;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   for (j=1;j<=n;j++) {    m[nrl] += NR_END;
     pcom[j]=p[j];    m[nrl] -= ncl;
     xicom[j]=xi[j];  
   }    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   ax=0.0;  
   xx=1.0;    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);    m[nrl][ncl] += NR_END;
 #ifdef DEBUG    m[nrl][ncl] -= nll;
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    for (j=ncl+1; j<=nch; j++) 
   fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);      m[nrl][j]=m[nrl][j-1]+nlay;
 #endif    
   for (j=1;j<=n;j++) {    for (i=nrl+1; i<=nrh; i++) {
     xi[j] *= xmin;      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
     p[j] += xi[j];      for (j=ncl+1; j<=nch; j++) 
   }        m[i][j]=m[i][j-1]+nlay;
   free_vector(xicom,1,n);    }
   free_vector(pcom,1,n);    return m; 
 }    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
              &(m[i][j][k]) <=> *((*(m+i) + j)+k)
 char *asc_diff_time(long time_sec, char ascdiff[])    */
 {  }
   long sec_left, days, hours, minutes;  
   days = (time_sec) / (60*60*24);  /*************************free ma3x ************************/
   sec_left = (time_sec) % (60*60*24);  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
   hours = (sec_left) / (60*60) ;  {
   sec_left = (sec_left) %(60*60);    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
   minutes = (sec_left) /60;    free((FREE_ARG)(m[nrl]+ncl-NR_END));
   sec_left = (sec_left) % (60);    free((FREE_ARG)(m+nrl-NR_END));
   sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);    }
   return ascdiff;  
 }  /*************** function subdirf ***********/
   char *subdirf(char fileres[])
 /*************** powell ************************/  {
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,    /* Caution optionfilefiname is hidden */
             double (*func)(double []))    strcpy(tmpout,optionfilefiname);
 {    strcat(tmpout,"/"); /* Add to the right */
   void linmin(double p[], double xi[], int n, double *fret,    strcat(tmpout,fileres);
               double (*func)(double []));    return tmpout;
   int i,ibig,j;  }
   double del,t,*pt,*ptt,*xit;  
   double fp,fptt;  /*************** function subdirf2 ***********/
   double *xits;  char *subdirf2(char fileres[], char *preop)
   int niterf, itmp;  {
     
   pt=vector(1,n);    /* Caution optionfilefiname is hidden */
   ptt=vector(1,n);    strcpy(tmpout,optionfilefiname);
   xit=vector(1,n);    strcat(tmpout,"/");
   xits=vector(1,n);    strcat(tmpout,preop);
   *fret=(*func)(p);    strcat(tmpout,fileres);
   for (j=1;j<=n;j++) pt[j]=p[j];    return tmpout;
   for (*iter=1;;++(*iter)) {  }
     fp=(*fret);  
     ibig=0;  /*************** function subdirf3 ***********/
     del=0.0;  char *subdirf3(char fileres[], char *preop, char *preop2)
     last_time=curr_time;  {
     (void) gettimeofday(&curr_time,&tzp);    
     printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);    /* Caution optionfilefiname is hidden */
     fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec); fflush(ficlog);    strcpy(tmpout,optionfilefiname);
 /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec); */    strcat(tmpout,"/");
    for (i=1;i<=n;i++) {    strcat(tmpout,preop);
       printf(" %d %.12f",i, p[i]);    strcat(tmpout,preop2);
       fprintf(ficlog," %d %.12lf",i, p[i]);    strcat(tmpout,fileres);
       fprintf(ficrespow," %.12lf", p[i]);    return tmpout;
     }  }
     printf("\n");  
     fprintf(ficlog,"\n");  char *asc_diff_time(long time_sec, char ascdiff[])
     fprintf(ficrespow,"\n");fflush(ficrespow);  {
     if(*iter <=3){    long sec_left, days, hours, minutes;
       tm = *localtime(&curr_time.tv_sec);    days = (time_sec) / (60*60*24);
       strcpy(strcurr,asctime(&tm));    sec_left = (time_sec) % (60*60*24);
 /*       asctime_r(&tm,strcurr); */    hours = (sec_left) / (60*60) ;
       forecast_time=curr_time;    sec_left = (sec_left) %(60*60);
       itmp = strlen(strcurr);    minutes = (sec_left) /60;
       if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */    sec_left = (sec_left) % (60);
         strcurr[itmp-1]='\0';    sprintf(ascdiff,"%ld day(s) %ld hour(s) %ld minute(s) %ld second(s)",days, hours, minutes, sec_left);  
       printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);    return ascdiff;
       fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);  }
       for(niterf=10;niterf<=30;niterf+=10){  
         forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);  /***************** f1dim *************************/
         tmf = *localtime(&forecast_time.tv_sec);  extern int ncom; 
 /*      asctime_r(&tmf,strfor); */  extern double *pcom,*xicom;
         strcpy(strfor,asctime(&tmf));  extern double (*nrfunc)(double []); 
         itmp = strlen(strfor);   
         if(strfor[itmp-1]=='\n')  double f1dim(double x) 
         strfor[itmp-1]='\0';  { 
         printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);    int j; 
         fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);    double f;
       }    double *xt; 
     }   
     for (i=1;i<=n;i++) {    xt=vector(1,ncom); 
       for (j=1;j<=n;j++) xit[j]=xi[j][i];    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
       fptt=(*fret);    f=(*nrfunc)(xt); 
 #ifdef DEBUG    free_vector(xt,1,ncom); 
       printf("fret=%lf \n",*fret);    return f; 
       fprintf(ficlog,"fret=%lf \n",*fret);  } 
 #endif  
       printf("%d",i);fflush(stdout);  /*****************brent *************************/
       fprintf(ficlog,"%d",i);fflush(ficlog);  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
       linmin(p,xit,n,fret,func);  {
       if (fabs(fptt-(*fret)) > del) {    /* Given a function f, and given a bracketing triplet of abscissas ax, bx, cx (such that bx is
         del=fabs(fptt-(*fret));     * between ax and cx, and f(bx) is less than both f(ax) and f(cx) ), this routine isolates
         ibig=i;     * the minimum to a fractional precision of about tol using Brent’s method. The abscissa of
       }     * the minimum is returned as xmin, and the minimum function value is returned as brent , the
 #ifdef DEBUG     * returned function value. 
       printf("%d %.12e",i,(*fret));    */
       fprintf(ficlog,"%d %.12e",i,(*fret));    int iter; 
       for (j=1;j<=n;j++) {    double a,b,d,etemp;
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);    double fu=0,fv,fw,fx;
         printf(" x(%d)=%.12e",j,xit[j]);    double ftemp=0.;
         fprintf(ficlog," x(%d)=%.12e",j,xit[j]);    double p,q,r,tol1,tol2,u,v,w,x,xm; 
       }    double e=0.0; 
       for(j=1;j<=n;j++) {   
         printf(" p=%.12e",p[j]);    a=(ax < cx ? ax : cx); 
         fprintf(ficlog," p=%.12e",p[j]);    b=(ax > cx ? ax : cx); 
       }    x=w=v=bx; 
       printf("\n");    fw=fv=fx=(*f)(x); 
       fprintf(ficlog,"\n");    for (iter=1;iter<=ITMAX;iter++) { 
 #endif      xm=0.5*(a+b); 
     }      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
 #ifdef DEBUG      printf(".");fflush(stdout);
       int k[2],l;      fprintf(ficlog,".");fflush(ficlog);
       k[0]=1;  #ifdef DEBUGBRENT
       k[1]=-1;      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       printf("Max: %.12e",(*func)(p));      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       fprintf(ficlog,"Max: %.12e",(*func)(p));      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
       for (j=1;j<=n;j++) {  #endif
         printf(" %.12e",p[j]);      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
         fprintf(ficlog," %.12e",p[j]);        *xmin=x; 
       }        return fx; 
       printf("\n");      } 
       fprintf(ficlog,"\n");      ftemp=fu;
       for(l=0;l<=1;l++) {      if (fabs(e) > tol1) { 
         for (j=1;j<=n;j++) {        r=(x-w)*(fx-fv); 
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];        q=(x-v)*(fx-fw); 
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);        p=(x-v)*q-(x-w)*r; 
           fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);        q=2.0*(q-r); 
         }        if (q > 0.0) p = -p; 
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));        q=fabs(q); 
         fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));        etemp=e; 
       }        e=d; 
 #endif        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
           d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
         else { 
       free_vector(xit,1,n);          d=p/q; 
       free_vector(xits,1,n);          u=x+d; 
       free_vector(ptt,1,n);          if (u-a < tol2 || b-u < tol2) 
       free_vector(pt,1,n);            d=SIGN(tol1,xm-x); 
       return;        } 
     }      } else { 
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
     for (j=1;j<=n;j++) {      } 
       ptt[j]=2.0*p[j]-pt[j];      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
       xit[j]=p[j]-pt[j];      fu=(*f)(u); 
       pt[j]=p[j];      if (fu <= fx) { 
     }        if (u >= x) a=x; else b=x; 
     fptt=(*func)(ptt);        SHFT(v,w,x,u) 
     if (fptt < fp) {        SHFT(fv,fw,fx,fu) 
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);      } else { 
       if (t < 0.0) {        if (u < x) a=u; else b=u; 
         linmin(p,xit,n,fret,func);        if (fu <= fw || w == x) { 
         for (j=1;j<=n;j++) {          v=w; 
           xi[j][ibig]=xi[j][n];          w=u; 
           xi[j][n]=xit[j];          fv=fw; 
         }          fw=fu; 
 #ifdef DEBUG        } else if (fu <= fv || v == x || v == w) { 
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);          v=u; 
         fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);          fv=fu; 
         for(j=1;j<=n;j++){        } 
           printf(" %.12e",xit[j]);      } 
           fprintf(ficlog," %.12e",xit[j]);    } 
         }    nrerror("Too many iterations in brent"); 
         printf("\n");    *xmin=x; 
         fprintf(ficlog,"\n");    return fx; 
 #endif  } 
       }  
     }  /****************** mnbrak ***********************/
   }  
 }  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
               double (*func)(double)) 
 /**** Prevalence limit (stable or period prevalence)  ****************/  { /* Given a function func , and given distinct initial points ax and bx , this routine searches in
   the downhill direction (defined by the function as evaluated at the initial points) and returns
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)  new points ax , bx , cx that bracket a minimum of the function. Also returned are the function
 {  values at the three points, fa, fb , and fc such that fa > fb and fb < fc.
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit     */
      matrix by transitions matrix until convergence is reached */    double ulim,u,r,q, dum;
     double fu; 
   int i, ii,j,k;  
   double min, max, maxmin, maxmax,sumnew=0.;    double scale=10.;
   double **matprod2();    int iterscale=0;
   double **out, cov[NCOVMAX], **pmij();  
   double **newm;    *fa=(*func)(*ax); /*  xta[j]=pcom[j]+(*ax)*xicom[j]; fa=f(xta[j])*/
   double agefin, delaymax=50 ; /* Max number of years to converge */    *fb=(*func)(*bx); /*  xtb[j]=pcom[j]+(*bx)*xicom[j]; fb=f(xtb[j]) */
   
   for (ii=1;ii<=nlstate+ndeath;ii++)  
     for (j=1;j<=nlstate+ndeath;j++){    /* while(*fb != *fb){ /\* *ax should be ok, reducing distance to *ax *\/ */
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);    /*   printf("Warning mnbrak *fb = %lf, *bx=%lf *ax=%lf *fa==%lf iter=%d\n",*fb, *bx, *ax, *fa, iterscale++); */
     }    /*   *bx = *ax - (*ax - *bx)/scale; */
     /*   *fb=(*func)(*bx);  /\*  xtb[j]=pcom[j]+(*bx)*xicom[j]; fb=f(xtb[j]) *\/ */
    cov[1]=1.;    /* } */
    
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */    if (*fb > *fa) { 
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){      SHFT(dum,*ax,*bx,dum) 
     newm=savm;      SHFT(dum,*fb,*fa,dum) 
     /* Covariates have to be included here again */    } 
      cov[2]=agefin;    *cx=(*bx)+GOLD*(*bx-*ax); 
      *fc=(*func)(*cx); 
       for (k=1; k<=cptcovn;k++) {  #ifdef DEBUG
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    printf("mnbrak0 *fb=%.12e *fc=%.12e\n",*fb,*fc);
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/    fprintf(ficlog,"mnbrak0 *fb=%.12e *fc=%.12e\n",*fb,*fc);
       }  #endif
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    while (*fb > *fc) { /* Declining a,b,c with fa> fb > fc */
       for (k=1; k<=cptcovprod;k++)      r=(*bx-*ax)*(*fb-*fc); 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];      q=(*bx-*cx)*(*fb-*fa); 
       u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); /* Minimum abscissa of a parabolic estimated from (a,fa), (b,fb) and (c,fc). */
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/      ulim=(*bx)+GLIMIT*(*cx-*bx); /* Maximum abscissa where function should be evaluated */
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/      if ((*bx-u)*(u-*cx) > 0.0) { /* if u_p is between b and c */
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);        fu=(*func)(u); 
   #ifdef DEBUG
     savm=oldm;        /* f(x)=A(x-u)**2+f(u) */
     oldm=newm;        double A, fparabu; 
     maxmax=0.;        A= (*fb - *fa)/(*bx-*ax)/(*bx+*ax-2*u);
     for(j=1;j<=nlstate;j++){        fparabu= *fa - A*(*ax-u)*(*ax-u);
       min=1.;        printf("mnbrak (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf, fparabu=%.12f)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu, fparabu);
       max=0.;        fprintf(ficlog, "mnbrak (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf, fparabu=%.12f)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu, fparabu);
       for(i=1; i<=nlstate; i++) {        /* And thus,it can be that fu > *fc even if fparabu < *fc */
         sumnew=0;        /* mnbrak (*ax=7.666299858533, *fa=299039.693133272231), (*bx=8.595447774979, *fb=298976.598289369489),
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];          (*cx=10.098840694817, *fc=298946.631474258087),  (*u=9.852501168332, fu=298948.773013752128, fparabu=298945.434711494134) */
         prlim[i][j]= newm[i][j]/(1-sumnew);        /* In that case, there is no bracket in the output! Routine is wrong with many consequences.*/
         max=FMAX(max,prlim[i][j]);  #endif 
         min=FMIN(min,prlim[i][j]);  #ifdef MNBRAKORIGINAL
       }  #else
       maxmin=max-min;  /*       if (fu > *fc) { */
       maxmax=FMAX(maxmax,maxmin);  /* #ifdef DEBUG */
     }  /*       printf("mnbrak4  fu > fc \n"); */
     if(maxmax < ftolpl){  /*       fprintf(ficlog, "mnbrak4 fu > fc\n"); */
       return prlim;  /* #endif */
     }  /*      /\* SHFT(u,*cx,*cx,u) /\\* ie a=c, c=u and u=c; in that case, next SHFT(a,b,c,u) will give a=b=b, b=c=u, c=u=c and *\\/  *\/ */
   }  /*      /\* SHFT(*fa,*fc,fu,*fc) /\\* (b, u, c) is a bracket while test fb > fc will be fu > fc  will exit *\\/ *\/ */
 }  /*      dum=u; /\* Shifting c and u *\/ */
   /*      u = *cx; */
 /*************** transition probabilities ***************/  /*      *cx = dum; */
   /*      dum = fu; */
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )  /*      fu = *fc; */
 {  /*      *fc =dum; */
   double s1, s2;  /*       } else { /\* end *\/ */
   /*double t34;*/  /* #ifdef DEBUG */
   int i,j,j1, nc, ii, jj;  /*       printf("mnbrak3  fu < fc \n"); */
   /*       fprintf(ficlog, "mnbrak3 fu < fc\n"); */
     for(i=1; i<= nlstate; i++){  /* #endif */
       for(j=1; j<i;j++){  /*      dum=u; /\* Shifting c and u *\/ */
         for (nc=1, s2=0.;nc <=ncovmodel; nc++){  /*      u = *cx; */
           /*s2 += param[i][j][nc]*cov[nc];*/  /*      *cx = dum; */
           s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  /*      dum = fu; */
 /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */  /*      fu = *fc; */
         }  /*      *fc =dum; */
         ps[i][j]=s2;  /*       } */
 /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */  #ifdef DEBUG
       }        printf("mnbrak34  fu < or >= fc \n");
       for(j=i+1; j<=nlstate+ndeath;j++){        fprintf(ficlog, "mnbrak34 fu < fc\n");
         for (nc=1, s2=0.;nc <=ncovmodel; nc++){  #endif
           s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];        dum=u; /* Shifting c and u */
 /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */        u = *cx;
         }        *cx = dum;
         ps[i][j]=s2;        dum = fu;
       }        fu = *fc;
     }        *fc =dum;
     /*ps[3][2]=1;*/  #endif
          } else if ((*cx-u)*(u-ulim) > 0.0) { /* u is after c but before ulim */
     for(i=1; i<= nlstate; i++){  #ifdef DEBUG
       s1=0;        printf("mnbrak2  u after c but before ulim\n");
       for(j=1; j<i; j++)        fprintf(ficlog, "mnbrak2 u after c but before ulim\n");
         s1+=exp(ps[i][j]);  #endif
       for(j=i+1; j<=nlstate+ndeath; j++)        fu=(*func)(u); 
         s1+=exp(ps[i][j]);        if (fu < *fc) { 
       ps[i][i]=1./(s1+1.);  #ifdef DEBUG
       for(j=1; j<i; j++)        printf("mnbrak2  u after c but before ulim AND fu < fc\n");
         ps[i][j]= exp(ps[i][j])*ps[i][i];        fprintf(ficlog, "mnbrak2 u after c but before ulim AND fu <fc \n");
       for(j=i+1; j<=nlstate+ndeath; j++)  #endif
         ps[i][j]= exp(ps[i][j])*ps[i][i];          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
       /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */          SHFT(*fb,*fc,fu,(*func)(u)) 
     } /* end i */        } 
          } else if ((u-ulim)*(ulim-*cx) >= 0.0) { /* u outside ulim (verifying that ulim is beyond c) */
     for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){  #ifdef DEBUG
       for(jj=1; jj<= nlstate+ndeath; jj++){        printf("mnbrak2  u outside ulim (verifying that ulim is beyond c)\n");
         ps[ii][jj]=0;        fprintf(ficlog, "mnbrak2 u outside ulim (verifying that ulim is beyond c)\n");
         ps[ii][ii]=1;  #endif
       }        u=ulim; 
     }        fu=(*func)(u); 
          } else { /* u could be left to b (if r > q parabola has a maximum) */
   #ifdef DEBUG
 /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */        printf("mnbrak2  u could be left to b (if r > q parabola has a maximum)\n");
 /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */        fprintf(ficlog, "mnbrak2  u could be left to b (if r > q parabola has a maximum)\n");
 /*         printf("ddd %lf ",ps[ii][jj]); */  #endif
 /*       } */        u=(*cx)+GOLD*(*cx-*bx); 
 /*       printf("\n "); */        fu=(*func)(u); 
 /*        } */      } /* end tests */
 /*        printf("\n ");printf("%lf ",cov[2]); */      SHFT(*ax,*bx,*cx,u) 
        /*      SHFT(*fa,*fb,*fc,fu) 
       for(i=1; i<= npar; i++) printf("%f ",x[i]);  #ifdef DEBUG
       goto end;*/        printf("mnbrak2 (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu);
     return ps;        fprintf(ficlog, "mnbrak2 (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu);
 }  #endif
     } /* end while; ie return (a, b, c, fa, fb, fc) such that a < b < c with f(a) > f(b) and fb < f(c) */
 /**************** Product of 2 matrices ******************/  } 
   
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)  /*************** linmin ************************/
 {  /* Given an n -dimensional point p[1..n] and an n -dimensional direction xi[1..n] , moves and
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times  resets p to where the function func(p) takes on a minimum along the direction xi from p ,
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */  and replaces xi by the actual vector displacement that p was moved. Also returns as fret
   /* in, b, out are matrice of pointers which should have been initialized  the value of func at the returned location p . This is actually all accomplished by calling the
      before: only the contents of out is modified. The function returns  routines mnbrak and brent .*/
      a pointer to pointers identical to out */  int ncom; 
   long i, j, k;  double *pcom,*xicom;
   for(i=nrl; i<= nrh; i++)  double (*nrfunc)(double []); 
     for(k=ncolol; k<=ncoloh; k++)   
       for(j=ncl,out[i][k]=0.; j<=nch; j++)  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
         out[i][k] +=in[i][j]*b[j][k];  { 
     double brent(double ax, double bx, double cx, 
   return out;                 double (*f)(double), double tol, double *xmin); 
 }    double f1dim(double x); 
     void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
                 double *fc, double (*func)(double)); 
 /************* Higher Matrix Product ***************/    int j; 
     double xx,xmin,bx,ax; 
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )    double fx,fb,fa;
 {  
   /* Computes the transition matrix starting at age 'age' over    double scale=10., axs, xxs, xxss; /* Scale added for infinity */
      'nhstepm*hstepm*stepm' months (i.e. until   
      age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying    ncom=n; 
      nhstepm*hstepm matrices.    pcom=vector(1,n); 
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step    xicom=vector(1,n); 
      (typically every 2 years instead of every month which is too big    nrfunc=func; 
      for the memory).    for (j=1;j<=n;j++) { 
      Model is determined by parameters x and covariates have to be      pcom[j]=p[j]; 
      included manually here.      xicom[j]=xi[j]; 
     } 
      */  
     /* axs=0.0; */
   int i, j, d, h, k;    /* xxss=1; /\* 1 and using scale *\/ */
   double **out, cov[NCOVMAX];    xxs=1;
   double **newm;    /* do{ */
       ax=0.;
   /* Hstepm could be zero and should return the unit matrix */      xx= xxs;
   for (i=1;i<=nlstate+ndeath;i++)      mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  /* Outputs: xtx[j]=pcom[j]+(*xx)*xicom[j]; fx=f(xtx[j]) */
     for (j=1;j<=nlstate+ndeath;j++){      /* brackets with inputs ax=0 and xx=1, but points, pcom=p, and directions values, xicom=xi, are sent via f1dim(x) */
       oldm[i][j]=(i==j ? 1.0 : 0.0);      /* xt[x,j]=pcom[j]+x*xicom[j]  f(ax) = f(xt(a,j=1,n)) = f(p(j) + 0 * xi(j)) and  f(xx) = f(xt(x, j=1,n)) = f(p(j) + 1 * xi(j))   */
       po[i][j][0]=(i==j ? 1.0 : 0.0);      /* Outputs: fa=f(p(j)) and fx=f(p(j) + xxs * xi(j) ) and f(bx)= f(p(j)+ bx* xi(j)) */
     }      /* Given input ax=axs and xx=xxs, xx might be too far from ax to get a finite f(xx) */
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */      /* Searches on line, outputs (ax, xx, bx) such that fx < min(fa and fb) */
   for(h=1; h <=nhstepm; h++){      /* Find a bracket a,x,b in direction n=xi ie xicom, order may change. Scale is [0:xxs*xi[j]] et non plus  [0:xi[j]]*/
     for(d=1; d <=hstepm; d++){    /*   if (fx != fx){ */
       newm=savm;    /*    xxs=xxs/scale; /\* Trying a smaller xx, closer to initial ax=0 *\/ */
       /* Covariates have to be included here again */    /*    printf("\nLinmin NAN : input [axs=%lf:xxs=%lf], mnbrak outputs fx=%lf <(fb=%lf and fa=%lf) with xx=%lf in [ax=%lf:bx=%lf] \n",  axs, xxs, fx,fb, fa, xx, ax, bx); */
       cov[1]=1.;    /*   } */
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;    /* }while(fx != fx); */
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  
       for (k=1; k<=cptcovage;k++)  #ifdef DEBUGLINMIN
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    printf("\nLinmin after mnbrak: ax=%12.7f xx=%12.7f bx=%12.7f fa=%12.2f fx=%12.2f fb=%12.2f\n",  ax,xx,bx,fa,fx,fb);
       for (k=1; k<=cptcovprod;k++)  #endif
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); /* Giving a bracketting triplet (ax, xx, bx), find a minimum, xmin, according to f1dim, *fret(xmin),*/
     /* fa = f(p[j] + ax * xi[j]), fx = f(p[j] + xx * xi[j]), fb = f(p[j] + bx * xi[j]) */
     /* fmin = f(p[j] + xmin * xi[j]) */
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/    /* P+lambda n in that direction (lambdamin), with TOL between abscisses */
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/    /* f1dim(xmin): for (j=1;j<=ncom;j++) xt[j]=pcom[j]+xmin*xicom[j]; */
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,  #ifdef DEBUG
                    pmij(pmmij,cov,ncovmodel,x,nlstate));    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
       savm=oldm;    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
       oldm=newm;  #endif
     }  #ifdef DEBUGLINMIN
     for(i=1; i<=nlstate+ndeath; i++)    printf("linmin end ");
       for(j=1;j<=nlstate+ndeath;j++) {  #endif
         po[i][j][h]=newm[i][j];    for (j=1;j<=n;j++) { 
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);      /* printf(" before xi[%d]=%12.8f", j,xi[j]); */
          */      xi[j] *= xmin; /* xi rescaled by xmin: if xmin=-1.237 and xi=(1,0,...,0) xi=(-1.237,0,...,0) */
       }      /* if(xxs <1.0) */
   } /* end h */      /*   printf(" after xi[%d]=%12.8f, xmin=%12.8f, ax=%12.8f, xx=%12.8f, bx=%12.8f, xxs=%12.8f", j,xi[j], xmin, ax, xx, bx,xxs ); */
   return po;      p[j] += xi[j]; /* Parameters values are updated accordingly */
 }    } 
     /* printf("\n"); */
   #ifdef DEBUGLINMIN
 /*************** log-likelihood *************/    printf("Comparing last *frec(xmin=%12.8f)=%12.8f from Brent and frec(0.)=%12.8f \n", xmin, *fret, (*func)(p));
 double func( double *x)    for (j=1;j<=n;j++) { 
 {      printf(" xi[%d]= %12.7f p[%d]= %12.7f",j,xi[j],j,p[j]);
   int i, ii, j, k, mi, d, kk;      if(j % ncovmodel == 0)
   double l, ll[NLSTATEMAX], cov[NCOVMAX];        printf("\n");
   double **out;    }
   double sw; /* Sum of weights */  #endif
   double lli; /* Individual log likelihood */    free_vector(xicom,1,n); 
   int s1, s2;    free_vector(pcom,1,n); 
   double bbh, survp;  } 
   long ipmx;  
   /*extern weight */  
   /* We are differentiating ll according to initial status */  /*************** powell ************************/
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/  /*
   /*for(i=1;i<imx;i++)  Minimization of a function func of n variables. Input consists of an initial starting point
     printf(" %d\n",s[4][i]);  p[1..n] ; an initial matrix xi[1..n][1..n] , whose columns contain the initial set of di-
   */  rections (usually the n unit vectors); and ftol , the fractional tolerance in the function value
   cov[1]=1.;  such that failure to decrease by more than this amount on one iteration signals doneness. On
   output, p is set to the best point found, xi is the then-current direction set, fret is the returned
   for(k=1; k<=nlstate; k++) ll[k]=0.;  function value at p , and iter is the number of iterations taken. The routine linmin is used.
    */
   if(mle==1){  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){              double (*func)(double [])) 
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];  { 
       for(mi=1; mi<= wav[i]-1; mi++){    void linmin(double p[], double xi[], int n, double *fret, 
         for (ii=1;ii<=nlstate+ndeath;ii++)                double (*func)(double [])); 
           for (j=1;j<=nlstate+ndeath;j++){    int i,ibig,j; 
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);    double del,t,*pt,*ptt,*xit;
             savm[ii][j]=(ii==j ? 1.0 : 0.0);    double directest;
           }    double fp,fptt;
         for(d=0; d<dh[mi][i]; d++){    double *xits;
           newm=savm;    int niterf, itmp;
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;  
           for (kk=1; kk<=cptcovage;kk++) {    pt=vector(1,n); 
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];    ptt=vector(1,n); 
           }    xit=vector(1,n); 
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,    xits=vector(1,n); 
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));    *fret=(*func)(p); 
           savm=oldm;    for (j=1;j<=n;j++) pt[j]=p[j]; 
           oldm=newm;      rcurr_time = time(NULL);  
         } /* end mult */    for (*iter=1;;++(*iter)) { 
            fp=(*fret); /* From former iteration or initial value */
         /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */      ibig=0; 
         /* But now since version 0.9 we anticipate for bias at large stepm.      del=0.0; 
          * If stepm is larger than one month (smallest stepm) and if the exact delay      rlast_time=rcurr_time;
          * (in months) between two waves is not a multiple of stepm, we rounded to      /* (void) gettimeofday(&curr_time,&tzp); */
          * the nearest (and in case of equal distance, to the lowest) interval but now      rcurr_time = time(NULL);  
          * we keep into memory the bias bh[mi][i] and also the previous matrix product      curr_time = *localtime(&rcurr_time);
          * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, rcurr_time-rlast_time, rcurr_time-rstart_time);fflush(stdout);
          * probability in order to take into account the bias as a fraction of the way      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret,rcurr_time-rlast_time, rcurr_time-rstart_time); fflush(ficlog);
          * from savm to out if bh is negative or even beyond if bh is positive. bh varies  /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tm_sec-start_time.tm_sec); */
          * -stepm/2 to stepm/2 .      for (i=1;i<=n;i++) {
          * For stepm=1 the results are the same as for previous versions of Imach.        printf(" %d %.12f",i, p[i]);
          * For stepm > 1 the results are less biased than in previous versions.        fprintf(ficlog," %d %.12lf",i, p[i]);
          */        fprintf(ficrespow," %.12lf", p[i]);
         s1=s[mw[mi][i]][i];      }
         s2=s[mw[mi+1][i]][i];      printf("\n");
         bbh=(double)bh[mi][i]/(double)stepm;      fprintf(ficlog,"\n");
         /* bias bh is positive if real duration      fprintf(ficrespow,"\n");fflush(ficrespow);
          * is higher than the multiple of stepm and negative otherwise.      if(*iter <=3){
          */        tml = *localtime(&rcurr_time);
         /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/        strcpy(strcurr,asctime(&tml));
         if( s2 > nlstate){        rforecast_time=rcurr_time; 
           /* i.e. if s2 is a death state and if the date of death is known        itmp = strlen(strcurr);
              then the contribution to the likelihood is the probability to        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
              die between last step unit time and current  step unit time,          strcurr[itmp-1]='\0';
              which is also equal to probability to die before dh        printf("\nConsidering the time needed for the last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time);
              minus probability to die before dh-stepm .        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time);
              In version up to 0.92 likelihood was computed        for(niterf=10;niterf<=30;niterf+=10){
         as if date of death was unknown. Death was treated as any other          rforecast_time=rcurr_time+(niterf-*iter)*(rcurr_time-rlast_time);
         health state: the date of the interview describes the actual state          forecast_time = *localtime(&rforecast_time);
         and not the date of a change in health state. The former idea was          strcpy(strfor,asctime(&forecast_time));
         to consider that at each interview the state was recorded          itmp = strlen(strfor);
         (healthy, disable or death) and IMaCh was corrected; but when we          if(strfor[itmp-1]=='\n')
         introduced the exact date of death then we should have modified          strfor[itmp-1]='\0';
         the contribution of an exact death to the likelihood. This new          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr);
         contribution is smaller and very dependent of the step unit          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr);
         stepm. It is no more the probability to die between last interview        }
         and month of death but the probability to survive from last      }
         interview up to one month before death multiplied by the      for (i=1;i<=n;i++) { /* For each direction i */
         probability to die within a month. Thanks to Chris        for (j=1;j<=n;j++) xit[j]=xi[j][i]; /* Directions stored from previous iteration with previous scales */
         Jackson for correcting this bug.  Former versions increased        fptt=(*fret); 
         mortality artificially. The bad side is that we add another loop  #ifdef DEBUG
         which slows down the processing. The difference can be up to 10%            printf("fret=%lf, %lf, %lf \n", *fret, *fret, *fret);
         lower mortality.            fprintf(ficlog, "fret=%lf, %lf, %lf \n", *fret, *fret, *fret);
           */  #endif
           lli=log(out[s1][s2] - savm[s1][s2]);            printf("%d",i);fflush(stdout); /* print direction (parameter) i */
         fprintf(ficlog,"%d",i);fflush(ficlog);
         linmin(p,xit,n,fret,func); /* Point p[n]. xit[n] has been loaded for direction i as input.*/
         } else if  (s2==-2) {                                      /* Outputs are fret(new point p) p is updated and xit rescaled */
           for (j=1,survp=0. ; j<=nlstate; j++)        if (fabs(fptt-(*fret)) > del) { /* We are keeping the max gain on each of the n directions */
             survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];          /* because that direction will be replaced unless the gain del is small */
           /*survp += out[s1][j]; */          /* in comparison with the 'probable' gain, mu^2, with the last average direction. */
           lli= log(survp);          /* Unless the n directions are conjugate some gain in the determinant may be obtained */
         }          /* with the new direction. */
                  del=fabs(fptt-(*fret)); 
         else if  (s2==-4) {          ibig=i; 
           for (j=3,survp=0. ; j<=nlstate; j++)          } 
             survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];  #ifdef DEBUG
           lli= log(survp);        printf("%d %.12e",i,(*fret));
         }        fprintf(ficlog,"%d %.12e",i,(*fret));
         for (j=1;j<=n;j++) {
         else if  (s2==-5) {          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
           for (j=1,survp=0. ; j<=2; j++)            printf(" x(%d)=%.12e",j,xit[j]);
             survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
           lli= log(survp);        }
         }        for(j=1;j<=n;j++) {
                  printf(" p(%d)=%.12e",j,p[j]);
         else{          fprintf(ficlog," p(%d)=%.12e",j,p[j]);
           lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */        }
           /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */        printf("\n");
         }        fprintf(ficlog,"\n");
         /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/  #endif
         /*if(lli ==000.0)*/      } /* end loop on each direction i */
         /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */      /* Convergence test will use last linmin estimation (fret) and compare former iteration (fp) */ 
         ipmx +=1;      /* But p and xit have been updated at the end of linmin, *fret corresponds to new p, xit  */
         sw += weight[i];      /* New value of last point Pn is not computed, P(n-1) */
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) { /* Did we reach enough precision? */
       } /* end of wave */        /* We could compare with a chi^2. chisquare(0.95,ddl=1)=3.84 */
     } /* end of individual */        /* By adding age*age in a model, the new -2LL should be lower and the difference follows a */
   }  else if(mle==2){        /* a chisquare statistics with 1 degree. To be significant at the 95% level, it should have */
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){        /* decreased of more than 3.84  */
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];        /* By adding age*age and V1*age the gain (-2LL) should be more than 5.99 (ddl=2) */
       for(mi=1; mi<= wav[i]-1; mi++){        /* By using V1+V2+V3, the gain should be  7.82, compared with basic 1+age. */
         for (ii=1;ii<=nlstate+ndeath;ii++)        /* By adding 10 parameters more the gain should be 18.31 */
           for (j=1;j<=nlstate+ndeath;j++){  
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);        /* Starting the program with initial values given by a former maximization will simply change */
             savm[ii][j]=(ii==j ? 1.0 : 0.0);        /* the scales of the directions and the directions, because the are reset to canonical directions */
           }        /* Thus the first calls to linmin will give new points and better maximizations until fp-(*fret) is */
         for(d=0; d<=dh[mi][i]; d++){        /* under the tolerance value. If the tolerance is very small 1.e-9, it could last long.  */
           newm=savm;  #ifdef DEBUG
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;        int k[2],l;
           for (kk=1; kk<=cptcovage;kk++) {        k[0]=1;
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];        k[1]=-1;
           }        printf("Max: %.12e",(*func)(p));
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,        fprintf(ficlog,"Max: %.12e",(*func)(p));
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));        for (j=1;j<=n;j++) {
           savm=oldm;          printf(" %.12e",p[j]);
           oldm=newm;          fprintf(ficlog," %.12e",p[j]);
         } /* end mult */        }
              printf("\n");
         s1=s[mw[mi][i]][i];        fprintf(ficlog,"\n");
         s2=s[mw[mi+1][i]][i];        for(l=0;l<=1;l++) {
         bbh=(double)bh[mi][i]/(double)stepm;          for (j=1;j<=n;j++) {
         lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
         ipmx +=1;            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
         sw += weight[i];            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;          }
       } /* end of wave */          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
     } /* end of individual */          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   }  else if(mle==3){  /* exponential inter-extrapolation */        }
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){  #endif
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];  
       for(mi=1; mi<= wav[i]-1; mi++){  
         for (ii=1;ii<=nlstate+ndeath;ii++)        free_vector(xit,1,n); 
           for (j=1;j<=nlstate+ndeath;j++){        free_vector(xits,1,n); 
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);        free_vector(ptt,1,n); 
             savm[ii][j]=(ii==j ? 1.0 : 0.0);        free_vector(pt,1,n); 
           }        return; 
         for(d=0; d<dh[mi][i]; d++){      } /* enough precision */ 
           newm=savm;      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;      for (j=1;j<=n;j++) { /* Computes the extrapolated point P_0 + 2 (P_n-P_0) */
           for (kk=1; kk<=cptcovage;kk++) {        ptt[j]=2.0*p[j]-pt[j]; 
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];        xit[j]=p[j]-pt[j]; 
           }        pt[j]=p[j]; 
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,      } 
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));      fptt=(*func)(ptt); /* f_3 */
           savm=oldm;  #ifdef POWELLF1F3
           oldm=newm;  #else
         } /* end mult */      if (fptt < fp) { /* If extrapolated point is better, decide if we keep that new direction or not */
        #endif
         s1=s[mw[mi][i]][i];        /* (x1 f1=fp), (x2 f2=*fret), (x3 f3=fptt), (xm fm) */
         s2=s[mw[mi+1][i]][i];        /* From x1 (P0) distance of x2 is at h and x3 is 2h */
         bbh=(double)bh[mi][i]/(double)stepm;        /* Let f"(x2) be the 2nd derivative equal everywhere.  */
         lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */        /* Then the parabolic through (x1,f1), (x2,f2) and (x3,f3) */
         ipmx +=1;        /* will reach at f3 = fm + h^2/2 f"m  ; f" = (f1 -2f2 +f3 ) / h**2 */
         sw += weight[i];        /* Conditional for using this new direction is that mu^2 = (f1-2f2+f3)^2 /2 < del */
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;        /* t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); */
       } /* end of wave */  #ifdef NRCORIGINAL
     } /* end of individual */        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)- del*SQR(fp-fptt); /* Original Numerical Recipes in C*/
   }else if (mle==4){  /* ml=4 no inter-extrapolation */  #else
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del); /* Intel compiler doesn't work on one line; bug reported */
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];        t= t- del*SQR(fp-fptt);
       for(mi=1; mi<= wav[i]-1; mi++){  #endif
         for (ii=1;ii<=nlstate+ndeath;ii++)        directest = fp-2.0*(*fret)+fptt - 2.0 * del; /* If del was big enough we change it for a new direction */
           for (j=1;j<=nlstate+ndeath;j++){  #ifdef DEBUG
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);        printf("t1= %.12lf, t2= %.12lf, t=%.12lf  directest=%.12lf\n", 2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del),del*SQR(fp-fptt),t,directest);
             savm[ii][j]=(ii==j ? 1.0 : 0.0);        fprintf(ficlog,"t1= %.12lf, t2= %.12lf, t=%.12lf directest=%.12lf\n", 2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del),del*SQR(fp-fptt),t,directest);
           }        printf("t3= %.12lf, t4= %.12lf, t3*= %.12lf, t4*= %.12lf\n",SQR(fp-(*fret)-del),SQR(fp-fptt),
         for(d=0; d<dh[mi][i]; d++){               (fp-(*fret)-del)*(fp-(*fret)-del),(fp-fptt)*(fp-fptt));
           newm=savm;        fprintf(ficlog,"t3= %.12lf, t4= %.12lf, t3*= %.12lf, t4*= %.12lf\n",SQR(fp-(*fret)-del),SQR(fp-fptt),
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;               (fp-(*fret)-del)*(fp-(*fret)-del),(fp-fptt)*(fp-fptt));
           for (kk=1; kk<=cptcovage;kk++) {        printf("tt= %.12lf, t=%.12lf\n",2.0*(fp-2.0*(*fret)+fptt)*(fp-(*fret)-del)*(fp-(*fret)-del)-del*(fp-fptt)*(fp-fptt),t);
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];        fprintf(ficlog, "tt= %.12lf, t=%.12lf\n",2.0*(fp-2.0*(*fret)+fptt)*(fp-(*fret)-del)*(fp-(*fret)-del)-del*(fp-fptt)*(fp-fptt),t);
           }  #endif
          #ifdef POWELLORIGINAL
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,        if (t < 0.0) { /* Then we use it for new direction */
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));  #else
           savm=oldm;        if (directest*t < 0.0) { /* Contradiction between both tests */
           oldm=newm;          printf("directest= %.12lf, t= %.12lf, f1= %.12lf,f2= %.12lf,f3= %.12lf, del= %.12lf\n",directest, t, fp,(*fret),fptt,del);
         } /* end mult */          printf("f1-2f2+f3= %.12lf, f1-f2-del= %.12lf, f1-f3= %.12lf\n",fp-2.0*(*fret)+fptt, fp -(*fret) -del, fp-fptt);
                fprintf(ficlog,"directest= %.12lf, t= %.12lf, f1= %.12lf,f2= %.12lf,f3= %.12lf, del= %.12lf\n",directest, t, fp,(*fret),fptt, del);
         s1=s[mw[mi][i]][i];          fprintf(ficlog,"f1-2f2+f3= %.12lf, f1-f2-del= %.12lf, f1-f3= %.12lf\n",fp-2.0*(*fret)+fptt, fp -(*fret) -del, fp-fptt);
         s2=s[mw[mi+1][i]][i];        } 
         if( s2 > nlstate){        if (directest < 0.0) { /* Then we use it for new direction */
           lli=log(out[s1][s2] - savm[s1][s2]);  #endif
         }else{  #ifdef DEBUGLINMIN
           lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */          printf("Before linmin in direction P%d-P0\n",n);
         }          for (j=1;j<=n;j++) { 
         ipmx +=1;            printf("Before xit[%d]= %12.7f p[%d]= %12.7f",j,xit[j],j,p[j]);
         sw += weight[i];            if(j % ncovmodel == 0)
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;              printf("\n");
 /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */          }
       } /* end of wave */  #endif
     } /* end of individual */          linmin(p,xit,n,fret,func); /* computes minimum on the extrapolated direction: changes p and rescales xit.*/
   }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */  #ifdef DEBUGLINMIN
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){          for (j=1;j<=n;j++) { 
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];            printf("After xit[%d]= %12.7f p[%d]= %12.7f",j,xit[j],j,p[j]);
       for(mi=1; mi<= wav[i]-1; mi++){            if(j % ncovmodel == 0)
         for (ii=1;ii<=nlstate+ndeath;ii++)              printf("\n");
           for (j=1;j<=nlstate+ndeath;j++){          }
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);  #endif
             savm[ii][j]=(ii==j ? 1.0 : 0.0);          for (j=1;j<=n;j++) { 
           }            xi[j][ibig]=xi[j][n]; /* Replace direction with biggest decrease by last direction n */
         for(d=0; d<dh[mi][i]; d++){            xi[j][n]=xit[j];      /* and this nth direction by the by the average p_0 p_n */
           newm=savm;          }
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;          printf("Gaining to use new average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig);
           for (kk=1; kk<=cptcovage;kk++) {          fprintf(ficlog,"Gaining to use new average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig);
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];  
           }  #ifdef DEBUG
                  printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));          for(j=1;j<=n;j++){
           savm=oldm;            printf(" %.12e",xit[j]);
           oldm=newm;            fprintf(ficlog," %.12e",xit[j]);
         } /* end mult */          }
                printf("\n");
         s1=s[mw[mi][i]][i];          fprintf(ficlog,"\n");
         s2=s[mw[mi+1][i]][i];  #endif
         lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */        } /* end of t or directest negative */
         ipmx +=1;  #ifdef POWELLF1F3
         sw += weight[i];  #else
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;      } /* end if (fptt < fp)  */
         /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/  #endif
       } /* end of wave */    } /* loop iteration */ 
     } /* end of individual */  } 
   } /* End of if */  
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];  /**** Prevalence limit (stable or period prevalence)  ****************/
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */  
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
   return -l;  {
 }    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
        matrix by transitions matrix until convergence is reached */
 /*************** log-likelihood *************/    
 double funcone( double *x)    int i, ii,j,k;
 {    double min, max, maxmin, maxmax,sumnew=0.;
   /* Same as likeli but slower because of a lot of printf and if */    /* double **matprod2(); */ /* test */
   int i, ii, j, k, mi, d, kk;    double **out, cov[NCOVMAX+1], **pmij();
   double l, ll[NLSTATEMAX], cov[NCOVMAX];    double **newm;
   double **out;    double agefin, delaymax=50 ; /* Max number of years to converge */
   double lli; /* Individual log likelihood */    
   double llt;    for (ii=1;ii<=nlstate+ndeath;ii++)
   int s1, s2;      for (j=1;j<=nlstate+ndeath;j++){
   double bbh, survp;        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   /*extern weight */      }
   /* We are differentiating ll according to initial status */    
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/    cov[1]=1.;
   /*for(i=1;i<imx;i++)    
     printf(" %d\n",s[4][i]);    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   */    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
   cov[1]=1.;      newm=savm;
       /* Covariates have to be included here again */
   for(k=1; k<=nlstate; k++) ll[k]=0.;      cov[2]=agefin;
       if(nagesqr==1)
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){        cov[3]= agefin*agefin;;
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];      for (k=1; k<=cptcovn;k++) {
     for(mi=1; mi<= wav[i]-1; mi++){        /* cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,Tvar[k])]; */
       for (ii=1;ii<=nlstate+ndeath;ii++)        cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,k)];
         for (j=1;j<=nlstate+ndeath;j++){        /* printf("prevalim ij=%d k=%d Tvar[%d]=%d nbcode=%d cov=%lf codtabm(%d,Tvar[%d])=%d \n",ij,k, k, Tvar[k],nbcode[Tvar[k]][codtabm(ij,Tvar[k])],cov[2+k], ij, k, codtabm(ij,Tvar[k])]); */
           oldm[ii][j]=(ii==j ? 1.0 : 0.0);      }
           savm[ii][j]=(ii==j ? 1.0 : 0.0);      /*wrong? for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
         }      /* for (k=1; k<=cptcovage;k++) cov[2+nagesqr+Tage[k]]=nbcode[Tvar[k]][codtabm(ij,Tvar[k])]*cov[2]; */
       for(d=0; d<dh[mi][i]; d++){      for (k=1; k<=cptcovage;k++) cov[2+nagesqr+Tage[k]]=nbcode[Tvar[k]][codtabm(ij,k)]*cov[2];
         newm=savm;      for (k=1; k<=cptcovprod;k++) /* Useless */
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;        /* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,Tvard[k][1])] * nbcode[Tvard[k][2]][codtabm(ij,Tvard[k][2])]; */
         for (kk=1; kk<=cptcovage;kk++) {        cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)] * nbcode[Tvard[k][2]][codtabm(ij,k)];
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];      
         }      /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,      /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));      /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
         savm=oldm;      /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
         oldm=newm;      /* out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /\* Bug Valgrind *\/ */
       } /* end mult */      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /* Bug Valgrind */
            
       s1=s[mw[mi][i]][i];      savm=oldm;
       s2=s[mw[mi+1][i]][i];      oldm=newm;
       bbh=(double)bh[mi][i]/(double)stepm;      maxmax=0.;
       /* bias is positive if real duration      for(j=1;j<=nlstate;j++){
        * is higher than the multiple of stepm and negative otherwise.        min=1.;
        */        max=0.;
       if( s2 > nlstate && (mle <5) ){  /* Jackson */        for(i=1; i<=nlstate; i++) {
         lli=log(out[s1][s2] - savm[s1][s2]);          sumnew=0;
       } else if  (s2==-2) {          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
         for (j=1,survp=0. ; j<=nlstate; j++)          prlim[i][j]= newm[i][j]/(1-sumnew);
           survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];          /*printf(" prevalim i=%d, j=%d, prmlim[%d][%d]=%f, agefin=%d \n", i, j, i, j, prlim[i][j],(int)agefin);*/
         lli= log(survp);          max=FMAX(max,prlim[i][j]);
       }else if (mle==1){          min=FMIN(min,prlim[i][j]);
         lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */        }
       } else if(mle==2){        maxmin=max-min;
         lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */        maxmax=FMAX(maxmax,maxmin);
       } else if(mle==3){  /* exponential inter-extrapolation */      } /* j loop */
         lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */      if(maxmax < ftolpl){
       } else if (mle==4){  /* mle=4 no inter-extrapolation */        return prlim;
         lli=log(out[s1][s2]); /* Original formula */      }
       } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */    } /* age loop */
         lli=log(out[s1][s2]); /* Original formula */    return prlim; /* should not reach here */
       } /* End of if */  }
       ipmx +=1;  
       sw += weight[i];  /*************** transition probabilities ***************/ 
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;  
 /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
       if(globpr){  {
         fprintf(ficresilk,"%9d %6d %2d %2d %1d %1d %3d %11.6f %8.4f\    /* According to parameters values stored in x and the covariate's values stored in cov,
  %11.6f %11.6f %11.6f ", \       computes the probability to be observed in state j being in state i by appying the
                 num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],       model to the ncovmodel covariates (including constant and age).
                 2*weight[i]*lli,out[s1][s2],savm[s1][s2]);       lnpijopii=ln(pij/pii)= aij+bij*age+cij*v1+dij*v2+... = sum_nc=1^ncovmodel xij(nc)*cov[nc]
         for(k=1,llt=0.,l=0.; k<=nlstate; k++){       and, according on how parameters are entered, the position of the coefficient xij(nc) of the
           llt +=ll[k]*gipmx/gsw;       ncth covariate in the global vector x is given by the formula:
           fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);       j<i nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel
         }       j>=i nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel
         fprintf(ficresilk," %10.6f\n", -llt);       Computes ln(pij/pii) (lnpijopii), deduces pij/pii by exponentiation,
       }       sums on j different of i to get 1-pii/pii, deduces pii, and then all pij.
     } /* end of wave */       Outputs ps[i][j] the probability to be observed in j being in j according to
   } /* end of individual */       the values of the covariates cov[nc] and corresponding parameter values x[nc+shiftij]
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];    */
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */    double s1, lnpijopii;
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */    /*double t34;*/
   if(globpr==0){ /* First time we count the contributions and weights */    int i,j, nc, ii, jj;
     gipmx=ipmx;  
     gsw=sw;      for(i=1; i<= nlstate; i++){
   }        for(j=1; j<i;j++){
   return -l;          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
 }            /*lnpijopii += param[i][j][nc]*cov[nc];*/
             lnpijopii += x[nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel]*cov[nc];
   /*       printf("Int j<i s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
 /*************** function likelione ***********/          }
 void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
 {  /*      printf("s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
   /* This routine should help understanding what is done with        }
      the selection of individuals/waves and        for(j=i+1; j<=nlstate+ndeath;j++){
      to check the exact contribution to the likelihood.          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
      Plotting could be done.            /*lnpijopii += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];*/
    */            lnpijopii += x[nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel]*cov[nc];
   int k;  /*        printf("Int j>i s1=%.17e, lnpijopii=%.17e %lx %lx\n",s1,lnpijopii,s1,lnpijopii); */
           }
   if(*globpri !=0){ /* Just counts and sums, no printings */          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
     strcpy(fileresilk,"ilk");        }
     strcat(fileresilk,fileres);      }
     if((ficresilk=fopen(fileresilk,"w"))==NULL) {      
       printf("Problem with resultfile: %s\n", fileresilk);      for(i=1; i<= nlstate; i++){
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);        s1=0;
     }        for(j=1; j<i; j++){
     fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");          s1+=exp(ps[i][j]); /* In fact sums pij/pii */
     fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");          /*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
     /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */        }
     for(k=1; k<=nlstate; k++)        for(j=i+1; j<=nlstate+ndeath; j++){
       fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);          s1+=exp(ps[i][j]); /* In fact sums pij/pii */
     fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");          /*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
   }        }
         /* s1= sum_{j<>i} pij/pii=(1-pii)/pii and thus pii is known from s1 */
   *fretone=(*funcone)(p);        ps[i][i]=1./(s1+1.);
   if(*globpri !=0){        /* Computing other pijs */
     fclose(ficresilk);        for(j=1; j<i; j++)
     fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));          ps[i][j]= exp(ps[i][j])*ps[i][i];
     fflush(fichtm);        for(j=i+1; j<=nlstate+ndeath; j++)
   }          ps[i][j]= exp(ps[i][j])*ps[i][i];
   return;        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
 }      } /* end i */
       
       for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
 /*********** Maximum Likelihood Estimation ***************/        for(jj=1; jj<= nlstate+ndeath; jj++){
           ps[ii][jj]=0;
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))          ps[ii][ii]=1;
 {        }
   int i,j, iter;      }
   double **xi;      
   double fret;      
   double fretone; /* Only one call to likelihood */      /* for(ii=1; ii<= nlstate+ndeath; ii++){ */
   /*  char filerespow[FILENAMELENGTH];*/      /*   for(jj=1; jj<= nlstate+ndeath; jj++){ */
   xi=matrix(1,npar,1,npar);      /*  printf(" pmij  ps[%d][%d]=%lf ",ii,jj,ps[ii][jj]); */
   for (i=1;i<=npar;i++)      /*   } */
     for (j=1;j<=npar;j++)      /*   printf("\n "); */
       xi[i][j]=(i==j ? 1.0 : 0.0);      /* } */
   printf("Powell\n");  fprintf(ficlog,"Powell\n");      /* printf("\n ");printf("%lf ",cov[2]);*/
   strcpy(filerespow,"pow");      /*
   strcat(filerespow,fileres);        for(i=1; i<= npar; i++) printf("%f ",x[i]);
   if((ficrespow=fopen(filerespow,"w"))==NULL) {        goto end;*/
     printf("Problem with resultfile: %s\n", filerespow);      return ps;
     fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);  }
   }  
   fprintf(ficrespow,"# Powell\n# iter -2*LL");  /**************** Product of 2 matrices ******************/
   for (i=1;i<=nlstate;i++)  
     for(j=1;j<=nlstate+ndeath;j++)  double **matprod2(double **out, double **in,int nrl, int nrh, int ncl, int nch, int ncolol, int ncoloh, double **b)
       if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);  {
   fprintf(ficrespow,"\n");    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
        b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
   powell(p,xi,npar,ftol,&iter,&fret,func);    /* in, b, out are matrice of pointers which should have been initialized 
        before: only the contents of out is modified. The function returns
   free_matrix(xi,1,npar,1,npar);       a pointer to pointers identical to out */
   fclose(ficrespow);    int i, j, k;
   printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));    for(i=nrl; i<= nrh; i++)
   fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));      for(k=ncolol; k<=ncoloh; k++){
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));        out[i][k]=0.;
         for(j=ncl; j<=nch; j++)
 }          out[i][k] +=in[i][j]*b[j][k];
       }
 /**** Computes Hessian and covariance matrix ***/    return out;
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))  }
 {  
   double  **a,**y,*x,pd;  
   double **hess;  /************* Higher Matrix Product ***************/
   int i, j,jk;  
   int *indx;  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
   {
   double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);    /* Computes the transition matrix starting at age 'age' over 
   double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);       'nhstepm*hstepm*stepm' months (i.e. until
   void lubksb(double **a, int npar, int *indx, double b[]) ;       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
   void ludcmp(double **a, int npar, int *indx, double *d) ;       nhstepm*hstepm matrices. 
   double gompertz(double p[]);       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
   hess=matrix(1,npar,1,npar);       (typically every 2 years instead of every month which is too big 
        for the memory).
   printf("\nCalculation of the hessian matrix. Wait...\n");       Model is determined by parameters x and covariates have to be 
   fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");       included manually here. 
   for (i=1;i<=npar;i++){  
     printf("%d",i);fflush(stdout);       */
     fprintf(ficlog,"%d",i);fflush(ficlog);  
        int i, j, d, h, k;
      hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);    double **out, cov[NCOVMAX+1];
        double **newm;
     /*  printf(" %f ",p[i]);    double agexact;
         printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/  
   }    /* Hstepm could be zero and should return the unit matrix */
      for (i=1;i<=nlstate+ndeath;i++)
   for (i=1;i<=npar;i++) {      for (j=1;j<=nlstate+ndeath;j++){
     for (j=1;j<=npar;j++)  {        oldm[i][j]=(i==j ? 1.0 : 0.0);
       if (j>i) {        po[i][j][0]=(i==j ? 1.0 : 0.0);
         printf(".%d%d",i,j);fflush(stdout);      }
         fprintf(ficlog,".%d%d",i,j);fflush(ficlog);    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
         hess[i][j]=hessij(p,delti,i,j,func,npar);    for(h=1; h <=nhstepm; h++){
              for(d=1; d <=hstepm; d++){
         hess[j][i]=hess[i][j];            newm=savm;
         /*printf(" %lf ",hess[i][j]);*/        /* Covariates have to be included here again */
       }        cov[1]=1.;
     }        agexact=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
   }        cov[2]=agexact;
   printf("\n");        if(nagesqr==1)
   fprintf(ficlog,"\n");          cov[3]= agexact*agexact;
         for (k=1; k<=cptcovn;k++) 
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");          cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,k)];
   fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");          /* cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,Tvar[k])]; */
          for (k=1; k<=cptcovage;k++) /* Should start at cptcovn+1 */
   a=matrix(1,npar,1,npar);          /* cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
   y=matrix(1,npar,1,npar);          cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,k)]*cov[2];
   x=vector(1,npar);          /* cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,Tvar[Tage[k]])]*cov[2]; */
   indx=ivector(1,npar);        for (k=1; k<=cptcovprod;k++) /* Useless because included in cptcovn */
   for (i=1;i<=npar;i++)          cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)]*nbcode[Tvard[k][2]][codtabm(ij,k)];
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];          /* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,Tvard[k][1])]*nbcode[Tvard[k][2]][codtabm(ij,Tvard[k][2])]; */
   ludcmp(a,npar,indx,&pd);  
   
   for (j=1;j<=npar;j++) {        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
     for (i=1;i<=npar;i++) x[i]=0;        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
     x[j]=1;        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
     lubksb(a,npar,indx,x);                     pmij(pmmij,cov,ncovmodel,x,nlstate));
     for (i=1;i<=npar;i++){        savm=oldm;
       matcov[i][j]=x[i];        oldm=newm;
     }      }
   }      for(i=1; i<=nlstate+ndeath; i++)
         for(j=1;j<=nlstate+ndeath;j++) {
   printf("\n#Hessian matrix#\n");          po[i][j][h]=newm[i][j];
   fprintf(ficlog,"\n#Hessian matrix#\n");          /*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/
   for (i=1;i<=npar;i++) {        }
     for (j=1;j<=npar;j++) {      /*printf("h=%d ",h);*/
       printf("%.3e ",hess[i][j]);    } /* end h */
       fprintf(ficlog,"%.3e ",hess[i][j]);  /*     printf("\n H=%d \n",h); */
     }    return po;
     printf("\n");  }
     fprintf(ficlog,"\n");  
   }  #ifdef NLOPT
     double  myfunc(unsigned n, const double *p1, double *grad, void *pd){
   /* Recompute Inverse */    double fret;
   for (i=1;i<=npar;i++)    double *xt;
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];    int j;
   ludcmp(a,npar,indx,&pd);    myfunc_data *d2 = (myfunc_data *) pd;
   /* xt = (p1-1); */
   /*  printf("\n#Hessian matrix recomputed#\n");    xt=vector(1,n); 
     for (j=1;j<=n;j++)   xt[j]=p1[j-1]; /* xt[1]=p1[0] */
   for (j=1;j<=npar;j++) {  
     for (i=1;i<=npar;i++) x[i]=0;    fret=(d2->function)(xt); /*  p xt[1]@8 is fine */
     x[j]=1;    /* fret=(*func)(xt); /\*  p xt[1]@8 is fine *\/ */
     lubksb(a,npar,indx,x);    printf("Function = %.12lf ",fret);
     for (i=1;i<=npar;i++){    for (j=1;j<=n;j++) printf(" %d %.8lf", j, xt[j]); 
       y[i][j]=x[i];    printf("\n");
       printf("%.3e ",y[i][j]);   free_vector(xt,1,n);
       fprintf(ficlog,"%.3e ",y[i][j]);    return fret;
     }  }
     printf("\n");  #endif
     fprintf(ficlog,"\n");  
   }  /*************** log-likelihood *************/
   */  double func( double *x)
   {
   free_matrix(a,1,npar,1,npar);    int i, ii, j, k, mi, d, kk;
   free_matrix(y,1,npar,1,npar);    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
   free_vector(x,1,npar);    double **out;
   free_ivector(indx,1,npar);    double sw; /* Sum of weights */
   free_matrix(hess,1,npar,1,npar);    double lli; /* Individual log likelihood */
     int s1, s2;
     double bbh, survp;
 }    long ipmx;
     double agexact;
 /*************** hessian matrix ****************/    /*extern weight */
 double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)    /* We are differentiating ll according to initial status */
 {    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   int i;    /*for(i=1;i<imx;i++) 
   int l=1, lmax=20;      printf(" %d\n",s[4][i]);
   double k1,k2;    */
   double p2[NPARMAX+1];  
   double res;    ++countcallfunc;
   double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;  
   double fx;    cov[1]=1.;
   int k=0,kmax=10;  
   double l1;    for(k=1; k<=nlstate; k++) ll[k]=0.;
   
   fx=func(x);    if(mle==1){
   for (i=1;i<=npar;i++) p2[i]=x[i];      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   for(l=0 ; l <=lmax; l++){        /* Computes the values of the ncovmodel covariates of the model
     l1=pow(10,l);           depending if the covariates are fixed or variying (age dependent) and stores them in cov[]
     delts=delt;           Then computes with function pmij which return a matrix p[i][j] giving the elementary probability
     for(k=1 ; k <kmax; k=k+1){           to be observed in j being in i according to the model.
       delt = delta*(l1*k);         */
       p2[theta]=x[theta] +delt;        for (k=1; k<=cptcovn;k++){ /* Simple and product covariates without age* products */
       k1=func(p2)-fx;            cov[2+nagesqr+k]=covar[Tvar[k]][i];
       p2[theta]=x[theta]-delt;        }
       k2=func(p2)-fx;        /* In model V2+V1*V4+age*V3+V3*V2 Tvar[1] is V2, Tvar[2=V1*V4] 
       /*res= (k1-2.0*fx+k2)/delt/delt; */           is 6, Tvar[3=age*V3] should not be computed because of age Tvar[4=V3*V2] 
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */           has been calculated etc */
              for(mi=1; mi<= wav[i]-1; mi++){
 #ifdef DEBUG          for (ii=1;ii<=nlstate+ndeath;ii++)
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);            for (j=1;j<=nlstate+ndeath;j++){
       fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 #endif              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */            }
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){          for(d=0; d<dh[mi][i]; d++){
         k=kmax;            newm=savm;
       }            agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */            cov[2]=agexact;
         k=kmax; l=lmax*10.;            if(nagesqr==1)
       }              cov[3]= agexact*agexact;
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){            for (kk=1; kk<=cptcovage;kk++) {
         delts=delt;              cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact; /* Tage[kk] gives the data-covariate associated with age */
       }            }
     }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   delti[theta]=delts;            savm=oldm;
   return res;            oldm=newm;
            } /* end mult */
 }        
           /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
 double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)          /* But now since version 0.9 we anticipate for bias at large stepm.
 {           * If stepm is larger than one month (smallest stepm) and if the exact delay 
   int i;           * (in months) between two waves is not a multiple of stepm, we rounded to 
   int l=1, l1, lmax=20;           * the nearest (and in case of equal distance, to the lowest) interval but now
   double k1,k2,k3,k4,res,fx;           * we keep into memory the bias bh[mi][i] and also the previous matrix product
   double p2[NPARMAX+1];           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
   int k;           * probability in order to take into account the bias as a fraction of the way
            * from savm to out if bh is negative or even beyond if bh is positive. bh varies
   fx=func(x);           * -stepm/2 to stepm/2 .
   for (k=1; k<=2; k++) {           * For stepm=1 the results are the same as for previous versions of Imach.
     for (i=1;i<=npar;i++) p2[i]=x[i];           * For stepm > 1 the results are less biased than in previous versions. 
     p2[thetai]=x[thetai]+delti[thetai]/k;           */
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;          s1=s[mw[mi][i]][i];
     k1=func(p2)-fx;          s2=s[mw[mi+1][i]][i];
            bbh=(double)bh[mi][i]/(double)stepm; 
     p2[thetai]=x[thetai]+delti[thetai]/k;          /* bias bh is positive if real duration
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;           * is higher than the multiple of stepm and negative otherwise.
     k2=func(p2)-fx;           */
            /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
     p2[thetai]=x[thetai]-delti[thetai]/k;          if( s2 > nlstate){ 
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;            /* i.e. if s2 is a death state and if the date of death is known 
     k3=func(p2)-fx;               then the contribution to the likelihood is the probability to 
                 die between last step unit time and current  step unit time, 
     p2[thetai]=x[thetai]-delti[thetai]/k;               which is also equal to probability to die before dh 
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;               minus probability to die before dh-stepm . 
     k4=func(p2)-fx;               In version up to 0.92 likelihood was computed
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */          as if date of death was unknown. Death was treated as any other
 #ifdef DEBUG          health state: the date of the interview describes the actual state
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);          and not the date of a change in health state. The former idea was
     fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);          to consider that at each interview the state was recorded
 #endif          (healthy, disable or death) and IMaCh was corrected; but when we
   }          introduced the exact date of death then we should have modified
   return res;          the contribution of an exact death to the likelihood. This new
 }          contribution is smaller and very dependent of the step unit
           stepm. It is no more the probability to die between last interview
 /************** Inverse of matrix **************/          and month of death but the probability to survive from last
 void ludcmp(double **a, int n, int *indx, double *d)          interview up to one month before death multiplied by the
 {          probability to die within a month. Thanks to Chris
   int i,imax,j,k;          Jackson for correcting this bug.  Former versions increased
   double big,dum,sum,temp;          mortality artificially. The bad side is that we add another loop
   double *vv;          which slows down the processing. The difference can be up to 10%
            lower mortality.
   vv=vector(1,n);            */
   *d=1.0;          /* If, at the beginning of the maximization mostly, the
   for (i=1;i<=n;i++) {             cumulative probability or probability to be dead is
     big=0.0;             constant (ie = 1) over time d, the difference is equal to
     for (j=1;j<=n;j++)             0.  out[s1][3] = savm[s1][3]: probability, being at state
       if ((temp=fabs(a[i][j])) > big) big=temp;             s1 at precedent wave, to be dead a month before current
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");             wave is equal to probability, being at state s1 at
     vv[i]=1.0/big;             precedent wave, to be dead at mont of the current
   }             wave. Then the observed probability (that this person died)
   for (j=1;j<=n;j++) {             is null according to current estimated parameter. In fact,
     for (i=1;i<j;i++) {             it should be very low but not zero otherwise the log go to
       sum=a[i][j];             infinity.
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];          */
       a[i][j]=sum;  /* #ifdef INFINITYORIGINAL */
     }  /*          lli=log(out[s1][s2] - savm[s1][s2]); */
     big=0.0;  /* #else */
     for (i=j;i<=n;i++) {  /*        if ((out[s1][s2] - savm[s1][s2]) < mytinydouble)  */
       sum=a[i][j];  /*          lli=log(mytinydouble); */
       for (k=1;k<j;k++)  /*        else */
         sum -= a[i][k]*a[k][j];  /*          lli=log(out[s1][s2] - savm[s1][s2]); */
       a[i][j]=sum;  /* #endif */
       if ( (dum=vv[i]*fabs(sum)) >= big) {              lli=log(out[s1][s2] - savm[s1][s2]);
         big=dum;  
         imax=i;          } else if  (s2==-2) {
       }            for (j=1,survp=0. ; j<=nlstate; j++) 
     }              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
     if (j != imax) {            /*survp += out[s1][j]; */
       for (k=1;k<=n;k++) {            lli= log(survp);
         dum=a[imax][k];          }
         a[imax][k]=a[j][k];          
         a[j][k]=dum;          else if  (s2==-4) { 
       }            for (j=3,survp=0. ; j<=nlstate; j++)  
       *d = -(*d);              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
       vv[imax]=vv[j];            lli= log(survp); 
     }          } 
     indx[j]=imax;  
     if (a[j][j] == 0.0) a[j][j]=TINY;          else if  (s2==-5) { 
     if (j != n) {            for (j=1,survp=0. ; j<=2; j++)  
       dum=1.0/(a[j][j]);              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
       for (i=j+1;i<=n;i++) a[i][j] *= dum;            lli= log(survp); 
     }          } 
   }          
   free_vector(vv,1,n);  /* Doesn't work */          else{
 ;            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
 }            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
           } 
 void lubksb(double **a, int n, int *indx, double b[])          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
 {          /*if(lli ==000.0)*/
   int i,ii=0,ip,j;          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
   double sum;          ipmx +=1;
            sw += weight[i];
   for (i=1;i<=n;i++) {          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     ip=indx[i];          /* if (lli < log(mytinydouble)){ */
     sum=b[ip];          /*   printf("Close to inf lli = %.10lf <  %.10lf i= %d mi= %d, s[%d][i]=%d s1=%d s2=%d\n", lli,log(mytinydouble), i, mi,mw[mi][i], s[mw[mi][i]][i], s1,s2); */
     b[ip]=b[i];          /*   fprintf(ficlog,"Close to inf lli = %.10lf i= %d mi= %d, s[mw[mi][i]][i]=%d\n", lli, i, mi,s[mw[mi][i]][i]); */
     if (ii)          /* } */
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];        } /* end of wave */
     else if (sum) ii=i;      } /* end of individual */
     b[i]=sum;    }  else if(mle==2){
   }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   for (i=n;i>=1;i--) {        for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i];
     sum=b[i];        for(mi=1; mi<= wav[i]-1; mi++){
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];          for (ii=1;ii<=nlstate+ndeath;ii++)
     b[i]=sum/a[i][i];            for (j=1;j<=nlstate+ndeath;j++){
   }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
             }
 void pstamp(FILE *fichier)          for(d=0; d<=dh[mi][i]; d++){
 {            newm=savm;
   fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);            agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
 }            cov[2]=agexact;
             if(nagesqr==1)
 /************ Frequencies ********************/              cov[3]= agexact*agexact;
 void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])            for (kk=1; kk<=cptcovage;kk++) {
 {  /* Some frequencies */              cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;
              }
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   int first;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   double ***freq; /* Frequencies */            savm=oldm;
   double *pp, **prop;            oldm=newm;
   double pos,posprop, k2, dateintsum=0,k2cpt=0;          } /* end mult */
   char fileresp[FILENAMELENGTH];        
            s1=s[mw[mi][i]][i];
   pp=vector(1,nlstate);          s2=s[mw[mi+1][i]][i];
   prop=matrix(1,nlstate,iagemin,iagemax+3);          bbh=(double)bh[mi][i]/(double)stepm; 
   strcpy(fileresp,"p");          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
   strcat(fileresp,fileres);          ipmx +=1;
   if((ficresp=fopen(fileresp,"w"))==NULL) {          sw += weight[i];
     printf("Problem with prevalence resultfile: %s\n", fileresp);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);        } /* end of wave */
     exit(0);      } /* end of individual */
   }    }  else if(mle==3){  /* exponential inter-extrapolation */
   freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   j1=0;        for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i];
          for(mi=1; mi<= wav[i]-1; mi++){
   j=cptcoveff;          for (ii=1;ii<=nlstate+ndeath;ii++)
   if (cptcovn<1) {j=1;ncodemax[1]=1;}            for (j=1;j<=nlstate+ndeath;j++){
               oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   first=1;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
             }
   for(k1=1; k1<=j;k1++){          for(d=0; d<dh[mi][i]; d++){
     for(i1=1; i1<=ncodemax[k1];i1++){            newm=savm;
       j1++;            agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);            cov[2]=agexact;
         scanf("%d", i);*/            if(nagesqr==1)
       for (i=-5; i<=nlstate+ndeath; i++)                cov[3]= agexact*agexact;
         for (jk=-5; jk<=nlstate+ndeath; jk++)              for (kk=1; kk<=cptcovage;kk++) {
           for(m=iagemin; m <= iagemax+3; m++)              cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;
             freq[i][jk][m]=0;            }
             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     for (i=1; i<=nlstate; i++)                           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       for(m=iagemin; m <= iagemax+3; m++)            savm=oldm;
         prop[i][m]=0;            oldm=newm;
                } /* end mult */
       dateintsum=0;        
       k2cpt=0;          s1=s[mw[mi][i]][i];
       for (i=1; i<=imx; i++) {          s2=s[mw[mi+1][i]][i];
         bool=1;          bbh=(double)bh[mi][i]/(double)stepm; 
         if  (cptcovn>0) {          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
           for (z1=1; z1<=cptcoveff; z1++)          ipmx +=1;
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])          sw += weight[i];
               bool=0;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         }        } /* end of wave */
         if (bool==1){      } /* end of individual */
           for(m=firstpass; m<=lastpass; m++){    }else if (mle==4){  /* ml=4 no inter-extrapolation */
             k2=anint[m][i]+(mint[m][i]/12.);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
             /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/        for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i];
               if(agev[m][i]==0) agev[m][i]=iagemax+1;        for(mi=1; mi<= wav[i]-1; mi++){
               if(agev[m][i]==1) agev[m][i]=iagemax+2;          for (ii=1;ii<=nlstate+ndeath;ii++)
               if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];            for (j=1;j<=nlstate+ndeath;j++){
               if (m<lastpass) {              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];              savm[ii][j]=(ii==j ? 1.0 : 0.0);
                 freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];            }
               }          for(d=0; d<dh[mi][i]; d++){
                          newm=savm;
               if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {            agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
                 dateintsum=dateintsum+k2;            cov[2]=agexact;
                 k2cpt++;            if(nagesqr==1)
               }              cov[3]= agexact*agexact;
               /*}*/            for (kk=1; kk<=cptcovage;kk++) {
           }              cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;
         }            }
       }          
                    out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       pstamp(ficresp);            savm=oldm;
       if  (cptcovn>0) {            oldm=newm;
         fprintf(ficresp, "\n#********** Variable ");          } /* end mult */
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        
         fprintf(ficresp, "**********\n#");          s1=s[mw[mi][i]][i];
       }          s2=s[mw[mi+1][i]][i];
       for(i=1; i<=nlstate;i++)          if( s2 > nlstate){ 
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);            lli=log(out[s1][s2] - savm[s1][s2]);
       fprintf(ficresp, "\n");          }else{
                  lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
       for(i=iagemin; i <= iagemax+3; i++){          }
         if(i==iagemax+3){          ipmx +=1;
           fprintf(ficlog,"Total");          sw += weight[i];
         }else{          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           if(first==1){  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
             first=0;        } /* end of wave */
             printf("See log file for details...\n");      } /* end of individual */
           }    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
           fprintf(ficlog,"Age %d", i);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         }        for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i];
         for(jk=1; jk <=nlstate ; jk++){        for(mi=1; mi<= wav[i]-1; mi++){
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)          for (ii=1;ii<=nlstate+ndeath;ii++)
             pp[jk] += freq[jk][m][i];            for (j=1;j<=nlstate+ndeath;j++){
         }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         for(jk=1; jk <=nlstate ; jk++){              savm[ii][j]=(ii==j ? 1.0 : 0.0);
           for(m=-1, pos=0; m <=0 ; m++)            }
             pos += freq[jk][m][i];          for(d=0; d<dh[mi][i]; d++){
           if(pp[jk]>=1.e-10){            newm=savm;
             if(first==1){            agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);            cov[2]=agexact;
             }            if(nagesqr==1)
             fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);              cov[3]= agexact*agexact;
           }else{            for (kk=1; kk<=cptcovage;kk++) {
             if(first==1)              cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;
               printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);            }
             fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);          
           }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             savm=oldm;
         for(jk=1; jk <=nlstate ; jk++){            oldm=newm;
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)          } /* end mult */
             pp[jk] += freq[jk][m][i];        
         }                s1=s[mw[mi][i]][i];
         for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){          s2=s[mw[mi+1][i]][i];
           pos += pp[jk];          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
           posprop += prop[jk][i];          ipmx +=1;
         }          sw += weight[i];
         for(jk=1; jk <=nlstate ; jk++){          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           if(pos>=1.e-5){          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
             if(first==1)        } /* end of wave */
               printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);      } /* end of individual */
             fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);    } /* End of if */
           }else{    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
             if(first==1)    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
               printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
             fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);    return -l;
           }  }
           if( i <= iagemax){  
             if(pos>=1.e-5){  /*************** log-likelihood *************/
               fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);  double funcone( double *x)
               /*probs[i][jk][j1]= pp[jk]/pos;*/  {
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/    /* Same as likeli but slower because of a lot of printf and if */
             }    int i, ii, j, k, mi, d, kk;
             else    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
               fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);    double **out;
           }    double lli; /* Individual log likelihood */
         }    double llt;
            int s1, s2;
         for(jk=-1; jk <=nlstate+ndeath; jk++)    double bbh, survp;
           for(m=-1; m <=nlstate+ndeath; m++)    double agexact;
             if(freq[jk][m][i] !=0 ) {    /*extern weight */
             if(first==1)    /* We are differentiating ll according to initial status */
               printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
               fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);    /*for(i=1;i<imx;i++) 
             }      printf(" %d\n",s[4][i]);
         if(i <= iagemax)    */
           fprintf(ficresp,"\n");    cov[1]=1.;
         if(first==1)  
           printf("Others in log...\n");    for(k=1; k<=nlstate; k++) ll[k]=0.;
         fprintf(ficlog,"\n");  
       }    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     }      for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i];
   }      for(mi=1; mi<= wav[i]-1; mi++){
   dateintmean=dateintsum/k2cpt;        for (ii=1;ii<=nlstate+ndeath;ii++)
            for (j=1;j<=nlstate+ndeath;j++){
   fclose(ficresp);            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);            savm[ii][j]=(ii==j ? 1.0 : 0.0);
   free_vector(pp,1,nlstate);          }
   free_matrix(prop,1,nlstate,iagemin, iagemax+3);        for(d=0; d<dh[mi][i]; d++){
   /* End of Freq */          newm=savm;
 }          agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
           cov[2]=agexact;
 /************ Prevalence ********************/          if(nagesqr==1)
 void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)            cov[3]= agexact*agexact;
 {            for (kk=1; kk<=cptcovage;kk++) {
   /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people            cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;
      in each health status at the date of interview (if between dateprev1 and dateprev2).          }
      We still use firstpass and lastpass as another selection.  
   */          /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   double ***freq; /* Frequencies */          /* out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, */
   double *pp, **prop;          /*           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); */
   double pos,posprop;          savm=oldm;
   double  y2; /* in fractional years */          oldm=newm;
   int iagemin, iagemax;        } /* end mult */
         
   iagemin= (int) agemin;        s1=s[mw[mi][i]][i];
   iagemax= (int) agemax;        s2=s[mw[mi+1][i]][i];
   /*pp=vector(1,nlstate);*/        bbh=(double)bh[mi][i]/(double)stepm; 
   prop=matrix(1,nlstate,iagemin,iagemax+3);        /* bias is positive if real duration
   /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/         * is higher than the multiple of stepm and negative otherwise.
   j1=0;         */
          if( s2 > nlstate && (mle <5) ){  /* Jackson */
   j=cptcoveff;          lli=log(out[s1][s2] - savm[s1][s2]);
   if (cptcovn<1) {j=1;ncodemax[1]=1;}        } else if  (s2==-2) {
            for (j=1,survp=0. ; j<=nlstate; j++) 
   for(k1=1; k1<=j;k1++){            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
     for(i1=1; i1<=ncodemax[k1];i1++){          lli= log(survp);
       j1++;        }else if (mle==1){
                lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
       for (i=1; i<=nlstate; i++)          } else if(mle==2){
         for(m=iagemin; m <= iagemax+3; m++)          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
           prop[i][m]=0.0;        } else if(mle==3){  /* exponential inter-extrapolation */
                lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
       for (i=1; i<=imx; i++) { /* Each individual */        } else if (mle==4){  /* mle=4 no inter-extrapolation */
         bool=1;          lli=log(out[s1][s2]); /* Original formula */
         if  (cptcovn>0) {        } else{  /* mle=0 back to 1 */
           for (z1=1; z1<=cptcoveff; z1++)          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])          /*lli=log(out[s1][s2]); */ /* Original formula */
               bool=0;        } /* End of if */
         }        ipmx +=1;
         if (bool==1) {        sw += weight[i];
           for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
             y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */        /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
             if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */        if(globpr){
               if(agev[m][i]==0) agev[m][i]=iagemax+1;          fprintf(ficresilk,"%9ld %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
               if(agev[m][i]==1) agev[m][i]=iagemax+2;   %11.6f %11.6f %11.6f ", \
               if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m);                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
               if (s[m][i]>0 && s[m][i]<=nlstate) {                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
                 /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
                 prop[s[m][i]][(int)agev[m][i]] += weight[i];            llt +=ll[k]*gipmx/gsw;
                 prop[s[m][i]][iagemax+3] += weight[i];            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
               }          }
             }          fprintf(ficresilk," %10.6f\n", -llt);
           } /* end selection of waves */        }
         }      } /* end of wave */
       }    } /* end of individual */
       for(i=iagemin; i <= iagemax+3; i++){      for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
            /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
         for(jk=1,posprop=0; jk <=nlstate ; jk++) {    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
           posprop += prop[jk][i];    if(globpr==0){ /* First time we count the contributions and weights */
         }      gipmx=ipmx;
       gsw=sw;
         for(jk=1; jk <=nlstate ; jk++){        }
           if( i <=  iagemax){    return -l;
             if(posprop>=1.e-5){  }
               probs[i][jk][j1]= prop[jk][i]/posprop;  
             }  
           }  /*************** function likelione ***********/
         }/* end jk */  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
       }/* end i */  {
     } /* end i1 */    /* This routine should help understanding what is done with 
   } /* end k1 */       the selection of individuals/waves and
         to check the exact contribution to the likelihood.
   /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/       Plotting could be done.
   /*free_vector(pp,1,nlstate);*/     */
   free_matrix(prop,1,nlstate, iagemin,iagemax+3);    int k;
 }  /* End of prevalence */  
     if(*globpri !=0){ /* Just counts and sums, no printings */
 /************* Waves Concatenation ***************/      strcpy(fileresilk,"ILK_"); 
       strcat(fileresilk,fileres);
 void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
 {        printf("Problem with resultfile: %s\n", fileresilk);
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
      Death is a valid wave (if date is known).      }
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
      dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
      and mw[mi+1][i]. dh depends on stepm.      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
      */      for(k=1; k<=nlstate; k++) 
         fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
   int i, mi, m;      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;    }
      double sum=0., jmean=0.;*/  
   int first;    *fretone=(*funcone)(p);
   int j, k=0,jk, ju, jl;    if(*globpri !=0){
   double sum=0.;      fclose(ficresilk);
   first=0;      fprintf(fichtm,"\n<br>File of contributions to the likelihood (if mle=1): <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
   jmin=1e+5;      fflush(fichtm); 
   jmax=-1;    } 
   jmean=0.;    return;
   for(i=1; i<=imx; i++){  }
     mi=0;  
     m=firstpass;  
     while(s[m][i] <= nlstate){  /*********** Maximum Likelihood Estimation ***************/
       if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)  
         mw[++mi][i]=m;  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
       if(m >=lastpass)  {
         break;    int i,j, iter=0;
       else    double **xi;
         m++;    double fret;
     }/* end while */    double fretone; /* Only one call to likelihood */
     if (s[m][i] > nlstate){    /*  char filerespow[FILENAMELENGTH];*/
       mi++;     /* Death is another wave */  
       /* if(mi==0)  never been interviewed correctly before death */  #ifdef NLOPT
          /* Only death is a correct wave */    int creturn;
       mw[mi][i]=m;    nlopt_opt opt;
     }    /* double lb[9] = { -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL }; /\* lower bounds *\/ */
     double *lb;
     wav[i]=mi;    double minf; /* the minimum objective value, upon return */
     if(mi==0){    double * p1; /* Shifted parameters from 0 instead of 1 */
       nbwarn++;    myfunc_data dinst, *d = &dinst;
       if(first==0){  #endif
         printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);  
         first=1;  
       }    xi=matrix(1,npar,1,npar);
       if(first==1){    for (i=1;i<=npar;i++)
         fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);      for (j=1;j<=npar;j++)
       }        xi[i][j]=(i==j ? 1.0 : 0.0);
     } /* end mi==0 */    printf("Powell\n");  fprintf(ficlog,"Powell\n");
   } /* End individuals */    strcpy(filerespow,"POW_"); 
     strcat(filerespow,fileres);
   for(i=1; i<=imx; i++){    if((ficrespow=fopen(filerespow,"w"))==NULL) {
     for(mi=1; mi<wav[i];mi++){      printf("Problem with resultfile: %s\n", filerespow);
       if (stepm <=0)      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
         dh[mi][i]=1;    }
       else{    fprintf(ficrespow,"# Powell\n# iter -2*LL");
         if (s[mw[mi+1][i]][i] > nlstate) { /* A death */    for (i=1;i<=nlstate;i++)
           if (agedc[i] < 2*AGESUP) {      for(j=1;j<=nlstate+ndeath;j++)
             j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
             if(j==0) j=1;  /* Survives at least one month after exam */    fprintf(ficrespow,"\n");
             else if(j<0){  #ifdef POWELL
               nberr++;    powell(p,xi,npar,ftol,&iter,&fret,func);
               printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);  #endif
               j=1; /* Temporary Dangerous patch */  
               printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);  #ifdef NLOPT
               fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);  #ifdef NEWUOA
               fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);    opt = nlopt_create(NLOPT_LN_NEWUOA,npar);
             }  #else
             k=k+1;    opt = nlopt_create(NLOPT_LN_BOBYQA,npar);
             if (j >= jmax){  #endif
               jmax=j;    lb=vector(0,npar-1);
               ijmax=i;    for (i=0;i<npar;i++) lb[i]= -HUGE_VAL;
             }    nlopt_set_lower_bounds(opt, lb);
             if (j <= jmin){    nlopt_set_initial_step1(opt, 0.1);
               jmin=j;    
               ijmin=i;    p1= (p+1); /*  p *(p+1)@8 and p *(p1)@8 are equal p1[0]=p[1] */
             }    d->function = func;
             sum=sum+j;    printf(" Func %.12lf \n",myfunc(npar,p1,NULL,d));
             /*if (j<0) printf("j=%d num=%d \n",j,i);*/    nlopt_set_min_objective(opt, myfunc, d);
             /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/    nlopt_set_xtol_rel(opt, ftol);
           }    if ((creturn=nlopt_optimize(opt, p1, &minf)) < 0) {
         }      printf("nlopt failed! %d\n",creturn); 
         else{    }
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));    else {
 /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */      printf("found minimum after %d evaluations (NLOPT=%d)\n", countcallfunc ,NLOPT);
       printf("found minimum at f(%g,%g) = %0.10g\n", p[0], p[1], minf);
           k=k+1;      iter=1; /* not equal */
           if (j >= jmax) {    }
             jmax=j;    nlopt_destroy(opt);
             ijmax=i;  #endif
           }    free_matrix(xi,1,npar,1,npar);
           else if (j <= jmin){    fclose(ficrespow);
             jmin=j;    printf("#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
             ijmin=i;    fprintf(ficlog,"#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
           }    fprintf(ficres,"#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */  
           /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/  }
           if(j<0){  
             nberr++;  /**** Computes Hessian and covariance matrix ***/
             printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
             fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);  {
           }    double  **a,**y,*x,pd;
           sum=sum+j;    double **hess;
         }    int i, j;
         jk= j/stepm;    int *indx;
         jl= j -jk*stepm;  
         ju= j -(jk+1)*stepm;    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
         if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
           if(jl==0){    void lubksb(double **a, int npar, int *indx, double b[]) ;
             dh[mi][i]=jk;    void ludcmp(double **a, int npar, int *indx, double *d) ;
             bh[mi][i]=0;    double gompertz(double p[]);
           }else{ /* We want a negative bias in order to only have interpolation ie    hess=matrix(1,npar,1,npar);
                   * at the price of an extra matrix product in likelihood */  
             dh[mi][i]=jk+1;    printf("\nCalculation of the hessian matrix. Wait...\n");
             bh[mi][i]=ju;    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
           }    for (i=1;i<=npar;i++){
         }else{      printf("%d",i);fflush(stdout);
           if(jl <= -ju){      fprintf(ficlog,"%d",i);fflush(ficlog);
             dh[mi][i]=jk;     
             bh[mi][i]=jl;       /* bias is positive if real duration       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
                                  * is higher than the multiple of stepm and negative otherwise.      
                                  */      /*  printf(" %f ",p[i]);
           }          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
           else{    }
             dh[mi][i]=jk+1;    
             bh[mi][i]=ju;    for (i=1;i<=npar;i++) {
           }      for (j=1;j<=npar;j++)  {
           if(dh[mi][i]==0){        if (j>i) { 
             dh[mi][i]=1; /* At least one step */          printf(".%d%d",i,j);fflush(stdout);
             bh[mi][i]=ju; /* At least one step */          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
             /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/          hess[i][j]=hessij(p,delti,i,j,func,npar);
           }          
         } /* end if mle */          hess[j][i]=hess[i][j];    
       }          /*printf(" %lf ",hess[i][j]);*/
     } /* end wave */        }
   }      }
   jmean=sum/k;    }
   printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);    printf("\n");
   fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);    fprintf(ficlog,"\n");
  }  
     printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
 /*********** Tricode ****************************/    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
 void tricode(int *Tvar, int **nbcode, int imx)    
 {    a=matrix(1,npar,1,npar);
      y=matrix(1,npar,1,npar);
   int Ndum[20],ij=1, k, j, i, maxncov=19;    x=vector(1,npar);
   int cptcode=0;    indx=ivector(1,npar);
   cptcoveff=0;    for (i=1;i<=npar;i++)
        for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
   for (k=0; k<maxncov; k++) Ndum[k]=0;    ludcmp(a,npar,indx,&pd);
   for (k=1; k<=7; k++) ncodemax[k]=0;  
     for (j=1;j<=npar;j++) {
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {      for (i=1;i<=npar;i++) x[i]=0;
     for (i=1; i<=imx; i++) { /*reads the data file to get the maximum      x[j]=1;
                                modality*/      lubksb(a,npar,indx,x);
       ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/      for (i=1;i<=npar;i++){ 
       Ndum[ij]++; /*store the modality */        matcov[i][j]=x[i];
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/      }
       if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable    }
                                        Tvar[j]. If V=sex and male is 0 and  
                                        female is 1, then  cptcode=1.*/    printf("\n#Hessian matrix#\n");
     }    fprintf(ficlog,"\n#Hessian matrix#\n");
     for (i=1;i<=npar;i++) { 
     for (i=0; i<=cptcode; i++) {      for (j=1;j<=npar;j++) { 
       if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */        printf("%.3e ",hess[i][j]);
     }        fprintf(ficlog,"%.3e ",hess[i][j]);
       }
     ij=1;      printf("\n");
     for (i=1; i<=ncodemax[j]; i++) {      fprintf(ficlog,"\n");
       for (k=0; k<= maxncov; k++) {    }
         if (Ndum[k] != 0) {  
           nbcode[Tvar[j]][ij]=k;    /* Recompute Inverse */
           /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */    for (i=1;i<=npar;i++)
                for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
           ij++;    ludcmp(a,npar,indx,&pd);
         }  
         if (ij > ncodemax[j]) break;    /*  printf("\n#Hessian matrix recomputed#\n");
       }    
     }    for (j=1;j<=npar;j++) {
   }        for (i=1;i<=npar;i++) x[i]=0;
       x[j]=1;
  for (k=0; k< maxncov; k++) Ndum[k]=0;      lubksb(a,npar,indx,x);
       for (i=1;i<=npar;i++){ 
  for (i=1; i<=ncovmodel-2; i++) {        y[i][j]=x[i];
    /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/        printf("%.3e ",y[i][j]);
    ij=Tvar[i];        fprintf(ficlog,"%.3e ",y[i][j]);
    Ndum[ij]++;      }
  }      printf("\n");
       fprintf(ficlog,"\n");
  ij=1;    }
  for (i=1; i<= maxncov; i++) {    */
    if((Ndum[i]!=0) && (i<=ncovcol)){  
      Tvaraff[ij]=i; /*For printing */    free_matrix(a,1,npar,1,npar);
      ij++;    free_matrix(y,1,npar,1,npar);
    }    free_vector(x,1,npar);
  }    free_ivector(indx,1,npar);
      free_matrix(hess,1,npar,1,npar);
  cptcoveff=ij-1; /*Number of simple covariates*/  
 }  
   }
 /*********** Health Expectancies ****************/  
   /*************** hessian matrix ****************/
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
   {
 {    int i;
   /* Health expectancies, no variances */    int l=1, lmax=20;
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;    double k1,k2;
   double age, agelim, hf;    double p2[MAXPARM+1]; /* identical to x */
   double ***p3mat;    double res;
   double eip;    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
     double fx;
   pstamp(ficreseij);    int k=0,kmax=10;
   fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");    double l1;
   fprintf(ficreseij,"# Age");  
   for(i=1; i<=nlstate;i++){    fx=func(x);
     for(j=1; j<=nlstate;j++){    for (i=1;i<=npar;i++) p2[i]=x[i];
       fprintf(ficreseij," e%1d%1d ",i,j);    for(l=0 ; l <=lmax; l++){  /* Enlarging the zone around the Maximum */
     }      l1=pow(10,l);
     fprintf(ficreseij," e%1d. ",i);      delts=delt;
   }      for(k=1 ; k <kmax; k=k+1){
   fprintf(ficreseij,"\n");        delt = delta*(l1*k);
         p2[theta]=x[theta] +delt;
          k1=func(p2)-fx;   /* Might be negative if too close to the theoretical maximum */
   if(estepm < stepm){        p2[theta]=x[theta]-delt;
     printf ("Problem %d lower than %d\n",estepm, stepm);        k2=func(p2)-fx;
   }        /*res= (k1-2.0*fx+k2)/delt/delt; */
   else  hstepm=estepm;          res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
   /* We compute the life expectancy from trapezoids spaced every estepm months        
    * This is mainly to measure the difference between two models: for example  #ifdef DEBUGHESS
    * if stepm=24 months pijx are given only every 2 years and by summing them        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
    * we are calculating an estimate of the Life Expectancy assuming a linear        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
    * progression in between and thus overestimating or underestimating according  #endif
    * to the curvature of the survival function. If, for the same date, we        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
    * estimate the model with stepm=1 month, we can keep estepm to 24 months        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
    * to compare the new estimate of Life expectancy with the same linear          k=kmax;
    * hypothesis. A more precise result, taking into account a more precise        }
    * curvature will be obtained if estepm is as small as stepm. */        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
           k=kmax; l=lmax*10;
   /* For example we decided to compute the life expectancy with the smallest unit */        }
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
      nhstepm is the number of hstepm from age to agelim          delts=delt;
      nstepm is the number of stepm from age to agelin.        }
      Look at hpijx to understand the reason of that which relies in memory size      }
      and note for a fixed period like estepm months */    }
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the    delti[theta]=delts;
      survival function given by stepm (the optimization length). Unfortunately it    return res; 
      means that if the survival funtion is printed only each two years of age and if    
      you sum them up and add 1 year (area under the trapezoids) you won't get the same  }
      results. So we changed our mind and took the option of the best precision.  
   */  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */  {
     int i;
   agelim=AGESUP;    int l=1, lmax=20;
   /* If stepm=6 months */    double k1,k2,k3,k4,res,fx;
     /* Computed by stepm unit matrices, product of hstepm matrices, stored    double p2[MAXPARM+1];
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */    int k;
      
 /* nhstepm age range expressed in number of stepm */    fx=func(x);
   nstepm=(int) rint((agelim-bage)*YEARM/stepm);    for (k=1; k<=2; k++) {
   /* Typically if 20 years nstepm = 20*12/6=40 stepm */      for (i=1;i<=npar;i++) p2[i]=x[i];
   /* if (stepm >= YEARM) hstepm=1;*/      p2[thetai]=x[thetai]+delti[thetai]/k;
   nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      k1=func(p2)-fx;
     
   for (age=bage; age<=fage; age ++){      p2[thetai]=x[thetai]+delti[thetai]/k;
       p2[thetaj]=x[thetaj]-delti[thetaj]/k;
       k2=func(p2)-fx;
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);      
          p2[thetai]=x[thetai]-delti[thetai]/k;
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
          k3=func(p2)-fx;
     printf("%d|",(int)age);fflush(stdout);    
     fprintf(ficlog,"%d|",(int)age);fflush(ficlog);      p2[thetai]=x[thetai]-delti[thetai]/k;
          p2[thetaj]=x[thetaj]-delti[thetaj]/k;
       k4=func(p2)-fx;
     /* Computing expectancies */      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
     for(i=1; i<=nlstate;i++)  #ifdef DEBUG
       for(j=1; j<=nlstate;j++)      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;  #endif
              }
           /*if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/    return res;
   }
         }  
      /************** Inverse of matrix **************/
     fprintf(ficreseij,"%3.0f",age );  void ludcmp(double **a, int n, int *indx, double *d) 
     for(i=1; i<=nlstate;i++){  { 
       eip=0;    int i,imax,j,k; 
       for(j=1; j<=nlstate;j++){    double big,dum,sum,temp; 
         eip +=eij[i][j][(int)age];    double *vv; 
         fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );   
       }    vv=vector(1,n); 
       fprintf(ficreseij,"%9.4f", eip );    *d=1.0; 
     }    for (i=1;i<=n;i++) { 
     fprintf(ficreseij,"\n");      big=0.0; 
          for (j=1;j<=n;j++) 
   }        if ((temp=fabs(a[i][j])) > big) big=temp; 
   free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
   printf("\n");      vv[i]=1.0/big; 
   fprintf(ficlog,"\n");    } 
      for (j=1;j<=n;j++) { 
 }      for (i=1;i<j;i++) { 
         sum=a[i][j]; 
 void cvevsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
         a[i][j]=sum; 
 {      } 
   /* Covariances of health expectancies eij and of total life expectancies according      big=0.0; 
    to initial status i, ei. .      for (i=j;i<=n;i++) { 
   */        sum=a[i][j]; 
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;        for (k=1;k<j;k++) 
   double age, agelim, hf;          sum -= a[i][k]*a[k][j]; 
   double ***p3matp, ***p3matm, ***varhe;        a[i][j]=sum; 
   double **dnewm,**doldm;        if ( (dum=vv[i]*fabs(sum)) >= big) { 
   double *xp, *xm;          big=dum; 
   double **gp, **gm;          imax=i; 
   double ***gradg, ***trgradg;        } 
   int theta;      } 
       if (j != imax) { 
   double eip, vip;        for (k=1;k<=n;k++) { 
           dum=a[imax][k]; 
   varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);          a[imax][k]=a[j][k]; 
   xp=vector(1,npar);          a[j][k]=dum; 
   xm=vector(1,npar);        } 
   dnewm=matrix(1,nlstate*nlstate,1,npar);        *d = -(*d); 
   doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);        vv[imax]=vv[j]; 
        } 
   pstamp(ficresstdeij);      indx[j]=imax; 
   fprintf(ficresstdeij,"# Health expectancies with standard errors\n");      if (a[j][j] == 0.0) a[j][j]=TINY; 
   fprintf(ficresstdeij,"# Age");      if (j != n) { 
   for(i=1; i<=nlstate;i++){        dum=1.0/(a[j][j]); 
     for(j=1; j<=nlstate;j++)        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
       fprintf(ficresstdeij," e%1d%1d (SE)",i,j);      } 
     fprintf(ficresstdeij," e%1d. ",i);    } 
   }    free_vector(vv,1,n);  /* Doesn't work */
   fprintf(ficresstdeij,"\n");  ;
   } 
   pstamp(ficrescveij);  
   fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");  void lubksb(double **a, int n, int *indx, double b[]) 
   fprintf(ficrescveij,"# Age");  { 
   for(i=1; i<=nlstate;i++)    int i,ii=0,ip,j; 
     for(j=1; j<=nlstate;j++){    double sum; 
       cptj= (j-1)*nlstate+i;   
       for(i2=1; i2<=nlstate;i2++)    for (i=1;i<=n;i++) { 
         for(j2=1; j2<=nlstate;j2++){      ip=indx[i]; 
           cptj2= (j2-1)*nlstate+i2;      sum=b[ip]; 
           if(cptj2 <= cptj)      b[ip]=b[i]; 
             fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);      if (ii) 
         }        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
     }      else if (sum) ii=i; 
   fprintf(ficrescveij,"\n");      b[i]=sum; 
      } 
   if(estepm < stepm){    for (i=n;i>=1;i--) { 
     printf ("Problem %d lower than %d\n",estepm, stepm);      sum=b[i]; 
   }      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
   else  hstepm=estepm;        b[i]=sum/a[i][i]; 
   /* We compute the life expectancy from trapezoids spaced every estepm months    } 
    * This is mainly to measure the difference between two models: for example  } 
    * if stepm=24 months pijx are given only every 2 years and by summing them  
    * we are calculating an estimate of the Life Expectancy assuming a linear  void pstamp(FILE *fichier)
    * progression in between and thus overestimating or underestimating according  {
    * to the curvature of the survival function. If, for the same date, we    fprintf(fichier,"# %s.%s\n#IMaCh version %s, %s\n#%s\n# %s", optionfilefiname,optionfilext,version,copyright, fullversion, strstart);
    * estimate the model with stepm=1 month, we can keep estepm to 24 months  }
    * to compare the new estimate of Life expectancy with the same linear  
    * hypothesis. A more precise result, taking into account a more precise  /************ Frequencies ********************/
    * curvature will be obtained if estepm is as small as stepm. */  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
   {  /* Some frequencies */
   /* For example we decided to compute the life expectancy with the smallest unit */    
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.    int i, m, jk, j1, bool, z1,j;
      nhstepm is the number of hstepm from age to agelim    int first;
      nstepm is the number of stepm from age to agelin.    double ***freq; /* Frequencies */
      Look at hpijx to understand the reason of that which relies in memory size    double *pp, **prop;
      and note for a fixed period like estepm months */    double pos,posprop, k2, dateintsum=0,k2cpt=0;
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the    char fileresp[FILENAMELENGTH];
      survival function given by stepm (the optimization length). Unfortunately it    
      means that if the survival funtion is printed only each two years of age and if    pp=vector(1,nlstate);
      you sum them up and add 1 year (area under the trapezoids) you won't get the same    prop=matrix(1,nlstate,iagemin,iagemax+3);
      results. So we changed our mind and took the option of the best precision.    strcpy(fileresp,"P_");
   */    strcat(fileresp,fileresu);
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */    if((ficresp=fopen(fileresp,"w"))==NULL) {
       printf("Problem with prevalence resultfile: %s\n", fileresp);
   /* If stepm=6 months */      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
   /* nhstepm age range expressed in number of stepm */      exit(0);
   agelim=AGESUP;    }
   nstepm=(int) rint((agelim-bage)*YEARM/stepm);    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
   /* Typically if 20 years nstepm = 20*12/6=40 stepm */    j1=0;
   /* if (stepm >= YEARM) hstepm=1;*/    
   nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */    j=cptcoveff;
      if (cptcovn<1) {j=1;ncodemax[1]=1;}
   p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
   p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    first=1;
   gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);  
   trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);    /* for(k1=1; k1<=j ; k1++){ */  /* Loop on covariates */
   gp=matrix(0,nhstepm,1,nlstate*nlstate);    /*  for(i1=1; i1<=ncodemax[k1];i1++){ */ /* Now it is 2 */
   gm=matrix(0,nhstepm,1,nlstate*nlstate);    /*    j1++; */
     for (j1 = 1; j1 <= (int) pow(2,cptcoveff); j1++){
   for (age=bage; age<=fage; age ++){        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
           scanf("%d", i);*/
     /* Computed by stepm unit matrices, product of hstepm matrices, stored        for (i=-5; i<=nlstate+ndeath; i++)  
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */          for (jk=-5; jk<=nlstate+ndeath; jk++)  
              for(m=iagemin; m <= iagemax+3; m++)
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */              freq[i][jk][m]=0;
         
     /* Computing  Variances of health expectancies */        for (i=1; i<=nlstate; i++)  
     /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to          for(m=iagemin; m <= iagemax+3; m++)
        decrease memory allocation */            prop[i][m]=0;
     for(theta=1; theta <=npar; theta++){        
       for(i=1; i<=npar; i++){        dateintsum=0;
         xp[i] = x[i] + (i==theta ?delti[theta]:0);        k2cpt=0;
         xm[i] = x[i] - (i==theta ?delti[theta]:0);        for (i=1; i<=imx; i++) {
       }          bool=1;
       hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);            if  (cptcovn>0) { /* Filter is here: Must be looked at for model=V1+V2+V3+V4 */
       hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);              for (z1=1; z1<=cptcoveff; z1++)       
                if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtabm(j1,z1)]){
       for(j=1; j<= nlstate; j++){                  /* Tests if the value of each of the covariates of i is equal to filter j1 */
         for(i=1; i<=nlstate; i++){                bool=0;
           for(h=0; h<=nhstepm-1; h++){                /* printf("bool=%d i=%d, z1=%d, Tvaraff[%d]=%d, covar[Tvarff][%d]=%2f, codtabm(%d,%d)=%d, nbcode[Tvaraff][codtabm(%d,%d)=%d, j1=%d\n", 
             gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;                  bool,i,z1, z1, Tvaraff[z1],i,covar[Tvaraff[z1]][i],j1,z1,codtabm(j1,z1),
             gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;                  j1,z1,nbcode[Tvaraff[z1]][codtabm(j1,z1)],j1);*/
           }                /* For j1=7 in V1+V2+V3+V4 = 0 1 1 0 and codtabm(7,3)=1 and nbcde[3][?]=1*/
         }              } 
       }          }
         
       for(ij=1; ij<= nlstate*nlstate; ij++)          if (bool==1){
         for(h=0; h<=nhstepm-1; h++){            for(m=firstpass; m<=lastpass; m++){
           gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];              k2=anint[m][i]+(mint[m][i]/12.);
         }              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
     }/* End theta */                if(agev[m][i]==0) agev[m][i]=iagemax+1;
                    if(agev[m][i]==1) agev[m][i]=iagemax+2;
                    if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
     for(h=0; h<=nhstepm-1; h++)                if (m<lastpass) {
       for(j=1; j<=nlstate*nlstate;j++)                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
         for(theta=1; theta <=npar; theta++)                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
           trgradg[h][j][theta]=gradg[h][theta][j];                }
                    
                 if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
      for(ij=1;ij<=nlstate*nlstate;ij++)                  dateintsum=dateintsum+k2;
       for(ji=1;ji<=nlstate*nlstate;ji++)                  k2cpt++;
         varhe[ij][ji][(int)age] =0.;                }
                 /*}*/
      printf("%d|",(int)age);fflush(stdout);            }
      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);          }
      for(h=0;h<=nhstepm-1;h++){        } /* end i */
       for(k=0;k<=nhstepm-1;k++){         
         matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
         matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);        pstamp(ficresp);
         for(ij=1;ij<=nlstate*nlstate;ij++)        if  (cptcovn>0) {
           for(ji=1;ji<=nlstate*nlstate;ji++)          fprintf(ficresp, "\n#********** Variable "); 
             varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
       }          fprintf(ficresp, "**********\n#");
     }          fprintf(ficlog, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficlog, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
     /* Computing expectancies */          fprintf(ficlog, "**********\n#");
     hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);          }
     for(i=1; i<=nlstate;i++)        for(i=1; i<=nlstate;i++) 
       for(j=1; j<=nlstate;j++)          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){        fprintf(ficresp, "\n");
           eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;        
                  for(i=iagemin; i <= iagemax+3; i++){
           /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/          if(i==iagemax+3){
             fprintf(ficlog,"Total");
         }          }else{
             if(first==1){
     fprintf(ficresstdeij,"%3.0f",age );              first=0;
     for(i=1; i<=nlstate;i++){              printf("See log file for details...\n");
       eip=0.;            }
       vip=0.;            fprintf(ficlog,"Age %d", i);
       for(j=1; j<=nlstate;j++){          }
         eip += eij[i][j][(int)age];          for(jk=1; jk <=nlstate ; jk++){
         for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
           vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];              pp[jk] += freq[jk][m][i]; 
         fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );          }
       }          for(jk=1; jk <=nlstate ; jk++){
       fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));            for(m=-1, pos=0; m <=0 ; m++)
     }              pos += freq[jk][m][i];
     fprintf(ficresstdeij,"\n");            if(pp[jk]>=1.e-10){
               if(first==1){
     fprintf(ficrescveij,"%3.0f",age );                printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
     for(i=1; i<=nlstate;i++)              }
       for(j=1; j<=nlstate;j++){              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
         cptj= (j-1)*nlstate+i;            }else{
         for(i2=1; i2<=nlstate;i2++)              if(first==1)
           for(j2=1; j2<=nlstate;j2++){                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
             cptj2= (j2-1)*nlstate+i2;              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
             if(cptj2 <= cptj)            }
               fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);          }
           }  
       }          for(jk=1; jk <=nlstate ; jk++){
     fprintf(ficrescveij,"\n");            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
                  pp[jk] += freq[jk][m][i];
   }          }       
   free_matrix(gm,0,nhstepm,1,nlstate*nlstate);          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
   free_matrix(gp,0,nhstepm,1,nlstate*nlstate);            pos += pp[jk];
   free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);            posprop += prop[jk][i];
   free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);          }
   free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          for(jk=1; jk <=nlstate ; jk++){
   free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            if(pos>=1.e-5){
   printf("\n");              if(first==1)
   fprintf(ficlog,"\n");                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
               fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   free_vector(xm,1,npar);            }else{
   free_vector(xp,1,npar);              if(first==1)
   free_matrix(dnewm,1,nlstate*nlstate,1,npar);                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
   free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
   free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);            }
 }            if( i <= iagemax){
               if(pos>=1.e-5){
 /************ Variance ******************/                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
 void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])                /*probs[i][jk][j1]= pp[jk]/pos;*/
 {                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
   /* Variance of health expectancies */              }
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/              else
   /* double **newm;*/                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
   double **dnewm,**doldm;            }
   double **dnewmp,**doldmp;          }
   int i, j, nhstepm, hstepm, h, nstepm ;          
   int k, cptcode;          for(jk=-1; jk <=nlstate+ndeath; jk++)
   double *xp;            for(m=-1; m <=nlstate+ndeath; m++)
   double **gp, **gm;  /* for var eij */              if(freq[jk][m][i] !=0 ) {
   double ***gradg, ***trgradg; /*for var eij */              if(first==1)
   double **gradgp, **trgradgp; /* for var p point j */                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
   double *gpp, *gmp; /* for var p point j */                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
   double **varppt; /* for var p point j nlstate to nlstate+ndeath */              }
   double ***p3mat;          if(i <= iagemax)
   double age,agelim, hf;            fprintf(ficresp,"\n");
   double ***mobaverage;          if(first==1)
   int theta;            printf("Others in log...\n");
   char digit[4];          fprintf(ficlog,"\n");
   char digitp[25];        }
         /*}*/
   char fileresprobmorprev[FILENAMELENGTH];    }
     dateintmean=dateintsum/k2cpt; 
   if(popbased==1){   
     if(mobilav!=0)    fclose(ficresp);
       strcpy(digitp,"-populbased-mobilav-");    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
     else strcpy(digitp,"-populbased-nomobil-");    free_vector(pp,1,nlstate);
   }    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
   else    /* End of Freq */
     strcpy(digitp,"-stablbased-");  }
   
   if (mobilav!=0) {  /************ Prevalence ********************/
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
     if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){  {  
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
       printf(" Error in movingaverage mobilav=%d\n",mobilav);       in each health status at the date of interview (if between dateprev1 and dateprev2).
     }       We still use firstpass and lastpass as another selection.
   }    */
    
   strcpy(fileresprobmorprev,"prmorprev");    int i, m, jk, j1, bool, z1,j;
   sprintf(digit,"%-d",ij);  
   /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/    double **prop;
   strcat(fileresprobmorprev,digit); /* Tvar to be done */    double posprop; 
   strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */    double  y2; /* in fractional years */
   strcat(fileresprobmorprev,fileres);    int iagemin, iagemax;
   if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {    int first; /** to stop verbosity which is redirected to log file */
     printf("Problem with resultfile: %s\n", fileresprobmorprev);  
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);    iagemin= (int) agemin;
   }    iagemax= (int) agemax;
   printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);    /*pp=vector(1,nlstate);*/
      prop=matrix(1,nlstate,iagemin,iagemax+3); 
   fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
   pstamp(ficresprobmorprev);    j1=0;
   fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);    
   fprintf(ficresprobmorprev,"# Age cov=%-d",ij);    /*j=cptcoveff;*/
   for(j=nlstate+1; j<=(nlstate+ndeath);j++){    if (cptcovn<1) {j=1;ncodemax[1]=1;}
     fprintf(ficresprobmorprev," p.%-d SE",j);    
     for(i=1; i<=nlstate;i++)    first=1;
       fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);    for(j1=1; j1<= (int) pow(2,cptcoveff);j1++){
   }        /*for(i1=1; i1<=ncodemax[k1];i1++){
   fprintf(ficresprobmorprev,"\n");        j1++;*/
   fprintf(ficgp,"\n# Routine varevsij");        
   /* fprintf(fichtm, "#Local time at start: %s", strstart);*/        for (i=1; i<=nlstate; i++)  
   fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");          for(m=iagemin; m <= iagemax+3; m++)
   fprintf(fichtm,"\n<br>%s  <br>\n",digitp);            prop[i][m]=0.0;
 /*   } */       
   varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);        for (i=1; i<=imx; i++) { /* Each individual */
   pstamp(ficresvij);          bool=1;
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");          if  (cptcovn>0) {
   if(popbased==1)            for (z1=1; z1<=cptcoveff; z1++) 
     fprintf(ficresvij,"the age specific prevalence observed in the population i.e cross-sectionally\n in each health state (popbased=1)");              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtabm(j1,z1)]) 
   else                bool=0;
     fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");          } 
   fprintf(ficresvij,"# Age");          if (bool==1) { 
   for(i=1; i<=nlstate;i++)            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
     for(j=1; j<=nlstate;j++)              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
       fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
   fprintf(ficresvij,"\n");                if(agev[m][i]==0) agev[m][i]=iagemax+1;
                 if(agev[m][i]==1) agev[m][i]=iagemax+2;
   xp=vector(1,npar);                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
   dnewm=matrix(1,nlstate,1,npar);                if (s[m][i]>0 && s[m][i]<=nlstate) { 
   doldm=matrix(1,nlstate,1,nlstate);                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
   dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
   doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);                  prop[s[m][i]][iagemax+3] += weight[i]; 
                 } 
   gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);              }
   gpp=vector(nlstate+1,nlstate+ndeath);            } /* end selection of waves */
   gmp=vector(nlstate+1,nlstate+ndeath);          }
   trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/        }
          for(i=iagemin; i <= iagemax+3; i++){  
   if(estepm < stepm){          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
     printf ("Problem %d lower than %d\n",estepm, stepm);            posprop += prop[jk][i]; 
   }          } 
   else  hstepm=estepm;            
   /* For example we decided to compute the life expectancy with the smallest unit */          for(jk=1; jk <=nlstate ; jk++){     
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.            if( i <=  iagemax){ 
      nhstepm is the number of hstepm from age to agelim              if(posprop>=1.e-5){ 
      nstepm is the number of stepm from age to agelin.                probs[i][jk][j1]= prop[jk][i]/posprop;
      Look at hpijx to understand the reason of that which relies in memory size              } else{
      and note for a fixed period like k years */                if(first==1){
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the                  first=0;
      survival function given by stepm (the optimization length). Unfortunately it                  printf("Warning Observed prevalence probs[%d][%d][%d]=%lf because of lack of cases\nSee others on log file...\n",jk,i,j1,probs[i][jk][j1]);
      means that if the survival funtion is printed every two years of age and if                }
      you sum them up and add 1 year (area under the trapezoids) you won't get the same              }
      results. So we changed our mind and took the option of the best precision.            } 
   */          }/* end jk */ 
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */        }/* end i */ 
   agelim = AGESUP;      /*} *//* end i1 */
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    } /* end j1 */
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    /*free_vector(pp,1,nlstate);*/
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
     gp=matrix(0,nhstepm,1,nlstate);  }  /* End of prevalence */
     gm=matrix(0,nhstepm,1,nlstate);  
   /************* Waves Concatenation ***************/
   
     for(theta=1; theta <=npar; theta++){  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
       for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/  {
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
       }       Death is a valid wave (if date is known).
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);         mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
        and mw[mi+1][i]. dh depends on stepm.
       if (popbased==1) {       */
         if(mobilav ==0){  
           for(i=1; i<=nlstate;i++)    int i, mi, m;
             prlim[i][i]=probs[(int)age][i][ij];    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
         }else{ /* mobilav */       double sum=0., jmean=0.;*/
           for(i=1; i<=nlstate;i++)    int first;
             prlim[i][i]=mobaverage[(int)age][i][ij];    int j, k=0,jk, ju, jl;
         }    double sum=0.;
       }    first=0;
      jmin=100000;
       for(j=1; j<= nlstate; j++){    jmax=-1;
         for(h=0; h<=nhstepm; h++){    jmean=0.;
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)    for(i=1; i<=imx; i++){
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];      mi=0;
         }      m=firstpass;
       }      while(s[m][i] <= nlstate){
       /* This for computing probability of death (h=1 means        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
          computed over hstepm matrices product = hstepm*stepm months)          mw[++mi][i]=m;
          as a weighted average of prlim.        if(m >=lastpass)
       */          break;
       for(j=nlstate+1;j<=nlstate+ndeath;j++){        else
         for(i=1,gpp[j]=0.; i<= nlstate; i++)          m++;
           gpp[j] += prlim[i][i]*p3mat[i][j][1];      }/* end while */
       }          if (s[m][i] > nlstate){
       /* end probability of death */        mi++;     /* Death is another wave */
         /* if(mi==0)  never been interviewed correctly before death */
       for(i=1; i<=npar; i++) /* Computes gradient x - delta */           /* Only death is a correct wave */
         xp[i] = x[i] - (i==theta ?delti[theta]:0);        mw[mi][i]=m;
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        }
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  
        wav[i]=mi;
       if (popbased==1) {      if(mi==0){
         if(mobilav ==0){        nbwarn++;
           for(i=1; i<=nlstate;i++)        if(first==0){
             prlim[i][i]=probs[(int)age][i][ij];          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
         }else{ /* mobilav */          first=1;
           for(i=1; i<=nlstate;i++)        }
             prlim[i][i]=mobaverage[(int)age][i][ij];        if(first==1){
         }          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
       }        }
       } /* end mi==0 */
       for(j=1; j<= nlstate; j++){    } /* End individuals */
         for(h=0; h<=nhstepm; h++){  
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)    for(i=1; i<=imx; i++){
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];      for(mi=1; mi<wav[i];mi++){
         }        if (stepm <=0)
       }          dh[mi][i]=1;
       /* This for computing probability of death (h=1 means        else{
          computed over hstepm matrices product = hstepm*stepm months)          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
          as a weighted average of prlim.            if (agedc[i] < 2*AGESUP) {
       */              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
       for(j=nlstate+1;j<=nlstate+ndeath;j++){              if(j==0) j=1;  /* Survives at least one month after exam */
         for(i=1,gmp[j]=0.; i<= nlstate; i++)              else if(j<0){
          gmp[j] += prlim[i][i]*p3mat[i][j][1];                nberr++;
       }                    printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
       /* end probability of death */                j=1; /* Temporary Dangerous patch */
                 printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
       for(j=1; j<= nlstate; j++) /* vareij */                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
         for(h=0; h<=nhstepm; h++){                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];              }
         }              k=k+1;
               if (j >= jmax){
       for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */                jmax=j;
         gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];                ijmax=i;
       }              }
               if (j <= jmin){
     } /* End theta */                jmin=j;
                 ijmin=i;
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */              }
               sum=sum+j;
     for(h=0; h<=nhstepm; h++) /* veij */              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
       for(j=1; j<=nlstate;j++)              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
         for(theta=1; theta <=npar; theta++)            }
           trgradg[h][j][theta]=gradg[h][theta][j];          }
           else{
     for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
       for(theta=1; theta <=npar; theta++)  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
         trgradgp[j][theta]=gradgp[theta][j];  
              k=k+1;
             if (j >= jmax) {
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */              jmax=j;
     for(i=1;i<=nlstate;i++)              ijmax=i;
       for(j=1;j<=nlstate;j++)            }
         vareij[i][j][(int)age] =0.;            else if (j <= jmin){
               jmin=j;
     for(h=0;h<=nhstepm;h++){              ijmin=i;
       for(k=0;k<=nhstepm;k++){            }
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
         for(i=1;i<=nlstate;i++)            if(j<0){
           for(j=1;j<=nlstate;j++)              nberr++;
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
       }              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     }            }
              sum=sum+j;
     /* pptj */          }
     matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);          jk= j/stepm;
     matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);          jl= j -jk*stepm;
     for(j=nlstate+1;j<=nlstate+ndeath;j++)          ju= j -(jk+1)*stepm;
       for(i=nlstate+1;i<=nlstate+ndeath;i++)          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
         varppt[j][i]=doldmp[j][i];            if(jl==0){
     /* end ppptj */              dh[mi][i]=jk;
     /*  x centered again */              bh[mi][i]=0;
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);              }else{ /* We want a negative bias in order to only have interpolation ie
     prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);                    * to avoid the price of an extra matrix product in likelihood */
                dh[mi][i]=jk+1;
     if (popbased==1) {              bh[mi][i]=ju;
       if(mobilav ==0){            }
         for(i=1; i<=nlstate;i++)          }else{
           prlim[i][i]=probs[(int)age][i][ij];            if(jl <= -ju){
       }else{ /* mobilav */              dh[mi][i]=jk;
         for(i=1; i<=nlstate;i++)              bh[mi][i]=jl;       /* bias is positive if real duration
           prlim[i][i]=mobaverage[(int)age][i][ij];                                   * is higher than the multiple of stepm and negative otherwise.
       }                                   */
     }            }
                          else{
     /* This for computing probability of death (h=1 means              dh[mi][i]=jk+1;
        computed over hstepm (estepm) matrices product = hstepm*stepm months)              bh[mi][i]=ju;
        as a weighted average of prlim.            }
     */            if(dh[mi][i]==0){
     for(j=nlstate+1;j<=nlstate+ndeath;j++){              dh[mi][i]=1; /* At least one step */
       for(i=1,gmp[j]=0.;i<= nlstate; i++)              bh[mi][i]=ju; /* At least one step */
         gmp[j] += prlim[i][i]*p3mat[i][j][1];              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
     }                }
     /* end probability of death */          } /* end if mle */
         }
     fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);      } /* end wave */
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){    }
       fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));    jmean=sum/k;
       for(i=1; i<=nlstate;i++){    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
         fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %d) Max=%d (%d) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
       }   }
     }  
     fprintf(ficresprobmorprev,"\n");  /*********** Tricode ****************************/
   void tricode(int *Tvar, int **nbcode, int imx, int *Ndum)
     fprintf(ficresvij,"%.0f ",age );  {
     for(i=1; i<=nlstate;i++)    /**< Uses cptcovn+2*cptcovprod as the number of covariates */
       for(j=1; j<=nlstate;j++){    /*      Tvar[i]=atoi(stre);  find 'n' in Vn and stores in Tvar. If model=V2+V1 Tvar[1]=2 and Tvar[2]=1 
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);     * Boring subroutine which should only output nbcode[Tvar[j]][k]
       }     * Tvar[5] in V2+V1+V3*age+V2*V4 is 2 (V2)
     fprintf(ficresvij,"\n");     * nbcode[Tvar[j]][1]= 
     free_matrix(gp,0,nhstepm,1,nlstate);    */
     free_matrix(gm,0,nhstepm,1,nlstate);  
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);    int ij=1, k=0, j=0, i=0, maxncov=NCOVMAX;
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);    int modmaxcovj=0; /* Modality max of covariates j */
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    int cptcode=0; /* Modality max of covariates j */
   } /* End age */    int modmincovj=0; /* Modality min of covariates j */
   free_vector(gpp,nlstate+1,nlstate+ndeath);  
   free_vector(gmp,nlstate+1,nlstate+ndeath);  
   free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);    cptcoveff=0; 
   free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/   
   fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");    for (k=1; k <= maxncov; k++) ncodemax[k]=0; /* Horrible constant again replaced by NCOVMAX */
   /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */  
   fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");    /* Loop on covariates without age and products */
 /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */    for (j=1; j<=(cptcovs); j++) { /* From model V1 + V2*age+ V3 + V3*V4 keeps V1 + V3 = 2 only */
 /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */      for (k=-1; k < maxncov; k++) Ndum[k]=0;
 /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */      for (i=1; i<=imx; i++) { /* Loop on individuals: reads the data file to get the maximum value of the 
   fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));                                 modality of this covariate Vj*/ 
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));        ij=(int)(covar[Tvar[j]][i]); /* ij=0 or 1 or -1. Value of the covariate Tvar[j] for individual i
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));                                      * If product of Vn*Vm, still boolean *:
   fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));                                      * If it was coded 1, 2, 3, 4 should be splitted into 3 boolean variables
   fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);                                      * 1 => 0 0 0, 2 => 0 0 1, 3 => 0 1 1, 4=1 0 0   */
   /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);        /* Finds for covariate j, n=Tvar[j] of Vn . ij is the
 */                                        modality of the nth covariate of individual i. */
 /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */        if (ij > modmaxcovj)
   fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);          modmaxcovj=ij; 
         else if (ij < modmincovj) 
   free_vector(xp,1,npar);          modmincovj=ij; 
   free_matrix(doldm,1,nlstate,1,nlstate);        if ((ij < -1) && (ij > NCOVMAX)){
   free_matrix(dnewm,1,nlstate,1,npar);          printf( "Error: minimal is less than -1 or maximal is bigger than %d. Exiting. \n", NCOVMAX );
   free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);          exit(1);
   free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);        }else
   free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);        Ndum[ij]++; /*counts and stores the occurence of this modality 0, 1, -1*/
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        /*  If coded 1, 2, 3 , counts the number of 1 Ndum[1], number of 2, Ndum[2], etc */
   fclose(ficresprobmorprev);        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
   fflush(ficgp);        /* getting the maximum value of the modality of the covariate
   fflush(fichtm);           (should be 0 or 1 now) Tvar[j]. If V=sex and male is coded 0 and
 }  /* end varevsij */           female is 1, then modmaxcovj=1.*/
       } /* end for loop on individuals i */
 /************ Variance of prevlim ******************/      printf(" Minimal and maximal values of %d th covariate V%d: min=%d max=%d \n", j, Tvar[j], modmincovj, modmaxcovj);
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])      fprintf(ficlog," Minimal and maximal values of %d th covariate V%d: min=%d max=%d \n", j, Tvar[j], modmincovj, modmaxcovj);
 {      cptcode=modmaxcovj;
   /* Variance of prevalence limit */      /* Ndum[0] = frequency of 0 for model-covariate j, Ndum[1] frequency of 1 etc. */
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/     /*for (i=0; i<=cptcode; i++) {*/
   double **newm;      for (k=modmincovj;  k<=modmaxcovj; k++) { /* k=-1 ? 0 and 1*//* For each value k of the modality of model-cov j */
   double **dnewm,**doldm;        printf("Frequencies of covariates %d ie V%d with value %d: %d\n", j, Tvar[j], k, Ndum[k]);
   int i, j, nhstepm, hstepm;        fprintf(ficlog, "Frequencies of covariates %d ie V%d with value %d: %d\n", j, Tvar[j], k, Ndum[k]);
   int k, cptcode;        if( Ndum[k] != 0 ){ /* Counts if nobody answered modality k ie empty modality, we skip it and reorder */
   double *xp;          if( k != -1){
   double *gp, *gm;            ncodemax[j]++;  /* ncodemax[j]= Number of modalities of the j th
   double **gradg, **trgradg;                               covariate for which somebody answered excluding 
   double age,agelim;                               undefined. Usually 2: 0 and 1. */
   int theta;          }
            ncodemaxwundef[j]++; /* ncodemax[j]= Number of modalities of the j th
   pstamp(ficresvpl);                               covariate for which somebody answered including 
   fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");                               undefined. Usually 3: -1, 0 and 1. */
   fprintf(ficresvpl,"# Age");        }
   for(i=1; i<=nlstate;i++)        /* In fact  ncodemax[j]=2 (dichotom. variables only) but it could be more for
       fprintf(ficresvpl," %1d-%1d",i,i);           historical reasons: 3 if coded 1, 2, 3 and 4 and Ndum[2]=0 */
   fprintf(ficresvpl,"\n");      } /* Ndum[-1] number of undefined modalities */
   
   xp=vector(1,npar);      /* j is a covariate, n=Tvar[j] of Vn; Fills nbcode */
   dnewm=matrix(1,nlstate,1,npar);      /* For covariate j, modalities could be 1, 2, 3, 4, 5, 6, 7. 
   doldm=matrix(1,nlstate,1,nlstate);         If Ndum[1]=0, Ndum[2]=0, Ndum[3]= 635, Ndum[4]=0, Ndum[5]=0, Ndum[6]=27, Ndum[7]=125;
           modmincovj=3; modmaxcovj = 7;
   hstepm=1*YEARM; /* Every year of age */         There are only 3 modalities non empty 3, 6, 7 (or 2 if 27 is too few) : ncodemax[j]=3;
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */         which will be coded 0, 1, 2 which in binary on 2=3-1 digits are 0=00 1=01, 2=10;
   agelim = AGESUP;         defining two dummy variables: variables V1_1 and V1_2.
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */         nbcode[Tvar[j]][ij]=k;
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */         nbcode[Tvar[j]][1]=0;
     if (stepm >= YEARM) hstepm=1;         nbcode[Tvar[j]][2]=1;
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */         nbcode[Tvar[j]][3]=2;
     gradg=matrix(1,npar,1,nlstate);         To be continued (not working yet).
     gp=vector(1,nlstate);      */
     gm=vector(1,nlstate);      ij=0; /* ij is similar to i but can jump over null modalities */
       for (i=modmincovj; i<=modmaxcovj; i++) { /* i= 1 to 2 for dichotomous, or from 1 to 3 or from -1 or 0 to 1 currently*/
     for(theta=1; theta <=npar; theta++){          if (Ndum[i] == 0) { /* If nobody responded to this modality k */
       for(i=1; i<=npar; i++){ /* Computes gradient */            break;
         xp[i] = x[i] + (i==theta ?delti[theta]:0);          }
       }          ij++;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          nbcode[Tvar[j]][ij]=i;  /* stores the original value of modality i in an array nbcode, ij modality from 1 to last non-nul modality.*/
       for(i=1;i<=nlstate;i++)          cptcode = ij; /* New max modality for covar j */
         gp[i] = prlim[i][i];      } /* end of loop on modality i=-1 to 1 or more */
            
       for(i=1; i<=npar; i++) /* Computes gradient */      /*   for (k=0; k<= cptcode; k++) { /\* k=-1 ? k=0 to 1 *\//\* Could be 1 to 4 *\//\* cptcode=modmaxcovj *\/ */
         xp[i] = x[i] - (i==theta ?delti[theta]:0);      /*  /\*recode from 0 *\/ */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      /*                               k is a modality. If we have model=V1+V1*sex  */
       for(i=1;i<=nlstate;i++)      /*                               then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
         gm[i] = prlim[i][i];      /*                            But if some modality were not used, it is recoded from 0 to a newer modmaxcovj=cptcode *\/ */
       /*  } */
       for(i=1;i<=nlstate;i++)      /*  /\* cptcode = ij; *\/ /\* New max modality for covar j *\/ */
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];      /*  if (ij > ncodemax[j]) { */
     } /* End theta */      /*    printf( " Error ij=%d > ncodemax[%d]=%d\n", ij, j, ncodemax[j]);  */
       /*    fprintf(ficlog, " Error ij=%d > ncodemax[%d]=%d\n", ij, j, ncodemax[j]); */
     trgradg =matrix(1,nlstate,1,npar);      /*    break; */
       /*  } */
     for(j=1; j<=nlstate;j++)      /*   }  /\* end of loop on modality k *\/ */
       for(theta=1; theta <=npar; theta++)    } /* end of loop on model-covariate j. nbcode[Tvarj][1]=0 and nbcode[Tvarj][2]=1 sets the value of covariate j*/  
         trgradg[j][theta]=gradg[theta][j];    
    for (k=-1; k< maxncov; k++) Ndum[k]=0; 
     for(i=1;i<=nlstate;i++)    
       varpl[i][(int)age] =0.;    for (i=1; i<=ncovmodel-2-nagesqr; i++) { /* -2, cste and age and eventually age*age */ 
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/ 
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);     ij=Tvar[i]; /* Tvar might be -1 if status was unknown */ 
     for(i=1;i<=nlstate;i++)     Ndum[ij]++; /* Might be supersed V1 + V1*age */
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */   } 
   
     fprintf(ficresvpl,"%.0f ",age );   ij=0;
     for(i=1; i<=nlstate;i++)   for (i=0; i<=  maxncov-1; i++) { /* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) */
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));     /*printf("Ndum[%d]=%d\n",i, Ndum[i]);*/
     fprintf(ficresvpl,"\n");     if((Ndum[i]!=0) && (i<=ncovcol)){
     free_vector(gp,1,nlstate);       ij++;
     free_vector(gm,1,nlstate);       /*printf("diff Ndum[%d]=%d\n",i, Ndum[i]);*/
     free_matrix(gradg,1,npar,1,nlstate);       Tvaraff[ij]=i; /*For printing (unclear) */
     free_matrix(trgradg,1,nlstate,1,npar);     }else{
   } /* End age */         /* Tvaraff[ij]=0; */
      }
   free_vector(xp,1,npar);   }
   free_matrix(doldm,1,nlstate,1,npar);   /* ij--; */
   free_matrix(dnewm,1,nlstate,1,nlstate);   cptcoveff=ij; /*Number of total covariates*/
   
 }  }
   
 /************ Variance of one-step probabilities  ******************/  
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])  /*********** Health Expectancies ****************/
 {  
   int i, j=0,  i1, k1, l1, t, tj;  void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
   int k2, l2, j1,  z1;  
   int k=0,l, cptcode;  {
   int first=1, first1;    /* Health expectancies, no variances */
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;    int i, j, nhstepm, hstepm, h, nstepm;
   double **dnewm,**doldm;    int nhstepma, nstepma; /* Decreasing with age */
   double *xp;    double age, agelim, hf;
   double *gp, *gm;    double ***p3mat;
   double **gradg, **trgradg;    double eip;
   double **mu;  
   double age,agelim, cov[NCOVMAX];    pstamp(ficreseij);
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
   int theta;    fprintf(ficreseij,"# Age");
   char fileresprob[FILENAMELENGTH];    for(i=1; i<=nlstate;i++){
   char fileresprobcov[FILENAMELENGTH];      for(j=1; j<=nlstate;j++){
   char fileresprobcor[FILENAMELENGTH];        fprintf(ficreseij," e%1d%1d ",i,j);
       }
   double ***varpij;      fprintf(ficreseij," e%1d. ",i);
     }
   strcpy(fileresprob,"prob");    fprintf(ficreseij,"\n");
   strcat(fileresprob,fileres);  
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {    
     printf("Problem with resultfile: %s\n", fileresprob);    if(estepm < stepm){
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);      printf ("Problem %d lower than %d\n",estepm, stepm);
   }    }
   strcpy(fileresprobcov,"probcov");    else  hstepm=estepm;   
   strcat(fileresprobcov,fileres);    /* We compute the life expectancy from trapezoids spaced every estepm months
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {     * This is mainly to measure the difference between two models: for example
     printf("Problem with resultfile: %s\n", fileresprobcov);     * if stepm=24 months pijx are given only every 2 years and by summing them
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);     * we are calculating an estimate of the Life Expectancy assuming a linear 
   }     * progression in between and thus overestimating or underestimating according
   strcpy(fileresprobcor,"probcor");     * to the curvature of the survival function. If, for the same date, we 
   strcat(fileresprobcor,fileres);     * estimate the model with stepm=1 month, we can keep estepm to 24 months
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {     * to compare the new estimate of Life expectancy with the same linear 
     printf("Problem with resultfile: %s\n", fileresprobcor);     * hypothesis. A more precise result, taking into account a more precise
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);     * curvature will be obtained if estepm is as small as stepm. */
   }  
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);    /* For example we decided to compute the life expectancy with the smallest unit */
   fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);       nhstepm is the number of hstepm from age to agelim 
   fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);       nstepm is the number of stepm from age to agelin. 
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);       Look at hpijx to understand the reason of that which relies in memory size
   fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);       and note for a fixed period like estepm months */
   pstamp(ficresprob);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");       survival function given by stepm (the optimization length). Unfortunately it
   fprintf(ficresprob,"# Age");       means that if the survival funtion is printed only each two years of age and if
   pstamp(ficresprobcov);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");       results. So we changed our mind and took the option of the best precision.
   fprintf(ficresprobcov,"# Age");    */
   pstamp(ficresprobcor);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");  
   fprintf(ficresprobcor,"# Age");    agelim=AGESUP;
     /* If stepm=6 months */
       /* Computed by stepm unit matrices, product of hstepm matrices, stored
   for(i=1; i<=nlstate;i++)         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
     for(j=1; j<=(nlstate+ndeath);j++){      
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);  /* nhstepm age range expressed in number of stepm */
       fprintf(ficresprobcov," p%1d-%1d ",i,j);    nstepm=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
       fprintf(ficresprobcor," p%1d-%1d ",i,j);    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     }      /* if (stepm >= YEARM) hstepm=1;*/
  /* fprintf(ficresprob,"\n");    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   fprintf(ficresprobcov,"\n");    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   fprintf(ficresprobcor,"\n");  
  */    for (age=bage; age<=fage; age ++){ 
  xp=vector(1,npar);      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));      /* if (stepm >= YEARM) hstepm=1;*/
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);  
   first=1;      /* If stepm=6 months */
   fprintf(ficgp,"\n# Routine varprob");      /* Computed by stepm unit matrices, product of hstepma matrices, stored
   fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
   fprintf(fichtm,"\n");      
       hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
   fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);      
   fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   file %s<br>\n",optionfilehtmcov);      
   fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\      printf("%d|",(int)age);fflush(stdout);
 and drawn. It helps understanding how is the covariance between two incidences.\      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
  They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");      
   fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \      /* Computing expectancies */
 It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \      for(i=1; i<=nlstate;i++)
 would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \        for(j=1; j<=nlstate;j++)
 standard deviations wide on each axis. <br>\          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
  Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
  and made the appropriate rotation to look at the uncorrelated principal directions.<br>\            
 To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   
   cov[1]=1;          }
   tj=cptcoveff;  
   if (cptcovn<1) {tj=1;ncodemax[1]=1;}      fprintf(ficreseij,"%3.0f",age );
   j1=0;      for(i=1; i<=nlstate;i++){
   for(t=1; t<=tj;t++){        eip=0;
     for(i1=1; i1<=ncodemax[t];i1++){        for(j=1; j<=nlstate;j++){
       j1++;          eip +=eij[i][j][(int)age];
       if  (cptcovn>0) {          fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
         fprintf(ficresprob, "\n#********** Variable ");        }
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        fprintf(ficreseij,"%9.4f", eip );
         fprintf(ficresprob, "**********\n#\n");      }
         fprintf(ficresprobcov, "\n#********** Variable ");      fprintf(ficreseij,"\n");
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);      
         fprintf(ficresprobcov, "**********\n#\n");    }
            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         fprintf(ficgp, "\n#********** Variable ");    printf("\n");
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    fprintf(ficlog,"\n");
         fprintf(ficgp, "**********\n#\n");    
          }
          
         fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable ");  void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
         for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);  
         fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");  {
            /* Covariances of health expectancies eij and of total life expectancies according
         fprintf(ficresprobcor, "\n#********** Variable ");         to initial status i, ei. .
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    */
         fprintf(ficresprobcor, "**********\n#");        int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
       }    int nhstepma, nstepma; /* Decreasing with age */
          double age, agelim, hf;
       for (age=bage; age<=fage; age ++){    double ***p3matp, ***p3matm, ***varhe;
         cov[2]=age;    double **dnewm,**doldm;
         for (k=1; k<=cptcovn;k++) {    double *xp, *xm;
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];    double **gp, **gm;
         }    double ***gradg, ***trgradg;
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    int theta;
         for (k=1; k<=cptcovprod;k++)  
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    double eip, vip;
          
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);    xp=vector(1,npar);
         gp=vector(1,(nlstate)*(nlstate+ndeath));    xm=vector(1,npar);
         gm=vector(1,(nlstate)*(nlstate+ndeath));    dnewm=matrix(1,nlstate*nlstate,1,npar);
        doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
         for(theta=1; theta <=npar; theta++){    
           for(i=1; i<=npar; i++)    pstamp(ficresstdeij);
             xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);    fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
              fprintf(ficresstdeij,"# Age");
           pmij(pmmij,cov,ncovmodel,xp,nlstate);    for(i=1; i<=nlstate;i++){
                for(j=1; j<=nlstate;j++)
           k=0;        fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
           for(i=1; i<= (nlstate); i++){      fprintf(ficresstdeij," e%1d. ",i);
             for(j=1; j<=(nlstate+ndeath);j++){    }
               k=k+1;    fprintf(ficresstdeij,"\n");
               gp[k]=pmmij[i][j];  
             }    pstamp(ficrescveij);
           }    fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
              fprintf(ficrescveij,"# Age");
           for(i=1; i<=npar; i++)    for(i=1; i<=nlstate;i++)
             xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);      for(j=1; j<=nlstate;j++){
            cptj= (j-1)*nlstate+i;
           pmij(pmmij,cov,ncovmodel,xp,nlstate);        for(i2=1; i2<=nlstate;i2++)
           k=0;          for(j2=1; j2<=nlstate;j2++){
           for(i=1; i<=(nlstate); i++){            cptj2= (j2-1)*nlstate+i2;
             for(j=1; j<=(nlstate+ndeath);j++){            if(cptj2 <= cptj)
               k=k+1;              fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
               gm[k]=pmmij[i][j];          }
             }      }
           }    fprintf(ficrescveij,"\n");
          
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)    if(estepm < stepm){
             gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];        printf ("Problem %d lower than %d\n",estepm, stepm);
         }    }
     else  hstepm=estepm;   
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)    /* We compute the life expectancy from trapezoids spaced every estepm months
           for(theta=1; theta <=npar; theta++)     * This is mainly to measure the difference between two models: for example
             trgradg[j][theta]=gradg[theta][j];     * if stepm=24 months pijx are given only every 2 years and by summing them
             * we are calculating an estimate of the Life Expectancy assuming a linear 
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);     * progression in between and thus overestimating or underestimating according
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);     * to the curvature of the survival function. If, for the same date, we 
         free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));     * estimate the model with stepm=1 month, we can keep estepm to 24 months
         free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));     * to compare the new estimate of Life expectancy with the same linear 
         free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);     * hypothesis. A more precise result, taking into account a more precise
         free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);     * curvature will be obtained if estepm is as small as stepm. */
   
         pmij(pmmij,cov,ncovmodel,x,nlstate);    /* For example we decided to compute the life expectancy with the smallest unit */
            /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
         k=0;       nhstepm is the number of hstepm from age to agelim 
         for(i=1; i<=(nlstate); i++){       nstepm is the number of stepm from age to agelin. 
           for(j=1; j<=(nlstate+ndeath);j++){       Look at hpijx to understand the reason of that which relies in memory size
             k=k+1;       and note for a fixed period like estepm months */
             mu[k][(int) age]=pmmij[i][j];    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
           }       survival function given by stepm (the optimization length). Unfortunately it
         }       means that if the survival funtion is printed only each two years of age and if
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)       results. So we changed our mind and took the option of the best precision.
             varpij[i][j][(int)age] = doldm[i][j];    */
     hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
         /*printf("\n%d ",(int)age);  
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){    /* If stepm=6 months */
           printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));    /* nhstepm age range expressed in number of stepm */
           fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));    agelim=AGESUP;
           }*/    nstepm=(int) rint((agelim-bage)*YEARM/stepm); 
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
         fprintf(ficresprob,"\n%d ",(int)age);    /* if (stepm >= YEARM) hstepm=1;*/
         fprintf(ficresprobcov,"\n%d ",(int)age);    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
         fprintf(ficresprobcor,"\n%d ",(int)age);    
     p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)    p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));    gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){    trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);    gp=matrix(0,nhstepm,1,nlstate*nlstate);
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);    gm=matrix(0,nhstepm,1,nlstate*nlstate);
         }  
         i=0;    for (age=bage; age<=fage; age ++){ 
         for (k=1; k<=(nlstate);k++){      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
           for (l=1; l<=(nlstate+ndeath);l++){      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
             i=i++;      /* if (stepm >= YEARM) hstepm=1;*/
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);  
             for (j=1; j<=i;j++){      /* If stepm=6 months */
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);      /* Computed by stepm unit matrices, product of hstepma matrices, stored
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
             }      
           }      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
         }/* end of loop for state */  
       } /* end of loop for age */      /* Computing  Variances of health expectancies */
       /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
       /* Confidence intervalle of pij  */         decrease memory allocation */
       /*      for(theta=1; theta <=npar; theta++){
         fprintf(ficgp,"\nset noparametric;unset label");        for(i=1; i<=npar; i++){ 
         fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");          xp[i] = x[i] + (i==theta ?delti[theta]:0);
         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");          xm[i] = x[i] - (i==theta ?delti[theta]:0);
         fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);        }
         fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);        hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
         fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);        hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
         fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);    
       */        for(j=1; j<= nlstate; j++){
           for(i=1; i<=nlstate; i++){
       /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/            for(h=0; h<=nhstepm-1; h++){
       first1=1;              gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
       for (k2=1; k2<=(nlstate);k2++){              gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
         for (l2=1; l2<=(nlstate+ndeath);l2++){            }
           if(l2==k2) continue;          }
           j=(k2-1)*(nlstate+ndeath)+l2;        }
           for (k1=1; k1<=(nlstate);k1++){       
             for (l1=1; l1<=(nlstate+ndeath);l1++){        for(ij=1; ij<= nlstate*nlstate; ij++)
               if(l1==k1) continue;          for(h=0; h<=nhstepm-1; h++){
               i=(k1-1)*(nlstate+ndeath)+l1;            gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
               if(i<=j) continue;          }
               for (age=bage; age<=fage; age ++){      }/* End theta */
                 if ((int)age %5==0){      
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;      
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;      for(h=0; h<=nhstepm-1; h++)
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;        for(j=1; j<=nlstate*nlstate;j++)
                   mu1=mu[i][(int) age]/stepm*YEARM ;          for(theta=1; theta <=npar; theta++)
                   mu2=mu[j][(int) age]/stepm*YEARM;            trgradg[h][j][theta]=gradg[h][theta][j];
                   c12=cv12/sqrt(v1*v2);      
                   /* Computing eigen value of matrix of covariance */  
                   lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;       for(ij=1;ij<=nlstate*nlstate;ij++)
                   lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;        for(ji=1;ji<=nlstate*nlstate;ji++)
                   /* Eigen vectors */          varhe[ij][ji][(int)age] =0.;
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));  
                   /*v21=sqrt(1.-v11*v11); *//* error */       printf("%d|",(int)age);fflush(stdout);
                   v21=(lc1-v1)/cv12*v11;       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
                   v12=-v21;       for(h=0;h<=nhstepm-1;h++){
                   v22=v11;        for(k=0;k<=nhstepm-1;k++){
                   tnalp=v21/v11;          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
                   if(first1==1){          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
                     first1=0;          for(ij=1;ij<=nlstate*nlstate;ij++)
                     printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);            for(ji=1;ji<=nlstate*nlstate;ji++)
                   }              varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
                   fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);        }
                   /*printf(fignu*/      }
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */  
                   /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */      /* Computing expectancies */
                   if(first==1){      hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
                     first=0;      for(i=1; i<=nlstate;i++)
                     fprintf(ficgp,"\nset parametric;unset label");        for(j=1; j<=nlstate;j++)
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
                     fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");            eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
                     fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\            
  :<a href=\"%s%d%1d%1d-%1d%1d.png\">\            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
 %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\  
                             subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\          }
                             subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);  
                     fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);      fprintf(ficresstdeij,"%3.0f",age );
                     fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);      for(i=1; i<=nlstate;i++){
                     fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);        eip=0.;
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);        vip=0.;
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);        for(j=1; j<=nlstate;j++){
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\          eip += eij[i][j][(int)age];
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\          for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));            vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
                   }else{          fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
                     first=0;        }
                     fprintf(fichtmcov," %d (%.3f),",(int) age, c12);        fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);      }
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);      fprintf(ficresstdeij,"\n");
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\  
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\      fprintf(ficrescveij,"%3.0f",age );
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));      for(i=1; i<=nlstate;i++)
                   }/* if first */        for(j=1; j<=nlstate;j++){
                 } /* age mod 5 */          cptj= (j-1)*nlstate+i;
               } /* end loop age */          for(i2=1; i2<=nlstate;i2++)
               fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);            for(j2=1; j2<=nlstate;j2++){
               first=1;              cptj2= (j2-1)*nlstate+i2;
             } /*l12 */              if(cptj2 <= cptj)
           } /* k12 */                fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
         } /*l1 */            }
       }/* k1 */        }
     } /* loop covariates */      fprintf(ficrescveij,"\n");
   }     
   free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);    }
   free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);    free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
   free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));    free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
   free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);    free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
   free_vector(xp,1,npar);    free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
   fclose(ficresprob);    free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   fclose(ficresprobcov);    free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   fclose(ficresprobcor);    printf("\n");
   fflush(ficgp);    fprintf(ficlog,"\n");
   fflush(fichtmcov);  
 }    free_vector(xm,1,npar);
     free_vector(xp,1,npar);
     free_matrix(dnewm,1,nlstate*nlstate,1,npar);
 /******************* Printing html file ***********/    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
                   int lastpass, int stepm, int weightopt, char model[],\  }
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\  
                   int popforecast, int estepm ,\  /************ Variance ******************/
                   double jprev1, double mprev1,double anprev1, \  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
                   double jprev2, double mprev2,double anprev2){  {
   int jj1, k1, i1, cpt;    /* Variance of health expectancies */
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
    fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \    /* double **newm;*/
    <li><a href='#secondorder'>Result files (second order (variance)</a>\n \    /* int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav)*/
 </ul>");    
    fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \    int movingaverage();
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",    double **dnewm,**doldm;
            jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));    double **dnewmp,**doldmp;
    fprintf(fichtm,"\    int i, j, nhstepm, hstepm, h, nstepm ;
  - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",    int k;
            stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));    double *xp;
    fprintf(fichtm,"\    double **gp, **gm;  /* for var eij */
  - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",    double ***gradg, ***trgradg; /*for var eij */
            subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));    double **gradgp, **trgradgp; /* for var p point j */
    fprintf(fichtm,"\    double *gpp, *gmp; /* for var p point j */
  - (a) Life expectancies by health status at initial age, (b) health expectancies by health status at initial age:  ei., eij . If one or more covariate are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
    <a href=\"%s\">%s</a> <br>\n",    double ***p3mat;
            estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));    double age,agelim, hf;
    fprintf(fichtm,"\    double ***mobaverage;
  - Population projections by age and states: \    int theta;
    <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));    char digit[4];
     char digitp[25];
 fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");  
     char fileresprobmorprev[FILENAMELENGTH];
  m=cptcoveff;  
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}    if(popbased==1){
       if(mobilav!=0)
  jj1=0;        strcpy(digitp,"-POPULBASED-MOBILAV_");
  for(k1=1; k1<=m;k1++){      else strcpy(digitp,"-POPULBASED-NOMOBIL_");
    for(i1=1; i1<=ncodemax[k1];i1++){    }
      jj1++;    else 
      if (cptcovn > 0) {      strcpy(digitp,"-STABLBASED_");
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");  
        for (cpt=1; cpt<=cptcoveff;cpt++)    if (mobilav!=0) {
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
      }        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
      /* Pij */        printf(" Error in movingaverage mobilav=%d\n",mobilav);
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d1.png\">%s%d1.png</a><br> \      }
 <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);        }
      /* Quasi-incidences */  
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\    strcpy(fileresprobmorprev,"PRMORPREV-"); 
  before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d2.png\">%s%d2.png</a><br> \    sprintf(digit,"%-d",ij);
 <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
        /* Period (stable) prevalence in each health state */    strcat(fileresprobmorprev,digit); /* Tvar to be done */
        for(cpt=1; cpt<nlstate;cpt++){    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
          fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d%d.png\">%s%d%d.png</a><br> \    strcat(fileresprobmorprev,fileres);
 <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
        }      printf("Problem with resultfile: %s\n", fileresprobmorprev);
      for(cpt=1; cpt<=nlstate;cpt++) {      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
         fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \    }
 <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
      }   
    } /* end i1 */    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
  }/* End k1 */    pstamp(ficresprobmorprev);
  fprintf(fichtm,"</ul>");    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
     fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){
  fprintf(fichtm,"\      fprintf(ficresprobmorprev," p.%-d SE",j);
 \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\      for(i=1; i<=nlstate;i++)
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
     }  
  fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",    fprintf(ficresprobmorprev,"\n");
          subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));    fprintf(ficgp,"\n# Routine varevsij");
  fprintf(fichtm,"\    fprintf(ficgp,"\nunset title \n");
  - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",  /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
          subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
     fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
  fprintf(fichtm,"\  /*   } */
  - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
          subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));    pstamp(ficresvij);
  fprintf(fichtm,"\    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
  - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \    if(popbased==1)
    <a href=\"%s\">%s</a> <br>\n</li>",      fprintf(ficresvij,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d\n",mobilav);
            estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));    else
  fprintf(fichtm,"\      fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
  - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \    fprintf(ficresvij,"# Age");
    <a href=\"%s\">%s</a> <br>\n</li>",    for(i=1; i<=nlstate;i++)
            estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));      for(j=1; j<=nlstate;j++)
  fprintf(fichtm,"\        fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
  - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), eij are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences (i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",    fprintf(ficresvij,"\n");
          estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));  
  fprintf(fichtm,"\    xp=vector(1,npar);
  - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors: <a href=\"%s\">%s</a> <br>\n",    dnewm=matrix(1,nlstate,1,npar);
          subdirf2(fileres,"t"),subdirf2(fileres,"t"));    doldm=matrix(1,nlstate,1,nlstate);
  fprintf(fichtm,"\    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
  - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
          subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));  
     gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
 /*  if(popforecast==1) fprintf(fichtm,"\n */    gpp=vector(nlstate+1,nlstate+ndeath);
 /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */    gmp=vector(nlstate+1,nlstate+ndeath);
 /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
 /*      <br>",fileres,fileres,fileres,fileres); */    
 /*  else  */    if(estepm < stepm){
 /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */      printf ("Problem %d lower than %d\n",estepm, stepm);
  fflush(fichtm);    }
  fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");    else  hstepm=estepm;   
     /* For example we decided to compute the life expectancy with the smallest unit */
  m=cptcoveff;    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}       nhstepm is the number of hstepm from age to agelim 
        nstepm is the number of stepm from age to agelin. 
  jj1=0;       Look at function hpijx to understand why (it is linked to memory size questions) */
  for(k1=1; k1<=m;k1++){    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
    for(i1=1; i1<=ncodemax[k1];i1++){       survival function given by stepm (the optimization length). Unfortunately it
      jj1++;       means that if the survival funtion is printed every two years of age and if
      if (cptcovn > 0) {       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");       results. So we changed our mind and took the option of the best precision.
        for (cpt=1; cpt<=cptcoveff;cpt++)    */
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");    agelim = AGESUP;
      }    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
      for(cpt=1; cpt<=nlstate;cpt++) {      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
        fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
 prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);        gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
      }      gp=matrix(0,nhstepm,1,nlstate);
      fprintf(fichtm,"\n<br>- Total life expectancy by age and \      gm=matrix(0,nhstepm,1,nlstate);
 health expectancies in states (1) and (2): %s%d.png<br>\  
 <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);  
    } /* end i1 */      for(theta=1; theta <=npar; theta++){
  }/* End k1 */        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
  fprintf(fichtm,"</ul>");          xp[i] = x[i] + (i==theta ?delti[theta]:0);
  fflush(fichtm);        }
 }        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
 /******************* Gnuplot file **************/  
 void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){        if (popbased==1) {
           if(mobilav ==0){
   char dirfileres[132],optfileres[132];            for(i=1; i<=nlstate;i++)
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;              prlim[i][i]=probs[(int)age][i][ij];
   int ng;          }else{ /* mobilav */ 
 /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */            for(i=1; i<=nlstate;i++)
 /*     printf("Problem with file %s",optionfilegnuplot); */              prlim[i][i]=mobaverage[(int)age][i][ij];
 /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */          }
 /*   } */        }
     
   /*#ifdef windows */        for(j=1; j<= nlstate; j++){
   fprintf(ficgp,"cd \"%s\" \n",pathc);          for(h=0; h<=nhstepm; h++){
     /*#endif */            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
   m=pow(2,cptcoveff);              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
           }
   strcpy(dirfileres,optionfilefiname);        }
   strcpy(optfileres,"vpl");        /* This for computing probability of death (h=1 means
  /* 1eme*/           computed over hstepm matrices product = hstepm*stepm months) 
   for (cpt=1; cpt<= nlstate ; cpt ++) {           as a weighted average of prlim.
    for (k1=1; k1<= m ; k1 ++) {        */
      fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);        for(j=nlstate+1;j<=nlstate+ndeath;j++){
      fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);          for(i=1,gpp[j]=0.; i<= nlstate; i++)
      fprintf(ficgp,"set xlabel \"Age\" \n\            gpp[j] += prlim[i][i]*p3mat[i][j][1];
 set ylabel \"Probability\" \n\        }    
 set ter png small\n\        /* end probability of death */
 set size 0.65,0.65\n\  
 plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
      for (i=1; i<= nlstate ; i ++) {        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
        else fprintf(ficgp," \%%*lf (\%%*lf)");   
      }        if (popbased==1) {
      fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);          if(mobilav ==0){
      for (i=1; i<= nlstate ; i ++) {            for(i=1; i<=nlstate;i++)
        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");              prlim[i][i]=probs[(int)age][i][ij];
        else fprintf(ficgp," \%%*lf (\%%*lf)");          }else{ /* mobilav */ 
      }            for(i=1; i<=nlstate;i++)
      fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);              prlim[i][i]=mobaverage[(int)age][i][ij];
      for (i=1; i<= nlstate ; i ++) {          }
        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");        }
        else fprintf(ficgp," \%%*lf (\%%*lf)");  
      }          for(j=1; j<= nlstate; j++){  /* Sum of wi * eij = e.j */
      fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));          for(h=0; h<=nhstepm; h++){
    }            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
   }              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
   /*2 eme*/          }
          }
   for (k1=1; k1<= m ; k1 ++) {        /* This for computing probability of death (h=1 means
     fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);           computed over hstepm matrices product = hstepm*stepm months) 
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);           as a weighted average of prlim.
            */
     for (i=1; i<= nlstate+1 ; i ++) {        for(j=nlstate+1;j<=nlstate+ndeath;j++){
       k=2*i;          for(i=1,gmp[j]=0.; i<= nlstate; i++)
       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);           gmp[j] += prlim[i][i]*p3mat[i][j][1];
       for (j=1; j<= nlstate+1 ; j ++) {        }    
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");        /* end probability of death */
         else fprintf(ficgp," \%%*lf (\%%*lf)");  
       }          for(j=1; j<= nlstate; j++) /* vareij */
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");          for(h=0; h<=nhstepm; h++){
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);          }
       for (j=1; j<= nlstate+1 ; j ++) {  
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
         else fprintf(ficgp," \%%*lf (\%%*lf)");          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
       }          }
       fprintf(ficgp,"\" t\"\" w l 0,");  
       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);      } /* End theta */
       for (j=1; j<= nlstate+1 ; j ++) {  
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
         else fprintf(ficgp," \%%*lf (\%%*lf)");  
       }        for(h=0; h<=nhstepm; h++) /* veij */
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");        for(j=1; j<=nlstate;j++)
       else fprintf(ficgp,"\" t\"\" w l 0,");          for(theta=1; theta <=npar; theta++)
     }            trgradg[h][j][theta]=gradg[h][theta][j];
   }  
        for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
   /*3eme*/        for(theta=1; theta <=npar; theta++)
            trgradgp[j][theta]=gradgp[theta][j];
   for (k1=1; k1<= m ; k1 ++) {    
     for (cpt=1; cpt<= nlstate ; cpt ++) {  
       /*       k=2+nlstate*(2*cpt-2); */      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       k=2+(nlstate+1)*(cpt-1);      for(i=1;i<=nlstate;i++)
       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);        for(j=1;j<=nlstate;j++)
       fprintf(ficgp,"set ter png small\n\          vareij[i][j][(int)age] =0.;
 set size 0.65,0.65\n\  
 plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);      for(h=0;h<=nhstepm;h++){
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);        for(k=0;k<=nhstepm;k++){
         for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
         fprintf(ficgp,"\" t \"e%d1\" w l",cpt);          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);          for(i=1;i<=nlstate;i++)
         for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");            for(j=1;j<=nlstate;j++)
         fprintf(ficgp,"\" t \"e%d1\" w l",cpt);              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
                }
       */      }
       for (i=1; i< nlstate ; i ++) {    
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);      /* pptj */
         /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
              matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
       }      for(j=nlstate+1;j<=nlstate+ndeath;j++)
       fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);        for(i=nlstate+1;i<=nlstate+ndeath;i++)
     }          varppt[j][i]=doldmp[j][i];
   }      /* end ppptj */
        /*  x centered again */
   /* CV preval stable (period) */      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
   for (k1=1; k1<= m ; k1 ++) {      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
     for (cpt=1; cpt<=nlstate ; cpt ++) {   
       k=3;      if (popbased==1) {
       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);        if(mobilav ==0){
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\          for(i=1; i<=nlstate;i++)
 set ter png small\nset size 0.65,0.65\n\            prlim[i][i]=probs[(int)age][i][ij];
 unset log y\n\        }else{ /* mobilav */ 
 plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);          for(i=1; i<=nlstate;i++)
                  prlim[i][i]=mobaverage[(int)age][i][ij];
       for (i=1; i< nlstate ; i ++)        }
         fprintf(ficgp,"+$%d",k+i+1);      }
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);               
            /* This for computing probability of death (h=1 means
       l=3+(nlstate+ndeath)*cpt;         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
       fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);         as a weighted average of prlim.
       for (i=1; i< nlstate ; i ++) {      */
         l=3+(nlstate+ndeath)*cpt;      for(j=nlstate+1;j<=nlstate+ndeath;j++){
         fprintf(ficgp,"+$%d",l+i+1);        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
       }          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);        }    
     }      /* end probability of death */
   }    
        fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
   /* proba elementaires */      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
   for(i=1,jk=1; i <=nlstate; i++){        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
     for(k=1; k <=(nlstate+ndeath); k++){        for(i=1; i<=nlstate;i++){
       if (k != i) {          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
         for(j=1; j <=ncovmodel; j++){        }
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);      } 
           jk++;      fprintf(ficresprobmorprev,"\n");
           fprintf(ficgp,"\n");  
         }      fprintf(ficresvij,"%.0f ",age );
       }      for(i=1; i<=nlstate;i++)
     }        for(j=1; j<=nlstate;j++){
    }          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
         }
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/      fprintf(ficresvij,"\n");
      for(jk=1; jk <=m; jk++) {      free_matrix(gp,0,nhstepm,1,nlstate);
        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng);      free_matrix(gm,0,nhstepm,1,nlstate);
        if (ng==2)      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
        else      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
          fprintf(ficgp,"\nset title \"Probability\"\n");    } /* End age */
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);    free_vector(gpp,nlstate+1,nlstate+ndeath);
        i=1;    free_vector(gmp,nlstate+1,nlstate+ndeath);
        for(k2=1; k2<=nlstate; k2++) {    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
          k3=i;    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
          for(k=1; k<=(nlstate+ndeath); k++) {    /* fprintf(ficgp,"\nunset parametric;unset label; set ter png small size 320, 240"); */
            if (k != k2){    fprintf(ficgp,"\nunset parametric;unset label; set ter svg size 640, 480");
              if(ng==2)    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);    fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
              else    fprintf(ficgp,"\nset out \"%s%s.svg\";",subdirf3(optionfilefiname,"VARMUPTJGR-",digitp),digit);
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
              ij=1;  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
              for(j=3; j <=ncovmodel; j++) {  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l lt 1 ",subdirf(fileresprobmorprev));
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95%% interval\" w l lt 2 ",subdirf(fileresprobmorprev));
                  ij++;    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l lt 2 ",subdirf(fileresprobmorprev));
                }    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
                else    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.svg\"> <br>\n", estepm,subdirf3(optionfilefiname,"VARMUPTJGR-",digitp),digit);
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.svg\"> <br>\n", stepm,YEARM,digitp,digit);
              }  */
              fprintf(ficgp,")/(1");  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.svg\";replot;",digitp,optionfilefiname,digit); */
                  fprintf(ficgp,"\nset out;\nset out \"%s%s.svg\";replot;set out;\n",subdirf3(optionfilefiname,"VARMUPTJGR-",digitp),digit);
              for(k1=1; k1 <=nlstate; k1++){    
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);    free_vector(xp,1,npar);
                ij=1;    free_matrix(doldm,1,nlstate,1,nlstate);
                for(j=3; j <=ncovmodel; j++){    free_matrix(dnewm,1,nlstate,1,npar);
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
                    ij++;    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
                  }    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
                  else    fclose(ficresprobmorprev);
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    fflush(ficgp);
                }    fflush(fichtm); 
                fprintf(ficgp,")");  }  /* end varevsij */
              }  
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);  /************ Variance of prevlim ******************/
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
              i=i+ncovmodel;  {
            }    /* Variance of prevalence limit */
          } /* end k */    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
        } /* end k2 */  
      } /* end jk */    double **dnewm,**doldm;
    } /* end ng */    int i, j, nhstepm, hstepm;
    fflush(ficgp);    double *xp;
 }  /* end gnuplot */    double *gp, *gm;
     double **gradg, **trgradg;
     double age,agelim;
 /*************** Moving average **************/    int theta;
 int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){    
     pstamp(ficresvpl);
   int i, cpt, cptcod;    fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
   int modcovmax =1;    fprintf(ficresvpl,"# Age");
   int mobilavrange, mob;    for(i=1; i<=nlstate;i++)
   double age;        fprintf(ficresvpl," %1d-%1d",i,i);
     fprintf(ficresvpl,"\n");
   modcovmax=2*cptcoveff;/* Max number of modalities. We suppose  
                            a covariate has 2 modalities */    xp=vector(1,npar);
   if (cptcovn<1) modcovmax=1; /* At least 1 pass */    dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
   if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){    
     if(mobilav==1) mobilavrange=5; /* default */    hstepm=1*YEARM; /* Every year of age */
     else mobilavrange=mobilav;    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
     for (age=bage; age<=fage; age++)    agelim = AGESUP;
       for (i=1; i<=nlstate;i++)    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
         for (cptcod=1;cptcod<=modcovmax;cptcod++)      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
           mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];      if (stepm >= YEARM) hstepm=1;
     /* We keep the original values on the extreme ages bage, fage and for      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
        fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2      gradg=matrix(1,npar,1,nlstate);
        we use a 5 terms etc. until the borders are no more concerned.      gp=vector(1,nlstate);
     */      gm=vector(1,nlstate);
     for (mob=3;mob <=mobilavrange;mob=mob+2){  
       for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){      for(theta=1; theta <=npar; theta++){
         for (i=1; i<=nlstate;i++){        for(i=1; i<=npar; i++){ /* Computes gradient */
           for (cptcod=1;cptcod<=modcovmax;cptcod++){          xp[i] = x[i] + (i==theta ?delti[theta]:0);
             mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];        }
               for (cpt=1;cpt<=(mob-1)/2;cpt++){        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
                 mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];        for(i=1;i<=nlstate;i++)
                 mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];          gp[i] = prlim[i][i];
               }      
             mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;        for(i=1; i<=npar; i++) /* Computes gradient */
           }          xp[i] = x[i] - (i==theta ?delti[theta]:0);
         }        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
       }/* end age */        for(i=1;i<=nlstate;i++)
     }/* end mob */          gm[i] = prlim[i][i];
   }else return -1;  
   return 0;        for(i=1;i<=nlstate;i++)
 }/* End movingaverage */          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
       } /* End theta */
   
 /************** Forecasting ******************/      trgradg =matrix(1,nlstate,1,npar);
 prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){  
   /* proj1, year, month, day of starting projection      for(j=1; j<=nlstate;j++)
      agemin, agemax range of age        for(theta=1; theta <=npar; theta++)
      dateprev1 dateprev2 range of dates during which prevalence is computed          trgradg[j][theta]=gradg[theta][j];
      anproj2 year of en of projection (same day and month as proj1).  
   */      for(i=1;i<=nlstate;i++)
   int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;        varpl[i][(int)age] =0.;
   int *popage;      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
   double agec; /* generic age */      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
   double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;      for(i=1;i<=nlstate;i++)
   double *popeffectif,*popcount;        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   double ***p3mat;  
   double ***mobaverage;      fprintf(ficresvpl,"%.0f ",age );
   char fileresf[FILENAMELENGTH];      for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
   agelim=AGESUP;      fprintf(ficresvpl,"\n");
   prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);      free_vector(gp,1,nlstate);
        free_vector(gm,1,nlstate);
   strcpy(fileresf,"f");      free_matrix(gradg,1,npar,1,nlstate);
   strcat(fileresf,fileres);      free_matrix(trgradg,1,nlstate,1,npar);
   if((ficresf=fopen(fileresf,"w"))==NULL) {    } /* End age */
     printf("Problem with forecast resultfile: %s\n", fileresf);  
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);    free_vector(xp,1,npar);
   }    free_matrix(doldm,1,nlstate,1,npar);
   printf("Computing forecasting: result on file '%s' \n", fileresf);    free_matrix(dnewm,1,nlstate,1,nlstate);
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);  
   }
   if (cptcoveff==0) ncodemax[cptcoveff]=1;  
   /************ Variance of one-step probabilities  ******************/
   if (mobilav!=0) {  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  {
     if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){    int i, j=0,  k1, l1, tj;
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);    int k2, l2, j1,  z1;
       printf(" Error in movingaverage mobilav=%d\n",mobilav);    int k=0, l;
     }    int first=1, first1, first2;
   }    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
     double **dnewm,**doldm;
   stepsize=(int) (stepm+YEARM-1)/YEARM;    double *xp;
   if (stepm<=12) stepsize=1;    double *gp, *gm;
   if(estepm < stepm){    double **gradg, **trgradg;
     printf ("Problem %d lower than %d\n",estepm, stepm);    double **mu;
   }    double age, cov[NCOVMAX+1];
   else  hstepm=estepm;      double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     int theta;
   hstepm=hstepm/stepm;    char fileresprob[FILENAMELENGTH];
   yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and    char fileresprobcov[FILENAMELENGTH];
                                fractional in yp1 */    char fileresprobcor[FILENAMELENGTH];
   anprojmean=yp;    double ***varpij;
   yp2=modf((yp1*12),&yp);  
   mprojmean=yp;    strcpy(fileresprob,"PROB_"); 
   yp1=modf((yp2*30.5),&yp);    strcat(fileresprob,fileres);
   jprojmean=yp;    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
   if(jprojmean==0) jprojmean=1;      printf("Problem with resultfile: %s\n", fileresprob);
   if(mprojmean==0) jprojmean=1;      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     }
   i1=cptcoveff;    strcpy(fileresprobcov,"PROBCOV_"); 
   if (cptcovn < 1){i1=1;}    strcat(fileresprobcov,fileres);
      if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
   fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2);      printf("Problem with resultfile: %s\n", fileresprobcov);
        fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
   fprintf(ficresf,"#****** Routine prevforecast **\n");    }
     strcpy(fileresprobcor,"PROBCOR_"); 
 /*            if (h==(int)(YEARM*yearp)){ */    strcat(fileresprobcor,fileres);
   for(cptcov=1, k=0;cptcov<=i1;cptcov++){    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){      printf("Problem with resultfile: %s\n", fileresprobcor);
       k=k+1;      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
       fprintf(ficresf,"\n#******");    }
       for(j=1;j<=cptcoveff;j++) {    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
         fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
       }    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
       fprintf(ficresf,"******\n");    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
       fprintf(ficresf,"# Covariate valuofcovar yearproj age");    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
       for(j=1; j<=nlstate+ndeath;j++){    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
         for(i=1; i<=nlstate;i++)                  pstamp(ficresprob);
           fprintf(ficresf," p%d%d",i,j);    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
         fprintf(ficresf," p.%d",j);    fprintf(ficresprob,"# Age");
       }    pstamp(ficresprobcov);
       for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) {    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
         fprintf(ficresf,"\n");    fprintf(ficresprobcov,"# Age");
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);      pstamp(ficresprobcor);
     fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
         for (agec=fage; agec>=(ageminpar-1); agec--){    fprintf(ficresprobcor,"# Age");
           nhstepm=(int) rint((agelim-agec)*YEARM/stepm);  
           nhstepm = nhstepm/hstepm;  
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    for(i=1; i<=nlstate;i++)
           oldm=oldms;savm=savms;      for(j=1; j<=(nlstate+ndeath);j++){
           hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);          fprintf(ficresprob," p%1d-%1d (SE)",i,j);
                fprintf(ficresprobcov," p%1d-%1d ",i,j);
           for (h=0; h<=nhstepm; h++){        fprintf(ficresprobcor," p%1d-%1d ",i,j);
             if (h*hstepm/YEARM*stepm ==yearp) {      }  
               fprintf(ficresf,"\n");   /* fprintf(ficresprob,"\n");
               for(j=1;j<=cptcoveff;j++)    fprintf(ficresprobcov,"\n");
                 fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    fprintf(ficresprobcor,"\n");
               fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);   */
             }    xp=vector(1,npar);
             for(j=1; j<=nlstate+ndeath;j++) {    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
               ppij=0.;    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
               for(i=1; i<=nlstate;i++) {    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
                 if (mobilav==1)    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
                   ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];    first=1;
                 else {    fprintf(ficgp,"\n# Routine varprob");
                   ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
                 }    fprintf(fichtm,"\n");
                 if (h*hstepm/YEARM*stepm== yearp) {  
                   fprintf(ficresf," %.3f", p3mat[i][j][h]);    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of one-step probabilities (drawings)</a></h4> this page is important in order to visualize confidence intervals and especially correlation between disability and recovery, or more generally, way in and way back.</li>\n",optionfilehtmcov);
                 }    fprintf(fichtmcov,"Current page is file <a href=\"%s\">%s</a><br>\n\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n",optionfilehtmcov, optionfilehtmcov);
               } /* end i */    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated \
               if (h*hstepm/YEARM*stepm==yearp) {  and drawn. It helps understanding how is the covariance between two incidences.\
                 fprintf(ficresf," %.3f", ppij);   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
               }    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
             }/* end j */  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
           } /* end h */  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  standard deviations wide on each axis. <br>\
         } /* end agec */   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
       } /* end yearp */   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
     } /* end cptcod */  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
   } /* end  cptcov */  
            cov[1]=1;
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    /* tj=cptcoveff; */
     tj = (int) pow(2,cptcoveff);
   fclose(ficresf);    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
 }    j1=0;
     for(j1=1; j1<=tj;j1++){
 /************** Forecasting *****not tested NB*************/      /*for(i1=1; i1<=ncodemax[t];i1++){ */
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){      /*j1++;*/
          if  (cptcovn>0) {
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;          fprintf(ficresprob, "\n#********** Variable "); 
   int *popage;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
   double calagedatem, agelim, kk1, kk2;          fprintf(ficresprob, "**********\n#\n");
   double *popeffectif,*popcount;          fprintf(ficresprobcov, "\n#********** Variable "); 
   double ***p3mat,***tabpop,***tabpopprev;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
   double ***mobaverage;          fprintf(ficresprobcov, "**********\n#\n");
   char filerespop[FILENAMELENGTH];          
           fprintf(ficgp, "\n#********** Variable "); 
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          fprintf(ficgp, "**********\n#\n");
   agelim=AGESUP;          
   calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;          
            fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
   prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
            fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
            
   strcpy(filerespop,"pop");          fprintf(ficresprobcor, "\n#********** Variable ");    
   strcat(filerespop,fileres);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
   if((ficrespop=fopen(filerespop,"w"))==NULL) {          fprintf(ficresprobcor, "**********\n#");    
     printf("Problem with forecast resultfile: %s\n", filerespop);        }
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);        
   }        gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
   printf("Computing forecasting: result on file '%s' \n", filerespop);        trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);        gp=vector(1,(nlstate)*(nlstate+ndeath));
         gm=vector(1,(nlstate)*(nlstate+ndeath));
   if (cptcoveff==0) ncodemax[cptcoveff]=1;        for (age=bage; age<=fage; age ++){ 
           cov[2]=age;
   if (mobilav!=0) {          if(nagesqr==1)
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);            cov[3]= age*age;
     if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){          for (k=1; k<=cptcovn;k++) {
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);            cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(j1,k)];
       printf(" Error in movingaverage mobilav=%d\n",mobilav);            /*cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(j1,Tvar[k])];*//* j1 1 2 3 4
     }                                                           * 1  1 1 1 1
   }                                                           * 2  2 1 1 1
                                                            * 3  1 2 1 1
   stepsize=(int) (stepm+YEARM-1)/YEARM;                                                           */
   if (stepm<=12) stepsize=1;            /* nbcode[1][1]=0 nbcode[1][2]=1;*/
            }
   agelim=AGESUP;          /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
            for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,k)]*cov[2];
   hstepm=1;          for (k=1; k<=cptcovprod;k++)
   hstepm=hstepm/stepm;            cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)]*nbcode[Tvard[k][2]][codtabm(ij,k)];
            
   if (popforecast==1) {      
     if((ficpop=fopen(popfile,"r"))==NULL) {          for(theta=1; theta <=npar; theta++){
       printf("Problem with population file : %s\n",popfile);exit(0);            for(i=1; i<=npar; i++)
       fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
     }            
     popage=ivector(0,AGESUP);            pmij(pmmij,cov,ncovmodel,xp,nlstate);
     popeffectif=vector(0,AGESUP);            
     popcount=vector(0,AGESUP);            k=0;
                for(i=1; i<= (nlstate); i++){
     i=1;                for(j=1; j<=(nlstate+ndeath);j++){
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;                k=k+1;
                    gp[k]=pmmij[i][j];
     imx=i;              }
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];            }
   }            
             for(i=1; i<=npar; i++)
   for(cptcov=1,k=0;cptcov<=i2;cptcov++){              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){      
       k=k+1;            pmij(pmmij,cov,ncovmodel,xp,nlstate);
       fprintf(ficrespop,"\n#******");            k=0;
       for(j=1;j<=cptcoveff;j++) {            for(i=1; i<=(nlstate); i++){
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);              for(j=1; j<=(nlstate+ndeath);j++){
       }                k=k+1;
       fprintf(ficrespop,"******\n");                gm[k]=pmmij[i][j];
       fprintf(ficrespop,"# Age");              }
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);            }
       if (popforecast==1)  fprintf(ficrespop," [Population]");       
                  for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
       for (cpt=0; cpt<=0;cpt++) {              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);            }
          
         for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);            for(theta=1; theta <=npar; theta++)
           nhstepm = nhstepm/hstepm;              trgradg[j][theta]=gradg[theta][j];
                    
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
           oldm=oldms;savm=savms;          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);    
                  pmij(pmmij,cov,ncovmodel,x,nlstate);
           for (h=0; h<=nhstepm; h++){          
             if (h==(int) (calagedatem+YEARM*cpt)) {          k=0;
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);          for(i=1; i<=(nlstate); i++){
             }            for(j=1; j<=(nlstate+ndeath);j++){
             for(j=1; j<=nlstate+ndeath;j++) {              k=k+1;
               kk1=0.;kk2=0;              mu[k][(int) age]=pmmij[i][j];
               for(i=1; i<=nlstate;i++) {                          }
                 if (mobilav==1)          }
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
                 else {            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];              varpij[i][j][(int)age] = doldm[i][j];
                 }  
               }          /*printf("\n%d ",(int)age);
               if (h==(int)(calagedatem+12*cpt)){            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
                   /*fprintf(ficrespop," %.3f", kk1);            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/            }*/
               }  
             }          fprintf(ficresprob,"\n%d ",(int)age);
             for(i=1; i<=nlstate;i++){          fprintf(ficresprobcov,"\n%d ",(int)age);
               kk1=0.;          fprintf(ficresprobcor,"\n%d ",(int)age);
                 for(j=1; j<=nlstate;j++){  
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
                 }            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             }            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
             fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
             if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++)          }
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);          i=0;
           }          for (k=1; k<=(nlstate);k++){
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            for (l=1; l<=(nlstate+ndeath);l++){ 
         }              i++;
       }              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
                fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
   /******/              for (j=1; j<=i;j++){
                 /* printf(" k=%d l=%d i=%d j=%d\n",k,l,i,j);fflush(stdout); */
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);                  fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
         for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){              }
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);            }
           nhstepm = nhstepm/hstepm;          }/* end of loop for state */
                  } /* end of loop for age */
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
           oldm=oldms;savm=savms;        free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
           for (h=0; h<=nhstepm; h++){        free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
             if (h==(int) (calagedatem+YEARM*cpt)) {        
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);        /* Confidence intervalle of pij  */
             }        /*
             for(j=1; j<=nlstate+ndeath;j++) {          fprintf(ficgp,"\nunset parametric;unset label");
               kk1=0.;kk2=0;          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
               for(i=1; i<=nlstate;i++) {                        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];              fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
               }          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
               if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);                  fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
             }          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
           }        */
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
         }        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
       }        first1=1;first2=2;
    }        for (k2=1; k2<=(nlstate);k2++){
   }          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
              if(l2==k2) continue;
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);            j=(k2-1)*(nlstate+ndeath)+l2;
             for (k1=1; k1<=(nlstate);k1++){
   if (popforecast==1) {              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
     free_ivector(popage,0,AGESUP);                if(l1==k1) continue;
     free_vector(popeffectif,0,AGESUP);                i=(k1-1)*(nlstate+ndeath)+l1;
     free_vector(popcount,0,AGESUP);                if(i<=j) continue;
   }                for (age=bage; age<=fage; age ++){ 
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);                  if ((int)age %5==0){
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
   fclose(ficrespop);                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
 } /* End of popforecast */                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     mu1=mu[i][(int) age]/stepm*YEARM ;
 int fileappend(FILE *fichier, char *optionfich)                    mu2=mu[j][(int) age]/stepm*YEARM;
 {                    c12=cv12/sqrt(v1*v2);
   if((fichier=fopen(optionfich,"a"))==NULL) {                    /* Computing eigen value of matrix of covariance */
     printf("Problem with file: %s\n", optionfich);                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
     fprintf(ficlog,"Problem with file: %s\n", optionfich);                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
     return (0);                    if ((lc2 <0) || (lc1 <0) ){
   }                      if(first2==1){
   fflush(fichier);                        first1=0;
   return (1);                      printf("Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS. See log file for details...\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);
 }                      }
                       fprintf(ficlog,"Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS.\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);fflush(ficlog);
                       /* lc1=fabs(lc1); */ /* If we want to have them positive */
 /**************** function prwizard **********************/                      /* lc2=fabs(lc2); */
 void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)                    }
 {  
                     /* Eigen vectors */
   /* Wizard to print covariance matrix template */                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                     /*v21=sqrt(1.-v11*v11); *//* error */
   char ca[32], cb[32], cc[32];                    v21=(lc1-v1)/cv12*v11;
   int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;                    v12=-v21;
   int numlinepar;                    v22=v11;
                     tnalp=v21/v11;
   printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");                    if(first1==1){
   fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");                      first1=0;
   for(i=1; i <=nlstate; i++){                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
     jj=0;                    }
     for(j=1; j <=nlstate+ndeath; j++){                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
       if(j==i) continue;                    /*printf(fignu*/
       jj++;                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
       /*ca[0]= k+'a'-1;ca[1]='\0';*/                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
       printf("%1d%1d",i,j);                    if(first==1){
       fprintf(ficparo,"%1d%1d",i,j);                      first=0;
       for(k=1; k<=ncovmodel;k++){                      fprintf(ficgp,"\n# Ellipsoids of confidence\n#\n");
         /*        printf(" %lf",param[i][j][k]); */                      fprintf(ficgp,"\nset parametric;unset label");
         /*        fprintf(ficparo," %lf",param[i][j][k]); */                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
         printf(" 0.");                      fprintf(ficgp,"\nset ter svg size 640, 480");
         fprintf(ficparo," 0.");                      fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
       }   :<a href=\"%s_%d%1d%1d-%1d%1d.svg\">\
       printf("\n");  %s_%d%1d%1d-%1d%1d.svg</A>, ",k1,l1,k2,l2,\
       fprintf(ficparo,"\n");                              subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2,\
     }                              subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2);
   }                      fprintf(fichtmcov,"\n<br><img src=\"%s_%d%1d%1d-%1d%1d.svg\"> ",subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2);
   printf("# Scales (for hessian or gradient estimation)\n");                      fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
   fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");                      fprintf(ficgp,"\nset out \"%s_%d%1d%1d-%1d%1d.svg\"",subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2);
   npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
   for(i=1; i <=nlstate; i++){                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
     jj=0;                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
     for(j=1; j <=nlstate+ndeath; j++){                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
       if(j==i) continue;                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
       jj++;                    }else{
       fprintf(ficparo,"%1d%1d",i,j);                      first=0;
       printf("%1d%1d",i,j);                      fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
       fflush(stdout);                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
       for(k=1; k<=ncovmodel;k++){                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
         /*      printf(" %le",delti3[i][j][k]); */                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
         /*      fprintf(ficparo," %le",delti3[i][j][k]); */                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
         printf(" 0.");                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
         fprintf(ficparo," 0.");                    }/* if first */
       }                  } /* age mod 5 */
       numlinepar++;                } /* end loop age */
       printf("\n");                fprintf(ficgp,"\nset out;\nset out \"%s_%d%1d%1d-%1d%1d.svg\";replot;set out;",subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2);
       fprintf(ficparo,"\n");                first=1;
     }              } /*l12 */
   }            } /* k12 */
   printf("# Covariance matrix\n");          } /*l1 */
 /* # 121 Var(a12)\n\ */        }/* k1 */
 /* # 122 Cov(b12,a12) Var(b12)\n\ */        /* } */ /* loop covariates */
 /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */    }
 /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
 /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
 /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */    free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
 /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */    free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
 /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */    free_vector(xp,1,npar);
   fflush(stdout);    fclose(ficresprob);
   fprintf(ficparo,"# Covariance matrix\n");    fclose(ficresprobcov);
   /* # 121 Var(a12)\n\ */    fclose(ficresprobcor);
   /* # 122 Cov(b12,a12) Var(b12)\n\ */    fflush(ficgp);
   /* #   ...\n\ */    fflush(fichtmcov);
   /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */  }
    
   for(itimes=1;itimes<=2;itimes++){  
     jj=0;  /******************* Printing html file ***********/
     for(i=1; i <=nlstate; i++){  void printinghtml(char fileresu[], char title[], char datafile[], int firstpass, \
       for(j=1; j <=nlstate+ndeath; j++){                    int lastpass, int stepm, int weightopt, char model[],\
         if(j==i) continue;                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
         for(k=1; k<=ncovmodel;k++){                    int popforecast, int estepm ,\
           jj++;                    double jprev1, double mprev1,double anprev1, \
           ca[0]= k+'a'-1;ca[1]='\0';                    double jprev2, double mprev2,double anprev2){
           if(itimes==1){    int jj1, k1, i1, cpt;
             printf("#%1d%1d%d",i,j,k);  
             fprintf(ficparo,"#%1d%1d%d",i,j,k);     fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
           }else{     <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
             printf("%1d%1d%d",i,j,k);  </ul>");
             fprintf(ficparo,"%1d%1d%d",i,j,k);     fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
             /*  printf(" %.5le",matcov[i][j]); */   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
           }             jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileresu,"P_"),subdirf2(fileresu,"P_"));
           ll=0;     fprintf(fichtm,"\
           for(li=1;li <=nlstate; li++){   - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
             for(lj=1;lj <=nlstate+ndeath; lj++){             stepm,subdirf2(fileresu,"PIJ_"),subdirf2(fileresu,"PIJ_"));
               if(lj==li) continue;     fprintf(fichtm,"\
               for(lk=1;lk<=ncovmodel;lk++){   - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
                 ll++;             subdirf2(fileresu,"PL_"),subdirf2(fileresu,"PL_"));
                 if(ll<=jj){     fprintf(fichtm,"\
                   cb[0]= lk +'a'-1;cb[1]='\0';   - (a) Life expectancies by health status at initial age, ei. (b) health expectancies by health status at initial age, eij . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
                   if(ll<jj){     <a href=\"%s\">%s</a> <br>\n",
                     if(itimes==1){             estepm,subdirf2(fileresu,"E_"),subdirf2(fileresu,"E_"));
                       printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);     fprintf(fichtm,"\
                       fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);   - Population projections by age and states: \
                     }else{     <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileresu,"F_"),subdirf2(fileresu,"F_"));
                       printf(" 0.");  
                       fprintf(ficparo," 0.");  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
                     }  
                   }else{   m=pow(2,cptcoveff);
                     if(itimes==1){   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
                       printf(" Var(%s%1d%1d)",ca,i,j);  
                       fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);   jj1=0;
                     }else{   for(k1=1; k1<=m;k1++){
                       printf(" 0.");     /* for(i1=1; i1<=ncodemax[k1];i1++){ */
                       fprintf(ficparo," 0.");       jj1++;
                     }       if (cptcovn > 0) {
                   }         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
                 }         for (cpt=1; cpt<=cptcoveff;cpt++){ 
               } /* end lk */           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtabm(jj1,cpt)]);
             } /* end lj */           printf(" V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtabm(jj1,cpt)]);fflush(stdout);
           } /* end li */         }
           printf("\n");         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
           fprintf(ficparo,"\n");       }
           numlinepar++;       /* aij, bij */
         } /* end k*/       fprintf(fichtm,"<br>- Logit model, for example: logit(pij)=log(pij/pii)= aij+ bij age + V1 age + etc. as a function of age: <a href=\"%s_%d-1.svg\">%s_%d-1.svg</a><br> \
       } /*end j */  <img src=\"%s_%d-1.svg\">",subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1);
     } /* end i */       /* Pij */
   } /* end itimes */       fprintf(fichtm,"<br>\n- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s_%d-2.svg\">%s_%d-2.svg</a><br> \
   <img src=\"%s_%d-2.svg\">",stepm,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1);     
 } /* end of prwizard */       /* Quasi-incidences */
 /******************* Gompertz Likelihood ******************************/       fprintf(fichtm,"<br>\n- Iij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
 double gompertz(double x[])   before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too,\
 {   incidence (rates) are the limit when h tends to zero of the ratio of the probability hPij \
   double A,B,L=0.0,sump=0.,num=0.;  divided by h: hPij/h : <a href=\"%s_%d-3.svg\">%s_%d-3.svg</a><br> \
   int i,n=0; /* n is the size of the sample */  <img src=\"%s_%d-3.svg\">",stepm,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1); 
        /* Survival functions (period) in state j */
   for (i=0;i<=imx-1 ; i++) {       for(cpt=1; cpt<=nlstate;cpt++){
     sump=sump+weight[i];         fprintf(fichtm,"<br>\n- Survival functions in state %d. Or probability to survive in state %d being in state (1 to %d) at different ages. <a href=\"%s%d_%d.svg\">%s%d_%d.svg</a><br> \
     /*    sump=sump+1;*/  <img src=\"%s_%d-%d.svg\">", cpt, cpt, nlstate, subdirf2(optionfilefiname,"LIJ_"),cpt,jj1,subdirf2(optionfilefiname,"LIJ_"),cpt,jj1,subdirf2(optionfilefiname,"LIJ_"),cpt,jj1);
     num=num+1;       }
   }       /* State specific survival functions (period) */
         for(cpt=1; cpt<=nlstate;cpt++){
           fprintf(fichtm,"<br>\n- Survival functions from state %d in any different live states and total.\
   /* for (i=0; i<=imx; i++)   Or probability to survive in various states (1 to %d) being in state %d at different ages.\
      if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/   <a href=\"%s%d_%d.svg\">%s%d_%d.svg</a><br> <img src=\"%s_%d-%d.svg\">", cpt, nlstate, cpt, subdirf2(optionfilefiname,"LIJT_"),cpt,jj1,subdirf2(optionfilefiname,"LIJT_"),cpt,jj1,subdirf2(optionfilefiname,"LIJT_"),cpt,jj1);
        }
   for (i=1;i<=imx ; i++)       /* Period (stable) prevalence in each health state */
     {       for(cpt=1; cpt<=nlstate;cpt++){
       if (cens[i] == 1 && wav[i]>1)         fprintf(fichtm,"<br>\n- Convergence to period (stable) prevalence in state %d. Or probability to be in state %d being in state (1 to %d) at different ages. <a href=\"%s%d_%d.svg\">%s%d_%d.svg</a><br> \
         A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));  <img src=\"%s_%d-%d.svg\">", cpt, cpt, nlstate, subdirf2(optionfilefiname,"P_"),cpt,jj1,subdirf2(optionfilefiname,"P_"),cpt,jj1,subdirf2(optionfilefiname,"P_"),cpt,jj1);
             }
       if (cens[i] == 0 && wav[i]>1)       for(cpt=1; cpt<=nlstate;cpt++) {
         A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))         fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies in each alive state (1 to %d) (or area under each survival functions): <a href=\"%s%d%d.svg\">%s%d%d.svg</a> <br> \
              +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);    <img src=\"%s_%d%d.svg\">",cpt,nlstate,subdirf2(optionfilefiname,"EXP_"),cpt,jj1,subdirf2(optionfilefiname,"EXP_"),cpt,jj1,subdirf2(optionfilefiname,"EXP_"),cpt,jj1);
             }
       /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */     /* } /\* end i1 *\/ */
       if (wav[i] > 1 ) { /* ??? */   }/* End k1 */
         L=L+A*weight[i];   fprintf(fichtm,"</ul>");
         /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/  
       }   fprintf(fichtm,"\
     }  \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br> \
  /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/   - 95%% confidence intervals and Wald tests of the estimated parameters are in the log file.<br> \
    But because parameters are usually highly correlated (a higher incidence of disability \
   return -2*L*num/sump;  and a higher incidence of recovery can give very close observed transition) it might \
 }  be very useful to look not only at linear confidence intervals estimated from the \
   variances but at the covariance matrix. And instead of looking at the estimated coefficients \
 /******************* Printing html file ***********/  (parameters) of the logistic regression, it might be more meaningful to visualize the \
 void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \  covariance matrix of the one-step probabilities. \
                   int lastpass, int stepm, int weightopt, char model[],\  See page 'Matrix of variance-covariance of one-step probabilities' below. \n", rfileres,rfileres);
                   int imx,  double p[],double **matcov,double agemortsup){  
   int i,k;   fprintf(fichtm," - Standard deviation of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileresu,"PROB_"),subdirf2(fileresu,"PROB_"));
   fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");   fprintf(fichtm,"\
   fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);   - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
   for (i=1;i<=2;i++)           subdirf2(fileresu,"PROBCOV_"),subdirf2(fileresu,"PROBCOV_"));
     fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));  
   fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");   fprintf(fichtm,"\
   fprintf(fichtm,"</ul>");   - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileresu,"PROBCOR_"),subdirf2(fileresu,"PROBCOR_"));
 fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");   fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
  fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");     <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileresu,"CVE_"),subdirf2(fileresu,"CVE_"));
  for (k=agegomp;k<(agemortsup-2);k++)   fprintf(fichtm,"\
    fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);   - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
               estepm,subdirf2(fileresu,"STDE_"),subdirf2(fileresu,"STDE_"));
   fflush(fichtm);   fprintf(fichtm,"\
 }   - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
            estepm, subdirf2(fileresu,"V_"),subdirf2(fileresu,"V_"));
 /******************* Gnuplot file **************/   fprintf(fichtm,"\
 void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){   - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n",
            estepm, subdirf2(fileresu,"T_"),subdirf2(fileresu,"T_"));
   char dirfileres[132],optfileres[132];   fprintf(fichtm,"\
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;   - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
   int ng;           subdirf2(fileresu,"VPL_"),subdirf2(fileresu,"VPL_"));
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*#ifdef windows */  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   fprintf(ficgp,"cd \"%s\" \n",pathc);  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
     /*#endif */  /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
   strcpy(dirfileres,optionfilefiname);   fflush(fichtm);
   strcpy(optfileres,"vpl");   fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   fprintf(ficgp,"set out \"graphmort.png\"\n ");  
   fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n ");   m=pow(2,cptcoveff);
   fprintf(ficgp, "set ter png small\n set log y\n");   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   fprintf(ficgp, "set size 0.65,0.65\n");  
   fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);   jj1=0;
    for(k1=1; k1<=m;k1++){
 }     /* for(i1=1; i1<=ncodemax[k1];i1++){ */
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtabm(jj1,cpt)]);
 /***********************************************/         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
 /**************** Main Program *****************/       }
 /***********************************************/       for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
 int main(int argc, char *argv[])  prevalence (with 95%% confidence interval) in state (%d): %s%d_%d.svg <br>\
 {  <img src=\"%s_%d-%d.svg\">",cpt,subdirf2(optionfilefiname,"V_"),cpt,jj1,subdirf2(optionfilefiname,"V_"),cpt,jj1);  
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);       }
   int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;       fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   int linei, month, year,iout;  health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \
   int jj, ll, li, lj, lk, imk;  true period expectancies (those weighted with period prevalences are also\
   int numlinepar=0; /* Current linenumber of parameter file */   drawn in addition to the population based expectancies computed using\
   int itimes;   observed and cahotic prevalences: %s_%d.svg<br>\
   int NDIM=2;  <img src=\"%s_%d.svg\">",subdirf2(optionfilefiname,"E_"),jj1,subdirf2(optionfilefiname,"E_"),jj1);
      /* } /\* end i1 *\/ */
   char ca[32], cb[32], cc[32];   }/* End k1 */
   char dummy[]="                         ";   fprintf(fichtm,"</ul>");
   /*  FILE *fichtm; *//* Html File */   fflush(fichtm);
   /* FILE *ficgp;*/ /*Gnuplot File */  }
   struct stat info;  
   double agedeb, agefin,hf;  /******************* Gnuplot file **************/
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;  void printinggnuplot(char fileresu[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
   double fret;    char dirfileres[132],optfileres[132];
   double **xi,tmp,delta;    int cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,ij=0,l=0;
     int ng=0;
   double dum; /* Dummy variable */    int vpopbased;
   double ***p3mat;  /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   double ***mobaverage;  /*     printf("Problem with file %s",optionfilegnuplot); */
   int *indx;  /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   char line[MAXLINE], linepar[MAXLINE];  /*   } */
   char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];  
   char pathr[MAXLINE], pathimach[MAXLINE];    /*#ifdef windows */
   char **bp, *tok, *val; /* pathtot */    fprintf(ficgp,"cd \"%s\" \n",pathc);
   int firstobs=1, lastobs=10;      /*#endif */
   int sdeb, sfin; /* Status at beginning and end */    m=pow(2,cptcoveff);
   int c,  h , cpt,l;  
   int ju,jl, mi;    strcpy(dirfileres,optionfilefiname);
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;    strcpy(optfileres,"vpl");
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab;   /* 1eme*/
   int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */    fprintf(ficgp,"\n# 1st: Period (stable) prevalence with CI: 'VPL_' files\n");
   int mobilav=0,popforecast=0;    for (cpt=1; cpt<= nlstate ; cpt ++) {
   int hstepm, nhstepm;      for (k1=1; k1<= m ; k1 ++) { /* plot [100000000000000000000:-100000000000000000000] "mysbiaspar/vplrmysbiaspar.txt to check */
   int agemortsup;       fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" \n",subdirf2(optionfilefiname,"V_"),cpt,k1);
   float  sumlpop=0.;       fprintf(ficgp,"\n#set out \"V_%s_%d-%d.svg\" \n",optionfilefiname,cpt,k1);
   double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;       fprintf(ficgp,"set xlabel \"Age\" \n\
   double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;  set ylabel \"Probability\" \n\
   set ter svg size 640, 480\n\
   double bage, fage, age, agelim, agebase;  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"%%lf",ageminpar,fage,subdirf2(fileresu,"VPL_"),k1-1,k1-1);
   double ftolpl=FTOL;  
   double **prlim;       for (i=1; i<= nlstate ; i ++) {
   double *severity;         if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
   double ***param; /* Matrix of parameters */         else        fprintf(ficgp," %%*lf (%%*lf)");
   double  *p;       }
   double **matcov; /* Matrix of covariance */       fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l lt 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"%%lf",subdirf2(fileresu,"VPL_"),k1-1,k1-1);
   double ***delti3; /* Scale */       for (i=1; i<= nlstate ; i ++) {
   double *delti; /* Scale */         if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
   double ***eij, ***vareij;         else fprintf(ficgp," %%*lf (%%*lf)");
   double **varpl; /* Variances of prevalence limits by age */       } 
   double *epj, vepp;       fprintf(ficgp,"\" t\"95%% CI\" w l lt 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"%%lf",subdirf2(fileresu,"VPL_"),k1-1,k1-1); 
   double kk1, kk2;       for (i=1; i<= nlstate ; i ++) {
   double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;         if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
   double **ximort;         else fprintf(ficgp," %%*lf (%%*lf)");
   char *alph[]={"a","a","b","c","d","e"}, str[4];       }  
   int *dcwave;       fprintf(ficgp,"\" t\"\" w l lt 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l lt 2",subdirf2(fileresu,"P_"),k1-1,k1-1,2+4*(cpt-1));
        fprintf(ficgp,"\nset out \n");
   char z[1]="c", occ;      } /* k1 */
     } /* cpt */
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];    /*2 eme*/
   char  *strt, strtend[80];    fprintf(ficgp,"\n# 2nd: Total life expectancy with CI: 't' files\n");
   char *stratrunc;    for (k1=1; k1<= m ; k1 ++) { 
   int lstra;      fprintf(ficgp,"\nset out \"%s_%d.svg\" \n",subdirf2(optionfilefiname,"E_"),k1);
       for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
   long total_usecs;        if(vpopbased==0)
            fprintf(ficgp,"set ylabel \"Years\" \nset ter svg size 640, 480\nplot [%.f:%.f] ",ageminpar,fage);
 /*   setlocale (LC_ALL, ""); */        else
 /*   bindtextdomain (PACKAGE, LOCALEDIR); */          fprintf(ficgp,"\nreplot ");
 /*   textdomain (PACKAGE); */        for (i=1; i<= nlstate+1 ; i ++) {
 /*   setlocale (LC_CTYPE, ""); */          k=2*i;
 /*   setlocale (LC_MESSAGES, ""); */          fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2==%d && $4!=0 ?$4 : 1/0) \"%%lf %%lf %%lf",subdirf2(fileresu,"T_"),k1-1,k1-1, vpopbased);
           for (j=1; j<= nlstate+1 ; j ++) {
   /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */            if (j==i) fprintf(ficgp," %%lf (%%lf)");
   (void) gettimeofday(&start_time,&tzp);            else fprintf(ficgp," %%*lf (%%*lf)");
   curr_time=start_time;          }   
   tm = *localtime(&start_time.tv_sec);          if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l lt %d, \\\n",i);
   tmg = *gmtime(&start_time.tv_sec);          else fprintf(ficgp,"\" t\"LE in state (%d)\" w l lt %d, \\\n",i-1,i+1);
   strcpy(strstart,asctime(&tm));          fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2==%d && $4!=0 ? $4-$5*2 : 1/0) \"%%lf %%lf %%lf",subdirf2(fileresu,"T_"),k1-1,k1-1,vpopbased);
           for (j=1; j<= nlstate+1 ; j ++) {
 /*  printf("Localtime (at start)=%s",strstart); */            if (j==i) fprintf(ficgp," %%lf (%%lf)");
 /*  tp.tv_sec = tp.tv_sec +86400; */            else fprintf(ficgp," %%*lf (%%*lf)");
 /*  tm = *localtime(&start_time.tv_sec); */          }   
 /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */          fprintf(ficgp,"\" t\"\" w l lt 0,");
 /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */          fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2==%d && $4!=0 ? $4+$5*2 : 1/0) \"%%lf %%lf %%lf",subdirf2(fileresu,"T_"),k1-1,k1-1,vpopbased);
 /*   tmg.tm_hour=tmg.tm_hour + 1; */          for (j=1; j<= nlstate+1 ; j ++) {
 /*   tp.tv_sec = mktime(&tmg); */            if (j==i) fprintf(ficgp," %%lf (%%lf)");
 /*   strt=asctime(&tmg); */            else fprintf(ficgp," %%*lf (%%*lf)");
 /*   printf("Time(after) =%s",strstart);  */          }   
 /*  (void) time (&time_value);          if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l lt 0");
 *  printf("time=%d,t-=%d\n",time_value,time_value-86400);          else fprintf(ficgp,"\" t\"\" w l lt 0,\\\n");
 *  tm = *localtime(&time_value);        } /* state */
 *  strstart=asctime(&tm);      } /* vpopbased */
 *  printf("tim_value=%d,asctime=%s\n",time_value,strstart);      fprintf(ficgp,"\nset out;set out \"%s_%d.svg\"; replot; set out; \n",subdirf2(optionfilefiname,"E_"),k1); /* Buggy gnuplot */
 */    } /* k1 */
     /*3eme*/
   nberr=0; /* Number of errors and warnings */    
   nbwarn=0;    for (k1=1; k1<= m ; k1 ++) { 
   getcwd(pathcd, size);      for (cpt=1; cpt<= nlstate ; cpt ++) {
         /*       k=2+nlstate*(2*cpt-2); */
   printf("\n%s\n%s",version,fullversion);        k=2+(nlstate+1)*(cpt-1);
   if(argc <=1){        fprintf(ficgp,"\nset out \"%s_%d%d.svg\" \n",subdirf2(optionfilefiname,"EXP_"),cpt,k1);
     printf("\nEnter the parameter file name: ");        fprintf(ficgp,"set ter svg size 640, 480\n\
     fgets(pathr,FILENAMELENGTH,stdin);  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileresu,"E_"),k1-1,k1-1,k,cpt);
     i=strlen(pathr);        /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
     if(pathr[i-1]=='\n')          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
       pathr[i-1]='\0';          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
    for (tok = pathr; tok != NULL; ){          fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
       printf("Pathr |%s|\n",pathr);          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
       while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
       printf("val= |%s| pathr=%s\n",val,pathr);          
       strcpy (pathtot, val);        */
       if(pathr[0] == '\0') break; /* Dirty */        for (i=1; i< nlstate ; i ++) {
     }          fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileresu,"E_"),k1-1,k1-1,k+i,cpt,i+1);
   }          /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
   else{          
     strcpy(pathtot,argv[1]);        } 
   }        fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileresu,"E_"),k1-1,k1-1,k+nlstate,cpt);
   /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/      }
   /*cygwin_split_path(pathtot,path,optionfile);    }
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/    
   /* cutv(path,optionfile,pathtot,'\\');*/    /* Survival functions (period) from state i in state j by initial state i */
     for (k1=1; k1<= m ; k1 ++) { /* For each multivariate if any */
   /* Split argv[0], imach program to get pathimach */      for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */
   printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);        k=3;
   split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);        fprintf(ficgp,"\n#\n#\n# Survival functions in state j : 'lij' files, cov=%d state=%d",k1, cpt);
   printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);        fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" \n",subdirf2(optionfilefiname,"LIJ_"),cpt,k1);
  /*   strcpy(pathimach,argv[0]); */        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability to be alive\" \n\
   /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */  set ter svg size 640, 480\n\
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);  unset log y\n\
   printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);  plot [%.f:%.f]  ", ageminpar, agemaxpar);
   chdir(path); /* Can be a relative path */        for (i=1; i<= nlstate ; i ++){
   if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */          if(i==1)
     printf("Current directory %s!\n",pathcd);            fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"PIJ_"));
   strcpy(command,"mkdir ");          else
   strcat(command,optionfilefiname);            fprintf(ficgp,", '' ");
   if((outcmd=system(command)) != 0){          l=(nlstate+ndeath)*(i-1)+1;
     printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);          fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l);
     /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */          for (j=2; j<= nlstate+ndeath ; j ++)
     /* fclose(ficlog); */            fprintf(ficgp,"+$%d",k+l+j-1);
 /*     exit(1); */          fprintf(ficgp,")) t \"l(%d,%d)\" w l",i,cpt);
   }        } /* nlstate */
 /*   if((imk=mkdir(optionfilefiname))<0){ */        fprintf(ficgp,"\nset out\n");
 /*     perror("mkdir"); */      } /* end cpt state*/ 
 /*   } */    } /* end covariate */  
   
   /*-------- arguments in the command line --------*/    /* Survival functions (period) from state i in state j by final state j */
     for (k1=1; k1<= m ; k1 ++) { /* For each multivariate if any */
   /* Log file */      for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each inital state  */
   strcat(filelog, optionfilefiname);        k=3;
   strcat(filelog,".log");    /* */        fprintf(ficgp,"\n#\n#\n# Survival functions in state j and all livestates from state i by final state j: 'lij' files, cov=%d state=%d",k1, cpt);
   if((ficlog=fopen(filelog,"w"))==NULL)    {        fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" \n",subdirf2(optionfilefiname,"LIJT_"),cpt,k1);
     printf("Problem with logfile %s\n",filelog);        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability to be alive\" \n\
     goto end;  set ter svg size 640, 480\n\
   }  unset log y\n\
   fprintf(ficlog,"Log filename:%s\n",filelog);  plot [%.f:%.f]  ", ageminpar, agemaxpar);
   fprintf(ficlog,"\n%s\n%s",version,fullversion);        for (j=1; j<= nlstate ; j ++){ /* Lived in state j */
   fprintf(ficlog,"\nEnter the parameter file name: \n");          if(j==1)
   fprintf(ficlog,"pathimach=%s\npathtot=%s\n\            fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"PIJ_"));
  path=%s \n\          else
  optionfile=%s\n\            fprintf(ficgp,", '' ");
  optionfilext=%s\n\          l=(nlstate+ndeath)*(cpt-1) +j;
  optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);          fprintf(ficgp," u (($1==%d && (floor($2)%%5 == 0)) ? ($3):1/0):($%d",k1,k+l);
           /* for (i=2; i<= nlstate+ndeath ; i ++) */
   printf("Local time (at start):%s",strstart);          /*   fprintf(ficgp,"+$%d",k+l+i-1); */
   fprintf(ficlog,"Local time (at start): %s",strstart);          fprintf(ficgp,") t \"l(%d,%d)\" w l",cpt,j);
   fflush(ficlog);        } /* nlstate */
 /*   (void) gettimeofday(&curr_time,&tzp); */        fprintf(ficgp,", '' ");
 /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */        fprintf(ficgp," u (($1==%d && (floor($2)%%5 == 0)) ? ($3):1/0):(",k1);
         for (j=1; j<= nlstate ; j ++){ /* Lived in state j */
   /* */          l=(nlstate+ndeath)*(cpt-1) +j;
   strcpy(fileres,"r");          if(j < nlstate)
   strcat(fileres, optionfilefiname);            fprintf(ficgp,"$%d +",k+l);
   strcat(fileres,".txt");    /* Other files have txt extension */          else
             fprintf(ficgp,"$%d) t\"l(%d,.)\" w l",k+l,cpt);
   /*---------arguments file --------*/        }
         fprintf(ficgp,"\nset out\n");
   if((ficpar=fopen(optionfile,"r"))==NULL)    {      } /* end cpt state*/ 
     printf("Problem with optionfile %s\n",optionfile);    } /* end covariate */  
     fprintf(ficlog,"Problem with optionfile %s\n",optionfile);  
     fflush(ficlog);    /* CV preval stable (period) */
     goto end;    for (k1=1; k1<= m ; k1 ++) { /* For each multivariate if any */
   }      for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */
         k=3;
         fprintf(ficgp,"\n#\n#\n#CV preval stable (period): 'pij' files, cov=%d state=%d",k1, cpt);
         fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" \n",subdirf2(optionfilefiname,"P_"),cpt,k1);
   strcpy(filereso,"o");        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   strcat(filereso,fileres);  set ter svg size 640, 480\n\
   if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */  unset log y\n\
     printf("Problem with Output resultfile: %s\n", filereso);  plot [%.f:%.f]  ", ageminpar, agemaxpar);
     fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);        for (i=1; i<= nlstate ; i ++){
     fflush(ficlog);          if(i==1)
     goto end;            fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"PIJ_"));
   }          else
             fprintf(ficgp,", '' ");
   /* Reads comments: lines beginning with '#' */          l=(nlstate+ndeath)*(i-1)+1;
   numlinepar=0;          fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l);
   while((c=getc(ficpar))=='#' && c!= EOF){          for (j=2; j<= nlstate ; j ++)
     ungetc(c,ficpar);            fprintf(ficgp,"+$%d",k+l+j-1);
     fgets(line, MAXLINE, ficpar);          fprintf(ficgp,")) t \"prev(%d,%d)\" w l",i,cpt);
     numlinepar++;        } /* nlstate */
     puts(line);        fprintf(ficgp,"\nset out\n");
     fputs(line,ficparo);      } /* end cpt state*/ 
     fputs(line,ficlog);    } /* end covariate */  
   }  
   ungetc(c,ficpar);    /* proba elementaires */
     fprintf(ficgp,"\n##############\n#MLE estimated parameters\n#############\n");
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);    for(i=1,jk=1; i <=nlstate; i++){
   numlinepar++;      fprintf(ficgp,"# initial state %d\n",i);
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);      for(k=1; k <=(nlstate+ndeath); k++){
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);        if (k != i) {
   fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);          fprintf(ficgp,"#   current state %d\n",k);
   fflush(ficlog);          for(j=1; j <=ncovmodel; j++){
   while((c=getc(ficpar))=='#' && c!= EOF){            fprintf(ficgp,"p%d=%f; ",jk,p[jk]);
     ungetc(c,ficpar);            jk++; 
     fgets(line, MAXLINE, ficpar);          }
     numlinepar++;          fprintf(ficgp,"\n");
     puts(line);        }
     fputs(line,ficparo);      }
     fputs(line,ficlog);     }
   }    fprintf(ficgp,"##############\n#\n");
   ungetc(c,ficpar);  
     /*goto avoid;*/
        fprintf(ficgp,"\n##############\n#Graphics of probabilities or incidences\n#############\n");
   covar=matrix(0,NCOVMAX,1,n);    fprintf(ficgp,"# logi(p12/p11)=a12+b12*age+c12age*age+d12*V1+e12*V1*age\n");
   cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/    fprintf(ficgp,"# logi(p12/p11)=p1 +p2*age +p3*age*age+ p4*V1+ p5*V1*age\n");
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;    fprintf(ficgp,"# logi(p13/p11)=a13+b13*age+c13age*age+d13*V1+e13*V1*age\n");
     fprintf(ficgp,"# logi(p13/p11)=p6 +p7*age +p8*age*age+ p9*V1+ p10*V1*age\n");
   ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */    fprintf(ficgp,"# p12+p13+p14+p11=1=p11(1+exp(a12+b12*age+c12age*age+d12*V1+e12*V1*age)\n");
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */    fprintf(ficgp,"#                      +exp(a13+b13*age+c13age*age+d13*V1+e13*V1*age)+...)\n");
   npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/    fprintf(ficgp,"# p11=1/(1+exp(a12+b12*age+c12age*age+d12*V1+e12*V1*age)\n");
     fprintf(ficgp,"#                      +exp(a13+b13*age+c13age*age+d13*V1+e13*V1*age)+...)\n");
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    fprintf(ficgp,"# p12=exp(a12+b12*age+c12age*age+d12*V1+e12*V1*age)/\n");
   delti=delti3[1][1];    fprintf(ficgp,"#     (1+exp(a12+b12*age+c12age*age+d12*V1+e12*V1*age)\n");
   /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/    fprintf(ficgp,"#       +exp(a13+b13*age+c13age*age+d13*V1+e13*V1*age))\n");
   if(mle==-1){ /* Print a wizard for help writing covariance matrix */    fprintf(ficgp,"#       +exp(a14+b14*age+c14age*age+d14*V1+e14*V1*age)+...)\n");
     prwizard(ncovmodel, nlstate, ndeath, model, ficparo);    fprintf(ficgp,"#\n");
     printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);     for(ng=1; ng<=3;ng++){ /* Number of graphics: first is logit, 2nd is probabilities, third is incidences per year*/
     fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);       fprintf(ficgp,"# ng=%d\n",ng);
     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);       fprintf(ficgp,"#   jk=1 to 2^%d=%d\n",cptcoveff,m);
     fclose (ficparo);       for(jk=1; jk <=m; jk++) {
     fclose (ficlog);         fprintf(ficgp,"#    jk=%d\n",jk);
     goto end;         fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" ",subdirf2(optionfilefiname,"PE_"),jk,ng);
     exit(0);         fprintf(ficgp,"\nset ter svg size 640, 480 ");
   }         if (ng==1){
   else if(mle==-3) {           fprintf(ficgp,"\nset ylabel \"Value of the logit of the model\"\n"); /* exp(a12+b12*x) could be nice */
     prwizard(ncovmodel, nlstate, ndeath, model, ficparo);           fprintf(ficgp,"\nunset log y");
     printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);         }else if (ng==2){
     fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);           fprintf(ficgp,"\nset ylabel \"Probability\"\n");
     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);           fprintf(ficgp,"\nset log y");
     matcov=matrix(1,npar,1,npar);         }else if (ng==3){
   }           fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
   else{           fprintf(ficgp,"\nset log y");
     /* Read guess parameters */         }else
     /* Reads comments: lines beginning with '#' */           fprintf(ficgp,"\nunset title ");
     while((c=getc(ficpar))=='#' && c!= EOF){         fprintf(ficgp,"\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
       ungetc(c,ficpar);         i=1;
       fgets(line, MAXLINE, ficpar);         for(k2=1; k2<=nlstate; k2++) {
       numlinepar++;           k3=i;
       puts(line);           for(k=1; k<=(nlstate+ndeath); k++) {
       fputs(line,ficparo);             if (k != k2){
       fputs(line,ficlog);               switch( ng) {
     }               case 1:
     ungetc(c,ficpar);                 if(nagesqr==0)
                       fprintf(ficgp," p%d+p%d*x",i,i+1);
     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);                 else /* nagesqr =1 */
     for(i=1; i <=nlstate; i++){                   fprintf(ficgp," p%d+p%d*x+p%d*x*x",i,i+1,i+1+nagesqr);
       j=0;                 break;
       for(jj=1; jj <=nlstate+ndeath; jj++){               case 2: /* ng=2 */
         if(jj==i) continue;                 if(nagesqr==0)
         j++;                   fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
         fscanf(ficpar,"%1d%1d",&i1,&j1);                 else /* nagesqr =1 */
         if ((i1 != i) && (j1 != j)){                     fprintf(ficgp," exp(p%d+p%d*x+p%d*x*x",i,i+1,i+1+nagesqr);
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \                 break;
 It might be a problem of design; if ncovcol and the model are correct\n \               case 3:
 run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);                 if(nagesqr==0)
           exit(1);                   fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
         }                 else /* nagesqr =1 */
         fprintf(ficparo,"%1d%1d",i1,j1);                   fprintf(ficgp," %f*exp(p%d+p%d*x+p%d*x*x",YEARM/stepm,i,i+1,i+1+nagesqr);
         if(mle==1)                 break;
           printf("%1d%1d",i,j);               }
         fprintf(ficlog,"%1d%1d",i,j);               ij=1;/* To be checked else nbcode[0][0] wrong */
         for(k=1; k<=ncovmodel;k++){               for(j=3; j <=ncovmodel-nagesqr; j++) {
           fscanf(ficpar," %lf",&param[i][j][k]);                 /* printf("Tage[%d]=%d, j=%d\n", ij, Tage[ij], j); */
           if(mle==1){                 if(ij <=cptcovage) { /* Bug valgrind */
             printf(" %lf",param[i][j][k]);                   if((j-2)==Tage[ij]) { /* Bug valgrind */
             fprintf(ficlog," %lf",param[i][j][k]);                     fprintf(ficgp,"+p%d*%d*x",i+j+nagesqr-1,nbcode[Tvar[j-2]][codtabm(jk,j-2)]);
           }                     /* fprintf(ficgp,"+p%d*%d*x",i+j+nagesqr-1,nbcode[Tvar[j-2]][codtabm(jk,Tvar[j-2])]); */
           else                     ij++;
             fprintf(ficlog," %lf",param[i][j][k]);                   }
           fprintf(ficparo," %lf",param[i][j][k]);                 }
         }                 else
         fscanf(ficpar,"\n");                   fprintf(ficgp,"+p%d*%d",i+j+nagesqr-1,nbcode[Tvar[j-2]][codtabm(jk,j-2)]);
         numlinepar++;               }
         if(mle==1)               if(ng != 1){
           printf("\n");                 fprintf(ficgp,")/(1");
         fprintf(ficlog,"\n");               
         fprintf(ficparo,"\n");                 for(k1=1; k1 <=nlstate; k1++){ 
       }                   if(nagesqr==0)
     }                       fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
     fflush(ficlog);                   else /* nagesqr =1 */
                      fprintf(ficgp,"+exp(p%d+p%d*x+p%d*x*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1,k3+(k1-1)*ncovmodel+1+nagesqr);
     p=param[1][1];                   
                       ij=1;
     /* Reads comments: lines beginning with '#' */                   for(j=3; j <=ncovmodel-nagesqr; j++){
     while((c=getc(ficpar))=='#' && c!= EOF){                     if(ij <=cptcovage) { /* Bug valgrind */
       ungetc(c,ficpar);                       if((j-2)==Tage[ij]) { /* Bug valgrind */
       fgets(line, MAXLINE, ficpar);                         fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2+nagesqr,nbcode[Tvar[j-2]][codtabm(jk,j-2)]);
       numlinepar++;                         /* fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2+nagesqr,nbcode[Tvar[j-2]][codtabm(jk,Tvar[j-2])]); */
       puts(line);                         ij++;
       fputs(line,ficparo);                       }
       fputs(line,ficlog);                     }
     }                     else
     ungetc(c,ficpar);                       fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2+nagesqr,nbcode[Tvar[j-2]][codtabm(jk,j-2)]);
                    }
     for(i=1; i <=nlstate; i++){                   fprintf(ficgp,")");
       for(j=1; j <=nlstate+ndeath-1; j++){                 }
         fscanf(ficpar,"%1d%1d",&i1,&j1);                 fprintf(ficgp,")");
         if ((i1-i)*(j1-j)!=0){                 if(ng ==2)
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);                   fprintf(ficgp," t \"p%d%d\" ", k2,k);
           exit(1);                 else /* ng= 3 */
         }                   fprintf(ficgp," t \"i%d%d\" ", k2,k);
         printf("%1d%1d",i,j);               }else{ /* end ng <> 1 */
         fprintf(ficparo,"%1d%1d",i1,j1);                 fprintf(ficgp," t \"logit(p%d%d)\" ", k2,k);
         fprintf(ficlog,"%1d%1d",i1,j1);               }
         for(k=1; k<=ncovmodel;k++){               if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
           fscanf(ficpar,"%le",&delti3[i][j][k]);               i=i+ncovmodel;
           printf(" %le",delti3[i][j][k]);             }
           fprintf(ficparo," %le",delti3[i][j][k]);           } /* end k */
           fprintf(ficlog," %le",delti3[i][j][k]);         } /* end k2 */
         }         fprintf(ficgp,"\n set out\n");
         fscanf(ficpar,"\n");       } /* end jk */
         numlinepar++;     } /* end ng */
         printf("\n");   /* avoid: */
         fprintf(ficparo,"\n");     fflush(ficgp); 
         fprintf(ficlog,"\n");  }  /* end gnuplot */
       }  
     }  
     fflush(ficlog);  /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
     delti=delti3[1][1];  
     int i, cpt, cptcod;
     int modcovmax =1;
     /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */    int mobilavrange, mob;
      double age;
     /* Reads comments: lines beginning with '#' */  
     while((c=getc(ficpar))=='#' && c!= EOF){    modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
       ungetc(c,ficpar);                             a covariate has 2 modalities */
       fgets(line, MAXLINE, ficpar);    if (cptcovn<1) modcovmax=1; /* At least 1 pass */
       numlinepar++;  
       puts(line);    if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       fputs(line,ficparo);      if(mobilav==1) mobilavrange=5; /* default */
       fputs(line,ficlog);      else mobilavrange=mobilav;
     }      for (age=bage; age<=fage; age++)
     ungetc(c,ficpar);        for (i=1; i<=nlstate;i++)
            for (cptcod=1;cptcod<=modcovmax;cptcod++)
     matcov=matrix(1,npar,1,npar);            mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
     for(i=1; i <=npar; i++){      /* We keep the original values on the extreme ages bage, fage and for 
       fscanf(ficpar,"%s",&str);         fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
       if(mle==1)         we use a 5 terms etc. until the borders are no more concerned. 
         printf("%s",str);      */ 
       fprintf(ficlog,"%s",str);      for (mob=3;mob <=mobilavrange;mob=mob+2){
       fprintf(ficparo,"%s",str);        for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
       for(j=1; j <=i; j++){          for (i=1; i<=nlstate;i++){
         fscanf(ficpar," %le",&matcov[i][j]);            for (cptcod=1;cptcod<=modcovmax;cptcod++){
         if(mle==1){              mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
           printf(" %.5le",matcov[i][j]);                for (cpt=1;cpt<=(mob-1)/2;cpt++){
         }                  mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
         fprintf(ficlog," %.5le",matcov[i][j]);                  mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
         fprintf(ficparo," %.5le",matcov[i][j]);                }
       }              mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
       fscanf(ficpar,"\n");            }
       numlinepar++;          }
       if(mle==1)        }/* end age */
         printf("\n");      }/* end mob */
       fprintf(ficlog,"\n");    }else return -1;
       fprintf(ficparo,"\n");    return 0;
     }  }/* End movingaverage */
     for(i=1; i <=npar; i++)  
       for(j=i+1;j<=npar;j++)  
         matcov[i][j]=matcov[j][i];  /************** Forecasting ******************/
      void prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     if(mle==1)    /* proj1, year, month, day of starting projection 
       printf("\n");       agemin, agemax range of age
     fprintf(ficlog,"\n");       dateprev1 dateprev2 range of dates during which prevalence is computed
           anproj2 year of en of projection (same day and month as proj1).
     fflush(ficlog);    */
        int yearp, stepsize, hstepm, nhstepm, j, k, cptcod, i, h, i1;
     /*-------- Rewriting parameter file ----------*/    double agec; /* generic age */
     strcpy(rfileres,"r");    /* "Rparameterfile */    double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     strcat(rfileres,optionfilefiname);    /* Parameter file first name*/    double *popeffectif,*popcount;
     strcat(rfileres,".");    /* */    double ***p3mat;
     strcat(rfileres,optionfilext);    /* Other files have txt extension */    double ***mobaverage;
     if((ficres =fopen(rfileres,"w"))==NULL) {    char fileresf[FILENAMELENGTH];
       printf("Problem writing new parameter file: %s\n", fileres);goto end;  
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;    agelim=AGESUP;
     }    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     fprintf(ficres,"#%s\n",version);   
   }    /* End of mle != -3 */    strcpy(fileresf,"F_"); 
     strcat(fileresf,fileresu);
   /*-------- data file ----------*/    if((ficresf=fopen(fileresf,"w"))==NULL) {
   if((fic=fopen(datafile,"r"))==NULL)    {      printf("Problem with forecast resultfile: %s\n", fileresf);
     printf("Problem while opening datafile: %s\n", datafile);goto end;      fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);goto end;    }
   }    printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   n= lastobs;  
   severity = vector(1,maxwav);    if (cptcoveff==0) ncodemax[cptcoveff]=1;
   outcome=imatrix(1,maxwav+1,1,n);  
   num=lvector(1,n);    if (mobilav!=0) {
   moisnais=vector(1,n);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   annais=vector(1,n);      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
   moisdc=vector(1,n);        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
   andc=vector(1,n);        printf(" Error in movingaverage mobilav=%d\n",mobilav);
   agedc=vector(1,n);      }
   cod=ivector(1,n);    }
   weight=vector(1,n);  
   for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */    stepsize=(int) (stepm+YEARM-1)/YEARM;
   mint=matrix(1,maxwav,1,n);    if (stepm<=12) stepsize=1;
   anint=matrix(1,maxwav,1,n);    if(estepm < stepm){
   s=imatrix(1,maxwav+1,1,n);      printf ("Problem %d lower than %d\n",estepm, stepm);
   tab=ivector(1,NCOVMAX);    }
   ncodemax=ivector(1,8);    else  hstepm=estepm;   
   
   i=1;    hstepm=hstepm/stepm; 
   linei=0;    yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
   while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {                                 fractional in yp1 */
     linei=linei+1;    anprojmean=yp;
     for(j=strlen(line); j>=0;j--){  /* Untabifies line */    yp2=modf((yp1*12),&yp);
       if(line[j] == '\t')    mprojmean=yp;
         line[j] = ' ';    yp1=modf((yp2*30.5),&yp);
     }    jprojmean=yp;
     for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){    if(jprojmean==0) jprojmean=1;
       ;    if(mprojmean==0) jprojmean=1;
     };  
     line[j+1]=0;  /* Trims blanks at end of line */    i1=cptcoveff;
     if(line[0]=='#'){    if (cptcovn < 1){i1=1;}
       fprintf(ficlog,"Comment line\n%s\n",line);    
       printf("Comment line\n%s\n",line);    fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
       continue;    
     }    fprintf(ficresf,"#****** Routine prevforecast **\n");
   
     for (j=maxwav;j>=1;j--){  /*            if (h==(int)(YEARM*yearp)){ */
       cutv(stra, strb,line,' ');    for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       errno=0;      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
       lval=strtol(strb,&endptr,10);        k=k+1;
       /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/        fprintf(ficresf,"\n#******");
       if( strb[0]=='\0' || (*endptr != '\0')){        for(j=1;j<=cptcoveff;j++) {
         printf("Error reading data around '%d' at line number %d %s for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);          fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
         exit(1);        }
       }        fprintf(ficresf,"******\n");
       s[j][i]=lval;        fprintf(ficresf,"# Covariate valuofcovar yearproj age");
              for(j=1; j<=nlstate+ndeath;j++){ 
       strcpy(line,stra);          for(i=1; i<=nlstate;i++)              
       cutv(stra, strb,line,' ');            fprintf(ficresf," p%d%d",i,j);
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){          fprintf(ficresf," p.%d",j);
       }        }
       else  if(iout=sscanf(strb,"%s.") != 0){        for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
         month=99;          fprintf(ficresf,"\n");
         year=9999;          fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
       }else{  
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);          for (agec=fage; agec>=(ageminpar-1); agec--){ 
         exit(1);            nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
       }            nhstepm = nhstepm/hstepm; 
       anint[j][i]= (double) year;            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       mint[j][i]= (double)month;            oldm=oldms;savm=savms;
       strcpy(line,stra);            hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
     } /* ENd Waves */          
                for (h=0; h<=nhstepm; h++){
     cutv(stra, strb,line,' ');              if (h*hstepm/YEARM*stepm ==yearp) {
     if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){                fprintf(ficresf,"\n");
     }                for(j=1;j<=cptcoveff;j++) 
     else  if(iout=sscanf(strb,"%s.",dummy) != 0){                  fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
       month=99;                fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
       year=9999;              } 
     }else{              for(j=1; j<=nlstate+ndeath;j++) {
       printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);                ppij=0.;
       exit(1);                for(i=1; i<=nlstate;i++) {
     }                  if (mobilav==1) 
     andc[i]=(double) year;                    ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
     moisdc[i]=(double) month;                  else {
     strcpy(line,stra);                    ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                      }
     cutv(stra, strb,line,' ');                  if (h*hstepm/YEARM*stepm== yearp) {
     if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){                    fprintf(ficresf," %.3f", p3mat[i][j][h]);
     }                  }
     else  if(iout=sscanf(strb,"%s.") != 0){                } /* end i */
       month=99;                if (h*hstepm/YEARM*stepm==yearp) {
       year=9999;                  fprintf(ficresf," %.3f", ppij);
     }else{                }
       printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line,j);              }/* end j */
       exit(1);            } /* end h */
     }            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     annais[i]=(double)(year);          } /* end agec */
     moisnais[i]=(double)(month);        } /* end yearp */
     strcpy(line,stra);      } /* end cptcod */
        } /* end  cptcov */
     cutv(stra, strb,line,' ');         
     errno=0;    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     dval=strtod(strb,&endptr);  
     if( strb[0]=='\0' || (*endptr != '\0')){    fclose(ficresf);
       printf("Error reading data around '%f' at line number %ld, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);  }
       exit(1);  
     }  /************** Forecasting *****not tested NB*************/
     weight[i]=dval;  void populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     strcpy(line,stra);    
        int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     for (j=ncovcol;j>=1;j--){    int *popage;
       cutv(stra, strb,line,' ');    double calagedatem, agelim, kk1, kk2;
       errno=0;    double *popeffectif,*popcount;
       lval=strtol(strb,&endptr,10);    double ***p3mat,***tabpop,***tabpopprev;
       if( strb[0]=='\0' || (*endptr != '\0')){    double ***mobaverage;
         printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a covar (meaning 0 for the reference or 1).  Exiting.\n",lval, linei,i, line);    char filerespop[FILENAMELENGTH];
         exit(1);  
       }    tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if(lval <-1 || lval >1){    tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         printf("Error reading data around '%d' at line number %ld for individual %d, '%s'\n \    agelim=AGESUP;
  Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \    calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
  for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \    
  For example, for multinomial values like 1, 2 and 3,\n \    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
  build V1=0 V2=0 for the reference value (1),\n \    
         V1=1 V2=0 for (2) \n \    
  and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \    strcpy(filerespop,"POP_"); 
  output of IMaCh is often meaningless.\n \    strcat(filerespop,fileresu);
  Exiting.\n",lval,linei, i,line,j);    if((ficrespop=fopen(filerespop,"w"))==NULL) {
         exit(1);      printf("Problem with forecast resultfile: %s\n", filerespop);
       }      fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
       covar[j][i]=(double)(lval);    }
       strcpy(line,stra);    printf("Computing forecasting: result on file '%s' \n", filerespop);
     }    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
     lstra=strlen(stra);  
        if (cptcoveff==0) ncodemax[cptcoveff]=1;
     if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */  
       stratrunc = &(stra[lstra-9]);    if (mobilav!=0) {
       num[i]=atol(stratrunc);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     }      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
     else        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
       num[i]=atol(stra);        printf(" Error in movingaverage mobilav=%d\n",mobilav);
     /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){      }
       printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/    }
      
     i=i+1;    stepsize=(int) (stepm+YEARM-1)/YEARM;
   } /* End loop reading  data */    if (stepm<=12) stepsize=1;
   fclose(fic);    
   /* printf("ii=%d", ij);    agelim=AGESUP;
      scanf("%d",i);*/    
   imx=i-1; /* Number of individuals */    hstepm=1;
     hstepm=hstepm/stepm; 
   /* for (i=1; i<=imx; i++){    
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;    if (popforecast==1) {
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;      if((ficpop=fopen(popfile,"r"))==NULL) {
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;        printf("Problem with population file : %s\n",popfile);exit(0);
     }*/        fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
    /*  for (i=1; i<=imx; i++){      } 
      if (s[4][i]==9)  s[4][i]=-1;      popage=ivector(0,AGESUP);
      printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/      popeffectif=vector(0,AGESUP);
        popcount=vector(0,AGESUP);
   /* for (i=1; i<=imx; i++) */      
        i=1;   
    /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;      while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      else weight[i]=1;*/     
       imx=i;
   /* Calculation of the number of parameters from char model */      for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
   Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */    }
   Tprod=ivector(1,15);  
   Tvaraff=ivector(1,15);    for(cptcov=1,k=0;cptcov<=i2;cptcov++){
   Tvard=imatrix(1,15,1,2);     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
   Tage=ivector(1,15);              k=k+1;
            fprintf(ficrespop,"\n#******");
   if (strlen(model) >1){ /* If there is at least 1 covariate */        for(j=1;j<=cptcoveff;j++) {
     j=0, j1=0, k1=1, k2=1;          fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
     j=nbocc(model,'+'); /* j=Number of '+' */        }
     j1=nbocc(model,'*'); /* j1=Number of '*' */        fprintf(ficrespop,"******\n");
     cptcovn=j+1;        fprintf(ficrespop,"# Age");
     cptcovprod=j1; /*Number of products */        for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
            if (popforecast==1)  fprintf(ficrespop," [Population]");
     strcpy(modelsav,model);        
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){        for (cpt=0; cpt<=0;cpt++) { 
       printf("Error. Non available option model=%s ",model);          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
       fprintf(ficlog,"Error. Non available option model=%s ",model);          
       goto end;          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
     }            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
                nhstepm = nhstepm/hstepm; 
     /* This loop fills the array Tvar from the string 'model'.*/            
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     for(i=(j+1); i>=1;i--){            oldm=oldms;savm=savms;
       cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */          
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/            for (h=0; h<=nhstepm; h++){
       /*scanf("%d",i);*/              if (h==(int) (calagedatem+YEARM*cpt)) {
       if (strchr(strb,'*')) {  /* Model includes a product */                fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
         cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/              } 
         if (strcmp(strc,"age")==0) { /* Vn*age */              for(j=1; j<=nlstate+ndeath;j++) {
           cptcovprod--;                kk1=0.;kk2=0;
           cutv(strb,stre,strd,'V');                for(i=1; i<=nlstate;i++) {              
           Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/                  if (mobilav==1) 
           cptcovage++;                    kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
             Tage[cptcovage]=i;                  else {
             /*printf("stre=%s ", stre);*/                    kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
         }                  }
         else if (strcmp(strd,"age")==0) { /* or age*Vn */                }
           cptcovprod--;                if (h==(int)(calagedatem+12*cpt)){
           cutv(strb,stre,strc,'V');                  tabpop[(int)(agedeb)][j][cptcod]=kk1;
           Tvar[i]=atoi(stre);                    /*fprintf(ficrespop," %.3f", kk1);
           cptcovage++;                      if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
           Tage[cptcovage]=i;                }
         }              }
         else {  /* Age is not in the model */              for(i=1; i<=nlstate;i++){
           cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/                kk1=0.;
           Tvar[i]=ncovcol+k1;                  for(j=1; j<=nlstate;j++){
           cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */                    kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
           Tprod[k1]=i;                  }
           Tvard[k1][1]=atoi(strc); /* m*/                    tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
           Tvard[k1][2]=atoi(stre); /* n */              }
           Tvar[cptcovn+k2]=Tvard[k1][1];  
           Tvar[cptcovn+k2+1]=Tvard[k1][2];              if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
           for (k=1; k<=lastobs;k++)                fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];            }
           k1++;            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           k2=k2+2;          }
         }        }
       }   
       else { /* no more sum */    /******/
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/  
        /*  scanf("%d",i);*/        for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
       cutv(strd,strc,strb,'V');          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
       Tvar[i]=atoi(strc);          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
       }            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
       strcpy(modelsav,stra);              nhstepm = nhstepm/hstepm; 
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);            
         scanf("%d",i);*/            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     } /* end of loop + */            oldm=oldms;savm=savms;
   } /* end model */            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
              for (h=0; h<=nhstepm; h++){
   /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.              if (h==(int) (calagedatem+YEARM*cpt)) {
     If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/                fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);              for(j=1; j<=nlstate+ndeath;j++) {
   printf("cptcovprod=%d ", cptcovprod);                kk1=0.;kk2=0;
   fprintf(ficlog,"cptcovprod=%d ", cptcovprod);                for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
   scanf("%d ",i);*/                }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
     /*  if(mle==1){*/              }
   if (weightopt != 1) { /* Maximisation without weights*/            }
     for(i=1;i<=n;i++) weight[i]=1.0;            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   }          }
     /*-calculation of age at interview from date of interview and age at death -*/        }
   agev=matrix(1,maxwav,1,imx);     } 
     }
   for (i=1; i<=imx; i++) {   
     for(m=2; (m<= maxwav); m++) {    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){  
         anint[m][i]=9999;    if (popforecast==1) {
         s[m][i]=-1;      free_ivector(popage,0,AGESUP);
       }      free_vector(popeffectif,0,AGESUP);
       if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){      free_vector(popcount,0,AGESUP);
         nberr++;    }
         printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);    free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);    free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         s[m][i]=-1;    fclose(ficrespop);
       }  } /* End of popforecast */
       if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){  
         nberr++;  int fileappend(FILE *fichier, char *optionfich)
         printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]);  {
         fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]);    if((fichier=fopen(optionfich,"a"))==NULL) {
         s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */      printf("Problem with file: %s\n", optionfich);
       }      fprintf(ficlog,"Problem with file: %s\n", optionfich);
     }      return (0);
   }    }
     fflush(fichier);
   for (i=1; i<=imx; i++)  {    return (1);
     agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);  }
     for(m=firstpass; (m<= lastpass); m++){  
       if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){  
         if (s[m][i] >= nlstate+1) {  /**************** function prwizard **********************/
           if(agedc[i]>0)  void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
             if((int)moisdc[i]!=99 && (int)andc[i]!=9999)  {
               agev[m][i]=agedc[i];  
           /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/    /* Wizard to print covariance matrix template */
             else {  
               if ((int)andc[i]!=9999){    char ca[32], cb[32];
                 nbwarn++;    int i,j, k, li, lj, lk, ll, jj, npar, itimes;
                 printf("Warning negative age at death: %ld line:%d\n",num[i],i);    int numlinepar;
                 fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);  
                 agev[m][i]=-1;    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
               }    fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
             }    for(i=1; i <=nlstate; i++){
         }      jj=0;
         else if(s[m][i] !=9){ /* Standard case, age in fractional      for(j=1; j <=nlstate+ndeath; j++){
                                  years but with the precision of a month */        if(j==i) continue;
           agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);        jj++;
           if((int)mint[m][i]==99 || (int)anint[m][i]==9999)        /*ca[0]= k+'a'-1;ca[1]='\0';*/
             agev[m][i]=1;        printf("%1d%1d",i,j);
           else if(agev[m][i] <agemin){        fprintf(ficparo,"%1d%1d",i,j);
             agemin=agev[m][i];        for(k=1; k<=ncovmodel;k++){
             /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/          /*        printf(" %lf",param[i][j][k]); */
           }          /*        fprintf(ficparo," %lf",param[i][j][k]); */
           else if(agev[m][i] >agemax){          printf(" 0.");
             agemax=agev[m][i];          fprintf(ficparo," 0.");
             /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/        }
           }        printf("\n");
           /*agev[m][i]=anint[m][i]-annais[i];*/        fprintf(ficparo,"\n");
           /*     agev[m][i] = age[i]+2*m;*/      }
         }    }
         else { /* =9 */    printf("# Scales (for hessian or gradient estimation)\n");
           agev[m][i]=1;    fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
           s[m][i]=-1;    npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
         }    for(i=1; i <=nlstate; i++){
       }      jj=0;
       else /*= 0 Unknown */      for(j=1; j <=nlstate+ndeath; j++){
         agev[m][i]=1;        if(j==i) continue;
     }        jj++;
            fprintf(ficparo,"%1d%1d",i,j);
   }        printf("%1d%1d",i,j);
   for (i=1; i<=imx; i++)  {        fflush(stdout);
     for(m=firstpass; (m<=lastpass); m++){        for(k=1; k<=ncovmodel;k++){
       if (s[m][i] > (nlstate+ndeath)) {          /*      printf(" %le",delti3[i][j][k]); */
         nberr++;          /*      fprintf(ficparo," %le",delti3[i][j][k]); */
         printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);              printf(" 0.");
         fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);              fprintf(ficparo," 0.");
         goto end;        }
       }        numlinepar++;
     }        printf("\n");
   }        fprintf(ficparo,"\n");
       }
   /*for (i=1; i<=imx; i++){    }
   for (m=firstpass; (m<lastpass); m++){    printf("# Covariance matrix\n");
      printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);  /* # 121 Var(a12)\n\ */
 }  /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
 }*/  /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);  /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);  /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
   agegomp=(int)agemin;    fprintf(ficparo,"# Covariance matrix\n");
   free_vector(severity,1,maxwav);    /* # 121 Var(a12)\n\ */
   free_imatrix(outcome,1,maxwav+1,1,n);    /* # 122 Cov(b12,a12) Var(b12)\n\ */
   free_vector(moisnais,1,n);    /* #   ...\n\ */
   free_vector(annais,1,n);    /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
   /* free_matrix(mint,1,maxwav,1,n);    
      free_matrix(anint,1,maxwav,1,n);*/    for(itimes=1;itimes<=2;itimes++){
   free_vector(moisdc,1,n);      jj=0;
   free_vector(andc,1,n);      for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
              if(j==i) continue;
   wav=ivector(1,imx);          for(k=1; k<=ncovmodel;k++){
   dh=imatrix(1,lastpass-firstpass+1,1,imx);            jj++;
   bh=imatrix(1,lastpass-firstpass+1,1,imx);            ca[0]= k+'a'-1;ca[1]='\0';
   mw=imatrix(1,lastpass-firstpass+1,1,imx);            if(itimes==1){
                  printf("#%1d%1d%d",i,j,k);
   /* Concatenates waves */              fprintf(ficparo,"#%1d%1d%d",i,j,k);
   concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);            }else{
               printf("%1d%1d%d",i,j,k);
   /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */              fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
   Tcode=ivector(1,100);            }
   nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);            ll=0;
   ncodemax[1]=1;            for(li=1;li <=nlstate; li++){
   if (cptcovn > 0) tricode(Tvar,nbcode,imx);              for(lj=1;lj <=nlstate+ndeath; lj++){
                      if(lj==li) continue;
   codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of                for(lk=1;lk<=ncovmodel;lk++){
                                  the estimations*/                  ll++;
   h=0;                  if(ll<=jj){
   m=pow(2,cptcoveff);                    cb[0]= lk +'a'-1;cb[1]='\0';
                      if(ll<jj){
   for(k=1;k<=cptcoveff; k++){                      if(itimes==1){
     for(i=1; i <=(m/pow(2,k));i++){                        printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
       for(j=1; j <= ncodemax[k]; j++){                        fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
         for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){                      }else{
           h++;                        printf(" 0.");
           if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;                        fprintf(ficparo," 0.");
           /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/                      }
         }                    }else{
       }                      if(itimes==1){
     }                        printf(" Var(%s%1d%1d)",ca,i,j);
   }                        fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
   /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);                      }else{
      codtab[1][2]=1;codtab[2][2]=2; */                        printf(" 0.");
   /* for(i=1; i <=m ;i++){                        fprintf(ficparo," 0.");
      for(k=1; k <=cptcovn; k++){                      }
      printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);                    }
      }                  }
      printf("\n");                } /* end lk */
      }              } /* end lj */
      scanf("%d",i);*/            } /* end li */
                printf("\n");
   /*------------ gnuplot -------------*/            fprintf(ficparo,"\n");
   strcpy(optionfilegnuplot,optionfilefiname);            numlinepar++;
   if(mle==-3)          } /* end k*/
     strcat(optionfilegnuplot,"-mort");        } /*end j */
   strcat(optionfilegnuplot,".gp");      } /* end i */
     } /* end itimes */
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {  
     printf("Problem with file %s",optionfilegnuplot);  } /* end of prwizard */
   }  /******************* Gompertz Likelihood ******************************/
   else{  double gompertz(double x[])
     fprintf(ficgp,"\n# %s\n", version);  { 
     fprintf(ficgp,"# %s\n", optionfilegnuplot);    double A,B,L=0.0,sump=0.,num=0.;
     fprintf(ficgp,"set missing 'NaNq'\n");    int i,n=0; /* n is the size of the sample */
   }  
   /*  fclose(ficgp);*/    for (i=0;i<=imx-1 ; i++) {
   /*--------- index.htm --------*/      sump=sump+weight[i];
       /*    sump=sump+1;*/
   strcpy(optionfilehtm,optionfilefiname); /* Main html file */      num=num+1;
   if(mle==-3)    }
     strcat(optionfilehtm,"-mort");   
   strcat(optionfilehtm,".htm");   
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {    /* for (i=0; i<=imx; i++) 
     printf("Problem with %s \n",optionfilehtm), exit(0);       if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   }  
     for (i=1;i<=imx ; i++)
   strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */      {
   strcat(optionfilehtmcov,"-cov.htm");        if (cens[i] == 1 && wav[i]>1)
   if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {          A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
     printf("Problem with %s \n",optionfilehtmcov), exit(0);        
   }        if (cens[i] == 0 && wav[i]>1)
   else{          A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
   fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \               +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
 <hr size=\"2\" color=\"#EC5E5E\"> \n\        
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\        /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
           optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);        if (wav[i] > 1 ) { /* ??? */
   }          L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
   fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \        }
 <hr size=\"2\" color=\"#EC5E5E\"> \n\      }
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\  
 \n\   /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
 <hr  size=\"2\" color=\"#EC5E5E\">\   
  <ul><li><h4>Parameter files</h4>\n\    return -2*L*num/sump;
  - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\  }
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\  
  - Log file of the run: <a href=\"%s\">%s</a><br>\n\  #ifdef GSL
  - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\  /******************* Gompertz_f Likelihood ******************************/
  - Date and time at start: %s</ul>\n",\  double gompertz_f(const gsl_vector *v, void *params)
           optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\  { 
           optionfilefiname,optionfilext,optionfilefiname,optionfilext,\    double A,B,LL=0.0,sump=0.,num=0.;
           fileres,fileres,\    double *x= (double *) v->data;
           filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);    int i,n=0; /* n is the size of the sample */
   fflush(fichtm);  
     for (i=0;i<=imx-1 ; i++) {
   strcpy(pathr,path);      sump=sump+weight[i];
   strcat(pathr,optionfilefiname);      /*    sump=sump+1;*/
   chdir(optionfilefiname); /* Move to directory named optionfile */      num=num+1;
      }
   /* Calculates basic frequencies. Computes observed prevalence at single age   
      and prints on file fileres'p'. */   
   freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);    /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   fprintf(fichtm,"\n");    printf("x[0]=%lf x[1]=%lf\n",x[0],x[1]);
   fprintf(fichtm,"<br>Total number of observations=%d <br>\n\    for (i=1;i<=imx ; i++)
 Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\      {
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\        if (cens[i] == 1 && wav[i]>1)
           imx,agemin,agemax,jmin,jmax,jmean);          A=-x[0]/(x[1])*(exp(x[1]*(agecens[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)));
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        if (cens[i] == 0 && wav[i]>1)
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          A=-x[0]/(x[1])*(exp(x[1]*(agedc[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)))
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */               +log(x[0]/YEARM)+x[1]*(agedc[i]-agegomp)+log(YEARM);  
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */        
            /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
            if (wav[i] > 1 ) { /* ??? */
   /* For Powell, parameters are in a vector p[] starting at p[1]          LL=LL+A*weight[i];
      so we point p on param[1][1] so that p[1] maps on param[1][1][1] */          /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
   p=param[1][1]; /* *(*(*(param +1)+1)+0) */        }
       }
   globpr=0; /* To get the number ipmx of contributions and the sum of weights*/  
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
   if (mle==-3){    printf("x[0]=%lf x[1]=%lf -2*LL*num/sump=%lf\n",x[0],x[1],-2*LL*num/sump);
     ximort=matrix(1,NDIM,1,NDIM);   
     cens=ivector(1,n);    return -2*LL*num/sump;
     ageexmed=vector(1,n);  }
     agecens=vector(1,n);  #endif
     dcwave=ivector(1,n);  
    /******************* Printing html file ***********/
     for (i=1; i<=imx; i++){  void printinghtmlmort(char fileresu[], char title[], char datafile[], int firstpass, \
       dcwave[i]=-1;                    int lastpass, int stepm, int weightopt, char model[],\
       for (m=firstpass; m<=lastpass; m++)                    int imx,  double p[],double **matcov,double agemortsup){
         if (s[m][i]>nlstate) {    int i,k;
           dcwave[i]=m;  
           /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/    fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
           break;    fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
         }    for (i=1;i<=2;i++) 
     }      fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.svg\">");
     for (i=1; i<=imx; i++) {    fprintf(fichtm,"</ul>");
       if (wav[i]>0){  
         ageexmed[i]=agev[mw[1][i]][i];  fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
         j=wav[i];  
         agecens[i]=1.;   fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
         if (ageexmed[i]> 1 && wav[i] > 0){   for (k=agegomp;k<(agemortsup-2);k++) 
           agecens[i]=agev[mw[j][i]][i];     fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
           cens[i]= 1;  
         }else if (ageexmed[i]< 1)   
           cens[i]= -1;    fflush(fichtm);
         if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)  }
           cens[i]=0 ;  
       }  /******************* Gnuplot file **************/
       else cens[i]=-1;  void printinggnuplotmort(char fileresu[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
     }  
        char dirfileres[132],optfileres[132];
     for (i=1;i<=NDIM;i++) {  
       for (j=1;j<=NDIM;j++)    int ng;
         ximort[i][j]=(i == j ? 1.0 : 0.0);  
     }  
        /*#ifdef windows */
     p[1]=0.0268; p[NDIM]=0.083;    fprintf(ficgp,"cd \"%s\" \n",pathc);
     /*printf("%lf %lf", p[1], p[2]);*/      /*#endif */
      
      
     printf("Powell\n");  fprintf(ficlog,"Powell\n");    strcpy(dirfileres,optionfilefiname);
     strcpy(filerespow,"pow-mort");    strcpy(optfileres,"vpl");
     strcat(filerespow,fileres);    fprintf(ficgp,"set out \"graphmort.svg\"\n "); 
     if((ficrespow=fopen(filerespow,"w"))==NULL) {    fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
       printf("Problem with resultfile: %s\n", filerespow);    fprintf(ficgp, "set ter svg size 640, 480\n set log y\n"); 
       fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);    /* fprintf(ficgp, "set size 0.65,0.65\n"); */
     }    fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
     fprintf(ficrespow,"# Powell\n# iter -2*LL");  
     /*  for (i=1;i<=nlstate;i++)  } 
         for(j=1;j<=nlstate+ndeath;j++)  
         if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);  int readdata(char datafile[], int firstobs, int lastobs, int *imax)
     */  {
     fprintf(ficrespow,"\n");  
        /*-------- data file ----------*/
     powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);    FILE *fic;
     fclose(ficrespow);    char dummy[]="                         ";
        int i=0, j=0, n=0;
     hesscov(matcov, p, NDIM, delti, 1e-4, gompertz);    int linei, month, year,iout;
     char line[MAXLINE], linetmp[MAXLINE];
     for(i=1; i <=NDIM; i++)    char stra[MAXLINE], strb[MAXLINE];
       for(j=i+1;j<=NDIM;j++)    char *stratrunc;
         matcov[i][j]=matcov[j][i];    int lstra;
      
     printf("\nCovariance matrix\n ");  
     for(i=1; i <=NDIM; i++) {    if((fic=fopen(datafile,"r"))==NULL)    {
       for(j=1;j<=NDIM;j++){      printf("Problem while opening datafile: %s\n", datafile);fflush(stdout);
         printf("%f ",matcov[i][j]);      fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);fflush(ficlog);return 1;
       }    }
       printf("\n ");  
     }    i=1;
        linei=0;
     printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);    while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
     for (i=1;i<=NDIM;i++)      linei=linei+1;
       printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));      for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
     lsurv=vector(1,AGESUP);          line[j] = ' ';
     lpop=vector(1,AGESUP);      }
     tpop=vector(1,AGESUP);      for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
     lsurv[agegomp]=100000;        ;
          };
     for (k=agegomp;k<=AGESUP;k++) {      line[j+1]=0;  /* Trims blanks at end of line */
       agemortsup=k;      if(line[0]=='#'){
       if (p[1]*exp(p[2]*(k-agegomp))>1) break;        fprintf(ficlog,"Comment line\n%s\n",line);
     }        printf("Comment line\n%s\n",line);
            continue;
     for (k=agegomp;k<agemortsup;k++)      }
       lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));      trimbb(linetmp,line); /* Trims multiple blanks in line */
          strcpy(line, linetmp);
     for (k=agegomp;k<agemortsup;k++){    
       lpop[k]=(lsurv[k]+lsurv[k+1])/2.;  
       sumlpop=sumlpop+lpop[k];      for (j=maxwav;j>=1;j--){
     }        cutv(stra, strb, line, ' '); 
            if(strb[0]=='.') { /* Missing status */
     tpop[agegomp]=sumlpop;          lval=-1;
     for (k=agegomp;k<(agemortsup-3);k++){        }else{
       /*  tpop[k+1]=2;*/          errno=0;
       tpop[k+1]=tpop[k]-lpop[k];          lval=strtol(strb,&endptr,10); 
     }        /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
              if( strb[0]=='\0' || (*endptr != '\0')){
                printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
     printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");            fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);fflush(ficlog);
     for (k=agegomp;k<(agemortsup-2);k++)            return 1;
       printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);          }
            }
            s[j][i]=lval;
     replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */        
     printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);        strcpy(line,stra);
            cutv(stra, strb,line,' ');
     printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \        if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
                      stepm, weightopt,\        }
                      model,imx,p,matcov,agemortsup);        else  if( (iout=sscanf(strb,"%s.",dummy)) != 0){
              month=99;
     free_vector(lsurv,1,AGESUP);          year=9999;
     free_vector(lpop,1,AGESUP);        }else{
     free_vector(tpop,1,AGESUP);          printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
   } /* Endof if mle==-3 */          fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);fflush(ficlog);
            return 1;
   else{ /* For mle >=1 */        }
          anint[j][i]= (double) year; 
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */        mint[j][i]= (double)month; 
     printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);        strcpy(line,stra);
     for (k=1; k<=npar;k++)      } /* ENd Waves */
       printf(" %d %8.5f",k,p[k]);      
     printf("\n");      cutv(stra, strb,line,' '); 
     globpr=1; /* to print the contributions */      if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */      }
     printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);      else  if( (iout=sscanf(strb,"%s.",dummy)) != 0){
     for (k=1; k<=npar;k++)        month=99;
       printf(" %d %8.5f",k,p[k]);        year=9999;
     printf("\n");      }else{
     if(mle>=1){ /* Could be 1 or 2 */        printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
       mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);          fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
     }          return 1;
          }
     /*--------- results files --------------*/      andc[i]=(double) year; 
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);      moisdc[i]=(double) month; 
          strcpy(line,stra);
          
     fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");      cutv(stra, strb,line,' '); 
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");      if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
     fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");      }
     for(i=1,jk=1; i <=nlstate; i++){      else  if( (iout=sscanf(strb,"%s.", dummy)) != 0){
       for(k=1; k <=(nlstate+ndeath); k++){        month=99;
         if (k != i) {        year=9999;
           printf("%d%d ",i,k);      }else{
           fprintf(ficlog,"%d%d ",i,k);        printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
           fprintf(ficres,"%1d%1d ",i,k);        fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           for(j=1; j <=ncovmodel; j++){          return 1;
             printf("%lf ",p[jk]);      }
             fprintf(ficlog,"%lf ",p[jk]);      if (year==9999) {
             fprintf(ficres,"%lf ",p[jk]);        printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given.  Exiting.\n",strb, linei,i,line);
             jk++;        fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given. Exiting.\n",strb, linei,i,line);fflush(ficlog);
           }          return 1;
           printf("\n");  
           fprintf(ficlog,"\n");      }
           fprintf(ficres,"\n");      annais[i]=(double)(year);
         }      moisnais[i]=(double)(month); 
       }      strcpy(line,stra);
     }      
     if(mle!=0){      cutv(stra, strb,line,' '); 
       /* Computing hessian and covariance matrix */      errno=0;
       ftolhess=ftol; /* Usually correct */      dval=strtod(strb,&endptr); 
       hesscov(matcov, p, npar, delti, ftolhess, func);      if( strb[0]=='\0' || (*endptr != '\0')){
     }        printf("Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");        fprintf(ficlog,"Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
     printf("# Scales (for hessian or gradient estimation)\n");        fflush(ficlog);
     fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");        return 1;
     for(i=1,jk=1; i <=nlstate; i++){      }
       for(j=1; j <=nlstate+ndeath; j++){      weight[i]=dval; 
         if (j!=i) {      strcpy(line,stra);
           fprintf(ficres,"%1d%1d",i,j);      
           printf("%1d%1d",i,j);      for (j=ncovcol;j>=1;j--){
           fprintf(ficlog,"%1d%1d",i,j);        cutv(stra, strb,line,' '); 
           for(k=1; k<=ncovmodel;k++){        if(strb[0]=='.') { /* Missing status */
             printf(" %.5e",delti[jk]);          lval=-1;
             fprintf(ficlog," %.5e",delti[jk]);        }else{
             fprintf(ficres," %.5e",delti[jk]);          errno=0;
             jk++;          lval=strtol(strb,&endptr,10); 
           }          if( strb[0]=='\0' || (*endptr != '\0')){
           printf("\n");            printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);
           fprintf(ficlog,"\n");            fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);fflush(ficlog);
           fprintf(ficres,"\n");            return 1;
         }          }
       }        }
     }        if(lval <-1 || lval >1){
              printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");   Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
     if(mle>=1)   for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
       printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");   For example, for multinomial values like 1, 2 and 3,\n \
     fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");   build V1=0 V2=0 for the reference value (1),\n \
     /* # 121 Var(a12)\n\ */          V1=1 V2=0 for (2) \n \
     /* # 122 Cov(b12,a12) Var(b12)\n\ */   and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
     /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */   output of IMaCh is often meaningless.\n \
     /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */   Exiting.\n",lval,linei, i,line,j);
     /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */          fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
     /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */   Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
     /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */   for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
     /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */   For example, for multinomial values like 1, 2 and 3,\n \
       build V1=0 V2=0 for the reference value (1),\n \
              V1=1 V2=0 for (2) \n \
     /* Just to have a covariance matrix which will be more understandable   and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
        even is we still don't want to manage dictionary of variables   output of IMaCh is often meaningless.\n \
     */   Exiting.\n",lval,linei, i,line,j);fflush(ficlog);
     for(itimes=1;itimes<=2;itimes++){          return 1;
       jj=0;        }
       for(i=1; i <=nlstate; i++){        covar[j][i]=(double)(lval);
         for(j=1; j <=nlstate+ndeath; j++){        strcpy(line,stra);
           if(j==i) continue;      }  
           for(k=1; k<=ncovmodel;k++){      lstra=strlen(stra);
             jj++;       
             ca[0]= k+'a'-1;ca[1]='\0';      if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
             if(itimes==1){        stratrunc = &(stra[lstra-9]);
               if(mle>=1)        num[i]=atol(stratrunc);
                 printf("#%1d%1d%d",i,j,k);      }
               fprintf(ficlog,"#%1d%1d%d",i,j,k);      else
               fprintf(ficres,"#%1d%1d%d",i,j,k);        num[i]=atol(stra);
             }else{      /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
               if(mle>=1)        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
                 printf("%1d%1d%d",i,j,k);      
               fprintf(ficlog,"%1d%1d%d",i,j,k);      i=i+1;
               fprintf(ficres,"%1d%1d%d",i,j,k);    } /* End loop reading  data */
             }  
             ll=0;    *imax=i-1; /* Number of individuals */
             for(li=1;li <=nlstate; li++){    fclose(fic);
               for(lj=1;lj <=nlstate+ndeath; lj++){   
                 if(lj==li) continue;    return (0);
                 for(lk=1;lk<=ncovmodel;lk++){    /* endread: */
                   ll++;      printf("Exiting readdata: ");
                   if(ll<=jj){      fclose(fic);
                     cb[0]= lk +'a'-1;cb[1]='\0';      return (1);
                     if(ll<jj){  
                       if(itimes==1){  
                         if(mle>=1)  
                           printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);  }
                         fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);  void removespace(char *str) {
                         fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);    char *p1 = str, *p2 = str;
                       }else{    do
                         if(mle>=1)      while (*p2 == ' ')
                           printf(" %.5e",matcov[jj][ll]);        p2++;
                         fprintf(ficlog," %.5e",matcov[jj][ll]);    while (*p1++ == *p2++);
                         fprintf(ficres," %.5e",matcov[jj][ll]);  }
                       }  
                     }else{  int decodemodel ( char model[], int lastobs) /**< This routine decode the model and returns:
                       if(itimes==1){     * Model  V1+V2+V3+V8+V7*V8+V5*V6+V8*age+V3*age+age*age
                         if(mle>=1)     * - nagesqr = 1 if age*age in the model, otherwise 0.
                           printf(" Var(%s%1d%1d)",ca,i,j);     * - cptcovt total number of covariates of the model nbocc(+)+1 = 8 excepting constant and age and age*age
                         fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);     * - cptcovn or number of covariates k of the models excluding age*products =6 and age*age
                         fprintf(ficres," Var(%s%1d%1d)",ca,i,j);     * - cptcovage number of covariates with age*products =2
                       }else{     * - cptcovs number of simple covariates
                         if(mle>=1)     * - Tvar[k] is the id of the kth covariate Tvar[1]@12 {1, 2, 3, 8, 10, 11, 8, 3, 7, 8, 5, 6}, thus Tvar[5=V7*V8]=10
                           printf(" %.5e",matcov[jj][ll]);     *     which is a new column after the 9 (ncovcol) variables. 
                         fprintf(ficlog," %.5e",matcov[jj][ll]);     * - if k is a product Vn*Vm covar[k][i] is filled with correct values for each individual
                         fprintf(ficres," %.5e",matcov[jj][ll]);     * - Tprod[l] gives the kth covariates of the product Vn*Vm l=1 to cptcovprod-cptcovage
                       }     *    Tprod[1]@2 {5, 6}: position of first product V7*V8 is 5, and second V5*V6 is 6.
                     }     * - Tvard[k]  p Tvard[1][1]@4 {7, 8, 5, 6} for V7*V8 and V5*V6 .
                   }   */
                 } /* end lk */  {
               } /* end lj */    int i, j, k, ks;
             } /* end li */    int  j1, k1, k2;
             if(mle>=1)    char modelsav[80];
               printf("\n");    char stra[80], strb[80], strc[80], strd[80],stre[80];
             fprintf(ficlog,"\n");    char *strpt;
             fprintf(ficres,"\n");  
             numlinepar++;    /*removespace(model);*/
           } /* end k*/    if (strlen(model) >1){ /* If there is at least 1 covariate */
         } /*end j */      j=0, j1=0, k1=0, k2=-1, ks=0, cptcovn=0;
       } /* end i */      if (strstr(model,"AGE") !=0){
     } /* end itimes */        printf("Error. AGE must be in lower case 'age' model=1+age+%s. ",model);
            fprintf(ficlog,"Error. AGE must be in lower case model=1+age+%s. ",model);fflush(ficlog);
     fflush(ficlog);        return 1;
     fflush(ficres);      }
          if (strstr(model,"v") !=0){
     while((c=getc(ficpar))=='#' && c!= EOF){        printf("Error. 'v' must be in upper case 'V' model=%s ",model);
       ungetc(c,ficpar);        fprintf(ficlog,"Error. 'v' must be in upper case model=%s ",model);fflush(ficlog);
       fgets(line, MAXLINE, ficpar);        return 1;
       puts(line);      }
       fputs(line,ficparo);      strcpy(modelsav,model); 
     }      if ((strpt=strstr(model,"age*age")) !=0){
     ungetc(c,ficpar);        printf(" strpt=%s, model=%s\n",strpt, model);
            if(strpt != model){
     estepm=0;        printf("Error in model: 'model=%s'; 'age*age' should in first place before other covariates\n \
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);   'model=1+age+age*age+V1.' or 'model=1+age+age*age+V1+V1*age.', please swap as well as \n \
     if (estepm==0 || estepm < stepm) estepm=stepm;   corresponding column of parameters.\n",model);
     if (fage <= 2) {        fprintf(ficlog,"Error in model: 'model=%s'; 'age*age' should in first place before other covariates\n \
       bage = ageminpar;   'model=1+age+age*age+V1.' or 'model=1+age+age*age+V1+V1*age.', please swap as well as \n \
       fage = agemaxpar;   corresponding column of parameters.\n",model); fflush(ficlog);
     }        return 1;
          }
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");  
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);        nagesqr=1;
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);        if (strstr(model,"+age*age") !=0)
              substrchaine(modelsav, model, "+age*age");
     while((c=getc(ficpar))=='#' && c!= EOF){        else if (strstr(model,"age*age+") !=0)
       ungetc(c,ficpar);          substrchaine(modelsav, model, "age*age+");
       fgets(line, MAXLINE, ficpar);        else 
       puts(line);          substrchaine(modelsav, model, "age*age");
       fputs(line,ficparo);      }else
     }        nagesqr=0;
     ungetc(c,ficpar);      if (strlen(modelsav) >1){
            j=nbocc(modelsav,'+'); /**< j=Number of '+' */
     fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);        j1=nbocc(modelsav,'*'); /**< j1=Number of '*' */
     fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);        cptcovs=j+1-j1; /**<  Number of simple covariates V1+V1*age+V3 +V3*V4+age*age=> V1 + V3 =2  */
     fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);        cptcovt= j+1; /* Number of total covariates in the model, not including
     printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);                     * cst, age and age*age 
     fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);                     * V1+V1*age+ V3 + V3*V4+age*age=> 4*/
                        /* including age products which are counted in cptcovage.
     while((c=getc(ficpar))=='#' && c!= EOF){                    * but the covariates which are products must be treated 
       ungetc(c,ficpar);                    * separately: ncovn=4- 2=2 (V1+V3). */
       fgets(line, MAXLINE, ficpar);        cptcovprod=j1; /**< Number of products  V1*V2 +v3*age = 2 */
       puts(line);        cptcovprodnoage=0; /**< Number of covariate products without age: V3*V4 =1  */
       fputs(line,ficparo);  
     }      
     ungetc(c,ficpar);        /*   Design
             *  V1   V2   V3   V4  V5  V6  V7  V8  V9 Weight
             *  <          ncovcol=8                >
     dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;         * Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8
     dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;         *   k=  1    2      3       4     5       6      7        8
             *  cptcovn number of covariates (not including constant and age ) = # of + plus 1 = 7+1=8
     fscanf(ficpar,"pop_based=%d\n",&popbased);         *  covar[k,i], value of kth covariate if not including age for individual i:
     fprintf(ficparo,"pop_based=%d\n",popbased);           *       covar[1][i]= (V2), covar[4][i]=(V3), covar[8][i]=(V8)
     fprintf(ficres,"pop_based=%d\n",popbased);           *  Tvar[k] # of the kth covariate:  Tvar[1]=2  Tvar[4]=3 Tvar[8]=8
             *       if multiplied by age: V3*age Tvar[3=V3*age]=3 (V3) Tvar[7]=8 and 
     while((c=getc(ficpar))=='#' && c!= EOF){         *  Tage[++cptcovage]=k
       ungetc(c,ficpar);         *       if products, new covar are created after ncovcol with k1
       fgets(line, MAXLINE, ficpar);         *  Tvar[k]=ncovcol+k1; # of the kth covariate product:  Tvar[5]=ncovcol+1=10  Tvar[6]=ncovcol+1=11
       puts(line);         *  Tprod[k1]=k; Tprod[1]=5 Tprod[2]= 6; gives the position of the k1th product
       fputs(line,ficparo);         *  Tvard[k1][1]=m Tvard[k1][2]=m; Tvard[1][1]=5 (V5) Tvard[1][2]=6 Tvard[2][1]=7 (V7) Tvard[2][2]=8
     }         *  Tvar[cptcovn+k2]=Tvard[k1][1];Tvar[cptcovn+k2+1]=Tvard[k1][2];
     ungetc(c,ficpar);         *  Tvar[8+1]=5;Tvar[8+2]=6;Tvar[8+3]=7;Tvar[8+4]=8 inverted
             *  V1   V2   V3   V4  V5  V6  V7  V8  V9  V10  V11
     fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);         *  <          ncovcol=8                >
     fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);         *       Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8    d1   d1   d2  d2
     printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);         *          k=  1    2      3       4     5       6      7        8    9   10   11  12
     fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);         *     Tvar[k]= 2    1      3       3    10      11      8        8    5    6    7   8
     fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);         * p Tvar[1]@12={2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
     /* day and month of proj2 are not used but only year anproj2.*/         * p Tprod[1]@2={                         6, 5}
             *p Tvard[1][1]@4= {7, 8, 5, 6}
             * covar[k][i]= V2   V1      ?      V3    V5*V6?   V7*V8?  ?       V8   
             *  cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/         *How to reorganize?
     /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/         * Model V1 + V2 + V3 + V8 + V5*V6 + V7*V8 + V3*age + V8*age
             * Tvars {2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
     replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */         *       {2,   1,     4,      8,    5,      6,     3,       7}
     printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);         * Struct []
             */
     printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\  
                  model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\        /* This loop fills the array Tvar from the string 'model'.*/
                  jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);        /* j is the number of + signs in the model V1+V2+V3 j=2 i=3 to 1 */
              /*   modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4  */
    /*------------ free_vector  -------------*/        /*        k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tage[cptcovage=1]=4 */
    /*  chdir(path); */        /*        k=3 V4 Tvar[k=3]= 4 (from V4) */
          /*        k=2 V1 Tvar[k=2]= 1 (from V1) */
     free_ivector(wav,1,imx);        /*        k=1 Tvar[1]=2 (from V2) */
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);        /*        k=5 Tvar[5] */
     free_imatrix(bh,1,lastpass-firstpass+1,1,imx);        /* for (k=1; k<=cptcovn;k++) { */
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);          /*        cov[2+k]=nbcode[Tvar[k]][codtabm(ij,Tvar[k])]; */
     free_lvector(num,1,n);        /*        } */
     free_vector(agedc,1,n);        /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,Tvar[Tage[k])]]*cov[2]; */
     /*free_matrix(covar,0,NCOVMAX,1,n);*/        /*
     /*free_matrix(covar,1,NCOVMAX,1,n);*/         * Treating invertedly V2+V1+V3*age+V2*V4 is as if written V2*V4 +V3*age + V1 + V2 */
     fclose(ficparo);        for(k=cptcovt; k>=1;k--) /**< Number of covariates */
     fclose(ficres);          Tvar[k]=0;
         cptcovage=0;
         for(k=1; k<=cptcovt;k++){ /* Loop on total covariates of the model */
     /*--------------- Prevalence limit  (period or stable prevalence) --------------*/          cutl(stra,strb,modelsav,'+'); /* keeps in strb after the first '+' 
                                             modelsav==V2+V1+V4+V3*age strb=V3*age stra=V2+V1+V4 */ 
     strcpy(filerespl,"pl");          if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
     strcat(filerespl,fileres);          /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
     if((ficrespl=fopen(filerespl,"w"))==NULL) {          /*scanf("%d",i);*/
       printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;          if (strchr(strb,'*')) {  /**< Model includes a product V2+V1+V4+V3*age strb=V3*age */
       fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;            cutl(strc,strd,strb,'*'); /**< strd*strc  Vm*Vn: strb=V3*age(input) strc=age strd=V3 ; V3*V2 strc=V2, strd=V3 */
     }            if (strcmp(strc,"age")==0) { /**< Model includes age: Vn*age */
     printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);              /* covar is not filled and then is empty */
     fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);              cptcovprod--;
     pstamp(ficrespl);              cutl(stre,strb,strd,'V'); /* strd=V3(input): stre="3" */
     fprintf(ficrespl,"# Period (stable) prevalence \n");              Tvar[k]=atoi(stre);  /* V2+V1+V4+V3*age Tvar[4]=3 ; V1+V2*age Tvar[2]=2; V1+V1*age Tvar[2]=1 */
     fprintf(ficrespl,"#Age ");              cptcovage++; /* Sums the number of covariates which include age as a product */
     for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);              Tage[cptcovage]=k;  /* Tvar[4]=3, Tage[1] = 4 or V1+V1*age Tvar[2]=1, Tage[1]=2 */
     fprintf(ficrespl,"\n");              /*printf("stre=%s ", stre);*/
              } else if (strcmp(strd,"age")==0) { /* or age*Vn */
     prlim=matrix(1,nlstate,1,nlstate);              cptcovprod--;
               cutl(stre,strb,strc,'V');
     agebase=ageminpar;              Tvar[k]=atoi(stre);
     agelim=agemaxpar;              cptcovage++;
     ftolpl=1.e-10;              Tage[cptcovage]=k;
     i1=cptcoveff;            } else {  /* Age is not in the model product V2+V1+V1*V4+V3*age+V3*V2  strb=V3*V2*/
     if (cptcovn < 1){i1=1;}              /* loops on k1=1 (V3*V2) and k1=2 V4*V3 */
               cptcovn++;
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){              cptcovprodnoage++;k1++;
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){              cutl(stre,strb,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/
         k=k+1;              Tvar[k]=ncovcol+k1; /* For model-covariate k tells which data-covariate to use but
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/                                     because this model-covariate is a construction we invent a new column
         fprintf(ficrespl,"\n#******");                                     ncovcol + k1
         printf("\n#******");                                     If already ncovcol=4 and model=V2+V1+V1*V4+age*V3+V3*V2
         fprintf(ficlog,"\n#******");                                     Tvar[3=V1*V4]=4+1 Tvar[5=V3*V2]=4 + 2= 6, etc */
         for(j=1;j<=cptcoveff;j++) {              cutl(strc,strb,strd,'V'); /* strd was Vm, strc is m */
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);              Tprod[k1]=k;  /* Tprod[1]=3(=V1*V4) for V2+V1+V1*V4+age*V3+V3*V2  */
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);              Tvard[k1][1] =atoi(strc); /* m 1 for V1*/
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);              Tvard[k1][2] =atoi(stre); /* n 4 for V4*/
         }              k2=k2+2;
         fprintf(ficrespl,"******\n");              Tvar[cptcovt+k2]=Tvard[k1][1]; /* Tvar[(cptcovt=4+k2=1)=5]= 1 (V1) */
         printf("******\n");              Tvar[cptcovt+k2+1]=Tvard[k1][2];  /* Tvar[(cptcovt=4+(k2=1)+1)=6]= 4 (V4) */
         fprintf(ficlog,"******\n");              for (i=1; i<=lastobs;i++){
                        /* Computes the new covariate which is a product of
         for (age=agebase; age<=agelim; age++){                   covar[n][i]* covar[m][i] and stores it at ncovol+k1 May not be defined */
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);                covar[ncovcol+k1][i]=covar[atoi(stre)][i]*covar[atoi(strc)][i];
           fprintf(ficrespl,"%.0f ",age );              }
           for(j=1;j<=cptcoveff;j++)            } /* End age is not in the model */
             fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          } /* End if model includes a product */
           for(i=1; i<=nlstate;i++)          else { /* no more sum */
             fprintf(ficrespl," %.5f", prlim[i][i]);            /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
           fprintf(ficrespl,"\n");            /*  scanf("%d",i);*/
         }            cutl(strd,strc,strb,'V');
       }            ks++; /**< Number of simple covariates */
     }            cptcovn++;
     fclose(ficrespl);            Tvar[k]=atoi(strd);
           }
     /*------------- h Pij x at various ages ------------*/          strcpy(modelsav,stra);  /* modelsav=V2+V1+V4 stra=V2+V1+V4 */ 
            /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
     strcpy(filerespij,"pij");  strcat(filerespij,fileres);            scanf("%d",i);*/
     if((ficrespij=fopen(filerespij,"w"))==NULL) {        } /* end of loop + on total covariates */
       printf("Problem with Pij resultfile: %s\n", filerespij);goto end;      } /* end if strlen(modelsave == 0) age*age might exist */
       fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;    } /* end if strlen(model == 0) */
     }    
     printf("Computing pij: result on file '%s' \n", filerespij);    /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
     fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);      If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
    
     stepsize=(int) (stepm+YEARM-1)/YEARM;    /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     /*if (stepm<=24) stepsize=2;*/    printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
     agelim=AGESUP;  
     hstepm=stepsize*YEARM; /* Every year of age */    scanf("%d ",i);*/
     hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */  
   
     /* hstepm=1;   aff par mois*/    return (0); /* with covar[new additional covariate if product] and Tage if age */ 
     pstamp(ficrespij);    /*endread:*/
     fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");      printf("Exiting decodemodel: ");
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){      return (1);
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  }
         k=k+1;  
         fprintf(ficrespij,"\n#****** ");  int calandcheckages(int imx, int maxwav, double *agemin, double *agemax, int *nberr, int *nbwarn )
         for(j=1;j<=cptcoveff;j++)  {
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    int i, m;
         fprintf(ficrespij,"******\n");  
            for (i=1; i<=imx; i++) {
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */      for(m=2; (m<= maxwav); m++) {
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */        if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */          anint[m][i]=9999;
           s[m][i]=-1;
           /*      nhstepm=nhstepm*YEARM; aff par mois*/        }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          *nberr = *nberr + 1;
           oldm=oldms;savm=savms;          printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased (%d)\n",(int)moisdc[i],(int)andc[i],num[i],i, *nberr);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);            fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased (%d)\n",(int)moisdc[i],(int)andc[i],num[i],i, *nberr);
           fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");          s[m][i]=-1;
           for(i=1; i<=nlstate;i++)        }
             for(j=1; j<=nlstate+ndeath;j++)        if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
               fprintf(ficrespij," %1d-%1d",i,j);          (*nberr)++;
           fprintf(ficrespij,"\n");          printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           for (h=0; h<=nhstepm; h++){          fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
             fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );          s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
             for(i=1; i<=nlstate;i++)        }
               for(j=1; j<=nlstate+ndeath;j++)      }
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);    }
             fprintf(ficrespij,"\n");  
           }    for (i=1; i<=imx; i++)  {
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
           fprintf(ficrespij,"\n");      for(m=firstpass; (m<= lastpass); m++){
         }        if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
       }          if (s[m][i] >= nlstate+1) {
     }            if(agedc[i]>0){
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999){
     varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);                agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
     fclose(ficrespij);              }else {
                 if ((int)andc[i]!=9999){
     probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);                  nbwarn++;
     for(i=1;i<=AGESUP;i++)                  printf("Warning negative age at death: %ld line:%d\n",num[i],i);
       for(j=1;j<=NCOVMAX;j++)                  fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
         for(k=1;k<=NCOVMAX;k++)                  agev[m][i]=-1;
           probs[i][j][k]=0.;                }
               }
     /*---------- Forecasting ------------------*/            } /* agedc > 0 */
     /*if((stepm == 1) && (strcmp(model,".")==0)){*/          }
     if(prevfcast==1){          else if(s[m][i] !=9){ /* Standard case, age in fractional
       /*    if(stepm ==1){*/                                   years but with the precision of a month */
       prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);            agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
       /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/            if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
       /*      }  */              agev[m][i]=1;
       /*      else{ */            else if(agev[m][i] < *agemin){ 
       /*        erreur=108; */              *agemin=agev[m][i];
       /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */              printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], *agemin);
       /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */            }
       /*      } */            else if(agev[m][i] >*agemax){
     }              *agemax=agev[m][i];
                /* printf(" Max anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.2f\n",m,i,anint[m][i], i,annais[i], *agemax);*/
             }
     /*---------- Health expectancies and variances ------------*/            /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
     strcpy(filerest,"t");          }
     strcat(filerest,fileres);          else { /* =9 */
     if((ficrest=fopen(filerest,"w"))==NULL) {            agev[m][i]=1;
       printf("Problem with total LE resultfile: %s\n", filerest);goto end;            s[m][i]=-1;
       fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;          }
     }        }
     printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest);        else /*= 0 Unknown */
     fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest);          agev[m][i]=1;
       }
       
     strcpy(filerese,"e");    }
     strcat(filerese,fileres);    for (i=1; i<=imx; i++)  {
     if((ficreseij=fopen(filerese,"w"))==NULL) {      for(m=firstpass; (m<=lastpass); m++){
       printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);        if (s[m][i] > (nlstate+ndeath)) {
       fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);          (*nberr)++;
     }          printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
     printf("Computing Health Expectancies: result on file '%s' \n", filerese);          fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
     fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);          return 1;
         }
     strcpy(fileresstde,"stde");      }
     strcat(fileresstde,fileres);    }
     if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {  
       printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);    /*for (i=1; i<=imx; i++){
       fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);    for (m=firstpass; (m<lastpass); m++){
     }       printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
     printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);  }
     fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);  
   }*/
     strcpy(filerescve,"cve");  
     strcat(filerescve,fileres);  
     if((ficrescveij=fopen(filerescve,"w"))==NULL) {    printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax);
       printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);    fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax); 
       fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);  
     }    return (0);
     printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);   /* endread:*/
     fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);      printf("Exiting calandcheckages: ");
       return (1);
     strcpy(fileresv,"v");  }
     strcat(fileresv,fileres);  
     if((ficresvij=fopen(fileresv,"w"))==NULL) {  #if defined(_MSC_VER)
       printf("Problem with variance resultfile: %s\n", fileresv);exit(0);  /*printf("Visual C++ compiler: %s \n;", _MSC_FULL_VER);*/
       fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);  /*fprintf(ficlog, "Visual C++ compiler: %s \n;", _MSC_FULL_VER);*/
     }  //#include "stdafx.h"
     printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);  //#include <stdio.h>
     fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);  //#include <tchar.h>
   //#include <windows.h>
     /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */  //#include <iostream>
     prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);  typedef BOOL(WINAPI *LPFN_ISWOW64PROCESS) (HANDLE, PBOOL);
     /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\  
         ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);  LPFN_ISWOW64PROCESS fnIsWow64Process;
     */  
   BOOL IsWow64()
     if (mobilav!=0) {  {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          BOOL bIsWow64 = FALSE;
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){  
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);          //typedef BOOL (APIENTRY *LPFN_ISWOW64PROCESS)
         printf(" Error in movingaverage mobilav=%d\n",mobilav);          //  (HANDLE, PBOOL);
       }  
     }          //LPFN_ISWOW64PROCESS fnIsWow64Process;
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){          HMODULE module = GetModuleHandle(_T("kernel32"));
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){          const char funcName[] = "IsWow64Process";
         k=k+1;          fnIsWow64Process = (LPFN_ISWOW64PROCESS)
         fprintf(ficrest,"\n#****** ");                  GetProcAddress(module, funcName);
         for(j=1;j<=cptcoveff;j++)  
           fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          if (NULL != fnIsWow64Process)
         fprintf(ficrest,"******\n");          {
                   if (!fnIsWow64Process(GetCurrentProcess(),
         fprintf(ficreseij,"\n#****** ");                          &bIsWow64))
         fprintf(ficresstdeij,"\n#****** ");                          //throw std::exception("Unknown error");
         fprintf(ficrescveij,"\n#****** ");                          printf("Unknown error\n");
         for(j=1;j<=cptcoveff;j++) {          }
           fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          return bIsWow64 != FALSE;
           fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  }
           fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  #endif
         }  
         fprintf(ficreseij,"******\n");  void syscompilerinfo(int logged)
         fprintf(ficresstdeij,"******\n");   {
         fprintf(ficrescveij,"******\n");     /* #include "syscompilerinfo.h"*/
      /* command line Intel compiler 32bit windows, XP compatible:*/
         fprintf(ficresvij,"\n#****** ");     /* /GS /W3 /Gy
         for(j=1;j<=cptcoveff;j++)        /Zc:wchar_t /Zi /O2 /Fd"Release\vc120.pdb" /D "WIN32" /D "NDEBUG" /D
           fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        "_CONSOLE" /D "_LIB" /D "_USING_V110_SDK71_" /D "_UNICODE" /D
         fprintf(ficresvij,"******\n");        "UNICODE" /Qipo /Zc:forScope /Gd /Oi /MT /Fa"Release\" /EHsc /nologo
         /Fo"Release\" /Qprof-dir "Release\" /Fp"Release\IMaCh.pch"
         eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);     */ 
         oldm=oldms;savm=savms;     /* 64 bits */
         evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);       /*
         cvevsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);         /GS /W3 /Gy
         /Zc:wchar_t /Zi /O2 /Fd"x64\Release\vc120.pdb" /D "WIN32" /D "NDEBUG"
         vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);       /D "_CONSOLE" /D "_LIB" /D "_UNICODE" /D "UNICODE" /Qipo /Zc:forScope
         oldm=oldms;savm=savms;       /Oi /MD /Fa"x64\Release\" /EHsc /nologo /Fo"x64\Release\" /Qprof-dir
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav, strstart);       "x64\Release\" /Fp"x64\Release\IMaCh.pch" */
         if(popbased==1){     /* Optimization are useless and O3 is slower than O2 */
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav, strstart);     /*
         }       /GS /W3 /Gy /Zc:wchar_t /Zi /O3 /Fd"x64\Release\vc120.pdb" /D "WIN32" 
        /D "NDEBUG" /D "_CONSOLE" /D "_LIB" /D "_UNICODE" /D "UNICODE" /Qipo 
         pstamp(ficrest);       /Zc:forScope /Oi /MD /Fa"x64\Release\" /EHsc /nologo /Qparallel 
         fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n# Age ( e.. (std) ");       /Fo"x64\Release\" /Qprof-dir "x64\Release\" /Fp"x64\Release\IMaCh.pch" 
         for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);     */
         fprintf(ficrest,"\n");     /* Link is */ /* /OUT:"visual studio
         2013\Projects\IMaCh\Release\IMaCh.exe" /MANIFEST /NXCOMPAT
         epj=vector(1,nlstate+1);        /PDB:"visual studio
         for(age=bage; age <=fage ;age++){        2013\Projects\IMaCh\Release\IMaCh.pdb" /DYNAMICBASE
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);        "kernel32.lib" "user32.lib" "gdi32.lib" "winspool.lib"
           if (popbased==1) {        "comdlg32.lib" "advapi32.lib" "shell32.lib" "ole32.lib"
             if(mobilav ==0){        "oleaut32.lib" "uuid.lib" "odbc32.lib" "odbccp32.lib"
               for(i=1; i<=nlstate;i++)        /MACHINE:X86 /OPT:REF /SAFESEH /INCREMENTAL:NO
                 prlim[i][i]=probs[(int)age][i][k];        /SUBSYSTEM:CONSOLE",5.01" /MANIFESTUAC:"level='asInvoker'
             }else{ /* mobilav */        uiAccess='false'"
               for(i=1; i<=nlstate;i++)        /ManifestFile:"Release\IMaCh.exe.intermediate.manifest" /OPT:ICF
                 prlim[i][i]=mobaverage[(int)age][i][k];        /NOLOGO /TLBID:1
             }     */
           }  #if defined __INTEL_COMPILER
          #if defined(__GNUC__)
           fprintf(ficrest," %4.0f",age);          struct utsname sysInfo;  /* For Intel on Linux and OS/X */
           for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){  #endif
             for(i=1, epj[j]=0.;i <=nlstate;i++) {  #elif defined(__GNUC__) 
               epj[j] += prlim[i][i]*eij[i][j][(int)age];  #ifndef  __APPLE__
               /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/  #include <gnu/libc-version.h>  /* Only on gnu */
             }  #endif
             epj[nlstate+1] +=epj[j];     struct utsname sysInfo;
           }     int cross = CROSS;
      if (cross){
           for(i=1, vepp=0.;i <=nlstate;i++)             printf("Cross-");
             for(j=1;j <=nlstate;j++)             if(logged) fprintf(ficlog, "Cross-");
               vepp += vareij[i][j][(int)age];     }
           fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));  #endif
           for(j=1;j <=nlstate;j++){  
             fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));  #include <stdint.h>
           }  
           fprintf(ficrest,"\n");     printf("Compiled with:");if(logged)fprintf(ficlog,"Compiled with:");
         }  #if defined(__clang__)
         free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);     printf(" Clang/LLVM");if(logged)fprintf(ficlog," Clang/LLVM");       /* Clang/LLVM. ---------------------------------------------- */
         free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);  #endif
         free_vector(epj,1,nlstate+1);  #if defined(__ICC) || defined(__INTEL_COMPILER)
       }     printf(" Intel ICC/ICPC");if(logged)fprintf(ficlog," Intel ICC/ICPC");/* Intel ICC/ICPC. ------------------------------------------ */
     }  #endif
     free_vector(weight,1,n);  #if defined(__GNUC__) || defined(__GNUG__)
     free_imatrix(Tvard,1,15,1,2);     printf(" GNU GCC/G++");if(logged)fprintf(ficlog," GNU GCC/G++");/* GNU GCC/G++. --------------------------------------------- */
     free_imatrix(s,1,maxwav+1,1,n);  #endif
     free_matrix(anint,1,maxwav,1,n);  #if defined(__HP_cc) || defined(__HP_aCC)
     free_matrix(mint,1,maxwav,1,n);     printf(" Hewlett-Packard C/aC++");if(logged)fprintf(fcilog," Hewlett-Packard C/aC++"); /* Hewlett-Packard C/aC++. ---------------------------------- */
     free_ivector(cod,1,n);  #endif
     free_ivector(tab,1,NCOVMAX);  #if defined(__IBMC__) || defined(__IBMCPP__)
     fclose(ficreseij);     printf(" IBM XL C/C++"); if(logged) fprintf(ficlog," IBM XL C/C++");/* IBM XL C/C++. -------------------------------------------- */
     fclose(ficresstdeij);  #endif
     fclose(ficrescveij);  #if defined(_MSC_VER)
     fclose(ficresvij);     printf(" Microsoft Visual Studio");if(logged)fprintf(ficlog," Microsoft Visual Studio");/* Microsoft Visual Studio. --------------------------------- */
     fclose(ficrest);  #endif
     fclose(ficpar);  #if defined(__PGI)
       printf(" Portland Group PGCC/PGCPP");if(logged) fprintf(ficlog," Portland Group PGCC/PGCPP");/* Portland Group PGCC/PGCPP. ------------------------------- */
     /*------- Variance of period (stable) prevalence------*/    #endif
   #if defined(__SUNPRO_C) || defined(__SUNPRO_CC)
     strcpy(fileresvpl,"vpl");     printf(" Oracle Solaris Studio");if(logged)fprintf(ficlog," Oracle Solaris Studio\n");/* Oracle Solaris Studio. ----------------------------------- */
     strcat(fileresvpl,fileres);  #endif
     if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {     printf(" for "); if (logged) fprintf(ficlog, " for ");
       printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);     
       exit(0);  // http://stackoverflow.com/questions/4605842/how-to-identify-platform-compiler-from-preprocessor-macros
     }  #ifdef _WIN32 // note the underscore: without it, it's not msdn official!
     printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);      // Windows (x64 and x86)
      printf("Windows (x64 and x86) ");if(logged) fprintf(ficlog,"Windows (x64 and x86) ");
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){  #elif __unix__ // all unices, not all compilers
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      // Unix
         k=k+1;     printf("Unix ");if(logged) fprintf(ficlog,"Unix ");
         fprintf(ficresvpl,"\n#****** ");  #elif __linux__
         for(j=1;j<=cptcoveff;j++)      // linux
           fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);     printf("linux ");if(logged) fprintf(ficlog,"linux ");
         fprintf(ficresvpl,"******\n");  #elif __APPLE__
            // Mac OS, not sure if this is covered by __posix__ and/or __unix__ though..
         varpl=matrix(1,nlstate,(int) bage, (int) fage);     printf("Mac OS ");if(logged) fprintf(ficlog,"Mac OS ");
         oldm=oldms;savm=savms;  #endif
         varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);  
         free_matrix(varpl,1,nlstate,(int) bage, (int)fage);  /*  __MINGW32__   */
       }  /*  __CYGWIN__   */
     }  /* __MINGW64__  */
   // http://msdn.microsoft.com/en-us/library/b0084kay.aspx
     fclose(ficresvpl);  /* _MSC_VER  //the Visual C++ compiler is 17.00.51106.1, the _MSC_VER macro evaluates to 1700. Type cl /?  */
   /* _MSC_FULL_VER //the Visual C++ compiler is 15.00.20706.01, the _MSC_FULL_VER macro evaluates to 150020706 */
     /*---------- End : free ----------------*/  /* _WIN64  // Defined for applications for Win64. */
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  /* _M_X64 // Defined for compilations that target x64 processors. */
     free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);  /* _DEBUG // Defined when you compile with /LDd, /MDd, and /MTd. */
   
   }  /* mle==-3 arrives here for freeing */  #if UINTPTR_MAX == 0xffffffff
   free_matrix(prlim,1,nlstate,1,nlstate);     printf(" 32-bit"); if(logged) fprintf(ficlog," 32-bit");/* 32-bit */
     free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);  #elif UINTPTR_MAX == 0xffffffffffffffff
     free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);     printf(" 64-bit"); if(logged) fprintf(ficlog," 64-bit");/* 64-bit */
     free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);  #else
     free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);     printf(" wtf-bit"); if(logged) fprintf(ficlog," wtf-bit");/* wtf */
     free_matrix(covar,0,NCOVMAX,1,n);  #endif
     free_matrix(matcov,1,npar,1,npar);  
     /*free_vector(delti,1,npar);*/  #if defined(__GNUC__)
     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);  # if defined(__GNUC_PATCHLEVEL__)
     free_matrix(agev,1,maxwav,1,imx);  #  define __GNUC_VERSION__ (__GNUC__ * 10000 \
     free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);                              + __GNUC_MINOR__ * 100 \
                               + __GNUC_PATCHLEVEL__)
     free_ivector(ncodemax,1,8);  # else
     free_ivector(Tvar,1,15);  #  define __GNUC_VERSION__ (__GNUC__ * 10000 \
     free_ivector(Tprod,1,15);                              + __GNUC_MINOR__ * 100)
     free_ivector(Tvaraff,1,15);  # endif
     free_ivector(Tage,1,15);     printf(" using GNU C version %d.\n", __GNUC_VERSION__);
     free_ivector(Tcode,1,100);     if(logged) fprintf(ficlog, " using GNU C version %d.\n", __GNUC_VERSION__);
   
     free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);     if (uname(&sysInfo) != -1) {
     free_imatrix(codtab,1,100,1,10);       printf("Running on: %s %s %s %s %s\n",sysInfo.sysname, sysInfo.nodename, sysInfo.release, sysInfo.version, sysInfo.machine);
   fflush(fichtm);           if(logged) fprintf(ficlog,"Running on: %s %s %s %s %s\n ",sysInfo.sysname, sysInfo.nodename, sysInfo.release, sysInfo.version, sysInfo.machine);
   fflush(ficgp);     }
       else
         perror("uname() error");
   if((nberr >0) || (nbwarn>0)){     //#ifndef __INTEL_COMPILER 
     printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);  #if !defined (__INTEL_COMPILER) && !defined(__APPLE__)
     fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);     printf("GNU libc version: %s\n", gnu_get_libc_version()); 
   }else{     if(logged) fprintf(ficlog,"GNU libc version: %s\n", gnu_get_libc_version());
     printf("End of Imach\n");  #endif
     fprintf(ficlog,"End of Imach\n");  #endif
   }  
   printf("See log file on %s\n",filelog);     //   void main()
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */     //   {
   (void) gettimeofday(&end_time,&tzp);  #if defined(_MSC_VER)
   tm = *localtime(&end_time.tv_sec);     if (IsWow64()){
   tmg = *gmtime(&end_time.tv_sec);             printf("\nThe program (probably compiled for 32bit) is running under WOW64 (64bit) emulation.\n");
   strcpy(strtend,asctime(&tm));             if (logged) fprintf(ficlog, "\nThe program (probably compiled for 32bit) is running under WOW64 (64bit) emulation.\n");
   printf("Local time at start %s\nLocal time at end   %s",strstart, strtend);     }
   fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend);     else{
   printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));             printf("\nThe program is not running under WOW64 (i.e probably on a 64bit Windows).\n");
              if (logged) fprintf(ficlog, "\nThe programm is not running under WOW64 (i.e probably on a 64bit Windows).\n");
   printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);     }
   fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));     //      printf("\nPress Enter to continue...");
   fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);     //      getchar();
   /*  printf("Total time was %d uSec.\n", total_usecs);*/     //   }
 /*   if(fileappend(fichtm,optionfilehtm)){ */  
   fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);  #endif
   fclose(fichtm);     
   fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);  
   fclose(fichtmcov);   }
   fclose(ficgp);  
   fclose(ficlog);  int prevalence_limit(double *p, double **prlim, double ageminpar, double agemaxpar){
   /*------ End -----------*/    /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
     int i, j, k, i1 ;
     double ftolpl = 1.e-10;
    printf("Before Current directory %s!\n",pathcd);    double age, agebase, agelim;
    if(chdir(pathcd) != 0)  
     printf("Can't move to directory %s!\n",path);      strcpy(filerespl,"PL_");
   if(getcwd(pathcd,MAXLINE) > 0)      strcat(filerespl,fileresu);
     printf("Current directory %s!\n",pathcd);      if((ficrespl=fopen(filerespl,"w"))==NULL) {
   /*strcat(plotcmd,CHARSEPARATOR);*/        printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);return 1;
   sprintf(plotcmd,"gnuplot");        fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);return 1;
 #ifndef UNIX      }
   sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);      printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
 #endif      fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
   if(!stat(plotcmd,&info)){      pstamp(ficrespl);
     printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);      fprintf(ficrespl,"# Period (stable) prevalence \n");
     if(!stat(getenv("GNUPLOTBIN"),&info)){      fprintf(ficrespl,"#Age ");
       printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);      for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
     }else      fprintf(ficrespl,"\n");
       strcpy(pplotcmd,plotcmd);    
 #ifdef UNIX      /* prlim=matrix(1,nlstate,1,nlstate);*/ /* back in main */
     strcpy(plotcmd,GNUPLOTPROGRAM);  
     if(!stat(plotcmd,&info)){      agebase=ageminpar;
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);      agelim=agemaxpar;
     }else  
       strcpy(pplotcmd,plotcmd);      i1=pow(2,cptcoveff);
 #endif      if (cptcovn < 1){i1=1;}
   }else  
     strcpy(pplotcmd,plotcmd);      for(cptcov=1,k=0;cptcov<=i1;cptcov++){
        /* for(cptcov=1,k=0;cptcov<=1;cptcov++){ */
   sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);        //for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
   printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);          k=k+1;
           /* to clean */
   if((outcmd=system(plotcmd)) != 0){          //printf("cptcov=%d cptcod=%d codtab=%d\n",cptcov, cptcod,codtabm(cptcod,cptcov));
     printf("\n Problem with gnuplot\n");          fprintf(ficrespl,"#******");
   }          printf("#******");
   printf(" Wait...");          fprintf(ficlog,"#******");
   while (z[0] != 'q') {          for(j=1;j<=cptcoveff;j++) {
     /* chdir(path); */            fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
     printf("\nType e to edit output files, g to graph again and q for exiting: ");            printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
     scanf("%s",z);            fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
 /*     if (z[0] == 'c') system("./imach"); */          }
     if (z[0] == 'e') {          fprintf(ficrespl,"******\n");
       printf("Starting browser with: %s",optionfilehtm);fflush(stdout);          printf("******\n");
       system(optionfilehtm);          fprintf(ficlog,"******\n");
     }  
     else if (z[0] == 'g') system(plotcmd);          fprintf(ficrespl,"#Age ");
     else if (z[0] == 'q') exit(0);          for(j=1;j<=cptcoveff;j++) {
   }            fprintf(ficrespl,"V%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
   end:          }
   while (z[0] != 'q') {          for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
     printf("\nType  q for exiting: ");          fprintf(ficrespl,"\n");
     scanf("%s",z);          
   }          for (age=agebase; age<=agelim; age++){
 }          /* for (age=agebase; age<=agebase; age++){ */
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           } /* Age */
           /* was end of cptcod */
       } /* cptcov */
           return 0;
   }
   
   int hPijx(double *p, int bage, int fage){
       /*------------- h Pij x at various ages ------------*/
   
     int stepsize;
     int agelim;
     int hstepm;
     int nhstepm;
     int h, i, i1, j, k;
   
     double agedeb;
     double ***p3mat;
   
       strcpy(filerespij,"PIJ_");  strcat(filerespij,fileresu);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij); return 1;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij); return 1;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       pstamp(ficrespij);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       i1= pow(2,cptcoveff);
      /* for(cptcov=1,k=0;cptcov<=i1;cptcov++){ */
      /*    /\*for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*\/ */
      /*   k=k+1;  */
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
         fprintf(ficrespij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
         fprintf(ficrespij,"******\n");
         
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
           
           /*        nhstepm=nhstepm*YEARM; aff par mois*/
           
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           oldm=oldms;savm=savms;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
           for(i=1; i<=nlstate;i++)
             for(j=1; j<=nlstate+ndeath;j++)
               fprintf(ficrespij," %1d-%1d",i,j);
           fprintf(ficrespij,"\n");
           for (h=0; h<=nhstepm; h++){
             /*agedebphstep = agedeb + h*hstepm/YEARM*stepm;*/
             fprintf(ficrespij,"%d %3.f %3.f",k, agedeb, agedeb + h*hstepm/YEARM*stepm );
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);
             fprintf(ficrespij,"\n");
           }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           fprintf(ficrespij,"\n");
         }
         /*}*/
       }
           return 0;
   }
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
   #ifdef GSL
     const gsl_multimin_fminimizer_type *T;
     size_t iteri = 0, it;
     int rval = GSL_CONTINUE;
     int status = GSL_SUCCESS;
     double ssval;
   #endif
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter=0,m,size=100, cptcod;
   
     int jj, ll, li, lj, lk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int num_filled;
     int itimes;
     int NDIM=2;
     int vpopbased=0;
   
     char ca[32], cb[32];
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb=0.;
   
     double ageminpar=AGEOVERFLOW,agemin=AGEOVERFLOW, agemaxpar=-AGEOVERFLOW, agemax=-AGEOVERFLOW;
   
     double fret;
     double dum=0.; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
   
     char line[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE];
   
     char model[MAXLINE], modeltemp[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int c,  h , cpt, c2;
     int jl=0;
     int i1, j1, jk, stepsize=0;
     int count=0;
   
     int *tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm=0, nhstepm=0;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage=0, fage=110., age, agelim=0., agebase=0.;
     double ftolpl=FTOL;
     double **prlim;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
   
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4]="1234";
     int *dcwave;
   
     char z[1]="c";
   
     /*char  *strt;*/
     char strtend[80];
   
   
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     rstart_time = time(NULL);  
     /*  (void) gettimeofday(&start_time,&tzp);*/
     start_time = *localtime(&rstart_time);
     curr_time=start_time;
     /*tml = *localtime(&start_time.tm_sec);*/
     /* strcpy(strstart,asctime(&tml)); */
     strcpy(strstart,asctime(&start_time));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tm_sec = tp.tm_sec +86400; */
   /*  tm = *localtime(&start_time.tm_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tm_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
   #ifdef WIN32
     _getcwd(pathcd, size);
   #else
     getcwd(pathcd, size);
   #endif
     syscompilerinfo(0);
     printf("\nIMaCh version %s, %s\n%s",version, copyright, fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
       i=strlen(pathr);
       if(pathr[i-1]==' ') /* This may happen when dragging on oS/X! */
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Dirty */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
   #ifdef WIN32
     _chdir(path); /* Can be a relative path */
     if(_getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
   #else
     chdir(path); /* Can be a relative path */
     if (getcwd(pathcd, MAXLINE) > 0) /* So pathcd is the full path */
   #endif
     printf("Current directory %s!\n",pathcd);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Directory already exists (or can't create it) %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Main Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"Version %s %s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname='%s'\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     syscompilerinfo(1);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tm_sec-start_time.tm_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileresu, optionfilefiname); /* Without r in front */
     strcat(fileres,".txt");    /* Other files have txt extension */
     strcat(fileresu,".txt");    /* Other files have txt extension */
   
     /* Main ---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile '%s' with errno='%s'\n",optionfile,strerror(errno));
       fprintf(ficlog,"Problem with optionfile '%s' with errno='%s'\n",optionfile,strerror(errno));
       fflush(ficlog);
       /* goto end; */
       exit(70); 
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileresu);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
   
       /* First parameter line */
     while(fgets(line, MAXLINE, ficpar)) {
       /* If line starts with a # it is a comment */
       if (line[0] == '#') {
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
         continue;
       }else
         break;
     }
     if((num_filled=sscanf(line,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\n", \
                           title, datafile, &lastobs, &firstpass,&lastpass)) !=EOF){
       if (num_filled != 5) {
         printf("Should be 5 parameters\n");
       }
       numlinepar++;
       printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\n", title, datafile, lastobs, firstpass,lastpass);
     }
     /* Second parameter line */
     while(fgets(line, MAXLINE, ficpar)) {
       /* If line starts with a # it is a comment */
       if (line[0] == '#') {
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
         continue;
       }else
         break;
     }
     if((num_filled=sscanf(line,"ftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\n", \
                           &ftol, &stepm, &ncovcol, &nlstate, &ndeath, &maxwav, &mle, &weightopt)) !=EOF){
       if (num_filled != 8) {
         printf("Not 8\n");
       }
       printf("ftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\n",ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt);
     }
   
     /* Third parameter line */
     while(fgets(line, MAXLINE, ficpar)) {
       /* If line starts with a # it is a comment */
       if (line[0] == '#') {
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
         continue;
       }else
         break;
     }
     if((num_filled=sscanf(line,"model=1+age%[^.\n]", model)) !=EOF){
       if (num_filled == 0)
               model[0]='\0';
       else if (num_filled != 1){
         printf("ERROR %d: Model should be at minimum 'model=1+age.' %s\n",num_filled, line);
         fprintf(ficlog,"ERROR %d: Model should be at minimum 'model=1+age.' %s\n",num_filled, line);
         model[0]='\0';
         goto end;
       }
       else{
         if (model[0]=='+'){
           for(i=1; i<=strlen(model);i++)
             modeltemp[i-1]=model[i];
           strcpy(model,modeltemp); 
         }
       }
       /* printf(" model=1+age%s modeltemp= %s, model=%s\n",model, modeltemp, model);fflush(stdout); */
     }
     /* fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=1+age+%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model); */
     /* numlinepar=numlinepar+3; /\* In general *\/ */
     /* printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=1+age+%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model); */
     if(model[strlen(model)-1]=='.') /* Suppressing leading dot in the model */
       model[strlen(model)-1]='\0';
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=1+age%s.\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=1+age%s.\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     /* if(model[0]=='#'|| model[0]== '\0'){ */
     if(model[0]=='#'){
       printf("Error in 'model' line: model should start with 'model=1+age+' and end with '.' \n \
    'model=1+age+.' or 'model=1+age+V1.' or 'model=1+age+age*age+V1+V1*age.' or \n \
    'model=1+age+V1+V2.' or 'model=1+age+V1+V2+V1*V2.' etc. \n");          \
       if(mle != -1){
         printf("Fix the model line and run imach with mle=-1 to get a correct template of the parameter file.\n");
         exit(1);
       }
     }
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       if(line[1]=='q'){ /* This #q will quit imach (the answer is q) */
         z[0]=line[1];
       }
       /* printf("****line [1] = %c \n",line[1]); */
       fputs(line, stdout);
       //puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n);  /**< used in readdata */
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement plus one, indepently of n in Vn*/
     /* v1+v2+v3+v2*v4+v5*age makes cptcovn = 5
        v1+v2*age+v2*v3 makes cptcovn = 3
     */
     if (strlen(model)>1) 
       ncovmodel=2+nbocc(model,'+')+1; /*Number of variables including intercept and age = cptcovn + intercept + age : v1+v2+v3+v2*v4+v5*age makes 5+2=7,age*age makes 3*/
     else
       ncovmodel=2; /* Constant and age */
     nforce= (nlstate+ndeath-1)*nlstate; /* Number of forces ij from state i to j */
     npar= nforce*ncovmodel; /* Number of parameters like aij*/
     if(npar >MAXPARM || nlstate >NLSTATEMAX || ndeath >NDEATHMAX || ncovmodel>NCOVMAX){
       printf("Too complex model for current IMaCh: npar=(nlstate+ndeath-1)*nlstate*ncovmodel=%d >= %d(MAXPARM) or nlstate=%d >= %d(NLSTATEMAX) or ndeath=%d >= %d(NDEATHMAX) or ncovmodel=(k+age+#of+signs)=%d(NCOVMAX) >= %d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fprintf(ficlog,"Too complex model for current IMaCh: %d >=%d(MAXPARM) or %d >=%d(NLSTATEMAX) or %d >=%d(NDEATHMAX) or %d(NCOVMAX) >=%d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fflush(stdout);
       fclose (ficlog);
       goto end;
     }
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You chose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You chose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       goto end;
       exit(0);
     }
     else if(mle==-3) { /* Main Wizard */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You chose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You chose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guessed parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) || (j1 != jj)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
   It might be a problem of design; if ncovcol and the model are correct\n \
   run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,jj);
           fprintf(ficlog,"%1d%1d",i,jj);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       /* Reads scales values */
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ( (i1-i) * (j1-j) != 0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       /* Reads covariance matrix */
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++)
         for(j=1; j <=npar; j++) matcov[i][j]=0.;
         
       /* Scans npar lines */
       for(i=1; i <=npar; i++){
         count=fscanf(ficpar,"%1d%1d%1d",&i1,&j1,&jk);
         if(count != 3){
           printf("Error! Error in parameter file %s at line %d after line starting with %1d%1d%1d\n\
   This is probably because your covariance matrix doesn't \n  contain exactly %d lines corresponding to your model line '1+age+%s'.\n\
   Please run with mle=-1 to get a correct covariance matrix.\n",optionfile,numlinepar, i1,j1,jk, npar, model);
           fprintf(ficlog,"Error! Error in parameter file %s at line %d after line starting with %1d%1d%1d\n\
   This is probably because your covariance matrix doesn't \n  contain exactly %d lines corresponding to your model line '1+age+%s'.\n\
   Please run with mle=-1 to get a correct covariance matrix.\n",optionfile,numlinepar, i1,j1,jk, npar, model);
           exit(1);
         }else
         if(mle==1)
           printf("%1d%1d%1d",i1,j1,jk);
         fprintf(ficlog,"%1d%1d%1d",i1,j1,jk);
         fprintf(ficparo,"%1d%1d%1d",i1,j1,jk);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       /* End of read covariance matrix npar lines */
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", rfileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", rfileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*  Main data
      */
     n= lastobs;
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n); /* s[i][j] health state for wave i and individual j */ 
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,NCOVMAX); /* Number of code per covariate; if O and 1 only, 2**ncov; V1+V2+V3+V4=>16 */
     ncodemaxwundef=ivector(1,NCOVMAX); /* Number of code per covariate; if - 1 O and 1 only, 2**ncov; V1+V2+V3+V4=>16 */
   
     /* Reads data from file datafile */
     if (readdata(datafile, firstobs, lastobs, &imx)==1)
       goto end;
   
     /* Calculation of the number of parameters from char model */
       /*    modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4 
           k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tag[cptcovage=1]=4
           k=3 V4 Tvar[k=3]= 4 (from V4)
           k=2 V1 Tvar[k=2]= 1 (from V1)
           k=1 Tvar[1]=2 (from V2)
       */
     Tvar=ivector(1,NCOVMAX); /* Was 15 changed to NCOVMAX. */
     /*  V2+V1+V4+age*V3 is a model with 4 covariates (3 plus signs). 
         For each model-covariate stores the data-covariate id. Tvar[1]=2, Tvar[2]=1, Tvar[3]=4, 
         Tvar[4=age*V3] is 3 and 'age' is recorded in Tage.
     */
     /* For model-covariate k tells which data-covariate to use but
       because this model-covariate is a construction we invent a new column
       ncovcol + k1
       If already ncovcol=4 and model=V2+V1+V1*V4+age*V3
       Tvar[3=V1*V4]=4+1 etc */
     Tprod=ivector(1,NCOVMAX); /* Gives the position of a product */
     /* Tprod[k1=1]=3(=V1*V4) for V2+V1+V1*V4+age*V3
        if  V2+V1+V1*V4+age*V3+V3*V2   TProd[k1=2]=5 (V3*V2)
     */
     Tvaraff=ivector(1,NCOVMAX); /* Unclear */
     Tvard=imatrix(1,NCOVMAX,1,2); /* n=Tvard[k1][1]  and m=Tvard[k1][2] gives the couple n,m of the k1 th product Vn*Vm
                               * For V3*V2 (in V2+V1+V1*V4+age*V3+V3*V2), V3*V2 position is 2nd. 
                               * Tvard[k1=2][1]=3 (V3) Tvard[k1=2][2]=2(V2) */
     Tage=ivector(1,NCOVMAX); /* Gives the covariate id of covariates associated with age: V2 + V1 + age*V4 + V3*age
                            4 covariates (3 plus signs)
                            Tage[1=V3*age]= 4; Tage[2=age*V4] = 3
                         */  
   
   /* Main decodemodel */
   
   
     if(decodemodel(model, lastobs) == 1)
       goto end;
   
     if((double)(lastobs-imx)/(double)imx > 1.10){
       nbwarn++;
       printf("Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
       fprintf(ficlog,"Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
     }
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights. We can have weights different from 1 but want no weight*/
       for(i=1;i<=imx;i++) weight[i]=1.0; /* changed to imx */
     }
   
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     if(calandcheckages(imx, maxwav, &agemin, &agemax, &nberr, &nbwarn) == 1)
       goto end;
   
   
     agegomp=(int)agemin;
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
     /* */
     
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
     /* */
    
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     Ndum =ivector(-1,NCOVMAX);  
     if (ncovmodel-nagesqr > 2 ) /* That is if covariate other than cst, age and age*age */
       tricode(Tvar,nbcode,imx, Ndum); /**< Fills nbcode[Tvar[j]][l]; */
     /* Nbcode gives the value of the lth modality of jth covariate, in
        V2+V1*age, there are 3 covariates Tvar[2]=1 (V1).*/
     /* 1 to ncodemax[j] is the maximum value of this jth covariate */
   
     /*  codtab=imatrix(1,100,1,10);*/ /* codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) */
     /*printf(" codtab[1,1],codtab[100,10]=%d,%d\n", codtab[1][1],codtabm(100,10));*/
     /* codtab gives the value 1 or 2 of the hth combination of k covariates (1 or 2).*/
     h=0;
   
   
     /*if (cptcovn > 0) */
         
    
     m=pow(2,cptcoveff);
    
             /**< codtab(h,k)  k   = codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) + 1
              * For k=4 covariates, h goes from 1 to 2**k
              * codtabm(h,k)=  1 & (h-1) >> (k-1) ;
              *     h\k   1     2     3     4
              *______________________________  
              *     1 i=1 1 i=1 1 i=1 1 i=1 1
              *     2     2     1     1     1
              *     3 i=2 1     2     1     1
              *     4     2     2     1     1
              *     5 i=3 1 i=2 1     2     1
              *     6     2     1     2     1
              *     7 i=4 1     2     2     1
              *     8     2     2     2     1
              *     9 i=5 1 i=3 1 i=2 1     2
              *    10     2     1     1     2
              *    11 i=6 1     2     1     2
              *    12     2     2     1     2
              *    13 i=7 1 i=4 1     2     2    
              *    14     2     1     2     2
              *    15 i=8 1     2     2     2
              *    16     2     2     2     2
              */
     for(h=1; h <=100 ;h++){ 
       /* printf("h=%2d ", h); */
        /* for(k=1; k <=10; k++){ */
          /* printf("k=%d %d ",k,codtabm(h,k)); */
        /*   codtab[h][k]=codtabm(h,k); */
        /* } */
        /* printf("\n"); */
     }
     /* for(k=1;k<=cptcoveff; k++){ /\* scans any effective covariate *\/ */
     /*   for(i=1; i <=pow(2,cptcoveff-k);i++){ /\* i=1 to 8/1=8; i=1 to 8/2=4; i=1 to 8/8=1 *\/  */
     /*     for(j=1; j <= ncodemax[k]; j++){ /\* For each modality of this covariate ncodemax=2*\/ */
     /*    for(cpt=1; cpt <=pow(2,k-1); cpt++){  /\* cpt=1 to 8/2**(3+1-1 or 3+1-3) =1 or 4 *\/  */
     /*      h++; */
     /*      if (h>m)  */
     /*        h=1; */
     /*      codtab[h][k]=j; */
     /*      /\* codtab[12][3]=1; *\/ */
     /*      /\*codtab[h][Tvar[k]]=j;*\/ */
     /*      /\* printf("h=%d k=%d j=%d codtab[h][k]=%d Tvar[k]=%d codtab[h][Tvar[k]]=%d \n",h, k,j,codtab[h][k],Tvar[k],codtab[h][Tvar[k]]); *\/ */
     /*    }  */
     /*     } */
     /*   } */
     /* }  */
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){  */
     /*    for(k=1; k <=cptcovn; k++){ */
     /*      printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff); */
     /*    } */
     /*    printf("\n"); */
     /* } */
     /*   scanf("%d",i);*/
   
    free_ivector(Ndum,-1,NCOVMAX);
   
   
       
     /* Initialisation of ----------- gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-MORT_");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       //fprintf(ficgp,"set missing 'NaNq'\n");
       fprintf(ficgp,"set datafile missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
   
   
     /* Initialisation of --------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-MORT_");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm);
       exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
   #ifdef WIN32
     _chdir(optionfilefiname); /* Move to directory named optionfile */
   #else
     chdir(optionfilefiname); /* Move to directory named optionfile */
   #endif
             
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
     /* For mortality only */
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM); 
       /*     ximort=gsl_matrix_alloc(1,NDIM,1,NDIM); */
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       /*p[1]=0.0268; p[NDIM]=0.083;*/
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
   #ifdef GSL
       printf("GSL optimization\n");  fprintf(ficlog,"Powell\n");
   #else
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
   #endif
       strcpy(filerespow,"POW-MORT_"); 
       strcat(filerespow,fileresu);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
   #ifdef GSL
       fprintf(ficrespow,"# GSL optimization\n# iter -2*LL");
   #else
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
   #endif
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
   #ifdef GSL
       /* gsl starts here */ 
       T = gsl_multimin_fminimizer_nmsimplex;
       gsl_multimin_fminimizer *sfm = NULL;
       gsl_vector *ss, *x;
       gsl_multimin_function minex_func;
   
       /* Initial vertex size vector */
       ss = gsl_vector_alloc (NDIM);
       
       if (ss == NULL){
         GSL_ERROR_VAL ("failed to allocate space for ss", GSL_ENOMEM, 0);
       }
       /* Set all step sizes to 1 */
       gsl_vector_set_all (ss, 0.001);
   
       /* Starting point */
       
       x = gsl_vector_alloc (NDIM);
       
       if (x == NULL){
         gsl_vector_free(ss);
         GSL_ERROR_VAL ("failed to allocate space for x", GSL_ENOMEM, 0);
       }
     
       /* Initialize method and iterate */
       /*     p[1]=0.0268; p[NDIM]=0.083; */
       /*     gsl_vector_set(x, 0, 0.0268); */
       /*     gsl_vector_set(x, 1, 0.083); */
       gsl_vector_set(x, 0, p[1]);
       gsl_vector_set(x, 1, p[2]);
   
       minex_func.f = &gompertz_f;
       minex_func.n = NDIM;
       minex_func.params = (void *)&p; /* ??? */
       
       sfm = gsl_multimin_fminimizer_alloc (T, NDIM);
       gsl_multimin_fminimizer_set (sfm, &minex_func, x, ss);
       
       printf("Iterations beginning .....\n\n");
       printf("Iter. #    Intercept       Slope     -Log Likelihood     Simplex size\n");
   
       iteri=0;
       while (rval == GSL_CONTINUE){
         iteri++;
         status = gsl_multimin_fminimizer_iterate(sfm);
         
         if (status) printf("error: %s\n", gsl_strerror (status));
         fflush(0);
         
         if (status) 
           break;
         
         rval = gsl_multimin_test_size (gsl_multimin_fminimizer_size (sfm), 1e-6);
         ssval = gsl_multimin_fminimizer_size (sfm);
         
         if (rval == GSL_SUCCESS)
           printf ("converged to a local maximum at\n");
         
         printf("%5d ", iteri);
         for (it = 0; it < NDIM; it++){
           printf ("%10.5f ", gsl_vector_get (sfm->x, it));
         }
         printf("f() = %-10.5f ssize = %.7f\n", sfm->fval, ssval);
       }
       
       printf("\n\n Please note: Program should be run many times with varying starting points to detemine global maximum\n\n");
       
       gsl_vector_free(x); /* initial values */
       gsl_vector_free(ss); /* inital step size */
       for (it=0; it<NDIM; it++){
         p[it+1]=gsl_vector_get(sfm->x,it);
         fprintf(ficrespow," %.12lf", p[it]);
       }
       gsl_multimin_fminimizer_free (sfm); /* p *(sfm.x.data) et p *(sfm.x.data+1)  */
   #endif
   #ifdef POWELL
        powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
   #endif  
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) {
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
         fprintf(ficlog,"%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
       }
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       if(ageminpar == AGEOVERFLOW ||agemaxpar == AGEOVERFLOW){
           printf("Warning! Error in gnuplot file with ageminpar %f or agemaxpar %f overflow\n\
   This is probably because your parameter file doesn't \n  contain the exact number of lines (or columns) corresponding to your model line.\n\
   Please run with mle=-1 to get a correct covariance matrix.\n",ageminpar,agemaxpar);
           fprintf(ficlog,"Warning! Error in gnuplot file with ageminpar %f or agemaxpar %f overflow\n\
   This is probably because your parameter file doesn't \n  contain the exact number of lines (or columns) corresponding to your model line.\n\
   Please run with mle=-1 to get a correct covariance matrix.\n",ageminpar,agemaxpar);
       }else
         printinggnuplotmort(fileresu, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       printinghtmlmort(fileresu,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
   #ifdef GSL
       free_ivector(cens,1,n);
       free_vector(agecens,1,n);
       free_ivector(dcwave,1,n);
       free_matrix(ximort,1,NDIM,1,NDIM);
   #endif
     } /* Endof if mle==-3 mortality only */
     /* Standard maximisation */
     else{ /* For mle >=1 */
       globpr=0;/* debug */
       /* Computes likelihood for initial parameters */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* again, to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2, Real Maximisation */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=1+age+%s.\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%12.7f ",p[jk]);
               fprintf(ficlog,"%12.7f ",p[jk]);
               fprintf(ficres,"%12.7f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       printf("Parameters and 95%% confidence intervals\n W is simply the result of the division of the parameter by the square root of covariance of the parameter.\n And Wald-based confidence intervals plus and minus 1.96 * W .\n But be careful that parameters are highly correlated because incidence of disability is highly correlated to incidence of recovery.\n It might be better to visualize the covariance matrix. See the page 'Matrix of variance-covariance of one-step probabilities' and its graphs.\n");
       fprintf(ficlog, "Parameters, Wald tests and Wald-based confidence intervals\n W is simply the result of the division of the parameter by the square root of covariance of the parameter.\n And Wald-based confidence intervals plus and minus 1.96 * W \n  It might be better to visualize the covariance matrix. See the page 'Matrix of variance-covariance of one-step probabilities' and its graphs.\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%12.7f W=%8.3f CI=[%12.7f ; %12.7f] ",p[jk], p[jk]/sqrt(matcov[jk][jk]), p[jk]-1.96*sqrt(matcov[jk][jk]),p[jk]+1.96*sqrt(matcov[jk][jk]));
               fprintf(ficlog,"%12.7f W=%8.3f CI=[%12.7f ; %12.7f] ",p[jk], p[jk]/sqrt(matcov[jk][jk]), p[jk]-1.96*sqrt(matcov[jk][jk]),p[jk]+1.96*sqrt(matcov[jk][jk]));
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
           }
         }
       }
   
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
   
       /* Other stuffs, more or less useful */    
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficlog,"pop_based=%d\n",popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
        /* freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint); */
       /* ,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2); */
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       if(ageminpar == AGEOVERFLOW ||agemaxpar == -AGEOVERFLOW){
           printf("Warning! Error in gnuplot file with ageminpar %f or agemaxpar %f overflow\n\
   This is probably because your parameter file doesn't \n  contain the exact number of lines (or columns) corresponding to your model line.\n\
   Please run with mle=-1 to get a correct covariance matrix.\n",ageminpar,agemaxpar);
           fprintf(ficlog,"Warning! Error in gnuplot file with ageminpar %f or agemaxpar %f overflow\n\
   This is probably because your parameter file doesn't \n  contain the exact number of lines (or columns) corresponding to your model line.\n\
   Please run with mle=-1 to get a correct covariance matrix.\n",ageminpar,agemaxpar);
       }else
         printinggnuplot(fileresu, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileresu,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /* Other results (useful)*/
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
       /*#include "prevlim.h"*/  /* Use ficrespl, ficlog */
       prlim=matrix(1,nlstate,1,nlstate);
       prevalence_limit(p, prlim,  ageminpar, agemaxpar);
       fclose(ficrespl);
   
   #ifdef FREEEXIT2
   #include "freeexit2.h"
   #endif
   
       /*------------- h Pij x at various ages ------------*/
       /*#include "hpijx.h"*/
       hPijx(p, bage, fage);
       fclose(ficrespij);
   
     /*-------------- Variance of one-step probabilities---*/
       k=1;
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileresu, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
    
       /* ------ Other prevalence ratios------------ */
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
   
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
   
       /*---------- Health expectancies, no variances ------------*/
   
       strcpy(filerese,"E_");
       strcat(filerese,fileresu);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
           }
           fprintf(ficreseij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
         
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         /*}*/
       }
       fclose(ficreseij);
   
   
       /*---------- Health expectancies and variances ------------*/
   
   
       strcpy(filerest,"T_");
       strcat(filerest,fileresu);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
   
   
       strcpy(fileresstde,"STDE_");
       strcat(fileresstde,fileresu);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"CVE_");
       strcat(filerescve,fileresu);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"V_");
       strcat(fileresv,fileresu);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
           }
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
           /*
            */
           /* goto endfree; */
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           pstamp(ficrest);
   
   
           for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
             oldm=oldms;savm=savms; /* ZZ Segmentation fault */
             cptcod= 0; /* To be deleted */
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart); /* cptcod not initialized Intel */
             fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n#  (weighted average of eij where weights are ");
             if(vpopbased==1)
               fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav);
             else
               fprintf(ficrest,"the age specific period (stable) prevalences in each health state \n");
             fprintf(ficrest,"# Age popbased mobilav e.. (std) ");
             for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
             fprintf(ficrest,"\n");
             /* printf("Which p?\n"); for(i=1;i<=npar;i++)printf("p[i=%d]=%lf,",i,p[i]);printf("\n"); */
             epj=vector(1,nlstate+1);
             for(age=bage; age <=fage ;age++){
               prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k); /*ZZ Is it the correct prevalim */
               if (vpopbased==1) {
                 if(mobilav ==0){
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=probs[(int)age][i][k];
                 }else{ /* mobilav */ 
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=mobaverage[(int)age][i][k];
                 }
               }
           
               fprintf(ficrest," %4.0f %d %d",age, vpopbased, mobilav);
               /* printf(" age %4.0f ",age); */
               for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
                 for(i=1, epj[j]=0.;i <=nlstate;i++) {
                   epj[j] += prlim[i][i]*eij[i][j][(int)age];
                   /*ZZZ  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
                   /* printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]); */
                 }
                 epj[nlstate+1] +=epj[j];
               }
               /* printf(" age %4.0f \n",age); */
   
               for(i=1, vepp=0.;i <=nlstate;i++)
                 for(j=1;j <=nlstate;j++)
                   vepp += vareij[i][j][(int)age];
               fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
               for(j=1;j <=nlstate;j++){
                 fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
               }
               fprintf(ficrest,"\n");
             }
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         /*}*/
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,NCOVMAX,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"VPL_");
       strcat(fileresvpl,fileresu);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         /*}*/
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
     }  /* mle==-3 arrives here for freeing */
    /* endfree:*/
       free_matrix(prlim,1,nlstate,1,nlstate); /*here or after loop ? */
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,NCOVMAX);
       free_ivector(ncodemaxwundef,1,NCOVMAX);
       free_ivector(Tvar,1,NCOVMAX);
       free_ivector(Tprod,1,NCOVMAX);
       free_ivector(Tvaraff,1,NCOVMAX);
       free_ivector(Tage,1,NCOVMAX);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       /* free_imatrix(codtab,1,100,1,10); */
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     /*(void) gettimeofday(&end_time,&tzp);*/
     rend_time = time(NULL);  
     end_time = *localtime(&rend_time);
     /* tml = *localtime(&end_time.tm_sec); */
     strcpy(strtend,asctime(&end_time));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout));
   
     printf("Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time));
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout));
     fprintf(ficlog,"Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time));
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
   #ifdef WIN32
      if (_chdir(pathcd) != 0)
              printf("Can't move to directory %s!\n",path);
      if(_getcwd(pathcd,MAXLINE) > 0)
   #else
      if(chdir(pathcd) != 0)
              printf("Can't move to directory %s!\n", path);
      if (getcwd(pathcd, MAXLINE) > 0)
   #endif 
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifdef _WIN32
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error or gnuplot program not found: '%s'\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error or gnuplot program not found: '%s' Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef __unix
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: '%s'\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: '%s'\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("gnuplot command might not be in your path: '%s', err=%d\n", plotcmd, outcmd);
       printf("\n Trying if gnuplot resides on the same directory that IMaCh\n");
       sprintf(plotcmd,"%sgnuplot %s", pathimach, optionfilegnuplot);
       if((outcmd=system(plotcmd)) != 0)
         printf("\n Still a problem with gnuplot command %s, err=%d\n", plotcmd, outcmd);
     }
     printf(" Successful, please wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit results with your browser, g to graph again and q for exit: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
   #ifdef __APPLE__
         sprintf(pplotcmd, "open %s", optionfilehtm);
   #elif __linux
         sprintf(pplotcmd, "xdg-open %s", optionfilehtm);
   #else
         sprintf(pplotcmd, "%s", optionfilehtm);
   #endif
         printf("Starting browser with: %s",pplotcmd);fflush(stdout);
         system(pplotcmd);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: "); fflush(stdout);
       scanf("%s",z);
     }
   }

Removed from v.1.125  
changed lines
  Added in v.1.201


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>