Diff for /imach/src/imach.c between versions 1.35 and 1.103

version 1.35, 2002/03/26 17:08:39 version 1.103, 2005/09/30 15:54:49
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.103  2005/09/30 15:54:49  lievre
      (Module): sump fixed, loop imx fixed, and simplifications.
   This program computes Healthy Life Expectancies from  
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    Revision 1.102  2004/09/15 17:31:30  brouard
   first survey ("cross") where individuals from different ages are    Add the possibility to read data file including tab characters.
   interviewed on their health status or degree of disability (in the  
   case of a health survey which is our main interest) -2- at least a    Revision 1.101  2004/09/15 10:38:38  brouard
   second wave of interviews ("longitudinal") which measure each change    Fix on curr_time
   (if any) in individual health status.  Health expectancies are  
   computed from the time spent in each health state according to a    Revision 1.100  2004/07/12 18:29:06  brouard
   model. More health states you consider, more time is necessary to reach the    Add version for Mac OS X. Just define UNIX in Makefile
   Maximum Likelihood of the parameters involved in the model.  The  
   simplest model is the multinomial logistic model where pij is the    Revision 1.99  2004/06/05 08:57:40  brouard
   probabibility to be observed in state j at the second wave    *** empty log message ***
   conditional to be observed in state i at the first wave. Therefore  
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    Revision 1.98  2004/05/16 15:05:56  brouard
   'age' is age and 'sex' is a covariate. If you want to have a more    New version 0.97 . First attempt to estimate force of mortality
   complex model than "constant and age", you should modify the program    directly from the data i.e. without the need of knowing the health
   where the markup *Covariates have to be included here again* invites    state at each age, but using a Gompertz model: log u =a + b*age .
   you to do it.  More covariates you add, slower the    This is the basic analysis of mortality and should be done before any
   convergence.    other analysis, in order to test if the mortality estimated from the
     cross-longitudinal survey is different from the mortality estimated
   The advantage of this computer programme, compared to a simple    from other sources like vital statistic data.
   multinomial logistic model, is clear when the delay between waves is not  
   identical for each individual. Also, if a individual missed an    The same imach parameter file can be used but the option for mle should be -3.
   intermediate interview, the information is lost, but taken into  
   account using an interpolation or extrapolation.      Agnès, who wrote this part of the code, tried to keep most of the
     former routines in order to include the new code within the former code.
   hPijx is the probability to be observed in state i at age x+h  
   conditional to the observed state i at age x. The delay 'h' can be    The output is very simple: only an estimate of the intercept and of
   split into an exact number (nh*stepm) of unobserved intermediate    the slope with 95% confident intervals.
   states. This elementary transition (by month or quarter trimester,  
   semester or year) is model as a multinomial logistic.  The hPx    Current limitations:
   matrix is simply the matrix product of nh*stepm elementary matrices    A) Even if you enter covariates, i.e. with the
   and the contribution of each individual to the likelihood is simply    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
   hPijx.    B) There is no computation of Life Expectancy nor Life Table.
   
   Also this programme outputs the covariance matrix of the parameters but also    Revision 1.97  2004/02/20 13:25:42  lievre
   of the life expectancies. It also computes the prevalence limits.    Version 0.96d. Population forecasting command line is (temporarily)
      suppressed.
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).  
            Institut national d'études démographiques, Paris.    Revision 1.96  2003/07/15 15:38:55  brouard
   This software have been partly granted by Euro-REVES, a concerted action    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
   from the European Union.    rewritten within the same printf. Workaround: many printfs.
   It is copyrighted identically to a GNU software product, ie programme and  
   software can be distributed freely for non commercial use. Latest version    Revision 1.95  2003/07/08 07:54:34  brouard
   can be accessed at http://euroreves.ined.fr/imach .    * imach.c (Repository):
   **********************************************************************/    (Repository): Using imachwizard code to output a more meaningful covariance
      matrix (cov(a12,c31) instead of numbers.
 #include <math.h>  
 #include <stdio.h>    Revision 1.94  2003/06/27 13:00:02  brouard
 #include <stdlib.h>    Just cleaning
 #include <unistd.h>  
     Revision 1.93  2003/06/25 16:33:55  brouard
 #define MAXLINE 256    (Module): On windows (cygwin) function asctime_r doesn't
 #define GNUPLOTPROGRAM "wgnuplot"    exist so I changed back to asctime which exists.
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    (Module): Version 0.96b
 #define FILENAMELENGTH 80  
 /*#define DEBUG*/    Revision 1.92  2003/06/25 16:30:45  brouard
 #define windows    (Module): On windows (cygwin) function asctime_r doesn't
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    exist so I changed back to asctime which exists.
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */  
     Revision 1.91  2003/06/25 15:30:29  brouard
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    * imach.c (Repository): Duplicated warning errors corrected.
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    (Repository): Elapsed time after each iteration is now output. It
     helps to forecast when convergence will be reached. Elapsed time
 #define NINTERVMAX 8    is stamped in powell.  We created a new html file for the graphs
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    concerning matrix of covariance. It has extension -cov.htm.
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */  
 #define NCOVMAX 8 /* Maximum number of covariates */    Revision 1.90  2003/06/24 12:34:15  brouard
 #define MAXN 20000    (Module): Some bugs corrected for windows. Also, when
 #define YEARM 12. /* Number of months per year */    mle=-1 a template is output in file "or"mypar.txt with the design
 #define AGESUP 130    of the covariance matrix to be input.
 #define AGEBASE 40  
     Revision 1.89  2003/06/24 12:30:52  brouard
     (Module): Some bugs corrected for windows. Also, when
 int erreur; /* Error number */    mle=-1 a template is output in file "or"mypar.txt with the design
 int nvar;    of the covariance matrix to be input.
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;  
 int npar=NPARMAX;    Revision 1.88  2003/06/23 17:54:56  brouard
 int nlstate=2; /* Number of live states */    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
 int ndeath=1; /* Number of dead states */  
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    Revision 1.87  2003/06/18 12:26:01  brouard
 int popbased=0;    Version 0.96
   
 int *wav; /* Number of waves for this individuual 0 is possible */    Revision 1.86  2003/06/17 20:04:08  brouard
 int maxwav; /* Maxim number of waves */    (Module): Change position of html and gnuplot routines and added
 int jmin, jmax; /* min, max spacing between 2 waves */    routine fileappend.
 int mle, weightopt;  
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    Revision 1.85  2003/06/17 13:12:43  brouard
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    * imach.c (Repository): Check when date of death was earlier that
 double jmean; /* Mean space between 2 waves */    current date of interview. It may happen when the death was just
 double **oldm, **newm, **savm; /* Working pointers to matrices */    prior to the death. In this case, dh was negative and likelihood
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    was wrong (infinity). We still send an "Error" but patch by
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    assuming that the date of death was just one stepm after the
 FILE *ficgp,*ficresprob,*ficpop;    interview.
 FILE *ficreseij;    (Repository): Because some people have very long ID (first column)
   char filerese[FILENAMELENGTH];    we changed int to long in num[] and we added a new lvector for
  FILE  *ficresvij;    memory allocation. But we also truncated to 8 characters (left
   char fileresv[FILENAMELENGTH];    truncation)
  FILE  *ficresvpl;    (Repository): No more line truncation errors.
   char fileresvpl[FILENAMELENGTH];  
     Revision 1.84  2003/06/13 21:44:43  brouard
 #define NR_END 1    * imach.c (Repository): Replace "freqsummary" at a correct
 #define FREE_ARG char*    place. It differs from routine "prevalence" which may be called
 #define FTOL 1.0e-10    many times. Probs is memory consuming and must be used with
     parcimony.
 #define NRANSI    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
 #define ITMAX 200  
     Revision 1.83  2003/06/10 13:39:11  lievre
 #define TOL 2.0e-4    *** empty log message ***
   
 #define CGOLD 0.3819660    Revision 1.82  2003/06/05 15:57:20  brouard
 #define ZEPS 1.0e-10    Add log in  imach.c and  fullversion number is now printed.
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);  
   */
 #define GOLD 1.618034  /*
 #define GLIMIT 100.0     Interpolated Markov Chain
 #define TINY 1.0e-20  
     Short summary of the programme:
 static double maxarg1,maxarg2;    
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    This program computes Healthy Life Expectancies from
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
      first survey ("cross") where individuals from different ages are
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    interviewed on their health status or degree of disability (in the
 #define rint(a) floor(a+0.5)    case of a health survey which is our main interest) -2- at least a
     second wave of interviews ("longitudinal") which measure each change
 static double sqrarg;    (if any) in individual health status.  Health expectancies are
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    computed from the time spent in each health state according to a
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    model. More health states you consider, more time is necessary to reach the
     Maximum Likelihood of the parameters involved in the model.  The
 int imx;    simplest model is the multinomial logistic model where pij is the
 int stepm;    probability to be observed in state j at the second wave
 /* Stepm, step in month: minimum step interpolation*/    conditional to be observed in state i at the first wave. Therefore
     the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
 int m,nb;    'age' is age and 'sex' is a covariate. If you want to have a more
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    complex model than "constant and age", you should modify the program
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    where the markup *Covariates have to be included here again* invites
 double **pmmij, ***probs, ***mobaverage;    you to do it.  More covariates you add, slower the
 double dateintmean=0;    convergence.
   
 double *weight;    The advantage of this computer programme, compared to a simple
 int **s; /* Status */    multinomial logistic model, is clear when the delay between waves is not
 double *agedc, **covar, idx;    identical for each individual. Also, if a individual missed an
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    intermediate interview, the information is lost, but taken into
     account using an interpolation or extrapolation.  
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */  
 double ftolhess; /* Tolerance for computing hessian */    hPijx is the probability to be observed in state i at age x+h
     conditional to the observed state i at age x. The delay 'h' can be
 /**************** split *************************/    split into an exact number (nh*stepm) of unobserved intermediate
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    states. This elementary transition (by month, quarter,
 {    semester or year) is modelled as a multinomial logistic.  The hPx
    char *s;                             /* pointer */    matrix is simply the matrix product of nh*stepm elementary matrices
    int  l1, l2;                         /* length counters */    and the contribution of each individual to the likelihood is simply
     hPijx.
    l1 = strlen( path );                 /* length of path */  
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    Also this programme outputs the covariance matrix of the parameters but also
 #ifdef windows    of the life expectancies. It also computes the stable prevalence. 
    s = strrchr( path, '\\' );           /* find last / */    
 #else    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
    s = strrchr( path, '/' );            /* find last / */             Institut national d'études démographiques, Paris.
 #endif    This software have been partly granted by Euro-REVES, a concerted action
    if ( s == NULL ) {                   /* no directory, so use current */    from the European Union.
 #if     defined(__bsd__)                /* get current working directory */    It is copyrighted identically to a GNU software product, ie programme and
       extern char       *getwd( );    software can be distributed freely for non commercial use. Latest version
     can be accessed at http://euroreves.ined.fr/imach .
       if ( getwd( dirc ) == NULL ) {  
 #else    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
       extern char       *getcwd( );    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
     
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    **********************************************************************/
 #endif  /*
          return( GLOCK_ERROR_GETCWD );    main
       }    read parameterfile
       strcpy( name, path );             /* we've got it */    read datafile
    } else {                             /* strip direcotry from path */    concatwav
       s++;                              /* after this, the filename */    freqsummary
       l2 = strlen( s );                 /* length of filename */    if (mle >= 1)
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );      mlikeli
       strcpy( name, s );                /* save file name */    print results files
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    if mle==1 
       dirc[l1-l2] = 0;                  /* add zero */       computes hessian
    }    read end of parameter file: agemin, agemax, bage, fage, estepm
    l1 = strlen( dirc );                 /* length of directory */        begin-prev-date,...
 #ifdef windows    open gnuplot file
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    open html file
 #else    stable prevalence
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }     for age prevalim()
 #endif    h Pij x
    s = strrchr( name, '.' );            /* find last / */    variance of p varprob
    s++;    forecasting if prevfcast==1 prevforecast call prevalence()
    strcpy(ext,s);                       /* save extension */    health expectancies
    l1= strlen( name);    Variance-covariance of DFLE
    l2= strlen( s)+1;    prevalence()
    strncpy( finame, name, l1-l2);     movingaverage()
    finame[l1-l2]= 0;    varevsij() 
    return( 0 );                         /* we're done */    if popbased==1 varevsij(,popbased)
 }    total life expectancies
     Variance of stable prevalence
    end
 /******************************************/  */
   
 void replace(char *s, char*t)  
 {  
   int i;   
   int lg=20;  #include <math.h>
   i=0;  #include <stdio.h>
   lg=strlen(t);  #include <stdlib.h>
   for(i=0; i<= lg; i++) {  #include <unistd.h>
     (s[i] = t[i]);  
     if (t[i]== '\\') s[i]='/';  /* #include <sys/time.h> */
   }  #include <time.h>
 }  #include "timeval.h"
   
 int nbocc(char *s, char occ)  /* #include <libintl.h> */
 {  /* #define _(String) gettext (String) */
   int i,j=0;  
   int lg=20;  #define MAXLINE 256
   i=0;  #define GNUPLOTPROGRAM "gnuplot"
   lg=strlen(s);  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
   for(i=0; i<= lg; i++) {  #define FILENAMELENGTH 132
   if  (s[i] == occ ) j++;  /*#define DEBUG*/
   }  /*#define windows*/
   return j;  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
 }  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
   
 void cutv(char *u,char *v, char*t, char occ)  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
 {  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
   int i,lg,j,p=0;  
   i=0;  #define NINTERVMAX 8
   for(j=0; j<=strlen(t)-1; j++) {  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
   }  #define NCOVMAX 8 /* Maximum number of covariates */
   #define MAXN 20000
   lg=strlen(t);  #define YEARM 12. /* Number of months per year */
   for(j=0; j<p; j++) {  #define AGESUP 130
     (u[j] = t[j]);  #define AGEBASE 40
   }  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
      u[p]='\0';  #ifdef UNIX
   #define DIRSEPARATOR '/'
    for(j=0; j<= lg; j++) {  #define ODIRSEPARATOR '\\'
     if (j>=(p+1))(v[j-p-1] = t[j]);  #else
   }  #define DIRSEPARATOR '\\'
 }  #define ODIRSEPARATOR '/'
   #endif
 /********************** nrerror ********************/  
   /* $Id$ */
 void nrerror(char error_text[])  /* $State$ */
 {  
   fprintf(stderr,"ERREUR ...\n");  char version[]="Imach version 0.97c, September 2004, INED-EUROREVES ";
   fprintf(stderr,"%s\n",error_text);  char fullversion[]="$Revision$ $Date$"; 
   exit(1);  int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
 }  int nvar;
 /*********************** vector *******************/  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
 double *vector(int nl, int nh)  int npar=NPARMAX;
 {  int nlstate=2; /* Number of live states */
   double *v;  int ndeath=1; /* Number of dead states */
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
   if (!v) nrerror("allocation failure in vector");  int popbased=0;
   return v-nl+NR_END;  
 }  int *wav; /* Number of waves for this individuual 0 is possible */
   int maxwav; /* Maxim number of waves */
 /************************ free vector ******************/  int jmin, jmax; /* min, max spacing between 2 waves */
 void free_vector(double*v, int nl, int nh)  int gipmx, gsw; /* Global variables on the number of contributions 
 {                     to the likelihood and the sum of weights (done by funcone)*/
   free((FREE_ARG)(v+nl-NR_END));  int mle, weightopt;
 }  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
   int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
 /************************ivector *******************************/  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
 int *ivector(long nl,long nh)             * wave mi and wave mi+1 is not an exact multiple of stepm. */
 {  double jmean; /* Mean space between 2 waves */
   int *v;  double **oldm, **newm, **savm; /* Working pointers to matrices */
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
   if (!v) nrerror("allocation failure in ivector");  FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
   return v-nl+NR_END;  FILE *ficlog, *ficrespow;
 }  int globpr; /* Global variable for printing or not */
   double fretone; /* Only one call to likelihood */
 /******************free ivector **************************/  long ipmx; /* Number of contributions */
 void free_ivector(int *v, long nl, long nh)  double sw; /* Sum of weights */
 {  char filerespow[FILENAMELENGTH];
   free((FREE_ARG)(v+nl-NR_END));  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
 }  FILE *ficresilk;
   FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
 /******************* imatrix *******************************/  FILE *ficresprobmorprev;
 int **imatrix(long nrl, long nrh, long ncl, long nch)  FILE *fichtm, *fichtmcov; /* Html File */
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  FILE *ficreseij;
 {  char filerese[FILENAMELENGTH];
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  FILE  *ficresvij;
   int **m;  char fileresv[FILENAMELENGTH];
    FILE  *ficresvpl;
   /* allocate pointers to rows */  char fileresvpl[FILENAMELENGTH];
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  char title[MAXLINE];
   if (!m) nrerror("allocation failure 1 in matrix()");  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
   m += NR_END;  char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];
   m -= nrl;  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
    char command[FILENAMELENGTH];
    int  outcmd=0;
   /* allocate rows and set pointers to them */  
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  
   m[nrl] += NR_END;  char filelog[FILENAMELENGTH]; /* Log file */
   m[nrl] -= ncl;  char filerest[FILENAMELENGTH];
    char fileregp[FILENAMELENGTH];
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  char popfile[FILENAMELENGTH];
    
   /* return pointer to array of pointers to rows */  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
   return m;  
 }  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
   struct timezone tzp;
 /****************** free_imatrix *************************/  extern int gettimeofday();
 void free_imatrix(m,nrl,nrh,ncl,nch)  struct tm tmg, tm, tmf, *gmtime(), *localtime();
       int **m;  long time_value;
       long nch,ncl,nrh,nrl;  extern long time();
      /* free an int matrix allocated by imatrix() */  char strcurr[80], strfor[80];
 {  
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  #define NR_END 1
   free((FREE_ARG) (m+nrl-NR_END));  #define FREE_ARG char*
 }  #define FTOL 1.0e-10
   
 /******************* matrix *******************************/  #define NRANSI 
 double **matrix(long nrl, long nrh, long ncl, long nch)  #define ITMAX 200 
 {  
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  #define TOL 2.0e-4 
   double **m;  
   #define CGOLD 0.3819660 
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  #define ZEPS 1.0e-10 
   if (!m) nrerror("allocation failure 1 in matrix()");  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
   m += NR_END;  
   m -= nrl;  #define GOLD 1.618034 
   #define GLIMIT 100.0 
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  #define TINY 1.0e-20 
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  
   m[nrl] += NR_END;  static double maxarg1,maxarg2;
   m[nrl] -= ncl;  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
   #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    
   return m;  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
 }  #define rint(a) floor(a+0.5)
   
 /*************************free matrix ************************/  static double sqrarg;
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
 {  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  int agegomp= AGEGOMP;
   free((FREE_ARG)(m+nrl-NR_END));  
 }  int imx; 
   int stepm=1;
 /******************* ma3x *******************************/  /* Stepm, step in month: minimum step interpolation*/
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  
 {  int estepm;
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
   double ***m;  
   int m,nb;
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  long *num;
   if (!m) nrerror("allocation failure 1 in matrix()");  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
   m += NR_END;  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
   m -= nrl;  double **pmmij, ***probs;
   double *ageexmed,*agecens;
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  double dateintmean=0;
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  
   m[nrl] += NR_END;  double *weight;
   m[nrl] -= ncl;  int **s; /* Status */
   double *agedc, **covar, idx;
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
   
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  double ftolhess; /* Tolerance for computing hessian */
   m[nrl][ncl] += NR_END;  
   m[nrl][ncl] -= nll;  /**************** split *************************/
   for (j=ncl+1; j<=nch; j++)  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
     m[nrl][j]=m[nrl][j-1]+nlay;  {
      /* From a file name with full path (either Unix or Windows) we extract the directory (dirc)
   for (i=nrl+1; i<=nrh; i++) {       the name of the file (name), its extension only (ext) and its first part of the name (finame)
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;    */ 
     for (j=ncl+1; j<=nch; j++)    char  *ss;                            /* pointer */
       m[i][j]=m[i][j-1]+nlay;    int   l1, l2;                         /* length counters */
   }  
   return m;    l1 = strlen(path );                   /* length of path */
 }    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
     ss= strrchr( path, DIRSEPARATOR );            /* find last / */
 /*************************free ma3x ************************/    if ( ss == NULL ) {                   /* no directory, so use current */
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
 {        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));      /* get current working directory */
   free((FREE_ARG)(m[nrl]+ncl-NR_END));      /*    extern  char* getcwd ( char *buf , int len);*/
   free((FREE_ARG)(m+nrl-NR_END));      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
 }        return( GLOCK_ERROR_GETCWD );
       }
 /***************** f1dim *************************/      strcpy( name, path );               /* we've got it */
 extern int ncom;    } else {                              /* strip direcotry from path */
 extern double *pcom,*xicom;      ss++;                               /* after this, the filename */
 extern double (*nrfunc)(double []);      l2 = strlen( ss );                  /* length of filename */
        if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
 double f1dim(double x)      strcpy( name, ss );         /* save file name */
 {      strncpy( dirc, path, l1 - l2 );     /* now the directory */
   int j;      dirc[l1-l2] = 0;                    /* add zero */
   double f;    }
   double *xt;    l1 = strlen( dirc );                  /* length of directory */
      /*#ifdef windows
   xt=vector(1,ncom);    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  #else
   f=(*nrfunc)(xt);    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }
   free_vector(xt,1,ncom);  #endif
   return f;    */
 }    ss = strrchr( name, '.' );            /* find last / */
     if (ss >0){
 /*****************brent *************************/      ss++;
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)      strcpy(ext,ss);                     /* save extension */
 {      l1= strlen( name);
   int iter;      l2= strlen(ss)+1;
   double a,b,d,etemp;      strncpy( finame, name, l1-l2);
   double fu,fv,fw,fx;      finame[l1-l2]= 0;
   double ftemp;    }
   double p,q,r,tol1,tol2,u,v,w,x,xm;    return( 0 );                          /* we're done */
   double e=0.0;  }
    
   a=(ax < cx ? ax : cx);  
   b=(ax > cx ? ax : cx);  /******************************************/
   x=w=v=bx;  
   fw=fv=fx=(*f)(x);  void replace_back_to_slash(char *s, char*t)
   for (iter=1;iter<=ITMAX;iter++) {  {
     xm=0.5*(a+b);    int i;
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);    int lg=0;
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/    i=0;
     printf(".");fflush(stdout);    lg=strlen(t);
 #ifdef DEBUG    for(i=0; i<= lg; i++) {
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);      (s[i] = t[i]);
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */      if (t[i]== '\\') s[i]='/';
 #endif    }
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  }
       *xmin=x;  
       return fx;  int nbocc(char *s, char occ)
     }  {
     ftemp=fu;    int i,j=0;
     if (fabs(e) > tol1) {    int lg=20;
       r=(x-w)*(fx-fv);    i=0;
       q=(x-v)*(fx-fw);    lg=strlen(s);
       p=(x-v)*q-(x-w)*r;    for(i=0; i<= lg; i++) {
       q=2.0*(q-r);    if  (s[i] == occ ) j++;
       if (q > 0.0) p = -p;    }
       q=fabs(q);    return j;
       etemp=e;  }
       e=d;  
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  void cutv(char *u,char *v, char*t, char occ)
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  {
       else {    /* cuts string t into u and v where u ends before first occurence of char 'occ' 
         d=p/q;       and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
         u=x+d;       gives u="abcedf" and v="ghi2j" */
         if (u-a < tol2 || b-u < tol2)    int i,lg,j,p=0;
           d=SIGN(tol1,xm-x);    i=0;
       }    for(j=0; j<=strlen(t)-1; j++) {
     } else {      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
       d=CGOLD*(e=(x >= xm ? a-x : b-x));    }
     }  
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));    lg=strlen(t);
     fu=(*f)(u);    for(j=0; j<p; j++) {
     if (fu <= fx) {      (u[j] = t[j]);
       if (u >= x) a=x; else b=x;    }
       SHFT(v,w,x,u)       u[p]='\0';
         SHFT(fv,fw,fx,fu)  
         } else {     for(j=0; j<= lg; j++) {
           if (u < x) a=u; else b=u;      if (j>=(p+1))(v[j-p-1] = t[j]);
           if (fu <= fw || w == x) {    }
             v=w;  }
             w=u;  
             fv=fw;  /********************** nrerror ********************/
             fw=fu;  
           } else if (fu <= fv || v == x || v == w) {  void nrerror(char error_text[])
             v=u;  {
             fv=fu;    fprintf(stderr,"ERREUR ...\n");
           }    fprintf(stderr,"%s\n",error_text);
         }    exit(EXIT_FAILURE);
   }  }
   nrerror("Too many iterations in brent");  /*********************** vector *******************/
   *xmin=x;  double *vector(int nl, int nh)
   return fx;  {
 }    double *v;
     v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
 /****************** mnbrak ***********************/    if (!v) nrerror("allocation failure in vector");
     return v-nl+NR_END;
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  }
             double (*func)(double))  
 {  /************************ free vector ******************/
   double ulim,u,r,q, dum;  void free_vector(double*v, int nl, int nh)
   double fu;  {
      free((FREE_ARG)(v+nl-NR_END));
   *fa=(*func)(*ax);  }
   *fb=(*func)(*bx);  
   if (*fb > *fa) {  /************************ivector *******************************/
     SHFT(dum,*ax,*bx,dum)  int *ivector(long nl,long nh)
       SHFT(dum,*fb,*fa,dum)  {
       }    int *v;
   *cx=(*bx)+GOLD*(*bx-*ax);    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
   *fc=(*func)(*cx);    if (!v) nrerror("allocation failure in ivector");
   while (*fb > *fc) {    return v-nl+NR_END;
     r=(*bx-*ax)*(*fb-*fc);  }
     q=(*bx-*cx)*(*fb-*fa);  
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/  /******************free ivector **************************/
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  void free_ivector(int *v, long nl, long nh)
     ulim=(*bx)+GLIMIT*(*cx-*bx);  {
     if ((*bx-u)*(u-*cx) > 0.0) {    free((FREE_ARG)(v+nl-NR_END));
       fu=(*func)(u);  }
     } else if ((*cx-u)*(u-ulim) > 0.0) {  
       fu=(*func)(u);  /************************lvector *******************************/
       if (fu < *fc) {  long *lvector(long nl,long nh)
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))  {
           SHFT(*fb,*fc,fu,(*func)(u))    long *v;
           }    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {    if (!v) nrerror("allocation failure in ivector");
       u=ulim;    return v-nl+NR_END;
       fu=(*func)(u);  }
     } else {  
       u=(*cx)+GOLD*(*cx-*bx);  /******************free lvector **************************/
       fu=(*func)(u);  void free_lvector(long *v, long nl, long nh)
     }  {
     SHFT(*ax,*bx,*cx,u)    free((FREE_ARG)(v+nl-NR_END));
       SHFT(*fa,*fb,*fc,fu)  }
       }  
 }  /******************* imatrix *******************************/
   int **imatrix(long nrl, long nrh, long ncl, long nch) 
 /*************** linmin ************************/       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
   { 
 int ncom;    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
 double *pcom,*xicom;    int **m; 
 double (*nrfunc)(double []);    
      /* allocate pointers to rows */ 
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
 {    if (!m) nrerror("allocation failure 1 in matrix()"); 
   double brent(double ax, double bx, double cx,    m += NR_END; 
                double (*f)(double), double tol, double *xmin);    m -= nrl; 
   double f1dim(double x);    
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,    
               double *fc, double (*func)(double));    /* allocate rows and set pointers to them */ 
   int j;    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
   double xx,xmin,bx,ax;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
   double fx,fb,fa;    m[nrl] += NR_END; 
      m[nrl] -= ncl; 
   ncom=n;    
   pcom=vector(1,n);    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
   xicom=vector(1,n);    
   nrfunc=func;    /* return pointer to array of pointers to rows */ 
   for (j=1;j<=n;j++) {    return m; 
     pcom[j]=p[j];  } 
     xicom[j]=xi[j];  
   }  /****************** free_imatrix *************************/
   ax=0.0;  void free_imatrix(m,nrl,nrh,ncl,nch)
   xx=1.0;        int **m;
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);        long nch,ncl,nrh,nrl; 
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);       /* free an int matrix allocated by imatrix() */ 
 #ifdef DEBUG  { 
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
 #endif    free((FREE_ARG) (m+nrl-NR_END)); 
   for (j=1;j<=n;j++) {  } 
     xi[j] *= xmin;  
     p[j] += xi[j];  /******************* matrix *******************************/
   }  double **matrix(long nrl, long nrh, long ncl, long nch)
   free_vector(xicom,1,n);  {
   free_vector(pcom,1,n);    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
 }    double **m;
   
 /*************** powell ************************/    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,    if (!m) nrerror("allocation failure 1 in matrix()");
             double (*func)(double []))    m += NR_END;
 {    m -= nrl;
   void linmin(double p[], double xi[], int n, double *fret,  
               double (*func)(double []));    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   int i,ibig,j;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   double del,t,*pt,*ptt,*xit;    m[nrl] += NR_END;
   double fp,fptt;    m[nrl] -= ncl;
   double *xits;  
   pt=vector(1,n);    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   ptt=vector(1,n);    return m;
   xit=vector(1,n);    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
   xits=vector(1,n);     */
   *fret=(*func)(p);  }
   for (j=1;j<=n;j++) pt[j]=p[j];  
   for (*iter=1;;++(*iter)) {  /*************************free matrix ************************/
     fp=(*fret);  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
     ibig=0;  {
     del=0.0;    free((FREE_ARG)(m[nrl]+ncl-NR_END));
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);    free((FREE_ARG)(m+nrl-NR_END));
     for (i=1;i<=n;i++)  }
       printf(" %d %.12f",i, p[i]);  
     printf("\n");  /******************* ma3x *******************************/
     for (i=1;i<=n;i++) {  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
       for (j=1;j<=n;j++) xit[j]=xi[j][i];  {
       fptt=(*fret);    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
 #ifdef DEBUG    double ***m;
       printf("fret=%lf \n",*fret);  
 #endif    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
       printf("%d",i);fflush(stdout);    if (!m) nrerror("allocation failure 1 in matrix()");
       linmin(p,xit,n,fret,func);    m += NR_END;
       if (fabs(fptt-(*fret)) > del) {    m -= nrl;
         del=fabs(fptt-(*fret));  
         ibig=i;    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
       }    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
 #ifdef DEBUG    m[nrl] += NR_END;
       printf("%d %.12e",i,(*fret));    m[nrl] -= ncl;
       for (j=1;j<=n;j++) {  
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
         printf(" x(%d)=%.12e",j,xit[j]);  
       }    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
       for(j=1;j<=n;j++)    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
         printf(" p=%.12e",p[j]);    m[nrl][ncl] += NR_END;
       printf("\n");    m[nrl][ncl] -= nll;
 #endif    for (j=ncl+1; j<=nch; j++) 
     }      m[nrl][j]=m[nrl][j-1]+nlay;
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {    
 #ifdef DEBUG    for (i=nrl+1; i<=nrh; i++) {
       int k[2],l;      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
       k[0]=1;      for (j=ncl+1; j<=nch; j++) 
       k[1]=-1;        m[i][j]=m[i][j-1]+nlay;
       printf("Max: %.12e",(*func)(p));    }
       for (j=1;j<=n;j++)    return m; 
         printf(" %.12e",p[j]);    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
       printf("\n");             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
       for(l=0;l<=1;l++) {    */
         for (j=1;j<=n;j++) {  }
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];  
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  /*************************free ma3x ************************/
         }  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  {
       }    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
 #endif    free((FREE_ARG)(m[nrl]+ncl-NR_END));
     free((FREE_ARG)(m+nrl-NR_END));
   }
       free_vector(xit,1,n);  
       free_vector(xits,1,n);  /*************** function subdirf ***********/
       free_vector(ptt,1,n);  char *subdirf(char fileres[])
       free_vector(pt,1,n);  {
       return;    /* Caution optionfilefiname is hidden */
     }    strcpy(tmpout,optionfilefiname);
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");    strcat(tmpout,"/"); /* Add to the right */
     for (j=1;j<=n;j++) {    strcat(tmpout,fileres);
       ptt[j]=2.0*p[j]-pt[j];    return tmpout;
       xit[j]=p[j]-pt[j];  }
       pt[j]=p[j];  
     }  /*************** function subdirf2 ***********/
     fptt=(*func)(ptt);  char *subdirf2(char fileres[], char *preop)
     if (fptt < fp) {  {
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);    
       if (t < 0.0) {    /* Caution optionfilefiname is hidden */
         linmin(p,xit,n,fret,func);    strcpy(tmpout,optionfilefiname);
         for (j=1;j<=n;j++) {    strcat(tmpout,"/");
           xi[j][ibig]=xi[j][n];    strcat(tmpout,preop);
           xi[j][n]=xit[j];    strcat(tmpout,fileres);
         }    return tmpout;
 #ifdef DEBUG  }
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  
         for(j=1;j<=n;j++)  /*************** function subdirf3 ***********/
           printf(" %.12e",xit[j]);  char *subdirf3(char fileres[], char *preop, char *preop2)
         printf("\n");  {
 #endif    
       }    /* Caution optionfilefiname is hidden */
     }    strcpy(tmpout,optionfilefiname);
   }    strcat(tmpout,"/");
 }    strcat(tmpout,preop);
     strcat(tmpout,preop2);
 /**** Prevalence limit ****************/    strcat(tmpout,fileres);
     return tmpout;
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)  }
 {  
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit  /***************** f1dim *************************/
      matrix by transitions matrix until convergence is reached */  extern int ncom; 
   extern double *pcom,*xicom;
   int i, ii,j,k;  extern double (*nrfunc)(double []); 
   double min, max, maxmin, maxmax,sumnew=0.;   
   double **matprod2();  double f1dim(double x) 
   double **out, cov[NCOVMAX], **pmij();  { 
   double **newm;    int j; 
   double agefin, delaymax=50 ; /* Max number of years to converge */    double f;
     double *xt; 
   for (ii=1;ii<=nlstate+ndeath;ii++)   
     for (j=1;j<=nlstate+ndeath;j++){    xt=vector(1,ncom); 
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
     }    f=(*nrfunc)(xt); 
     free_vector(xt,1,ncom); 
    cov[1]=1.;    return f; 
    } 
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */  
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){  /*****************brent *************************/
     newm=savm;  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
     /* Covariates have to be included here again */  { 
      cov[2]=agefin;    int iter; 
      double a,b,d,etemp;
       for (k=1; k<=cptcovn;k++) {    double fu,fv,fw,fx;
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    double ftemp;
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/    double p,q,r,tol1,tol2,u,v,w,x,xm; 
       }    double e=0.0; 
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];   
       for (k=1; k<=cptcovprod;k++)    a=(ax < cx ? ax : cx); 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    b=(ax > cx ? ax : cx); 
     x=w=v=bx; 
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/    fw=fv=fx=(*f)(x); 
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/    for (iter=1;iter<=ITMAX;iter++) { 
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/      xm=0.5*(a+b); 
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
       /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
     savm=oldm;      printf(".");fflush(stdout);
     oldm=newm;      fprintf(ficlog,".");fflush(ficlog);
     maxmax=0.;  #ifdef DEBUG
     for(j=1;j<=nlstate;j++){      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       min=1.;      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       max=0.;      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
       for(i=1; i<=nlstate; i++) {  #endif
         sumnew=0;      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];        *xmin=x; 
         prlim[i][j]= newm[i][j]/(1-sumnew);        return fx; 
         max=FMAX(max,prlim[i][j]);      } 
         min=FMIN(min,prlim[i][j]);      ftemp=fu;
       }      if (fabs(e) > tol1) { 
       maxmin=max-min;        r=(x-w)*(fx-fv); 
       maxmax=FMAX(maxmax,maxmin);        q=(x-v)*(fx-fw); 
     }        p=(x-v)*q-(x-w)*r; 
     if(maxmax < ftolpl){        q=2.0*(q-r); 
       return prlim;        if (q > 0.0) p = -p; 
     }        q=fabs(q); 
   }        etemp=e; 
 }        e=d; 
         if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
 /*************** transition probabilities ***************/          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
         else { 
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )          d=p/q; 
 {          u=x+d; 
   double s1, s2;          if (u-a < tol2 || b-u < tol2) 
   /*double t34;*/            d=SIGN(tol1,xm-x); 
   int i,j,j1, nc, ii, jj;        } 
       } else { 
     for(i=1; i<= nlstate; i++){        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
     for(j=1; j<i;j++){      } 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
         /*s2 += param[i][j][nc]*cov[nc];*/      fu=(*f)(u); 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];      if (fu <= fx) { 
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/        if (u >= x) a=x; else b=x; 
       }        SHFT(v,w,x,u) 
       ps[i][j]=s2;          SHFT(fv,fw,fx,fu) 
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/          } else { 
     }            if (u < x) a=u; else b=u; 
     for(j=i+1; j<=nlstate+ndeath;j++){            if (fu <= fw || w == x) { 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){              v=w; 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];              w=u; 
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/              fv=fw; 
       }              fw=fu; 
       ps[i][j]=s2;            } else if (fu <= fv || v == x || v == w) { 
     }              v=u; 
   }              fv=fu; 
     /*ps[3][2]=1;*/            } 
           } 
   for(i=1; i<= nlstate; i++){    } 
      s1=0;    nrerror("Too many iterations in brent"); 
     for(j=1; j<i; j++)    *xmin=x; 
       s1+=exp(ps[i][j]);    return fx; 
     for(j=i+1; j<=nlstate+ndeath; j++)  } 
       s1+=exp(ps[i][j]);  
     ps[i][i]=1./(s1+1.);  /****************** mnbrak ***********************/
     for(j=1; j<i; j++)  
       ps[i][j]= exp(ps[i][j])*ps[i][i];  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
     for(j=i+1; j<=nlstate+ndeath; j++)              double (*func)(double)) 
       ps[i][j]= exp(ps[i][j])*ps[i][i];  { 
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */    double ulim,u,r,q, dum;
   } /* end i */    double fu; 
    
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){    *fa=(*func)(*ax); 
     for(jj=1; jj<= nlstate+ndeath; jj++){    *fb=(*func)(*bx); 
       ps[ii][jj]=0;    if (*fb > *fa) { 
       ps[ii][ii]=1;      SHFT(dum,*ax,*bx,dum) 
     }        SHFT(dum,*fb,*fa,dum) 
   }        } 
     *cx=(*bx)+GOLD*(*bx-*ax); 
     *fc=(*func)(*cx); 
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){    while (*fb > *fc) { 
     for(jj=1; jj<= nlstate+ndeath; jj++){      r=(*bx-*ax)*(*fb-*fc); 
      printf("%lf ",ps[ii][jj]);      q=(*bx-*cx)*(*fb-*fa); 
    }      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
     printf("\n ");        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
     }      ulim=(*bx)+GLIMIT*(*cx-*bx); 
     printf("\n ");printf("%lf ",cov[2]);*/      if ((*bx-u)*(u-*cx) > 0.0) { 
 /*        fu=(*func)(u); 
   for(i=1; i<= npar; i++) printf("%f ",x[i]);      } else if ((*cx-u)*(u-ulim) > 0.0) { 
   goto end;*/        fu=(*func)(u); 
     return ps;        if (fu < *fc) { 
 }          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
             SHFT(*fb,*fc,fu,(*func)(u)) 
 /**************** Product of 2 matrices ******************/            } 
       } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)        u=ulim; 
 {        fu=(*func)(u); 
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times      } else { 
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */        u=(*cx)+GOLD*(*cx-*bx); 
   /* in, b, out are matrice of pointers which should have been initialized        fu=(*func)(u); 
      before: only the contents of out is modified. The function returns      } 
      a pointer to pointers identical to out */      SHFT(*ax,*bx,*cx,u) 
   long i, j, k;        SHFT(*fa,*fb,*fc,fu) 
   for(i=nrl; i<= nrh; i++)        } 
     for(k=ncolol; k<=ncoloh; k++)  } 
       for(j=ncl,out[i][k]=0.; j<=nch; j++)  
         out[i][k] +=in[i][j]*b[j][k];  /*************** linmin ************************/
   
   return out;  int ncom; 
 }  double *pcom,*xicom;
   double (*nrfunc)(double []); 
    
 /************* Higher Matrix Product ***************/  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
   { 
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )    double brent(double ax, double bx, double cx, 
 {                 double (*f)(double), double tol, double *xmin); 
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month    double f1dim(double x); 
      duration (i.e. until    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.                double *fc, double (*func)(double)); 
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step    int j; 
      (typically every 2 years instead of every month which is too big).    double xx,xmin,bx,ax; 
      Model is determined by parameters x and covariates have to be    double fx,fb,fa;
      included manually here.   
     ncom=n; 
      */    pcom=vector(1,n); 
     xicom=vector(1,n); 
   int i, j, d, h, k;    nrfunc=func; 
   double **out, cov[NCOVMAX];    for (j=1;j<=n;j++) { 
   double **newm;      pcom[j]=p[j]; 
       xicom[j]=xi[j]; 
   /* Hstepm could be zero and should return the unit matrix */    } 
   for (i=1;i<=nlstate+ndeath;i++)    ax=0.0; 
     for (j=1;j<=nlstate+ndeath;j++){    xx=1.0; 
       oldm[i][j]=(i==j ? 1.0 : 0.0);    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
       po[i][j][0]=(i==j ? 1.0 : 0.0);    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
     }  #ifdef DEBUG
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   for(h=1; h <=nhstepm; h++){    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
     for(d=1; d <=hstepm; d++){  #endif
       newm=savm;    for (j=1;j<=n;j++) { 
       /* Covariates have to be included here again */      xi[j] *= xmin; 
       cov[1]=1.;      p[j] += xi[j]; 
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;    } 
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    free_vector(xicom,1,n); 
       for (k=1; k<=cptcovage;k++)    free_vector(pcom,1,n); 
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  } 
       for (k=1; k<=cptcovprod;k++)  
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  char *asc_diff_time(long time_sec, char ascdiff[])
   {
     long sec_left, days, hours, minutes;
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/    days = (time_sec) / (60*60*24);
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/    sec_left = (time_sec) % (60*60*24);
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,    hours = (sec_left) / (60*60) ;
                    pmij(pmmij,cov,ncovmodel,x,nlstate));    sec_left = (sec_left) %(60*60);
       savm=oldm;    minutes = (sec_left) /60;
       oldm=newm;    sec_left = (sec_left) % (60);
     }    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
     for(i=1; i<=nlstate+ndeath; i++)    return ascdiff;
       for(j=1;j<=nlstate+ndeath;j++) {  }
         po[i][j][h]=newm[i][j];  
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);  /*************** powell ************************/
          */  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
       }              double (*func)(double [])) 
   } /* end h */  { 
   return po;    void linmin(double p[], double xi[], int n, double *fret, 
 }                double (*func)(double [])); 
     int i,ibig,j; 
     double del,t,*pt,*ptt,*xit;
 /*************** log-likelihood *************/    double fp,fptt;
 double func( double *x)    double *xits;
 {    int niterf, itmp;
   int i, ii, j, k, mi, d, kk;  
   double l, ll[NLSTATEMAX], cov[NCOVMAX];    pt=vector(1,n); 
   double **out;    ptt=vector(1,n); 
   double sw; /* Sum of weights */    xit=vector(1,n); 
   double lli; /* Individual log likelihood */    xits=vector(1,n); 
   long ipmx;    *fret=(*func)(p); 
   /*extern weight */    for (j=1;j<=n;j++) pt[j]=p[j]; 
   /* We are differentiating ll according to initial status */    for (*iter=1;;++(*iter)) { 
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/      fp=(*fret); 
   /*for(i=1;i<imx;i++)      ibig=0; 
     printf(" %d\n",s[4][i]);      del=0.0; 
   */      last_time=curr_time;
   cov[1]=1.;      (void) gettimeofday(&curr_time,&tzp);
       printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
   for(k=1; k<=nlstate; k++) ll[k]=0.;      /*    fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){      fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];      */
     for(mi=1; mi<= wav[i]-1; mi++){     for (i=1;i<=n;i++) {
       for (ii=1;ii<=nlstate+ndeath;ii++)        printf(" %d %.12f",i, p[i]);
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);        fprintf(ficlog," %d %.12lf",i, p[i]);
       for(d=0; d<dh[mi][i]; d++){        fprintf(ficrespow," %.12lf", p[i]);
         newm=savm;      }
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;      printf("\n");
         for (kk=1; kk<=cptcovage;kk++) {      fprintf(ficlog,"\n");
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];      fprintf(ficrespow,"\n");fflush(ficrespow);
         }      if(*iter <=3){
                tm = *localtime(&curr_time.tv_sec);
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,        strcpy(strcurr,asctime(&tm));
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));  /*       asctime_r(&tm,strcurr); */
         savm=oldm;        forecast_time=curr_time; 
         oldm=newm;        itmp = strlen(strcurr);
                if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
                  strcurr[itmp-1]='\0';
       } /* end mult */        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
              fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);        for(niterf=10;niterf<=30;niterf+=10){
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
       ipmx +=1;          tmf = *localtime(&forecast_time.tv_sec);
       sw += weight[i];  /*      asctime_r(&tmf,strfor); */
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;          strcpy(strfor,asctime(&tmf));
     } /* end of wave */          itmp = strlen(strfor);
   } /* end of individual */          if(strfor[itmp-1]=='\n')
           strfor[itmp-1]='\0';
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */        }
   return -l;      }
 }      for (i=1;i<=n;i++) { 
         for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
         fptt=(*fret); 
 /*********** Maximum Likelihood Estimation ***************/  #ifdef DEBUG
         printf("fret=%lf \n",*fret);
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))        fprintf(ficlog,"fret=%lf \n",*fret);
 {  #endif
   int i,j, iter;        printf("%d",i);fflush(stdout);
   double **xi,*delti;        fprintf(ficlog,"%d",i);fflush(ficlog);
   double fret;        linmin(p,xit,n,fret,func); 
   xi=matrix(1,npar,1,npar);        if (fabs(fptt-(*fret)) > del) { 
   for (i=1;i<=npar;i++)          del=fabs(fptt-(*fret)); 
     for (j=1;j<=npar;j++)          ibig=i; 
       xi[i][j]=(i==j ? 1.0 : 0.0);        } 
   printf("Powell\n");  #ifdef DEBUG
   powell(p,xi,npar,ftol,&iter,&fret,func);        printf("%d %.12e",i,(*fret));
         fprintf(ficlog,"%d %.12e",i,(*fret));
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));        for (j=1;j<=n;j++) {
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
           printf(" x(%d)=%.12e",j,xit[j]);
 }          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
         }
 /**** Computes Hessian and covariance matrix ***/        for(j=1;j<=n;j++) {
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))          printf(" p=%.12e",p[j]);
 {          fprintf(ficlog," p=%.12e",p[j]);
   double  **a,**y,*x,pd;        }
   double **hess;        printf("\n");
   int i, j,jk;        fprintf(ficlog,"\n");
   int *indx;  #endif
       } 
   double hessii(double p[], double delta, int theta, double delti[]);      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
   double hessij(double p[], double delti[], int i, int j);  #ifdef DEBUG
   void lubksb(double **a, int npar, int *indx, double b[]) ;        int k[2],l;
   void ludcmp(double **a, int npar, int *indx, double *d) ;        k[0]=1;
         k[1]=-1;
   hess=matrix(1,npar,1,npar);        printf("Max: %.12e",(*func)(p));
         fprintf(ficlog,"Max: %.12e",(*func)(p));
   printf("\nCalculation of the hessian matrix. Wait...\n");        for (j=1;j<=n;j++) {
   for (i=1;i<=npar;i++){          printf(" %.12e",p[j]);
     printf("%d",i);fflush(stdout);          fprintf(ficlog," %.12e",p[j]);
     hess[i][i]=hessii(p,ftolhess,i,delti);        }
     /*printf(" %f ",p[i]);*/        printf("\n");
     /*printf(" %lf ",hess[i][i]);*/        fprintf(ficlog,"\n");
   }        for(l=0;l<=1;l++) {
            for (j=1;j<=n;j++) {
   for (i=1;i<=npar;i++) {            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
     for (j=1;j<=npar;j++)  {            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
       if (j>i) {            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
         printf(".%d%d",i,j);fflush(stdout);          }
         hess[i][j]=hessij(p,delti,i,j);          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
         hess[j][i]=hess[i][j];              fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
         /*printf(" %lf ",hess[i][j]);*/        }
       }  #endif
     }  
   }  
   printf("\n");        free_vector(xit,1,n); 
         free_vector(xits,1,n); 
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");        free_vector(ptt,1,n); 
          free_vector(pt,1,n); 
   a=matrix(1,npar,1,npar);        return; 
   y=matrix(1,npar,1,npar);      } 
   x=vector(1,npar);      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
   indx=ivector(1,npar);      for (j=1;j<=n;j++) { 
   for (i=1;i<=npar;i++)        ptt[j]=2.0*p[j]-pt[j]; 
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];        xit[j]=p[j]-pt[j]; 
   ludcmp(a,npar,indx,&pd);        pt[j]=p[j]; 
       } 
   for (j=1;j<=npar;j++) {      fptt=(*func)(ptt); 
     for (i=1;i<=npar;i++) x[i]=0;      if (fptt < fp) { 
     x[j]=1;        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
     lubksb(a,npar,indx,x);        if (t < 0.0) { 
     for (i=1;i<=npar;i++){          linmin(p,xit,n,fret,func); 
       matcov[i][j]=x[i];          for (j=1;j<=n;j++) { 
     }            xi[j][ibig]=xi[j][n]; 
   }            xi[j][n]=xit[j]; 
           }
   printf("\n#Hessian matrix#\n");  #ifdef DEBUG
   for (i=1;i<=npar;i++) {          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
     for (j=1;j<=npar;j++) {          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
       printf("%.3e ",hess[i][j]);          for(j=1;j<=n;j++){
     }            printf(" %.12e",xit[j]);
     printf("\n");            fprintf(ficlog," %.12e",xit[j]);
   }          }
           printf("\n");
   /* Recompute Inverse */          fprintf(ficlog,"\n");
   for (i=1;i<=npar;i++)  #endif
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];        }
   ludcmp(a,npar,indx,&pd);      } 
     } 
   /*  printf("\n#Hessian matrix recomputed#\n");  } 
   
   for (j=1;j<=npar;j++) {  /**** Prevalence limit (stable prevalence)  ****************/
     for (i=1;i<=npar;i++) x[i]=0;  
     x[j]=1;  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
     lubksb(a,npar,indx,x);  {
     for (i=1;i<=npar;i++){    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
       y[i][j]=x[i];       matrix by transitions matrix until convergence is reached */
       printf("%.3e ",y[i][j]);  
     }    int i, ii,j,k;
     printf("\n");    double min, max, maxmin, maxmax,sumnew=0.;
   }    double **matprod2();
   */    double **out, cov[NCOVMAX], **pmij();
     double **newm;
   free_matrix(a,1,npar,1,npar);    double agefin, delaymax=50 ; /* Max number of years to converge */
   free_matrix(y,1,npar,1,npar);  
   free_vector(x,1,npar);    for (ii=1;ii<=nlstate+ndeath;ii++)
   free_ivector(indx,1,npar);      for (j=1;j<=nlstate+ndeath;j++){
   free_matrix(hess,1,npar,1,npar);        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       }
   
 }     cov[1]=1.;
    
 /*************** hessian matrix ****************/   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
 double hessii( double x[], double delta, int theta, double delti[])    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
 {      newm=savm;
   int i;      /* Covariates have to be included here again */
   int l=1, lmax=20;       cov[2]=agefin;
   double k1,k2;    
   double p2[NPARMAX+1];        for (k=1; k<=cptcovn;k++) {
   double res;          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
   double fx;        }
   int k=0,kmax=10;        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   double l1;        for (k=1; k<=cptcovprod;k++)
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   fx=func(x);  
   for (i=1;i<=npar;i++) p2[i]=x[i];        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
   for(l=0 ; l <=lmax; l++){        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
     l1=pow(10,l);        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
     delts=delt;      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
     for(k=1 ; k <kmax; k=k+1){  
       delt = delta*(l1*k);      savm=oldm;
       p2[theta]=x[theta] +delt;      oldm=newm;
       k1=func(p2)-fx;      maxmax=0.;
       p2[theta]=x[theta]-delt;      for(j=1;j<=nlstate;j++){
       k2=func(p2)-fx;        min=1.;
       /*res= (k1-2.0*fx+k2)/delt/delt; */        max=0.;
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */        for(i=1; i<=nlstate; i++) {
                sumnew=0;
 #ifdef DEBUG          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);          prlim[i][j]= newm[i][j]/(1-sumnew);
 #endif          max=FMAX(max,prlim[i][j]);
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */          min=FMIN(min,prlim[i][j]);
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){        }
         k=kmax;        maxmin=max-min;
       }        maxmax=FMAX(maxmax,maxmin);
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */      }
         k=kmax; l=lmax*10.;      if(maxmax < ftolpl){
       }        return prlim;
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){      }
         delts=delt;    }
       }  }
     }  
   }  /*************** transition probabilities ***************/ 
   delti[theta]=delts;  
   return res;  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
    {
 }    double s1, s2;
     /*double t34;*/
 double hessij( double x[], double delti[], int thetai,int thetaj)    int i,j,j1, nc, ii, jj;
 {  
   int i;      for(i=1; i<= nlstate; i++){
   int l=1, l1, lmax=20;        for(j=1; j<i;j++){
   double k1,k2,k3,k4,res,fx;          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
   double p2[NPARMAX+1];            /*s2 += param[i][j][nc]*cov[nc];*/
   int k;            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
   /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
   fx=func(x);          }
   for (k=1; k<=2; k++) {          ps[i][j]=s2;
     for (i=1;i<=npar;i++) p2[i]=x[i];  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
     p2[thetai]=x[thetai]+delti[thetai]/k;        }
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;        for(j=i+1; j<=nlstate+ndeath;j++){
     k1=func(p2)-fx;          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
              s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
     p2[thetai]=x[thetai]+delti[thetai]/k;  /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;          }
     k2=func(p2)-fx;          ps[i][j]=s2;
          }
     p2[thetai]=x[thetai]-delti[thetai]/k;      }
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;      /*ps[3][2]=1;*/
     k3=func(p2)-fx;      
        for(i=1; i<= nlstate; i++){
     p2[thetai]=x[thetai]-delti[thetai]/k;        s1=0;
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;        for(j=1; j<i; j++)
     k4=func(p2)-fx;          s1+=exp(ps[i][j]);
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */        for(j=i+1; j<=nlstate+ndeath; j++)
 #ifdef DEBUG          s1+=exp(ps[i][j]);
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);        ps[i][i]=1./(s1+1.);
 #endif        for(j=1; j<i; j++)
   }          ps[i][j]= exp(ps[i][j])*ps[i][i];
   return res;        for(j=i+1; j<=nlstate+ndeath; j++)
 }          ps[i][j]= exp(ps[i][j])*ps[i][i];
         /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
 /************** Inverse of matrix **************/      } /* end i */
 void ludcmp(double **a, int n, int *indx, double *d)      
 {      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
   int i,imax,j,k;        for(jj=1; jj<= nlstate+ndeath; jj++){
   double big,dum,sum,temp;          ps[ii][jj]=0;
   double *vv;          ps[ii][ii]=1;
          }
   vv=vector(1,n);      }
   *d=1.0;      
   for (i=1;i<=n;i++) {  
     big=0.0;  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
     for (j=1;j<=n;j++)  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
       if ((temp=fabs(a[i][j])) > big) big=temp;  /*         printf("ddd %lf ",ps[ii][jj]); */
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");  /*       } */
     vv[i]=1.0/big;  /*       printf("\n "); */
   }  /*        } */
   for (j=1;j<=n;j++) {  /*        printf("\n ");printf("%lf ",cov[2]); */
     for (i=1;i<j;i++) {         /*
       sum=a[i][j];        for(i=1; i<= npar; i++) printf("%f ",x[i]);
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];        goto end;*/
       a[i][j]=sum;      return ps;
     }  }
     big=0.0;  
     for (i=j;i<=n;i++) {  /**************** Product of 2 matrices ******************/
       sum=a[i][j];  
       for (k=1;k<j;k++)  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
         sum -= a[i][k]*a[k][j];  {
       a[i][j]=sum;    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
       if ( (dum=vv[i]*fabs(sum)) >= big) {       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
         big=dum;    /* in, b, out are matrice of pointers which should have been initialized 
         imax=i;       before: only the contents of out is modified. The function returns
       }       a pointer to pointers identical to out */
     }    long i, j, k;
     if (j != imax) {    for(i=nrl; i<= nrh; i++)
       for (k=1;k<=n;k++) {      for(k=ncolol; k<=ncoloh; k++)
         dum=a[imax][k];        for(j=ncl,out[i][k]=0.; j<=nch; j++)
         a[imax][k]=a[j][k];          out[i][k] +=in[i][j]*b[j][k];
         a[j][k]=dum;  
       }    return out;
       *d = -(*d);  }
       vv[imax]=vv[j];  
     }  
     indx[j]=imax;  /************* Higher Matrix Product ***************/
     if (a[j][j] == 0.0) a[j][j]=TINY;  
     if (j != n) {  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
       dum=1.0/(a[j][j]);  {
       for (i=j+1;i<=n;i++) a[i][j] *= dum;    /* Computes the transition matrix starting at age 'age' over 
     }       'nhstepm*hstepm*stepm' months (i.e. until
   }       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
   free_vector(vv,1,n);  /* Doesn't work */       nhstepm*hstepm matrices. 
 ;       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
 }       (typically every 2 years instead of every month which is too big 
        for the memory).
 void lubksb(double **a, int n, int *indx, double b[])       Model is determined by parameters x and covariates have to be 
 {       included manually here. 
   int i,ii=0,ip,j;  
   double sum;       */
    
   for (i=1;i<=n;i++) {    int i, j, d, h, k;
     ip=indx[i];    double **out, cov[NCOVMAX];
     sum=b[ip];    double **newm;
     b[ip]=b[i];  
     if (ii)    /* Hstepm could be zero and should return the unit matrix */
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];    for (i=1;i<=nlstate+ndeath;i++)
     else if (sum) ii=i;      for (j=1;j<=nlstate+ndeath;j++){
     b[i]=sum;        oldm[i][j]=(i==j ? 1.0 : 0.0);
   }        po[i][j][0]=(i==j ? 1.0 : 0.0);
   for (i=n;i>=1;i--) {      }
     sum=b[i];    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];    for(h=1; h <=nhstepm; h++){
     b[i]=sum/a[i][i];      for(d=1; d <=hstepm; d++){
   }        newm=savm;
 }        /* Covariates have to be included here again */
         cov[1]=1.;
 /************ Frequencies ********************/        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
 {  /* Some frequencies */        for (k=1; k<=cptcovage;k++)
            cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;        for (k=1; k<=cptcovprod;k++)
   double ***freq; /* Frequencies */          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   double *pp;  
   double pos, k2, dateintsum=0,k2cpt=0;  
   FILE *ficresp;        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
   char fileresp[FILENAMELENGTH];        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
   pp=vector(1,nlstate);                     pmij(pmmij,cov,ncovmodel,x,nlstate));
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);        savm=oldm;
   strcpy(fileresp,"p");        oldm=newm;
   strcat(fileresp,fileres);      }
   if((ficresp=fopen(fileresp,"w"))==NULL) {      for(i=1; i<=nlstate+ndeath; i++)
     printf("Problem with prevalence resultfile: %s\n", fileresp);        for(j=1;j<=nlstate+ndeath;j++) {
     exit(0);          po[i][j][h]=newm[i][j];
   }          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);           */
   j1=0;        }
      } /* end h */
   j=cptcoveff;    return po;
   if (cptcovn<1) {j=1;ncodemax[1]=1;}  }
    
   for(k1=1; k1<=j;k1++){  
     for(i1=1; i1<=ncodemax[k1];i1++){  /*************** log-likelihood *************/
       j1++;  double func( double *x)
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);  {
         scanf("%d", i);*/    int i, ii, j, k, mi, d, kk;
       for (i=-1; i<=nlstate+ndeath; i++)      double l, ll[NLSTATEMAX], cov[NCOVMAX];
         for (jk=-1; jk<=nlstate+ndeath; jk++)      double **out;
           for(m=agemin; m <= agemax+3; m++)    double sw; /* Sum of weights */
             freq[i][jk][m]=0;    double lli; /* Individual log likelihood */
          int s1, s2;
       dateintsum=0;    double bbh, survp;
       k2cpt=0;    long ipmx;
       for (i=1; i<=imx; i++) {    /*extern weight */
         bool=1;    /* We are differentiating ll according to initial status */
         if  (cptcovn>0) {    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
           for (z1=1; z1<=cptcoveff; z1++)    /*for(i=1;i<imx;i++) 
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])      printf(" %d\n",s[4][i]);
               bool=0;    */
         }    cov[1]=1.;
         if (bool==1) {  
           for(m=firstpass; m<=lastpass; m++){    for(k=1; k<=nlstate; k++) ll[k]=0.;
             k2=anint[m][i]+(mint[m][i]/12.);  
             if ((k2>=dateprev1) && (k2<=dateprev2)) {    if(mle==1){
               if(agev[m][i]==0) agev[m][i]=agemax+1;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
               if(agev[m][i]==1) agev[m][i]=agemax+2;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
               if (m<lastpass) {        for(mi=1; mi<= wav[i]-1; mi++){
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];          for (ii=1;ii<=nlstate+ndeath;ii++)
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];            for (j=1;j<=nlstate+ndeath;j++){
               }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                            savm[ii][j]=(ii==j ? 1.0 : 0.0);
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {            }
                 dateintsum=dateintsum+k2;          for(d=0; d<dh[mi][i]; d++){
                 k2cpt++;            newm=savm;
               }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             }            for (kk=1; kk<=cptcovage;kk++) {
           }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         }            }
       }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                                 1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);            savm=oldm;
             oldm=newm;
       if  (cptcovn>0) {          } /* end mult */
         fprintf(ficresp, "\n#********** Variable ");        
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
         fprintf(ficresp, "**********\n#");          /* But now since version 0.9 we anticipate for bias at large stepm.
       }           * If stepm is larger than one month (smallest stepm) and if the exact delay 
       for(i=1; i<=nlstate;i++)           * (in months) between two waves is not a multiple of stepm, we rounded to 
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);           * the nearest (and in case of equal distance, to the lowest) interval but now
       fprintf(ficresp, "\n");           * we keep into memory the bias bh[mi][i] and also the previous matrix product
                 * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
       for(i=(int)agemin; i <= (int)agemax+3; i++){           * probability in order to take into account the bias as a fraction of the way
         if(i==(int)agemax+3)           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
           printf("Total");           * -stepm/2 to stepm/2 .
         else           * For stepm=1 the results are the same as for previous versions of Imach.
           printf("Age %d", i);           * For stepm > 1 the results are less biased than in previous versions. 
         for(jk=1; jk <=nlstate ; jk++){           */
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)          s1=s[mw[mi][i]][i];
             pp[jk] += freq[jk][m][i];          s2=s[mw[mi+1][i]][i];
         }          bbh=(double)bh[mi][i]/(double)stepm; 
         for(jk=1; jk <=nlstate ; jk++){          /* bias bh is positive if real duration
           for(m=-1, pos=0; m <=0 ; m++)           * is higher than the multiple of stepm and negative otherwise.
             pos += freq[jk][m][i];           */
           if(pp[jk]>=1.e-10)          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);          if( s2 > nlstate){ 
           else            /* i.e. if s2 is a death state and if the date of death is known then the contribution
             printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);               to the likelihood is the probability to die between last step unit time and current 
         }               step unit time, which is also equal to probability to die before dh 
                minus probability to die before dh-stepm . 
         for(jk=1; jk <=nlstate ; jk++){               In version up to 0.92 likelihood was computed
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)          as if date of death was unknown. Death was treated as any other
             pp[jk] += freq[jk][m][i];          health state: the date of the interview describes the actual state
         }          and not the date of a change in health state. The former idea was
           to consider that at each interview the state was recorded
         for(jk=1,pos=0; jk <=nlstate ; jk++)          (healthy, disable or death) and IMaCh was corrected; but when we
           pos += pp[jk];          introduced the exact date of death then we should have modified
         for(jk=1; jk <=nlstate ; jk++){          the contribution of an exact death to the likelihood. This new
           if(pos>=1.e-5)          contribution is smaller and very dependent of the step unit
             printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);          stepm. It is no more the probability to die between last interview
           else          and month of death but the probability to survive from last
             printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);          interview up to one month before death multiplied by the
           if( i <= (int) agemax){          probability to die within a month. Thanks to Chris
             if(pos>=1.e-5){          Jackson for correcting this bug.  Former versions increased
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);          mortality artificially. The bad side is that we add another loop
               probs[i][jk][j1]= pp[jk]/pos;          which slows down the processing. The difference can be up to 10%
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/          lower mortality.
             }            */
             else            lli=log(out[s1][s2] - savm[s1][s2]);
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);          }else{
           }            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
         }            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
                  } 
         for(jk=-1; jk <=nlstate+ndeath; jk++)          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
           for(m=-1; m <=nlstate+ndeath; m++)          /*if(lli ==000.0)*/
             if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
         if(i <= (int) agemax)          ipmx +=1;
           fprintf(ficresp,"\n");          sw += weight[i];
         printf("\n");          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       }        } /* end of wave */
     }      } /* end of individual */
   }    }  else if(mle==2){
   dateintmean=dateintsum/k2cpt;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
          for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   fclose(ficresp);        for(mi=1; mi<= wav[i]-1; mi++){
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);          for (ii=1;ii<=nlstate+ndeath;ii++)
   free_vector(pp,1,nlstate);            for (j=1;j<=nlstate+ndeath;j++){
                oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   /* End of Freq */              savm[ii][j]=(ii==j ? 1.0 : 0.0);
 }            }
           for(d=0; d<=dh[mi][i]; d++){
 /************ Prevalence ********************/            newm=savm;
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 {  /* Some frequencies */            for (kk=1; kk<=cptcovage;kk++) {
                cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;            }
   double ***freq; /* Frequencies */            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   double *pp;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   double pos, k2;            savm=oldm;
             oldm=newm;
   pp=vector(1,nlstate);          } /* end mult */
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);        
            s1=s[mw[mi][i]][i];
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);          s2=s[mw[mi+1][i]][i];
   j1=0;          bbh=(double)bh[mi][i]/(double)stepm; 
            lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
   j=cptcoveff;          ipmx +=1;
   if (cptcovn<1) {j=1;ncodemax[1]=1;}          sw += weight[i];
            ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
  for(k1=1; k1<=j;k1++){        } /* end of wave */
     for(i1=1; i1<=ncodemax[k1];i1++){      } /* end of individual */
       j1++;    }  else if(mle==3){  /* exponential inter-extrapolation */
        for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       for (i=-1; i<=nlstate+ndeath; i++)          for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for (jk=-1; jk<=nlstate+ndeath; jk++)          for(mi=1; mi<= wav[i]-1; mi++){
           for(m=agemin; m <= agemax+3; m++)          for (ii=1;ii<=nlstate+ndeath;ii++)
             freq[i][jk][m]=0;            for (j=1;j<=nlstate+ndeath;j++){
                    oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       for (i=1; i<=imx; i++) {              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         bool=1;            }
         if  (cptcovn>0) {          for(d=0; d<dh[mi][i]; d++){
           for (z1=1; z1<=cptcoveff; z1++)            newm=savm;
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
               bool=0;            for (kk=1; kk<=cptcovage;kk++) {
         }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         if (bool==1) {            }
           for(m=firstpass; m<=lastpass; m++){            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
             k2=anint[m][i]+(mint[m][i]/12.);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             if ((k2>=dateprev1) && (k2<=dateprev2)) {            savm=oldm;
               if(agev[m][i]==0) agev[m][i]=agemax+1;            oldm=newm;
               if(agev[m][i]==1) agev[m][i]=agemax+2;          } /* end mult */
               if (m<lastpass) freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];        
               /* freq[s[m][i]][s[m+1][i]][(int)(agemax+3+1)] += weight[i];  */          s1=s[mw[mi][i]][i];
             }          s2=s[mw[mi+1][i]][i];
           }          bbh=(double)bh[mi][i]/(double)stepm; 
         }          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
       }          ipmx +=1;
         for(i=(int)agemin; i <= (int)agemax+3; i++){          sw += weight[i];
           for(jk=1; jk <=nlstate ; jk++){          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
             for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)        } /* end of wave */
               pp[jk] += freq[jk][m][i];      } /* end of individual */
           }    }else if (mle==4){  /* ml=4 no inter-extrapolation */
           for(jk=1; jk <=nlstate ; jk++){      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
             for(m=-1, pos=0; m <=0 ; m++)        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
             pos += freq[jk][m][i];        for(mi=1; mi<= wav[i]-1; mi++){
         }          for (ii=1;ii<=nlstate+ndeath;ii++)
                    for (j=1;j<=nlstate+ndeath;j++){
          for(jk=1; jk <=nlstate ; jk++){              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)              savm[ii][j]=(ii==j ? 1.0 : 0.0);
              pp[jk] += freq[jk][m][i];            }
          }          for(d=0; d<dh[mi][i]; d++){
                      newm=savm;
          for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             for (kk=1; kk<=cptcovage;kk++) {
          for(jk=1; jk <=nlstate ; jk++){                        cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
            if( i <= (int) agemax){            }
              if(pos>=1.e-5){          
                probs[i][jk][j1]= pp[jk]/pos;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
              }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
            }            savm=oldm;
          }            oldm=newm;
                    } /* end mult */
         }        
     }          s1=s[mw[mi][i]][i];
   }          s2=s[mw[mi+1][i]][i];
            if( s2 > nlstate){ 
              lli=log(out[s1][s2] - savm[s1][s2]);
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);          }else{
   free_vector(pp,1,nlstate);            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
            }
 }  /* End of Freq */          ipmx +=1;
           sw += weight[i];
 /************* Waves Concatenation ***************/          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)        } /* end of wave */
 {      } /* end of individual */
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
      Death is a valid wave (if date is known).      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]        for(mi=1; mi<= wav[i]-1; mi++){
      and mw[mi+1][i]. dh depends on stepm.          for (ii=1;ii<=nlstate+ndeath;ii++)
      */            for (j=1;j<=nlstate+ndeath;j++){
               oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   int i, mi, m;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;            }
      double sum=0., jmean=0.;*/          for(d=0; d<dh[mi][i]; d++){
             newm=savm;
   int j, k=0,jk, ju, jl;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   double sum=0.;            for (kk=1; kk<=cptcovage;kk++) {
   jmin=1e+5;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   jmax=-1;            }
   jmean=0.;          
   for(i=1; i<=imx; i++){            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     mi=0;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     m=firstpass;            savm=oldm;
     while(s[m][i] <= nlstate){            oldm=newm;
       if(s[m][i]>=1)          } /* end mult */
         mw[++mi][i]=m;        
       if(m >=lastpass)          s1=s[mw[mi][i]][i];
         break;          s2=s[mw[mi+1][i]][i];
       else          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
         m++;          ipmx +=1;
     }/* end while */          sw += weight[i];
     if (s[m][i] > nlstate){          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       mi++;     /* Death is another wave */          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
       /* if(mi==0)  never been interviewed correctly before death */        } /* end of wave */
          /* Only death is a correct wave */      } /* end of individual */
       mw[mi][i]=m;    } /* End of if */
     }    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
     /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
     wav[i]=mi;    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
     if(mi==0)    return -l;
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);  }
   }  
   /*************** log-likelihood *************/
   for(i=1; i<=imx; i++){  double funcone( double *x)
     for(mi=1; mi<wav[i];mi++){  {
       if (stepm <=0)    /* Same as likeli but slower because of a lot of printf and if */
         dh[mi][i]=1;    int i, ii, j, k, mi, d, kk;
       else{    double l, ll[NLSTATEMAX], cov[NCOVMAX];
         if (s[mw[mi+1][i]][i] > nlstate) {    double **out;
           if (agedc[i] < 2*AGESUP) {    double lli; /* Individual log likelihood */
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);    double llt;
           if(j==0) j=1;  /* Survives at least one month after exam */    int s1, s2;
           k=k+1;    double bbh, survp;
           if (j >= jmax) jmax=j;    /*extern weight */
           if (j <= jmin) jmin=j;    /* We are differentiating ll according to initial status */
           sum=sum+j;    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
           /*if (j<0) printf("j=%d num=%d \n",j,i); */    /*for(i=1;i<imx;i++) 
           }      printf(" %d\n",s[4][i]);
         }    */
         else{    cov[1]=1.;
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));  
           k=k+1;    for(k=1; k<=nlstate; k++) ll[k]=0.;
           if (j >= jmax) jmax=j;  
           else if (j <= jmin)jmin=j;    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
           sum=sum+j;      for(mi=1; mi<= wav[i]-1; mi++){
         }        for (ii=1;ii<=nlstate+ndeath;ii++)
         jk= j/stepm;          for (j=1;j<=nlstate+ndeath;j++){
         jl= j -jk*stepm;            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         ju= j -(jk+1)*stepm;            savm[ii][j]=(ii==j ? 1.0 : 0.0);
         if(jl <= -ju)          }
           dh[mi][i]=jk;        for(d=0; d<dh[mi][i]; d++){
         else          newm=savm;
           dh[mi][i]=jk+1;          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         if(dh[mi][i]==0)          for (kk=1; kk<=cptcovage;kk++) {
           dh[mi][i]=1; /* At least one step */            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       }          }
     }          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   }                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   jmean=sum/k;          savm=oldm;
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);          oldm=newm;
  }        } /* end mult */
 /*********** Tricode ****************************/        
 void tricode(int *Tvar, int **nbcode, int imx)        s1=s[mw[mi][i]][i];
 {        s2=s[mw[mi+1][i]][i];
   int Ndum[20],ij=1, k, j, i;        bbh=(double)bh[mi][i]/(double)stepm; 
   int cptcode=0;        /* bias is positive if real duration
   cptcoveff=0;         * is higher than the multiple of stepm and negative otherwise.
           */
   for (k=0; k<19; k++) Ndum[k]=0;        if( s2 > nlstate && (mle <5) ){  /* Jackson */
   for (k=1; k<=7; k++) ncodemax[k]=0;          lli=log(out[s1][s2] - savm[s1][s2]);
         } else if (mle==1){
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
     for (i=1; i<=imx; i++) {        } else if(mle==2){
       ij=(int)(covar[Tvar[j]][i]);          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
       Ndum[ij]++;        } else if(mle==3){  /* exponential inter-extrapolation */
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
       if (ij > cptcode) cptcode=ij;        } else if (mle==4){  /* mle=4 no inter-extrapolation */
     }          lli=log(out[s1][s2]); /* Original formula */
         } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
     for (i=0; i<=cptcode; i++) {          lli=log(out[s1][s2]); /* Original formula */
       if(Ndum[i]!=0) ncodemax[j]++;        } /* End of if */
     }        ipmx +=1;
     ij=1;        sw += weight[i];
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
     for (i=1; i<=ncodemax[j]; i++) {        if(globpr){
       for (k=0; k<=19; k++) {          fprintf(ficresilk,"%9d %6d %1d %1d %1d %1d %3d %10.6f %6.4f\
         if (Ndum[k] != 0) {   %10.6f %10.6f %10.6f ", \
           nbcode[Tvar[j]][ij]=k;                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
           /*     printf("nbcodeaaaaaaaaaaa=%d Tvar[j]=%d ij=%d j=%d",nbcode[Tvar[j]][ij],Tvar[j],ij,j);*/                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
           ij++;          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
         }            llt +=ll[k]*gipmx/gsw;
         if (ij > ncodemax[j]) break;            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
       }            }
     }          fprintf(ficresilk," %10.6f\n", -llt);
   }          }
       } /* end of wave */
  for (k=0; k<19; k++) Ndum[k]=0;    } /* end of individual */
     for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
  for (i=1; i<=ncovmodel-2; i++) {    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
       ij=Tvar[i];    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
       Ndum[ij]++;    if(globpr==0){ /* First time we count the contributions and weights */
     }      gipmx=ipmx;
       gsw=sw;
  ij=1;    }
  for (i=1; i<=10; i++) {    return -l;
    if((Ndum[i]!=0) && (i<=ncovcol)){  }
      Tvaraff[ij]=i;  
      ij++;  
    }  /*************** function likelione ***********/
  }  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
    {
     cptcoveff=ij-1;    /* This routine should help understanding what is done with 
 }       the selection of individuals/waves and
        to check the exact contribution to the likelihood.
 /*********** Health Expectancies ****************/       Plotting could be done.
      */
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij)    int k;
 {  
   /* Health expectancies */    if(*globpri !=0){ /* Just counts and sums, no printings */
   int i, j, nhstepm, hstepm, h, nstepm, k;      strcpy(fileresilk,"ilk"); 
   double age, agelim, hf;      strcat(fileresilk,fileres);
   double ***p3mat;      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
          printf("Problem with resultfile: %s\n", fileresilk);
   fprintf(ficreseij,"# Health expectancies\n");        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
   fprintf(ficreseij,"# Age");      }
   for(i=1; i<=nlstate;i++)      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
     for(j=1; j<=nlstate;j++)      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
       fprintf(ficreseij," %1d-%1d",i,j);      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
   fprintf(ficreseij,"\n");      for(k=1; k<=nlstate; k++) 
         fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
   k=1;             /* For example stepm=6 months */      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
   hstepm=k*YEARM; /* (a) Every k years of age (in months), for example every k=2 years 24 m */    }
   hstepm=stepm;   /* or (b) We decided to compute the life expectancy with the smallest unit */  
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.    *fretone=(*funcone)(p);
      nhstepm is the number of hstepm from age to agelim    if(*globpri !=0){
      nstepm is the number of stepm from age to agelin.      fclose(ficresilk);
      Look at hpijx to understand the reason of that which relies in memory size      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
      and note for a fixed period like k years */      fflush(fichtm); 
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the    } 
      survival function given by stepm (the optimization length). Unfortunately it    return;
      means that if the survival funtion is printed only each two years of age and if  }
      you sum them up and add 1 year (area under the trapezoids) you won't get the same  
      results. So we changed our mind and took the option of the best precision.  
   */  /*********** Maximum Likelihood Estimation ***************/
   hstepm=hstepm/stepm; /* Typically in stepm units, if k= 2 years, = 2/6 months = 4 */  
   void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
   agelim=AGESUP;  {
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    int i,j, iter;
     /* nhstepm age range expressed in number of stepm */    double **xi;
     nstepm=(int) rint((agelim-age)*YEARM/stepm);    double fret;
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */    double fretone; /* Only one call to likelihood */
     /* if (stepm >= YEARM) hstepm=1;*/    /*  char filerespow[FILENAMELENGTH];*/
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */    xi=matrix(1,npar,1,npar);
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    for (i=1;i<=npar;i++)
     /* Computed by stepm unit matrices, product of hstepm matrices, stored      for (j=1;j<=npar;j++)
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */        xi[i][j]=(i==j ? 1.0 : 0.0);
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);      printf("Powell\n");  fprintf(ficlog,"Powell\n");
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */    strcpy(filerespow,"pow"); 
     for(i=1; i<=nlstate;i++)    strcat(filerespow,fileres);
       for(j=1; j<=nlstate;j++)    if((ficrespow=fopen(filerespow,"w"))==NULL) {
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){      printf("Problem with resultfile: %s\n", filerespow);
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
           /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/    }
         }    fprintf(ficrespow,"# Powell\n# iter -2*LL");
     fprintf(ficreseij,"%3.0f",age );    for (i=1;i<=nlstate;i++)
     for(i=1; i<=nlstate;i++)      for(j=1;j<=nlstate+ndeath;j++)
       for(j=1; j<=nlstate;j++){        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
         fprintf(ficreseij," %9.4f", eij[i][j][(int)age]);    fprintf(ficrespow,"\n");
       }  
     fprintf(ficreseij,"\n");    powell(p,xi,npar,ftol,&iter,&fret,func);
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
   }    fclose(ficrespow);
 }    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
     fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
 /************ Variance ******************/    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)  
 {  }
   /* Variance of health expectancies */  
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/  /**** Computes Hessian and covariance matrix ***/
   double **newm;  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
   double **dnewm,**doldm;  {
   int i, j, nhstepm, hstepm, h, nstepm, kk;    double  **a,**y,*x,pd;
   int k, cptcode;    double **hess;
   double *xp;    int i, j,jk;
   double **gp, **gm;    int *indx;
   double ***gradg, ***trgradg;  
   double ***p3mat;    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
   double age,agelim, hf;    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
   int theta;    void lubksb(double **a, int npar, int *indx, double b[]) ;
     void ludcmp(double **a, int npar, int *indx, double *d) ;
    fprintf(ficresvij,"# Covariances of life expectancies\n");    double gompertz(double p[]);
   fprintf(ficresvij,"# Age");    hess=matrix(1,npar,1,npar);
   for(i=1; i<=nlstate;i++)  
     for(j=1; j<=nlstate;j++)    printf("\nCalculation of the hessian matrix. Wait...\n");
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
   fprintf(ficresvij,"\n");    for (i=1;i<=npar;i++){
       printf("%d",i);fflush(stdout);
   xp=vector(1,npar);      fprintf(ficlog,"%d",i);fflush(ficlog);
   dnewm=matrix(1,nlstate,1,npar);     
   doldm=matrix(1,nlstate,1,nlstate);       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
        
   kk=1;             /* For example stepm=6 months */      /*  printf(" %f ",p[i]);
   hstepm=kk*YEARM; /* (a) Every k years of age (in months), for example every k=2 years 24 m */          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
   hstepm=stepm;   /* or (b) We decided to compute the life expectancy with the smallest unit */    }
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.    
      nhstepm is the number of hstepm from age to agelim    for (i=1;i<=npar;i++) {
      nstepm is the number of stepm from age to agelin.      for (j=1;j<=npar;j++)  {
      Look at hpijx to understand the reason of that which relies in memory size        if (j>i) { 
      and note for a fixed period like k years */          printf(".%d%d",i,j);fflush(stdout);
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
      survival function given by stepm (the optimization length). Unfortunately it          hess[i][j]=hessij(p,delti,i,j,func,npar);
      means that if the survival funtion is printed only each two years of age and if          
      you sum them up and add 1 year (area under the trapezoids) you won't get the same          hess[j][i]=hess[i][j];    
      results. So we changed our mind and took the option of the best precision.          /*printf(" %lf ",hess[i][j]);*/
   */        }
   hstepm=hstepm/stepm; /* Typically in stepm units, if k= 2 years, = 2/6 months = 4 */      }
   agelim = AGESUP;    }
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    printf("\n");
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    fprintf(ficlog,"\n");
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */  
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
     gp=matrix(0,nhstepm,1,nlstate);    
     gm=matrix(0,nhstepm,1,nlstate);    a=matrix(1,npar,1,npar);
     y=matrix(1,npar,1,npar);
     for(theta=1; theta <=npar; theta++){    x=vector(1,npar);
       for(i=1; i<=npar; i++){ /* Computes gradient */    indx=ivector(1,npar);
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    for (i=1;i<=npar;i++)
       }      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      ludcmp(a,npar,indx,&pd);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  
     for (j=1;j<=npar;j++) {
       if (popbased==1) {      for (i=1;i<=npar;i++) x[i]=0;
         for(i=1; i<=nlstate;i++)      x[j]=1;
           prlim[i][i]=probs[(int)age][i][ij];      lubksb(a,npar,indx,x);
       }      for (i=1;i<=npar;i++){ 
          matcov[i][j]=x[i];
       for(j=1; j<= nlstate; j++){      }
         for(h=0; h<=nhstepm; h++){    }
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)  
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];    printf("\n#Hessian matrix#\n");
         }    fprintf(ficlog,"\n#Hessian matrix#\n");
       }    for (i=1;i<=npar;i++) { 
          for (j=1;j<=npar;j++) { 
       for(i=1; i<=npar; i++) /* Computes gradient */        printf("%.3e ",hess[i][j]);
         xp[i] = x[i] - (i==theta ?delti[theta]:0);        fprintf(ficlog,"%.3e ",hess[i][j]);
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        }
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      printf("\n");
        fprintf(ficlog,"\n");
       if (popbased==1) {    }
         for(i=1; i<=nlstate;i++)  
           prlim[i][i]=probs[(int)age][i][ij];    /* Recompute Inverse */
       }    for (i=1;i<=npar;i++)
       for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
       for(j=1; j<= nlstate; j++){    ludcmp(a,npar,indx,&pd);
         for(h=0; h<=nhstepm; h++){  
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)    /*  printf("\n#Hessian matrix recomputed#\n");
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];  
         }    for (j=1;j<=npar;j++) {
       }      for (i=1;i<=npar;i++) x[i]=0;
       x[j]=1;
       for(j=1; j<= nlstate; j++)      lubksb(a,npar,indx,x);
         for(h=0; h<=nhstepm; h++){      for (i=1;i<=npar;i++){ 
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];        y[i][j]=x[i];
         }        printf("%.3e ",y[i][j]);
     } /* End theta */        fprintf(ficlog,"%.3e ",y[i][j]);
       }
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);      printf("\n");
       fprintf(ficlog,"\n");
     for(h=0; h<=nhstepm; h++)    }
       for(j=1; j<=nlstate;j++)    */
         for(theta=1; theta <=npar; theta++)  
           trgradg[h][j][theta]=gradg[h][theta][j];    free_matrix(a,1,npar,1,npar);
     free_matrix(y,1,npar,1,npar);
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */    free_vector(x,1,npar);
     for(i=1;i<=nlstate;i++)    free_ivector(indx,1,npar);
       for(j=1;j<=nlstate;j++)    free_matrix(hess,1,npar,1,npar);
         vareij[i][j][(int)age] =0.;  
   
     for(h=0;h<=nhstepm;h++){  }
       for(k=0;k<=nhstepm;k++){  
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);  /*************** hessian matrix ****************/
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
         for(i=1;i<=nlstate;i++)  {
           for(j=1;j<=nlstate;j++)    int i;
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;    int l=1, lmax=20;
       }    double k1,k2;
     }    double p2[NPARMAX+1];
     double res;
     fprintf(ficresvij,"%.0f ",age );    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
     for(i=1; i<=nlstate;i++)    double fx;
       for(j=1; j<=nlstate;j++){    int k=0,kmax=10;
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);    double l1;
       }  
     fprintf(ficresvij,"\n");    fx=func(x);
     free_matrix(gp,0,nhstepm,1,nlstate);    for (i=1;i<=npar;i++) p2[i]=x[i];
     free_matrix(gm,0,nhstepm,1,nlstate);    for(l=0 ; l <=lmax; l++){
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);      l1=pow(10,l);
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);      delts=delt;
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      for(k=1 ; k <kmax; k=k+1){
   } /* End age */        delt = delta*(l1*k);
          p2[theta]=x[theta] +delt;
   free_vector(xp,1,npar);        k1=func(p2)-fx;
   free_matrix(doldm,1,nlstate,1,npar);        p2[theta]=x[theta]-delt;
   free_matrix(dnewm,1,nlstate,1,nlstate);        k2=func(p2)-fx;
         /*res= (k1-2.0*fx+k2)/delt/delt; */
 }        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
         
 /************ Variance of prevlim ******************/  #ifdef DEBUG
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
 {        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   /* Variance of prevalence limit */  #endif
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
   double **newm;        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
   double **dnewm,**doldm;          k=kmax;
   int i, j, nhstepm, hstepm;        }
   int k, cptcode;        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
   double *xp;          k=kmax; l=lmax*10.;
   double *gp, *gm;        }
   double **gradg, **trgradg;        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
   double age,agelim;          delts=delt;
   int theta;        }
          }
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");    }
   fprintf(ficresvpl,"# Age");    delti[theta]=delts;
   for(i=1; i<=nlstate;i++)    return res; 
       fprintf(ficresvpl," %1d-%1d",i,i);    
   fprintf(ficresvpl,"\n");  }
   
   xp=vector(1,npar);  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
   dnewm=matrix(1,nlstate,1,npar);  {
   doldm=matrix(1,nlstate,1,nlstate);    int i;
      int l=1, l1, lmax=20;
   hstepm=1*YEARM; /* Every year of age */    double k1,k2,k3,k4,res,fx;
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */    double p2[NPARMAX+1];
   agelim = AGESUP;    int k;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */  
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    fx=func(x);
     if (stepm >= YEARM) hstepm=1;    for (k=1; k<=2; k++) {
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */      for (i=1;i<=npar;i++) p2[i]=x[i];
     gradg=matrix(1,npar,1,nlstate);      p2[thetai]=x[thetai]+delti[thetai]/k;
     gp=vector(1,nlstate);      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
     gm=vector(1,nlstate);      k1=func(p2)-fx;
     
     for(theta=1; theta <=npar; theta++){      p2[thetai]=x[thetai]+delti[thetai]/k;
       for(i=1; i<=npar; i++){ /* Computes gradient */      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
         xp[i] = x[i] + (i==theta ?delti[theta]:0);      k2=func(p2)-fx;
       }    
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      p2[thetai]=x[thetai]-delti[thetai]/k;
       for(i=1;i<=nlstate;i++)      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
         gp[i] = prlim[i][i];      k3=func(p2)-fx;
        
       for(i=1; i<=npar; i++) /* Computes gradient */      p2[thetai]=x[thetai]-delti[thetai]/k;
         xp[i] = x[i] - (i==theta ?delti[theta]:0);      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      k4=func(p2)-fx;
       for(i=1;i<=nlstate;i++)      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
         gm[i] = prlim[i][i];  #ifdef DEBUG
       printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
       for(i=1;i<=nlstate;i++)      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];  #endif
     } /* End theta */    }
     return res;
     trgradg =matrix(1,nlstate,1,npar);  }
   
     for(j=1; j<=nlstate;j++)  /************** Inverse of matrix **************/
       for(theta=1; theta <=npar; theta++)  void ludcmp(double **a, int n, int *indx, double *d) 
         trgradg[j][theta]=gradg[theta][j];  { 
     int i,imax,j,k; 
     for(i=1;i<=nlstate;i++)    double big,dum,sum,temp; 
       varpl[i][(int)age] =0.;    double *vv; 
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);   
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);    vv=vector(1,n); 
     for(i=1;i<=nlstate;i++)    *d=1.0; 
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */    for (i=1;i<=n;i++) { 
       big=0.0; 
     fprintf(ficresvpl,"%.0f ",age );      for (j=1;j<=n;j++) 
     for(i=1; i<=nlstate;i++)        if ((temp=fabs(a[i][j])) > big) big=temp; 
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
     fprintf(ficresvpl,"\n");      vv[i]=1.0/big; 
     free_vector(gp,1,nlstate);    } 
     free_vector(gm,1,nlstate);    for (j=1;j<=n;j++) { 
     free_matrix(gradg,1,npar,1,nlstate);      for (i=1;i<j;i++) { 
     free_matrix(trgradg,1,nlstate,1,npar);        sum=a[i][j]; 
   } /* End age */        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
         a[i][j]=sum; 
   free_vector(xp,1,npar);      } 
   free_matrix(doldm,1,nlstate,1,npar);      big=0.0; 
   free_matrix(dnewm,1,nlstate,1,nlstate);      for (i=j;i<=n;i++) { 
         sum=a[i][j]; 
 }        for (k=1;k<j;k++) 
           sum -= a[i][k]*a[k][j]; 
 /************ Variance of one-step probabilities  ******************/        a[i][j]=sum; 
 void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij)        if ( (dum=vv[i]*fabs(sum)) >= big) { 
 {          big=dum; 
   int i, j;          imax=i; 
   int k=0, cptcode;        } 
   double **dnewm,**doldm;      } 
   double *xp;      if (j != imax) { 
   double *gp, *gm;        for (k=1;k<=n;k++) { 
   double **gradg, **trgradg;          dum=a[imax][k]; 
   double age,agelim, cov[NCOVMAX];          a[imax][k]=a[j][k]; 
   int theta;          a[j][k]=dum; 
   char fileresprob[FILENAMELENGTH];        } 
         *d = -(*d); 
   strcpy(fileresprob,"prob");        vv[imax]=vv[j]; 
   strcat(fileresprob,fileres);      } 
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {      indx[j]=imax; 
     printf("Problem with resultfile: %s\n", fileresprob);      if (a[j][j] == 0.0) a[j][j]=TINY; 
   }      if (j != n) { 
   printf("Computing variance of one-step probabilities: result on file '%s' \n",fileresprob);        dum=1.0/(a[j][j]); 
          for (i=j+1;i<=n;i++) a[i][j] *= dum; 
       } 
   xp=vector(1,npar);    } 
   dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    free_vector(vv,1,n);  /* Doesn't work */
   doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));  ;
    } 
   cov[1]=1;  
   for (age=bage; age<=fage; age ++){  void lubksb(double **a, int n, int *indx, double b[]) 
     cov[2]=age;  { 
     gradg=matrix(1,npar,1,9);    int i,ii=0,ip,j; 
     trgradg=matrix(1,9,1,npar);    double sum; 
     gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));   
     gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));    for (i=1;i<=n;i++) { 
          ip=indx[i]; 
     for(theta=1; theta <=npar; theta++){      sum=b[ip]; 
       for(i=1; i<=npar; i++)      b[ip]=b[i]; 
         xp[i] = x[i] + (i==theta ?delti[theta]:0);      if (ii) 
              for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
       pmij(pmmij,cov,ncovmodel,xp,nlstate);      else if (sum) ii=i; 
          b[i]=sum; 
       k=0;    } 
       for(i=1; i<= (nlstate+ndeath); i++){    for (i=n;i>=1;i--) { 
         for(j=1; j<=(nlstate+ndeath);j++){      sum=b[i]; 
            k=k+1;      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
           gp[k]=pmmij[i][j];      b[i]=sum/a[i][i]; 
         }    } 
       }  } 
   
       for(i=1; i<=npar; i++)  /************ Frequencies ********************/
         xp[i] = x[i] - (i==theta ?delti[theta]:0);  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint)
      {  /* Some frequencies */
     
       pmij(pmmij,cov,ncovmodel,xp,nlstate);    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
       k=0;    int first;
       for(i=1; i<=(nlstate+ndeath); i++){    double ***freq; /* Frequencies */
         for(j=1; j<=(nlstate+ndeath);j++){    double *pp, **prop;
           k=k+1;    double pos,posprop, k2, dateintsum=0,k2cpt=0;
           gm[k]=pmmij[i][j];    FILE *ficresp;
         }    char fileresp[FILENAMELENGTH];
       }    
          pp=vector(1,nlstate);
        for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)    prop=matrix(1,nlstate,iagemin,iagemax+3);
            gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];      strcpy(fileresp,"p");
     }    strcat(fileresp,fileres);
     if((ficresp=fopen(fileresp,"w"))==NULL) {
      for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)      printf("Problem with prevalence resultfile: %s\n", fileresp);
       for(theta=1; theta <=npar; theta++)      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
       trgradg[j][theta]=gradg[theta][j];      exit(0);
      }
      matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);    freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);
      matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);    j1=0;
     
      pmij(pmmij,cov,ncovmodel,x,nlstate);    j=cptcoveff;
     if (cptcovn<1) {j=1;ncodemax[1]=1;}
      k=0;  
      for(i=1; i<=(nlstate+ndeath); i++){    first=1;
        for(j=1; j<=(nlstate+ndeath);j++){  
          k=k+1;    for(k1=1; k1<=j;k1++){
          gm[k]=pmmij[i][j];      for(i1=1; i1<=ncodemax[k1];i1++){
         }        j1++;
      }        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
                scanf("%d", i);*/
      /*printf("\n%d ",(int)age);        for (i=-1; i<=nlstate+ndeath; i++)  
      for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){          for (jk=-1; jk<=nlstate+ndeath; jk++)  
                    for(m=iagemin; m <= iagemax+3; m++)
               freq[i][jk][m]=0;
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));  
      }*/      for (i=1; i<=nlstate; i++)  
         for(m=iagemin; m <= iagemax+3; m++)
   fprintf(ficresprob,"\n%d ",(int)age);          prop[i][m]=0;
         
   for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){        dateintsum=0;
     if (i== 2) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);        k2cpt=0;
 if (i== 4) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);        for (i=1; i<=imx; i++) {
   }          bool=1;
           if  (cptcovn>0) {
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));            for (z1=1; z1<=cptcoveff; z1++) 
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);                bool=0;
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);          }
 }          if (bool==1){
  free_vector(xp,1,npar);            for(m=firstpass; m<=lastpass; m++){
 fclose(ficresprob);              k2=anint[m][i]+(mint[m][i]/12.);
               /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
 }                if(agev[m][i]==0) agev[m][i]=iagemax+1;
                 if(agev[m][i]==1) agev[m][i]=iagemax+2;
 /******************* Printing html file ***********/                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \                if (m<lastpass) {
  int lastpass, int stepm, int weightopt, char model[],\                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
  int imx,int jmin, int jmax, double jmeanint,char optionfile[], \                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
  char optionfilehtm[],char rfileres[], char optionfilegnuplot[],\                }
  char version[], int popforecast ){                
   int jj1, k1, i1, cpt;                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
   FILE *fichtm;                  dateintsum=dateintsum+k2;
   /*char optionfilehtm[FILENAMELENGTH];*/                  k2cpt++;
                 }
   strcpy(optionfilehtm,optionfile);                /*}*/
   strcat(optionfilehtm,".htm");            }
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {          }
     printf("Problem with %s \n",optionfilehtm), exit(0);        }
   }         
         /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
  fprintf(fichtm,"<body> <font size=\"2\">Imach, Version %s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n  
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n        if  (cptcovn>0) {
 \n          fprintf(ficresp, "\n#********** Variable "); 
 Total number of observations=%d <br>\n          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n          fprintf(ficresp, "**********\n#");
 <hr  size=\"2\" color=\"#EC5E5E\">        }
  <ul><li>Outputs files<br>\n        for(i=1; i<=nlstate;i++) 
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
  - Gnuplot file name: <a href=\"%s\">%s</a><br>\n        fprintf(ficresp, "\n");
  - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n        
  - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>\n        for(i=iagemin; i <= iagemax+3; i++){
  - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>\n          if(i==iagemax+3){
  - Life expectancies by age and initial health status: <a href=\"e%s\">e%s</a> <br>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres);            fprintf(ficlog,"Total");
           }else{
  fprintf(fichtm,"\n            if(first==1){
  - Parameter file with estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>\n              first=0;
  - Variances of life expectancies by age and initial health status: <a href=\"v%s\">v%s</a><br>\n              printf("See log file for details...\n");
  - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>\n            }
  - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres);            fprintf(ficlog,"Age %d", i);
           }
  if(popforecast==1) fprintf(fichtm,"\n          for(jk=1; jk <=nlstate ; jk++){
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n              pp[jk] += freq[jk][m][i]; 
         <br>",fileres,fileres,fileres,fileres);          }
  else          for(jk=1; jk <=nlstate ; jk++){
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);            for(m=-1, pos=0; m <=0 ; m++)
 fprintf(fichtm," <li>Graphs</li><p>");              pos += freq[jk][m][i];
             if(pp[jk]>=1.e-10){
  m=cptcoveff;              if(first==1){
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
               }
  jj1=0;              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
  for(k1=1; k1<=m;k1++){            }else{
    for(i1=1; i1<=ncodemax[k1];i1++){              if(first==1)
        jj1++;                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
        if (cptcovn > 0) {              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");            }
          for (cpt=1; cpt<=cptcoveff;cpt++)          }
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);  
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");          for(jk=1; jk <=nlstate ; jk++){
        }            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>              pp[jk] += freq[jk][m][i];
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);              }       
        for(cpt=1; cpt<nlstate;cpt++){          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>            pos += pp[jk];
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);            posprop += prop[jk][i];
        }          }
     for(cpt=1; cpt<=nlstate;cpt++) {          for(jk=1; jk <=nlstate ; jk++){
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident            if(pos>=1.e-5){
 interval) in state (%d): v%s%d%d.gif <br>              if(first==1)
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);                  printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
      }              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
      for(cpt=1; cpt<=nlstate;cpt++) {            }else{
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>              if(first==1)
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
      }              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
      fprintf(fichtm,"\n<br>- Total life expectancy by age and            }
 health expectancies in states (1) and (2): e%s%d.gif<br>            if( i <= iagemax){
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);              if(pos>=1.e-5){
 fprintf(fichtm,"\n</body>");                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
    }                /*probs[i][jk][j1]= pp[jk]/pos;*/
    }                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
 fclose(fichtm);              }
 }              else
                 fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
 /******************* Gnuplot file **************/            }
 void printinggnuplot(char fileres[],char optionfilefiname[],char optionfile[],char optionfilegnuplot[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){          }
           
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;          for(jk=-1; jk <=nlstate+ndeath; jk++)
             for(m=-1; m <=nlstate+ndeath; m++)
   strcpy(optionfilegnuplot,optionfilefiname);              if(freq[jk][m][i] !=0 ) {
   strcat(optionfilegnuplot,".gp.txt");              if(first==1)
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
     printf("Problem with file %s",optionfilegnuplot);                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
   }              }
           if(i <= iagemax)
 #ifdef windows            fprintf(ficresp,"\n");
     fprintf(ficgp,"cd \"%s\" \n",pathc);          if(first==1)
 #endif            printf("Others in log...\n");
 m=pow(2,cptcoveff);          fprintf(ficlog,"\n");
          }
  /* 1eme*/      }
   for (cpt=1; cpt<= nlstate ; cpt ++) {    }
    for (k1=1; k1<= m ; k1 ++) {    dateintmean=dateintsum/k2cpt; 
    
 #ifdef windows    fclose(ficresp);
     fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);    free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);
 #endif    free_vector(pp,1,nlstate);
 #ifdef unix    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);    /* End of Freq */
 #endif  }
   
 for (i=1; i<= nlstate ; i ++) {  /************ Prevalence ********************/
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
   else fprintf(ficgp," \%%*lf (\%%*lf)");  {  
 }    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);       in each health status at the date of interview (if between dateprev1 and dateprev2).
     for (i=1; i<= nlstate ; i ++) {       We still use firstpass and lastpass as another selection.
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    */
   else fprintf(ficgp," \%%*lf (\%%*lf)");   
 }    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);    double ***freq; /* Frequencies */
      for (i=1; i<= nlstate ; i ++) {    double *pp, **prop;
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    double pos,posprop; 
   else fprintf(ficgp," \%%*lf (\%%*lf)");    double  y2; /* in fractional years */
 }      int iagemin, iagemax;
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));  
 #ifdef unix    iagemin= (int) agemin;
 fprintf(ficgp,"\nset ter gif small size 400,300");    iagemax= (int) agemax;
 #endif    /*pp=vector(1,nlstate);*/
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);    prop=matrix(1,nlstate,iagemin,iagemax+3); 
    }    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
   }    j1=0;
   /*2 eme*/    
     j=cptcoveff;
   for (k1=1; k1<= m ; k1 ++) {    if (cptcovn<1) {j=1;ncodemax[1]=1;}
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",ageminpar,fage);    
        for(k1=1; k1<=j;k1++){
     for (i=1; i<= nlstate+1 ; i ++) {      for(i1=1; i1<=ncodemax[k1];i1++){
       k=2*i;        j1++;
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);        
       for (j=1; j<= nlstate+1 ; j ++) {        for (i=1; i<=nlstate; i++)  
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");          for(m=iagemin; m <= iagemax+3; m++)
   else fprintf(ficgp," \%%*lf (\%%*lf)");            prop[i][m]=0.0;
 }         
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");        for (i=1; i<=imx; i++) { /* Each individual */
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);          bool=1;
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);          if  (cptcovn>0) {
       for (j=1; j<= nlstate+1 ; j ++) {            for (z1=1; z1<=cptcoveff; z1++) 
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
         else fprintf(ficgp," \%%*lf (\%%*lf)");                bool=0;
 }            } 
       fprintf(ficgp,"\" t\"\" w l 0,");          if (bool==1) { 
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
       for (j=1; j<= nlstate+1 ; j ++) {              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
   else fprintf(ficgp," \%%*lf (\%%*lf)");                if(agev[m][i]==0) agev[m][i]=iagemax+1;
 }                  if(agev[m][i]==1) agev[m][i]=iagemax+2;
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
       else fprintf(ficgp,"\" t\"\" w l 0,");                if (s[m][i]>0 && s[m][i]<=nlstate) { 
     }                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
   }                  prop[s[m][i]][iagemax+3] += weight[i]; 
                  } 
   /*3eme*/              }
             } /* end selection of waves */
   for (k1=1; k1<= m ; k1 ++) {          }
     for (cpt=1; cpt<= nlstate ; cpt ++) {        }
       k=2+nlstate*(cpt-1);        for(i=iagemin; i <= iagemax+3; i++){  
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);          
       for (i=1; i< nlstate ; i ++) {          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+i,cpt,i+1);            posprop += prop[jk][i]; 
       }          } 
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);  
     }          for(jk=1; jk <=nlstate ; jk++){     
     }            if( i <=  iagemax){ 
                if(posprop>=1.e-5){ 
   /* CV preval stat */                probs[i][jk][j1]= prop[jk][i]/posprop;
     for (k1=1; k1<= m ; k1 ++) {              } 
     for (cpt=1; cpt<nlstate ; cpt ++) {            } 
       k=3;          }/* end jk */ 
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);        }/* end i */ 
       } /* end i1 */
       for (i=1; i< nlstate ; i ++)    } /* end k1 */
         fprintf(ficgp,"+$%d",k+i+1);    
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
          /*free_vector(pp,1,nlstate);*/
       l=3+(nlstate+ndeath)*cpt;    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);  }  /* End of prevalence */
       for (i=1; i< nlstate ; i ++) {  
         l=3+(nlstate+ndeath)*cpt;  /************* Waves Concatenation ***************/
         fprintf(ficgp,"+$%d",l+i+1);  
       }  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);    {
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
     }       Death is a valid wave (if date is known).
   }         mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
         dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
   /* proba elementaires */       and mw[mi+1][i]. dh depends on stepm.
    for(i=1,jk=1; i <=nlstate; i++){       */
     for(k=1; k <=(nlstate+ndeath); k++){  
       if (k != i) {    int i, mi, m;
         for(j=1; j <=ncovmodel; j++){    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
               double sum=0., jmean=0.;*/
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);    int first;
           jk++;    int j, k=0,jk, ju, jl;
           fprintf(ficgp,"\n");    double sum=0.;
         }    first=0;
       }    jmin=1e+5;
     }    jmax=-1;
     }    jmean=0.;
     for(i=1; i<=imx; i++){
     for(jk=1; jk <=m; jk++) {      mi=0;
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);      m=firstpass;
    i=1;      while(s[m][i] <= nlstate){
    for(k2=1; k2<=nlstate; k2++) {        if(s[m][i]>=1)
      k3=i;          mw[++mi][i]=m;
      for(k=1; k<=(nlstate+ndeath); k++) {        if(m >=lastpass)
        if (k != k2){          break;
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);        else
 ij=1;          m++;
         for(j=3; j <=ncovmodel; j++) {      }/* end while */
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {      if (s[m][i] > nlstate){
             fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);        mi++;     /* Death is another wave */
             ij++;        /* if(mi==0)  never been interviewed correctly before death */
           }           /* Only death is a correct wave */
           else        mw[mi][i]=m;
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);      }
         }  
           fprintf(ficgp,")/(1");      wav[i]=mi;
              if(mi==0){
         for(k1=1; k1 <=nlstate; k1++){          nbwarn++;
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);        if(first==0){
 ij=1;          printf("Warning! None valid information for:%ld line=%d (skipped) and may be others, see log file\n",num[i],i);
           for(j=3; j <=ncovmodel; j++){          first=1;
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {        }
             fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);        if(first==1){
             ij++;          fprintf(ficlog,"Warning! None valid information for:%ld line=%d (skipped)\n",num[i],i);
           }        }
           else      } /* end mi==0 */
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    } /* End individuals */
           }  
           fprintf(ficgp,")");    for(i=1; i<=imx; i++){
         }      for(mi=1; mi<wav[i];mi++){
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);        if (stepm <=0)
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");          dh[mi][i]=1;
         i=i+ncovmodel;        else{
        }          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
      }            if (agedc[i] < 2*AGESUP) {
    }              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);              if(j==0) j=1;  /* Survives at least one month after exam */
    }              else if(j<0){
                    nberr++;
   fclose(ficgp);                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 }  /* end gnuplot */                j=1; /* Temporary Dangerous patch */
                 printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
                 fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 /*************** Moving average **************/                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){              }
               k=k+1;
   int i, cpt, cptcod;              if (j >= jmax) jmax=j;
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)              if (j <= jmin) jmin=j;
       for (i=1; i<=nlstate;i++)              sum=sum+j;
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
           mobaverage[(int)agedeb][i][cptcod]=0.;              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
                }
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){          }
       for (i=1; i<=nlstate;i++){          else{
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
           for (cpt=0;cpt<=4;cpt++){            /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];            k=k+1;
           }            if (j >= jmax) jmax=j;
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;            else if (j <= jmin)jmin=j;
         }            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
       }            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
     }            if(j<0){
                  nberr++;
 }              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
               fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
             }
 /************** Forecasting ******************/            sum=sum+j;
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){          }
            jk= j/stepm;
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;          jl= j -jk*stepm;
   int *popage;          ju= j -(jk+1)*stepm;
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
   double *popeffectif,*popcount;            if(jl==0){
   double ***p3mat;              dh[mi][i]=jk;
   char fileresf[FILENAMELENGTH];              bh[mi][i]=0;
             }else{ /* We want a negative bias in order to only have interpolation ie
  agelim=AGESUP;                    * at the price of an extra matrix product in likelihood */
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;              dh[mi][i]=jk+1;
               bh[mi][i]=ju;
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);            }
            }else{
              if(jl <= -ju){
   strcpy(fileresf,"f");              dh[mi][i]=jk;
   strcat(fileresf,fileres);              bh[mi][i]=jl;       /* bias is positive if real duration
   if((ficresf=fopen(fileresf,"w"))==NULL) {                                   * is higher than the multiple of stepm and negative otherwise.
     printf("Problem with forecast resultfile: %s\n", fileresf);                                   */
   }            }
   printf("Computing forecasting: result on file '%s' \n", fileresf);            else{
               dh[mi][i]=jk+1;
   if (cptcoveff==0) ncodemax[cptcoveff]=1;              bh[mi][i]=ju;
             }
   if (mobilav==1) {            if(dh[mi][i]==0){
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);              dh[mi][i]=1; /* At least one step */
     movingaverage(agedeb, fage, ageminpar, mobaverage);              bh[mi][i]=ju; /* At least one step */
   }              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
             }
   stepsize=(int) (stepm+YEARM-1)/YEARM;          } /* end if mle */
   if (stepm<=12) stepsize=1;        }
        } /* end wave */
   agelim=AGESUP;    }
      jmean=sum/k;
   hstepm=1;    printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
   hstepm=hstepm/stepm;    fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
   yp1=modf(dateintmean,&yp);   }
   anprojmean=yp;  
   yp2=modf((yp1*12),&yp);  /*********** Tricode ****************************/
   mprojmean=yp;  void tricode(int *Tvar, int **nbcode, int imx)
   yp1=modf((yp2*30.5),&yp);  {
   jprojmean=yp;    
   if(jprojmean==0) jprojmean=1;    int Ndum[20],ij=1, k, j, i, maxncov=19;
   if(mprojmean==0) jprojmean=1;    int cptcode=0;
      cptcoveff=0; 
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);   
      for (k=0; k<maxncov; k++) Ndum[k]=0;
   for(cptcov=1;cptcov<=i2;cptcov++){    for (k=1; k<=7; k++) ncodemax[k]=0;
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){  
       k=k+1;    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
       fprintf(ficresf,"\n#******");      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
       for(j=1;j<=cptcoveff;j++) {                                 modality*/ 
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
       }        Ndum[ij]++; /*store the modality */
       fprintf(ficresf,"******\n");        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
       fprintf(ficresf,"# StartingAge FinalAge");        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);                                         Tvar[j]. If V=sex and male is 0 and 
                                               female is 1, then  cptcode=1.*/
            }
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {  
         fprintf(ficresf,"\n");      for (i=0; i<=cptcode; i++) {
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);          if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
       }
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){  
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);      ij=1; 
           nhstepm = nhstepm/hstepm;      for (i=1; i<=ncodemax[j]; i++) {
                  for (k=0; k<= maxncov; k++) {
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          if (Ndum[k] != 0) {
           oldm=oldms;savm=savms;            nbcode[Tvar[j]][ij]=k; 
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);              /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
                    
           for (h=0; h<=nhstepm; h++){            ij++;
             if (h==(int) (calagedate+YEARM*cpt)) {          }
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);          if (ij > ncodemax[j]) break; 
             }        }  
             for(j=1; j<=nlstate+ndeath;j++) {      } 
               kk1=0.;kk2=0;    }  
               for(i=1; i<=nlstate;i++) {                
                 if (mobilav==1)   for (k=0; k< maxncov; k++) Ndum[k]=0;
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];  
                 else {   for (i=1; i<=ncovmodel-2; i++) { 
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];     /* Listing of all covariables in staement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
                 }     ij=Tvar[i];
                     Ndum[ij]++;
               }   }
               if (h==(int)(calagedate+12*cpt)){  
                 fprintf(ficresf," %.3f", kk1);   ij=1;
                           for (i=1; i<= maxncov; i++) {
               }     if((Ndum[i]!=0) && (i<=ncovcol)){
             }       Tvaraff[ij]=i; /*For printing */
           }       ij++;
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);     }
         }   }
       }   
     }   cptcoveff=ij-1; /*Number of simple covariates*/
   }  }
          
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  /*********** Health Expectancies ****************/
   
   fclose(ficresf);  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )
 }  
 /************** Forecasting ******************/  {
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){    /* Health expectancies */
      int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;    double age, agelim, hf;
   int *popage;    double ***p3mat,***varhe;
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;    double **dnewm,**doldm;
   double *popeffectif,*popcount;    double *xp;
   double ***p3mat,***tabpop,***tabpopprev;    double **gp, **gm;
   char filerespop[FILENAMELENGTH];    double ***gradg, ***trgradg;
     int theta;
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
   agelim=AGESUP;    xp=vector(1,npar);
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;    dnewm=matrix(1,nlstate*nlstate,1,npar);
      doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    
      fprintf(ficreseij,"# Health expectancies\n");
      fprintf(ficreseij,"# Age");
   strcpy(filerespop,"pop");    for(i=1; i<=nlstate;i++)
   strcat(filerespop,fileres);      for(j=1; j<=nlstate;j++)
   if((ficrespop=fopen(filerespop,"w"))==NULL) {        fprintf(ficreseij," %1d-%1d (SE)",i,j);
     printf("Problem with forecast resultfile: %s\n", filerespop);    fprintf(ficreseij,"\n");
   }  
   printf("Computing forecasting: result on file '%s' \n", filerespop);    if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
   if (cptcoveff==0) ncodemax[cptcoveff]=1;    }
     else  hstepm=estepm;   
   if (mobilav==1) {    /* We compute the life expectancy from trapezoids spaced every estepm months
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);     * This is mainly to measure the difference between two models: for example
     movingaverage(agedeb, fage, ageminpar, mobaverage);     * if stepm=24 months pijx are given only every 2 years and by summing them
   }     * we are calculating an estimate of the Life Expectancy assuming a linear 
      * progression in between and thus overestimating or underestimating according
   stepsize=(int) (stepm+YEARM-1)/YEARM;     * to the curvature of the survival function. If, for the same date, we 
   if (stepm<=12) stepsize=1;     * estimate the model with stepm=1 month, we can keep estepm to 24 months
       * to compare the new estimate of Life expectancy with the same linear 
   agelim=AGESUP;     * hypothesis. A more precise result, taking into account a more precise
       * curvature will be obtained if estepm is as small as stepm. */
   hstepm=1;  
   hstepm=hstepm/stepm;    /* For example we decided to compute the life expectancy with the smallest unit */
      /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   if (popforecast==1) {       nhstepm is the number of hstepm from age to agelim 
     if((ficpop=fopen(popfile,"r"))==NULL) {       nstepm is the number of stepm from age to agelin. 
       printf("Problem with population file : %s\n",popfile);exit(0);       Look at hpijx to understand the reason of that which relies in memory size
     }       and note for a fixed period like estepm months */
     popage=ivector(0,AGESUP);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
     popeffectif=vector(0,AGESUP);       survival function given by stepm (the optimization length). Unfortunately it
     popcount=vector(0,AGESUP);       means that if the survival funtion is printed only each two years of age and if
           you sum them up and add 1 year (area under the trapezoids) you won't get the same 
     i=1;         results. So we changed our mind and took the option of the best precision.
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;    */
        hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     imx=i;  
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];    agelim=AGESUP;
   }    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       /* nhstepm age range expressed in number of stepm */
   for(cptcov=1;cptcov<=i2;cptcov++){      nstepm=(int) rint((agelim-age)*YEARM/stepm); 
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
       k=k+1;      /* if (stepm >= YEARM) hstepm=1;*/
       fprintf(ficrespop,"\n#******");      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       for(j=1;j<=cptcoveff;j++) {      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
       }      gp=matrix(0,nhstepm,1,nlstate*nlstate);
       fprintf(ficrespop,"******\n");      gm=matrix(0,nhstepm,1,nlstate*nlstate);
       fprintf(ficrespop,"# Age");  
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);      /* Computed by stepm unit matrices, product of hstepm matrices, stored
       if (popforecast==1)  fprintf(ficrespop," [Population]");         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
            hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
       for (cpt=0; cpt<=0;cpt++) {   
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);    
              hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){  
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);      /* Computing  Variances of health expectancies */
           nhstepm = nhstepm/hstepm;  
                 for(theta=1; theta <=npar; theta++){
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        for(i=1; i<=npar; i++){ 
           oldm=oldms;savm=savms;          xp[i] = x[i] + (i==theta ?delti[theta]:0);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);          }
                hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
           for (h=0; h<=nhstepm; h++){    
             if (h==(int) (calagedate+YEARM*cpt)) {        cptj=0;
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);        for(j=1; j<= nlstate; j++){
             }          for(i=1; i<=nlstate; i++){
             for(j=1; j<=nlstate+ndeath;j++) {            cptj=cptj+1;
               kk1=0.;kk2=0;            for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
               for(i=1; i<=nlstate;i++) {                            gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
                 if (mobilav==1)            }
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];          }
                 else {        }
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];       
                 }       
               }        for(i=1; i<=npar; i++) 
               if (h==(int)(calagedate+12*cpt)){          xp[i] = x[i] - (i==theta ?delti[theta]:0);
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
                   /*fprintf(ficrespop," %.3f", kk1);        
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/        cptj=0;
               }        for(j=1; j<= nlstate; j++){
             }          for(i=1;i<=nlstate;i++){
             for(i=1; i<=nlstate;i++){            cptj=cptj+1;
               kk1=0.;            for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
                 for(j=1; j<=nlstate;j++){  
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];              gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
                 }            }
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];          }
             }        }
         for(j=1; j<= nlstate*nlstate; j++)
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)          for(h=0; h<=nhstepm-1; h++){
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
           }          }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);       } 
         }     
       }  /* End theta */
    
   /******/       trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
   
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {       for(h=0; h<=nhstepm-1; h++)
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);          for(j=1; j<=nlstate*nlstate;j++)
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){          for(theta=1; theta <=npar; theta++)
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);            trgradg[h][j][theta]=gradg[h][theta][j];
           nhstepm = nhstepm/hstepm;       
            
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);       for(i=1;i<=nlstate*nlstate;i++)
           oldm=oldms;savm=savms;        for(j=1;j<=nlstate*nlstate;j++)
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);            varhe[i][j][(int)age] =0.;
           for (h=0; h<=nhstepm; h++){  
             if (h==(int) (calagedate+YEARM*cpt)) {       printf("%d|",(int)age);fflush(stdout);
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
             }       for(h=0;h<=nhstepm-1;h++){
             for(j=1; j<=nlstate+ndeath;j++) {        for(k=0;k<=nhstepm-1;k++){
               kk1=0.;kk2=0;          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
               for(i=1; i<=nlstate;i++) {                        matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];              for(i=1;i<=nlstate*nlstate;i++)
               }            for(j=1;j<=nlstate*nlstate;j++)
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);              varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
             }        }
           }      }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      /* Computing expectancies */
         }      for(i=1; i<=nlstate;i++)
       }        for(j=1; j<=nlstate;j++)
    }          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
   }            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
              
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   
   if (popforecast==1) {          }
     free_ivector(popage,0,AGESUP);  
     free_vector(popeffectif,0,AGESUP);      fprintf(ficreseij,"%3.0f",age );
     free_vector(popcount,0,AGESUP);      cptj=0;
   }      for(i=1; i<=nlstate;i++)
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        for(j=1; j<=nlstate;j++){
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          cptj++;
   fclose(ficrespop);          fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
 }        }
       fprintf(ficreseij,"\n");
 /***********************************************/     
 /**************** Main Program *****************/      free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
 /***********************************************/      free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
       free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
 int main(int argc, char *argv[])      free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
 {      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     }
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;    printf("\n");
   double agedeb, agefin,hf;    fprintf(ficlog,"\n");
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;  
     free_vector(xp,1,npar);
   double fret;    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
   double **xi,tmp,delta;    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
     free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
   double dum; /* Dummy variable */  }
   double ***p3mat;  
   int *indx;  /************ Variance ******************/
   char line[MAXLINE], linepar[MAXLINE];  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav)
   char title[MAXLINE];  {
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];    /* Variance of health expectancies */
   char optionfilext[10], optionfilefiname[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilegnuplot[FILENAMELENGTH], plotcmd[FILENAMELENGTH];    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
      /* double **newm;*/
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];    double **dnewm,**doldm;
     double **dnewmp,**doldmp;
   char filerest[FILENAMELENGTH];    int i, j, nhstepm, hstepm, h, nstepm ;
   char fileregp[FILENAMELENGTH];    int k, cptcode;
   char popfile[FILENAMELENGTH];    double *xp;
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];    double **gp, **gm;  /* for var eij */
   int firstobs=1, lastobs=10;    double ***gradg, ***trgradg; /*for var eij */
   int sdeb, sfin; /* Status at beginning and end */    double **gradgp, **trgradgp; /* for var p point j */
   int c,  h , cpt,l;    double *gpp, *gmp; /* for var p point j */
   int ju,jl, mi;    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;    double ***p3mat;
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;    double age,agelim, hf;
   int mobilav=0,popforecast=0;    double ***mobaverage;
   int hstepm, nhstepm;    int theta;
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1;    char digit[4];
     char digitp[25];
   double bage, fage, age, agelim, agebase;  
   double ftolpl=FTOL;    char fileresprobmorprev[FILENAMELENGTH];
   double **prlim;  
   double *severity;    if(popbased==1){
   double ***param; /* Matrix of parameters */      if(mobilav!=0)
   double  *p;        strcpy(digitp,"-populbased-mobilav-");
   double **matcov; /* Matrix of covariance */      else strcpy(digitp,"-populbased-nomobil-");
   double ***delti3; /* Scale */    }
   double *delti; /* Scale */    else 
   double ***eij, ***vareij;      strcpy(digitp,"-stablbased-");
   double **varpl; /* Variances of prevalence limits by age */  
   double *epj, vepp;    if (mobilav!=0) {
   double kk1, kk2;      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
          fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
   char version[80]="Imach version 0.8a, March 2002, INED-EUROREVES ";      }
   char *alph[]={"a","a","b","c","d","e"}, str[4];    }
   
     strcpy(fileresprobmorprev,"prmorprev"); 
   char z[1]="c", occ;    sprintf(digit,"%-d",ij);
 #include <sys/time.h>    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
 #include <time.h>    strcat(fileresprobmorprev,digit); /* Tvar to be done */
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
      strcat(fileresprobmorprev,fileres);
   /* long total_usecs;    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
   struct timeval start_time, end_time;      printf("Problem with resultfile: %s\n", fileresprobmorprev);
        fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */    }
   getcwd(pathcd, size);    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   printf("\n%s",version);    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
   if(argc <=1){    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
     printf("\nEnter the parameter file name: ");    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
     scanf("%s",pathtot);      fprintf(ficresprobmorprev," p.%-d SE",j);
   }      for(i=1; i<=nlstate;i++)
   else{        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
     strcpy(pathtot,argv[1]);    }  
   }    fprintf(ficresprobmorprev,"\n");
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/    fprintf(ficgp,"\n# Routine varevsij");
   /*cygwin_split_path(pathtot,path,optionfile);    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
   /* cutv(path,optionfile,pathtot,'\\');*/  /*   } */
     varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);  
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
   chdir(path);    fprintf(ficresvij,"# Age");
   replace(pathc,path);    for(i=1; i<=nlstate;i++)
       for(j=1; j<=nlstate;j++)
 /*-------- arguments in the command line --------*/        fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
     fprintf(ficresvij,"\n");
   strcpy(fileres,"r");  
   strcat(fileres, optionfilefiname);    xp=vector(1,npar);
   strcat(fileres,".txt");    /* Other files have txt extension */    dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
   /*---------arguments file --------*/    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
     doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   if((ficpar=fopen(optionfile,"r"))==NULL)    {  
     printf("Problem with optionfile %s\n",optionfile);    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
     goto end;    gpp=vector(nlstate+1,nlstate+ndeath);
   }    gmp=vector(nlstate+1,nlstate+ndeath);
     trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
   strcpy(filereso,"o");    
   strcat(filereso,fileres);    if(estepm < stepm){
   if((ficparo=fopen(filereso,"w"))==NULL) {      printf ("Problem %d lower than %d\n",estepm, stepm);
     printf("Problem with Output resultfile: %s\n", filereso);goto end;    }
   }    else  hstepm=estepm;   
     /* For example we decided to compute the life expectancy with the smallest unit */
   /* Reads comments: lines beginning with '#' */    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   while((c=getc(ficpar))=='#' && c!= EOF){       nhstepm is the number of hstepm from age to agelim 
     ungetc(c,ficpar);       nstepm is the number of stepm from age to agelin. 
     fgets(line, MAXLINE, ficpar);       Look at hpijx to understand the reason of that which relies in memory size
     puts(line);       and note for a fixed period like k years */
     fputs(line,ficparo);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   }       survival function given by stepm (the optimization length). Unfortunately it
   ungetc(c,ficpar);       means that if the survival funtion is printed every two years of age and if
        you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);       results. So we changed our mind and took the option of the best precision.
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);    */
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
 while((c=getc(ficpar))=='#' && c!= EOF){    agelim = AGESUP;
     ungetc(c,ficpar);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
     fgets(line, MAXLINE, ficpar);      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
     puts(line);      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     fputs(line,ficparo);      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   }      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
   ungetc(c,ficpar);      gp=matrix(0,nhstepm,1,nlstate);
        gm=matrix(0,nhstepm,1,nlstate);
      
   covar=matrix(0,NCOVMAX,1,n);  
   cptcovn=0;      for(theta=1; theta <=npar; theta++){
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
   ncovmodel=2+cptcovn;        }
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
          prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   /* Read guess parameters */  
   /* Reads comments: lines beginning with '#' */        if (popbased==1) {
   while((c=getc(ficpar))=='#' && c!= EOF){          if(mobilav ==0){
     ungetc(c,ficpar);            for(i=1; i<=nlstate;i++)
     fgets(line, MAXLINE, ficpar);              prlim[i][i]=probs[(int)age][i][ij];
     puts(line);          }else{ /* mobilav */ 
     fputs(line,ficparo);            for(i=1; i<=nlstate;i++)
   }              prlim[i][i]=mobaverage[(int)age][i][ij];
   ungetc(c,ficpar);          }
          }
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    
     for(i=1; i <=nlstate; i++)        for(j=1; j<= nlstate; j++){
     for(j=1; j <=nlstate+ndeath-1; j++){          for(h=0; h<=nhstepm; h++){
       fscanf(ficpar,"%1d%1d",&i1,&j1);            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
       fprintf(ficparo,"%1d%1d",i1,j1);              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
       printf("%1d%1d",i,j);          }
       for(k=1; k<=ncovmodel;k++){        }
         fscanf(ficpar," %lf",&param[i][j][k]);        /* This for computing probability of death (h=1 means
         printf(" %lf",param[i][j][k]);           computed over hstepm matrices product = hstepm*stepm months) 
         fprintf(ficparo," %lf",param[i][j][k]);           as a weighted average of prlim.
       }        */
       fscanf(ficpar,"\n");        for(j=nlstate+1;j<=nlstate+ndeath;j++){
       printf("\n");          for(i=1,gpp[j]=0.; i<= nlstate; i++)
       fprintf(ficparo,"\n");            gpp[j] += prlim[i][i]*p3mat[i][j][1];
     }        }    
          /* end probability of death */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;  
         for(i=1; i<=npar; i++) /* Computes gradient x - delta */
   p=param[1][1];          xp[i] = x[i] - (i==theta ?delti[theta]:0);
          hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   /* Reads comments: lines beginning with '#' */        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   while((c=getc(ficpar))=='#' && c!= EOF){   
     ungetc(c,ficpar);        if (popbased==1) {
     fgets(line, MAXLINE, ficpar);          if(mobilav ==0){
     puts(line);            for(i=1; i<=nlstate;i++)
     fputs(line,ficparo);              prlim[i][i]=probs[(int)age][i][ij];
   }          }else{ /* mobilav */ 
   ungetc(c,ficpar);            for(i=1; i<=nlstate;i++)
               prlim[i][i]=mobaverage[(int)age][i][ij];
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);          }
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */        }
   for(i=1; i <=nlstate; i++){  
     for(j=1; j <=nlstate+ndeath-1; j++){        for(j=1; j<= nlstate; j++){
       fscanf(ficpar,"%1d%1d",&i1,&j1);          for(h=0; h<=nhstepm; h++){
       printf("%1d%1d",i,j);            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
       fprintf(ficparo,"%1d%1d",i1,j1);              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
       for(k=1; k<=ncovmodel;k++){          }
         fscanf(ficpar,"%le",&delti3[i][j][k]);        }
         printf(" %le",delti3[i][j][k]);        /* This for computing probability of death (h=1 means
         fprintf(ficparo," %le",delti3[i][j][k]);           computed over hstepm matrices product = hstepm*stepm months) 
       }           as a weighted average of prlim.
       fscanf(ficpar,"\n");        */
       printf("\n");        for(j=nlstate+1;j<=nlstate+ndeath;j++){
       fprintf(ficparo,"\n");          for(i=1,gmp[j]=0.; i<= nlstate; i++)
     }           gmp[j] += prlim[i][i]*p3mat[i][j][1];
   }        }    
   delti=delti3[1][1];        /* end probability of death */
    
   /* Reads comments: lines beginning with '#' */        for(j=1; j<= nlstate; j++) /* vareij */
   while((c=getc(ficpar))=='#' && c!= EOF){          for(h=0; h<=nhstepm; h++){
     ungetc(c,ficpar);            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
     fgets(line, MAXLINE, ficpar);          }
     puts(line);  
     fputs(line,ficparo);        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
   }          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
   ungetc(c,ficpar);        }
    
   matcov=matrix(1,npar,1,npar);      } /* End theta */
   for(i=1; i <=npar; i++){  
     fscanf(ficpar,"%s",&str);      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
     printf("%s",str);  
     fprintf(ficparo,"%s",str);      for(h=0; h<=nhstepm; h++) /* veij */
     for(j=1; j <=i; j++){        for(j=1; j<=nlstate;j++)
       fscanf(ficpar," %le",&matcov[i][j]);          for(theta=1; theta <=npar; theta++)
       printf(" %.5le",matcov[i][j]);            trgradg[h][j][theta]=gradg[h][theta][j];
       fprintf(ficparo," %.5le",matcov[i][j]);  
     }      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
     fscanf(ficpar,"\n");        for(theta=1; theta <=npar; theta++)
     printf("\n");          trgradgp[j][theta]=gradgp[theta][j];
     fprintf(ficparo,"\n");    
   }  
   for(i=1; i <=npar; i++)      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
     for(j=i+1;j<=npar;j++)      for(i=1;i<=nlstate;i++)
       matcov[i][j]=matcov[j][i];        for(j=1;j<=nlstate;j++)
              vareij[i][j][(int)age] =0.;
   printf("\n");  
       for(h=0;h<=nhstepm;h++){
         for(k=0;k<=nhstepm;k++){
     /*-------- Rewriting paramater file ----------*/          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
      strcpy(rfileres,"r");    /* "Rparameterfile */          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/          for(i=1;i<=nlstate;i++)
      strcat(rfileres,".");    /* */            for(j=1;j<=nlstate;j++)
      strcat(rfileres,optionfilext);    /* Other files have txt extension */              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
     if((ficres =fopen(rfileres,"w"))==NULL) {        }
       printf("Problem writing new parameter file: %s\n", fileres);goto end;      }
     }    
     fprintf(ficres,"#%s\n",version);      /* pptj */
          matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
     /*-------- data file ----------*/      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
     if((fic=fopen(datafile,"r"))==NULL)    {      for(j=nlstate+1;j<=nlstate+ndeath;j++)
       printf("Problem with datafile: %s\n", datafile);goto end;        for(i=nlstate+1;i<=nlstate+ndeath;i++)
     }          varppt[j][i]=doldmp[j][i];
       /* end ppptj */
     n= lastobs;      /*  x centered again */
     severity = vector(1,maxwav);      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
     outcome=imatrix(1,maxwav+1,1,n);      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
     num=ivector(1,n);   
     moisnais=vector(1,n);      if (popbased==1) {
     annais=vector(1,n);        if(mobilav ==0){
     moisdc=vector(1,n);          for(i=1; i<=nlstate;i++)
     andc=vector(1,n);            prlim[i][i]=probs[(int)age][i][ij];
     agedc=vector(1,n);        }else{ /* mobilav */ 
     cod=ivector(1,n);          for(i=1; i<=nlstate;i++)
     weight=vector(1,n);            prlim[i][i]=mobaverage[(int)age][i][ij];
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */        }
     mint=matrix(1,maxwav,1,n);      }
     anint=matrix(1,maxwav,1,n);               
     s=imatrix(1,maxwav+1,1,n);      /* This for computing probability of death (h=1 means
     adl=imatrix(1,maxwav+1,1,n);             computed over hstepm (estepm) matrices product = hstepm*stepm months) 
     tab=ivector(1,NCOVMAX);         as a weighted average of prlim.
     ncodemax=ivector(1,8);      */
       for(j=nlstate+1;j<=nlstate+ndeath;j++){
     i=1;        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
     while (fgets(line, MAXLINE, fic) != NULL)    {          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
       if ((i >= firstobs) && (i <=lastobs)) {      }    
              /* end probability of death */
         for (j=maxwav;j>=1;j--){  
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
           strcpy(line,stra);      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);        for(i=1; i<=nlstate;i++){
         }          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
                }
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);      } 
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);      fprintf(ficresprobmorprev,"\n");
   
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);      fprintf(ficresvij,"%.0f ",age );
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);      for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++){
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
         for (j=ncovcol;j>=1;j--){        }
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);      fprintf(ficresvij,"\n");
         }      free_matrix(gp,0,nhstepm,1,nlstate);
         num[i]=atol(stra);      free_matrix(gm,0,nhstepm,1,nlstate);
              free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     } /* End age */
         i=i+1;    free_vector(gpp,nlstate+1,nlstate+ndeath);
       }    free_vector(gmp,nlstate+1,nlstate+ndeath);
     }    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
     /* printf("ii=%d", ij);    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
        scanf("%d",i);*/    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
   imx=i-1; /* Number of individuals */    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
     fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
   /* for (i=1; i<=imx; i++){  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
     }*/    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
      fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
   /* for (i=1; i<=imx; i++){    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
      if (s[4][i]==9)  s[4][i]=-1;    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
   */  */
    /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
   /* Calculation of the number of parameter from char model*/    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   Tvar=ivector(1,15);  
   Tprod=ivector(1,15);    free_vector(xp,1,npar);
   Tvaraff=ivector(1,15);    free_matrix(doldm,1,nlstate,1,nlstate);
   Tvard=imatrix(1,15,1,2);    free_matrix(dnewm,1,nlstate,1,npar);
   Tage=ivector(1,15);          free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
        free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
   if (strlen(model) >1){    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     j=0, j1=0, k1=1, k2=1;    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     j=nbocc(model,'+');    fclose(ficresprobmorprev);
     j1=nbocc(model,'*');    fflush(ficgp);
     cptcovn=j+1;    fflush(fichtm); 
     cptcovprod=j1;  }  /* end varevsij */
      
     strcpy(modelsav,model);  /************ Variance of prevlim ******************/
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)
       printf("Error. Non available option model=%s ",model);  {
       goto end;    /* Variance of prevalence limit */
     }    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
        double **newm;
     for(i=(j+1); i>=1;i--){    double **dnewm,**doldm;
       cutv(stra,strb,modelsav,'+');    int i, j, nhstepm, hstepm;
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);    int k, cptcode;
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/    double *xp;
       /*scanf("%d",i);*/    double *gp, *gm;
       if (strchr(strb,'*')) {    double **gradg, **trgradg;
         cutv(strd,strc,strb,'*');    double age,agelim;
         if (strcmp(strc,"age")==0) {    int theta;
           cptcovprod--;     
           cutv(strb,stre,strd,'V');    fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
           Tvar[i]=atoi(stre);    fprintf(ficresvpl,"# Age");
           cptcovage++;    for(i=1; i<=nlstate;i++)
             Tage[cptcovage]=i;        fprintf(ficresvpl," %1d-%1d",i,i);
             /*printf("stre=%s ", stre);*/    fprintf(ficresvpl,"\n");
         }  
         else if (strcmp(strd,"age")==0) {    xp=vector(1,npar);
           cptcovprod--;    dnewm=matrix(1,nlstate,1,npar);
           cutv(strb,stre,strc,'V');    doldm=matrix(1,nlstate,1,nlstate);
           Tvar[i]=atoi(stre);    
           cptcovage++;    hstepm=1*YEARM; /* Every year of age */
           Tage[cptcovage]=i;    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
         }    agelim = AGESUP;
         else {    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
           cutv(strb,stre,strc,'V');      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
           Tvar[i]=ncovcol+k1;      if (stepm >= YEARM) hstepm=1;
           cutv(strb,strc,strd,'V');      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
           Tprod[k1]=i;      gradg=matrix(1,npar,1,nlstate);
           Tvard[k1][1]=atoi(strc);      gp=vector(1,nlstate);
           Tvard[k1][2]=atoi(stre);      gm=vector(1,nlstate);
           Tvar[cptcovn+k2]=Tvard[k1][1];  
           Tvar[cptcovn+k2+1]=Tvard[k1][2];      for(theta=1; theta <=npar; theta++){
           for (k=1; k<=lastobs;k++)        for(i=1; i<=npar; i++){ /* Computes gradient */
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];          xp[i] = x[i] + (i==theta ?delti[theta]:0);
           k1++;        }
           k2=k2+2;        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         }        for(i=1;i<=nlstate;i++)
       }          gp[i] = prlim[i][i];
       else {      
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/        for(i=1; i<=npar; i++) /* Computes gradient */
        /*  scanf("%d",i);*/          xp[i] = x[i] - (i==theta ?delti[theta]:0);
       cutv(strd,strc,strb,'V');        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
       Tvar[i]=atoi(strc);        for(i=1;i<=nlstate;i++)
       }          gm[i] = prlim[i][i];
       strcpy(modelsav,stra);    
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);        for(i=1;i<=nlstate;i++)
         scanf("%d",i);*/          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
     }      } /* End theta */
 }  
        trgradg =matrix(1,nlstate,1,npar);
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);  
   printf("cptcovprod=%d ", cptcovprod);      for(j=1; j<=nlstate;j++)
   scanf("%d ",i);*/        for(theta=1; theta <=npar; theta++)
     fclose(fic);          trgradg[j][theta]=gradg[theta][j];
   
     /*  if(mle==1){*/      for(i=1;i<=nlstate;i++)
     if (weightopt != 1) { /* Maximisation without weights*/        varpl[i][(int)age] =0.;
       for(i=1;i<=n;i++) weight[i]=1.0;      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
     }      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
     /*-calculation of age at interview from date of interview and age at death -*/      for(i=1;i<=nlstate;i++)
     agev=matrix(1,maxwav,1,imx);        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   
     for (i=1; i<=imx; i++) {      fprintf(ficresvpl,"%.0f ",age );
       for(m=2; (m<= maxwav); m++) {      for(i=1; i<=nlstate;i++)
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
          anint[m][i]=9999;      fprintf(ficresvpl,"\n");
          s[m][i]=-1;      free_vector(gp,1,nlstate);
        }      free_vector(gm,1,nlstate);
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;      free_matrix(gradg,1,npar,1,nlstate);
       }      free_matrix(trgradg,1,nlstate,1,npar);
     }    } /* End age */
   
     for (i=1; i<=imx; i++)  {    free_vector(xp,1,npar);
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);    free_matrix(doldm,1,nlstate,1,npar);
       for(m=1; (m<= maxwav); m++){    free_matrix(dnewm,1,nlstate,1,nlstate);
         if(s[m][i] >0){  
           if (s[m][i] >= nlstate+1) {  }
             if(agedc[i]>0)  
               if(moisdc[i]!=99 && andc[i]!=9999)  /************ Variance of one-step probabilities  ******************/
                 agev[m][i]=agedc[i];  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/  {
            else {    int i, j=0,  i1, k1, l1, t, tj;
               if (andc[i]!=9999){    int k2, l2, j1,  z1;
               printf("Warning negative age at death: %d line:%d\n",num[i],i);    int k=0,l, cptcode;
               agev[m][i]=-1;    int first=1, first1;
               }    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
             }    double **dnewm,**doldm;
           }    double *xp;
           else if(s[m][i] !=9){ /* Should no more exist */    double *gp, *gm;
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);    double **gradg, **trgradg;
             if(mint[m][i]==99 || anint[m][i]==9999)    double **mu;
               agev[m][i]=1;    double age,agelim, cov[NCOVMAX];
             else if(agev[m][i] <agemin){    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
               agemin=agev[m][i];    int theta;
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/    char fileresprob[FILENAMELENGTH];
             }    char fileresprobcov[FILENAMELENGTH];
             else if(agev[m][i] >agemax){    char fileresprobcor[FILENAMELENGTH];
               agemax=agev[m][i];  
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/    double ***varpij;
             }  
             /*agev[m][i]=anint[m][i]-annais[i];*/    strcpy(fileresprob,"prob"); 
             /*   agev[m][i] = age[i]+2*m;*/    strcat(fileresprob,fileres);
           }    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
           else { /* =9 */      printf("Problem with resultfile: %s\n", fileresprob);
             agev[m][i]=1;      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
             s[m][i]=-1;    }
           }    strcpy(fileresprobcov,"probcov"); 
         }    strcat(fileresprobcov,fileres);
         else /*= 0 Unknown */    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
           agev[m][i]=1;      printf("Problem with resultfile: %s\n", fileresprobcov);
       }      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
        }
     }    strcpy(fileresprobcor,"probcor"); 
     for (i=1; i<=imx; i++)  {    strcat(fileresprobcor,fileres);
       for(m=1; (m<= maxwav); m++){    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
         if (s[m][i] > (nlstate+ndeath)) {      printf("Problem with resultfile: %s\n", fileresprobcor);
           printf("Error: Wrong value in nlstate or ndeath\n");        fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
           goto end;    }
         }    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
       }    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     }    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     free_vector(severity,1,maxwav);    
     free_imatrix(outcome,1,maxwav+1,1,n);    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     free_vector(moisnais,1,n);    fprintf(ficresprob,"# Age");
     free_vector(annais,1,n);    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
     /* free_matrix(mint,1,maxwav,1,n);    fprintf(ficresprobcov,"# Age");
        free_matrix(anint,1,maxwav,1,n);*/    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
     free_vector(moisdc,1,n);    fprintf(ficresprobcov,"# Age");
     free_vector(andc,1,n);  
   
        for(i=1; i<=nlstate;i++)
     wav=ivector(1,imx);      for(j=1; j<=(nlstate+ndeath);j++){
     dh=imatrix(1,lastpass-firstpass+1,1,imx);        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);        fprintf(ficresprobcov," p%1d-%1d ",i,j);
            fprintf(ficresprobcor," p%1d-%1d ",i,j);
     /* Concatenates waves */      }  
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);   /* fprintf(ficresprob,"\n");
     fprintf(ficresprobcov,"\n");
     fprintf(ficresprobcor,"\n");
       Tcode=ivector(1,100);   */
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);   xp=vector(1,npar);
       ncodemax[1]=1;    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
          mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
    codtab=imatrix(1,100,1,10);    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
    h=0;    first=1;
    m=pow(2,cptcoveff);    fprintf(ficgp,"\n# Routine varprob");
      fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
    for(k=1;k<=cptcoveff; k++){    fprintf(fichtm,"\n");
      for(i=1; i <=(m/pow(2,k));i++){  
        for(j=1; j <= ncodemax[k]; j++){    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){    fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
            h++;    file %s<br>\n",optionfilehtmcov);
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/  and drawn. It helps understanding how is the covariance between two incidences.\
          }   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
        }    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
      }  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
    }  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);  standard deviations wide on each axis. <br>\
       codtab[1][2]=1;codtab[2][2]=2; */   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
    /* for(i=1; i <=m ;i++){   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
       for(k=1; k <=cptcovn; k++){  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);  
       }    cov[1]=1;
       printf("\n");    tj=cptcoveff;
       }    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
       scanf("%d",i);*/    j1=0;
        for(t=1; t<=tj;t++){
    /* Calculates basic frequencies. Computes observed prevalence at single age      for(i1=1; i1<=ncodemax[t];i1++){ 
        and prints on file fileres'p'. */        j1++;
         if  (cptcovn>0) {
              fprintf(ficresprob, "\n#********** Variable "); 
              for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          fprintf(ficresprob, "**********\n#\n");
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          fprintf(ficresprobcov, "\n#********** Variable "); 
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          fprintf(ficresprobcov, "**********\n#\n");
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */          
                fprintf(ficgp, "\n#********** Variable "); 
     /* For Powell, parameters are in a vector p[] starting at p[1]          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */          fprintf(ficgp, "**********\n#\n");
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */          
           
     if(mle==1){          fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     }          fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
              
     /*--------- results files --------------*/          fprintf(ficresprobcor, "\n#********** Variable ");    
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
            fprintf(ficresprobcor, "**********\n#");    
         }
    jk=1;        
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");        for (age=bage; age<=fage; age ++){ 
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");          cov[2]=age;
    for(i=1,jk=1; i <=nlstate; i++){          for (k=1; k<=cptcovn;k++) {
      for(k=1; k <=(nlstate+ndeath); k++){            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
        if (k != i)          }
          {          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
            printf("%d%d ",i,k);          for (k=1; k<=cptcovprod;k++)
            fprintf(ficres,"%1d%1d ",i,k);            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
            for(j=1; j <=ncovmodel; j++){          
              printf("%f ",p[jk]);          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
              fprintf(ficres,"%f ",p[jk]);          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
              jk++;          gp=vector(1,(nlstate)*(nlstate+ndeath));
            }          gm=vector(1,(nlstate)*(nlstate+ndeath));
            printf("\n");      
            fprintf(ficres,"\n");          for(theta=1; theta <=npar; theta++){
          }            for(i=1; i<=npar; i++)
      }              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
    }            
  if(mle==1){            pmij(pmmij,cov,ncovmodel,xp,nlstate);
     /* Computing hessian and covariance matrix */            
     ftolhess=ftol; /* Usually correct */            k=0;
     hesscov(matcov, p, npar, delti, ftolhess, func);            for(i=1; i<= (nlstate); i++){
  }              for(j=1; j<=(nlstate+ndeath);j++){
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");                k=k+1;
     printf("# Scales (for hessian or gradient estimation)\n");                gp[k]=pmmij[i][j];
      for(i=1,jk=1; i <=nlstate; i++){              }
       for(j=1; j <=nlstate+ndeath; j++){            }
         if (j!=i) {            
           fprintf(ficres,"%1d%1d",i,j);            for(i=1; i<=npar; i++)
           printf("%1d%1d",i,j);              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
           for(k=1; k<=ncovmodel;k++){      
             printf(" %.5e",delti[jk]);            pmij(pmmij,cov,ncovmodel,xp,nlstate);
             fprintf(ficres," %.5e",delti[jk]);            k=0;
             jk++;            for(i=1; i<=(nlstate); i++){
           }              for(j=1; j<=(nlstate+ndeath);j++){
           printf("\n");                k=k+1;
           fprintf(ficres,"\n");                gm[k]=pmmij[i][j];
         }              }
       }            }
      }       
                for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
     k=1;              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");          }
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");  
     for(i=1;i<=npar;i++){          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
       /*  if (k>nlstate) k=1;            for(theta=1; theta <=npar; theta++)
       i1=(i-1)/(ncovmodel*nlstate)+1;              trgradg[j][theta]=gradg[theta][j];
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);          
       printf("%s%d%d",alph[k],i1,tab[i]);*/          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
       fprintf(ficres,"%3d",i);          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
       printf("%3d",i);          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
       for(j=1; j<=i;j++){          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
         fprintf(ficres," %.5e",matcov[i][j]);          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
         printf(" %.5e",matcov[i][j]);          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
       }  
       fprintf(ficres,"\n");          pmij(pmmij,cov,ncovmodel,x,nlstate);
       printf("\n");          
       k++;          k=0;
     }          for(i=1; i<=(nlstate); i++){
                for(j=1; j<=(nlstate+ndeath);j++){
     while((c=getc(ficpar))=='#' && c!= EOF){              k=k+1;
       ungetc(c,ficpar);              mu[k][(int) age]=pmmij[i][j];
       fgets(line, MAXLINE, ficpar);            }
       puts(line);          }
       fputs(line,ficparo);          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
     }            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
     ungetc(c,ficpar);              varpij[i][j][(int)age] = doldm[i][j];
    
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&ageminpar,&agemaxpar, &bage, &fage);          /*printf("\n%d ",(int)age);
                for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
     if (fage <= 2) {            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
       bage = ageminpar;            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
       fage = agemaxpar;            }*/
     }  
              fprintf(ficresprob,"\n%d ",(int)age);
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");          fprintf(ficresprobcov,"\n%d ",(int)age);
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",ageminpar,agemaxpar,bage,fage);          fprintf(ficresprobcor,"\n%d ",(int)age);
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",ageminpar,agemaxpar,bage,fage);  
            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
     while((c=getc(ficpar))=='#' && c!= EOF){            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
     ungetc(c,ficpar);          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
     fgets(line, MAXLINE, ficpar);            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
     puts(line);            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
     fputs(line,ficparo);          }
   }          i=0;
   ungetc(c,ficpar);          for (k=1; k<=(nlstate);k++){
              for (l=1; l<=(nlstate+ndeath);l++){ 
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);              i=i++;
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
                    for (j=1; j<=i;j++){
   while((c=getc(ficpar))=='#' && c!= EOF){                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
     ungetc(c,ficpar);                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
     fgets(line, MAXLINE, ficpar);              }
     puts(line);            }
     fputs(line,ficparo);          }/* end of loop for state */
   }        } /* end of loop for age */
   ungetc(c,ficpar);  
          /* Confidence intervalle of pij  */
         /*
    dateprev1=anprev1+mprev1/12.+jprev1/365.;          fprintf(ficgp,"\nset noparametric;unset label");
    dateprev2=anprev2+mprev2/12.+jprev2/365.;          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
           fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
   fscanf(ficpar,"pop_based=%d\n",&popbased);          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
   fprintf(ficparo,"pop_based=%d\n",popbased);            fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
   fprintf(ficres,"pop_based=%d\n",popbased);            fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
            fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
   while((c=getc(ficpar))=='#' && c!= EOF){        */
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
     puts(line);        first1=1;
     fputs(line,ficparo);        for (k2=1; k2<=(nlstate);k2++){
   }          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
   ungetc(c,ficpar);            if(l2==k2) continue;
             j=(k2-1)*(nlstate+ndeath)+l2;
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);            for (k1=1; k1<=(nlstate);k1++){
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);                if(l1==k1) continue;
                 i=(k1-1)*(nlstate+ndeath)+l1;
                 if(i<=j) continue;
 while((c=getc(ficpar))=='#' && c!= EOF){                for (age=bage; age<=fage; age ++){ 
     ungetc(c,ficpar);                  if ((int)age %5==0){
     fgets(line, MAXLINE, ficpar);                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
     puts(line);                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
     fputs(line,ficparo);                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
   }                    mu1=mu[i][(int) age]/stepm*YEARM ;
   ungetc(c,ficpar);                    mu2=mu[j][(int) age]/stepm*YEARM;
                     c12=cv12/sqrt(v1*v2);
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);                    /* Computing eigen value of matrix of covariance */
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     /* Eigen vectors */
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                     /*v21=sqrt(1.-v11*v11); *//* error */
 /*------------ gnuplot -------------*/                    v21=(lc1-v1)/cv12*v11;
  printinggnuplot(fileres,optionfilefiname,optionfile,optionfilegnuplot, ageminpar,agemaxpar,fage, pathc,p);                    v12=-v21;
                      v22=v11;
 /*------------ free_vector  -------------*/                    tnalp=v21/v11;
  chdir(path);                    if(first1==1){
                        first1=0;
  free_ivector(wav,1,imx);                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);                    }
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);                      fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
  free_ivector(num,1,n);                    /*printf(fignu*/
  free_vector(agedc,1,n);                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
  /*free_matrix(covar,1,NCOVMAX,1,n);*/                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
  fclose(ficparo);                    if(first==1){
  fclose(ficres);                      first=0;
                       fprintf(ficgp,"\nset parametric;unset label");
 /*--------- index.htm --------*/                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                       fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
   printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,optionfile,optionfilehtm,rfileres,optionfilegnuplot,version,popforecast);                      fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
    :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
    %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
   /*--------------- Prevalence limit --------------*/                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                                subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
   strcpy(filerespl,"pl");                      fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
   strcat(filerespl,fileres);                      fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
   if((ficrespl=fopen(filerespl,"w"))==NULL) {                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
   }                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
   fprintf(ficrespl,"#Prevalence limit\n");                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
   fprintf(ficrespl,"#Age ");                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);                    }else{
   fprintf(ficrespl,"\n");                      first=0;
                        fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
   prlim=matrix(1,nlstate,1,nlstate);                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */                    }/* if first */
   k=0;                  } /* age mod 5 */
   agebase=ageminpar;                } /* end loop age */
   agelim=agemaxpar;                fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
   ftolpl=1.e-10;                first=1;
   i1=cptcoveff;              } /*l12 */
   if (cptcovn < 1){i1=1;}            } /* k12 */
           } /*l1 */
   for(cptcov=1;cptcov<=i1;cptcov++){        }/* k1 */
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      } /* loop covariates */
         k=k+1;    }
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
         fprintf(ficrespl,"\n#******");    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
         for(j=1;j<=cptcoveff;j++)    free_vector(xp,1,npar);
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    fclose(ficresprob);
         fprintf(ficrespl,"******\n");    fclose(ficresprobcov);
            fclose(ficresprobcor);
         for (age=agebase; age<=agelim; age++){    fflush(ficgp);
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    fflush(fichtmcov);
           fprintf(ficrespl,"%.0f",age );  }
           for(i=1; i<=nlstate;i++)  
           fprintf(ficrespl," %.5f", prlim[i][i]);  
           fprintf(ficrespl,"\n");  /******************* Printing html file ***********/
         }  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
       }                    int lastpass, int stepm, int weightopt, char model[],\
     }                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
   fclose(ficrespl);                    int popforecast, int estepm ,\
                     double jprev1, double mprev1,double anprev1, \
   /*------------- h Pij x at various ages ------------*/                    double jprev2, double mprev2,double anprev2){
      int jj1, k1, i1, cpt;
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);  
   if((ficrespij=fopen(filerespij,"w"))==NULL) {     fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n \
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
   }             jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
   printf("Computing pij: result on file '%s' \n", filerespij);     fprintf(fichtm,"\
     - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
   stepsize=(int) (stepm+YEARM-1)/YEARM;             stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
   /*if (stepm<=24) stepsize=2;*/     fprintf(fichtm,"\
    - Stable prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
   agelim=AGESUP;             subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
   hstepm=stepsize*YEARM; /* Every year of age */     fprintf(fichtm,"\
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */   - Life expectancies by age and initial health status (estepm=%2d months): \
       <a href=\"%s\">%s</a> <br>\n</li>",
   k=0;             estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
   for(cptcov=1;cptcov<=i1;cptcov++){  
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
       k=k+1;  
         fprintf(ficrespij,"\n#****** ");   m=cptcoveff;
         for(j=1;j<=cptcoveff;j++)   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
         fprintf(ficrespij,"******\n");   jj1=0;
           for(k1=1; k1<=m;k1++){
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */     for(i1=1; i1<=ncodemax[k1];i1++){
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */       jj1++;
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */       if (cptcovn > 0) {
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
           oldm=oldms;savm=savms;         for (cpt=1; cpt<=cptcoveff;cpt++) 
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);             fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
           fprintf(ficrespij,"# Age");         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
           for(i=1; i<=nlstate;i++)       }
             for(j=1; j<=nlstate+ndeath;j++)       /* Pij */
               fprintf(ficrespij," %1d-%1d",i,j);       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: %s%d1.png<br> \
           fprintf(ficrespij,"\n");  <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
           for (h=0; h<=nhstepm; h++){       /* Quasi-incidences */
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
             for(i=1; i<=nlstate;i++)   before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: %s%d2.png<br> \
               for(j=1; j<=nlstate+ndeath;j++)  <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);         /* Stable prevalence in each health state */
             fprintf(ficrespij,"\n");         for(cpt=1; cpt<nlstate;cpt++){
           }           fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
           fprintf(ficrespij,"\n");         }
         }       for(cpt=1; cpt<=nlstate;cpt++) {
     }          fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): %s%d%d.png <br> \
   }  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
        }
   /* varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k);*/     } /* end i1 */
    }/* End k1 */
   fclose(ficrespij);   fprintf(fichtm,"</ul>");
   
   
   /*---------- Forecasting ------------------*/   fprintf(fichtm,"\
   if((stepm == 1) && (strcmp(model,".")==0)){  \n<br><li><h4> Result files (second order: variances)</h4>\n\
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);  
     free_matrix(mint,1,maxwav,1,n);   fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);           subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
     free_vector(weight,1,n);}   fprintf(fichtm,"\
   else{   - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
     erreur=108;           subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);  
   }   fprintf(fichtm,"\
     - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
   /*---------- Health expectancies and variances ------------*/   fprintf(fichtm,"\
    - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
   strcpy(filerest,"t");           estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
   strcat(filerest,fileres);   fprintf(fichtm,"\
   if((ficrest=fopen(filerest,"w"))==NULL) {   - Health expectancies with their variances (no covariance): <a href=\"%s\">%s</a> <br>\n",
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;           subdirf2(fileres,"t"),subdirf2(fileres,"t"));
   }   fprintf(fichtm,"\
   printf("Computing Total LEs with variances: file '%s' \n", filerest);   - Standard deviation of stable prevalences: <a href=\"%s\">%s</a> <br>\n",\
            subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   
   strcpy(filerese,"e");  /*  if(popforecast==1) fprintf(fichtm,"\n */
   strcat(filerese,fileres);  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   if((ficreseij=fopen(filerese,"w"))==NULL) {  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);  /*      <br>",fileres,fileres,fileres,fileres); */
   }  /*  else  */
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    fflush(fichtm);
  strcpy(fileresv,"v");   fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   strcat(fileresv,fileres);  
   if((ficresvij=fopen(fileresv,"w"))==NULL) {   m=cptcoveff;
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   }  
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);   jj1=0;
    for(k1=1; k1<=m;k1++){
   k=0;     for(i1=1; i1<=ncodemax[k1];i1++){
   for(cptcov=1;cptcov<=i1;cptcov++){       jj1++;
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){       if (cptcovn > 0) {
       k=k+1;         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
       fprintf(ficrest,"\n#****** ");         for (cpt=1; cpt<=cptcoveff;cpt++) 
       for(j=1;j<=cptcoveff;j++)           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
       fprintf(ficrest,"******\n");       }
        for(cpt=1; cpt<=nlstate;cpt++) {
       fprintf(ficreseij,"\n#****** ");         fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
       for(j=1;j<=cptcoveff;j++)  prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
       fprintf(ficreseij,"******\n");       }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
       fprintf(ficresvij,"\n#****** ");  health expectancies in states (1) and (2): %s%d.png<br>\
       for(j=1;j<=cptcoveff;j++)  <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);     } /* end i1 */
       fprintf(ficresvij,"******\n");   }/* End k1 */
    fprintf(fichtm,"</ul>");
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);   fflush(fichtm);
       oldm=oldms;savm=savms;  }
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k);    
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);  /******************* Gnuplot file **************/
       oldm=oldms;savm=savms;  void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);  
        char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
      int ng;
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");  /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);  /*     printf("Problem with file %s",optionfilegnuplot); */
       fprintf(ficrest,"\n");  /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
       epj=vector(1,nlstate+1);  
       for(age=bage; age <=fage ;age++){    /*#ifdef windows */
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    fprintf(ficgp,"cd \"%s\" \n",pathc);
         if (popbased==1) {      /*#endif */
           for(i=1; i<=nlstate;i++)    m=pow(2,cptcoveff);
             prlim[i][i]=probs[(int)age][i][k];  
         }    strcpy(dirfileres,optionfilefiname);
            strcpy(optfileres,"vpl");
         fprintf(ficrest," %4.0f",age);   /* 1eme*/
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){    for (cpt=1; cpt<= nlstate ; cpt ++) {
           for(i=1, epj[j]=0.;i <=nlstate;i++) {     for (k1=1; k1<= m ; k1 ++) {
             epj[j] += prlim[i][i]*eij[i][j][(int)age];       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
           }       fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
           epj[nlstate+1] +=epj[j];       fprintf(ficgp,"set xlabel \"Age\" \n\
         }  set ylabel \"Probability\" \n\
         for(i=1, vepp=0.;i <=nlstate;i++)  set ter png small\n\
           for(j=1;j <=nlstate;j++)  set size 0.65,0.65\n\
             vepp += vareij[i][j][(int)age];  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
         fprintf(ficrest," %7.2f (%7.2f)", epj[nlstate+1],sqrt(vepp));  
         for(j=1;j <=nlstate;j++){       for (i=1; i<= nlstate ; i ++) {
           fprintf(ficrest," %7.2f (%7.2f)", epj[j],sqrt(vareij[j][j][(int)age]));         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
         }         else fprintf(ficgp," \%%*lf (\%%*lf)");
         fprintf(ficrest,"\n");       }
       }       fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
     }       for (i=1; i<= nlstate ; i ++) {
   }         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
   fclose(ficreseij);       } 
   fclose(ficresvij);       fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
   fclose(ficrest);       for (i=1; i<= nlstate ; i ++) {
   fclose(ficpar);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
   free_vector(epj,1,nlstate+1);         else fprintf(ficgp," \%%*lf (\%%*lf)");
         }  
   /*------- Variance limit prevalence------*/         fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
   strcpy(fileresvpl,"vpl");    }
   strcat(fileresvpl,fileres);    /*2 eme*/
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {    
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);    for (k1=1; k1<= m ; k1 ++) { 
     exit(0);      fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
   }      fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);      
       for (i=1; i<= nlstate+1 ; i ++) {
   k=0;        k=2*i;
   for(cptcov=1;cptcov<=i1;cptcov++){        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        for (j=1; j<= nlstate+1 ; j ++) {
       k=k+1;          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
       fprintf(ficresvpl,"\n#****** ");          else fprintf(ficgp," \%%*lf (\%%*lf)");
       for(j=1;j<=cptcoveff;j++)        }   
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
       fprintf(ficresvpl,"******\n");        else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
              fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
       varpl=matrix(1,nlstate,(int) bage, (int) fage);        for (j=1; j<= nlstate+1 ; j ++) {
       oldm=oldms;savm=savms;          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);          else fprintf(ficgp," \%%*lf (\%%*lf)");
     }        }   
  }        fprintf(ficgp,"\" t\"\" w l 0,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
   fclose(ficresvpl);        for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
   /*---------- End : free ----------------*/          else fprintf(ficgp," \%%*lf (\%%*lf)");
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);        }   
          if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);        else fprintf(ficgp,"\" t\"\" w l 0,");
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);      }
      }
      
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);    /*3eme*/
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);    
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);    for (k1=1; k1<= m ; k1 ++) { 
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);      for (cpt=1; cpt<= nlstate ; cpt ++) {
          k=2+nlstate*(2*cpt-2);
   free_matrix(matcov,1,npar,1,npar);        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
   free_vector(delti,1,npar);        fprintf(ficgp,"set ter png small\n\
   free_matrix(agev,1,maxwav,1,imx);  set size 0.65,0.65\n\
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
   if(erreur >0)          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
     printf("End of Imach with error or warning %d\n",erreur);          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
   else   printf("End of Imach\n");          fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
            fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/          
   /*printf("Total time was %d uSec.\n", total_usecs);*/        */
   /*------ End -----------*/        for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);
           
  end:        } 
 #ifdef windows      }
   /* chdir(pathcd);*/    }
 #endif    
  /*system("wgnuplot graph.plt");*/    /* CV preval stable (period) */
  /*system("../gp37mgw/wgnuplot graph.plt");*/    for (k1=1; k1<= m ; k1 ++) { 
  /*system("cd ../gp37mgw");*/      for (cpt=1; cpt<=nlstate ; cpt ++) {
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/        k=3;
  strcpy(plotcmd,GNUPLOTPROGRAM);        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
  strcat(plotcmd," ");        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
  strcat(plotcmd,optionfilegnuplot);  set ter png small\nset size 0.65,0.65\n\
  system(plotcmd);  unset log y\n\
   plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
 #ifdef windows        
   while (z[0] != 'q') {        for (i=1; i< nlstate ; i ++)
     /* chdir(path); */          fprintf(ficgp,"+$%d",k+i+1);
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");        fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
     scanf("%s",z);        
     if (z[0] == 'c') system("./imach");        l=3+(nlstate+ndeath)*cpt;
     else if (z[0] == 'e') system(optionfilehtm);        fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
     else if (z[0] == 'g') system(plotcmd);        for (i=1; i< nlstate ; i ++) {
     else if (z[0] == 'q') exit(0);          l=3+(nlstate+ndeath)*cpt;
   }          fprintf(ficgp,"+$%d",l+i+1);
 #endif        }
 }        fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       } 
     }  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
   
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;
                for(j=3; j <=ncovmodel; j++) {
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                    ij++;
                  }
                  else
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                      ij++;
                    }
                    else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i]==1 & wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i]==0 & wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         if (wav[i]>1 & agecens[i]>15) {
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov){
     int i;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small\n set log y\n"); 
     fprintf(ficgp, "set size 0.65,0.65\n");
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
   
     char ca[32], cb[32], cc[32];
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char strstart[80], *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       scanf("%s",pathtot);
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("pathimach=%s, pathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem with datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     while (fgets(line, MAXLINE, fic) != NULL)    {
       if ((i >= firstobs) && (i <=lastobs)) {
         for(j=0; line[j] != '\n';j++){  /* Untabifies line */
           if(line[j] == '\t')
             line[j] = ' ';
         }
         for (j=maxwav;j>=1;j--){
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb); 
           strcpy(line,stra);
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         }
           
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);
         for (j=ncovcol;j>=1;j--){
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         } 
         lstra=strlen(stra);
         if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
           stratrunc = &(stra[lstra-9]);
           num[i]=atol(stratrunc);
         }
         else
           num[i]=atol(stra);
           
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
           printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
   
         i=i+1;
       }
     }
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
    for (i=1; i<=imx; i++)
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameter from char model*/
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);
     fclose(fic);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a
                                    month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     agegomp=(int)agemin;
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<body>\n<title>IMaCh Cov %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (j=1; j<=lastpass; j++)
           if (s[j][i]>nlstate) {
             dcwave[i]=j;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];agecens[i]=1.; 
           if (ageexmed[i]>1 & wav[i]>0) agecens[i]=agev[mw[j][i]][i];
           cens[i]=1;
           
           if (ageexmed[i]<1) cens[i]=-1;
           if (agedc[i]< AGESUP & agedc[i]>1 & dcwave[i]>firstpass & dcwave[i]<=lastpass) cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
   
       p[1]=0.1; p[2]=0.1;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
     printf("Powell\n");  fprintf(ficlog,"Powell\n");
     strcpy(filerespow,"pow-mort"); 
     strcat(filerespow,fileres);
     if((ficrespow=fopen(filerespow,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", filerespow);
       fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
     }
     fprintf(ficrespow,"# Powell\n# iter -2*LL");
     /*  for (i=1;i<=nlstate;i++)
       for(j=1;j<=nlstate+ndeath;j++)
         if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
     */
     fprintf(ficrespow,"\n");
   
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM,delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov);
     } /* Endof if mle==-3 */
   
     else{ /* For mle >=1 */
     
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing stable prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
       fprintf(ficrespl,"#Stable prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
   
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /*---------- Health expectancies and variances ------------*/
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total LEs with variances: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficreseij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav);
           if(popbased==1){
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav);
           }
   
    
           fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
           for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
           fprintf(ficrest,"\n");
   
           epj=vector(1,nlstate+1);
           for(age=bage; age <=fage ;age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             if (popbased==1) {
               if(mobilav ==0){
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=probs[(int)age][i][k];
               }else{ /* mobilav */ 
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=mobaverage[(int)age][i][k];
               }
             }
           
             fprintf(ficrest," %4.0f",age);
             for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
               for(i=1, epj[j]=0.;i <=nlstate;i++) {
                 epj[j] += prlim[i][i]*eij[i][j][(int)age];
                 /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
               }
               epj[nlstate+1] +=epj[j];
             }
   
             for(i=1, vepp=0.;i <=nlstate;i++)
               for(j=1;j <=nlstate;j++)
                 vepp += vareij[i][j][(int)age];
             fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
             for(j=1;j <=nlstate;j++){
               fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
             }
             fprintf(ficrest,"\n");
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficreseij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of stable prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
     
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
       free_ivector(Tcode,1,100);
   
   
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocaltime at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);
     fclose(fichtm);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
     chdir(path);
     strcpy(plotcmd,"\"");
     strcat(plotcmd,pathimach);
     strcat(plotcmd,GNUPLOTPROGRAM);
     strcat(plotcmd,"\"");
     strcat(plotcmd," ");
     strcat(plotcmd,optionfilegnuplot);
     printf("Starting graphs with: %s",plotcmd);fflush(stdout);
     if((outcmd=system(plotcmd)) != 0){
       printf(" Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.35  
changed lines
  Added in v.1.103


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>